WO2019187645A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2019187645A1
WO2019187645A1 PCT/JP2019/003949 JP2019003949W WO2019187645A1 WO 2019187645 A1 WO2019187645 A1 WO 2019187645A1 JP 2019003949 W JP2019003949 W JP 2019003949W WO 2019187645 A1 WO2019187645 A1 WO 2019187645A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
internal combustion
combustion engine
timing
reference angle
Prior art date
Application number
PCT/JP2019/003949
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 藤澤
豊原 正裕
鈴木 邦彦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020510346A priority Critical patent/JPWO2019187645A1/en
Publication of WO2019187645A1 publication Critical patent/WO2019187645A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • variable valve timing mechanism for the purpose of improving fuel consumption and reducing exhaust gas.
  • this variable valve timing mechanism it is possible to arbitrarily control the operating angle of an intake valve that supplies air to a cylinder of an internal combustion engine and an exhaust valve that discharges combustion gas from the cylinder.
  • the control device for an internal combustion engine provided with such a variable valve timing mechanism controls the intake valve or the exhaust valve to a desired operating angle by the variable valve timing mechanism, as well as the injection timing of the fuel injection device and the ignition timing of the ignition device. Is controlled in accordance with the operating state of the internal combustion engine, thereby improving the fuel consumption, exhaust, output, and driving performance of the internal combustion engine.
  • the cam position (angle) is calculated from the output signals of the crank angle sensor and the cam angle sensor, and the cam position is calculated by performing various correction control learning the variation of the components of the variable valve timing mechanism.
  • a control device for an internal combustion engine is disclosed.
  • the control of the operation angle of the intake valve and the exhaust valve by the variable valve timing mechanism does not consider the closing of the intake valve or the exhaust valve. Cannot be determined, and the amount of air in the cylinder cannot be calculated accurately.
  • an object of the present invention is to accurately calculate the amount of air taken into the cylinder of the internal combustion engine in the control device for the internal combustion engine.
  • a control device for an internal combustion engine that controls an internal combustion engine having a camshaft that opens and closes an intake valve and an exhaust valve, and a cam angle sensor that detects a rotation angle of the camshaft.
  • the shaft has a reference angle forming portion configured to be detected by a cam angle sensor, and the reference angle forming portion is provided at an angular position corresponding to at least the valve closing timing of the intake valve.
  • the amount of air taken into the cylinder of the internal combustion engine can be accurately calculated in the control device for the internal combustion engine.
  • engine 100 A main part of an internal combustion engine (hereinafter referred to as engine 100) according to an embodiment of the present invention will be described.
  • the case where the engine 100 is a four-cycle engine 100 having a plurality of cylinders will be described as an example.
  • Engine 100 is a direct injection spark ignition internal combustion engine that directly injects fuel into each cylinder and ignites sparks on the injected fuel.
  • FIG. 1 is a diagram for explaining a main part of an engine 100 according to an embodiment.
  • the engine 100 is provided with a piston 101, an intake valve 102, and an exhaust valve 103.
  • the intake air passes through an air flow meter (AFM) 118 and is throttled. It enters the valve 117 and is supplied from a collector 113 serving as a branching portion to a combustion chamber 119 of a cylinder (not shown) of the engine 100 through an intake pipe 109 and an intake valve 102.
  • AFM air flow meter
  • the intake valve 102 is driven to open and close (open or close) by a cam 201 (see FIG. 2) provided on the intake side camshaft 121. Is provided with a cam angle sensor 122 for detecting the rotation angle of the intake camshaft 121.
  • the exhaust valve 103 is also driven to open and close (open or close) by a cam 210 (see FIG. 2) provided on the exhaust side camshaft 209. Is provided with a cam angle sensor 209a for detecting the rotation angle of the exhaust camshaft 209.
  • the combustion chamber 119 is provided with an ignition plug 105, and the fuel supplied to the combustion chamber 119 explodes when the ignition plug 105 is ignited.
  • the piston 101 is pushed down by the explosion of fuel in the combustion chamber 119, and the crankshaft 116 connected to the piston 101 rotates in conjunction with the depression of the piston 101.
  • the rotation of the crankshaft 116 is transmitted to a transmission (not shown) and becomes a driving force of the engine 100.
  • the rotation angle of the crankshaft 116 is detected by a crank angle sensor 114 provided outside the crankshaft 116 in the circumferential direction.
  • the crank angle sensor 114 detects the rotation angle of the crankshaft 116 around the rotation axis by detecting an angle detector 115 (projection or groove) provided on the crankshaft 116.
  • the exhaust gas after combustion is discharged to the exhaust pipe 110 through the exhaust valve 103.
  • the exhaust pipe 110 is provided with a three-way catalyst 111 for purifying exhaust gas.
  • An air-fuel ratio sensor 112 that detects an air-fuel ratio in the exhaust gas is provided upstream of the three-way catalyst 111 in the exhaust gas flow direction.
  • a knock sensor 107 is provided in the cylinder block of the engine 100, and the knock sensor 107 detects an abnormal noise (knocking) generated when the engine 100 is abnormally burned.
  • the vehicle (not shown) is provided with an accelerator opening sensor 120, and the accelerator opening sensor 120 detects the accelerator opening according to the amount of depression of the driver's accelerator (not shown). Is done.
  • crank angle sensor 114 The crank angle sensor 114, the cam angle sensors 122 and 209a, the air flow meter 118, the air-fuel ratio sensor 112, the knock sensor 107, and the accelerator opening sensor 120 are connected to the ECU 108.
  • the output signal from is input to the ECU 108.
  • the ECU 108 calculates the required torque for the engine 100 based on the output signal of the accelerator opening sensor 120 and determines the idle state.
  • the ECU 108 calculates the intake air amount necessary for the engine 100 based on the calculated required torque, and outputs an opening signal corresponding to the intake air amount to the throttle valve 117.
  • the ECU 108 outputs an injection control signal to the fuel injection valve 104 and outputs an ignition signal to the spark plug 105.
  • the ECU 108 performs feedback control of the ignition signal based on the detection of knocking by the knock sensor 107.
  • the ECU 108 performs various controls on the engine 100 (internal combustion engine) and corresponds to a control device for the internal combustion engine.
  • variable valve timing mechanism 123 is provided on the intake camshaft 121 and the exhaust camshaft 209 described above.
  • the variable valve timing mechanism 123 is a mechanism that changes the valve timing of the intake valve 102 and the exhaust valve 103 by changing the rotational phase of the intake camshaft 121 or the exhaust camshaft 209 relative to the crankshaft 116.
  • the valve timings of the intake valve 102 and the exhaust valve 103 are calculated by the ECU 108 based on detection signals of the cam angle sensors 122 and 209a.
  • variable valve timing mechanism 123 is not limited to the one that changes the valve timing of the intake valve 102 of the embodiment, and is applied to the exhaust valve 103 or both the intake valve 102 and the exhaust valve 103. Also good.
  • variable valve timing mechanism Next, the structure of the variable valve timing mechanism 123 according to the embodiment will be described.
  • FIG. 2 is a perspective view for explaining the structure of the variable valve timing mechanism 123.
  • FIG. 3 is a diagram for explaining the detection timing of the cam angle sensor 122.
  • FIG. 4 is a cross-sectional view illustrating the structure of the variable valve timing mechanism 123, and shows the connection relationship between the oil control valve 207 and the variable valve timing mechanism 123.
  • variable phase cam pulley 202 is provided at one end of the intake camshaft 121, and the variable phase cam pulley 202 is a continuously variable phase type in which the rotational phase continuously changes.
  • the phase variable cam pulley 202 is formed with a gear over the entire circumference in the circumferential direction around the rotation axis of the phase variable cam pulley 202.
  • the intake side camshaft 121 has a reference angle forming part 220 configured such that the reference angle of the intake side camshaft 121 is detected by the cam angle sensor 122.
  • the reference angle forming portion 220 of the intake camshaft 121 is provided at an angular position corresponding to at least the valve closing timing (valve closing position IVC) of the intake valve 102.
  • the reference angle forming part 220 is a protrusion provided to protrude radially outward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the intake side camshaft 121.
  • the reference angle forming unit 220 may be provided by any method that is integral with or separate from the camshaft 121.
  • each reference angle forming section 220 is provided at a position corresponding to (coincidence with) a position where the intake valve 102 is closed (valve closing position IVC) as the cam 201 (intake side camshaft 121) rotates.
  • the ECU 108 detects the reference angle forming unit 220 (protrusion) with the cam angle sensor 122, thereby closing the intake valve 102 and the process of the detection timing determined to be closed (in the embodiment, the intake air Process) can be determined.
  • the reference angle forming unit 220 may be a position where it is possible to determine whether the intake valve 102 is closed. It is not limited to this, and it may be one or three or more.
  • the reference angle forming unit 220 is described as an example of a protrusion protruding from the outer periphery of the cam rotor 208 to the outer side in the radial direction of the rotation shaft.
  • the reference angle is determined by the cam angle sensor 122.
  • the reference angle forming portion 220 is a groove 220A or a hole that is recessed radially inward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the intake camshaft 121 (see the dotted line in FIG. 3).
  • the reference angle forming portion 220 is a groove 220A or a hole that is recessed radially inward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the intake camshaft 121 (see the dotted line in FIG. 3).
  • And may be a groove 220A or a hole.
  • the groove 220A or the hole is provided at an angular position corresponding to at least the valve closing timing (the valve closing position IVC) of the intake valve 102.
  • the reference angle forming unit 220 may be configured to be set at an angular position corresponding to the intake stroke, the compression stroke, the explosion stroke, and the exhaust stroke of the engine 100.
  • a cam pulley 203 whose rotational phase does not change is provided at one end of the exhaust side camshaft 209.
  • the cam pulley 203 is formed with a gear over the entire circumference in the circumferential direction around the rotation axis.
  • the gear is engaged with the gear of the variable phase cam pulley 202 and combined.
  • a crank pulley 204 is fixed to one end of the crankshaft 116 described above, and a gear is formed on the crank pulley 204 over the entire circumference in the circumferential direction around the rotation axis of the crank pulley 204.
  • an oil pump 205 is provided at one end of the crankshaft 116, and the oil pump 205 rotates in synchronization with the rotation of the crankshaft 116, thereby discharging oil and generating hydraulic pressure. As a result, lubrication in the engine 100 and oil supply to a hydraulically driven actuator are performed.
  • a timing belt 206 is wound around the phase variable cam pulley 202, the cam pulley 203, and the crank pulley 204.
  • the phase variable cam pulley 202 and the cam pulley 203 are connected to the crank pulley 204 via the timing belt 206. Driven by.
  • the phase variable cam pulley 202 includes an actuator driven by hydraulic pressure.
  • a cam housing 251 is provided on the inner peripheral side of the phase variable cam pulley 202, and a vane 252 fixed to the intake side camshaft 121 is provided inside the cam housing 251. ing.
  • a space is formed around the vane 252 by the vane 252 and the cam housing 251. Within this space, the vane 252 can operate around the rotation axis.
  • a space formed by the vane 252 and the cam housing 251 is partitioned into an advance chamber 253 and a retard chamber 254 by the vane 252, and the advance chamber 253 is connected to the phase advance hydraulic passage 281.
  • the retard chamber 254 is connected to the phase retard hydraulic passage 282.
  • the phase advance hydraulic passage 281 and the phase retard hydraulic passage 282 are connected to an oil control valve (Oil Control Valve: OCV) 207.
  • the oil control valve 207 includes a solenoid 255, a plunger 256, a housing 257, a spool 258, and a spring 259.
  • the spool 258 is provided so as to be movable in the axial direction (left-right direction in FIG. 4), and the axial movement of the spool 258 is controlled by energizing or de-energizing the solenoid 255.
  • the solenoid 255 when the solenoid 255 is not energized, the spool 258 is pressed by the spring 259 and is positioned in the right direction in FIG. In order to press in the direction, the spool 258 moves to the left in FIG. 4 against the pressing force of the spring 259. The amount of movement of the spool 258 in the left direction increases in proportion to the amount of current supplied to the solenoid 255.
  • the housing 257 includes a hydraulic pressure supply port 261, an advance port 262, a retard port 263, and a drain port 260. These hydraulic supply port 261, advance port 262, retard port 263, drain The ports 260 are connected to an oil passage 280, a phase advance hydraulic passage 281, a phase retard hydraulic passage 282, and a drain passage (not shown), respectively.
  • variable valve timing mechanism 123 is not limited to the structure described above, and any known variable valve timing mechanism can be applied.
  • FIG. 5 is a functional block diagram for explaining the ECU 108 according to the embodiment.
  • the ECU 108 includes an input circuit 301, an A / D (Analog-to-Digital Converter) 302, a CPU (Central Processing Unit) 303, a ROM (Read Only Memory) 304, a RAM (Random Access Memory) 305, and the like. , And a microcomputer having an output circuit 306.
  • a / D Analog-to-Digital Converter
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the input circuit 301 When an analog input signal 300 (for example, an output signal from the air flow meter 118 or the accelerator opening sensor 120 described above) is input, the input circuit 301 removes a noise component from the input signal 300, and The input signal 300 is output to the A / D converter 302.
  • an analog input signal 300 for example, an output signal from the air flow meter 118 or the accelerator opening sensor 120 described above.
  • the A / D conversion unit 302 converts the analog input signal 300 received from the input circuit 301 into a digital signal and outputs it to the CPU 303.
  • the CPU 303 takes in the digital input signal 300 converted by the A / D conversion unit 302 and executes the fuel injection control program stored in the ROM 304 and other control programs, whereby the fuel injection valve 104 and other Perform device control, diagnosis, etc.
  • the calculation result by the CPU 303 and the conversion result by the A / D conversion unit 302 are temporarily stored in the RAM 305, and the calculation result is output as a control signal 307 via the output circuit 306.
  • the fuel injection valve 104, the ignition coil 106, and the like are controlled by the control signal 307.
  • the control signal 307 calculated by the CPU 303 based on the input signal 300 such as the air flow meter 118 and the accelerator opening sensor 120 corresponds to an operating condition described later.
  • FIG. 6 is a diagram for explaining the relationship between each sensor signal and each stroke of the engine 100 according to the conventional example, and the uppermost stage in FIG. 6 is a time chart of the output signal of the cam angle sensor 122 provided in the engine 100.
  • the second stage from the top in the figure is a time chart of the output signal of the crank angle sensor 114 provided in the engine 100, and the third stage from the top in the figure is a time chart of the stroke of the engine 100.
  • the lowermost stage in the figure shows the opening degree sensor signals of the accelerator opening degree sensor 120 and the throttle valve 117 when the engine 100 is in a transient operation.
  • the case where engine 100 has four cylinders is illustrated, and therefore the cycle of the output signal of cam angle sensor 122 occurs every 180 degrees.
  • the rotation angle of the intake camshaft 121 is calculated based on the rotation angle of the crankshaft 116 detected by the crank angle sensor 114, and the rotation of the intake camshaft 121 is calculated.
  • the valve closing position (Intake Valve Close: IVC) of the intake valve 102 was calculated from the angle.
  • the intake side camshaft 121 and the intake valve 102 are integrally provided, the position of the intake valve 102 is physically determined from the rotation angle of the intake side camshaft 121.
  • a number of components such as a timing belt 206, a phase variable cam pulley 202, and a cam pulley 203 are interposed between the crankshaft 116 and the intake camshaft 121, for example. For this reason, component errors, combination errors, and the like are accumulated, resulting in variations in the rotation angle of the intake camshaft 121 calculated from the rotation angle of the crankshaft 116.
  • valve closing position IVC of the intake valve 102 calculated from the rotation angle of the intake camshaft 121 varies, and the amount of air in the cylinder cannot be obtained accurately.
  • the engine 100 is controlled according to the opening degree of the throttle valve 117 controlled by the ECU 108 based on the output signal of the accelerator opening degree sensor 120.
  • the amount of air taken into the engine 100 increases, and the amount of air taken into the cylinder of the engine 100 is physically determined at the timing when the intake valve 102 is closed (valve closing position IVC).
  • the accelerator is Various corrections need to be made from recognized values such as changes in the opening degree, changes in the throttle valve 117, and the control position of the variable valve timing mechanism 123 obtained from the cam angle sensor 122.
  • the timing at which the amount of air in the cylinder is determined is corrected (varied in the calculated valve closing position IVC of the intake valve 102) or affected by the variation in the variable valve timing mechanism 123.
  • the accuracy of control cannot be improved.
  • sufficient accuracy of the desired air-fuel ratio control cannot be ensured, and many man-hours are required to improve the accuracy of the air-fuel ratio control, and the air-fuel ratio control becomes complicated. turn into.
  • the reference angle forming portion 220 (protrusion) of the cam rotor 208 provided on the intake side camshaft 121 is provided at an angular position corresponding to the valve closing position IVC of the intake valve 102. Based on the detection result of the reference angle forming unit 220 by the cam angle sensor 122, the valve closing position IVC of the intake valve 102 can be accurately detected. Therefore, even during the transient operation of engine 100, the amount of air in the cylinder can be accurately calculated.
  • FIG. 7 is a diagram for explaining an example of the detection timing of the cam angle sensor 122 according to the embodiment of the present invention.
  • the relationship with the detection signal of the sensor 122 is shown.
  • the cam angle sensor 122 detects a reference angle forming portion 220 (protrusion) provided on the cam rotor 208, and thereby the timing corresponding to the valve closing position IVC of the intake valve 102.
  • the ECU 108 can accurately detect the closing timing of the intake valve 102.
  • the detection timing of the cam angle sensor 122 is preferably coincident with the valve closing position IVC of the intake valve 102. However, it is not completely coincident as long as it does not affect the calculation accuracy of the air amount in the cylinder. May be.
  • the detection timing of the cam angle sensor 122 may be within a predetermined set angle (for example, ⁇ 0.3 deg) with respect to the valve closing position IVC of the intake valve 102.
  • the range that does not affect the calculation accuracy of the air amount in the cylinder differs depending on the cylinder volume per cylinder of the engine 100, the operation lift amount of the intake valve 102, the open / close time, and the like, and therefore the engine to which the present invention is applied. It is desirable to set according to 100 specifications.
  • FIG. 8 is a diagram for explaining the relationship between each sensor signal and each stroke of the engine 100 according to the conventional example, and the uppermost stage in FIG. 8 is a time chart of the output signal of the cam angle sensor 122 provided in the engine 100.
  • the second stage from the top in the figure is a time chart of the output signal of the crank angle sensor 114 provided in the engine 100
  • the third stage from the top in the figure is a time chart of the stroke of the engine 100.
  • the lowermost stage in the figure shows the opening degree sensor signals of the accelerator opening degree sensor 120 and the throttle valve 117 when the engine 100 is in a transient operation.
  • the case where engine 100 has four cylinders is illustrated, and therefore the cycle of the output signal of cam angle sensor 122 occurs every 180 degrees.
  • the cam angle sensor 122 detects the timing of the valve closing position IVC of the intake valve 102 by detecting a reference angle forming portion 220 (protrusion) provided on the cam rotor 208.
  • the valve closing position IVC of the intake valve 102 can be accurately detected.
  • the ECU 108 can accurately calculate the amount of air in the cylinder after the intake valve 102 is closed, and calculates the fuel injection amount based on this amount of air so that a desired air-fuel ratio is obtained.
  • the ECU 108 can inject a predetermined amount of fuel into the cylinder from the fuel injection valve 104 by controlling the fuel injection valve 104 based on the calculation result of the fuel injection amount.
  • the ECU 108 determines that the fuel injection amount calculated at the valve closing position IVC of the intake valve 102 is insufficient by a predetermined threshold or more than the required fuel injection amount, the ECU 108 performs the subsequent stroke (for example, the compression stroke). Interrupt injection is performed and adjustment is performed so that a desired air-fuel ratio is obtained.
  • FIG. 9 is a block diagram for explaining functions in the ECU 108.
  • the ECU 108 includes an air amount calculation unit 801, a required fuel injection amount calculation unit 802, an interrupt fuel injection calculation unit 803, and a required ignition timing calculation unit 804.
  • the air amount calculation unit 801 receives the detection signal output from the air flow meter (AFM) 118 and the detection signal output from the cam angle sensor 122, and calculates the air amount in the cylinder based on these detection signals. To do.
  • AFM air flow meter
  • the requested fuel injection amount calculation unit 802 receives the operating conditions of the engine 100, the detection signal of the crank angle sensor 114, and the like, and the detection timing of the reference angle detection unit 220 by the cam angle sensor 122 calculated by the air amount calculation unit 801.
  • the required fuel injection amount is calculated based on the air amount in the cylinder.
  • the interrupt fuel injection calculation unit 803 determines that the fuel injection amount calculated from at least the air amount at the detection timing of the reference angle forming unit 220 is less than the required fuel injection amount calculated by the required fuel injection amount calculation unit 802. An interruption fuel injection amount is calculated, and an arithmetic process for outputting the interruption fuel injection amount to the fuel injection valve 104 is performed.
  • the ECU 108 controls the fuel injection valve 104 based on the required fuel injection amount calculated by the required fuel injection amount calculation unit 802 and the interrupt fuel injection amount calculated by the interrupt fuel injection calculation unit 803, The valve 104 injects fuel into the cylinder based on these fuel injection amounts.
  • the control of the fuel injection valve 104 performed by the ECU 108 based on the required fuel injection amount and the interrupt fuel injection amount is referred to as fuel injection control.
  • the requested ignition timing calculation unit 804 receives the operating conditions of the engine 100, the detection signal of the crank angle sensor 114, and the like, and the cylinder at the detection timing of the reference angle forming unit 220 by the cam angle sensor 122 calculated by the air amount calculation unit 801.
  • the required ignition timing is calculated on the basis of the amount of air inside and is output to the ignition coil 106.
  • the ignition coil 106 generates a high current for igniting the ignition plug 105, and supplies the high current to the ignition plug 105 at the required ignition timing, so that the ignition plug 105 performs ignition at the required ignition timing.
  • the spark plug 105 may be ignited at a timing (retard angle) later than the required ignition timing, and in this way, knocking or the like can be appropriately prevented.
  • the ignition coil 106 generates a predetermined current according to the required ignition timing output from the required ignition timing calculation unit 804, and the ignition plug 105 is ignited by this current.
  • FIG. 10 is a flowchart for explaining fuel injection control processing by the ECU 108.
  • step S101 the ECU 108 processes the operating conditions.
  • the driving conditions include acceleration travel from an idle state of a vehicle (not shown), deceleration travel from acceleration travel, steady travel maintaining a constant engine speed, driver's accelerator operation, It refers to conditions including environmental changes in the engine 100 such as temperature, humidity, and altitude (air density decreases).
  • step S102 the air amount calculation unit 801 of the ECU 108 is based on the air flow rate detected by the air flow meter 118, the position of the reference angle forming unit 220 of the intake camshaft 121 detected by the cam angle sensor 122, and the like. Then, the air amount Q1 in the cylinder at the present time (the estimated air amount in the state before the intake valve 102 is closed) is calculated.
  • step S103 the required fuel injection amount calculation unit 802 of the ECU 108 is based on the operating conditions processed by the ECU 108 in step S101 and the air amount Q1 in the cylinder calculated by the air amount calculation unit 801 in step S102. To calculate the required fuel injection amount.
  • step S104 the ECU 108 determines whether or not there is an interrupt from the cam angle sensor 122 that detects the rotation angle of the intake-side camshaft 121, and determines that there is an interrupt (step S104: YES), step S106. If it is determined that there is no interruption (step S104: NO), the process proceeds to step S105.
  • step S105 If there is no interruption from the cam angle sensor 122 in step S105, the ECU 108 controls the fuel injection valve 104 in accordance with the required fuel injection amount calculated in step S103, performs normal fuel injection by the fuel injection valve 104, The process ends.
  • step S106 when there is an interruption from the cam angle sensor 122, the air amount calculation unit 801 of the ECU 108 determines the amount of air in the cylinder at the timing when the interruption from the cam angle sensor 122 occurs (closing timing of the intake valve 102). Q2 is calculated.
  • step S107 the ECU 108 calculates the air amount Q1 in the cylinder calculated at a timing other than the detection timing of the reference angle forming unit 220 in step S102 and the detection timing of the reference angle forming unit 220 in step S106.
  • the ECU 108 determines the air amount Q1 in the cylinder calculated at a timing other than the detection timing of the reference angle forming unit 220 in step S102 and the in-cylinder calculated in the detection timing of the reference angle forming unit 220 in step S106.
  • step S108 the ECU 108 needs additional fuel injection so that the air-fuel ratio of the engine 100 detected by the air-fuel ratio sensor 112 becomes a desired air-fuel ratio based on the air amount difference ⁇ Q calculated in step S107. It is determined whether or not.
  • step S108 When it is determined that additional fuel injection is necessary (step S108: YES), the ECU 108 performs interrupt fuel injection control in step S109. On the other hand, when it is determined that additional fuel injection is unnecessary (step S108: NO), the ECU 108 does not perform the interrupt fuel injection and ends the process as it is.
  • FIG. 11 is a flowchart for explaining the required ignition timing calculation by the ECU 108.
  • step S201 the ECU 108 processes the operating conditions in the same manner as in step S101.
  • step S202 the air amount calculation unit 801 of the ECU 108, similarly to step S102, detects the air flow rate detected by the air flow meter 118 and the reference angle forming unit 220 of the intake camshaft 121 detected by the cam angle sensor 122. Based on the position and the like, the current air amount Q1 in the cylinder is calculated.
  • step S203 the required ignition timing calculation unit 804 of the ECU 108 determines the ignition plug 105 based on the operation conditions in step S201, the air amount Q1 in the cylinder calculated in step S202, the detection result of the crank angle sensor 114, and the like. Calculate the required ignition timing.
  • step S204 the ECU 108 determines whether or not there is an interruption (detection of a reference angle) from the cam angle sensor 122 that detects the rotation angle of the intake camshaft 121, and determines that there is an interruption (step S204). : YES), the process proceeds to step S205, and if it is determined that there is no interruption (step S204: NO), the process ends.
  • step S205 ignition control of the spark plug 105 is performed based on the required ignition timing calculated in step S203.
  • step S205 the case where the ignition control of the spark plug 105 is performed at the detection timing of the reference angle forming unit 220 by the cam angle sensor 122 has been described as an example, but the detection of the reference angle forming unit 220 by the cam angle sensor 122 is described.
  • the ignition control of the spark plug 105 may be performed after the timing (retard angle).
  • ignition control of the ignition plug 105 may be performed based on a detection signal of a desired crank angle sensor 114 after the detection timing of the reference angle forming unit 220 by the cam angle sensor 122.
  • FIG. 12 shows a comparison between the conventional air-fuel ratio control (method A) by the control device for the internal combustion engine and the air-fuel ratio control (method B) by the control device for the internal combustion engine to which the present invention is applied during the transient operation of the engine 100. It is a figure explaining a result.
  • the amount of air in the cylinder is accurately obtained, so that control close to the target air-fuel ratio becomes possible.
  • the present invention it becomes possible to accurately calculate the amount of air in the cylinder even when the engine 100 is in a transient operation state, and the accuracy of air-fuel ratio control with respect to the target air-fuel ratio is improved. be able to.
  • Controlling an engine 100 internal combustion engine having camshafts 121 and 209 that open and close the intake valve 102 and the exhaust valve 103, and cam angle sensors 122 and 209a that detect rotation angles of the camshafts 121 and 209.
  • ECU 108 control device for an internal combustion engine
  • camshaft 121 has a reference angle forming unit 220 configured to be detected by cam angle sensor 122, and reference angle forming unit 220 includes at least an intake valve. The configuration is such that it is provided at an angular position corresponding to (matching) the valve closing timing 102.
  • the ECU 108 closes the intake valve 102 from the detection signal of the reference angle forming unit 220 by the cam angle sensor 122 (the intake valve 102 and the exhaust valve 103 are both closed, and the cylinder is closed). State) can be detected. Therefore, in the cylinder of engine 100, the internal air amount is determined at the closing timing of intake valve 102, and ECU 108 can accurately calculate the air amount in the cylinder.
  • an interruption occurs when it is determined that the fuel injection amount at least at the detection timing of the reference angle forming unit 220 (in the above-described embodiment, the valve closing position IVC of the intake valve 102) is less than the required fuel injection amount.
  • An interrupt fuel injection calculation unit 803 that calculates the fuel injection amount is provided.
  • the interrupt fuel injection calculation unit 803 has the fuel injection amount calculated at the valve closing position IVC of the intake valve 102 smaller than the required fuel injection amount calculated based on the air amount and the control signal 307. When the determination is made, the interrupt fuel injection amount is calculated, so that the engine 100 can be maintained in an appropriate combustion state.
  • the required fuel injection amount is calculated based on the air amount in the cylinder calculated at the detection timing of the reference angle forming unit 220 (in the above-described embodiment, the valve closing position IVC of the intake valve 102).
  • the required fuel injection amount calculation unit 802 is provided.
  • the required fuel injection amount calculation unit 802 calculates the required fuel injection amount based on the accurate air amount calculated in a state where the air amount in the cylinder is fixed. It can be calculated accurately.
  • the interrupt fuel injection calculation unit 803 is configured to calculate the air amount Q2 in the cylinder (first value) calculated at the detection timing of the reference angle forming unit 220 (in the above-described embodiment, the valve closing position IVC of the intake valve 102). 1 air amount) and the difference or ratio between the air amount Q1 (second air amount) in the cylinder calculated at a timing different from the detection timing of the reference angle forming unit 220, the interrupt fuel injection amount It was set as the structure which determines the necessity of the calculation of this.
  • the interruption fuel injection calculating part 803 will calculate the air quantity Q2 calculated at the detection timing of the reference angle formation part 220, and the air quantity Q1 calculated at a timing different from the detection timing of the reference angle formation part 220. Since it is determined whether or not to calculate the interrupt fuel injection amount on the basis of the difference or the ratio, it is possible to appropriately determine whether or not additional fuel injection is necessary.
  • ignition plug 105 and ignition coil 106 that ignites the air-fuel mixture in the cylinder of the engine 100.
  • the ignition device detects the reference angle forming unit 220 or the reference angle forming unit 220.
  • the air-fuel mixture is ignited at a timing (retarding angle) later than the detection timing.
  • the ignition timing by the ignition device is retarded from the valve closing position IVC of the intake valve 102, so that knocking of the engine 100 can be prevented.
  • the reference angle forming part 220 is configured to be a protrusion provided to protrude radially outward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the camshaft 121.
  • the reference angle forming part 220 is configured to be a groove 220A or a hole provided so as to protrude radially inward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the camshaft 121.
  • the groove 220A or the hole can be detected by the cam angle sensor 122, and the reference angle of the camshaft 121 can be reliably detected.
  • the reference angle forming unit 220 is configured to be provided at angular positions corresponding to the intake stroke, compression stroke, explosion stroke, and exhaust stroke of the engine 100.
  • the ECU 108 can determine whether the intake stroke, the compression stroke, the explosion stroke, or the exhaust stroke is based on the detection timing of each reference angle forming unit 220, and the air in the intake stroke In addition to the accurate calculation of the amount, the fuel injection valve and the ignition device can be controlled at an appropriate timing.
  • the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a is determined based on the intake valve opening position IVO (Intake Valve Open) and the exhaust valve opening.
  • IVO intake Valve Open
  • EVO exhaust Valve Open
  • EVC exhaust Valve Close
  • FIG. 13 is a diagram illustrating the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a according to the second embodiment.
  • symbol is attached
  • the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a is not only the valve closing position IVC of the intake valve 102.
  • the valve opening position IVO of the intake valve 102, the valve closing position EVC of the exhaust valve 103, and the valve opening position EVO are set to angular positions corresponding to all or all timings. That is, in the control device (ECU 108) for the internal combustion engine of the second embodiment, the reference angle forming portion 220 (protrusion) of the cam rotor 208 is the valve closing timing (valve closing position IVC) or valve opening timing (opening) of the intake valve 102. Valve position IVO), or a position corresponding to at least one of valve closing timing (valve closing position EVC) or valve opening timing (valve opening position EVO) of exhaust valve 103.
  • the control device (ECU 108) for the internal combustion engine can detect the opening / closing timings of all of the intake valves 102 and the exhaust valves 103. Therefore, the closing timings of the intake valves 102 and the exhaust valves 103 are closed. By detecting both of these, the amount of air in the cylinder can be determined more reliably.
  • Control engine 100 internal combustion engine having camshafts 121 and 209 that open and close intake valve 102 and exhaust valve 103, and cam angle sensors 122 and 209a that detect rotation angles of camshafts 121 and 209.
  • the ECU 108 control device for an internal combustion engine
  • the camshafts 121 and 209 have a reference angle forming unit 220 configured to be detected by cam angle sensors 122 and 209a.
  • valve closing timing (valve closing position IVC) or valve opening timing (valve opening position IVO) of the intake valve 102
  • valve closing timing (valve closing position EVC) or valve opening timing (EVO) of the exhaust valve 103 It was set as the structure provided in the angular position corresponding to this timing.
  • the ECU 108 can detect the valve closing position IVC and the valve opening position IVO of the intake valve 102 and the valve closing position EVC and the valve opening position EVO of the exhaust valve 103, so that the amount of air in the cylinder Can be detected more accurately. Therefore, the ECU 108 can calculate the amount of air in the cylinder more accurately based on these detection timings.
  • the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a is set to the valve opening position IVO of the intake valve and the valve closing position EVC of the exhaust valve.
  • the point which is comprised so that it may correspond differs from embodiment mentioned above.
  • FIG. 14 is a diagram illustrating the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a according to the third embodiment.
  • symbol is attached
  • cam angle sensors 122 and 209a are provided on the intake camshaft 121 and the exhaust camshaft 209, respectively.
  • the detection timing of the cam angle sensor 122 provided on the intake side camshaft 121 coincides with the valve opening position IVO of the intake valve 102, and the cam angle sensor 209a provided on the exhaust side camshaft 209 closes the exhaust valve 103.
  • the configuration matches the valve position EVC. That is, in the control device (ECU1) for the internal combustion engine according to the third embodiment, the reference angle forming unit 220 is provided at an angular position corresponding to the valve opening timing (the valve opening position IVO) of the intake valve 102. At the same time, it is provided at an angular position corresponding to the valve closing timing (EVC) of the exhaust valve 103.
  • EVC valve closing timing
  • the intake valve 102 and the exhaust gas are exhausted.
  • the overlap period during which both valves 103 are open can be calculated. Therefore, the ECU 108 can accurately calculate the internal EGR amount that takes in the exhaust gas burned in the engine 100 into the cylinder because the intake valve 102 and the exhaust valve 103 are simultaneously opened.
  • the ECU 108 can accurately calculate the internal EGR amount of the engine 100 without performing complicated calculation and correction control, and can perform optimum combustion control with high accuracy according to the internal EGR amount. .
  • the reference angle forming unit 220 is provided at an angular position corresponding to the valve opening timing (valve opening position IVO) of the intake valve 102, and corresponds to the valve closing timing (valve closing position EVC) of the exhaust valve 103. It was set as the structure provided in the angle position to do.
  • the ECU 108 can detect an overlap period between the exhaust stroke and the intake stroke of the engine 100, and based on this overlap period, the variable valve timing mechanism 123 causes the intake valve 102 or the exhaust valve 103 to be detected.
  • the combustion state of engine 100 can be appropriately controlled by adjusting the operating angle.
  • the present invention is not limited to the one having all the configurations of the above-described embodiment, and a part of the configuration of the above-described embodiment is replaced with the configuration of another embodiment.
  • the configuration of the above-described embodiment may be replaced with the configuration of another embodiment.

Abstract

A control device for an internal combustion engine, wherein an amount of air suctioned into a cylinder of the internal combustion engine is accurately calculated. An ECU 108 for controlling an engine 100 having camshafts 121, 209 that drive an intake valve 102 and an exhaust valve 103 so as to open and close, and cam angle sensors 122, 209a that detect the angle of rotation of the camshafts 121, 209. The camshaft 121 has a reference angle formation unit 220 configured so as to be detected by the cam angle sensor 122, and the reference angle formation unit 220 is provided at an angle position corresponding to (matching) a valve closing timing of at least the intake valve 102.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine.
 近年、車両用の内燃機関では、燃費向上及び排気ガス低減を目的に可変バルブタイミング機構が設けられているものが多い。この可変バルブタイミング機構では、内燃機関のシリンダに空気を供給する吸気バルブとシリンダから燃焼ガスを排出する排気バルブの作動角を任意に制御することができる。 In recent years, many internal combustion engines for vehicles are provided with a variable valve timing mechanism for the purpose of improving fuel consumption and reducing exhaust gas. With this variable valve timing mechanism, it is possible to arbitrarily control the operating angle of an intake valve that supplies air to a cylinder of an internal combustion engine and an exhaust valve that discharges combustion gas from the cylinder.
 このような可変バルブタイミング機構が設けられた内燃機関の制御装置は、可変バルブタイミング機構により吸気バルブ又は排気バルブを所望の作動角に制御すると共に、燃料噴射装置の噴射タイミングや点火装置の点火タイミングを内燃機関の運転状態に応じて制御することで、内燃機関の燃費、排気、出力、運転性能を向上させている。 The control device for an internal combustion engine provided with such a variable valve timing mechanism controls the intake valve or the exhaust valve to a desired operating angle by the variable valve timing mechanism, as well as the injection timing of the fuel injection device and the ignition timing of the ignition device. Is controlled in accordance with the operating state of the internal combustion engine, thereby improving the fuel consumption, exhaust, output, and driving performance of the internal combustion engine.
 特許文献1には、クランク角度センサとカム角度センサの出力信号からカム位置(角度)を算出すると共に、可変バルブタイミング機構の構成部品のバラツキなどを学習した各種補正制御を行ってカム位置を算出する内燃機関の制御装置が開示されている。 In Patent Document 1, the cam position (angle) is calculated from the output signals of the crank angle sensor and the cam angle sensor, and the cam position is calculated by performing various correction control learning the variation of the components of the variable valve timing mechanism. A control device for an internal combustion engine is disclosed.
 また、特許文献1に開示された内燃機関の制御装置では、クランク角度センサとカム角度センサの出力信号の形態から、当該出力信号の異常判定を行い、異常と判定した場合にはフェールセーフ制御を実施する。よって、この内燃機関の制御装置では、可変バルブタイミング機構が正常状態、又は異常状態においても安定した内燃機関の燃焼状態を実現できる。 Further, in the control device for an internal combustion engine disclosed in Patent Document 1, abnormality determination of the output signal is performed from the form of the output signals of the crank angle sensor and the cam angle sensor, and if it is determined to be abnormal, fail-safe control is performed. carry out. Therefore, in this internal combustion engine control device, a stable combustion state of the internal combustion engine can be realized even when the variable valve timing mechanism is in a normal state or an abnormal state.
特開2013-167223号公報JP 2013-167223 A
 しかしながら、前述した内燃機関の制御装置では、可変バルブタイミング機構による吸気バルブや排気バルブの作動角の制御において、吸気バルブや排気バルブの閉弁が考慮されていないため内燃機関のシリンダ内の空気量が確定せず、シリンダ内の空気量を正確に算出することができない。 However, in the control device for an internal combustion engine described above, the control of the operation angle of the intake valve and the exhaust valve by the variable valve timing mechanism does not consider the closing of the intake valve or the exhaust valve. Cannot be determined, and the amount of air in the cylinder cannot be calculated accurately.
 その結果、内燃機関の制御装置では、燃焼状態が比較的一定の定常運転時には、シリンダ内の空気量が確定しなくても、空気量の算出精度に問題は生じないが、空気量の変化や可変バルブタイミング機構による吸気バルブの作動タイミングが変化する過渡運転時においては、シリンダ内の空気量が確定しないと、空気量の算出精度が不十分となる。 As a result, in a control device for an internal combustion engine, during steady operation in which the combustion state is relatively constant, there is no problem in the accuracy of air amount calculation even if the air amount in the cylinder is not determined. At the time of transient operation in which the operation timing of the intake valve by the variable valve timing mechanism changes, the air amount calculation accuracy becomes insufficient unless the air amount in the cylinder is determined.
 したがって、本発明は、上記の課題に着目してなされたもので、内燃機関の制御装置において、内燃機関のシリンダ内に吸入された空気量を正確に算出することを目的とする。 Therefore, the present invention has been made paying attention to the above problems, and an object of the present invention is to accurately calculate the amount of air taken into the cylinder of the internal combustion engine in the control device for the internal combustion engine.
 上記課題を解決するため、吸気バルブと排気バルブを開閉駆動するカムシャフトと、当該カムシャフトの回転角度を検出するカム角度センサとを有する内燃機関を制御する内燃機関の制御装置であって、カムシャフトは、カム角度センサにより検出されるように構成された基準角度形成部を有し、基準角度形成部は、少なくとも吸気バルブの閉弁タイミングに対応する角度位置に設けられている構成とした。 In order to solve the above-described problem, there is provided a control device for an internal combustion engine that controls an internal combustion engine having a camshaft that opens and closes an intake valve and an exhaust valve, and a cam angle sensor that detects a rotation angle of the camshaft. The shaft has a reference angle forming portion configured to be detected by a cam angle sensor, and the reference angle forming portion is provided at an angular position corresponding to at least the valve closing timing of the intake valve.
 本発明によれば、内燃機関の制御装置において、内燃機関のシリンダ内に吸入された空気量を正確に算出することができる。 According to the present invention, the amount of air taken into the cylinder of the internal combustion engine can be accurately calculated in the control device for the internal combustion engine.
実施の形態にかかるエンジンの要部を説明する図である。It is a figure explaining the principal part of the engine concerning an embodiment. 可変バルブタイミング機構の構造を説明する斜視図である。It is a perspective view explaining the structure of a variable valve timing mechanism. カム角度センサの検知タイミングを説明する図である。It is a figure explaining the detection timing of a cam angle sensor. 可変バルブタイミング機構の構造を説明する断面図である。It is sectional drawing explaining the structure of a variable valve timing mechanism. ECUを説明する機能ブロック図である。It is a functional block diagram explaining ECU. 従来例にかかる各センサ信号とエンジンの各行程との関係を説明する図である。It is a figure explaining the relationship between each sensor signal concerning each prior art example, and each stroke of an engine. カム角度センサの検知タイミングの一例を説明する図である。It is a figure explaining an example of the detection timing of a cam angle sensor. 実施の形態にかかる各センサ信号とエンジンの各行程との関係を説明する図である。It is a figure explaining the relationship between each sensor signal concerning each embodiment, and each stroke of an engine. ECUにおける機能を説明するブロック図である。It is a block diagram explaining the function in ECU. ECUによる燃料噴射制御の処理を説明するフローチャートである。It is a flowchart explaining the process of the fuel injection control by ECU. ECUによる要求点火タイミング演算理を説明するフローチャートである。It is a flowchart explaining the request ignition timing arithmetic operation by ECU. エンジンの過渡運転時において、従来の内燃機関の制御装置による空燃比制御と、本発明を適用した内燃機関の制御装置による空燃比制御との比較結果を説明する図である。It is a figure explaining the comparison result of the air fuel ratio control by the control device of the conventional internal combustion engine and the air fuel ratio control by the control device of the internal combustion engine to which the present invention is applied during the transient operation of the engine. 第2の実施の形態にかかるカム角度センサの検出タイミングを説明する図である。It is a figure explaining the detection timing of the cam angle sensor concerning 2nd Embodiment. 第3の実施の形態にかかるカム角度センサの検出タイミングを説明する図である。It is a figure explaining the detection timing of the cam angle sensor concerning 3rd Embodiment.
[エンジン]
 本発明の実施の形態にかかる内燃機関(以下、エンジン100と言う)の要部を説明する。実施の形態では、エンジン100が、複数気筒を有する4サイクル型エンジン100である場合を例示して説明する。また、エンジン100は、各気筒内に燃料を直接噴射し、噴射した燃料に火花を点火する筒内噴射式火花点火内燃機関である。
[engine]
A main part of an internal combustion engine (hereinafter referred to as engine 100) according to an embodiment of the present invention will be described. In the embodiment, the case where the engine 100 is a four-cycle engine 100 having a plurality of cylinders will be described as an example. Engine 100 is a direct injection spark ignition internal combustion engine that directly injects fuel into each cylinder and ignites sparks on the injected fuel.
 図1は、実施の形態にかかるエンジン100の要部を説明する図である。 FIG. 1 is a diagram for explaining a main part of an engine 100 according to an embodiment.
 図1に示すように、エンジン100は、ピストン101と、吸気バルブ102と、排気バルブ103と、が設けられており、吸気は、空気流量計(Air Flow Meter:AFM)118を通過して絞り弁117に入り、分岐部であるコレクタ113から吸気管109と、吸気バルブ102とを介してエンジン100のシリンダ(図示せず)の燃焼室119に供給される。 As shown in FIG. 1, the engine 100 is provided with a piston 101, an intake valve 102, and an exhaust valve 103. The intake air passes through an air flow meter (AFM) 118 and is throttled. It enters the valve 117 and is supplied from a collector 113 serving as a branching portion to a combustion chamber 119 of a cylinder (not shown) of the engine 100 through an intake pipe 109 and an intake valve 102.
 吸気バルブ102は、吸気側カムシャフト121に設けられたカム201(図2参照)により開閉駆動(開弁又は閉弁)されるようになっており、吸気側カムシャフト121の周方向の外側には、吸気側カムシャフト121の回転角度を検出するカム角度センサ122が設けられている。 The intake valve 102 is driven to open and close (open or close) by a cam 201 (see FIG. 2) provided on the intake side camshaft 121. Is provided with a cam angle sensor 122 for detecting the rotation angle of the intake camshaft 121.
 排気バルブ103もまた、排気側カムシャフト209に設けられたカム210(図2参照)により開閉駆動(開弁又は閉弁)されるようになっており、排気側カムシャフト209の周方向の外側には、排気側カムシャフト209の回転角度を検出するカム角度センサ209aが設けられている。 The exhaust valve 103 is also driven to open and close (open or close) by a cam 210 (see FIG. 2) provided on the exhaust side camshaft 209. Is provided with a cam angle sensor 209a for detecting the rotation angle of the exhaust camshaft 209.
 燃料タンク(図示せず)から供給された燃料は、燃料噴射弁104により、エンジン100の燃焼室119内に噴射される。燃焼室119には、点火プラグ105が設けられており、この点火プラグ105の点火により燃焼室119に供給された燃料が爆発する。 Fuel supplied from a fuel tank (not shown) is injected into the combustion chamber 119 of the engine 100 by the fuel injection valve 104. The combustion chamber 119 is provided with an ignition plug 105, and the fuel supplied to the combustion chamber 119 explodes when the ignition plug 105 is ignited.
 燃焼室119での燃料の爆発によりピストン101が押し下げられ、ピストン101の押し下げに連動して、このピストン101と連結されたクランクシャフト116が回転する。クランクシャフト116の回転は、トランスミッション(図示せず)に伝達され、エンジン100の駆動力となる。 The piston 101 is pushed down by the explosion of fuel in the combustion chamber 119, and the crankshaft 116 connected to the piston 101 rotates in conjunction with the depression of the piston 101. The rotation of the crankshaft 116 is transmitted to a transmission (not shown) and becomes a driving force of the engine 100.
 クランクシャフト116の回転角度は、クランクシャフト116の周方向の外側に設けられたクランク角度センサ114により検出される。クランク角度センサ114は、クランクシャフト116に設けられた角度検出部115(突部又は溝部)を検出することで、クランクシャフト116の回転軸回りの回転角度を検出する。 The rotation angle of the crankshaft 116 is detected by a crank angle sensor 114 provided outside the crankshaft 116 in the circumferential direction. The crank angle sensor 114 detects the rotation angle of the crankshaft 116 around the rotation axis by detecting an angle detector 115 (projection or groove) provided on the crankshaft 116.
 燃焼後の排気ガスは、排気バルブ103を介して排気管110に排出される。排気管110には、排気ガスを浄化するための三元触媒111が設けられている。三元触媒111の排気ガスの通流方向の上流側には、排気ガス中の空燃比を検出する空燃比センサ112が設けられている。 The exhaust gas after combustion is discharged to the exhaust pipe 110 through the exhaust valve 103. The exhaust pipe 110 is provided with a three-way catalyst 111 for purifying exhaust gas. An air-fuel ratio sensor 112 that detects an air-fuel ratio in the exhaust gas is provided upstream of the three-way catalyst 111 in the exhaust gas flow direction.
 エンジン100のシリンダブロックには、ノックセンサ107が設けられており、このノックセンサ107によりエンジン100の異常燃焼時に発生する異音(ノッキング)を検出する。 A knock sensor 107 is provided in the cylinder block of the engine 100, and the knock sensor 107 detects an abnormal noise (knocking) generated when the engine 100 is abnormally burned.
 なお、車両(図示せず)には、アクセル開度センサ120が設けられており、このアクセル開度センサ120により、運転者のアクセル(図示せず)の踏み込み量に応じたアクセル開度が検出される。 The vehicle (not shown) is provided with an accelerator opening sensor 120, and the accelerator opening sensor 120 detects the accelerator opening according to the amount of depression of the driver's accelerator (not shown). Is done.
 前述したクランク角度センサ114と、カム角度センサ122、209aと、空気流量計118と、空燃比センサ112、ノックセンサ107と、アクセル開度センサ120とは、ECU108に接続されており、これら各センサからの出力信号はECU108に入力される。 The crank angle sensor 114, the cam angle sensors 122 and 209a, the air flow meter 118, the air-fuel ratio sensor 112, the knock sensor 107, and the accelerator opening sensor 120 are connected to the ECU 108. The output signal from is input to the ECU 108.
 ECU108は、アクセル開度センサ120の出力信号に基づいてエンジン100への要求トルクを算出すると共に、アイドル状態の判定などを行う。ECU108は、算出した要求トルクに基づいて、エンジン100に必要な吸入空気量を算出し、それに見合った開度信号を絞り弁117に出力する。 The ECU 108 calculates the required torque for the engine 100 based on the output signal of the accelerator opening sensor 120 and determines the idle state. The ECU 108 calculates the intake air amount necessary for the engine 100 based on the calculated required torque, and outputs an opening signal corresponding to the intake air amount to the throttle valve 117.
 また、ECU108は、噴射制御信号を燃料噴射弁104に出力し、点火信号を点火プラグ105に出力する。ECU108は、ノックセンサ107によるノッキングの検出に基づいて、点火信号のフィードバック制御を行う。 Further, the ECU 108 outputs an injection control signal to the fuel injection valve 104 and outputs an ignition signal to the spark plug 105. The ECU 108 performs feedback control of the ignition signal based on the detection of knocking by the knock sensor 107.
 前述したようにECU108は、エンジン100(内燃機関)の各種制御を行い、内燃機関の制御装置に相当する。 As described above, the ECU 108 performs various controls on the engine 100 (internal combustion engine) and corresponds to a control device for the internal combustion engine.
 ここで、前述した吸気側カムシャフト121、排気側カムシャフト209には、可変バルブタイミング機構123が設けられている。可変バルブタイミング機構123は、クランクシャフト116に対する吸気側カムシャフト121、又は排気側カムシャフト209の回転位相を変化させることで、吸気バルブ102と排気バルブ103のバルブタイミングを変化させる機構である。吸気バルブ102と排気バルブ103のバルブタイミングは、カム角度センサ122、209aの検出信号に基づいて、ECU108により演算される。 Here, a variable valve timing mechanism 123 is provided on the intake camshaft 121 and the exhaust camshaft 209 described above. The variable valve timing mechanism 123 is a mechanism that changes the valve timing of the intake valve 102 and the exhaust valve 103 by changing the rotational phase of the intake camshaft 121 or the exhaust camshaft 209 relative to the crankshaft 116. The valve timings of the intake valve 102 and the exhaust valve 103 are calculated by the ECU 108 based on detection signals of the cam angle sensors 122 and 209a.
 なお、可変バルブタイミング機構123は、実施の形態の吸気バルブ102のバルブタイミングを変化させるものに限定されるものではなく、排気バルブ103、若しくは吸気バルブ102と排気バルブ103との両方に適用してもよい。 The variable valve timing mechanism 123 is not limited to the one that changes the valve timing of the intake valve 102 of the embodiment, and is applied to the exhaust valve 103 or both the intake valve 102 and the exhaust valve 103. Also good.
[可変バルブタイミング機構]
 次に、実施の形態にかかる可変バルブタイミング機構123の構造を説明する。
[Variable valve timing mechanism]
Next, the structure of the variable valve timing mechanism 123 according to the embodiment will be described.
 図2は、可変バルブタイミング機構123の構造を説明する斜視図である。
 図3は、カム角度センサ122の検知タイミングを説明する図である。
 図4は、可変バルブタイミング機構123の構造を説明する断面図であり、オイルコントロールバルブ207と可変バルブタイミング機構123の接続関係を示している。
FIG. 2 is a perspective view for explaining the structure of the variable valve timing mechanism 123.
FIG. 3 is a diagram for explaining the detection timing of the cam angle sensor 122.
FIG. 4 is a cross-sectional view illustrating the structure of the variable valve timing mechanism 123, and shows the connection relationship between the oil control valve 207 and the variable valve timing mechanism 123.
 図2に示すように、吸気側カムシャフト121の一端には、位相可変カムプーリ202が設けられており、この位相可変カムプーリ202は、回転位相が連続的に変化する連続位相可変型とされている。位相可変カムプーリ202には、この位相可変カムプーリ202の回転軸回りの周方向の全周に亘って歯車が形成されている。 As shown in FIG. 2, a variable phase cam pulley 202 is provided at one end of the intake camshaft 121, and the variable phase cam pulley 202 is a continuously variable phase type in which the rotational phase continuously changes. . The phase variable cam pulley 202 is formed with a gear over the entire circumference in the circumferential direction around the rotation axis of the phase variable cam pulley 202.
 吸気側カムシャフト121は、当該吸気側カムシャフト121の基準角度がカム角度センサ122により検出されるように構成された基準角度形成部220を有している。吸気側カムシャフト121の基準角度形成部220は、少なくとも吸気バルブ102の閉弁タイミング(閉弁位置IVC)に対応する角度位置に設けられている。
基準角度形成部220は、吸気側カムシャフト121の外周に設けられた円板形状を成すカムロータ208の外周から径方向外側に突出して設けられた突起である。基準角度形成部220は、カムシャフト121と一体又は別体の何れの方法で設けられていてもよい。
The intake side camshaft 121 has a reference angle forming part 220 configured such that the reference angle of the intake side camshaft 121 is detected by the cam angle sensor 122. The reference angle forming portion 220 of the intake camshaft 121 is provided at an angular position corresponding to at least the valve closing timing (valve closing position IVC) of the intake valve 102.
The reference angle forming part 220 is a protrusion provided to protrude radially outward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the intake side camshaft 121. The reference angle forming unit 220 may be provided by any method that is integral with or separate from the camshaft 121.
 図3に示すように、実施の形態では、基準角度形成部220は、カムロータ208の回転中心に対して対称となる180度の位置に合計2個設けられている。各基準角度形成部220は、カム201(吸気側カムシャフト121)の回転に伴って吸気バルブ102が閉弁する位置(閉弁位置IVC)と対応(一致)する位置に設けられている。 As shown in FIG. 3, in the embodiment, two reference angle forming portions 220 are provided at 180 ° positions that are symmetrical with respect to the rotation center of the cam rotor 208. Each reference angle forming section 220 is provided at a position corresponding to (coincidence with) a position where the intake valve 102 is closed (valve closing position IVC) as the cam 201 (intake side camshaft 121) rotates.
 よって、ECU108は、カム角度センサ122で、基準角度形成部220(突起)を検出することで、吸気バルブ102の閉弁と、閉弁したと判定した検知タイミングの行程(実施の形態では、吸気行程)を判定することができる。 Therefore, the ECU 108 detects the reference angle forming unit 220 (protrusion) with the cam angle sensor 122, thereby closing the intake valve 102 and the process of the detection timing determined to be closed (in the embodiment, the intake air Process) can be determined.
 なお、実施の形態では、基準角度形成部220は、対称となる180度の位置に合計2個設けられている場合を例示して説明したが、吸気バルブ102の閉弁を判定できる位置であればこれに限定されるものではなく、1個又は3個以上であってもよい。 In the embodiment, the case where a total of two reference angle forming units 220 are provided at symmetrical 180 ° positions has been described. However, the reference angle forming unit 220 may be a position where it is possible to determine whether the intake valve 102 is closed. It is not limited to this, and it may be one or three or more.
 なお、前述した実施の形態では、基準角度形成部220は、カムロータ208の外周から回転軸の径方向外側に突出した突起である場合を例示して説明したが、基準角度をカム角度センサ122で検出可能とされる範囲で種々の構成が考えられる。例えば、基準角度形成部220は、吸気側カムシャフト121の外周に設けられた円板形状を成すカムロータ208の外周から径方向内側に凹んで設けられた溝220Aまたは穴(図3の点線参照)と、を有し、溝220Aまたは穴であってもよい。この場合、溝220A又は穴は、少なくとも吸気バルブ102の閉弁タイミング(閉弁位置IVC)に対応する角度位置に設けられている。また、基準角度形成部220は、エンジン100の吸気行程、圧縮行程、爆発行程、排気行程に対応する角度位置に設定されている構成としてもよい。 In the above-described embodiment, the reference angle forming unit 220 is described as an example of a protrusion protruding from the outer periphery of the cam rotor 208 to the outer side in the radial direction of the rotation shaft. However, the reference angle is determined by the cam angle sensor 122. Various configurations are conceivable as long as they can be detected. For example, the reference angle forming portion 220 is a groove 220A or a hole that is recessed radially inward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the intake camshaft 121 (see the dotted line in FIG. 3). And may be a groove 220A or a hole. In this case, the groove 220A or the hole is provided at an angular position corresponding to at least the valve closing timing (the valve closing position IVC) of the intake valve 102. Further, the reference angle forming unit 220 may be configured to be set at an angular position corresponding to the intake stroke, the compression stroke, the explosion stroke, and the exhaust stroke of the engine 100.
 図2に戻って、排気側カムシャフト209の一端には、回転位相が変化しないカムプーリ203が設けられている。このカムプーリ203には、回転軸回りの周方向の全周に亘って歯車が形成されており、この歯車は位相可変カムプーリ202の歯車と噛み合って組み合わされている。 Referring back to FIG. 2, a cam pulley 203 whose rotational phase does not change is provided at one end of the exhaust side camshaft 209. The cam pulley 203 is formed with a gear over the entire circumference in the circumferential direction around the rotation axis. The gear is engaged with the gear of the variable phase cam pulley 202 and combined.
 前述したクランクシャフト116の一端には、クランクプーリ204が固定されており、クランクプーリ204には、このクランクプーリ204の回転軸回りの周方向の全周に亘って歯車が形成されている。 A crank pulley 204 is fixed to one end of the crankshaft 116 described above, and a gear is formed on the crank pulley 204 over the entire circumference in the circumferential direction around the rotation axis of the crank pulley 204.
 また、クランクシャフト116の一端には、オイルポンプ205が設けられており、クランクシャフト116の回転に同期してオイルポンプ205が回転することにより、オイルを吐出して油圧を発生させる。これにより、エンジン100内の潤滑や油圧駆動のアクチュエータへのオイル供給が行われる。 Also, an oil pump 205 is provided at one end of the crankshaft 116, and the oil pump 205 rotates in synchronization with the rotation of the crankshaft 116, thereby discharging oil and generating hydraulic pressure. As a result, lubrication in the engine 100 and oil supply to a hydraulically driven actuator are performed.
 位相可変カムプーリ202と、カムプーリ203と、クランクプーリ204との間にはタイミングベルト206が巻き掛けられており、位相可変カムプーリ202と、カムプーリ203とは、このタイミングベルト206を介して、クランクプーリ204によって駆動される。 A timing belt 206 is wound around the phase variable cam pulley 202, the cam pulley 203, and the crank pulley 204. The phase variable cam pulley 202 and the cam pulley 203 are connected to the crank pulley 204 via the timing belt 206. Driven by.
 位相可変カムプーリ202には、油圧によって駆動されるアクチュエータが構成されている。 The phase variable cam pulley 202 includes an actuator driven by hydraulic pressure.
 図4に示すように、位相可変カムプーリ202の内周側には、カムハウジング251が設けられており、このカムハウジング251の内部には、吸気側カムシャフト121に固定されたベーン252が設けられている。 As shown in FIG. 4, a cam housing 251 is provided on the inner peripheral side of the phase variable cam pulley 202, and a vane 252 fixed to the intake side camshaft 121 is provided inside the cam housing 251. ing.
 ベーン252の周囲には、ベーン252とカムハウジング251とにより空間が形成されている。この空間内でベーン252が回転軸回りに動作可能となっている。 A space is formed around the vane 252 by the vane 252 and the cam housing 251. Within this space, the vane 252 can operate around the rotation axis.
 ベーン252とカムハウジング251とにより形成された空間は、ベーン252により進角室253と遅角室254とに仕切られており、進角室253は、位相進角油圧通路281に接続されており、遅角室254は、位相遅角油圧通路282に接続されている。位相進角油圧通路281と位相遅角油圧通路282とは、オイルコントロールバルブ(Oil Control Valve:OCV)207に接続されている。 A space formed by the vane 252 and the cam housing 251 is partitioned into an advance chamber 253 and a retard chamber 254 by the vane 252, and the advance chamber 253 is connected to the phase advance hydraulic passage 281. The retard chamber 254 is connected to the phase retard hydraulic passage 282. The phase advance hydraulic passage 281 and the phase retard hydraulic passage 282 are connected to an oil control valve (Oil Control Valve: OCV) 207.
 オイルコントロールバルブ207は、ソレノイド255と、プランジャ256と、ハウジング257と、スプール258と、スプリング259とを有している。 The oil control valve 207 includes a solenoid 255, a plunger 256, a housing 257, a spool 258, and a spring 259.
 オイルコントロールバルブ207では、スプール258が軸方向(図4の左右方向)に移動可能に設けられており、スプール258の軸方向の移動は、ソレノイド255への通電、非通電により制御される。オイルコントロールバルブ207では、ソレノイド255に通電しない場合、スプール258がスプリング259に押圧されて図3の右方向に位置しており、ソレノイド255に通電した場合、プランジャ256がスプール258を図4の左方向に押圧するため、スプール258は、スプリング259の押圧力に抗して図4の左方向に移動する。このスプール258の左方向への移動量は、ソレノイド255に供給される電流の大きさに比例して大きくなる。 In the oil control valve 207, the spool 258 is provided so as to be movable in the axial direction (left-right direction in FIG. 4), and the axial movement of the spool 258 is controlled by energizing or de-energizing the solenoid 255. In the oil control valve 207, when the solenoid 255 is not energized, the spool 258 is pressed by the spring 259 and is positioned in the right direction in FIG. In order to press in the direction, the spool 258 moves to the left in FIG. 4 against the pressing force of the spring 259. The amount of movement of the spool 258 in the left direction increases in proportion to the amount of current supplied to the solenoid 255.
 ハウジング257は、油圧供給ポート261と、進角ポート262と、遅角ポート263と、ドレインポート260とを有しており、これらの油圧供給ポート261、進角ポート262、遅角ポート263、ドレインポート260は、それぞれオイル通路280、位相進角油圧通路281、位相遅角油圧通路282、ドレイン通路(図示せず)に接続されている。 The housing 257 includes a hydraulic pressure supply port 261, an advance port 262, a retard port 263, and a drain port 260. These hydraulic supply port 261, advance port 262, retard port 263, drain The ports 260 are connected to an oil passage 280, a phase advance hydraulic passage 281, a phase retard hydraulic passage 282, and a drain passage (not shown), respectively.
 なお、可変バルブタイミング機構123は、前述した構造に限定されるものではなく、公知の全ての可変バルブタイミング機構を適用できる。 The variable valve timing mechanism 123 is not limited to the structure described above, and any known variable valve timing mechanism can be applied.
[ECU]
 次に、実施の形態にかかるECU108の機能を説明する。
[ECU]
Next, functions of the ECU 108 according to the embodiment will be described.
 図5は、実施の形態にかかるECU108を説明する機能ブロック図である。 FIG. 5 is a functional block diagram for explaining the ECU 108 according to the embodiment.
 ECU108は、入力回路301と、A/D(Analog-to-Digital Converter)変換部302と、CPU(Central Processing Unit)303と、ROM(Read Only Memory)304と、RAM(Random Access Memory)305と、出力回路306とを有するマイクロコンピュータにより構成されている。 The ECU 108 includes an input circuit 301, an A / D (Analog-to-Digital Converter) 302, a CPU (Central Processing Unit) 303, a ROM (Read Only Memory) 304, a RAM (Random Access Memory) 305, and the like. , And a microcomputer having an output circuit 306.
 入力回路301は、アナログの入力信号300(例えば、前述した空気流量計118やアクセル開度センサ120等からの出力信号)が入力された場合、当該入力信号300からノイズ成分の除去を行い、当該入力信号300をA/D変換部302に出力する。 When an analog input signal 300 (for example, an output signal from the air flow meter 118 or the accelerator opening sensor 120 described above) is input, the input circuit 301 removes a noise component from the input signal 300, and The input signal 300 is output to the A / D converter 302.
 A/D変換部302は、入力回路301から受信したアナログの入力信号300をデジタル信号に変換して、CPU303に出力する。 The A / D conversion unit 302 converts the analog input signal 300 received from the input circuit 301 into a digital signal and outputs it to the CPU 303.
 CPU303は、A/D変換部302で変換されたデジタルの入力信号300を取り込み、ROM304に記憶された燃料噴射制御プログラムや、その他の制御プログラムを実行することによって、燃料噴射弁104や、その他の機器の制御、診断等を実行する。 The CPU 303 takes in the digital input signal 300 converted by the A / D conversion unit 302 and executes the fuel injection control program stored in the ROM 304 and other control programs, whereby the fuel injection valve 104 and other Perform device control, diagnosis, etc.
 CPU303による演算結果や、A/D変換部302による変換結果は、RAM305に一時的に記憶されると共に、演算結果は、出力回路306を介して制御信号307として出力される。エンジン100では、この制御信号307により、燃料噴射弁104、点火コイル106等の制御が行われる。なお、空気流量計118やアクセル開度センサ120等の入力信号300に基づいて、CPU303で演算された制御信号307は、後述する運転条件に相当する。 The calculation result by the CPU 303 and the conversion result by the A / D conversion unit 302 are temporarily stored in the RAM 305, and the calculation result is output as a control signal 307 via the output circuit 306. In the engine 100, the fuel injection valve 104, the ignition coil 106, and the like are controlled by the control signal 307. Note that the control signal 307 calculated by the CPU 303 based on the input signal 300 such as the air flow meter 118 and the accelerator opening sensor 120 corresponds to an operating condition described later.
[従来例にかかるエンジン100の各センサ信号と各行程との関係]
 次に、従来例にかかるエンジン100の各センサ信号と各行程との関係を説明する。
[Relationship between Sensor Signals and Processes of Engine 100 According to Conventional Example]
Next, the relationship between each sensor signal and each stroke of the engine 100 according to the conventional example will be described.
 図6は、従来例にかかるエンジン100の各センサ信号と各行程との関係を説明する図であり、図6の最上段は、エンジン100に設けられたカム角度センサ122の出力信号のタイムチャートであり、図中の上から2段目は、エンジン100に設けられたクランク角度センサ114の出力信号のタイムチャートであり、図中の上から3段目は、エンジン100の行程のタイムチャートであり、図中の最下段は、エンジン100が過渡運転時のアクセル開度センサ120と絞り弁117の開度センサ信号を示している。実施の形態では、エンジン100が4気筒の場合を例示しているので、カム角度センサ122の出力信号の周期は、180degごとに発生する。 FIG. 6 is a diagram for explaining the relationship between each sensor signal and each stroke of the engine 100 according to the conventional example, and the uppermost stage in FIG. 6 is a time chart of the output signal of the cam angle sensor 122 provided in the engine 100. The second stage from the top in the figure is a time chart of the output signal of the crank angle sensor 114 provided in the engine 100, and the third stage from the top in the figure is a time chart of the stroke of the engine 100. Yes, the lowermost stage in the figure shows the opening degree sensor signals of the accelerator opening degree sensor 120 and the throttle valve 117 when the engine 100 is in a transient operation. In the embodiment, the case where engine 100 has four cylinders is illustrated, and therefore the cycle of the output signal of cam angle sensor 122 occurs every 180 degrees.
 図6に示すように、従来のエンジン100では、クランク角度センサ114で検出したクランクシャフト116の回転角度に基づいて、吸気側カムシャフト121の回転角度を演算し、この吸気側カムシャフト121の回転角度から吸気バルブ102の閉弁位置(Intake Valve Close:IVC)を算出していた。ここで、吸気側カムシャフト121と吸気バルブ102とは一体的に設けられているため、吸気バルブ102の位置は、吸気側カムシャフト121の回転角度から物理的に決まる。 As shown in FIG. 6, in the conventional engine 100, the rotation angle of the intake camshaft 121 is calculated based on the rotation angle of the crankshaft 116 detected by the crank angle sensor 114, and the rotation of the intake camshaft 121 is calculated. The valve closing position (Intake Valve Close: IVC) of the intake valve 102 was calculated from the angle. Here, since the intake side camshaft 121 and the intake valve 102 are integrally provided, the position of the intake valve 102 is physically determined from the rotation angle of the intake side camshaft 121.
 一方、エンジン100では、クランクシャフト116と吸気側カムシャフト121との間には、例えば、タイミングベルト206、位相可変カムプーリ202、カムプーリ203など、多数の構成部品が介在している。そのため、部品誤差や組み合わせ誤差などが累積してしまい、クランクシャフト116の回転角度から算出した吸気側カムシャフト121の回転角度にバラツキが生じてしまう。 On the other hand, in the engine 100, a number of components such as a timing belt 206, a phase variable cam pulley 202, and a cam pulley 203 are interposed between the crankshaft 116 and the intake camshaft 121, for example. For this reason, component errors, combination errors, and the like are accumulated, resulting in variations in the rotation angle of the intake camshaft 121 calculated from the rotation angle of the crankshaft 116.
 その結果、吸気側カムシャフト121の回転角度から算出した吸気バルブ102の閉弁位置IVCにバラツキが生じてしまい、シリンダ内の空気量を正確に求めることができない。 As a result, the valve closing position IVC of the intake valve 102 calculated from the rotation angle of the intake camshaft 121 varies, and the amount of air in the cylinder cannot be obtained accurately.
 図6の最下段に示すように、エンジン100では、エンジン100の過渡運転時において、アクセル開度センサ120の出力信号に基づき、ECU108により制御された絞り弁117の開度に応じて、エンジン100への吸入空気量が増加し、エンジン100のシリンダに吸入される空気量は、吸気バルブ102が閉弁するタイミング(閉弁位置IVC)にて物理的に確定する。 As shown in the lowermost stage of FIG. 6, in the engine 100, during the transient operation of the engine 100, the engine 100 is controlled according to the opening degree of the throttle valve 117 controlled by the ECU 108 based on the output signal of the accelerator opening degree sensor 120. The amount of air taken into the engine 100 increases, and the amount of air taken into the cylinder of the engine 100 is physically determined at the timing when the intake valve 102 is closed (valve closing position IVC).
 このように、エンジン100の過渡運転時においては、シリンダ内の空気量が物理的に確定する(閉弁位置IVC)前に、燃料噴射制御や点火時期制御の演算が確定、実行する場合、アクセル開度の変化、絞り弁117の変化、カム角度センサ122から得られる可変バルブタイミング機構123の制御位置等の認識値から、各種補正を行う必要がある。 As described above, during the transient operation of the engine 100, when the calculation of the fuel injection control and the ignition timing control is determined and executed before the air amount in the cylinder is physically determined (valve closing position IVC), the accelerator is Various corrections need to be made from recognized values such as changes in the opening degree, changes in the throttle valve 117, and the control position of the variable valve timing mechanism 123 obtained from the cam angle sensor 122.
 しかしながら、ECU108では、シリンダ内の空気量が確定するタイミングが異なる(算出した吸気バルブ102の閉弁位置IVCにバラツキがある)ことや、可変バルブタイミング機構123のバラツキの影響を受けることにより、補正制御の精度を向上させることができない。その結果、エンジン100の過渡運転時において、所望の空燃比制御の精度が十分に確保できず、空燃比制御の精度向上のためには、多くの工数が必要になり、空燃比制御も複雑となってしまう。 However, in the ECU 108, the timing at which the amount of air in the cylinder is determined is corrected (varied in the calculated valve closing position IVC of the intake valve 102) or affected by the variation in the variable valve timing mechanism 123. The accuracy of control cannot be improved. As a result, at the time of transient operation of the engine 100, sufficient accuracy of the desired air-fuel ratio control cannot be ensured, and many man-hours are required to improve the accuracy of the air-fuel ratio control, and the air-fuel ratio control becomes complicated. turn into.
 そこで、本発明の実施の形態では、吸気側カムシャフト121に設けられたカムロータ208の基準角度形成部220(突起)を、吸気バルブ102の閉弁位置IVCに対応する角度位置に設けているので、このカム角度センサ122による基準角度形成部220の検出結果に基づいて、吸気バルブ102の閉弁位置IVCを正確に検知することができる。よって、エンジン100の過渡運転時においても、シリンダ内の空気量を精度よく算出することができる。 Therefore, in the embodiment of the present invention, the reference angle forming portion 220 (protrusion) of the cam rotor 208 provided on the intake side camshaft 121 is provided at an angular position corresponding to the valve closing position IVC of the intake valve 102. Based on the detection result of the reference angle forming unit 220 by the cam angle sensor 122, the valve closing position IVC of the intake valve 102 can be accurately detected. Therefore, even during the transient operation of engine 100, the amount of air in the cylinder can be accurately calculated.
 図7は、本発明の実施の形態にかかるカム角度センサ122の検知タイミングの一例を説明する図である。図7では、エンジン100に設けられた4つのシリンダ(気筒)のうち、所定の1つのシリンダにおける吸気バルブ102の開閉動作(リフト量)と、吸気側カムシャフト121の回転角度を検出するカム角度センサ122の検出信号との関係を示している。 FIG. 7 is a diagram for explaining an example of the detection timing of the cam angle sensor 122 according to the embodiment of the present invention. In FIG. 7, the cam angle for detecting the opening / closing operation (lift amount) of the intake valve 102 and the rotation angle of the intake camshaft 121 in a predetermined one of the four cylinders (cylinders) provided in the engine 100. The relationship with the detection signal of the sensor 122 is shown.
 図7に示すように、実施の形態では、カム角度センサ122は、カムロータ208に設けられた基準角度形成部220(突起)を検出することで、吸気バルブ102の閉弁位置IVCに対応するタイミングで信号を出力するようになっており、ECU108は、吸気バルブ102の閉弁タイミングを正確に検知することができる。 As shown in FIG. 7, in the embodiment, the cam angle sensor 122 detects a reference angle forming portion 220 (protrusion) provided on the cam rotor 208, and thereby the timing corresponding to the valve closing position IVC of the intake valve 102. The ECU 108 can accurately detect the closing timing of the intake valve 102.
 なお、カム角度センサ122の検出タイミングは、吸気バルブ102の閉弁位置IVCと一致することが望ましいが、シリンダ内の空気量の算出精度に影響しない範囲であれば、完全に一致するタイミングでなくてもよい。例えば、カム角度センサ122の検出タイミングは、吸気バルブ102の閉弁位置IVCに対して所定の設定角度(例えば、±0.3deg)以内であれば良い。 The detection timing of the cam angle sensor 122 is preferably coincident with the valve closing position IVC of the intake valve 102. However, it is not completely coincident as long as it does not affect the calculation accuracy of the air amount in the cylinder. May be. For example, the detection timing of the cam angle sensor 122 may be within a predetermined set angle (for example, ± 0.3 deg) with respect to the valve closing position IVC of the intake valve 102.
 ここで、シリンダ内の空気量の算出精度に影響しない範囲とは、エンジン100の1気筒当たりのシリンダ容積、吸気バルブ102の動作リフト量や開閉時間などにより異なるため、本発明が適用されるエンジン100の仕様に応じて設定するのが望ましい。 Here, the range that does not affect the calculation accuracy of the air amount in the cylinder differs depending on the cylinder volume per cylinder of the engine 100, the operation lift amount of the intake valve 102, the open / close time, and the like, and therefore the engine to which the present invention is applied. It is desirable to set according to 100 specifications.
[本発明の実施の形態にかかるエンジンの各センサ信号と各行程との関係]
 次に、本発明の実施の形態にかかるエンジン100の各センサ信号と各行程との関係を説明する。
[Relationship between Sensor Signals and Processes of Engine According to Embodiment of the Present Invention]
Next, the relationship between each sensor signal and each stroke of the engine 100 according to the embodiment of the present invention will be described.
 図8は、従来例にかかるエンジン100の各センサ信号と各行程との関係を説明する図であり、図8の最上段は、エンジン100に設けられたカム角度センサ122の出力信号のタイムチャートであり、図中の上から2段目は、エンジン100に設けられたクランク角度センサ114の出力信号のタイムチャートであり、図中の上から3段目は、エンジン100の行程のタイムチャートであり、図中の最下段は、エンジン100が過渡運転時のアクセル開度センサ120と絞り弁117の開度センサ信号を示している。実施の形態では、エンジン100が4気筒の場合を例示しているので、カム角度センサ122の出力信号の周期は、180degごとに発生する。 FIG. 8 is a diagram for explaining the relationship between each sensor signal and each stroke of the engine 100 according to the conventional example, and the uppermost stage in FIG. 8 is a time chart of the output signal of the cam angle sensor 122 provided in the engine 100. The second stage from the top in the figure is a time chart of the output signal of the crank angle sensor 114 provided in the engine 100, and the third stage from the top in the figure is a time chart of the stroke of the engine 100. Yes, the lowermost stage in the figure shows the opening degree sensor signals of the accelerator opening degree sensor 120 and the throttle valve 117 when the engine 100 is in a transient operation. In the embodiment, the case where engine 100 has four cylinders is illustrated, and therefore the cycle of the output signal of cam angle sensor 122 occurs every 180 degrees.
 図8に示すように、カム角度センサ122は、カムロータ208に設けられた基準角度形成部220(突起)を検出することで、吸気バルブ102の閉弁位置IVCのタイミングを検出するようになっており、吸気バルブ102の閉弁位置IVCを正確に検知することができる。これにより、ECU108は、吸気バルブ102の閉弁後のシリンダ内の空気量を正確に算出することができ、この空気量に基づいて所望の空燃比となるように燃料噴射量の演算を行う。ECU108では、燃料噴射量の演算結果に基づいて燃料噴射弁104を制御することで、燃料噴射弁104からシリンダ内に所定量の燃料を噴射することができる。 As shown in FIG. 8, the cam angle sensor 122 detects the timing of the valve closing position IVC of the intake valve 102 by detecting a reference angle forming portion 220 (protrusion) provided on the cam rotor 208. Thus, the valve closing position IVC of the intake valve 102 can be accurately detected. Thus, the ECU 108 can accurately calculate the amount of air in the cylinder after the intake valve 102 is closed, and calculates the fuel injection amount based on this amount of air so that a desired air-fuel ratio is obtained. The ECU 108 can inject a predetermined amount of fuel into the cylinder from the fuel injection valve 104 by controlling the fuel injection valve 104 based on the calculation result of the fuel injection amount.
 なお、ECU108は、吸気バルブ102の閉弁位置IVCで演算した燃料噴射量が、必要燃料噴射量よりも所定の閾値以上不足していると判定した場合、その後の行程(例えば、圧縮行程)で割り込み噴射を行い、所望の空燃比となるように調整を行う。 When the ECU 108 determines that the fuel injection amount calculated at the valve closing position IVC of the intake valve 102 is insufficient by a predetermined threshold or more than the required fuel injection amount, the ECU 108 performs the subsequent stroke (for example, the compression stroke). Interrupt injection is performed and adjustment is performed so that a desired air-fuel ratio is obtained.
 ここで、ECU108の制御ブロックを説明する。 Here, the control block of the ECU 108 will be described.
 図9は、ECU108における機能を説明するブロック図である。 FIG. 9 is a block diagram for explaining functions in the ECU 108.
 図9に示すように、ECU108は、空気量演算部801と、要求燃料噴射量演算部802と、割込み燃料噴射演算部803と、要求点火タイミング演算部804とを有している。 As shown in FIG. 9, the ECU 108 includes an air amount calculation unit 801, a required fuel injection amount calculation unit 802, an interrupt fuel injection calculation unit 803, and a required ignition timing calculation unit 804.
 空気量演算部801は、空気流量計(AFM)118から出力された検出信号と、カム角度センサ122から出力された検出信号などを受け付け、これらの検出信号に基づいてシリンダ内の空気量を演算する。 The air amount calculation unit 801 receives the detection signal output from the air flow meter (AFM) 118 and the detection signal output from the cam angle sensor 122, and calculates the air amount in the cylinder based on these detection signals. To do.
 要求燃料噴射量演算部802は、エンジン100の運転条件や、クランク角度センサ114の検出信号などを受け付けると共に、空気量演算部801で演算されたカム角度センサ122による基準角度検出部220の検出タイミングにおけるシリンダ内の空気量に基づいて要求燃料噴射量の演算を行う。 The requested fuel injection amount calculation unit 802 receives the operating conditions of the engine 100, the detection signal of the crank angle sensor 114, and the like, and the detection timing of the reference angle detection unit 220 by the cam angle sensor 122 calculated by the air amount calculation unit 801. The required fuel injection amount is calculated based on the air amount in the cylinder.
 割込み燃料噴射演算部803は、少なくとも基準角度形成部220の検出タイミングの空気量から演算した燃料噴射量が、要求燃料噴射量演算部802で演算した要求燃料噴射量未満であると判定した場合に割込み燃料噴射量を算出し、この割込み燃料噴射量を燃料噴射弁104に出力するための演算処理を行う。 The interrupt fuel injection calculation unit 803 determines that the fuel injection amount calculated from at least the air amount at the detection timing of the reference angle forming unit 220 is less than the required fuel injection amount calculated by the required fuel injection amount calculation unit 802. An interruption fuel injection amount is calculated, and an arithmetic process for outputting the interruption fuel injection amount to the fuel injection valve 104 is performed.
 ECU108は、要求燃料噴射量演算部802で演算された要求燃料噴射量と、割込み燃料噴射演算部803で演算された割込み燃料噴射量とに基づいて、燃料噴射弁104の制御を行い、燃料噴射弁104では、これらの燃料噴射量に基づいてシリンダ内に燃料を噴射する。 The ECU 108 controls the fuel injection valve 104 based on the required fuel injection amount calculated by the required fuel injection amount calculation unit 802 and the interrupt fuel injection amount calculated by the interrupt fuel injection calculation unit 803, The valve 104 injects fuel into the cylinder based on these fuel injection amounts.
 前述したECU108が、要求燃料噴射量と、割込み燃料噴射量とに基づいて行う燃料噴射弁104の制御を、燃料噴射制御と言う。 The control of the fuel injection valve 104 performed by the ECU 108 based on the required fuel injection amount and the interrupt fuel injection amount is referred to as fuel injection control.
 要求点火タイミング演算部804は、エンジン100の運転条件やクランク角度センサ114の検出信号などを受け付けると共に、空気量演算部801で演算されたカム角度センサ122による基準角度形成部220の検出タイミングにおけるシリンダ内の空気量に基づいて要求点火タイミングを演算し、点火コイル106に出力する。点火コイル106は、点火プラグ105を点火するための高電流を生成し、この高電流を要求点火タイミングで点火プラグ105に供給することで、点火プラグ105は、要求点火タイミングで点火を行う。なお、点火プラグ105は、要求点火タイミングよりも遅いタイミング(遅角)で点火してもよく、このようにすると、ノッキングなどを適切に防止することができる。 The requested ignition timing calculation unit 804 receives the operating conditions of the engine 100, the detection signal of the crank angle sensor 114, and the like, and the cylinder at the detection timing of the reference angle forming unit 220 by the cam angle sensor 122 calculated by the air amount calculation unit 801. The required ignition timing is calculated on the basis of the amount of air inside and is output to the ignition coil 106. The ignition coil 106 generates a high current for igniting the ignition plug 105, and supplies the high current to the ignition plug 105 at the required ignition timing, so that the ignition plug 105 performs ignition at the required ignition timing. Note that the spark plug 105 may be ignited at a timing (retard angle) later than the required ignition timing, and in this way, knocking or the like can be appropriately prevented.
 点火コイル106では、要求点火タイミング演算部804から出力された要求点火タイミングに応じて所定の電流を発生し、この電流により点火プラグ105を点火する。 The ignition coil 106 generates a predetermined current according to the required ignition timing output from the required ignition timing calculation unit 804, and the ignition plug 105 is ignited by this current.
[燃料噴射制御処理]
 次に、ECU108による燃料噴射制御の処理を説明する。
[Fuel injection control process]
Next, fuel injection control processing by the ECU 108 will be described.
 図10は、ECU108による燃料噴射制御の処理を説明するフローチャートである。 FIG. 10 is a flowchart for explaining fuel injection control processing by the ECU 108.
 ステップS101において、ECU108は、運転条件の処理を行う。ここで、運転条件とは、車両(図示せず)のアイドル状態からの加速走行、加速走行からの減速走行、または一定のエンジン回転数を維持している定常走行や、運転者のアクセル操作や気温や湿度、標高(空気密度が下がる)など、エンジン100における環境変化を含めた条件のことを言う。 In step S101, the ECU 108 processes the operating conditions. Here, the driving conditions include acceleration travel from an idle state of a vehicle (not shown), deceleration travel from acceleration travel, steady travel maintaining a constant engine speed, driver's accelerator operation, It refers to conditions including environmental changes in the engine 100 such as temperature, humidity, and altitude (air density decreases).
 ステップS102において、ECU108の空気量演算部801は、空気流量計118で検出した空気の流量と、カム角度センサ122で検出した吸気側カムシャフト121の基準角度形成部220の位置などとに基づいて、現時点でのシリンダ内の空気量Q1(吸気バルブ102が閉弁する前の状態における推定空気量)を演算する。 In step S102, the air amount calculation unit 801 of the ECU 108 is based on the air flow rate detected by the air flow meter 118, the position of the reference angle forming unit 220 of the intake camshaft 121 detected by the cam angle sensor 122, and the like. Then, the air amount Q1 in the cylinder at the present time (the estimated air amount in the state before the intake valve 102 is closed) is calculated.
 ステップS103において、ECU108の要求燃料噴射量演算部802は、ステップS101でECU108が処理した運転条件と、ステップS102で空気量演算部801が演算したシリンダ内の空気量Q1とに基づいて、エンジン100で必要とする要求燃料噴射量を演算する。 In step S103, the required fuel injection amount calculation unit 802 of the ECU 108 is based on the operating conditions processed by the ECU 108 in step S101 and the air amount Q1 in the cylinder calculated by the air amount calculation unit 801 in step S102. To calculate the required fuel injection amount.
 ステップS104において、ECU108は、吸気側カムシャフト121の回転角度を検出するカム角度センサ122からの割込みがあるか否かを判定し、割込みがあると判定した場合(ステップS104:YES)、ステップS106に進み、割込みがないと判定した場合(ステップS104:NO)、ステップS105に進む。 In step S104, the ECU 108 determines whether or not there is an interrupt from the cam angle sensor 122 that detects the rotation angle of the intake-side camshaft 121, and determines that there is an interrupt (step S104: YES), step S106. If it is determined that there is no interruption (step S104: NO), the process proceeds to step S105.
 ステップS105において、カム角度センサ122からの割込みがない場合、ECU108は、ステップS103で演算した要求燃料噴射量に応じて燃料噴射弁104を制御し、燃料噴射弁104による通常の燃料噴射を行い、処理を終了する。 If there is no interruption from the cam angle sensor 122 in step S105, the ECU 108 controls the fuel injection valve 104 in accordance with the required fuel injection amount calculated in step S103, performs normal fuel injection by the fuel injection valve 104, The process ends.
 ステップS106において、カム角度センサ122からの割込みがある場合、ECU108の空気量演算部801は、カム角度センサ122からの割込みがあったタイミング(吸気バルブ102の閉弁タイミング)におけるシリンダ内の空気量Q2を演算する。 In step S106, when there is an interruption from the cam angle sensor 122, the air amount calculation unit 801 of the ECU 108 determines the amount of air in the cylinder at the timing when the interruption from the cam angle sensor 122 occurs (closing timing of the intake valve 102). Q2 is calculated.
 ステップS107において、ECU108は、ステップS102での基準角度形成部220の検出タイミング以外のタイミングで演算されたシリンダ内の空気量Q1と、ステップS106での基準角度形成部220の検出タイミングで演算されたシリンダ内の空気量Q2との差分ΔQ(=Q2-Q1)を演算する。なお、ECU108は、ステップS102での基準角度形成部220の検出タイミング以外のタイミングで演算されたシリンダ内の空気量Q1と、ステップS106での基準角度形成部220の検出タイミングで演算されたシリンダ内の空気量Q2との割合Qt(=Q2/Q1)を演算してもよい。 In step S107, the ECU 108 calculates the air amount Q1 in the cylinder calculated at a timing other than the detection timing of the reference angle forming unit 220 in step S102 and the detection timing of the reference angle forming unit 220 in step S106. A difference ΔQ (= Q2−Q1) from the air amount Q2 in the cylinder is calculated. The ECU 108 determines the air amount Q1 in the cylinder calculated at a timing other than the detection timing of the reference angle forming unit 220 in step S102 and the in-cylinder calculated in the detection timing of the reference angle forming unit 220 in step S106. A ratio Qt (= Q2 / Q1) with the air amount Q2 may be calculated.
 ステップS108において、ECU108は、ステップS107で演算した空気量の差分ΔQに基づいて、空燃比センサ112により検出されたエンジン100の空燃比が所望の空燃比となるように、追加の燃料噴射が必要か否かを判定する。 In step S108, the ECU 108 needs additional fuel injection so that the air-fuel ratio of the engine 100 detected by the air-fuel ratio sensor 112 becomes a desired air-fuel ratio based on the air amount difference ΔQ calculated in step S107. It is determined whether or not.
 ECU108は、追加の燃料噴射が必要と判定した場合(ステップS108:YES)、ステップS109において、割込み燃料噴射制御を行う。一方、ECU108は、追加の燃料噴射が不要と判定した場合(ステップS108:NO)、割込み燃料噴射を行わず、そのまま処理を終了する。 When it is determined that additional fuel injection is necessary (step S108: YES), the ECU 108 performs interrupt fuel injection control in step S109. On the other hand, when it is determined that additional fuel injection is unnecessary (step S108: NO), the ECU 108 does not perform the interrupt fuel injection and ends the process as it is.
[要求点火タイミング演算処理]
 次に、ECU108による要求点火タイミング演算処理を説明する。
[Required ignition timing calculation processing]
Next, the required ignition timing calculation process by the ECU 108 will be described.
 図11は、ECU108による要求点火タイミング演算理を説明するフローチャートである。 FIG. 11 is a flowchart for explaining the required ignition timing calculation by the ECU 108.
 ステップS201において、ECU108は、ステップS101と同様に、運転条件の処理を行う。 In step S201, the ECU 108 processes the operating conditions in the same manner as in step S101.
 ステップS202において、ECU108の空気量演算部801は、ステップS102と同様に、空気流量計118で検出した空気の流量と、カム角度センサ122で検出した吸気側カムシャフト121の基準角度形成部220の位置などとに基づいて、現時点でのシリンダ内の空気量Q1を演算する。 In step S202, the air amount calculation unit 801 of the ECU 108, similarly to step S102, detects the air flow rate detected by the air flow meter 118 and the reference angle forming unit 220 of the intake camshaft 121 detected by the cam angle sensor 122. Based on the position and the like, the current air amount Q1 in the cylinder is calculated.
 ステップS203において、ECU108の要求点火タイミング演算部804は、ステップS201の運転条件と、ステップS202で演算したシリンダ内の空気量Q1と、クランク角度センサ114の検出結果などに基づいて、点火プラグ105の要求点火タイミングを演算する。 In step S203, the required ignition timing calculation unit 804 of the ECU 108 determines the ignition plug 105 based on the operation conditions in step S201, the air amount Q1 in the cylinder calculated in step S202, the detection result of the crank angle sensor 114, and the like. Calculate the required ignition timing.
 ステップS204において、ECU108は、吸気側カムシャフト121の回転角度を検出するカム角度センサ122からの割込み(基準角度の検出)があるか否かを判定し、割込みがあると判定した場合(ステップS204:YES)、ステップS205に進み、割込みがないと判定した場合(ステップS204:NO)、処理を終了する。 In step S204, the ECU 108 determines whether or not there is an interruption (detection of a reference angle) from the cam angle sensor 122 that detects the rotation angle of the intake camshaft 121, and determines that there is an interruption (step S204). : YES), the process proceeds to step S205, and if it is determined that there is no interruption (step S204: NO), the process ends.
 ステップS205において、ステップS203で演算した要求点火タイミングに基づいて、点火プラグ105の点火制御を行う。ここで、ステップS205では、カム角度センサ122による基準角度形成部220の検出タイミングで、点火プラグ105の点火制御行う場合を例示して説明したが、カム角度センサ122による基準角度形成部220の検出タイミング以降(遅角)に点火プラグ105の点火制御を行ってもよい。例えば、カム角度センサ122による基準角度形成部220の検出タイミング以降の所望のクランク角度センサ114の検出信号に基づいて、点火プラグ105の点火制御を行ってもよい。 In step S205, ignition control of the spark plug 105 is performed based on the required ignition timing calculated in step S203. Here, in step S205, the case where the ignition control of the spark plug 105 is performed at the detection timing of the reference angle forming unit 220 by the cam angle sensor 122 has been described as an example, but the detection of the reference angle forming unit 220 by the cam angle sensor 122 is described. The ignition control of the spark plug 105 may be performed after the timing (retard angle). For example, ignition control of the ignition plug 105 may be performed based on a detection signal of a desired crank angle sensor 114 after the detection timing of the reference angle forming unit 220 by the cam angle sensor 122.
 図12は、エンジン100の過渡運転時において、従来の内燃機関の制御装置による空燃比制御(方式A)と、本発明を適用した内燃機関の制御装置による空燃比制御(方式B)との比較結果を説明する図である。 FIG. 12 shows a comparison between the conventional air-fuel ratio control (method A) by the control device for the internal combustion engine and the air-fuel ratio control (method B) by the control device for the internal combustion engine to which the present invention is applied during the transient operation of the engine 100. It is a figure explaining a result.
 図12に示すように、従来の方式Aでは、グラフの上位部分A-2に示すように、シリンダ内の空気量が確定するタイミングが異なることや、可変バルブタイミング機構123のバラツキなどの影響で、目標空燃比に対する空燃比制御の精度が悪かった。 As shown in FIG. 12, in the conventional method A, as shown in the upper part A-2 of the graph, the timing at which the amount of air in the cylinder is determined is different, and the variation of the variable valve timing mechanism 123 is affected. The accuracy of air-fuel ratio control with respect to the target air-fuel ratio was poor.
 一方、本発明を適用した方式Bでは、シリンダ内の空気量が正確に求められるので、目標空燃比に近づける制御が可能となる。このように、本発明を適用することにより、エンジン100が過渡運転状態であっても、シリンダ内の空気量を正確に算出することが可能となり、目標空燃比に対する空燃比制御の精度を向上することができる。 On the other hand, in the system B to which the present invention is applied, the amount of air in the cylinder is accurately obtained, so that control close to the target air-fuel ratio becomes possible. Thus, by applying the present invention, it becomes possible to accurately calculate the amount of air in the cylinder even when the engine 100 is in a transient operation state, and the accuracy of air-fuel ratio control with respect to the target air-fuel ratio is improved. be able to.
 以上説明した通り、実施の形態では、
(1)吸気バルブ102と排気バルブ103を開閉駆動するカムシャフト121、209と、当該カムシャフト121、209の回転角度を検出するカム角度センサ122、209aとを有するエンジン100(内燃機関)を制御するECU108(内燃機関の制御装置)であって、カムシャフト121は、カム角度センサ122で検出されるように構成された基準角度形成部220を有し、基準角度形成部220は、少なくとも吸気バルブ102の閉弁タイミングに対応する(一致する)角度位置に設けられている構成とした。
As described above, in the embodiment,
(1) Controlling an engine 100 (internal combustion engine) having camshafts 121 and 209 that open and close the intake valve 102 and the exhaust valve 103, and cam angle sensors 122 and 209a that detect rotation angles of the camshafts 121 and 209. ECU 108 (control device for an internal combustion engine), and camshaft 121 has a reference angle forming unit 220 configured to be detected by cam angle sensor 122, and reference angle forming unit 220 includes at least an intake valve. The configuration is such that it is provided at an angular position corresponding to (matching) the valve closing timing 102.
 このように構成すると、ECU108では、カム角度センサ122による基準角度形成部220の検出信号から吸気バルブ102の閉弁タイミング(吸気バルブ102も排気バルブ103も閉弁しており、シリンダ内が閉じた状態)を検知することができる。よって、エンジン100のシリンダでは、吸気バルブ102の閉弁タイミングで内部の空気量が確定し、ECU108は、シリンダ内の空気量を正確に算出することができる。 With this configuration, the ECU 108 closes the intake valve 102 from the detection signal of the reference angle forming unit 220 by the cam angle sensor 122 (the intake valve 102 and the exhaust valve 103 are both closed, and the cylinder is closed). State) can be detected. Therefore, in the cylinder of engine 100, the internal air amount is determined at the closing timing of intake valve 102, and ECU 108 can accurately calculate the air amount in the cylinder.
(2)また、少なくとも基準角度形成部220の検出タイミング(前述した実施の形態では、吸気バルブ102の閉弁位置IVC)における燃料噴射量が、要求燃料噴射量未満であると判定した場合に割込み燃料噴射量を演算する割込み燃料噴射演算部803を備えた構成とした。 (2) Further, an interruption occurs when it is determined that the fuel injection amount at least at the detection timing of the reference angle forming unit 220 (in the above-described embodiment, the valve closing position IVC of the intake valve 102) is less than the required fuel injection amount. An interrupt fuel injection calculation unit 803 that calculates the fuel injection amount is provided.
 このように構成すると、割込み燃料噴射演算部803は、吸気バルブ102の閉弁位置IVCで演算された燃料噴射量が、空気量や制御信号307に基づいて演算された要求燃料噴射量未満であると判定した場合、割込み燃料噴射量を演算するので、エンジン100を適切な燃焼状態に維持することができる。 With this configuration, the interrupt fuel injection calculation unit 803 has the fuel injection amount calculated at the valve closing position IVC of the intake valve 102 smaller than the required fuel injection amount calculated based on the air amount and the control signal 307. When the determination is made, the interrupt fuel injection amount is calculated, so that the engine 100 can be maintained in an appropriate combustion state.
(3)また、基準角度形成部220の検出タイミング(前述した実施の形態では、吸気バルブ102の閉弁位置IVC)で演算されたシリンダ内の空気量に基づいて前記要求燃料噴射量を算出する要求燃料噴射量演算部802を備える構成とした。 (3) Further, the required fuel injection amount is calculated based on the air amount in the cylinder calculated at the detection timing of the reference angle forming unit 220 (in the above-described embodiment, the valve closing position IVC of the intake valve 102). The required fuel injection amount calculation unit 802 is provided.
 このように構成すると、要求燃料噴射量演算部802は、シリンダ内の空気量が確定した状態で算出された正確な空気量に基づいて要求燃料噴射量を演算することで、要求燃料噴射量を正確に演算することができる。 With this configuration, the required fuel injection amount calculation unit 802 calculates the required fuel injection amount based on the accurate air amount calculated in a state where the air amount in the cylinder is fixed. It can be calculated accurately.
(4)また、割込み燃料噴射演算部803は、基準角度形成部220の検出タイミング(前述した実施の形態では、吸気バルブ102の閉弁位置IVC)で演算されたシリンダ内の空気量Q2(第1空気量)と、基準角度形成部220の検出タイミングとは異なるタイミングで演算されたシリンダ内の空気量Q1(第2空気量)との差分または割合の何れかに基づいて、割込み燃料噴射量の演算の要否を判定する構成とした。 (4) In addition, the interrupt fuel injection calculation unit 803 is configured to calculate the air amount Q2 in the cylinder (first value) calculated at the detection timing of the reference angle forming unit 220 (in the above-described embodiment, the valve closing position IVC of the intake valve 102). 1 air amount) and the difference or ratio between the air amount Q1 (second air amount) in the cylinder calculated at a timing different from the detection timing of the reference angle forming unit 220, the interrupt fuel injection amount It was set as the structure which determines the necessity of the calculation of this.
 このように構成すると、割込み燃料噴射演算部803は、基準角度形成部220の検出タイミングで算出された空気量Q2と、基準角度形成部220の検出タイミングとは異なるタイミングで算出された空気量Q1との差分又は割合に基づいて、割込み燃料噴射量の演算を行うか否かを判定するので、追加燃料噴射の要否判断を適切に行うことができる。 If comprised in this way, the interruption fuel injection calculating part 803 will calculate the air quantity Q2 calculated at the detection timing of the reference angle formation part 220, and the air quantity Q1 calculated at a timing different from the detection timing of the reference angle formation part 220. Since it is determined whether or not to calculate the interrupt fuel injection amount on the basis of the difference or the ratio, it is possible to appropriately determine whether or not additional fuel injection is necessary.
(5)また、エンジン100のシリンダ内の混合気に点火する点火装置(点火プラグ105及び点火コイル106)を有し、点火装置は、基準角度形成部220の検出タイミング、または基準角度形成部220の検出タイミングよりも遅いタイミング(遅角)で、混合気に点火する構成とした。 (5) Further, it has an ignition device (ignition plug 105 and ignition coil 106) that ignites the air-fuel mixture in the cylinder of the engine 100. The ignition device detects the reference angle forming unit 220 or the reference angle forming unit 220. The air-fuel mixture is ignited at a timing (retarding angle) later than the detection timing.
 このように構成すると、点火装置による点火タイミングが吸気バルブ102の閉弁位置IVCよりも遅角されるので、エンジン100のノッキングを防止することができる。 With this configuration, the ignition timing by the ignition device is retarded from the valve closing position IVC of the intake valve 102, so that knocking of the engine 100 can be prevented.
(6)また、基準角度形成部220は、カムシャフト121の外周に設けられた円板形状を成すカムロータ208の外周から径方向外側に突出して設けられた突起である構成とした。 (6) Further, the reference angle forming part 220 is configured to be a protrusion provided to protrude radially outward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the camshaft 121.
 このように構成すると、一般的な車両で使用されている既存のカム角度センサを用いることができ、基準角度形成部220を検知するための追加のセンサや装置が必要ない。よって、基準角度形成部220を検出するための追加コストがほとんど必要ない。 With this configuration, an existing cam angle sensor used in a general vehicle can be used, and an additional sensor or device for detecting the reference angle forming unit 220 is not necessary. Therefore, almost no additional cost for detecting the reference angle forming unit 220 is required.
(7)また、基準角度形成部220は、カムシャフト121の外周に設けられた円板形状を成すカムロータ208の外周から径方向内側に突出して設けられた溝220Aまたは穴である構成とした。 (7) Further, the reference angle forming part 220 is configured to be a groove 220A or a hole provided so as to protrude radially inward from the outer periphery of the cam rotor 208 having a disk shape provided on the outer periphery of the camshaft 121.
 このように構成しても、カム角度センサ122により溝220A又は穴を検知することができ、カムシャフト121の基準角度を確実に検出することができる。 Even with this configuration, the groove 220A or the hole can be detected by the cam angle sensor 122, and the reference angle of the camshaft 121 can be reliably detected.
(8)また、基準角度形成部220は、エンジン100の吸気行程、圧縮行程、爆発行程、排気行程に対応する角度位置に設けられている構成とした。 (8) Further, the reference angle forming unit 220 is configured to be provided at angular positions corresponding to the intake stroke, compression stroke, explosion stroke, and exhaust stroke of the engine 100.
 このように構成すると、ECU108は、各々の基準角度形成部220の検出タイミングから、吸気行程、圧縮行程、爆発行程、排気行程の何れかでああるかを判定することができ、吸気行程における空気量の正確な演算に加えて、燃料噴射弁や点火装置の制御を適切なタイミングで行うことができる。 With this configuration, the ECU 108 can determine whether the intake stroke, the compression stroke, the explosion stroke, or the exhaust stroke is based on the detection timing of each reference angle forming unit 220, and the air in the intake stroke In addition to the accurate calculation of the amount, the fuel injection valve and the ignition device can be controlled at an appropriate timing.
[第2の実施の形態]
 次に、本発明の第2の実施の形態にかかる内燃機関の制御装置を説明する。
 第2の実施の形態にかかる内燃機関の制御装置は、カム角度センサ122、209aによる基準角度形成部220の検出タイミングが、吸気バルブの開弁位置IVO(Intake Valve Open)や、排気バルブの開弁位置EVO(Exhaust Valve Open)又は閉弁位置EVC(Exhaust Valve Close)に対応するように構成されている点が、前述した実施の形態と異なる。
[Second Embodiment]
Next, a control device for an internal combustion engine according to a second embodiment of the present invention will be described.
In the control apparatus for an internal combustion engine according to the second embodiment, the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a is determined based on the intake valve opening position IVO (Intake Valve Open) and the exhaust valve opening. The point of being configured to correspond to the valve position EVO (Exhaust Valve Open) or the valve closing position EVC (Exhaust Valve Close) is different from the above-described embodiment.
 図13は、第2の実施の形態にかかるカム角度センサ122、209aによる基準角度形成部220の検出タイミングを説明する図である。なお、前述した実施の形態と同様の構成については同一の符号を付し、必要に応じて説明する。 FIG. 13 is a diagram illustrating the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a according to the second embodiment. In addition, the same code | symbol is attached | subjected about the structure similar to embodiment mentioned above, and it demonstrates as needed.
 図13に示すように、第2の実施の形態にかかる内燃機関の制御装置では、カム角度センサ122、209aによる基準角度形成部220の検知タイミングは、吸気バルブ102の閉弁位置IVCだけではなく、吸気バルブ102の開弁位置IVO、排気バルブ103の閉弁位置EVC、開弁位置EVOのそれぞれの何れか、又は全てのタイミングに対応する角度位置に設定されている構成としている。つまり第2の実施の形態の内燃機関の制御装置(ECU108)では、カムロータ208の基準角度形成部220(突起)は、吸気バルブ102の閉弁タイミング(閉弁位置IVC)または開弁タイミング(開弁位置IVO)、または排気バルブ103の閉弁タイミング(閉弁位置EVC)または開弁タイミング(開弁位置EVO)の少なくとも何れかのタイミングに対応する位置に設けられている。 As shown in FIG. 13, in the control apparatus for an internal combustion engine according to the second embodiment, the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a is not only the valve closing position IVC of the intake valve 102. The valve opening position IVO of the intake valve 102, the valve closing position EVC of the exhaust valve 103, and the valve opening position EVO are set to angular positions corresponding to all or all timings. That is, in the control device (ECU 108) for the internal combustion engine of the second embodiment, the reference angle forming portion 220 (protrusion) of the cam rotor 208 is the valve closing timing (valve closing position IVC) or valve opening timing (opening) of the intake valve 102. Valve position IVO), or a position corresponding to at least one of valve closing timing (valve closing position EVC) or valve opening timing (valve opening position EVO) of exhaust valve 103.
 これにより、内燃機関の制御装置(ECU108)では、吸気バルブ102と排気バルブ103の全てのバルブの開閉タイミングを検知することができるので、吸気バルブ102の閉弁タイミングと排気バルブ103の閉弁タイミングの両方を検知することで、シリンダ内の空気量の確定をより確実に行うことができる。 As a result, the control device (ECU 108) for the internal combustion engine can detect the opening / closing timings of all of the intake valves 102 and the exhaust valves 103. Therefore, the closing timings of the intake valves 102 and the exhaust valves 103 are closed. By detecting both of these, the amount of air in the cylinder can be determined more reliably.
 以上説明した通り、第2の実施の形態では、
(9)吸気バルブ102と排気バルブ103を開閉駆動するカムシャフト121、209と、当該カムシャフト121、209の回転角度を検出するカム角度センサ122、209aとを有するエンジン100(内燃機関)を制御するECU108(内燃機関の制御装置)であって、カムシャフト121、209は、カム角度センサ122、209aで検出されるように構成された基準角度形成部220を有し、基準角度形成部220は、吸気バルブ102の閉弁タイミング(閉弁位置IVC)または開弁タイミング(開弁位置IVO)、または排気バルブ103の閉弁タイミング(閉弁位置EVC)または開弁タイミング(EVO)の少なくとも何れかのタイミングに対応する角度位置に設けられている構成とした。
As explained above, in the second embodiment,
(9) Control engine 100 (internal combustion engine) having camshafts 121 and 209 that open and close intake valve 102 and exhaust valve 103, and cam angle sensors 122 and 209a that detect rotation angles of camshafts 121 and 209. The ECU 108 (control device for an internal combustion engine), and the camshafts 121 and 209 have a reference angle forming unit 220 configured to be detected by cam angle sensors 122 and 209a. , At least one of valve closing timing (valve closing position IVC) or valve opening timing (valve opening position IVO) of the intake valve 102, valve closing timing (valve closing position EVC) or valve opening timing (EVO) of the exhaust valve 103 It was set as the structure provided in the angular position corresponding to this timing.
 このように構成すると、ECU108は、吸気バルブ102の閉弁位置IVCと開弁位置IVO、及び排気バルブ103の閉弁位置EVCと開弁位置EVOを検知することができるので、シリンダ内の空気量の確定タイミングをより正確に検出することができる。よって、ECU108は、これらの検出タイミングに基づいて、シリンダ内の空気量をより正確に算出することができる。 With this configuration, the ECU 108 can detect the valve closing position IVC and the valve opening position IVO of the intake valve 102 and the valve closing position EVC and the valve opening position EVO of the exhaust valve 103, so that the amount of air in the cylinder Can be detected more accurately. Therefore, the ECU 108 can calculate the amount of air in the cylinder more accurately based on these detection timings.
[第3の実施の形態]
 次に、本発明の第3の実施の形態にかかる内燃機関の制御装置を説明する。
 第3の実施の形態にかかる内燃機関の制御装置は、カム角度センサ122、209aによる基準角度形成部220の検出タイミングを、吸気バルブの開弁位置IVOと、排気バルブの閉弁位置EVCとに一致するように構成されている点が、前述した実施の形態と異なる。
[Third Embodiment]
Next, a control device for an internal combustion engine according to a third embodiment of the present invention will be described.
In the control apparatus for an internal combustion engine according to the third embodiment, the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a is set to the valve opening position IVO of the intake valve and the valve closing position EVC of the exhaust valve. The point which is comprised so that it may correspond differs from embodiment mentioned above.
 図14は、第3の実施の形態にかかるカム角度センサ122、209aによる基準角度形成部220の検出タイミングを説明する図である。なお、前述した実施の形態と同様の構成については同一の符号を付し、必要に応じて説明する。 FIG. 14 is a diagram illustrating the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a according to the third embodiment. In addition, the same code | symbol is attached | subjected about the structure similar to embodiment mentioned above, and it demonstrates as needed.
 図14に示すように、第3の実施の形態にかかる内燃機関の制御装置では、カム角度センサ122、209aが、吸気側カムシャフト121と、排気側カムシャフト209とにそれぞれ設けられている。吸気側カムシャフト121に設けられたカム角度センサ122の検知タイミングは、吸気バルブ102の開弁位置IVOと一致し、排気側カムシャフト209に設けられたカム角度センサ209aは、排気バルブ103の閉弁位置EVCと一致する構成としている。つまり、第3の実施の形態にかかる内燃機関の制御装置(ECU1)では、基準角度形成部220は、吸気バルブ102の開弁タイミング(開弁位置IVO)に対応する角度位置に設けられていると共に、排気バルブ103の閉弁タイミング(EVC)に対応する角度位置に設けられている。 As shown in FIG. 14, in the control apparatus for an internal combustion engine according to the third embodiment, cam angle sensors 122 and 209a are provided on the intake camshaft 121 and the exhaust camshaft 209, respectively. The detection timing of the cam angle sensor 122 provided on the intake side camshaft 121 coincides with the valve opening position IVO of the intake valve 102, and the cam angle sensor 209a provided on the exhaust side camshaft 209 closes the exhaust valve 103. The configuration matches the valve position EVC. That is, in the control device (ECU1) for the internal combustion engine according to the third embodiment, the reference angle forming unit 220 is provided at an angular position corresponding to the valve opening timing (the valve opening position IVO) of the intake valve 102. At the same time, it is provided at an angular position corresponding to the valve closing timing (EVC) of the exhaust valve 103.
 カム角度センサ122、209aによる基準角度形成部220の検出タイミングを、それぞれ吸気バルブ102の開弁位置IVO、排気バルブ103の閉弁位置EVCと一致するように構成することで、吸気バルブ102と排気バルブ103の両方が開いているオーバーラップの期間を算出することができる。よって、ECU108では、吸気バルブ102と排気バルブ103とが同時に開弁していることにより、エンジン100で燃焼した排気ガスをシリンダ内に取り込む内部EGR量を正確に算出することができる。 By configuring the detection timing of the reference angle forming unit 220 by the cam angle sensors 122 and 209a to coincide with the valve opening position IVO of the intake valve 102 and the valve closing position EVC of the exhaust valve 103, respectively, the intake valve 102 and the exhaust gas are exhausted. The overlap period during which both valves 103 are open can be calculated. Therefore, the ECU 108 can accurately calculate the internal EGR amount that takes in the exhaust gas burned in the engine 100 into the cylinder because the intake valve 102 and the exhaust valve 103 are simultaneously opened.
 この結果、ECU108では、複雑な演算や補正制御を行わずに正確なエンジン100の内部EGR量を算出することができ、この内部EGR量に応じた高精度で最適な燃焼制御を行うことができる。 As a result, the ECU 108 can accurately calculate the internal EGR amount of the engine 100 without performing complicated calculation and correction control, and can perform optimum combustion control with high accuracy according to the internal EGR amount. .
 以上説明した通り、第3の実施の形態では、
(10)基準角度形成部220は、吸気バルブ102の開弁タイミング(開弁位置IVO)に対応する角度位置に設けられていると共に、排気バルブ103の閉弁タイミング(閉弁位置EVC)に対応する角度位置に設けられている構成とした。
As explained above, in the third embodiment,
(10) The reference angle forming unit 220 is provided at an angular position corresponding to the valve opening timing (valve opening position IVO) of the intake valve 102, and corresponds to the valve closing timing (valve closing position EVC) of the exhaust valve 103. It was set as the structure provided in the angle position to do.
 このように構成すると、ECU108は、エンジン100の排気行程と吸気行程のオーバーラップ期間を検出することができるので、このオーバーラップ期間に基づいて可変バルブタイミング機構123により吸気バルブ102又は排気バルブ103の作動角を調整することで、エンジン100の燃焼状態を適切に制御することができる。 With this configuration, the ECU 108 can detect an overlap period between the exhaust stroke and the intake stroke of the engine 100, and based on this overlap period, the variable valve timing mechanism 123 causes the intake valve 102 or the exhaust valve 103 to be detected. The combustion state of engine 100 can be appropriately controlled by adjusting the operating angle.
 以上、本発明の実施の形態の一例を説明したが、本発明は、前述した実施の形態を全て組み合わせてもよく、何れか2つ以上の実施の形態を任意に組み合わせても好適である。 In the above, an example of the embodiment of the present invention has been described. However, the present invention may combine all of the above-described embodiments, and may arbitrarily combine any two or more embodiments.
 また、本発明は、前述した実施の形態の全ての構成を備えているものに限定されるものではなく、前述した実施の形態の構成の一部を、他の実施の形態の構成に置き換えてもよく、また、前述した実施の形態の構成を、他の実施の形態の構成に置き換えてもよい。 Further, the present invention is not limited to the one having all the configurations of the above-described embodiment, and a part of the configuration of the above-described embodiment is replaced with the configuration of another embodiment. In addition, the configuration of the above-described embodiment may be replaced with the configuration of another embodiment.
 また、前述した実施の形態の一部の構成について、他の実施の形態の構成に追加、削除、置換をしてもよい。 Further, a part of the configuration of the above-described embodiment may be added to, deleted from, or replaced with the configuration of another embodiment.
 100:エンジン、101:ピストン、102:吸気バルブ、103:排気バルブ、104:燃料噴射弁、105:点火プラグ、106:点火コイル、107:ノックセンサ、108:ECU、110:排気管、111:三元触媒、112:空燃比センサ、114:クランク角度センサ、116:クランクシャフト、117:絞り弁、118:空気流量計、119:燃焼室、120:アクセル角度センサ、121:吸気側カムシャフト、122:カム角度センサ、123:可変バルブタイミング機構、201:カム、202:位相可変カムプーリ、203:カムプーリ、204:クランクプーリ、205:オイルポンプ、206:タイミングベルト、207:オイルコントロールバルブ、208:カムロータ、220A:溝、209:吸気側カムシャフト、209a:カム角度センサ、210:カム、220:基準角度形成部、251:カムハウジング、252:ベーン、253:進角室、254:遅角室、255:ソレノイド、256:プランジャ、257:ハウジング、258:スプール、259:スプリング、260:ドレインポート、261:油圧供給ポート、262:進角ポート、263:遅角ポート、280:オイル通路、281:位相進角油圧通路、282:位相遅角油圧通路、300:入力信号、301:入力回路、302:A/D変換部、303:CPU、304:ROM,305:RAM、306:出力回路、307:制御信号 100: engine, 101: piston, 102: intake valve, 103: exhaust valve, 104: fuel injection valve, 105: ignition plug, 106: ignition coil, 107: knock sensor, 108: ECU, 110: exhaust pipe, 111: Three-way catalyst, 112: air-fuel ratio sensor, 114: crank angle sensor, 116: crankshaft, 117: throttle valve, 118: air flow meter, 119: combustion chamber, 120: accelerator angle sensor, 121: intake side camshaft, 122: Cam angle sensor, 123: Variable valve timing mechanism, 201: Cam, 202: Phase variable cam pulley, 203: Cam pulley, 204: Crank pulley, 205: Oil pump, 206: Timing belt, 207: Oil control valve, 208: Cam rotor, 220A: groove, 209: intake air Cam shaft, 209a: Cam angle sensor, 210: Cam, 220: Reference angle forming part, 251: Cam housing, 252: Vane, 253: Advance chamber, 254: Delay chamber, 255: Solenoid, 256: Plunger, 257 : Housing, 258: spool, 259: spring, 260: drain port, 261: hydraulic pressure supply port, 262: advance angle port, 263: retard angle port, 280: oil passage, 281: phase advance hydraulic passage, 282: phase Retarded hydraulic passage, 300: input signal, 301: input circuit, 302: A / D converter, 303: CPU, 304: ROM, 305: RAM, 306: output circuit, 307: control signal

Claims (10)

  1.  吸気バルブと排気バルブを開閉駆動するカムシャフトと、当該カムシャフトの回転角度を検出するカム角度センサとを有する内燃機関を制御する内燃機関の制御装置であって、
     前記カムシャフトは、前記カム角度センサにより検出されるように構成された基準角度形成部を有し、
     前記基準角度形成部は、少なくとも前記吸気バルブの閉弁タイミングに対応する角度位置に設けられている内燃機関の制御装置。
    A control device for an internal combustion engine that controls an internal combustion engine having a cam shaft that opens and closes an intake valve and an exhaust valve, and a cam angle sensor that detects a rotation angle of the cam shaft,
    The camshaft has a reference angle forming portion configured to be detected by the cam angle sensor;
    The control apparatus for an internal combustion engine, wherein the reference angle forming unit is provided at an angular position corresponding to at least a valve closing timing of the intake valve.
  2.  少なくとも前記基準角度形成部の検出タイミングにおける燃料噴射量が、要求燃料噴射量未満であると判定した場合に割込み燃料噴射量を演算する割込み噴射演算部を備えた請求項1に記載の内燃機関の制御装置。 2. The internal combustion engine according to claim 1, further comprising an interrupt injection calculation unit that calculates an interrupt fuel injection amount when it is determined that at least the fuel injection amount at the detection timing of the reference angle forming unit is less than the required fuel injection amount. Control device.
  3.  前記基準角度形成部の検出タイミングで演算されたシリンダ内の空気量に基づいて前記要求燃料噴射量を算出する要求燃料噴射量演算部を備えた請求項2に記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to claim 2, further comprising a required fuel injection amount calculation unit that calculates the required fuel injection amount based on an air amount in a cylinder calculated at a detection timing of the reference angle forming unit.
  4.  前記割込み噴射演算部は、前記基準角度形成部の検出タイミングで演算された前記シリンダ内の第1空気量と、前記基準角度形成部の検出タイミングとは異なるタイミングで演算された前記シリンダ内の第2空気量との差分または割合の何れかに基づいて、前記割込み燃料噴射量の演算の要否を判定する請求項3に記載の内燃機関の制御装置。 The interrupt injection calculating unit is configured to calculate the first air amount in the cylinder calculated at the detection timing of the reference angle forming unit and the first air amount in the cylinder calculated at a timing different from the detection timing of the reference angle forming unit. The control device for an internal combustion engine according to claim 3, wherein whether or not the calculation of the interrupt fuel injection amount is necessary is determined based on either a difference or a ratio with the two air amounts.
  5.  前記内燃機関の前記シリンダ内の混合気に点火する点火装置を有し、
     前記点火装置は、前記基準角度形成部の検出タイミング、または前記基準角度形成部の検出タイミングよりも遅いタイミングで、前記混合気に点火する請求項4に記載の内燃機関の制御装置。
    An ignition device for igniting an air-fuel mixture in the cylinder of the internal combustion engine;
    The control device for an internal combustion engine according to claim 4, wherein the ignition device ignites the air-fuel mixture at a detection timing of the reference angle forming unit or a timing later than a detection timing of the reference angle forming unit.
  6.  吸気バルブと排気バルブを開閉駆動するカムシャフトと、当該カムシャフトの回転角度を検出するカム角度センサとを有する内燃機関を制御する内燃機関の制御装置であって、
     前記カムシャフトは、前記カム角度センサにより検出されるように構成された基準角度形成部を有し、
     前記基準角度形成部は、前記吸気バルブの閉弁タイミングまたは開弁タイミング、または前記排気バルブの閉弁タイミングまたは開弁タイミングの少なくとも何れかのタイミングに対応する角度位置に設けられている内燃機関の制御装置。
    A control device for an internal combustion engine that controls an internal combustion engine having a cam shaft that opens and closes an intake valve and an exhaust valve, and a cam angle sensor that detects a rotation angle of the cam shaft,
    The camshaft has a reference angle forming portion configured to be detected by the cam angle sensor;
    The reference angle forming unit is an internal combustion engine provided at an angular position corresponding to at least one of the closing timing or opening timing of the intake valve or the closing timing or opening timing of the exhaust valve. Control device.
  7.  前記基準角度形成部は、前記吸気バルブの開弁タイミングに対応する角度位置に設けられていると共に、前記排気バルブの閉弁タイミングに対応する角度位置に設けられている請求項6に記載の内燃機関の制御装置。 The internal combustion engine according to claim 6, wherein the reference angle forming unit is provided at an angular position corresponding to a valve opening timing of the intake valve and is provided at an angular position corresponding to a valve closing timing of the exhaust valve. Engine control device.
  8.  前記基準角度形成部は、
     前記カムシャフトの外周に設けられた円板形状を成すカムロータの外周から径方向外側に突出して設けられた突起である請求項1に記載の内燃機関の制御装置。
    The reference angle forming unit is
    2. The control device for an internal combustion engine according to claim 1, wherein the control device is a protrusion provided to protrude radially outward from an outer periphery of a cam rotor having a disk shape provided on an outer periphery of the camshaft.
  9.  前記基準角度形成部は、
     前記カムシャフトの外周に設けられた円板形状を成すカムロータの外周から径方向内側に凹んで設けられた溝または穴である請求項1に記載の内燃機関の制御装置。
    The reference angle forming unit is
    2. The control device for an internal combustion engine according to claim 1, wherein the control device is a groove or a hole that is recessed radially inward from an outer periphery of a cam rotor having a disc shape provided on an outer periphery of the camshaft.
  10.  前記基準角度形成部は、前記内燃機関の吸気行程、圧縮行程、爆発行程、排気行程に対応する角度位置に設けられている請求項1から請求項9の何れか一項に記載の内燃機関の制御装置。 The internal combustion engine according to any one of claims 1 to 9, wherein the reference angle forming unit is provided at an angular position corresponding to an intake stroke, a compression stroke, an explosion stroke, and an exhaust stroke of the internal combustion engine. Control device.
PCT/JP2019/003949 2018-03-28 2019-02-05 Control device for internal combustion engine WO2019187645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510346A JPWO2019187645A1 (en) 2018-03-28 2019-02-05 Internal combustion engine control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-061302 2018-03-28
JP2018061302 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019187645A1 true WO2019187645A1 (en) 2019-10-03

Family

ID=68061293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003949 WO2019187645A1 (en) 2018-03-28 2019-02-05 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JPWO2019187645A1 (en)
WO (1) WO2019187645A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375325A (en) * 1986-09-19 1988-04-05 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
JPH08277734A (en) * 1995-04-06 1996-10-22 Fuji Heavy Ind Ltd Control method for engine fuel injection
JPH1150873A (en) * 1997-08-01 1999-02-23 Nissan Motor Co Ltd Fuel injection control device of direct injection spark ignition internal combustion engine
JP2000240489A (en) * 1999-02-23 2000-09-05 Toyota Motor Corp Fuel injection control device for internal combustion engine and fuel injection control method
JP2000257476A (en) * 1999-03-04 2000-09-19 Mitsubishi Motors Corp Control unit for in-cylinder injection engine
JP2004245162A (en) * 2003-02-14 2004-09-02 Denso Corp Internal combustion engine control device and method for processing crank angle signal of internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375325A (en) * 1986-09-19 1988-04-05 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
JPH08277734A (en) * 1995-04-06 1996-10-22 Fuji Heavy Ind Ltd Control method for engine fuel injection
JPH1150873A (en) * 1997-08-01 1999-02-23 Nissan Motor Co Ltd Fuel injection control device of direct injection spark ignition internal combustion engine
JP2000240489A (en) * 1999-02-23 2000-09-05 Toyota Motor Corp Fuel injection control device for internal combustion engine and fuel injection control method
JP2000257476A (en) * 1999-03-04 2000-09-19 Mitsubishi Motors Corp Control unit for in-cylinder injection engine
JP2004245162A (en) * 2003-02-14 2004-09-02 Denso Corp Internal combustion engine control device and method for processing crank angle signal of internal combustion engine

Also Published As

Publication number Publication date
JPWO2019187645A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US7077085B2 (en) Variable valve control system and method for multi-cylinder internal combustion engine
US8186330B2 (en) Apparatus for engine control
US9863338B2 (en) Engine control apparatus
US10316765B2 (en) Control device and control method for internal combustion engine
US20090222197A1 (en) Control apparatus and control method for internal combustion engine
US20100154740A1 (en) Variable valve timing mechanism control apparatus and control method
US7302835B2 (en) Method and device for determining a phase position between a crankshaft and a camshaft of an internal combustion engine
US7328673B2 (en) Valve timing correction control apparatus and method for an internal combustion engine
JP3750157B2 (en) Fuel injection amount control device for internal combustion engine
JP2006220079A (en) Controller of internal combustion engine
US7810460B2 (en) Adaptive individual dynamic volumetric efficiency optimization for engines with variable cam phasers and variable lift
CN111065805B (en) Method and device for controlling internal combustion engine
JP3187674B2 (en) Valve timing control device for internal combustion engine
US20100162980A1 (en) Variable valve timing apparatus and control method therefor
JP5290821B2 (en) Control device for electric actuator mechanism for vehicle
WO2019187645A1 (en) Control device for internal combustion engine
WO2011154837A1 (en) Method and apparatus for controlling a variable valve system
US9002618B2 (en) Variable valve timing control apparatus for engine
JP2007255410A (en) Variable valve timing device
US20110178694A1 (en) Control device for variable valve actuation system
JP3721996B2 (en) Ignition timing control device for internal combustion engine
JPH08210158A (en) Valve timing control device of internal combustion engine
JP5281449B2 (en) Control device for variable valve mechanism
JP2001263140A (en) Output control device for engine
JPH06213021A (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777871

Country of ref document: EP

Kind code of ref document: A1