WO2019187596A1 - 電磁波吸収シート、およびその製造方法 - Google Patents

電磁波吸収シート、およびその製造方法 Download PDF

Info

Publication number
WO2019187596A1
WO2019187596A1 PCT/JP2019/002882 JP2019002882W WO2019187596A1 WO 2019187596 A1 WO2019187596 A1 WO 2019187596A1 JP 2019002882 W JP2019002882 W JP 2019002882W WO 2019187596 A1 WO2019187596 A1 WO 2019187596A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave absorbing
sheet
sheet according
ghz
Prior art date
Application number
PCT/JP2019/002882
Other languages
English (en)
French (fr)
Inventor
成瀬 新二
竜士 藤森
孝一 浮ヶ谷
田中 康紀
Original Assignee
デュポン帝人アドバンスドペーパー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018097641A external-priority patent/JP2019186507A/ja
Application filed by デュポン帝人アドバンスドペーパー株式会社 filed Critical デュポン帝人アドバンスドペーパー株式会社
Priority to US16/976,296 priority Critical patent/US20210045269A1/en
Priority to KR1020207030941A priority patent/KR20200136023A/ko
Priority to CN201980022446.5A priority patent/CN111869341B/zh
Publication of WO2019187596A1 publication Critical patent/WO2019187596A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres

Definitions

  • the present invention relates to an electromagnetic wave absorbing sheet.
  • electromagnetic interference that electromagnetic waves generated from electronic devices adversely affect other devices and the human body is becoming a major social problem.
  • a variety of electromagnetic wave absorbing sheets that absorb electromagnetic waves corresponding to the respective electromagnetic wave environments are provided as the electromagnetic wave environment is getting worse (see JP 2004-140335 A).
  • an electromagnetic wave absorber using ferrite or the like an electromagnetic wave absorber using carbon black or the like has been proposed.
  • these electromagnetic wave absorbers only absorb in a specific absorption wavelength range and cannot cope with a wide wavelength range.
  • an electromagnetic wave absorber using ferrite or the like absorbs a band of several GHz but cannot absorb a band of several tens of GHz.
  • an electromagnetic wave absorber using carbon black or the like can absorb at several tens of GHz, but is not suitable for absorption in a band of several GHz.
  • electromagnetic wave absorbers are appropriately selected from a plurality of types of electromagnetic wave absorbers, and can be put to practical use. Have difficulty.
  • high-frequency devices such as generators, motors, inverters, converters, printed circuit boards, and cables that require high efficiency and large capacity have become smaller and lighter, and can withstand the heat generation of conductors due to high-frequency, high-current flows.
  • an electromagnetic wave absorbing material having high heat resistance.
  • An object of the present invention is to provide a lighter weight electromagnetic wave absorbing sheet having high heat resistance and capable of absorbing a wide range of electromagnetic waves at a high frequency.
  • an electromagnetic wave absorbing sheet having a particularly large radio wave absorption in one direction including conductive short fibers and an insulating material
  • the electromagnetic wave absorbing sheet are asymmetric and different directions. It was found that the above-mentioned problems can be solved by the electromagnetic wave absorbing multilayer sheet characterized by being superimposed on each other, and the present invention has been completed.
  • One embodiment of the present invention is an electromagnetic wave absorbing sheet that includes conductive short fibers and an insulating material and exhibits particularly high radio wave absorptivity in one direction.
  • the electromagnetic wave absorbing sheet has an electromagnetic wave absorption rate of 99% or more in at least one direction of electromagnetic waves having a frequency range of 14 to 20 GHz.
  • the insulating material is polymetaphenylene isophthalamide.
  • the electromagnetic wave absorbing sheet has a rate of change in at least one direction of the electromagnetic wave absorption rate at a frequency of 5 GHz after heat treatment at 300 ° C. for 30 minutes before heat treatment is 10% or less, more preferably 1% or less.
  • the sheet including the conductive short fibers and the insulating material is oriented.
  • the sheet including the conductive short fibers and the insulating material is moved in one direction and at the same time the porosity is reduced. Furthermore, it is an electromagnetic wave absorbing multilayer sheet in which the electromagnetic wave absorbing sheets are superposed in different directions and asymmetrically. Preferably, it is an electromagnetic wave absorption multilayer sheet in which the electromagnetic wave absorption sheets are overlapped in an orthogonal direction and asymmetrically.
  • the electromagnetic wave absorbing multilayer sheet is formed by pressing the electromagnetic wave absorbing sheets and then pressing them.
  • the electromagnetic wave absorbing multilayer sheet is obtained by heat-pressing the electromagnetic wave absorbing sheets after being stacked.
  • the electromagnetic wave absorption multilayer sheet has an electromagnetic wave absorption rate of 99% or more in at least one direction of an electromagnetic wave having a frequency range of 14 to 20 GHz. More preferably, the electromagnetic wave absorptance in at least one direction of electromagnetic waves having a frequency range of 6 to 20 GHz is 99% or more. Also preferably, the electromagnetic wave absorbing multilayer sheet has a rate of change in at least one direction of the electromagnetic wave absorption rate at a frequency of 5 GHz after heat treatment at 300 ° C. for 30 minutes before heat treatment is 10% or less, more preferably 1% or less. is there. Furthermore, it is an electric / electronic circuit equipped with the electromagnetic wave absorbing sheet or the electromagnetic absorbing multilayer sheet. Furthermore, the cable is equipped with the electromagnetic wave absorbing sheet or the electromagnetic absorbing multilayer sheet.
  • the present invention will be described in detail.
  • the conductive short fiber used in the present invention has a wide range of conductivity from a conductor having a volume resistivity of about 10 ⁇ 1 ⁇ ⁇ cm or less to a semiconductor having a volume resistivity of about 10 ⁇ 1 to 10 8 ⁇ ⁇ cm.
  • Examples thereof include conductive short fibers in which the relationship between the fiber diameter and the fiber length is represented by the following formula. 100 ⁇ fiber length / fiber diameter ⁇ 20,000
  • Examples of such conductive short fibers include materials having uniform conductivity such as metal fibers and carbon fibers, or conductive materials and non-conductive materials such as metal plating fibers, metal powder mixed fibers, and carbon black mixed fibers.
  • the present invention is not limited to these materials.
  • carbon fibers are preferably used in the present invention.
  • the carbon fiber used in the present invention is preferably carbon fiber obtained by firing a fibrous organic material at a high temperature in an inert atmosphere.
  • carbon fibers are broadly divided into those obtained by firing polyacrylonitrile (PAN) fibers and those obtained by firing pitch after spinning. And these can also be used in the present invention.
  • PAN polyacrylonitrile
  • Prior to firing it is also possible to carry out an oxidative crosslinking treatment using oxygen or the like to prevent fusing during firing.
  • the fiber length of the conductive short fiber used in the present invention is selected from the range of 1 mm to 20 mm.
  • the conductive short fibers it is more preferable to use a material having high conductivity and exhibiting good dispersion in the wet papermaking method described later.
  • the conductive short fiber is deformed and cut, whereby an inductor is formed, and an electromagnetic wave absorbing sheet that absorbs a wide range of electromagnetic waves at a high frequency can be obtained. It becomes possible.
  • the content of the conductive short fibers in the electromagnetic wave absorbing sheet is preferably 1 wt% to 40 wt%, more preferably 3 wt% to 20 wt% of the total weight of the sheet.
  • the insulating material is a material having a volume resistivity of 1 ⁇ 10 7 ⁇ ⁇ cm or more.
  • a dielectric at 20 ° C. and a frequency of 60 Hz is used.
  • the tangent is preferably 0.01 or more and the relative dielectric constant at 20 ° C. and 60 Hz is preferably 4 or less, but is not limited thereto.
  • An insulating material having a dielectric loss tangent of 0.01 or more refers to a substance having a dielectric loss tangent of 0.01 or more under the condition that an electromagnetic wave of 60 Hz is irradiated at 20 ° C.
  • the dielectric material has a dielectric loss proportional to the contact area between the conductive material and the insulating material. Therefore, film-like microparticles that increase the contact area are preferred, but this is not the only case. Is not to be done. If the dielectric constant of the insulating material at 20 ° C. and 60 Hz is 4 or less, electromagnetic waves are difficult to be reflected, and it is considered suitable as the insulating material of the present invention. Examples of the insulating material include polymetaphenylene isophthalamide having a dielectric loss tangent of 0.01 or more at 60 ° C.
  • polyvinyl chloride polymethyl methacrylate, methyl methacrylate / styrene copolymer, polychloro
  • examples thereof include, but are not limited to, trifluoroethylene, polyvinylidene fluoride, polyvinylidene chloride, nylon 6, nylon 66, and the like.
  • polymetaphenylene isophthalamide and a copolymer thereof, polymethyl methacrylate, methyl methacrylate / styrene copolymer, polychlorotrifluoroethylene, and nylon 66 have a relative dielectric constant at 20 ° C. and a frequency of 60 Hz.
  • polymetaphenylene isophthalamide fibrid hereinafter referred to as aramid fibrid
  • aramid short fiber have good moldability, flame retardancy, heat resistance, etc. It is preferably used in that it has characteristics.
  • polymetaphenylene isophthalamide fibrids are preferably used because of their film-like fine particle form, increasing the contact area with the conductive material, increasing the above-described dielectric loss, and increasing the amount of electromagnetic waves absorbed. It is done.
  • the content of the insulating material in the electromagnetic wave absorbing sheet is preferably 60 wt% to 99 wt% of the total weight of the sheet, and more preferably 80 wt% to 97 wt%.
  • particularly large radio wave absorption in one direction means that an absolute value of a minimum value of a transmission attenuation factor Rtp described later in at least one direction of a sheet and an absolute value of a minimum value of Rtp in a direction orthogonal to the one direction. It means that the ratio is 1.2 or more. The ratio is preferably 1.5 or more.
  • the electromagnetic wave absorbing sheet having particularly large radio wave absorbability in one direction of the present invention is generally a method of mixing the above-described conductive short fibers and the insulating material, then forming a sheet, moving in one direction, and simultaneously reducing the porosity.
  • a sheet for example, a method of forming a sheet using an air flow after electrically conductive short fibers, the above-mentioned fibrids and short fibers are blended in a dry manner, the conductive short fibers, and the above-mentioned aramid It is possible to apply a method in which the fiber and aramid short fibers are dispersed and mixed in a liquid medium, and then discharged onto a liquid permeable support, for example, a net or a belt to form a sheet and dried by removing the liquid.
  • a liquid permeable support for example, a net or a belt
  • a so-called wet papermaking method using water as a medium is preferably selected.
  • the wet papermaking method at least a conductive short fiber, an aramid fibrid and an aramid short fiber aqueous slurry of the above or a mixture of aramid short fibers are fed to a paper machine and dispersed, followed by dehydration, squeezing and drying operations.
  • a method of winding as a sheet is common.
  • the paper machine for example, a long paper machine, a circular paper machine, an inclined paper machine, a combination paper machine combining these, and the like can be used.
  • an electromagnetic wave absorbing sheet having particularly large radio wave absorption in one direction of the present invention will be described later, in which conductive short fibers are oriented in one direction by a long net paper machine, a circular net paper machine, and an inclined paper machine. At the same time as moving in one direction, the porosity is lowered, and when the conductive short fiber is deformed and cut, an inductor is more easily formed.
  • Additives such as dispersibility improvers, antifoaming agents, and paper strength enhancers may be used as necessary during wet papermaking, but they are used so that the purpose of the present invention is not impaired. Need to pay attention.
  • the electromagnetic wave absorbing sheet of the present invention can be added to the electromagnetic wave absorbing sheet of the present invention as long as the object of the present invention is not impaired.
  • the conductive short fiber When the porosity is reduced along one direction, the conductive short fiber is deformed and cut to form an inductor, which exhibits a particularly high radio wave absorption in one direction at a high frequency (preferably
  • the electromagnetic wave absorbing sheet has an electromagnetic wave absorption rate of at least 99% in at least one direction of electromagnetic waves having a frequency range of 14 to 20 GHz.
  • the electromagnetic wave absorbing sheet preferably has a rate of change in at least one direction of the electromagnetic wave absorption rate at a frequency of 5 GHz after heat treatment at 300 ° C. for 30 minutes before heat treatment is 10% or less, more preferably 1% or less. .
  • the reduction in porosity means that the porosity is reduced to 3/4 or less of the porosity before the reduction in porosity by a method such as compression between the pair of rotating metal rolls. Specifically, if the porosity before the reduction in porosity is 80%, the porosity after the reduction in porosity is 60% or less, preferably 55% or less.
  • the compression processing conditions for reducing the porosity along one direction as long as the conductive short fibers are deformed and cut along one direction. For example, when compression is performed between a pair of rotating metal rolls, the surface temperature of the metal roll is 100 to 400 ° C., and the linear pressure between the metal rolls is 50 to 1000 kg / cm.
  • the roll temperature is preferably 270 ° C. or higher, more preferably 300 ° C. to 400 ° C.
  • the linear pressure is preferably 100 to 500 kg / cm.
  • the sheet moving speed is preferably 1 m / min or more, more preferably 2 m / min or more.
  • a plurality of sheets obtained by the above method may be overlapped to form an electromagnetic wave absorption multilayer sheet, and after overlapping, adhere by pressing or heat pressing, or bonded with an adhesive or the like to suppress electromagnetic wave transmission.
  • the thickness may be adjusted.
  • the direction of the electric field of the electromagnetic wave is perpendicular to the direction of the magnetic field, and when the sheets are stacked, the directions of both the electric field and the magnetic field of the absorbed electromagnetic wave are inductors by overlapping the sheets in different directions, preferably in the orthogonal direction. It is possible to arrange them in a parallel direction.
  • a sheet in which the direction of the electric field and the direction of the inductor are parallel is close to the source of the electromagnetic waves, and the direction of the magnetic field and the inductor Since asymmetrical stacking, in which sheets with parallel directions are arranged far from the electromagnetic wave generation source, is not weakened by the back electromotive force generated from the inductor in the sheet, it has high electromagnetic wave absorption.
  • the electromagnetic wave absorption rate in at least one direction of electromagnetic waves having a frequency range of 14 to 20 GHz is 99% or higher, more preferably, the electromagnetic wave absorption rate in at least one direction of electromagnetic waves having a frequency range of 6 to 20 GHz is 99% or higher).
  • the electromagnetic wave absorbing multilayer sheet preferably has a rate of change in at least one direction of the electromagnetic wave absorption rate at a frequency of 5 GHz after heat treatment at 300 ° C. for 30 minutes before the heat treatment is 10% or less, more preferably 1% or less. is there.
  • the electromagnetic wave absorbing sheet or electromagnetic wave absorbing multilayer sheet of the present invention has (1) electromagnetic wave absorptivity, and (2) a particularly large radio wave absorptivity in one direction. (3) The characteristics of (1) and (2) are manifested in a wide range of frequencies including high frequency, (4) Heat resistance and flame retardancy are provided, (5) Good It has excellent characteristics such as having excellent processability, and is suitably used as an electromagnetic wave absorbing sheet for electric and electronic devices, particularly hybrid cars that require weight reduction, electronic devices in electric vehicles, etc.
  • the electromagnetic wave absorbing sheet or electromagnetic wave absorbing multilayer sheet of the present invention when attached to, for example, an electric / electronic circuit such as a printed circuit board or a cable via an insulator such as an adhesive, the generation of electromagnetic waves is suppressed.
  • the electric / electronic circuit when covered with a housing such as metal or resin, the electromagnetic wave absorbing sheet or electromagnetic wave absorbing multilayer sheet of the present invention may be mounted by fixing it inside the housing with an adhesive or the like, for example. good. In this case, it is preferable that an insulator (air, resin, etc.) exists between the electric / electronic circuit and the electromagnetic wave absorbing sheet.
  • the electromagnetic wave absorbing sheet of the present invention When manufacturing the electromagnetic wave absorbing sheet of the present invention, it is also possible to insulate the surface by previously superposing and insulating the insulating sheets at the time of the above pressing.
  • the above-mentioned insulating sheet means a sheet made of the above-described insulating material.
  • Electromagnetic wave absorption performance Using a near-field electromagnetic wave evaluation system compliant with IEC 62333, a sample sheet is laminated on a microstrip line (MSL) with a polyethylene film (thickness 38 ⁇ m) interposed therebetween, and an insulating property is formed on the sheet.
  • MSL microstrip line
  • the power of the reflected wave S11 and the power of the transmitted wave S21 were measured with a network analyzer with respect to an incident wave of 50 MHz to 20 GHz while applying a load of 500 g with a weight.
  • the transmission attenuation rate Rtp was obtained from the following equation.
  • Rtp 10 ⁇ log [10 S21 / 10 / (1-10 S11 / 10 )] (dB) [10 S21 / 10 / (1-10 S11 / 10 )] represents the electromagnetic wave attenuation rate, 1- [10 S21 / 10 / (1-10 S11 / 10 )] represents the electromagnetic wave absorption rate.
  • Rtp ⁇ 20 (dB)
  • the electromagnetic wave absorption rate is 99%
  • Rtp ⁇ 20 (dB) the electromagnetic wave absorption rate exceeds 99%. It can be said that the smaller the Rtp, the greater the attenuation of the electromagnetic wave and the higher the electromagnetic wave absorption performance.
  • change rate Cr of the electromagnetic wave absorption factor of frequency 5GHz was calculated
  • Cr
  • a pulp particle production apparatus (wet precipitator) composed of a combination of a stator and a rotor described in JP-A-52-15621, a polymetaphenylene isophthalamide fibrid (hereinafter “meta-aramid fibrid”) is used. ”Was manufactured. This was treated with a beating machine, and the length weighted average fiber length was adjusted to 0.9 mm (freeness 200 cm 3 ).
  • a short fiber of polymetaphenylene isophthalamide a meta-aramid fiber manufactured by DuPont (Nomex (registered trademark), single yarn fineness 2.2 dtex) is cut into a length of 6 mm (hereinafter referred to as “meta-aramid short fiber”) for papermaking Used as raw material.
  • Table 1 shows the results of producing cast films of polymetaphenylene isophthalamide and measuring the dielectric constant and dielectric loss tangent at 20 ° C. by the bridge method.
  • Examples 1 to 5 Sheet preparation
  • meta aramid fibrid volume resistivity 1 ⁇ 10 16 ⁇ ⁇ cm
  • meta-aramid short fibers volume resistivity of 1 ⁇ 10 16 ⁇ ⁇ cm
  • carbon fiber Toho Tenax Co., Ltd., fiber length 3 mm, single fiber diameter 7 ⁇ m, fineness 0.67 dtex, volume resistivity 1.6 ⁇ 10 ⁇ 3 ⁇ ⁇ cm
  • the slurry was mixed so that the meta-aramid fibrids, the meta-aramid short fibers, and the carbon fibers had the blending ratio shown in Table 2, and a water flow was added with a tappy hand machine (cross-sectional area 325 cm 2 ).
  • the orientation ratio of tensile strength of freshly-made was adjusted and processed to prepare a sheet (porosity 79%).
  • the direction of water flow was defined as the vertical direction, and the plane direction perpendicular to the vertical direction was defined as the horizontal direction.
  • the obtained sheet was moved in a vertical direction between a pair of metal calender rolls and compressed under the conditions shown in Table 2 to obtain a sheet-like material. Further, the sheet-like material was superposed under the conditions shown in Table 2.
  • Table 2 shows the main characteristic values of the sheet thus obtained. (The specific gravity of the raw materials was 1.38 for meta-aramid fibrids, 1.38 for meta-aramid short fibers, and 1.8 for carbon fibers.)
  • the obtained sheet was compressed under the conditions shown in Table 3 with a pair of metal plates to obtain a sheet-like material.
  • a direction is defined as a vertical direction
  • a plane direction perpendicular to the vertical direction is defined as a horizontal direction.
  • the main characteristic values of the sheet thus obtained are shown in Table 3.
  • the electromagnetic wave absorbing sheets of Examples 1 to 5 exhibited excellent characteristics with respect to electromagnetic wave absorbability in at least one direction at a wide range of frequencies including high frequencies up to 20 GHz.
  • the sheets laminated in different directions and asymmetrically as shown in Examples 3 and 4 exhibited excellent characteristics.
  • the frequency range showing the electromagnetic wave absorptivity of the sheet of the comparative example was narrow, which was insufficient as a target electromagnetic wave absorbing sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本発明は、導電性短繊維と絶縁材料を含む、一方向に特に大きい電波吸収性を示す電磁波吸収シートを提供する。

Description

電磁波吸収シート、およびその製造方法
 本発明は、電磁波吸収シートに関する。
 高度情報化社会の発展、マルチメディア社会の到来により、電子機器から発生する電磁波が他の機器に対して、また人体に対して悪影響を及ぼす電磁波障害が、大きな社会問題となりつつある。電磁波環境がますます悪化していく中、それぞれに対応した電磁波を吸収するさまざまな電磁波吸収シートが提供されている(特開2004-140335号公報参照)。例えば、電磁波吸収は、フェライト等を用いた電磁波吸収体、カーボンブラック等を用いた電磁波吸収体などが提案されている。
  しかしながら、これら電磁波吸収体は特定の吸収波長域のみで吸収するに過ぎず、幅広い波長域に対応することができない。例えば、フェライト等を用いた電磁波吸収体は数GHzの帯域を吸収するが、数十GHzの帯域では吸収できない。一方、カーボンブラック等を用いた電磁波吸収体は、数十GHzでの吸収は可能であるが、数GHzの帯域における吸収には向いているとは言い難い。実際、電磁波吸収体は所望の吸収周波数やその周波数における最大吸収量等の条件を満たすために、複数の種類の電波吸収体から、適宜選定する方法などが用いられており、実用に供することは困難である。
 また、高効率及び大容量が要求される発電機、モータ、インバータ、コンバータ、プリント基板、ケーブルなどの高周波機器の小型化、軽量化が進み、高周波大電流が流れることによる導線の発熱に耐えうる耐熱性の高い電磁波吸収材料が求められている。特に高電圧が付加されるインバータ、モータなどの電気・電子機器においては、機器の温度上昇も大きくなるため、耐熱性の高い材料が求められる。
 また、高周波機器の小型化、軽量化が進み、特に電磁波発生源の近傍では特定の方向性を持って輻射する電磁波が多くなり、小型、軽量でも特定の方向には強い電磁波吸収性を示す電磁波吸収シートが求められている。
 本発明は、高周波数で広範囲の電磁波を吸収することのできる耐熱性が高い、より軽量の電磁波吸収シートを提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、導電性短繊維と絶縁材料を含む、一方向に特に大きい電波吸収性を示す電磁波吸収シートおよび前記電磁波吸収シートを非対称かつ異方向に重ね合わせたことを特徴とする電磁波吸収多層シートにより、上記の課題を解決できることを見出し、本発明を完成するに至った。
 本発明の一実施形態は、導電性短繊維と絶縁材料を含む、一方向に特に大きい電波吸収性を示す電磁波吸収シートである。好ましくは、電磁波吸収シートは、周波数範囲が14~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上である。また好ましくは、前記絶縁材料は、ポリメタフェニレンイソフタルアミドである。また好ましくは、電磁波吸収シートは、300℃で30分間熱処理した後の周波数5GHzでの電磁波吸収率の熱処理前に対する少なくとも一方向の変化率が10%以下であり、さらに好ましくは1%以下である。また好ましくは、前記導電性短繊維と絶縁材料を含むシートは配向している。
 さらには、導電性短繊維と絶縁材料を含むシートを一方向に移動させると同時に、低空隙率化する、前記電磁波吸収シートの製造方法である。
 さらには、前記電磁波吸収シートを異方向かつ非対称に重ね合わせた、電磁波吸収多層シートである。好ましくは、前記電磁波吸収シートを直交方向かつ非対称に重ね合わせた、電磁波吸収多層シートである。好ましくは、前記電磁波吸収シートを重ね合わせたのちにプレス加工した、電磁波吸収多層シートである。好ましくは、前記電磁波吸収シートを重ね合わせたのちに加熱プレス加工した、電磁波吸収多層シートである。また好ましくは、電磁波吸収多層シートは、周波数範囲が14~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上である。さらに好ましくは、周波数範囲が6~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上である。また好ましくは、電磁波吸収多層シートは、300℃で30分間熱処理した後の周波数5GHzでの電磁波吸収率の熱処理前に対する少なくとも一方向の変化率が10%以下であり、さらに好ましくは1%以下である。
 さらには、前記電磁波吸収シートまたは前記電磁吸収多層シートを装着した電気・電子回路である。
 さらには、前記電磁波吸収シートまたは前記電磁吸収多層シートを装着したケーブルである。
 以下、本発明について詳細に説明する。
(導電性短繊維)
 本発明で用いる導電性短繊維としては、約10-1Ω・cm以下の体積抵抗率を持つ導体から、約10-1~108Ω・cmの体積抵抗率を持つ半導体まで、広範囲にわたる導電性を有する繊維物で繊維径と繊維長の関係が下式で表される導電性短繊維が挙げられる。

    100 ≦  繊維長/繊維径 ≦ 20000

 このような導電性短繊維としては、例えば金属繊維、炭素繊維、などの均質な導電性を有する材料、あるいは金属めっき繊維、金属粉末混合繊維、カーボンブラック混合繊維など、導電材料と非導電材料とが混合されて全体として導電性を示す材料が挙げられるが、これらに限定されるものではない。この中で、本発明においては炭素繊維を使用することが好ましい。本発明で用いる炭素繊維は、繊維状有機物を不活性雰囲気にて高温焼成して炭化したものが好ましい。一般に炭素繊維は、ポリアクリロニトリル(PAN)繊維を焼成したものと、ピッチを紡糸した後に焼成したものに大別されるが、これ以外にもレーヨンやフェノールなどの樹脂を紡糸後、焼成して製造するものもあり、これらも本発明において使用することができる。焼成に先立ち酸素等を使用して酸化架橋処理を行い、焼成時の融断を防止することも可能である。
 本発明で用いる導電性短繊維の繊維長は1mm~20mmの範囲から選ばれる。
 導電性短繊維の選択においては、導電性が高く、かつ、後述の湿式抄造法において良好な分散を示す材料を使用することがより好ましい。また、一方向に沿って低空隙率化されるときに、導電性短繊維が変形、切断されることにより、インダクタが形成され、高周波数で広範囲の電磁波を吸収する電磁波吸収シートを得ることが可能となる。
 電磁波吸収シートにおける導電性短繊維の含有量は、好ましくはシート全重量の1wt%~40wt%であり、より好ましくは3wt%~20wt%である。
(絶縁材料)
 本発明において絶縁材料とは、体積抵抗率が1×107Ω・cm以上である材料であり、絶縁材料自身の誘電損失を活用して電磁波を吸収するために、20℃周波数60Hzでの誘電正接が0.01以上で20℃周波数60Hzでの比誘電率が4以下であることが好ましいが、これに限定されるものではない。
 誘電正接が0.01以上の絶縁材料とは、20℃で60Hzの電磁波が照射される条件で誘電正接が0.01以上である物質をいう。絶縁材料は、一般に、下式で表される誘電損失が大きいほど、電磁波の吸収量が多くなる。

 P=E2×tanδ×2πf×εr×ε0×S/d (W)

 式中、Pは誘電損失(W)、Eは電圧(V)、tanδは絶縁材料の誘電正接、fは周波数(Hz)、εrは絶縁材料の比誘電率、ε0は真空の誘電率(8.85418782 × 10-12(m-3kg-142))、Sは導電性物質と絶縁材料の接触面積(m2)、dは導電性物質間の距離(m)を意味する。
 絶縁材料の形状は、上式に表されるように、誘電損失は導電性物質と絶縁材料の接触面積に比例するため、接触面積が大きくなるようなフィルム状微小粒子が好ましいが、これに限定されるものではない。
 絶縁材料の20℃周波数60Hzでの比誘電率が4以下であると電磁波が反射し難くなり、本発明の絶縁材料として好適であると考えられる。
 絶縁材料としては、例えば、20℃、60Hzで誘電正接が0.01以上であるポリメタフェニレンイソフタルアミドおよびその共重合体、ポリ塩化ビニル、ポリメチルメタクリレート、メチルメタクリレート/スチレン共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ナイロン6、ナイロン66などが挙げられるが、これらに限定されるものではない。
 これらの絶縁材料のうちで、ポリメタフェニレンイソフタルアミドおよびその共重合体、ポリメチルメタクリレート、メチルメタクリレート/スチレン共重合体、ポリクロロトリフルオロエチレン、ナイロン66が、20℃周波数60Hzでの比誘電率が4以下と小さく、電磁波が反射し難くなり、本発明の絶縁材料として好適であると考えられる。
 これらの絶縁材料の中では、ポリメタフェニレンイソフタルアミドのファイブリッド(以下アラミドファイブリッド)、及び/または短繊維(以下アラミド短繊維)が、良好な成型加工性、難燃性、耐熱性などの特性を備えている点で好ましく用いられる。特にポリメタフェニレンイソフタルアミドのファイブリッドはそのフィルム状微小粒子の形態から、導電性物質との接触面積が増大され、上述の誘電損失が大きくなり、電磁波の吸収量が多くなるという点で好ましく用いられる。
 電磁波吸収シートにおける絶縁材料の含有量は、好ましくはシート全重量の60wt%~99wt%であり、より好ましくは80wt%~97wt%である。
(一方向に特に大きい電波吸収性を示す電磁波吸収シート)
 本発明において一方向に特に大きい電波吸収性とは、シートの少なくとも一方向の後述する伝送減衰率Rtpの最小値の絶対値とその一方向と直交する方向のRtpの最小値の絶対値との比が1.2以上であることを意味する。前記比は、好ましくは1.5以上である。
 本発明の一方向に特に大きい電波吸収性を示す電磁波吸収シートは、一般に、前述した導電性短繊維と絶縁材料を混合した後シート化し、一方向に移動させると同時に、低空隙率化する方法あるいは、長網抄紙機、円網抄紙機、傾斜型抄紙機などにより、導電性短繊維を一方向に配向させることにより製造することができる。具体的には、シート化には、例えば、導電性短繊維、上記のファイブリッド及び短繊維を乾式でブレンドした後に、気流を利用してシートを形成する方法、導電性短繊維、上記のアラミドファイブリッド及びアラミド短繊維を液体媒体中で分散混合した後、液体透過性の支持体、例えば網またはベルト上に吐出してシート化し、液体を除いて乾燥する方法などを適用することができるが、これらの中でも水を媒体として使用する、いわゆる湿式抄造法が好ましく選択される。
 湿式抄造法では、少なくとも導電性短繊維、上記のアラミドファイブリッド及びアラミド短繊維の単一または混合物の水性スラリーを抄紙機に送液し分散した後、脱水、搾水および乾燥操作を行うことによって、シートとして巻き取る方法が一般的である。抄紙機としては、例えば、長網抄紙機、円網抄紙機、傾斜型抄紙機及びこれらを組み合わせたコンビネーション抄紙機などを利用することができる。コンビネーション抄紙機での製造の場合、配合比率の異なる水性スラリーをシート成形し合一することにより、複数の紙層からなる複合シートを得ることも可能である。
 また、本発明の一方向に特に大きい電波吸収性を示す電磁波吸収シートは長網抄紙機、円網抄紙機、傾斜型抄紙機により、導電性短繊維を一方向に配向させる方が、後述する一方向に移動させると同時に、低空隙率化し、導電性短繊維を変形、切断させるときに、より、インダクタが形成されやすくなる。
 湿式抄造の際に必要に応じて分散性向上剤、消泡剤、紙力増強剤などの添加剤を使用することは差し支えないが、本発明の目的を阻害することがないよう、その使用には注意を払う必要がある。
 また、本発明の電磁波吸収シートには、本発明の目的を阻害しない範囲で、上記成分以外に、その他の繊維状成分を添加することもできる。尚、上記添加剤や他の繊維状成分を用いる場合には、シート全重量の20wt%以下とするのが好ましい。
 このようにして得られたシートを、例えば、一対の回転する金属製ロール間にて圧縮することにより、一方向に移動させると同時に、低空隙率化することができる。一方向に沿って、低空隙率化されるときに、導電性短繊維が変形、切断されることにより、インダクタが形成され、高周波数で広範囲の一方向に特に大きい電波吸収性を示す(好ましくは周波数範囲が14~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上)電磁波吸収シートを得ることが可能となる。また、電磁波吸収シートは、好ましくは300℃で30分間熱処理した後の周波数5GHzでの電磁波吸収率の熱処理前に対する少なくとも一方向の変化率が10%以下であり、より好ましくは1%以下である。
 本発明において低空隙率化とは、上記一対の回転する金属製ロール間にて圧縮するなどの方法により、低空隙率化前の空隙率の3/4以下の空隙率にすることを意味し、具体的には、低空隙率化前の空隙率が80%であれば、低空隙率化後の空隙率は60%以下、好ましくは55%以下にする。
 一方向に沿って、低空隙率化するための圧縮加工の条件は、一方向に沿って、導電性短繊維が変形、切断されれば、特に制限はない。例えば、一対の回転する金属製ロール間にて圧縮する場合、金属ロールの表面温度100~400℃、金属ロール間の線圧50~1000kg/cmの範囲内を例示することができる。高い引張強度と表面平滑性を得るために、ロール温度は270℃以上とすることが好ましく、より好ましくは300℃~400℃である。又、線圧は100~500kg/cmであるのが好ましい。又、一方向に配向したインダクタの形成のため、シートの移動速度は1m/分以上とすることが好ましく、より好ましくは2m/分以上である。
 上記の圧縮加工は複数回行ってもよく、また、上述の方法により得たシート状物を複数枚重ね合わせて圧縮加工を行ってもよい。
 さらに、上述の方法により得たシートを複数枚重ね合わせて電磁波吸収多層シートとしてもよく、重ね合わせたのちにプレス加工または加熱プレス加工により接着したり、接着剤などで貼り合わせて電磁波透過抑制性能、厚みを調整してもよい。通常電磁波の電界の方向と磁界の方向は直交しており、重ね合わせるときに上記シートを異方向、好ましくは直交方向に重ね合わせることで、吸収される電磁波の電界、磁界の両方の方向をインダクタと平行方向に、配置することが可能となる。また、本発明のように、導電性短繊維の誘電損失を活用して電磁波を吸収する場合、電界の方向とインダクタの方向が平行となるシートを電磁波の発生源に近く、磁界の方向とインダクタの方向が平行となるシートを電磁波の発生源から遠くに配置する非対称な重ね合わせのほうが、シート中のインダクタから発生する逆起電力により電磁波吸収性が弱められないために、高い電磁波吸収性を示す(好ましくは周波数範囲が14~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上、より好ましくは周波数範囲が6~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上)。また、電磁波吸収多層シートは、好ましくは300℃で30分間熱処理した後の周波数5GHzでの電磁波吸収率の熱処理前に対する少なくとも一方向の変化率が10%以下であり、より好ましくは1%以下である。
 本発明の電磁波吸収シートまたは電磁波吸収多層シートは、(1)電磁波吸収性を有していること、(2)特に一方向に特に大きい電波吸収性を示すため、特定方向の電磁波を選択的に吸収可能であること(3)高周波を含む広い範囲の周波数で、(1)、(2)の特性を発現すること、(4)耐熱性、難燃性を備えていること、(5)良好な加工性を有していることなどの優れた特性を有しており、電気電子機器、特に軽量化が必要とされるハイブリッドカー、電気自動車中の電子機器などの電磁波吸収シートとして好適に用いることができ、特に本発明の電磁波吸収シートまたは電磁波吸収多層シートを例えば粘着剤などの絶縁物を介して、例えばプリント基板などの電気・電子回路、ケーブルに装着すると電磁波の発生が抑制される。尚、電気・電子回路を例えば金属、樹脂などの筐体で覆う場合、本発明の電磁波吸収シートまたは電磁波吸収多層シートを筐体の内部に例えば粘着剤などで固定することにより、装着しても良い。この場合、電気・電子回路と電磁波吸収シートの間に絶縁物(空気、樹脂など)が存在することが好ましい。本発明の電磁波吸収シートを製造するとき、上述のプレス加工のときに予め絶縁性のシートを重ね合わせてプレス加工し、表面を絶縁とすることも可能である。尚、上述の絶縁性のシートとは、上述の絶縁材料からなるシートを意味する。
 以下、本発明を、実施例を挙げてさらに具体的に説明する。なお、これらの実施例は、単なる例示であり、本発明の内容を何ら限定するためのものではない。
(測定方法)
(1)シートの目付、厚み、密度、空隙率
 JIS C 2300-2に準じて実施し、密度は(目付/厚み)により算出した。空隙率は、密度、原料組成と原料の比重から算出した。
(2)引張強度
 幅15mm、チャック間隔50mm、引張速度50mm/minで実施した。
(3)誘電率、誘電正接
 JIS K6911に準じて実施した。
(4)電磁波吸収性能
 IEC 62333に準拠した近傍界用電磁波評価システムを用いて、マイクロストリップライン(MSL)にサンプルシートをポリエチレンフィルム(厚み38μm)を挟んで積層し、シートの上に絶縁性のおもりで500gの荷重をかけて50MHz~20GHzの入射波に対して、反射波S11の電力及び透過波S21の電力をネットワーク・アナライザーで測定した。
 下式により伝送減衰率Rtpを求めた。

  Rtp=10×log[10S21/10/(1-10S11/10)] (dB)

[10S21/10/(1-10S11/10)]は電磁波減衰率を表し、
1-[10S21/10/(1-10S11/10)]は電磁波吸収率を表す。
Rtp=-20(dB)のとき、電磁波吸収率は99%で、
Rtp<-20(dB)のとき、電磁波吸収率は99%超となる。
Rtpが小さいほど電磁波の減衰が大きく、電磁波吸収性能が高いと言える。

 また、サンプルシートを300℃で30分間熱処理した後、下式により、周波数5GHzの電磁波吸収率の変化率Crを求めた。

Cr=|(熱処理した後の電磁波吸収率―熱処理前の電磁波吸収率)/熱処理前の電磁波吸収率|

Crが小さいほど耐熱性が高いと言える。
(原料調製)
 特開昭52-15621号公報に記載の、ステーターとローターの組み合わせで構成されるパルプ粒子の製造装置(湿式沈殿機)を用いて、ポリメタフェニレンイソフタルアミドのファイブリッド(以下「メタアラミドファイブリッド」と記載)を製造した。これを叩解機で処理し長さ加重平均繊維長を0.9mmに調節した(濾水度200cm3)。一方、ポリメタフェニレンイソフタルアミドの短繊維として、デュポン社製メタアラミド繊維(ノーメックス(登録商標)、単糸繊度2.2dtex)を長さ6mmに切断(以下「メタアラミド短繊維」と記載)し抄紙用原料とした。
(誘電率、誘電正接測定)
 ポリメタフェニレンイソフタルアミドのキャストフィルムを作製し、ブリッジ法で誘電率、誘電正接を20℃で測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例1~5)
(シート作製)
 上記のとおり調製したメタアラミドファイブリッド(体積抵抗率1×1016Ω・cm)、メタアラミド短繊維(体積抵抗率1×1016Ω・cm)、及び炭素繊維(東邦テナックス株式会社製、繊維長3mm、単繊維径7μm、繊度0.67dtex、体積抵抗率1.6×10-3Ω・cm)をそれぞれ水中に分散してスラリーを作製した。このスラリーを、メタアラミドファイブリッド、メタアラミド短繊維、及び炭素繊維が、表2に示す配合比率となるように混合し、タッピー式手抄き機(断面積325cm2)で、水流を加えて、配向性(たてとよこの引張強度の比)を調整し、処理してシート状物(空隙率79%)を作製した。水流の方向をたて方向、たて方向と垂直な平面方向をよこ方向とした。次いで、得られたシートを1対の金属製カレンダーロール間を、たて方向に移動し、表2に示す条件で圧縮加工し、シート状物を得た。
また、上記シート状物を表2に示す条件で重ね合わせた。
 このようにして得られたシートの主要特性値を表2に示す。
(原料の比重については、メタアラミドファイブリッドの比重1.38、メタアラミド短繊維の比重1.38、炭素繊維の比重1.8とした。)
Figure JPOXMLDOC01-appb-T000002
(比較例)
(シート作製)
 上記のとおり調製したメタアラミドファイブリッド、メタアラミド短繊維、及び炭素繊維(東邦テナックス株式会社製、繊維長3mm、単繊維径7μm、繊度0.67dtex、体積抵抗率1.6×10-3Ω・cm)をそれぞれ水中に分散してスラリーを作製した。
このスラリーを、メタアラミドファイブリッド、メタアラミド短繊維、及び炭素繊維が、表3に示す配合比率となるように混合し、タッピー式手抄き機(断面積325cm2)で処理して表3に示すシート状物を作製した。
次いで、得られたシートを1対の金属板により表3に示す条件で圧縮加工し、シート状物を得た。特に方向性はないが、一方向をたて方向、たて方向と垂直な平面方向をよこ方向とした。
 このようにして得られたシートの主要特性値を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示されるように、実施例1~5の電磁波吸収シートは、20GHzまでの高周波を含む広い範囲の周波数で、少なくとも一方向の電磁波吸収性について優れた特性を示した。特に実施例3、4に示される異方向かつ非対称に重ね合わせたシートは、優れた特性を示した。
 これに対して、表3に示されるように、比較例のシートの電磁波吸収性を示す周波数範囲は狭く、目的とする電磁波吸収シートとしては不十分であった。

Claims (17)

  1.  導電性短繊維と絶縁材料を含む、一方向に特に大きい電波吸収性を示す電磁波吸収シート。
  2.  周波数範囲が14~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上である、請求項1に記載の電磁波吸収シート。
  3.  前記絶縁材料がポリメタフェニレンイソフタルアミドである、請求項1または2に記載の電磁波吸収シート。
  4.  300℃で30分間熱処理した後の周波数5GHzでの電磁波吸収率の熱処理前に対する少なくとも一方向の変化率が10%以下であることを特徴とする、請求項1~3のいずれかに記載の電磁波吸収シート。
  5.  300℃で30分間熱処理した後の周波数5GHzでの電磁波吸収率の熱処理前に対する少なくとも一方向の変化率が1%以下であることを特徴とする、請求項1~3のいずれかに記載の電磁波吸収シート。
  6.  前記導電性短繊維と絶縁材料を含むシートが配向している、請求項1~5のいずれかに記載の電磁波吸収シート。
  7.  導電性短繊維と絶縁材料を含むシートを一方向に移動させると同時に、低空隙率化することを含む、請求項1~6のいずれかに記載の電磁波吸収シートの製造方法。
  8.  請求項1~6のいずれかに記載の電磁波吸収シートを異方向かつ非対称に重ね合わせた、電磁波吸収多層シート。
  9.  請求項1~6のいずれかに記載の電磁波吸収シートを直交方向かつ非対称に重ね合わせた、電磁波吸収多層シート。
  10.  請求項1~6のいずれかに記載の電磁波吸収シートを重ね合わせたのちにプレス加工した請求項8又は9に記載の電磁波吸収多層シート。
  11.  請求項1~6のいずれかに記載の電磁波吸収シートを重ね合わせたのちに加熱プレス加工した請求項8又は9に記載の電磁波吸収多層シート。
  12.  周波数範囲が14~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上である、請求項8~11のいずれかに記載の電磁波吸収多層シート。
  13.  周波数範囲が6~20GHzの電磁波の少なくとも一方向の電磁波吸収率が99%以上である、請求項8~11のいずれかに記載の電磁波吸収多層シート。
  14.  300℃で30分間熱処理した後の周波数5GHzでの電磁波吸収率の熱処理前に対する少なくとも一方向の変化率が10%以下であることを特徴とする、請求項8~13のいずれかに記載の電磁波吸収多層シート。
  15.  300℃で30分間熱処理した後の周波数5GHzでの電磁波吸収率の熱処理前に対する少なくとも一方向の変化率が1%以下であることを特徴とする、請求項8~13のいずれかに記載の電磁波吸収多層シート。
  16.  請求項1~6のいずれかに記載の電磁波吸収シート、または8~15のいずれかに記載の電磁波吸収多層シートを装着した電気・電子回路。
  17.  請求項1~6のいずれかに記載の電磁波吸収シート、または8~15のいずれかに記載の電磁波吸収多層シートを装着したケーブル。
PCT/JP2019/002882 2018-03-30 2019-01-29 電磁波吸収シート、およびその製造方法 WO2019187596A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/976,296 US20210045269A1 (en) 2018-03-30 2019-01-29 Electromagnetic wave absorbing sheet and method for producing same
KR1020207030941A KR20200136023A (ko) 2018-03-30 2019-01-29 전자파 흡수 시트 및 그의 제조 방법
CN201980022446.5A CN111869341B (zh) 2018-03-30 2019-01-29 电磁波吸收片材及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018067119 2018-03-30
JP2018-067119 2018-03-30
JP2018-097641 2018-05-22
JP2018097641A JP2019186507A (ja) 2018-03-30 2018-05-22 電磁波吸収シート、およびその製造方法

Publications (1)

Publication Number Publication Date
WO2019187596A1 true WO2019187596A1 (ja) 2019-10-03

Family

ID=68058743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002882 WO2019187596A1 (ja) 2018-03-30 2019-01-29 電磁波吸収シート、およびその製造方法

Country Status (1)

Country Link
WO (1) WO2019187596A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111500A (ja) * 1985-11-08 1987-05-22 株式会社デンソー 電磁波反射体
JP2003309395A (ja) * 2002-02-13 2003-10-31 Toray Ind Inc 電波吸収材
JP2006205524A (ja) * 2005-01-27 2006-08-10 Oishi Corporation:Kk 電波吸収体
WO2012137631A1 (ja) * 2011-04-07 2012-10-11 デュポン帝人アドバンスドペーパー株式会社 導電性アラミド紙及びその製造方法
CN104404814A (zh) * 2014-09-10 2015-03-11 华南理工大学 吸波纸及其制备方法和应用
WO2015033697A1 (ja) * 2013-09-04 2015-03-12 デュポン帝人アドバンスドペーパー株式会社 導電性アラミド紙及びその製造方法
JP2016111257A (ja) * 2014-12-09 2016-06-20 日立化成株式会社 薄型電磁波ノイズ抑制シート

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111500A (ja) * 1985-11-08 1987-05-22 株式会社デンソー 電磁波反射体
JP2003309395A (ja) * 2002-02-13 2003-10-31 Toray Ind Inc 電波吸収材
JP2006205524A (ja) * 2005-01-27 2006-08-10 Oishi Corporation:Kk 電波吸収体
WO2012137631A1 (ja) * 2011-04-07 2012-10-11 デュポン帝人アドバンスドペーパー株式会社 導電性アラミド紙及びその製造方法
WO2015033697A1 (ja) * 2013-09-04 2015-03-12 デュポン帝人アドバンスドペーパー株式会社 導電性アラミド紙及びその製造方法
CN104404814A (zh) * 2014-09-10 2015-03-11 华南理工大学 吸波纸及其制备方法和应用
JP2016111257A (ja) * 2014-12-09 2016-06-20 日立化成株式会社 薄型電磁波ノイズ抑制シート

Similar Documents

Publication Publication Date Title
CN110024503B (zh) 电磁波抑制片材
JP6437439B2 (ja) 導電性アラミド紙及びその製造方法
TWI786278B (zh) 電磁波吸收片及其製造方法
JP5723199B2 (ja) 導電性アラミド紙及びその製造方法
EP2661457B1 (en) Electrical insulating paper
CN101568976A (zh) 具有对电场进行构型的屏板的绝缘结构
JP3660765B2 (ja) アラミド複合体シートの製造方法
JP2019186507A (ja) 電磁波吸収シート、およびその製造方法
WO2019187596A1 (ja) 電磁波吸収シート、およびその製造方法
JP2000034693A (ja) 複合体シートおよびその製造方法
WO2021065167A1 (ja) 高周波用同軸ケーブル
WO2013065467A1 (ja) アラミド-ポリオレフィン積層体
JPH1120083A (ja) 複合体シートおよびその製造方法
WO2014030408A1 (ja) アラミド-ポリテトラフルオロエチレン複合シート、その製造方法、及びそれを使用した高周波機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207030941

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774823

Country of ref document: EP

Kind code of ref document: A1