WO2019187508A1 - Rolling mill and method for controlling rolling mill - Google Patents

Rolling mill and method for controlling rolling mill Download PDF

Info

Publication number
WO2019187508A1
WO2019187508A1 PCT/JP2019/001024 JP2019001024W WO2019187508A1 WO 2019187508 A1 WO2019187508 A1 WO 2019187508A1 JP 2019001024 W JP2019001024 W JP 2019001024W WO 2019187508 A1 WO2019187508 A1 WO 2019187508A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
rolling
rolling mill
support
amount
Prior art date
Application number
PCT/JP2019/001024
Other languages
French (fr)
Japanese (ja)
Inventor
力造 中谷
恭彦 丸山
友弘 工藤
Original Assignee
スチールプランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スチールプランテック株式会社 filed Critical スチールプランテック株式会社
Priority to US16/979,438 priority Critical patent/US20210001388A1/en
Priority to CN201980021478.3A priority patent/CN111902223B/en
Priority to KR1020207027435A priority patent/KR102364870B1/en
Publication of WO2019187508A1 publication Critical patent/WO2019187508A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/62Roll-force control; Roll-gap control by control of a hydraulic adjusting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/12Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll camber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2269/00Roll bending or shifting
    • B21B2269/02Roll bending; vertical bending of rolls

Definitions

  • the present invention relates to a rolling mill and a control method for the rolling mill.
  • a roll pair including a first roll and a second roll for rolling the strip to be rolled, and a first support part and a second support part that rotatably support the first roll at both ends of the first roll, respectively.
  • a rolling mill comprising a first hydraulic reduction device and a second hydraulic reduction device that moves the first roll relative to the second roll is already well known.
  • region in the longitudinal direction of the roll pair of the said rolling mill is rolled from the distance from a 1st support part to a rolling part, and a 2nd support part.
  • a rolling mill set at a position where the distance to the portion is different from each other is referred to as a “non-central rolling mill” for convenience.
  • the position of the rolling part is detected before rolling, and the vertical position of both ends of the roll is individually set based on the position information, thereby improving the cross-sectional shape accuracy of the bar steel.
  • the control for making it performed was performed (for example, refer patent document 1).
  • the shape control method used in the conventional non-center rolling mill has a problem that the cross-sectional shape accuracy of the rolled strip is low.
  • the present invention has been made in view of such a problem, and an object of the present invention is to realize highly accurate shape control in rolling of bar steel using a non-center rolling mill.
  • the main invention for achieving the above object is: A roll pair including a first roll and a second roll for rolling the strip to be rolled, and a first support part and a second support part that rotatably support the first roll at both ends of the first roll, respectively.
  • a rolling mill comprising a first hydraulic reduction device and a second hydraulic reduction device that are connected and move the first roll relative to the second roll, and a part of the roll pair in the longitudinal direction
  • the rolling part which is a part for rolling the bar steel, set in a continuous region of, the distance from the first support part to the rolling part and the distance from the second support part to the rolling part are different from each other
  • a distance sensor configured to measure a roll deflection amount in the rolled portion of at least one of the first roll and the second roll, and the distance sensor
  • a rolling mill characterized in that it comprises a control unit configured to control the amount of reduction reduction amount and the second hydraulic pressure system of the first hydraulic pressure device based on the detected value of the service.
  • FIG. 1 is a schematic front view of a rolling mill 10 according to the present embodiment. It is the figure which showed the relationship between the control part 40 of the rolling mill 10, and another apparatus.
  • the upper diagram of FIG. 3 is a diagram showing a state where rolling is performed with the strip 1 sandwiched in a state where the roll pair is deflected, and the lower diagram of FIG. 3 explains the roll deflection amount of the first roll 14a. It is explanatory drawing for.
  • It is the front schematic of the rolling mill 10 which concerns on 2nd Embodiment.
  • It is the front schematic of the rolling mill 10 which concerns on 3rd Embodiment.
  • a roll pair including a first roll and a second roll for rolling the strip to be rolled, and a first support part and a second support part that rotatably support the first roll at both ends of the first roll, respectively.
  • a rolling mill comprising a first hydraulic reduction device and a second hydraulic reduction device that are connected and move the first roll relative to the second roll, and a part of the roll pair in the longitudinal direction
  • the rolling part which is a part for rolling the bar steel, set in a continuous region of, the distance from the first support part to the rolling part and the distance from the second support part to the rolling part are different from each other
  • a distance sensor configured to measure a roll deflection amount in the rolled portion of at least one of the first roll and the second roll, and the distance Rolling mill, characterized in that on the basis of the detected value of the Nsa and a control unit configured to control the amount of reduction reduction amount and the second hydraulic pressure system of the first hydraulic pressure device.
  • a plurality of the rolling portions may be set at different positions in the longitudinal direction of the roll pair.
  • At least one of the distance sensors may be provided for each of the plurality of rolling portions set at different positions.
  • a mechanism for moving the distance sensor can be omitted, and thus the configuration related to the distance sensor can be simplified.
  • Such a rolling mill may include a movable support device that supports the distance sensor so as to be movable along the longitudinal direction.
  • the movable support device includes an attachment portion to which the distance sensor is attached, a rail portion with which the attachment portion is slidably engaged, and the attachment portion is moved along the rail portion. And a driving device to be operated.
  • Such a rolling mill may be configured to measure the amount of roll deflection at both end portions in the longitudinal direction of the rolled portion.
  • the thickness of both ends in the longitudinal direction of the bar can be grasped from the amount of roll deflection at both ends in the longitudinal direction of the rolled portion, and the thickness of both ends in the longitudinal direction of the bar is made closer to equal. It becomes possible.
  • control unit is configured to control a reduction amount of the first hydraulic reduction device and a reduction amount of the second hydraulic reduction device in real time during the rolling of the strip. Also good.
  • a caliber may be provided in each of the first roll and the second roll in the rolling portion.
  • the present invention in rolling using a roll pair provided with a caliber, since rolling is generally performed as a non-center rolling mill (because it is frequently performed), the present invention is It works more effectively.
  • a roll pair including a first roll and a second roll for rolling the strip to be rolled, and a first support part and a second support part that rotatably support the first roll at both ends of the first roll, respectively.
  • a rolling mill control method comprising: a first hydraulic reduction device and a second hydraulic reduction device that are connected and move the first roll relative to the second roll, the longitudinal direction of the roll pair
  • a rolling part which is a part for rolling the bar steel, which is set in a part of the continuous region, a distance from the first support part to the rolling part and a distance from the second support part to the rolling part Are set at different positions, measuring a roll deflection amount in the rolling portion of at least one of the first roll and the second roll, and based on the roll deflection amount.
  • Control method of a rolling mill characterized in that it comprises a controlling and reduction ratio of reduction rate between the second hydraulic pressure system of the first hydraulic pressure device have, a.
  • the rolling mill 10 according to the present embodiment is an apparatus that rolls the strip 1 to be rolled, and is used as a non-center rolling mill.
  • the non-center rolling mill is a rolling mill 10 that is characterized by the position of the strip 1 when rolling, and details thereof will be described later.
  • Examples of the strip 1 include a flat steel, a shaped steel, a bar, a wire, a rail, and the like, and refers to a steel having a shape that is significantly longer than the cross-sectional area.
  • the steel bar 1 is rolled using a flat bar.
  • FIG. 1 shows a housing 11 of a rolling mill 10. Inside the housing 11 (inside the housing 11), a roll pair (first roll 14 a and second roll 14 b) provided in the rolling mill 10 and a support unit are provided. (Support portions for the first support portion 13a, the second support portion 13b, and the second roll 14b), a hydraulic pressure reduction device (the first hydraulic pressure reduction device 12a and the second hydraulic pressure reduction device 12b), and a load cell (the first load cell 15a and the first pressure reduction device 12b). 2 load cell 15b), distance sensor 20, movable support device 30, and balance cylinder mechanism 50 are arranged.
  • the roll pair is a pair of upper and lower flat rolls composed of a first roll 14a and a second roll 14b. And the 1st roll 14a and the 2nd roll 14b have the same shape, and have a rolling part with a large shaft diameter, and a shaft part with a small shaft diameter provided at both ends in the longitudinal direction of the rolling part. is doing.
  • the roll pair includes the drive unit 32 shown in FIG. 2 while sandwiching the steel bar 1 with a gap between the first roll 14 a provided on the upper side and the second roll 14 b provided on the lower side. Rotation is performed by driving rotation. That is, the rolling mill 10 includes a roll pair including a first roll 14a and a second roll 14b for rolling the strip 1 to be rolled.
  • regions are set in the longitudinal direction of the rolling part of a roll pair as the position of the longitudinal direction of the roll pair which the strip 1 passes. And is stored in the storage unit 41 to be described later. That is, in the rolling mill 10, a plurality of rolling portions AP are set at different positions in the longitudinal direction of the roll pair.
  • the support part supports both ends of each roll of the roll pair so that the roll pair can rotate. Therefore, the roll pair can be rotated by the drive rotation of the drive unit 32.
  • the “both ends of the roll” supported by the support portion is a position that is symmetrical with respect to the roll center line RC (center line in the longitudinal direction of the roll pair) and is a shaft portion (that is, , Not the rolling part).
  • the shaft part by the side of WS is supported by the 1st support part 13a
  • the shaft part by the side of DS is supported by the 2nd support part 13b.
  • These support parts are connected to the hydraulic pressure reduction apparatus via the balance beam 51 mentioned later.
  • the second roll 14b is supported by a support portion of the second roll 14b in which both ends of the roll are fixed to the lower surface of the housing 11 (the lower surface inside the housing 11).
  • the hydraulic pressure reduction devices (the first hydraulic pressure reduction device 12a and the second hydraulic pressure reduction device 12b) are fixed to the upper side surface of the housing 11 (the upper side surface inside the housing 11) via a load cell, which will be described later, and the first roll 14a is fixed.
  • This is a device that moves relative to the second roll 14b. That is, the first hydraulic pressure reducing device 12a is connected to the first support portion 13a, the second hydraulic pressure reducing device 12b is connected to the second support portion 13b, and by moving the support portion to which each is connected, The first roll 14a is moved relative to the second roll 14b.
  • the rolling mill 10 is connected to the first support portion 13a and the second support portion 13b that rotatably support the first roll 14a at both ends of the first roll 14a, and the first roll 14a is connected to the second roll 14b.
  • a first hydraulic pressure reducing device 12a and a second hydraulic pressure reducing device 12b that are relatively moved are provided.
  • the control unit 40 that has received the pressure value detected by the load cell is the amount of bending of the housing 11 in the vertical direction and the vertical direction of a bearing (not shown) of the support (a member for rotatably supporting the first roll 14a). Is calculated using the detected pressure value, and the reduction amounts of the first hydraulic reduction device 12a and the second hydraulic reduction device 12b are sequentially corrected using these calculated deflection amounts. The amount of bending of the bearing is calculated based on the load-radial displacement graph of the bearing and the detected pressure value.
  • the distance sensor 20 is a sensor for measuring the amount of roll deflection, and is a sensor that detects the distance from the distance sensor 20 to the roll.
  • the “roll deflection amount” means the position in the vertical direction of the roll measured by the detection value of the distance sensor 20 in a state where the roll pair is not bent (hereinafter also referred to as a zero deflection state), and the roll pair is bent. It is a difference with the position in the up-down direction of the roll measured by the detection value of the distance sensor 20 in the state where
  • the distance sensor 20 is fixed to a mounting portion 30a of the movable support device 30 described later provided on the upper side of the first roll 14a.
  • a total of two distance sensors 20 are provided, one above each of one end and the other end (both ends of the rolled portion AP) in the longitudinal direction of the rolled portion AP of the strip 1 to be rolled. Therefore, the distance sensor 20 detects the distance to the first roll 14a at both ends of the rolled portion AP and transmits it to the control unit 40.
  • the distance sensor 20 for example, an eddy current displacement sensor or a laser distance meter can be used.
  • the movable support device 30 is provided from one end of the both ends of the first roll 14a to the other end on the lower surface of a later-described balance beam 51 on the upper side of the first roll 14a, and the distance sensor 20 is attached to the movable support device 30.
  • both end portions of the roll are both end portions of the rolled portion of the roll (that is, not the shaft portion).
  • One attachment portion 30a and a driving device are arranged for one distance sensor 20, and a plurality of attachment portions 30a can be slidably engaged with one rail portion 30b. That is, a plurality of attachment portions 30a (distance sensor 20) engaged with the rail portion 30b are moved by the driving device along the rail portion 30b from one end portion to the other end portion of the rolling portion of the first roll 14a. . That is, the rolling mill 10 includes a movable support device 30 that supports the distance sensor 20 so as to be movable along the longitudinal direction.
  • the movable support device 30 is provided with a position detection function for detecting the position of the attachment portion 30 a in the longitudinal direction, and the detected position information is transmitted to the control unit 40. Therefore, the attachment part 30a holding the distance sensor 20 is moved to the rail part 30b by a command from the control part 40 to a commanded longitudinal position from one end part to the other end part of the rolling part using the drive device as a power source. It is possible to move along.
  • the control unit 40 shown in FIG. 2 is provided in the rolling mill 10 and receives information transmitted from various apparatuses as described above. And the control part 40 has the memory
  • the balance cylinder mechanism 50 includes a first balance cylinder 50a, a second balance cylinder 50b, and a balance beam 51.
  • the first balance cylinder 50a and the second balance cylinder 50b are fixed to the upper side surface of the housing 11 so as to be symmetric with respect to the roll center line RC. 51 is connected.
  • the balance beam 51 is provided from the first support portion 13a to the second support portion 13b in the longitudinal direction, and the first roll is formed by pulling the first support portion 13a and the second support portion 13b upward during non-rolling.
  • interval between 14a and the 2nd roll 14b is maintained.
  • the balance beam 51 is also moved along with the movement. Moreover, it connects to the 1st balance cylinder 50a and the 2nd balance cylinder 50b, and this connection can rotate by making the direction along the direction which penetrates the paper surface of FIG. 1 into a rotating shaft.
  • a plurality of rolling portions AP are set at different positions in the longitudinal direction of the roll pair, and the setting of the rolling portion AP according to the present embodiment is illustrated in FIG. 1 as an example.
  • the center in the longitudinal direction of the rolled portion AP is set so as not to coincide with the roll center line RC. That is, the rolling portion AP is set so that the positions of both end portions of the rolling portion AP are asymmetrical with respect to the roll center line RC.
  • region in the longitudinal direction of a roll pair is used.
  • the distance from the first support part 13a to the rolled part AP and the distance from the second support part 13b to the rolled part AP are set at different positions.
  • the upper diagram of FIG. 3 is a diagram showing a state where rolling is performed with the strip 1 sandwiched in a state where the roll pair is deflected, and the lower diagram of FIG. 3 explains the roll deflection amount of the first roll 14a. It is explanatory drawing for. Here, the roll pair during rolling is not greatly bent as shown in the upper and lower diagrams of FIG. 3, but is exaggerated and greatly bent for the sake of convenience in order to make the explanation easy to understand. .
  • the roll pair during rolling according to the present embodiment is such that the first roll 14 a has the center (position of the roll center line RC) on the upper side and both ends on the lower side.
  • the second roll 14b is bent at the center and the both ends are bent upward. Therefore, when the bar 1 is rolled using the rolling mill 10 as a non-center rolling mill as shown in FIG. 1, the bar 1 having a cross-sectional shape along the bent shape of the roll pair is generated. A difference occurs in the thickness at both ends in the direction.
  • both end portions in the longitudinal direction are set so that the thickness of the bar 1 rolled by the non-center rolling mill shown in FIG. Control is performed so that the thicknesses of the two are uniform. Below, the procedure of this control is demonstrated in order.
  • the control unit 40 of the rolling mill 10 places (moves) one distance sensor 20 at a position corresponding to the position of one end and the other end of both ends in the longitudinal direction of the selected rolling portion AP. . That is, the rolling mill 10 is configured to measure the amount of roll deflection at both ends in the longitudinal direction of the rolled portion AP.
  • the selection of the rolled portion AP to be used may be performed manually, for example, the rolled portion of the strip 1 upstream of the roll pair in the conveying direction of the strip 1 (direction passing through the paper surface in FIG. 1).
  • a sensor for detecting the AP may be provided, and the detection may be performed based on the detection result of the sensor.
  • the control part 40 will be in the "state where the roll pair is not bent (deflection zero state)".
  • the value of the distance sensor 20 is detected and stored in the storage unit 41.
  • the control unit 40 starts rolling the strip 1 in the rolling mill 10.
  • the two distance sensors 20 located above the first detection part P1 and the second detection part P2 shown in the upper and lower views of FIG. 3 (located above the both ends of the rolling part AP). Detects the distance to the first roll 14 a and transmits the detected value to the control unit 40.
  • the control unit 40 that has received the detection values of the first detection unit P1 and the second detection unit P2 detects the first roll deflection amount X1, the second detection from the detection value of the first detection unit P1, as shown in the lower diagram of FIG.
  • the second roll deflection amount X2 is measured (calculated) from the detected value of the part P2.
  • the broken straight line extending in the longitudinal direction shown in the lower diagram of FIG. 3 is a straight line representing the position of the first roll 14a in the zero deflection state (hereinafter also referred to as a reference line BL). That is, the first roll deflection amount X1 and the second roll deflection amount X2 are the difference between the detection value of the distance sensor 20 received by the control unit 40 during rolling and the detection value of the distance sensor 20 in the zero deflection state. .
  • control part 40 which measured the 1st roll deflection amount X1 and the 2nd roll deflection amount X2 is the 1st hydraulic reduction device 12a and 2nd so that the thickness of the both ends of the longitudinal direction of the strip 1 may become equal.
  • the reduction amount (correction amount) of the hydraulic reduction device 12b is calculated.
  • the longitudinal inclination (the inclination between both ends) with respect to the reference line BL of the first detection unit P1 and the second detection unit P2 from the first roll deflection amount X1 and the second roll deflection amount X2. (Corresponding to S1) is calculated using the following equation.
  • Inclination S1 between both ends (first roll deflection amount X1 ⁇ second roll deflection amount X2) / (second distance L2 ⁇ first distance L1)
  • first distance L1 is a distance in the longitudinal direction from the roll center line RC to the first detection unit P1
  • second distance L2 is the first distance from the roll center line RC.
  • 2 is the distance in the longitudinal direction to the detection unit P2.
  • support portion distance L (used in an arithmetic expression described later) is a distance in the longitudinal direction from the roll center line RC to the first support portion 13a.
  • the calculation unit 42 that has calculated the slope S1 between both ends calculates the vertical correction amounts of the first support unit 13a and the second support unit 13b using the following calculation formula.
  • correction amount of the first hydraulic pressure reducing device 12a (first roll deflection amount X1 + second roll deflection amount X2) / 2) ⁇ (inclination S1 between both ends ⁇ support portion distance L)
  • Correction amount of the second hydraulic pressure reducing device 12b (second support portion 13b) ((first roll deflection amount X1 + second roll deflection amount X2) / 2) + (inclination S1 between both ends ⁇ support portion distance L)
  • the portion of “(first roll deflection amount X1 + second roll deflection amount X2) / 2” in these arithmetic expressions is an average value of the first roll deflection amount X1 and the second roll deflection amount X2 (hereinafter, both the average roll deflection amount and the average roll deflection amount).
  • the portion “(inclination S1 between both ends ⁇ support portion distance L)” is a correction amount of the support portion for making the inclination of the inclination S1 between both ends along the reference line
  • control part 40 will move the support part connected to each hydraulic pressure reduction apparatus to an up-down direction based on the calculated correction amount. That is, the first support portion 13a and the second support portion 13b are moved in the vertical direction so that the amount of reduction of the average roll deflection amount is increased and the inclination S1 between both ends is along the reference line BL.
  • the correction amount of the first hydraulic pressure reducing device 12a includes an increment (positive value) of a reduction amount corresponding to an average roll deflection amount to compensate for a shortage of the reduction amount due to the deflection of the roll, and a slope S1 between both ends. This is the sum of the increment (negative value) of the amount of reduction for causing the inclination to follow the reference line BL.
  • the amount of reduction of the first hydraulic reduction device 12a is increased. Therefore, the first support portion 13a is moved downward by an amount corresponding to the correction amount. Conversely, when taking a negative value, the reduction amount of the first hydraulic reduction device 12a is decreased. The one support portion 13a is moved upward by the correction amount.
  • the second roll 14b since the second roll 14b is not provided with a device for moving in the vertical direction, the second roll 14b cannot move. Therefore, in the present embodiment, the amount of bending of the first roll 14a by the first roll 14a and the amount of bending of the second roll 14b (that is, twice the amount of bending of the first roll 14a). It will move in the vertical direction. If it does in this way, control of the amount of reduction of the 1st hydraulic reduction device 12a and the 2nd hydraulic reduction device 12b can be performed to the 1st roll 14a and the 2nd roll 14b.
  • the first roll 14a moves in the vertical direction, thereby moving the average roll deflection amount of the first roll 14a and the second roll 14b, and reducing the inclination of the rolled portion (both of each other
  • the inclination of the inclination between both ends can be along the reference line BL). That is, based on the detection value of the distance sensor 20, the control unit 40 compensates for the shortage of the reduction amount caused by the bending of the roll to reduce the dimensional error of the bar 1 and the rolling portion set in the first roll 14a.
  • the first hydraulic pressure reducing device 12a improves the cross-sectional shape accuracy by reducing the inclination between both ends in the longitudinal direction of the AP and the inclination between both ends in the longitudinal direction of the rolled portion AP set in the second roll 14b. And a reduction amount of the second hydraulic reduction device 12b are controlled.
  • control part 40 which concerns on this Embodiment will perform the calculation of a correction amount immediately in the calculating part 42, if the distance information of the 1st detection part P1 and the 2nd detection part P2 is received from the distance sensor 20, If correction is necessary, the amount of reduction of the hydraulic pressure reduction device is controlled with respect to the first hydraulic pressure reduction device 12a and the second hydraulic pressure reduction device 12b, and the next transmission from the distance sensor 20 is awaited.
  • the distance sensor 20 continuously detects the distance between the first detection unit P1 and the second detection unit P2, and immediately transmits the detection result to the control unit 40. That is, the control unit 40 controls the reduction amount of the first hydraulic reduction device 12a and the reduction amount of the second hydraulic reduction device 12b in real time while the strip 1 is being rolled.
  • the rolling mill 10 according to the present embodiment includes a roll pair including the first roll 14a and the second roll 14b for rolling the strip 1 to be rolled, and the first roll at both ends of the first roll 14a.
  • a first hydraulic pressure reducing device 12a and a second hydraulic pressure device that are respectively connected to a first support portion 13a and a second support portion 13b that rotatably support 14a and move the first roll 14a relative to the second roll 14b.
  • the rolling part 10 is a rolling mill 10 including a rolling device 12b, and a rolling part AP, which is a part for rolling the strip 1 and is set in a part of a continuous region in the longitudinal direction of the roll pair, is from the first support part 13a.
  • the distance from the rolling portion AP and the distance from the second support portion 13b to the rolling portion AP are set at different positions, and the roll deflection at the rolling portion AP of the first roll 14a is set.
  • a distance sensor 20 configured to measure the amount
  • a control configured to control a reduction amount of the first hydraulic reduction device 12a and a reduction amount of the second hydraulic reduction device 12b based on a detection value of the distance sensor 20. Part 40. Therefore, it is possible to realize highly accurate shape control in rolling the strip 1 using a non-center rolling mill.
  • the distance sensor 20 configured to measure the amount of roll deflection in the rolling portion AP of the first roll 14a and the detection value of the distance sensor 20 are used.
  • a control unit 40 configured to control the reduction amount of the first hydraulic reduction device 12a and the reduction amount of the second hydraulic reduction device 12b. That is, by detecting the deformation of the first roll 14a using the distance sensor 20, the deformation of the roll pair that occurs during rolling can be directly grasped, and the roll deflection amount of the rolled portion AP is measured from the deformation. It becomes possible to do.
  • the control unit 40 controls the reduction amount of the first hydraulic reduction device 12a and the reduction amount of the second hydraulic reduction device 12b according to the roll deflection amount. It becomes possible to realize highly accurate shape control.
  • the control unit 40 controls the reduction amount of the first hydraulic reduction device 12a and the reduction amount of the second hydraulic reduction device 12b in real time while the strip 1 is being rolled. . That is, when the control unit 40 controls the reduction amount of the hydraulic reduction device in real time, when it becomes necessary to control the reduction amount of the hydraulic reduction device, the control can be performed quickly. That is, it is possible to realize shape control with higher accuracy in rolling the strip 1 using a non-center rolling mill.
  • a plurality of rolled portions AP are set at different positions in the longitudinal direction of the roll pair. That is, the present invention can be applied to all the rolling parts AP of the rolling parts AP that are set at different positions in the longitudinal direction of the roll pair. That is, it is possible to realize highly accurate shape control even when the strip 1 is rolled using any rolling portion AP.
  • the movable support device 30 that supports the distance sensor 20 so as to be movable along the longitudinal direction is provided. That is, when the rolling part AP is changed to another rolling part AP, the distance sensor 20 can be moved to the changed rolling part AP by the movable support device 30, and the changed rolling is performed by the moved distance sensor 20. The value of the partial AP can be detected. Therefore, the distance sensor 20 can be reduced as compared with the case where the distance sensor 20 is provided for each of the plurality of rolling portions AP.
  • the movable support device 30 includes an attachment portion 30a to which the distance sensor 20 is attached, a rail portion 30b in which the attachment portion 30a is slidably engaged, and the attachment portion 30a to the rail portion 30b. And a driving device that is moved along. That is, the reliable movable support device 30 can be realized with a simple structure of the attachment portion 30a, the rail portion 30b, and the drive device.
  • the roll pair is a flat roll, but the present invention is not limited to this.
  • a caliber having the same groove shape as that of the steel strip 1 rolled in the groove provided in the roll pair is formed, and the cross-sectional shape of the steel bar 1 is formed by passing the groove.
  • Rolling in the above embodiment A roll pair provided with (corresponding to the partial AP) may be used. That is, the caliber may be provided in each of the 1st roll 14a and the 2nd roll 14b in the rolling part AP.
  • the balance cylinder mechanism 50 is provided on the upper side of the first roll 14a and the movable support device 30 is provided on the lower surface of the balance beam 51.
  • the present invention is not limited to this.
  • the installation position of the movable support device 30 may be changed and a first support portion balance cylinder 60 a and a second support portion balance cylinder 60 b may be provided instead of the balance cylinder mechanism 50.
  • FIG. 4 is a schematic front view of the rolling mill 10 according to the second embodiment. As shown in FIG. 4, the difference from the first embodiment is that the movable support device 30 is provided on the upper side surface of the housing 11, and the first support portion 13 a is used instead of the balance cylinder mechanism 50. The first support portion balance cylinder 60a is provided, and the second support portion balance cylinder 60b is provided in the second support portion 13b.
  • FIG. 5 is a schematic front view of the rolling mill 10 according to the third embodiment.
  • the difference from the second embodiment is that a fixed beam 70 is provided independently of the housing 11, and the movable support device 30 is provided not on the housing 11 but on the lower surface of the fixed beam 70. This is the point.
  • the difference in the rolling load between the first support portion 13a side and the second support portion 13b side (measured value measured by the first load cell 15a and the second load cell 15b) is caused. Since the inclination of the first roll 14a caused by the difference (the difference in height position between the first support portion 13a and the second support portion 13b) is corrected by the AGC function, the balance beam 51 provided with the distance sensor 20 ( The rail portion 30b) is always kept horizontal, and the control unit 40 can accurately measure only the roll deflection amount based on the detection value of the distance sensor 20.
  • the rail portion 30b cannot be kept horizontal by the AGC function, and the control unit 40 accurately determines the roll deflection amount based on the detection value of the distance sensor 20. Cannot be measured. Therefore, the control unit 40 according to the second embodiment and the third embodiment corrects the amount of displacement caused by the vertical deflection of the housing 11 with respect to the detection value of the distance sensor 20, and based on the corrected value. Thus, the amount of reduction of the hydraulic reduction device 12a and the hydraulic reduction device 12b is controlled.
  • the distance sensor 20 is provided only on the upper side of the first roll 14a.
  • the present invention is not limited to this.
  • it may be provided only on the lower side of the second roll 14b, or may be provided on both the upper side of the first roll 14a and the lower side of the second roll 14b.
  • it is preferable to provide on the upper side of the 1st roll 14a so that the cooling water used at the time of rolling may not be applied.
  • the control unit 40 may perform the calculation described in the above embodiment for the rolling portion AP of the second roll 14b. Further, when the distance sensor 20 is provided on both the upper side of the first roll 14a and the lower side of the second roll 14b, the control unit 40 performs the calculation described in the above embodiment on the rolling portion AP of the first roll 14a. And each of the rolling portions AP of the second roll 14b, and based on the respective calculation results (one of the rolls is bent in the same manner symmetrically with respect to the vertical center line of the bar 1) It is only necessary to calculate and control the amount of reduction of the first hydraulic reduction device 12a and the second hydraulic reduction device 12b.
  • the rolling mill 10 only needs to include the distance sensor 20 configured to measure the roll deflection amount in the rolling portion AP of at least one of the first roll 14a and the second roll 14b.
  • the distance sensor 20 is moved in the longitudinal direction by providing the movable support device 30, but the present invention is not limited to this.
  • the distance sensor 20 may be provided for all of the plurality of set rolling parts AP so that the movement cannot be performed. That is, at least one distance sensor 20 may be provided for each of the plurality of rolling portions AP set at different positions. In this way, since the mechanism for moving the distance sensor 20 can be omitted, the configuration related to the distance sensor 20 can be simplified.

Abstract

A rolling mill equipped with a pair of rolls that includes a first roll and a second roll for rolling a steel bar to be rolled, and a first hydraulic rolling reduction device and second hydraulic rolling reduction device, which are connected respectively to a first support part and second support part rotatably supporting the first roll at the ends of the first roll, and which move the first roll relative to the second roll, said rolling mill characterized in that a rolling portion, which is a portion where the steel bar is rolled and that is set in a continuous partial region of the pair of rolls in the lengthwise direction, is set at a position at which the distance from the first support part to the rolling portion and the distance from the second support part to the rolling portion are different, and in that the rolling mill is equipped with a distance sensor configured so as to measure a roll deflection amount for the rolling portion of the first roll and/or the second roll, and a control unit configured so as to control the rolling reduction amount of the first hydraulic rolling reduction device and the rolling reduction amount of the second hydraulic rolling reduction device on the basis of a detection value from the distance sensor.

Description

圧延機及び圧延機の制御方法Rolling mill and rolling mill control method
 本発明は、圧延機及び圧延機の制御方法に関する。 The present invention relates to a rolling mill and a control method for the rolling mill.
 圧延対象の条鋼を圧延するための第1ロール及び第2ロールを含むロール対と、第1ロールの両端において第1ロールを回転可能に支持する第1支持部及び第2支持部にそれぞれ接続され、第1ロールを第2ロールに対して相対的に移動させる第1油圧圧下装置及び第2油圧圧下装置と、を備える圧延機は既に良く知られている。 A roll pair including a first roll and a second roll for rolling the strip to be rolled, and a first support part and a second support part that rotatably support the first roll at both ends of the first roll, respectively. A rolling mill comprising a first hydraulic reduction device and a second hydraulic reduction device that moves the first roll relative to the second roll is already well known.
 そして、前記圧延機のロール対の長手方向における一部の連続する領域に設定された条鋼を圧延する部分である圧延部分が、第1支持部から圧延部分までの距離と第2支持部から圧延部分までの距離とが互いに異なる位置に設定されている圧延機(このように設定されている圧延部分で圧延を行う前記圧延機を、便宜上「非中心圧延機」と呼ぶ)を用いて条鋼を圧延すると、条鋼の断面の形状精度不良や、条鋼の長手方向の曲り等が発生する問題があった。 And the rolling part which is a part which rolls the strip set to the one part continuous area | region in the longitudinal direction of the roll pair of the said rolling mill is rolled from the distance from a 1st support part to a rolling part, and a 2nd support part. Using a rolling mill set at a position where the distance to the portion is different from each other (the rolling mill that performs rolling at the rolling portion set in this manner is referred to as a “non-central rolling mill” for convenience). When rolled, there are problems such as poor shape accuracy of the cross section of the bar steel and bending in the longitudinal direction of the bar steel.
 そのため、従来の非中心圧延機においては、圧延部分の位置を圧延前に検出し、該位置情報に基づいてロール両端の上下方向の位置を個別に設定することにより、条鋼の断面形状精度を向上させるための制御を行っていた(例えば、特許文献1参照)。 Therefore, in the conventional non-center rolling mill, the position of the rolling part is detected before rolling, and the vertical position of both ends of the roll is individually set based on the position information, thereby improving the cross-sectional shape accuracy of the bar steel. The control for making it performed was performed (for example, refer patent document 1).
実公平6-46567号公報Japanese Utility Model Publication No. 6-46567
 しかしながら、従来の非中心圧延機に用いられる形状制御の方法では、圧延された条鋼の断面形状精度が低い問題があった。 However, the shape control method used in the conventional non-center rolling mill has a problem that the cross-sectional shape accuracy of the rolled strip is low.
 本発明は、かかる課題に鑑みてなされたものであり、その目的とするところは、非中心圧延機を用いた条鋼の圧延において、高精度な形状制御を実現することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to realize highly accurate shape control in rolling of bar steel using a non-center rolling mill.
 上記目的を達成するための主たる発明は、
 圧延対象の条鋼を圧延するための第1ロール及び第2ロールを含むロール対と、前記第1ロールの両端において前記第1ロールを回転可能に支持する第1支持部及び第2支持部にそれぞれ接続され、前記第1ロールを前記第2ロールに対して相対的に移動させる第1油圧圧下装置及び第2油圧圧下装置と、を備える圧延機であって、前記ロール対の長手方向における一部の連続する領域に設定された、前記条鋼を圧延する部分である圧延部分が、前記第1支持部から前記圧延部分までの距離と前記第2支持部から前記圧延部分までの距離とが互いに異なる位置に設定されており、前記第1ロール及び前記第2ロールのうちの少なくとも一方のロールの前記圧延部分におけるロール撓み量を計測するよう構成された距離センサーと、前記距離センサーの検出値に基づいて前記第1油圧圧下装置の圧下量と前記第2油圧圧下装置の圧下量とを制御するよう構成された制御部と、を備えることを特徴とする圧延機である。
The main invention for achieving the above object is:
A roll pair including a first roll and a second roll for rolling the strip to be rolled, and a first support part and a second support part that rotatably support the first roll at both ends of the first roll, respectively. A rolling mill comprising a first hydraulic reduction device and a second hydraulic reduction device that are connected and move the first roll relative to the second roll, and a part of the roll pair in the longitudinal direction The rolling part, which is a part for rolling the bar steel, set in a continuous region of, the distance from the first support part to the rolling part and the distance from the second support part to the rolling part are different from each other A distance sensor configured to measure a roll deflection amount in the rolled portion of at least one of the first roll and the second roll, and the distance sensor A rolling mill, characterized in that it comprises a control unit configured to control the amount of reduction reduction amount and the second hydraulic pressure system of the first hydraulic pressure device based on the detected value of the service.
 本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。 Other features of the present invention will be clarified by the description of the present specification and the accompanying drawings.
 本発明によれば、非中心圧延機を用いた条鋼の圧延において、高精度な形状制御を実現することが可能となる。 According to the present invention, it is possible to realize highly accurate shape control in rolling of bar steel using a non-center rolling mill.
本実施の形態に係る圧延機10の正面概略図である。1 is a schematic front view of a rolling mill 10 according to the present embodiment. 圧延機10の制御部40と他の装置との関係を示した図である。It is the figure which showed the relationship between the control part 40 of the rolling mill 10, and another apparatus. 図3の上図は、ロール対が撓んだ状態で条鋼1を挟んで圧延を行っている状態を示した図であり、図3の下図は、第1ロール14aのロール撓み量を説明するための説明図である。The upper diagram of FIG. 3 is a diagram showing a state where rolling is performed with the strip 1 sandwiched in a state where the roll pair is deflected, and the lower diagram of FIG. 3 explains the roll deflection amount of the first roll 14a. It is explanatory drawing for. 第2実施の形態に係る圧延機10の正面概略図である。It is the front schematic of the rolling mill 10 which concerns on 2nd Embodiment. 第3実施の形態に係る圧延機10の正面概略図である。It is the front schematic of the rolling mill 10 which concerns on 3rd Embodiment.
 本明細書及び添付図面の記載により、少なくとも、以下の事項が明らかとなる。 At least the following matters will become clear from the description of this specification and the accompanying drawings.
 圧延対象の条鋼を圧延するための第1ロール及び第2ロールを含むロール対と、前記第1ロールの両端において前記第1ロールを回転可能に支持する第1支持部及び第2支持部にそれぞれ接続され、前記第1ロールを前記第2ロールに対して相対的に移動させる第1油圧圧下装置及び第2油圧圧下装置と、を備える圧延機であって、前記ロール対の長手方向における一部の連続する領域に設定された、前記条鋼を圧延する部分である圧延部分が、前記第1支持部から前記圧延部分までの距離と前記第2支持部から前記圧延部分までの距離とが互いに異なる位置に設定されており、前記第1ロール及び前記第2ロールのうちの少なくとも一方のロールの前記圧延部分におけるロール撓み量を計測するよう構成された距離センサーと、前記距離センサーの検出値に基づいて前記第1油圧圧下装置の圧下量と前記第2油圧圧下装置の圧下量とを制御するよう構成された制御部と、を備えることを特徴とする圧延機。 A roll pair including a first roll and a second roll for rolling the strip to be rolled, and a first support part and a second support part that rotatably support the first roll at both ends of the first roll, respectively. A rolling mill comprising a first hydraulic reduction device and a second hydraulic reduction device that are connected and move the first roll relative to the second roll, and a part of the roll pair in the longitudinal direction The rolling part, which is a part for rolling the bar steel, set in a continuous region of, the distance from the first support part to the rolling part and the distance from the second support part to the rolling part are different from each other A distance sensor configured to measure a roll deflection amount in the rolled portion of at least one of the first roll and the second roll, and the distance Rolling mill, characterized in that on the basis of the detected value of the Nsa and a control unit configured to control the amount of reduction reduction amount and the second hydraulic pressure system of the first hydraulic pressure device.
 このような圧延機によれば、非中心圧延機を用いた条鋼の圧延において、高精度な形状制御を実現することが可能となる。 According to such a rolling mill, it is possible to realize highly accurate shape control in rolling the strip using a non-center rolling mill.
 かかる圧延機であって、前記圧延部分が、前記ロール対の長手方向において異なる位置に複数設定されていてもよい。 In this rolling mill, a plurality of the rolling portions may be set at different positions in the longitudinal direction of the roll pair.
 このような圧延機によれば、いずれの圧延部分を用いて条鋼の圧延を行っても、高精度な形状制御を実現することが可能となる。 According to such a rolling mill, it is possible to realize highly accurate shape control even if the strip is rolled using any rolling part.
 かかる圧延機であって、異なる位置に設定された複数の前記圧延部分の各々毎に、少なくとも1つの前記距離センサーが備えられていてもよい。 In this rolling mill, at least one of the distance sensors may be provided for each of the plurality of rolling portions set at different positions.
 このような圧延機によれば、距離センサーを移動させる機構を省略することが可能となるため、距離センサーに係る構成を簡略化することが可能となる。 According to such a rolling mill, a mechanism for moving the distance sensor can be omitted, and thus the configuration related to the distance sensor can be simplified.
 かかる圧延機であって、前記距離センサーを前記長手方向に沿って移動可能に支持する可動支持装置を備えてもよい。 Such a rolling mill may include a movable support device that supports the distance sensor so as to be movable along the longitudinal direction.
 このような圧延機によれば、複数の圧延部分の各々毎に距離センサーを設ける場合に比べて、距離センサーを減らすことが可能となる。 According to such a rolling mill, it is possible to reduce the distance sensor compared to the case where a distance sensor is provided for each of a plurality of rolling portions.
 かかる圧延機であって、前記可動支持装置は、前記距離センサーが取り付けられた取付部と、前記取付部が摺動可能に係合したレール部と、前記取付部を前記レール部に沿って移動させる駆動装置とを備えていてもよい。 In this rolling mill, the movable support device includes an attachment portion to which the distance sensor is attached, a rail portion with which the attachment portion is slidably engaged, and the attachment portion is moved along the rail portion. And a driving device to be operated.
 このような圧延機によれば、簡単な構造で確実な可動支持を実現することができる。 According to such a rolling mill, reliable movable support can be realized with a simple structure.
 かかる圧延機であって、前記圧延部分の前記長手方向における両端部の前記ロール撓み量が計測できるよう構成されていてもよい。 Such a rolling mill may be configured to measure the amount of roll deflection at both end portions in the longitudinal direction of the rolled portion.
 このような圧延機によれば、圧延部分の長手方向における両端部のロール撓み量から条鋼の長手方向の両端部の厚さを把握でき、条鋼の長手方向の両端部の厚さを均等に近づけることが可能となる。 According to such a rolling mill, the thickness of both ends in the longitudinal direction of the bar can be grasped from the amount of roll deflection at both ends in the longitudinal direction of the rolled portion, and the thickness of both ends in the longitudinal direction of the bar is made closer to equal. It becomes possible.
 かかる圧延機であって、前記制御部は、前記条鋼の圧延の実行中、前記第1油圧圧下装置の圧下量と前記第2油圧圧下装置の圧下量とをリアルタイムに制御するよう構成されていてもよい。 In this rolling mill, the control unit is configured to control a reduction amount of the first hydraulic reduction device and a reduction amount of the second hydraulic reduction device in real time during the rolling of the strip. Also good.
 このような圧延機によれば、非中心圧延機を用いた条鋼の圧延において、より一層高精度な形状制御を実現することが可能となる。 According to such a rolling mill, it is possible to realize shape control with higher accuracy in rolling steel bars using a non-center rolling mill.
 かかる圧延機であって、前記圧延部分には、前記第1ロール及び前記第2ロールのそれぞれにカリバーが設けられていてもよい。 In this rolling mill, a caliber may be provided in each of the first roll and the second roll in the rolling portion.
 このような圧延機によれば、カリバーが設けられたロール対を用いた圧延においては、非中心圧延機として圧延が行われることが一般的であるため(頻繁に行われるため)、本発明がより有効に作用する。 According to such a rolling mill, in rolling using a roll pair provided with a caliber, since rolling is generally performed as a non-center rolling mill (because it is frequently performed), the present invention is It works more effectively.
 圧延対象の条鋼を圧延するための第1ロール及び第2ロールを含むロール対と、前記第1ロールの両端において前記第1ロールを回転可能に支持する第1支持部及び第2支持部にそれぞれ接続され、前記第1ロールを前記第2ロールに対して相対的に移動させる第1油圧圧下装置及び第2油圧圧下装置と、を備える圧延機の制御方法であって、前記ロール対の長手方向における一部の連続する領域に設定される、前記条鋼を圧延する部分である圧延部分を、前記第1支持部から前記圧延部分までの距離と前記第2支持部から前記圧延部分までの距離とが互いに異なる位置に設定することと、前記第1ロール及び前記第2ロールのうちの少なくとも一方のロールの前記圧延部分におけるロール撓み量を計測することと、前記ロール撓み量に基づいて前記第1油圧圧下装置の圧下量と前記第2油圧圧下装置の圧下量とを制御することと、を含むことを特徴とする圧延機の制御方法。 A roll pair including a first roll and a second roll for rolling the strip to be rolled, and a first support part and a second support part that rotatably support the first roll at both ends of the first roll, respectively. A rolling mill control method comprising: a first hydraulic reduction device and a second hydraulic reduction device that are connected and move the first roll relative to the second roll, the longitudinal direction of the roll pair A rolling part which is a part for rolling the bar steel, which is set in a part of the continuous region, a distance from the first support part to the rolling part and a distance from the second support part to the rolling part Are set at different positions, measuring a roll deflection amount in the rolling portion of at least one of the first roll and the second roll, and based on the roll deflection amount. Control method of a rolling mill, characterized in that it comprises a controlling and reduction ratio of reduction rate between the second hydraulic pressure system of the first hydraulic pressure device have, a.
 このような圧延機の制御方法によれば、前述した圧延機の場合と同様の作用効果を奏する。 制 御 According to such a rolling mill control method, the same effects as those of the rolling mill described above can be obtained.
 ===本実施の形態に係る圧延機10について===
 本実施の形態に係る圧延機10は、圧延対象となる条鋼1を圧延する装置であり、非中心圧延機として用いられる。この非中心圧延機とは、圧延を行う際の条鋼1の位置に特徴のある圧延機10のことであるが、詳細については後述する。条鋼1の例としては、平鋼、形鋼、棒鋼、線材、軌条等が挙げられ、断面積の大きさに比べて長さが著しく大きい形状の鋼材のことをいう。本実施の形態においては、条鋼1として平鋼を用いて圧延を行う。
=== About the rolling mill 10 according to the present embodiment ===
The rolling mill 10 according to the present embodiment is an apparatus that rolls the strip 1 to be rolled, and is used as a non-center rolling mill. The non-center rolling mill is a rolling mill 10 that is characterized by the position of the strip 1 when rolling, and details thereof will be described later. Examples of the strip 1 include a flat steel, a shaped steel, a bar, a wire, a rail, and the like, and refers to a steel having a shape that is significantly longer than the cross-sectional area. In the present embodiment, the steel bar 1 is rolled using a flat bar.
 図1は、本実施の形態に係る圧延機10の正面概略図である。本実施の形態に係る図面においては、紙面の横方向(水平方向)を「長手方向」として紙面の左側(右側)を「WS側(DS側)」若しくは「左(右)」と呼び、紙面の縦方向(鉛直方向)を「上下方向」として紙面の上側(下側)を「上(下)」と呼ぶ。また、図2は、圧延機10の制御部40と他の装置との関係を示した図である。 FIG. 1 is a schematic front view of a rolling mill 10 according to the present embodiment. In the drawings according to the present embodiment, the horizontal direction (horizontal direction) of the paper surface is referred to as the “longitudinal direction”, and the left side (right side) of the paper surface is referred to as “WS side (DS side)” or “left (right)”. The vertical direction (vertical direction) is referred to as “vertical direction”, and the upper side (lower side) of the drawing is referred to as “upper (lower)”. FIG. 2 is a diagram showing the relationship between the control unit 40 of the rolling mill 10 and other devices.
 図1には、圧延機10のハウジング11が示されており、該ハウジング11の内側(ハウジング11内部)に、圧延機10が備えるロール対(第1ロール14a及び第2ロール14b)、支持部(第1支持部13a、第2支持部13b、及び第2ロール14bの支持部)、油圧圧下装置(第1油圧圧下装置12a及び第2油圧圧下装置12b)、ロードセル(第1ロードセル15a及び第2ロードセル15b)、距離センサー20、可動支持装置30、バランスシリンダ機構50が配置されている。 FIG. 1 shows a housing 11 of a rolling mill 10. Inside the housing 11 (inside the housing 11), a roll pair (first roll 14 a and second roll 14 b) provided in the rolling mill 10 and a support unit are provided. (Support portions for the first support portion 13a, the second support portion 13b, and the second roll 14b), a hydraulic pressure reduction device (the first hydraulic pressure reduction device 12a and the second hydraulic pressure reduction device 12b), and a load cell (the first load cell 15a and the first pressure reduction device 12b). 2 load cell 15b), distance sensor 20, movable support device 30, and balance cylinder mechanism 50 are arranged.
 ロール対は、第1ロール14aと第2ロール14bとで構成される上下一対のフラットロールである。そして、第1ロール14aと第2ロール14bは、同一の形状をしており、軸径の大きい圧延部と、該圧延部の長手方向の両端側に設けられた軸径の小さい軸部を有している。ロール対は、図1に示すように、上側に設けられた第1ロール14aと、下側に設けられた第2ロール14bとの隙間で条鋼1を挟みつつ、図2に示す駆動部32の駆動回転により回転して圧延を行う。すなわち、圧延機10は、圧延対象の条鋼1を圧延するための第1ロール14a及び第2ロール14bを含むロール対を備える。 The roll pair is a pair of upper and lower flat rolls composed of a first roll 14a and a second roll 14b. And the 1st roll 14a and the 2nd roll 14b have the same shape, and have a rolling part with a large shaft diameter, and a shaft part with a small shaft diameter provided at both ends in the longitudinal direction of the rolling part. is doing. As shown in FIG. 1, the roll pair includes the drive unit 32 shown in FIG. 2 while sandwiching the steel bar 1 with a gap between the first roll 14 a provided on the upper side and the second roll 14 b provided on the lower side. Rotation is performed by driving rotation. That is, the rolling mill 10 includes a roll pair including a first roll 14a and a second roll 14b for rolling the strip 1 to be rolled.
 また、本実施の形態においては、条鋼1が通過するロール対の長手方向の位置として、ロール対の圧延部の長手方向に一部の連続した領域(圧延部分APに相当)が複数設定されており、後述する記憶部41に記憶されている。すなわち、圧延機10には、圧延部分APがロール対の長手方向において異なる位置に複数設定されている。 Moreover, in this Embodiment, some continuous area | regions (equivalent to the rolling part AP) are set in the longitudinal direction of the rolling part of a roll pair as the position of the longitudinal direction of the roll pair which the strip 1 passes. And is stored in the storage unit 41 to be described later. That is, in the rolling mill 10, a plurality of rolling portions AP are set at different positions in the longitudinal direction of the roll pair.
 支持部は、ロール対のそれぞれのロールの両端をロール対が回転可能な状態として支持している。そのため、ロール対は駆動部32の駆動回転により回転することが可能となっている。ここで、支持部が支持する「ロールの両端」とは、ロール中心線RC(ロール対の長手方向の中心線)に対して左右対称な位置であり、かつ、軸部のことである(すなわち、圧延部でない)。第1ロール14aは、WS側の軸部が第1支持部13aにより支持され、DS側の軸部が第2支持部13bにより支持されている。そして、これらの支持部は、後述するバランスビーム51を介して油圧圧下装置に接続している。また、第2ロール14bは、ロールの両端がハウジング11の下側面(ハウジング11内部の下側面)に固定された第2ロール14bの支持部により支持されている。 The support part supports both ends of each roll of the roll pair so that the roll pair can rotate. Therefore, the roll pair can be rotated by the drive rotation of the drive unit 32. Here, the “both ends of the roll” supported by the support portion is a position that is symmetrical with respect to the roll center line RC (center line in the longitudinal direction of the roll pair) and is a shaft portion (that is, , Not the rolling part). As for the 1st roll 14a, the shaft part by the side of WS is supported by the 1st support part 13a, and the shaft part by the side of DS is supported by the 2nd support part 13b. And these support parts are connected to the hydraulic pressure reduction apparatus via the balance beam 51 mentioned later. The second roll 14b is supported by a support portion of the second roll 14b in which both ends of the roll are fixed to the lower surface of the housing 11 (the lower surface inside the housing 11).
 油圧圧下装置(第1油圧圧下装置12a及び第2油圧圧下装置12b)は、後述するロードセルを介してハウジング11の上側面(ハウジング11内部の上側面)に固定されており、第1ロール14aを第2ロール14bに対して相対的に移動させる装置である。つまり、第1油圧圧下装置12aが第1支持部13aと接続し、第2油圧圧下装置12bが第2支持部13bと接続しており、それぞれが接続している支持部を移動させることにより、第1ロール14aを第2ロール14bに対して相対的に移動させる。すなわち、圧延機10は、第1ロール14aの両端において第1ロール14aを回転可能に支持する第1支持部13a及び第2支持部13bにそれぞれ接続され、第1ロール14aを第2ロール14bに対して相対的に移動させる第1油圧圧下装置12a及び第2油圧圧下装置12bを備える。 The hydraulic pressure reduction devices (the first hydraulic pressure reduction device 12a and the second hydraulic pressure reduction device 12b) are fixed to the upper side surface of the housing 11 (the upper side surface inside the housing 11) via a load cell, which will be described later, and the first roll 14a is fixed. This is a device that moves relative to the second roll 14b. That is, the first hydraulic pressure reducing device 12a is connected to the first support portion 13a, the second hydraulic pressure reducing device 12b is connected to the second support portion 13b, and by moving the support portion to which each is connected, The first roll 14a is moved relative to the second roll 14b. That is, the rolling mill 10 is connected to the first support portion 13a and the second support portion 13b that rotatably support the first roll 14a at both ends of the first roll 14a, and the first roll 14a is connected to the second roll 14b. A first hydraulic pressure reducing device 12a and a second hydraulic pressure reducing device 12b that are relatively moved are provided.
 ロードセル(第1ロードセル15a及び第2ロードセル15b)は、油圧圧下装置がそれぞれに接続した支持部に付与している圧力を検出するためのセンサーであり、ハウジング11と油圧圧下装置に挟まれて設けられている。すなわち、第1油圧圧下装置12aの上側面(設置面)とハウジング11の上側面の間に第1ロードセル15aが設けられており、第2油圧圧下装置12bの上側面(設置面)とハウジング11の上側面の間に第2ロードセル15bが設けられている。そして、ロードセルは、油圧圧下装置とハウジング11とに挟まれる圧力(油圧圧下装置が接続している支持部に付与した圧力の反力)を油圧圧下装置が接続している支持部に付与している圧力値として連続して検出し、該検出結果を制御部40へ即座に送信する。 The load cells (the first load cell 15a and the second load cell 15b) are sensors for detecting the pressure applied to the support portion connected to each of the hydraulic pressure reduction devices, and are provided between the housing 11 and the hydraulic pressure reduction device. It has been. That is, the first load cell 15a is provided between the upper side surface (installation surface) of the first hydraulic pressure reduction device 12a and the upper side surface of the housing 11, and the upper side surface (installation surface) of the second hydraulic pressure reduction device 12b and the housing 11 are provided. A second load cell 15b is provided between the upper side surfaces. The load cell applies a pressure (reaction force of the pressure applied to the support portion connected to the hydraulic pressure reduction device) between the hydraulic pressure reduction device and the housing 11 to the support portion connected to the hydraulic pressure reduction device. The detected pressure value is continuously detected, and the detection result is immediately transmitted to the control unit 40.
 制御部40は自動ロールGAP制御(Automatic Gap Control(AGC))機能を有しており、ロードセルで検出された圧力に基づいてハウジング11の鉛直方向における伸び変形(縦撓み)による第1支持部13aと第2支持部13bの鉛直方向の変位分を補正することができる。 The control unit 40 has an automatic roll GAP control (Automatic Gap Control (AGC)) function, and the first support unit 13a is caused by extension deformation (vertical deflection) in the vertical direction of the housing 11 based on the pressure detected by the load cell. And the vertical displacement of the second support portion 13b can be corrected.
 ロードセルにより検出された圧力値を受信した制御部40は、ハウジング11の上下方向の撓み量と、支持部の不図示のベアリング(第1ロール14aを回転可能に支持するための部材)の上下方向の撓み量を検出された圧力値を用いて演算し、これらの演算された撓み量を用いて第1油圧圧下装置12a及び第2油圧圧下装置12bの圧下量を逐次補正する。なお、ベアリングの撓み量は、ベアリングの荷重-ラジアル変位グラフと検出された圧力値に基づいて演算される。 The control unit 40 that has received the pressure value detected by the load cell is the amount of bending of the housing 11 in the vertical direction and the vertical direction of a bearing (not shown) of the support (a member for rotatably supporting the first roll 14a). Is calculated using the detected pressure value, and the reduction amounts of the first hydraulic reduction device 12a and the second hydraulic reduction device 12b are sequentially corrected using these calculated deflection amounts. The amount of bending of the bearing is calculated based on the load-radial displacement graph of the bearing and the detected pressure value.
 距離センサー20は、ロール撓み量を計測するためのセンサーであり、距離センサー20からロールまでの距離を検出するセンサーである。ここで、「ロール撓み量」とは、ロール対が曲がっていない状態(以下、撓みゼロ状態ともいう)で距離センサー20の検出値により計測されるロールの上下方向における位置と、ロール対が曲がっている状態で距離センサー20の検出値により計測されるロールの上下方向における位置との差である。 The distance sensor 20 is a sensor for measuring the amount of roll deflection, and is a sensor that detects the distance from the distance sensor 20 to the roll. Here, the “roll deflection amount” means the position in the vertical direction of the roll measured by the detection value of the distance sensor 20 in a state where the roll pair is not bent (hereinafter also referred to as a zero deflection state), and the roll pair is bent. It is a difference with the position in the up-down direction of the roll measured by the detection value of the distance sensor 20 in the state where
 また、本実施の形態においては、距離センサー20は、第1ロール14aの上側に設けられた後述する可動支持装置30の取付部30aに固定されている。そして、圧延される条鋼1の圧延部分APの長手方向における一端部と他端部(圧延部分APの両端部)の上側にそれぞれ1つずつの合計2つの距離センサー20が設けられている。したがって、距離センサー20は、圧延部分APの両端部の第1ロール14aまでの距離を検出して制御部40に送信する。距離センサー20としては、例えば渦電流式変位センサーやレーザー距離計等を用いることができる。 In the present embodiment, the distance sensor 20 is fixed to a mounting portion 30a of the movable support device 30 described later provided on the upper side of the first roll 14a. A total of two distance sensors 20 are provided, one above each of one end and the other end (both ends of the rolled portion AP) in the longitudinal direction of the rolled portion AP of the strip 1 to be rolled. Therefore, the distance sensor 20 detects the distance to the first roll 14a at both ends of the rolled portion AP and transmits it to the control unit 40. As the distance sensor 20, for example, an eddy current displacement sensor or a laser distance meter can be used.
 可動支持装置30は、第1ロール14aの上側にある後述するバランスビーム51の下側面に第1ロール14aの両端部の一端部から他端部に亘り設けられており、距離センサー20が取り付けられた取付部30aと、取付部30aが摺動可能に係合したレール部30bと、取付部30aをレール部30bに沿って移動させる不図示の駆動装置とを備えている。すなわち、第1ロール14aの上側において該ロールの両端部の一端部から他端部に亘り距離センサー20を移動させる装置である。ここで「ロールの両端部」とは、ロールの圧延部の両端部のことである(すなわち、軸部でない)。そして、1つの距離センサー20に対して1つの取付部30aと駆動装置が配されており、1つのレール部30bに対して複数の取付部30aを摺動可能に係合することができる。つまり、第1ロール14aの圧延部の一端部から他端部に亘って、レール部30bに係合した複数の取付部30a(距離センサー20)が該レール部30bに沿って駆動装置により移動する。すなわち、圧延機10は、距離センサー20を長手方向に沿って移動可能に支持する可動支持装置30を備える。 The movable support device 30 is provided from one end of the both ends of the first roll 14a to the other end on the lower surface of a later-described balance beam 51 on the upper side of the first roll 14a, and the distance sensor 20 is attached to the movable support device 30. A mounting portion 30a, a rail portion 30b in which the mounting portion 30a is slidably engaged, and a driving device (not shown) that moves the mounting portion 30a along the rail portion 30b. That is, it is a device that moves the distance sensor 20 from one end to the other end of both ends of the roll above the first roll 14a. Here, “both end portions of the roll” are both end portions of the rolled portion of the roll (that is, not the shaft portion). One attachment portion 30a and a driving device are arranged for one distance sensor 20, and a plurality of attachment portions 30a can be slidably engaged with one rail portion 30b. That is, a plurality of attachment portions 30a (distance sensor 20) engaged with the rail portion 30b are moved by the driving device along the rail portion 30b from one end portion to the other end portion of the rolling portion of the first roll 14a. . That is, the rolling mill 10 includes a movable support device 30 that supports the distance sensor 20 so as to be movable along the longitudinal direction.
 また、可動支持装置30には、取付部30aの長手方向の位置を検出する位置検出機能が備えられており、検出された位置情報は制御部40へ送信される。そのため、距離センサー20を保持した取付部30aは、制御部40の指令により、駆動装置を動力源として圧延部の一端部から他端部までの指令された長手方向の位置へ、レール部30bに沿って移動することが可能となっている。 Further, the movable support device 30 is provided with a position detection function for detecting the position of the attachment portion 30 a in the longitudinal direction, and the detected position information is transmitted to the control unit 40. Therefore, the attachment part 30a holding the distance sensor 20 is moved to the rail part 30b by a command from the control part 40 to a commanded longitudinal position from one end part to the other end part of the rolling part using the drive device as a power source. It is possible to move along.
 図2に示す制御部40は、圧延機10に備えられており、前述したように各種装置から送信されてきた情報を受信する。そして、制御部40は、該情報を記憶する記憶部41と、該情報と記憶部41に記憶されている情報等を用いて演算する演算部42を有しており、演算部42の演算結果等に基づいて各種装置に指令をだす。つまり、制御部40は、各種情報に基づいて圧延機10に備えられた各種装置の制御を行う。 The control unit 40 shown in FIG. 2 is provided in the rolling mill 10 and receives information transmitted from various apparatuses as described above. And the control part 40 has the memory | storage part 41 which memorize | stores this information, and the calculating part 42 which calculates using this information, the information memorize | stored in the memory | storage part 41, and the calculation result of the calculating part 42 Commands are issued to various devices based on the above. That is, the control unit 40 controls various devices provided in the rolling mill 10 based on various information.
 バランスシリンダ機構50は、第1バランスシリンダ50aと、第2バランスシリンダ50bと、バランスビーム51を備えている。第1バランスシリンダ50aと第2バランスシリンダ50bは、ハウジング11の上側面にロール中心線RCに対して左右対称の位置となるように固定されており、上下移動可能なそれぞれのシリンダ部分がバランスビーム51と接続している。バランスビーム51は、長手方向における第1支持部13aから第2支持部13bに亘って設けられており、非圧延時に第1支持部13aと第2支持部13bとを上方に引き上げて第1ロール14aと第2ロール14bとの間の間隔を保つようになっている。第1油圧圧下装置12a及び第2油圧圧下装置12bがそれぞれ接続している支持部を移動させると、バランスビーム51も該移動に伴って移動する。また、第1バランスシリンダ50aと第2バランスシリンダ50bに接続されており、該接続は、図1の紙面を貫通する方向に沿った方向を回転軸として回転可能となっている。 The balance cylinder mechanism 50 includes a first balance cylinder 50a, a second balance cylinder 50b, and a balance beam 51. The first balance cylinder 50a and the second balance cylinder 50b are fixed to the upper side surface of the housing 11 so as to be symmetric with respect to the roll center line RC. 51 is connected. The balance beam 51 is provided from the first support portion 13a to the second support portion 13b in the longitudinal direction, and the first roll is formed by pulling the first support portion 13a and the second support portion 13b upward during non-rolling. The space | interval between 14a and the 2nd roll 14b is maintained. When the support portion to which the first hydraulic pressure reducing device 12a and the second hydraulic pressure reducing device 12b are connected is moved, the balance beam 51 is also moved along with the movement. Moreover, it connects to the 1st balance cylinder 50a and the 2nd balance cylinder 50b, and this connection can rotate by making the direction along the direction which penetrates the paper surface of FIG. 1 into a rotating shaft.
 ここで、前述したとおり、圧延機10には、圧延部分APがロール対の長手方向の異なる位置に複数設定されており、本実施の形態に係る圧延部分APの設定においては、一例として図1に示すように、圧延部分APの長手方向における中心がロール中心線RCと一致しないように設定されている。すなわち、圧延部分APの両端部の位置がロール中心線RCに対して左右非対称の位置となるように圧延部分APが設定されている。つまり、第1支持部13aと第2支持部13bがロール中心線RCに対して左右対称に設けられていることから、ロール対の長手方向における一部の連続する領域に設定された条鋼1を圧延する部分である圧延部分APが、第1支持部13aから圧延部分APまでの距離と第2支持部13bから圧延部分APまでの距離とが互いに異なる位置に設定されていることとなる。 Here, as described above, in the rolling mill 10, a plurality of rolling portions AP are set at different positions in the longitudinal direction of the roll pair, and the setting of the rolling portion AP according to the present embodiment is illustrated in FIG. 1 as an example. As shown in FIG. 4, the center in the longitudinal direction of the rolled portion AP is set so as not to coincide with the roll center line RC. That is, the rolling portion AP is set so that the positions of both end portions of the rolling portion AP are asymmetrical with respect to the roll center line RC. That is, since the 1st support part 13a and the 2nd support part 13b are provided left-right symmetrically with respect to the roll centerline RC, the strip 1 set to the one part continuous area | region in the longitudinal direction of a roll pair is used. In the rolled part AP which is a part to be rolled, the distance from the first support part 13a to the rolled part AP and the distance from the second support part 13b to the rolled part AP are set at different positions.
 以下では、図1に示す非中心圧延機(すなわち、複数設定された圧延部分APのうちの1つの圧延部分APにおいて条鋼1が圧延されている状態を示す図1の圧延機10)の制御方法について説明する。 Below, the control method of the non-center rolling mill shown in FIG. 1 (that is, the rolling mill 10 of FIG. 1 showing a state in which the strip 1 is rolled in one rolling portion AP of a plurality of set rolling portions AP). Will be described.
 ===圧延機10の制御について===
 本実施の形態に係る圧延機10の制御について、図1、図3の上図、図3の下図を用いて説明する。
=== Control of Rolling Mill 10 ===
Control of the rolling mill 10 according to the present embodiment will be described with reference to the upper diagrams of FIGS. 1 and 3 and the lower diagram of FIG.
 図3の上図は、ロール対が撓んだ状態で条鋼1を挟んで圧延を行っている状態を示した図であり、図3の下図は、第1ロール14aのロール撓み量を説明するための説明図である。ここで、一般的な圧延中のロール対は、図3の上図及び下図に示すように大きく撓むことはないが、説明を解りやすくするために、便宜上、誇張して大きく撓ませている。 The upper diagram of FIG. 3 is a diagram showing a state where rolling is performed with the strip 1 sandwiched in a state where the roll pair is deflected, and the lower diagram of FIG. 3 explains the roll deflection amount of the first roll 14a. It is explanatory drawing for. Here, the roll pair during rolling is not greatly bent as shown in the upper and lower diagrams of FIG. 3, but is exaggerated and greatly bent for the sake of convenience in order to make the explanation easy to understand. .
 本実施の形態に係る圧延中のロール対は、図3の上図に示すように、第1ロール14aは中央部(ロール中心線RCの位置)が上側で両端部が下側になるように湾曲し、第2ロール14bは中央部が下側で両端部が上側に湾曲する。そのため、図1に示すような非中心圧延機として圧延機10を用いて条鋼1を圧延すると、ロール対の撓んだ形状に沿った断面形状の条鋼1が生成されるため、条鋼1の長手方向の両端部における厚さに違いが発生することとなる。 As shown in the upper diagram of FIG. 3, the roll pair during rolling according to the present embodiment is such that the first roll 14 a has the center (position of the roll center line RC) on the upper side and both ends on the lower side. The second roll 14b is bent at the center and the both ends are bent upward. Therefore, when the bar 1 is rolled using the rolling mill 10 as a non-center rolling mill as shown in FIG. 1, the bar 1 having a cross-sectional shape along the bent shape of the roll pair is generated. A difference occurs in the thickness at both ends in the direction.
 本実施の形態においては、条鋼1の断面形状精度を向上させるため、図1に示す非中心圧延機で圧延される条鋼1の厚さが所定の寸法となるように、かつ長手方向の両端部の厚さが均等になるように制御を行う。以下に、該制御の手順を順番に説明する。 In the present embodiment, in order to improve the cross-sectional shape accuracy of the bar 1, both end portions in the longitudinal direction are set so that the thickness of the bar 1 rolled by the non-center rolling mill shown in FIG. Control is performed so that the thicknesses of the two are uniform. Below, the procedure of this control is demonstrated in order.
 先ず、圧延機10に複数設定された圧延部分APのうちから図1に示す圧延部分APを使用する圧延部分APとして選択する。そうすると、圧延機10の制御部40は、選択された圧延部分APの長手方向における両端部の一端部と他端部の位置に対応する位置にそれぞれ1つの距離センサー20を配する(移動させる)。つまり、圧延機10は、圧延部分APの長手方向における両端部のロール撓み量が計測できるよう構成される。 First, it selects as rolling part AP which uses the rolling part AP shown in FIG. Then, the control unit 40 of the rolling mill 10 places (moves) one distance sensor 20 at a position corresponding to the position of one end and the other end of both ends in the longitudinal direction of the selected rolling portion AP. . That is, the rolling mill 10 is configured to measure the amount of roll deflection at both ends in the longitudinal direction of the rolled portion AP.
 この使用する圧延部分APの選択は、人手により行われてもよいし、例えば、ロール対よりも条鋼1の搬送方向(図1においては紙面を貫通する方向)の上流側に条鋼1の圧延部分APを検出するセンサーを設けて、該センサーの検出結果に基づいて行ってもよい。 The selection of the rolled portion AP to be used may be performed manually, for example, the rolled portion of the strip 1 upstream of the roll pair in the conveying direction of the strip 1 (direction passing through the paper surface in FIG. 1). A sensor for detecting the AP may be provided, and the detection may be performed based on the detection result of the sensor.
 そして、圧延部分APの両端部の位置に対応する位置に距離センサー20が移動したら、制御部40は、圧延を行う前に、前述した「ロール対が曲がっていない状態(撓みゼロ状態)」の距離センサー20の値を検出して記憶部41に記憶する。 And if the distance sensor 20 moves to the position corresponding to the position of the both ends of the rolling part AP, before performing rolling, the control part 40 will be in the "state where the roll pair is not bent (deflection zero state)". The value of the distance sensor 20 is detected and stored in the storage unit 41.
 そうしたら、制御部40は、圧延機10において条鋼1の圧延を開始する。そして、圧延中においては、図3の上図と下図に示す第1検出部P1と第2検出部P2の上側に位置する(圧延部分APの両端部の上側に位置する)2つの距離センサー20が第1ロール14aまでの距離を検出し、該検出値を制御部40に送信する。 Then, the control unit 40 starts rolling the strip 1 in the rolling mill 10. During rolling, the two distance sensors 20 located above the first detection part P1 and the second detection part P2 shown in the upper and lower views of FIG. 3 (located above the both ends of the rolling part AP). Detects the distance to the first roll 14 a and transmits the detected value to the control unit 40.
 第1検出部P1と第2検出部P2の検出値を受信した制御部40は、図3の下図に示すように、第1検出部P1の検出値から第1ロール撓み量X1、第2検出部P2の検出値から第2ロール撓み量X2を計測(演算)する。ここで、図3の下図に示す長手方向に伸びる破線の直線は、撓みゼロ状態における第1ロール14aの位置を表した直線である(以下、基準線BLともいう)。すなわち、第1ロール撓み量X1及び第2ロール撓み量X2とは、圧延中に制御部40が受信した距離センサー20の検出値と、撓みゼロ状態における距離センサー20の検出値との差である。 The control unit 40 that has received the detection values of the first detection unit P1 and the second detection unit P2 detects the first roll deflection amount X1, the second detection from the detection value of the first detection unit P1, as shown in the lower diagram of FIG. The second roll deflection amount X2 is measured (calculated) from the detected value of the part P2. Here, the broken straight line extending in the longitudinal direction shown in the lower diagram of FIG. 3 is a straight line representing the position of the first roll 14a in the zero deflection state (hereinafter also referred to as a reference line BL). That is, the first roll deflection amount X1 and the second roll deflection amount X2 are the difference between the detection value of the distance sensor 20 received by the control unit 40 during rolling and the detection value of the distance sensor 20 in the zero deflection state. .
 そして、第1ロール撓み量X1及び第2ロール撓み量X2を計測した制御部40は、条鋼1の長手方向の両端部の厚さが均等になるように、第1油圧圧下装置12aと第2油圧圧下装置12bの圧下量(補正量)の演算を行う。 And the control part 40 which measured the 1st roll deflection amount X1 and the 2nd roll deflection amount X2 is the 1st hydraulic reduction device 12a and 2nd so that the thickness of the both ends of the longitudinal direction of the strip 1 may become equal. The reduction amount (correction amount) of the hydraulic reduction device 12b is calculated.
 具体的には、先ず、演算部42において第1ロール撓み量X1と第2ロール撓み量X2から第1検出部P1と第2検出部P2の基準線BLに対する長手方向の傾き(両端間の傾きS1に相当)を次の演算式を用いて演算する。 Specifically, first, in the calculation unit 42, the longitudinal inclination (the inclination between both ends) with respect to the reference line BL of the first detection unit P1 and the second detection unit P2 from the first roll deflection amount X1 and the second roll deflection amount X2. (Corresponding to S1) is calculated using the following equation.
 両端間の傾きS1=(第1ロール撓み量X1-第2ロール撓み量X2)/(第2距離L2-第1距離L1)
 ここで図3の下図に示すように、第1距離L1とは、ロール中心線RCから第1検出部P1までの長手方向の距離であり、第2距離L2とは、ロール中心線RCから第2検出部P2までの長手方向の距離である。また、支持部距離L(後述の演算式に用いる)とは、ロール中心線RCから第1支持部13aまでの長手方向の距離である。そして、これらの値は、使用する圧延部分の長手方向の位置や圧延機10の構成等により決まるため、あらかじめ記憶部41に記憶されている。
Inclination S1 between both ends = (first roll deflection amount X1−second roll deflection amount X2) / (second distance L2−first distance L1)
Here, as shown in the lower diagram of FIG. 3, the first distance L1 is a distance in the longitudinal direction from the roll center line RC to the first detection unit P1, and the second distance L2 is the first distance from the roll center line RC. 2 is the distance in the longitudinal direction to the detection unit P2. Further, the support portion distance L (used in an arithmetic expression described later) is a distance in the longitudinal direction from the roll center line RC to the first support portion 13a. These values are stored in advance in the storage unit 41 because they are determined by the position in the longitudinal direction of the rolling part to be used, the configuration of the rolling mill 10, and the like.
 両端間の傾きS1を演算した演算部42は、第1支持部13aと第2支持部13bの上下方向の補正量を次の演算式を用いて演算する。 The calculation unit 42 that has calculated the slope S1 between both ends calculates the vertical correction amounts of the first support unit 13a and the second support unit 13b using the following calculation formula.
 第1油圧圧下装置12a(第1支持部13a)の補正量=((第1ロール撓み量X1+第2ロール撓み量X2)/2)-(両端間の傾きS1×支持部距離L)
 第2油圧圧下装置12b(第2支持部13b)の補正量=((第1ロール撓み量X1+第2ロール撓み量X2)/2)+(両端間の傾きS1×支持部距離L)
 これら演算式の「(第1ロール撓み量X1+第2ロール撓み量X2)/2」の部分は、第1ロール撓み量X1と第2ロール撓み量X2の平均値(以下、平均ロール撓み量ともいう)であり、「(両端間の傾きS1×支持部距離L)」の部分は、両端間の傾きS1の傾斜を基準線BLに沿うようにするための支持部の補正量である。
Correction amount of the first hydraulic pressure reducing device 12a (first support portion 13a) = ((first roll deflection amount X1 + second roll deflection amount X2) / 2) − (inclination S1 between both ends × support portion distance L)
Correction amount of the second hydraulic pressure reducing device 12b (second support portion 13b) = ((first roll deflection amount X1 + second roll deflection amount X2) / 2) + (inclination S1 between both ends × support portion distance L)
The portion of “(first roll deflection amount X1 + second roll deflection amount X2) / 2” in these arithmetic expressions is an average value of the first roll deflection amount X1 and the second roll deflection amount X2 (hereinafter, both the average roll deflection amount and the average roll deflection amount). The portion “(inclination S1 between both ends × support portion distance L)” is a correction amount of the support portion for making the inclination of the inclination S1 between both ends along the reference line BL.
 そうしたら、制御部40は、演算された補正量に基づいてそれぞれの油圧圧下装置に接続している支持部を上下方向へ移動させる。すなわち、平均ロール撓み量分の圧下量を増やすと共に、両端間の傾きS1の傾斜が基準線BLに沿うように、第1支持部13aと第2支持部13bを上下方向へ移動させる。 If it does so, the control part 40 will move the support part connected to each hydraulic pressure reduction apparatus to an up-down direction based on the calculated correction amount. That is, the first support portion 13a and the second support portion 13b are moved in the vertical direction so that the amount of reduction of the average roll deflection amount is increased and the inclination S1 between both ends is along the reference line BL.
 具体的には、第1油圧圧下装置12aの補正量は、ロールの撓みによる圧下量不足を補うための平均ロール撓み量分の圧下量の増分(正の値)と、両端間の傾きS1の傾斜が基準線BLに沿うようにするための圧下量の増分(負の値)との和であり、これが正の値を取るときは第1油圧圧下装置12aの圧下量を増加させることになるので、第1支持部13aを下方向に補正量の分だけ多く移動させることになり、逆に負の値を取るときは第1油圧圧下装置12aの圧下量を減少させることになるので、第1支持部13aを上方向に補正量の分だけ移動させることになる。 Specifically, the correction amount of the first hydraulic pressure reducing device 12a includes an increment (positive value) of a reduction amount corresponding to an average roll deflection amount to compensate for a shortage of the reduction amount due to the deflection of the roll, and a slope S1 between both ends. This is the sum of the increment (negative value) of the amount of reduction for causing the inclination to follow the reference line BL. When this takes a positive value, the amount of reduction of the first hydraulic reduction device 12a is increased. Therefore, the first support portion 13a is moved downward by an amount corresponding to the correction amount. Conversely, when taking a negative value, the reduction amount of the first hydraulic reduction device 12a is decreased. The one support portion 13a is moved upward by the correction amount.
 また、第2油圧圧下装置12bの補正量は、ロールの撓みによる圧下量不足を補うための平均ロール撓み量分の圧下量の増分(正の値)と、両端間の傾きS1の傾斜が基準線BLに沿うようにするための圧下量の増分(正の値)との和であり、第2油圧圧下装置12bの圧下量を増加させることになるので、第2支持部13bを下方向に補正量の分だけ多く移動させることになる。 Further, the correction amount of the second hydraulic pressure reducing device 12b is based on the increment (positive value) of the average roll deflection amount to compensate for the shortage of the roll reduction amount due to the roll deflection, and the slope of the slope S1 between both ends. This is the sum of the increase (positive value) of the reduction amount to be along the line BL and increases the reduction amount of the second hydraulic reduction device 12b, so that the second support portion 13b is moved downward. The movement is increased by the correction amount.
 このようにして、第1ロール14aに対する第1油圧圧下装置12aと第2油圧圧下装置12bの圧下量の制御を行う。 In this way, the amount of reduction of the first hydraulic reduction device 12a and the second hydraulic reduction device 12b with respect to the first roll 14a is controlled.
 ここで、図3の上図に示すように、第2ロール14bも第1ロール14aと同様に撓んでいるため、第2ロール14bに対しても油圧圧下装置の補正(制御)が必要である。そこで、本実施の形態においては、第2ロール14bも第1ロール14aと同じように撓んでいると仮定する。すなわち、条鋼1の厚み方向(上下方向)の中心線に対して上下対称に同じように撓んでいることとする。 Here, as shown in the upper diagram of FIG. 3, since the second roll 14b is bent in the same manner as the first roll 14a, correction (control) of the hydraulic pressure reducing device is also required for the second roll 14b. . Therefore, in the present embodiment, it is assumed that the second roll 14b is bent in the same manner as the first roll 14a. That is, it shall be bent similarly symmetrically with respect to the center line of the strip 1 in the thickness direction (vertical direction).
 しかしながら、第2ロール14bには、上下方向へ移動するための装置等が設けられていないため、第2ロール14bは移動することができない。そのため、本実施の形態においては、第1ロール14aが第1ロール14aの撓んだ分と第2ロール14bの撓んだ分(すなわち、第1ロール14aの撓んだ分の2倍)を上下方向へ移動することとする。このようにすれば、第1ロール14a及び第2ロール14bに対して、第1油圧圧下装置12aと第2油圧圧下装置12bの圧下量の制御を行うことができる。 However, since the second roll 14b is not provided with a device for moving in the vertical direction, the second roll 14b cannot move. Therefore, in the present embodiment, the amount of bending of the first roll 14a by the first roll 14a and the amount of bending of the second roll 14b (that is, twice the amount of bending of the first roll 14a). It will move in the vertical direction. If it does in this way, control of the amount of reduction of the 1st hydraulic reduction device 12a and the 2nd hydraulic reduction device 12b can be performed to the 1st roll 14a and the 2nd roll 14b.
 上記のように第1ロール14aが上下方向へ移動することより、第1ロール14aと第2ロール14bの平均ロール撓み量分を移動し、かつ、圧延部分の傾きを小さくする(双方の互いの両端間の傾きの傾斜を基準線BLに沿うようにする)ことができる。すなわち、制御部40は、距離センサー20の検出値に基づいて、ロールの撓みにより生じる圧下量の不足分を補って条鋼1の寸法誤差を減少させると共に、第1ロール14aに設定された圧延部分APの長手方向における両端間の傾きと第2ロール14bに設定された圧延部分APの長手方向における両端間の傾きとを小さくすることで断面形状精度が向上するように、第1油圧圧下装置12aの圧下量と第2油圧圧下装置12bの圧下量とを制御する。 As described above, the first roll 14a moves in the vertical direction, thereby moving the average roll deflection amount of the first roll 14a and the second roll 14b, and reducing the inclination of the rolled portion (both of each other The inclination of the inclination between both ends can be along the reference line BL). That is, based on the detection value of the distance sensor 20, the control unit 40 compensates for the shortage of the reduction amount caused by the bending of the roll to reduce the dimensional error of the bar 1 and the rolling portion set in the first roll 14a. The first hydraulic pressure reducing device 12a improves the cross-sectional shape accuracy by reducing the inclination between both ends in the longitudinal direction of the AP and the inclination between both ends in the longitudinal direction of the rolled portion AP set in the second roll 14b. And a reduction amount of the second hydraulic reduction device 12b are controlled.
 また、本実施の形態に係る制御部40は、距離センサー20から第1検出部P1と第2検出部P2の距離情報を受信したら、即座に補正量の演算を演算部42で実行して、補正が必要であれば、第1油圧圧下装置12aと第2油圧圧下装置12bに対して油圧圧下装置の圧下量の制御を行い、次の距離センサー20からの送信を待つ。そして、距離センサー20は、第1検出部P1と第2検出部P2までの距離を連続して検出し、該検出結果を制御部40へ即座に送信している。つまり、制御部40は、条鋼1の圧延の実行中、第1油圧圧下装置12aの圧下量と第2油圧圧下装置12bの圧下量とをリアルタイムに制御する。 Moreover, the control part 40 which concerns on this Embodiment will perform the calculation of a correction amount immediately in the calculating part 42, if the distance information of the 1st detection part P1 and the 2nd detection part P2 is received from the distance sensor 20, If correction is necessary, the amount of reduction of the hydraulic pressure reduction device is controlled with respect to the first hydraulic pressure reduction device 12a and the second hydraulic pressure reduction device 12b, and the next transmission from the distance sensor 20 is awaited. The distance sensor 20 continuously detects the distance between the first detection unit P1 and the second detection unit P2, and immediately transmits the detection result to the control unit 40. That is, the control unit 40 controls the reduction amount of the first hydraulic reduction device 12a and the reduction amount of the second hydraulic reduction device 12b in real time while the strip 1 is being rolled.
 ===本実施の形態に係る圧延機10の有効性について===
 上述したとおり、本実施の形態に係る圧延機10は、圧延対象の条鋼1を圧延するための第1ロール14a及び第2ロール14bを含むロール対と、第1ロール14aの両端において第1ロール14aを回転可能に支持する第1支持部13a及び第2支持部13bにそれぞれ接続され、第1ロール14aを第2ロール14bに対して相対的に移動させる第1油圧圧下装置12a及び第2油圧圧下装置12bと、を備える圧延機10であって、ロール対の長手方向における一部の連続する領域に設定された、条鋼1を圧延する部分である圧延部分APが、第1支持部13aから圧延部分APまでの距離と第2支持部13bから圧延部分APまでの距離とが互いに異なる位置に設定されており、第1ロール14aの圧延部分APにおけるロール撓み量を計測するよう構成された距離センサー20と、距離センサー20の検出値に基づいて第1油圧圧下装置12aの圧下量と第2油圧圧下装置12bの圧下量とを制御するよう構成された制御部40と、を備えることとした。そのため、非中心圧延機を用いた条鋼1の圧延において、高精度な形状制御を実現することが可能となる。
=== Effectiveness of the rolling mill 10 according to the present embodiment ===
As described above, the rolling mill 10 according to the present embodiment includes a roll pair including the first roll 14a and the second roll 14b for rolling the strip 1 to be rolled, and the first roll at both ends of the first roll 14a. A first hydraulic pressure reducing device 12a and a second hydraulic pressure device that are respectively connected to a first support portion 13a and a second support portion 13b that rotatably support 14a and move the first roll 14a relative to the second roll 14b. The rolling part 10 is a rolling mill 10 including a rolling device 12b, and a rolling part AP, which is a part for rolling the strip 1 and is set in a part of a continuous region in the longitudinal direction of the roll pair, is from the first support part 13a. The distance from the rolling portion AP and the distance from the second support portion 13b to the rolling portion AP are set at different positions, and the roll deflection at the rolling portion AP of the first roll 14a is set. A distance sensor 20 configured to measure the amount, and a control configured to control a reduction amount of the first hydraulic reduction device 12a and a reduction amount of the second hydraulic reduction device 12b based on a detection value of the distance sensor 20. Part 40. Therefore, it is possible to realize highly accurate shape control in rolling the strip 1 using a non-center rolling mill.
 非中心圧延機を用いて条鋼1を圧延すると、ロールの撓みにより圧下量の不足とロールの圧延部分APにおける傾きが生じ、条鋼1に寸法誤差が発生すると共に、圧延された条鋼1の長手方向の両端部における厚さに違いが発生するため、条鋼1の断面の形状精度不良や、条鋼1の長手方向の曲り等が発生する問題があった。 When the strip 1 is rolled using a non-center rolling mill, a roll amount is insufficient due to the bending of the roll and an inclination in the rolled portion AP of the roll is generated, causing a dimensional error in the strip 1 and the longitudinal direction of the rolled strip 1. Therefore, there is a problem in that the shape accuracy of the cross section of the bar 1 or bending in the longitudinal direction of the bar 1 occurs.
 これに対し、本実施の形態に係る圧延機10においては、第1ロール14aの圧延部分APにおけるロール撓み量を計測するよう構成された距離センサー20と、距離センサー20の検出値に基づいて第1油圧圧下装置12aの圧下量と第2油圧圧下装置12bの圧下量とを制御するよう構成された制御部40と、を備えることとした。すなわち、距離センサー20を用いて第1ロール14aの変形を検出することにより、圧延時に発生するロール対の変形を直接的に把握することができ、該変形から圧延部分APのロール撓み量を計測することが可能となる。そして、該ロール撓み量に応じて第1油圧圧下装置12aの圧下量と第2油圧圧下装置12bの圧下量を制御部40が制御することにより、非中心圧延機を用いた条鋼1の圧延において、高精度な形状制御を実現することが可能となる。 On the other hand, in the rolling mill 10 according to the present embodiment, the distance sensor 20 configured to measure the amount of roll deflection in the rolling portion AP of the first roll 14a and the detection value of the distance sensor 20 are used. And a control unit 40 configured to control the reduction amount of the first hydraulic reduction device 12a and the reduction amount of the second hydraulic reduction device 12b. That is, by detecting the deformation of the first roll 14a using the distance sensor 20, the deformation of the roll pair that occurs during rolling can be directly grasped, and the roll deflection amount of the rolled portion AP is measured from the deformation. It becomes possible to do. In the rolling of the bar 1 using the non-center rolling mill, the control unit 40 controls the reduction amount of the first hydraulic reduction device 12a and the reduction amount of the second hydraulic reduction device 12b according to the roll deflection amount. It becomes possible to realize highly accurate shape control.
 また、本実施の形態においては、圧延部分APの長手方向における両端部のロール撓み量が計測できるよう構成されていることとした。そのため、圧延部分APの長手方向における両端部のロール撓み量に基づいて油圧圧下装置の圧下量を補正することで、ロールの撓みにより生じる圧下量の不足分を補って条鋼1の寸法誤差を減少させると共に、第1ロール14aに設定された圧延部分APの長手方向における両端間の傾きと第2ロール14bに設定された圧延部分APの長手方向における両端間の傾きとを小さくすることができ、高精度な形状制御を実現することが可能となる。 Moreover, in this Embodiment, it was supposed that it was comprised so that the roll deflection amount of the both ends in the longitudinal direction of the rolling part AP could be measured. Therefore, by correcting the reduction amount of the hydraulic reduction device based on the roll deflection amount at both ends in the longitudinal direction of the rolled portion AP, the dimensional error of the bar 1 is reduced by compensating for the shortage of the reduction amount caused by the roll deflection. In addition, the inclination between both ends in the longitudinal direction of the rolling portion AP set on the first roll 14a and the inclination between both ends in the longitudinal direction of the rolling portion AP set on the second roll 14b can be reduced, High-precision shape control can be realized.
 また、本実施の形態においては、制御部40は、条鋼1の圧延の実行中、第1油圧圧下装置12aの圧下量と第2油圧圧下装置12bの圧下量とをリアルタイムに制御することとした。つまり、制御部40がリアルタイムに油圧圧下装置の圧下量を制御することにより、油圧圧下装置の圧下量の制御が必要となった場合に、速やかに該制御をすることができる。つまり、非中心圧延機を用いた条鋼1の圧延において、より一層高精度な形状制御を実現することが可能となる。 In the present embodiment, the control unit 40 controls the reduction amount of the first hydraulic reduction device 12a and the reduction amount of the second hydraulic reduction device 12b in real time while the strip 1 is being rolled. . That is, when the control unit 40 controls the reduction amount of the hydraulic reduction device in real time, when it becomes necessary to control the reduction amount of the hydraulic reduction device, the control can be performed quickly. That is, it is possible to realize shape control with higher accuracy in rolling the strip 1 using a non-center rolling mill.
 また、本実施の形態においては、圧延部分APが、ロール対の長手方向において異なる位置に複数設定されていることとした。つまり、ロール対の長手方向において異なる位置に複数設定された圧延部分APの全ての圧延部分APについて、本発明を適用することが可能となる。すなわち、いずれの圧延部分APを用いて条鋼1の圧延を行っても、高精度な形状制御を実現することが可能となる。 In the present embodiment, a plurality of rolled portions AP are set at different positions in the longitudinal direction of the roll pair. That is, the present invention can be applied to all the rolling parts AP of the rolling parts AP that are set at different positions in the longitudinal direction of the roll pair. That is, it is possible to realize highly accurate shape control even when the strip 1 is rolled using any rolling portion AP.
 また、本実施の形態においては、距離センサー20を長手方向に沿って移動可能に支持する可動支持装置30を備えることとした。すなわち、圧延部分APを別の圧延部分APに変更した場合に、可動支持装置30により変更後の圧延部分APへ距離センサー20を移動させることができ、移動させた距離センサー20により変更後の圧延部分APの値を検出することが可能となる。そのため、複数の圧延部分APの各々毎に距離センサー20を設ける場合に比べて、距離センサー20を減らすことが可能となる。 Further, in the present embodiment, the movable support device 30 that supports the distance sensor 20 so as to be movable along the longitudinal direction is provided. That is, when the rolling part AP is changed to another rolling part AP, the distance sensor 20 can be moved to the changed rolling part AP by the movable support device 30, and the changed rolling is performed by the moved distance sensor 20. The value of the partial AP can be detected. Therefore, the distance sensor 20 can be reduced as compared with the case where the distance sensor 20 is provided for each of the plurality of rolling portions AP.
 また、本実施の形態においては、可動支持装置30は、距離センサー20が取り付けられた取付部30aと、取付部30aが摺動可能に係合したレール部30bと、取付部30aをレール部30bに沿って移動させる駆動装置とを備えていることとした。すなわち、取付部30aとレール部30bと駆動装置という簡単な構造で確実な可動支持装置30を実現することができる。 In the present embodiment, the movable support device 30 includes an attachment portion 30a to which the distance sensor 20 is attached, a rail portion 30b in which the attachment portion 30a is slidably engaged, and the attachment portion 30a to the rail portion 30b. And a driving device that is moved along. That is, the reliable movable support device 30 can be realized with a simple structure of the attachment portion 30a, the rail portion 30b, and the drive device.
 ===その他の実施の形態===
 以上、上記実施の形態に基づき本発明に係る圧延機10を説明したが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明は上記実施の形態に限定されるものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはもちろんである。
=== Other Embodiments ===
As mentioned above, although the rolling mill 10 which concerns on this invention was demonstrated based on the said embodiment, embodiment mentioned above is for making an understanding of this invention easy, and this invention is the said embodiment. It is not limited to. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.
 また、上記実施の形態では、ロール対がフラットロールであったが、これに限らない。例えば、カリバー(ロール対に設けられた溝で圧延する条鋼1の断面形状と同じ溝形状をしており、該溝を通過させることにより条鋼1の断面形状を形成する。上記実施の形態における圧延部分APに相当する)が設けられたロール対でもよい。つまり、圧延部分APには、第1ロール14a及び第2ロール14bのそれぞれにカリバーが設けられていてもよい。 In the above embodiment, the roll pair is a flat roll, but the present invention is not limited to this. For example, a caliber (having the same groove shape as that of the steel strip 1 rolled in the groove provided in the roll pair is formed, and the cross-sectional shape of the steel bar 1 is formed by passing the groove. Rolling in the above embodiment A roll pair provided with (corresponding to the partial AP) may be used. That is, the caliber may be provided in each of the 1st roll 14a and the 2nd roll 14b in the rolling part AP.
 カリバーが設けられたロール対を用いた圧延においては、非中心圧延機として圧延が行われることが一般的であるため(頻繁に行われるため)、本発明がより有効に作用する。 In rolling using a roll pair provided with a caliber, since rolling is generally performed as a non-central rolling mill (because it is frequently performed), the present invention works more effectively.
 また、上記実施の形態においては、バランスシリンダ機構50が第1ロール14aの上側に設けられ、可動支持装置30がバランスビーム51の下側面に設けられていたが、これに限らない。例えば、図4に示すように、可動支持装置30の設置位置を変更し、バランスシリンダ機構50の代わりとして第1支持部バランスシリンダ60aと第2支持部バランスシリンダ60bを設けてもよい。 In the above embodiment, the balance cylinder mechanism 50 is provided on the upper side of the first roll 14a and the movable support device 30 is provided on the lower surface of the balance beam 51. However, the present invention is not limited to this. For example, as shown in FIG. 4, the installation position of the movable support device 30 may be changed and a first support portion balance cylinder 60 a and a second support portion balance cylinder 60 b may be provided instead of the balance cylinder mechanism 50.
 図4は、第2実施の形態に係る圧延機10の正面概略図である。図4に示すように、第1実施の形態との相違点は、可動支持装置30がハウジング11の上側面に設けられている点と、バランスシリンダ機構50の代わりとして、第1支持部13aに第1支持部バランスシリンダ60aを設け、第2支持部13bに第2支持部バランスシリンダ60bを設けている点である。 FIG. 4 is a schematic front view of the rolling mill 10 according to the second embodiment. As shown in FIG. 4, the difference from the first embodiment is that the movable support device 30 is provided on the upper side surface of the housing 11, and the first support portion 13 a is used instead of the balance cylinder mechanism 50. The first support portion balance cylinder 60a is provided, and the second support portion balance cylinder 60b is provided in the second support portion 13b.
 また、第2実施の形態の変形例としては、例えば、図5に示すように、可動支持装置30の設置位置をハウジング11から固定ビーム70に変更する例が挙げられる。図5は第3実施の形態に係る圧延機10の正面概略図である。 Further, as a modification of the second embodiment, for example, as shown in FIG. 5, there is an example in which the installation position of the movable support device 30 is changed from the housing 11 to the fixed beam 70. FIG. 5 is a schematic front view of the rolling mill 10 according to the third embodiment.
 図5に示すように、第2実施の形態との相違点は、ハウジング11とは独立して固定ビーム70が設けられ、ハウジング11ではなく当該固定ビーム70の下側面に可動支持装置30が設けられている点である。 As shown in FIG. 5, the difference from the second embodiment is that a fixed beam 70 is provided independently of the housing 11, and the movable support device 30 is provided not on the housing 11 but on the lower surface of the fixed beam 70. This is the point.
 なお、第1実施の形態においては、第1支持部13a側と第2支持部13b側との間の圧下荷重(第1ロードセル15aと第2ロードセル15bとで測定される測定値)の差に起因して生じる第1ロール14aの傾き(第1支持部13a側と第2支持部13bの高さ位置の相違)はAGC機能によって補正されるため、距離センサー20が設けられたバランスビーム51(レール部30b)は常に水平に保たれ、制御部40は、距離センサー20の検出値に基づいてロール撓み量のみを正確に計測することができる。 In the first embodiment, the difference in the rolling load between the first support portion 13a side and the second support portion 13b side (measured value measured by the first load cell 15a and the second load cell 15b) is caused. Since the inclination of the first roll 14a caused by the difference (the difference in height position between the first support portion 13a and the second support portion 13b) is corrected by the AGC function, the balance beam 51 provided with the distance sensor 20 ( The rail portion 30b) is always kept horizontal, and the control unit 40 can accurately measure only the roll deflection amount based on the detection value of the distance sensor 20.
 しかしながら、第2実施の形態と第3実施の形態においては、AGC機能によってレール部30bを水平に保つことはできず、制御部40は、距離センサー20の検出値に基づいてロール撓み量を正確に計測することができない。そのため、第2実施の形態と第3実施の形態に係る制御部40は、距離センサー20の検出値に対してハウジング11の縦撓みによって生じる変位分の補正をし、該補正された値に基づいて油圧圧下装置12a及び油圧圧下装置12bの圧下量を制御する。 However, in the second embodiment and the third embodiment, the rail portion 30b cannot be kept horizontal by the AGC function, and the control unit 40 accurately determines the roll deflection amount based on the detection value of the distance sensor 20. Cannot be measured. Therefore, the control unit 40 according to the second embodiment and the third embodiment corrects the amount of displacement caused by the vertical deflection of the housing 11 with respect to the detection value of the distance sensor 20, and based on the corrected value. Thus, the amount of reduction of the hydraulic reduction device 12a and the hydraulic reduction device 12b is controlled.
 また、上記実施の形態においては、距離センサー20が第1ロール14aの上側のみに設けられていたが、これに限らない。例えば、第2ロール14bの下側のみに設けても構わないし、第1ロール14aの上側と第2ロール14bの下側の両方側に設けても構わない。但し、圧延時に用いられる冷却水がかからないように第1ロール14aの上側に設けることが好ましい。 In the above embodiment, the distance sensor 20 is provided only on the upper side of the first roll 14a. However, the present invention is not limited to this. For example, it may be provided only on the lower side of the second roll 14b, or may be provided on both the upper side of the first roll 14a and the lower side of the second roll 14b. However, it is preferable to provide on the upper side of the 1st roll 14a so that the cooling water used at the time of rolling may not be applied.
 距離センサー20を第2ロール14bの下側のみに設けた場合は、制御部40が上記実施の形態で説明した演算を第2ロール14bの圧延部分APについて行えばよい。また、距離センサー20を第1ロール14aの上側と第2ロール14bの下側の両方側に設けた場合は、制御部40が上記実施の形態で説明した演算を第1ロール14aの圧延部分APと第2ロール14bの圧延部分APのそれぞれについて行い、それぞれの演算結果に基づいて(どちらか一方のロールが条鋼1の上下方向の中心線に対して上下対称に同じように撓んでいることと仮定しないで)、第1油圧圧下装置12a及び第2油圧圧下装置12bの圧下量を演算して制御すればよい。 When the distance sensor 20 is provided only on the lower side of the second roll 14b, the control unit 40 may perform the calculation described in the above embodiment for the rolling portion AP of the second roll 14b. Further, when the distance sensor 20 is provided on both the upper side of the first roll 14a and the lower side of the second roll 14b, the control unit 40 performs the calculation described in the above embodiment on the rolling portion AP of the first roll 14a. And each of the rolling portions AP of the second roll 14b, and based on the respective calculation results (one of the rolls is bent in the same manner symmetrically with respect to the vertical center line of the bar 1) It is only necessary to calculate and control the amount of reduction of the first hydraulic reduction device 12a and the second hydraulic reduction device 12b.
 つまり、圧延機10は、第1ロール14a及び第2ロール14bのうちの少なくとも一方のロールの圧延部分APにおけるロール撓み量を計測するよう構成された距離センサー20を備えていればよい。 That is, the rolling mill 10 only needs to include the distance sensor 20 configured to measure the roll deflection amount in the rolling portion AP of at least one of the first roll 14a and the second roll 14b.
 また、上記実施の形態においては、可動支持装置30を備えることとして距離センサー20を長手方向に移動させることとしたが、これに限らない。例えば、複数設定された圧延部分APの全てに対して距離センサー20を設けて移動不能としてもよい。つまり、異なる位置に設定された複数の圧延部分APの各々毎に、少なくとも1つの距離センサー20が備えられていてもよい。このようにすれば、距離センサー20を移動させる機構を省略することが可能となるために、距離センサー20に係る構成を簡略化することが可能となる。 In the above embodiment, the distance sensor 20 is moved in the longitudinal direction by providing the movable support device 30, but the present invention is not limited to this. For example, the distance sensor 20 may be provided for all of the plurality of set rolling parts AP so that the movement cannot be performed. That is, at least one distance sensor 20 may be provided for each of the plurality of rolling portions AP set at different positions. In this way, since the mechanism for moving the distance sensor 20 can be omitted, the configuration related to the distance sensor 20 can be simplified.
 また、上記実施の形態においては、2つの距離センサー20を用いた圧延機10の制御について説明したが、これに限らない。例えば、3つ以上の距離センサー20を用いて圧延機10を制御しても構わない。 Moreover, in the said embodiment, although control of the rolling mill 10 using the two distance sensors 20 was demonstrated, it is not restricted to this. For example, the rolling mill 10 may be controlled using three or more distance sensors 20.
1 条鋼
10 圧延機
11 ハウジング
12a 第1油圧圧下装置
12b 第2油圧圧下装置
13a 第1支持部
13b 第2支持部
14a 第1ロール
14b 第2ロール
15a 第1ロードセル
15b 第2ロードセル
20 距離センサー
30 可動支持装置
30a 取付部
30b レール部
32 駆動部
40 制御部
41 記憶部
42 演算部
50 バランスシリンダ機構
50a 第1バランスシリンダ
50b 第2バランスシリンダ
51 バランスビーム
60a 第1支持部バランスシリンダ
60b 第2支持部バランスシリンダ
70 固定ビーム
AP 圧延部分
P1 第1検出部
P2 第2検出部
S1 両端間の傾き
X1 第1ロール撓み量
X2 第2ロール撓み量
RC ロール中心線
BL 基準線
L1 第1距離
L2 第2距離
L 支持部距離
1 steel strip 10 rolling mill 11 housing 12a first hydraulic reduction device 12b second hydraulic reduction device 13a first support portion 13b second support portion 14a first roll 14b second roll 15a first load cell 15b second load cell 20 distance sensor 30 movable Support device 30a Mounting portion 30b Rail portion 32 Drive portion 40 Control portion 41 Storage portion 42 Calculation portion 50 Balance cylinder mechanism 50a First balance cylinder 50b Second balance cylinder 51 Balance beam 60a First support portion balance cylinder 60b Second support portion balance Cylinder 70 Fixed beam AP Rolled portion P1 First detector P2 Second detector S1 Inclination X1 between both ends X1 First roll deflection amount X2 Second roll deflection amount RC Roll center line BL Reference line L1 First distance L2 Second distance L Support distance

Claims (9)

  1.  圧延対象の条鋼を圧延するための第1ロール及び第2ロールを含むロール対と、
     前記第1ロールの両端において前記第1ロールを回転可能に支持する第1支持部及び第2支持部にそれぞれ接続され、前記第1ロールを前記第2ロールに対して相対的に移動させる第1油圧圧下装置及び第2油圧圧下装置と、を備える圧延機であって、
     前記ロール対の長手方向における一部の連続する領域に設定された、前記条鋼を圧延する部分である圧延部分が、前記第1支持部から前記圧延部分までの距離と前記第2支持部から前記圧延部分までの距離とが互いに異なる位置に設定されており、
     前記第1ロール及び前記第2ロールのうちの少なくとも一方のロールの前記圧延部分におけるロール撓み量を計測するよう構成された距離センサーと、
     前記距離センサーの検出値に基づいて前記第1油圧圧下装置の圧下量と前記第2油圧圧下装置の圧下量とを制御するよう構成された制御部と、を備えることを特徴とする圧延機。
    A roll pair including a first roll and a second roll for rolling the strip to be rolled;
    A first support that is connected to a first support and a second support that rotatably support the first roll at both ends of the first roll, and that moves the first roll relative to the second roll. A rolling mill comprising a hydraulic reduction device and a second hydraulic reduction device,
    The rolling part, which is a part for rolling the bar steel, is set in a part of the continuous region in the longitudinal direction of the roll pair, and the distance from the first support part to the rolling part and the second support part The distance to the rolling part is set at a different position,
    A distance sensor configured to measure a roll deflection amount in the rolled portion of at least one of the first roll and the second roll; and
    A rolling machine comprising: a control unit configured to control a reduction amount of the first hydraulic reduction device and a reduction amount of the second hydraulic reduction device based on a detection value of the distance sensor.
  2.  請求項1に記載の圧延機であって、
     前記圧延部分が、前記ロール対の長手方向において異なる位置に複数設定されていることを特徴とする圧延機。
    The rolling mill according to claim 1,
    A rolling mill characterized in that a plurality of the rolling portions are set at different positions in the longitudinal direction of the roll pair.
  3.  請求項2に記載の圧延機であって、
     異なる位置に設定された複数の前記圧延部分の各々毎に、少なくとも1つの前記距離センサーが備えられていることを特徴とする圧延機。
    A rolling mill according to claim 2,
    A rolling mill characterized in that at least one distance sensor is provided for each of the plurality of rolling portions set at different positions.
  4.  請求項1又は2に記載の圧延機であって、
     前記距離センサーを前記長手方向に沿って移動可能に支持する可動支持装置を備えることを特徴とする圧延機。
    The rolling mill according to claim 1 or 2,
    A rolling mill comprising: a movable support device that supports the distance sensor so as to be movable along the longitudinal direction.
  5.  請求項4に記載の圧延機であって、
     前記可動支持装置は、前記距離センサーが取り付けられた取付部と、前記取付部が摺動可能に係合したレール部と、前記取付部を前記レール部に沿って移動させる駆動装置とを備えていることを特徴とする圧延機。
    A rolling mill according to claim 4, wherein
    The movable support device includes an attachment portion to which the distance sensor is attached, a rail portion with which the attachment portion is slidably engaged, and a drive device that moves the attachment portion along the rail portion. A rolling mill characterized by having
  6.  請求項1から5のいずれか1項に記載の圧延機であって、
     前記圧延部分の前記長手方向における両端部の前記ロール撓み量が計測できるよう構成されていることを特徴とする圧延機。
    A rolling mill according to any one of claims 1 to 5,
    A rolling mill characterized in that the roll deflection amount at both end portions in the longitudinal direction of the rolled portion can be measured.
  7.  請求項1から6のいずれか1項に記載の圧延機であって、
     前記制御部は、前記条鋼の圧延の実行中、前記第1油圧圧下装置の圧下量と前記第2油圧圧下装置の圧下量とをリアルタイムに制御するよう構成されていることを特徴とする圧延機。
    The rolling mill according to any one of claims 1 to 6,
    The control unit is configured to control a reduction amount of the first hydraulic reduction device and a reduction amount of the second hydraulic reduction device in real time during the rolling of the bar steel. .
  8.  請求項1から7のいずれか1項に記載の圧延機であって、
     前記圧延部分には、前記第1ロール及び前記第2ロールのそれぞれにカリバーが設けられていることを特徴とする圧延機。
    A rolling mill according to any one of claims 1 to 7,
    In the rolling part, a caliber is provided on each of the first roll and the second roll.
  9.  圧延対象の条鋼を圧延するための第1ロール及び第2ロールを含むロール対と、
     前記第1ロールの両端において前記第1ロールを回転可能に支持する第1支持部及び第2支持部にそれぞれ接続され、前記第1ロールを前記第2ロールに対して相対的に移動させる第1油圧圧下装置及び第2油圧圧下装置と、を備える圧延機の制御方法であって、
     前記ロール対の長手方向における一部の連続する領域に設定される、前記条鋼を圧延する部分である圧延部分を、前記第1支持部から前記圧延部分までの距離と前記第2支持部から前記圧延部分までの距離とが互いに異なる位置に設定することと、
     前記第1ロール及び前記第2ロールのうちの少なくとも一方のロールの前記圧延部分におけるロール撓み量を計測することと、
     前記ロール撓み量に基づいて前記第1油圧圧下装置の圧下量と前記第2油圧圧下装置の圧下量とを制御することと、を含むことを特徴とする圧延機の制御方法。
    A roll pair including a first roll and a second roll for rolling the strip to be rolled;
    A first support that is connected to a first support and a second support that rotatably support the first roll at both ends of the first roll, and that moves the first roll relative to the second roll. A rolling mill control method comprising a hydraulic reduction device and a second hydraulic reduction device,
    The rolling part, which is a part for rolling the steel bar, set in a part of the continuous region in the longitudinal direction of the roll pair, the distance from the first support part to the rolling part and the second support part Setting the distance to the rolled part different from each other;
    Measuring the amount of roll deflection in the rolled portion of at least one of the first roll and the second roll;
    A control method for a rolling mill, comprising: controlling a reduction amount of the first hydraulic reduction device and a reduction amount of the second hydraulic reduction device based on the roll deflection amount.
PCT/JP2019/001024 2018-03-27 2019-01-16 Rolling mill and method for controlling rolling mill WO2019187508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/979,438 US20210001388A1 (en) 2018-03-27 2019-01-16 Rolling mill and method of controlling the same
CN201980021478.3A CN111902223B (en) 2018-03-27 2019-01-16 Rolling mill and control method thereof
KR1020207027435A KR102364870B1 (en) 2018-03-27 2019-01-16 The rolling mill and the control method of the rolling mill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018059550A JP6832309B2 (en) 2018-03-27 2018-03-27 Rolling machine and control method of rolling machine
JP2018-059550 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019187508A1 true WO2019187508A1 (en) 2019-10-03

Family

ID=68059824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001024 WO2019187508A1 (en) 2018-03-27 2019-01-16 Rolling mill and method for controlling rolling mill

Country Status (6)

Country Link
US (1) US20210001388A1 (en)
JP (1) JP6832309B2 (en)
KR (1) KR102364870B1 (en)
CN (1) CN111902223B (en)
TW (1) TWI701089B (en)
WO (1) WO2019187508A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112496029B (en) * 2020-11-06 2022-09-13 福建三宝钢铁有限公司 Controlled rolling and controlled cooling process for seawater corrosion resistant steel bar HRB400cE
CN115815338B (en) * 2023-01-10 2023-07-04 太原理工大学 Hydraulic pressing system suitable for double-machine linkage ultra-large shaft wedge cross rolling mill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295021A (en) * 1996-04-30 1997-11-18 Kawasaki Steel Corp Device for deciding operational quantity of shape control of material to be rolled and method therefor
JPH10166001A (en) * 1996-12-06 1998-06-23 Sumitomo Metal Ind Ltd Method for rolling metallic strip

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974652A (en) * 1972-11-21 1974-07-18
JPH04367306A (en) * 1991-06-11 1992-12-18 Nippon Steel Corp Bend preventing method at the time of rolling continuously cast billet
JPH0646567U (en) 1992-12-09 1994-06-28 カトー段ボール株式会社 Partition
US5613390A (en) * 1993-11-24 1997-03-25 Kawasaki Steel Corporation Corner reduction device equipped with corner rolls, control device thereof, and method of rolling by using these devices
CN1082851C (en) * 1994-07-08 2002-04-17 石川岛播磨重工业株式会社 Rolling method using both displacement and bending of roller, rolling machine and roller used for same
DE19530424A1 (en) * 1995-08-18 1997-02-20 Schloemann Siemag Ag Method for compensating forces on roll stands resulting from horizontal movements of the rolls
KR200301280Y1 (en) * 1998-12-19 2003-04-16 주식회사 포스코 Rolling roll control device by detecting strip tension
US7163047B2 (en) * 2005-03-21 2007-01-16 Nucor Corporation Pinch roll apparatus and method for operating the same
KR100711407B1 (en) * 2005-12-26 2007-04-30 주식회사 포스코 Method for adjusting the roll gap of single stand reversing mill
WO2012070099A1 (en) * 2010-11-22 2012-05-31 東芝三菱電機産業システム株式会社 Rolling mill control device
JP5469143B2 (en) * 2011-09-29 2014-04-09 株式会社日立製作所 Rolling control device, rolling control method, and rolling control program
CN104492813B (en) * 2014-11-24 2017-03-22 西安捷锐精密冶金设备有限公司 Integral arch type four-roller rolling mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295021A (en) * 1996-04-30 1997-11-18 Kawasaki Steel Corp Device for deciding operational quantity of shape control of material to be rolled and method therefor
JPH10166001A (en) * 1996-12-06 1998-06-23 Sumitomo Metal Ind Ltd Method for rolling metallic strip

Also Published As

Publication number Publication date
CN111902223A (en) 2020-11-06
JP2019171394A (en) 2019-10-10
US20210001388A1 (en) 2021-01-07
KR102364870B1 (en) 2022-02-17
TW201941840A (en) 2019-11-01
KR20200121877A (en) 2020-10-26
CN111902223B (en) 2022-03-01
JP6832309B2 (en) 2021-02-24
TWI701089B (en) 2020-08-11

Similar Documents

Publication Publication Date Title
US7775079B2 (en) Rolling method and rolling apparatus for flat-rolled metal materials
JP5060432B2 (en) Hot rolling tension control device and tension control method
US5560237A (en) Rolling mill and method
WO2019187508A1 (en) Rolling mill and method for controlling rolling mill
JP4214150B2 (en) Rolling method and rolling apparatus for metal sheet
JP2013066934A (en) Metal plate rolling device and metal plate rolling method
JP5742703B2 (en) Metal plate rolling machine and rolling method
JPWO2009113413A1 (en) Sheet rolling machine and sheet rolling method
CN103372566A (en) Rolling mill equipped with work roll shift function
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JP3696733B2 (en) Rolling shape control method and rolling shape control device for cold rolled sheet
JP2020040097A (en) Rolling machine and setting method of rolling machine
JP7127446B2 (en) How to set the rolling mill
JP3252703B2 (en) Rolling mill, rolling method, and rolling mill control method
JP2007190579A (en) Method and equipment for rolling metallic sheet
JP3109398B2 (en) Plate rolling method
JP6013278B2 (en) Apparatus for measuring deflection and rolling load of work roll in multi-high rolling mill, and measuring method thereof
KR20100004161A (en) Appapatus for centerring guider of strip looper car
JP3205326B1 (en) Rolling mill of different diameter
JP2008302401A (en) Levelling control device
JPH0549365B2 (en)
JPS62130706A (en) Camber control method for plate rolling
JPH0531522A (en) Highly accurate rolling device for flanged shapes
JPS6160203A (en) Rolling-mill equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207027435

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778237

Country of ref document: EP

Kind code of ref document: A1