WO2019187407A1 - Extraction agent for metals and extraction method using same - Google Patents

Extraction agent for metals and extraction method using same Download PDF

Info

Publication number
WO2019187407A1
WO2019187407A1 PCT/JP2018/046870 JP2018046870W WO2019187407A1 WO 2019187407 A1 WO2019187407 A1 WO 2019187407A1 JP 2018046870 W JP2018046870 W JP 2018046870W WO 2019187407 A1 WO2019187407 A1 WO 2019187407A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
metal
fluorine
tantalum
chlorine
Prior art date
Application number
PCT/JP2018/046870
Other languages
French (fr)
Japanese (ja)
Inventor
寛幸 田辺
加藤 義人
泰輔 下垣内
佐藤 亮平
博人 井上
真行 黒滝
Original Assignee
株式会社アサカ理研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサカ理研 filed Critical 株式会社アサカ理研
Publication of WO2019187407A1 publication Critical patent/WO2019187407A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B61/00Obtaining metals not elsewhere provided for in this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a metal extractant and an extraction method using the same.
  • 5-methyl-2-hexanone (commonly known as isoamyl methyl ketone or methyl isoamyl ketone (MIAK)) has been known to be used as a solvent for inks, pastes, paints, resists and the like (for example, patent documents) 1).
  • MIAK methyl isoamyl ketone
  • 5-methyl-2-hexanone is classified as a second petroleum, and the designated quantity that can be stored is as large as 1000 liters compared to the 200 liters of the first petroleum. Development of applications is desired.
  • an object of the present invention is to provide a new use of 5-methyl-2-hexanone.
  • the present inventors have found that a metal complex capable of forming a chlorine complex or a fluorine complex or a chlorine complex of the metal from an aqueous solution of the fluorine complex or an aqueous solution of the fluorine complex.
  • the inventors have found that the present invention is useful as a metal extractant for extracting a fluorine complex and has reached the present invention.
  • the metal extractant of the present invention contains 5-methyl-2-hexanone, and can form a chlorine complex or a fluorine complex. It is used for extracting a complex.
  • a metal extractant containing 5-methyl-2-hexanone is added to the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or a fluorine complex, thereby adding the aqueous solution. From the above, a chlorine complex or a fluorine complex of the metal can be extracted.
  • the extraction method of the present invention comprises a metal complex capable of forming a chlorine complex or a fluorine complex or an aqueous solution of the chlorine complex or fluorine complex of the metal, and the metal complex or fluorine complex containing 5-methyl-2-hexanone as an active ingredient.
  • the extraction is performed using an extraction solvent.
  • the metal that can form the chlorine complex is, for example, gold or rhenium
  • the metal that can form the fluorine complex is, for example, tantalum or niobium.
  • money or rhenium extraction process by the metal extracting agent of this invention The flowchart which shows the extraction process of tantalum or niobium by the metal extracting agent of this invention.
  • the metal extractant of the present embodiment is composed of 5-methyl-2-hexanone (hereinafter abbreviated as MIAK), and the metal extract from the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or a fluorine complex. It is used to extract a chlorine complex or a fluorine complex.
  • MIAK 5-methyl-2-hexanone
  • the metal that can form the chlorine complex is, for example, gold or rhenium
  • the metal that can form the fluorine complex is, for example, tantalum or niobium.
  • a method of extracting the metal chlorine complex from the chlorine complex aqueous solution of a metal capable of forming a chlorine complex and recovering the metal particles is as follows. This will be described as an example.
  • an aqueous solution of chloroauric acid (HAuCl 4 ), which is a gold chlorine complex, is prepared.
  • An aqueous solution of chloroauric acid can be obtained, for example, by dissolving a raw material containing gold in aqua regia or 6-6.5N hydrochloric acid.
  • MIAK is added to the aqueous solution of chloroauric acid, and chloroauric acid is extracted into MIAK. At this time, metal complexes other than chloroauric acid are also extracted in MIAK.
  • MIAK substantially contains only chloroauric acid.
  • an alkaline aqueous solution is added to MIAK to generate gold hydroxide (Au (OH) 3 ), and the generated gold hydroxide is moved to the aqueous phase.
  • the aqueous solution containing gold hydroxide is separated from MIAK by oil-water separation.
  • the metal capable of forming a chlorine complex is a metal other than gold, such as rhenium
  • the metal chlorine complex is extracted by MIAK in the same manner as in the case of gold shown in FIG.
  • the metal particles can be recovered by the same procedure as in the case.
  • the metal is tantalum and niobium. A case will be described as an example.
  • the metal capable of forming the fluorine complex is tantalum (Ta) and niobium (Nb)
  • fluorinated tantalum acid H 2 TaF 7
  • niobium fluoride H 2 NbF 7
  • the aqueous solution is obtained by, for example, finely grinding an ore containing tantalum and niobium with a ball mill or the like, and using the obtained fine ore as a base. It can be obtained by dissolving in an acid and adjusting the fluoride ion concentration and sulfate ion concentration by adding sulfuric acid.
  • MIAK is added to the mixed aqueous solution of fluorinated tantalum acid and niobium fluoride to extract the tantalum fluoride and niobium fluoride into MIAK.
  • the tantalum MIAK solution obtained in STEP 15 is extracted into an aqueous solution by adding water in STEP 16. Next, oil-water separation is performed at STEP 17 to obtain MIAK (STEP 18) not containing tantalum and an aqueous solution of tantalum (STEP 19). The MIAK obtained in STEP 18 can be collected and reused.
  • tantalum hydroxide can be recovered as tantalum oxide (Ta 2 O 5 ) by filtering the precipitate of tantalum hydroxide in STEP 21 and calcining the obtained tantalum hydroxide in STEP 22 (STEP 23).
  • niobium hydroxide Nb (OH) 5
  • Nb (OH) 5 niobium hydroxide
  • STEP 26 the precipitation of niobium hydroxide is filtered at STEP 26, and the obtained niobium hydroxide is calcined at STEP 27, so that niobium can be recovered as niobium oxide (Nb 2 O 5 ) (STEP 28).
  • STEP 13 to 15 may be performed after STEP 12 without performing STEP 13 to 15. Further, when an aqueous solution containing only niobium fluoride is prepared in STEP 11, after STEP 12, the operations in STEP 25 to 28 may be performed without performing the operations in STEP 13 to 24.
  • the metal capable of forming the fluorine complex is a metal other than tantalum or niobium
  • the metal fluorine complex is extracted by MIAK in the same manner as in the case of tantalum or niobium shown in FIG.
  • the metal can be recovered as an oxide by the same procedure as in the case of niobium.
  • Example 1 In this example, first, a commercially available standard solution for atomic absorption analysis (manufactured by Wako Pure Chemical Industries, Ltd.) having a gold concentration of 1000 mg / liter was dispensed into a plurality of containers in a volume of 10 ml. Next, hydrochloric acid and water are added to each container, and the chlorine ion concentration in each container becomes a different concentration in the range of 0 to 10 mol / liter, and the total liquid volume is 50 milliliters (50 mg / liter in gold concentration). A plurality of sample solutions containing chloroauric acid as a gold chloride complex were prepared. Each sample solution was. The chlorine ion concentration of each sample solution was measured by an ion chromatograph.
  • each sample solution and MIAK were dispensed in the same volume and sealed in a sealed container.
  • the initial mass A of gold in each sample solution was calculated by the following equation (1).
  • Mass B after stirring gold in sample solution Gold concentration after stirring sample solution ⁇ Volume of sample solution (2) And the extraction rate of gold
  • FIG. 3 shows the extraction rate of gold with respect to the chloride ion concentration.
  • Example 2 the extraction rate of rhenium relative to the chlorine ion concentration was calculated in exactly the same manner as in Example 1 except that rhenium was used instead of gold.
  • the extraction rate of rhenium with respect to the chlorine ion concentration is shown in FIG.
  • Example 3 In this example, first, a commercially available standard solution for atomic absorption analysis (manufactured by Wako Pure Chemical Industries, Ltd.) having a tantalum concentration of 1000 mg / liter was dispensed into a plurality of containers 0.5 ml each. Next, hydrofluoric acid and sulfuric acid are added to each container, and the concentration of fluorine ions in each container is in the range of 0 to 5 mol / liter, and the concentration is different in the range of sulfate ion concentration in the range of 0 to 4 mol / liter.
  • a plurality of sample solutions containing fluorinated tantalum acid as a tantalum fluorine complex were prepared by adjusting the total liquid volume to 50 milliliters (10 mg / liter tantalum concentration).
  • the fluorine ion concentration and the sulfate ion concentration of each sample solution were measured by an ion chromatograph.
  • each sample solution and MIAK were dispensed in the same volume and sealed in a sealed container.
  • the initial mass A of tantalum in each sample solution was calculated by the following equation (4).
  • Mass after stirring of tantalum in sample solution B Concentration of tantalum after stirring of sample solution ⁇ Volume of sample solution (5) And the extraction rate of the tantalum with respect to a fluorine ion concentration and a sulfate ion concentration was computed by following Formula (6).
  • Extraction rate (%) ⁇ (AB) / A ⁇ ⁇ 100 (6)
  • the extraction rate of tantalum with respect to the fluorine ion concentration and the sulfate ion concentration is shown in FIG.
  • Example 4 the extraction rate of niobium with respect to the fluorine ion concentration and the sulfate ion concentration was calculated in exactly the same manner as in Example 3 except that niobium was used instead of tantalum.
  • FIG. 6 shows the extraction rate of niobium with respect to the fluorine ion concentration and the sulfate ion concentration.
  • the metal chlorine complex or fluorine complex is formed from the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or fluorine complex. It is clear that it can be extracted.

Abstract

Provided is a novel use application of 5-methyl-2-hexanone. An extraction agent for metals contains 5-methyl-2-hexanone as an active ingredient, and can be used for the extraction of a chlorine complex or a fluorine complex of a metal capable of forming a chlorine complex or a fluorine complex from an aqueous solution of the chlorine complex of the metal or an aqueous solution of the fluorine complex of the metal.

Description

金属用抽出剤及びそれを用いる抽出方法Metal extractant and extraction method using the same
 本発明は、金属用抽出剤及びそれを用いる抽出方法に関する。 The present invention relates to a metal extractant and an extraction method using the same.
 従来、5-メチル-2-ヘキサノン(慣用名として、イソアミルメチルケトン又はメチルイソアミルケトン(MIAK))は、インキ、ペースト、塗料、レジスト等の溶媒としての用途が知られている(例えば、特許文献1参照)。 Conventionally, 5-methyl-2-hexanone (commonly known as isoamyl methyl ketone or methyl isoamyl ketone (MIAK)) has been known to be used as a solvent for inks, pastes, paints, resists and the like (for example, patent documents) 1).
特開2005-120389号公報JP 2005-120389 A
 しかしながら、5-メチル-2-ヘキサノンは、第2石油類に分類され、保管できる指定数量も第1石油類の200リットルに比較して1000リットルと大きいので、前記溶媒としての用途以外に新たな用途の開発が望まれる。 However, 5-methyl-2-hexanone is classified as a second petroleum, and the designated quantity that can be stored is as large as 1000 liters compared to the 200 liters of the first petroleum. Development of applications is desired.
 本発明は、かかる事情に鑑み、5-メチル-2-ヘキサノンの新たな用途を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a new use of 5-methyl-2-hexanone.
 本発明者らは、5-メチル-2-ヘキサノンの新たな用途について鋭意検討した結果、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出する金属用抽出剤として有用であることを見いだし本発明に到達した。 As a result of intensive studies on new uses of 5-methyl-2-hexanone, the present inventors have found that a metal complex capable of forming a chlorine complex or a fluorine complex or a chlorine complex of the metal from an aqueous solution of the fluorine complex or an aqueous solution of the fluorine complex. The inventors have found that the present invention is useful as a metal extractant for extracting a fluorine complex and has reached the present invention.
 そこで、本発明の金属用抽出剤は、5-メチル-2-ヘキサノンを含有し、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出するために用いられることを特徴とする。 Therefore, the metal extractant of the present invention contains 5-methyl-2-hexanone, and can form a chlorine complex or a fluorine complex. It is used for extracting a complex.
 本発明によれば、5-メチル-2-ヘキサノンを含有する金属用抽出剤を、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液に添加することにより、該水溶液から該金属の塩素錯体又はフッ素錯体を抽出することができる。 According to the present invention, a metal extractant containing 5-methyl-2-hexanone is added to the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or a fluorine complex, thereby adding the aqueous solution. From the above, a chlorine complex or a fluorine complex of the metal can be extracted.
 また、本発明の抽出方法は、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を5-メチル-2-ヘキサノンを有効成分とする抽出溶媒により抽出することを特徴とする。 In addition, the extraction method of the present invention comprises a metal complex capable of forming a chlorine complex or a fluorine complex or an aqueous solution of the chlorine complex or fluorine complex of the metal, and the metal complex or fluorine complex containing 5-methyl-2-hexanone as an active ingredient. The extraction is performed using an extraction solvent.
 本発明において、前記塩素錯体を形成し得る金属は、例えば、金又はレニウムであり、前記フッ素錯体を形成し得る金属は、例えば、タンタル又はニオブである。 In the present invention, the metal that can form the chlorine complex is, for example, gold or rhenium, and the metal that can form the fluorine complex is, for example, tantalum or niobium.
本発明の金属用抽出剤による金又はレニウムの抽出工程を示すフローチャート。The flowchart which shows the gold | metal | money or rhenium extraction process by the metal extracting agent of this invention. 本発明の金属用抽出剤によるタンタル又はニオブの抽出工程を示すフローチャート。The flowchart which shows the extraction process of tantalum or niobium by the metal extracting agent of this invention. 本発明の金属用抽出剤による塩素イオン濃度に対する金の抽出率を示すグラフ。The graph which shows the extraction rate of gold | metal | money with respect to the chlorine ion concentration by the extractant for metals of this invention. 本発明の金属用抽出剤による塩素イオン濃度に対するレニウムの抽出率を示すグラフ。The graph which shows the extraction rate of rhenium with respect to the chlorine ion concentration by the metal extracting agent of this invention. 本発明の金属用抽出剤によるフッ素イオン濃度及び硫酸イオン濃度に対するタンタルの抽出率を示すグラフ。The graph which shows the extraction rate of the tantalum with respect to the fluorine ion concentration and sulfate ion concentration by the metal extracting agent of this invention. 本発明の金属用抽出剤によるフッ素イオン濃度及び硫酸イオン濃度に対するニオブの抽出率を示すグラフ。The graph which shows the extraction rate of niobium with respect to the fluorine ion concentration and sulfate ion concentration by the metal extracting agent of this invention.
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
 本実施形態の金属抽出剤は、5-メチル-2-ヘキサノン(以下、MIAKと略記する)からなり、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出するために用いられる。 The metal extractant of the present embodiment is composed of 5-methyl-2-hexanone (hereinafter abbreviated as MIAK), and the metal extract from the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or a fluorine complex. It is used to extract a chlorine complex or a fluorine complex.
 ここで、前記塩素錯体を形成し得る金属は、例えば、金又はレニウムであり、前記フッ素錯体を形成し得る金属は、例えば、タンタル又はニオブである。 Here, the metal that can form the chlorine complex is, for example, gold or rhenium, and the metal that can form the fluorine complex is, for example, tantalum or niobium.
 次に、図1を参照して、塩素錯体を形成し得る金属の該塩素錯体水溶液から該金属の塩素錯体を抽出し、該金属の粒子を回収する方法について、該金属が金である場合を例として説明する。 Next, referring to FIG. 1, a method of extracting the metal chlorine complex from the chlorine complex aqueous solution of a metal capable of forming a chlorine complex and recovering the metal particles is as follows. This will be described as an example.
 塩素錯体を形成し得る金属が金(Au)である場合には、まず、STEP1で、金の塩素錯体である塩化金酸(HAuCl)の水溶液を調製する。塩化金酸の水溶液は、例えば、金を含む原材料を王水又は6~6.5Nの塩酸に溶解することにより得ることができる。 When the metal capable of forming a chlorine complex is gold (Au), first, in STEP 1, an aqueous solution of chloroauric acid (HAuCl 4 ), which is a gold chlorine complex, is prepared. An aqueous solution of chloroauric acid can be obtained, for example, by dissolving a raw material containing gold in aqua regia or 6-6.5N hydrochloric acid.
 次に、STEP2で、前記塩化金酸の水溶液にMIAKを添加し、塩化金酸をMIAKに抽出する。このとき、MIAKには塩化金酸以外の金属錯体等も抽出される。 Next, in STEP 2, MIAK is added to the aqueous solution of chloroauric acid, and chloroauric acid is extracted into MIAK. At this time, metal complexes other than chloroauric acid are also extracted in MIAK.
 そこで、STEP3で、MIAKに希酸を添加して洗浄し、塩化金酸以外の金属錯体等を除去する。この結果、MIAKには実質的に塩化金酸のみが含有される状態となる。 Therefore, in STEP3, a dilute acid is added to MIAK and washed to remove metal complexes other than chloroauric acid. As a result, MIAK substantially contains only chloroauric acid.
 次に、STEP4で、MIAKにアルカリ水溶液を添加して水酸化金(Au(OH))を生成させ、生成した水酸化金を水相に移動させる。次いで、STEP5で、油水分離することにより、MIAKから水酸化金を含むアルカリ水溶液を分離する。 Next, in STEP 4, an alkaline aqueous solution is added to MIAK to generate gold hydroxide (Au (OH) 3 ), and the generated gold hydroxide is moved to the aqueous phase. Next, in STEP5, the aqueous solution containing gold hydroxide is separated from MIAK by oil-water separation.
 次に、STEP6で、分離されたアルカリ水溶液に塩酸を添加して、前記水酸化金を再び塩化金酸にする。そして、STEP7で、塩化金酸水溶液に還元性化合物を添加し、塩化金酸を還元することにより金の粒子を沈殿させ、STEP8で沈殿を濾別することにより金の粒子を回収する。 Next, in STEP 6, hydrochloric acid is added to the separated alkaline aqueous solution, and the gold hydroxide is converted into chloroauric acid again. In STEP 7, a reducing compound is added to the aqueous chloroauric acid solution, and gold particles are precipitated by reducing chloroauric acid, and the gold particles are recovered by filtering the precipitate in STEP8.
 また、塩素錯体を形成し得る金属がレニウム等の金以外の金属である場合については図示しないが、図1に示す金の場合と同様にして該金属の塩素錯体をMIAKにより抽出し、金の場合と同様の手順により該金属の粒子を回収することができる。 Although the case where the metal capable of forming a chlorine complex is a metal other than gold, such as rhenium, is not illustrated, the metal chlorine complex is extracted by MIAK in the same manner as in the case of gold shown in FIG. The metal particles can be recovered by the same procedure as in the case.
 次に、図2を参照して、フッ素錯体を形成し得る金属の該フッ素錯体水溶液から該金属のフッ素錯体を抽出し、該金属の粒子を回収する方法について、該金属がタンタルとニオブである場合を例として説明する。 Next, referring to FIG. 2, regarding a method of extracting the metal fluorine complex from the fluorine complex aqueous solution of the metal capable of forming a fluorine complex and recovering the metal particles, the metal is tantalum and niobium. A case will be described as an example.
 フッ素錯体を形成し得る金属がタンタル(Ta)とニオブ(Nb)とである場合には、まず、STEP11で、タンタルのフッ素錯体であるフッ化タンタル酸(HTaF)と、ニオブのフッ素錯体であるフッ化ニオブ酸(HNbF)との混合水溶液を調製する。タンタルとニオブとは、タンタライト、コロンバイト等の鉱石として一緒に産出されるので、前記水溶液は、例えば、タンタルとニオブとを含む鉱石をボールミル等で微粉砕し、得られた粉鉱をフッ酸に溶解し、硫酸を加えてフッ素イオン濃度及び硫酸イオン濃度を調整することにより得ることができる。 When the metal capable of forming the fluorine complex is tantalum (Ta) and niobium (Nb), first, in STEP 11, fluorinated tantalum acid (H 2 TaF 7 ) which is a fluorine complex of tantalum and fluorine of niobium Prepare a mixed aqueous solution with niobium fluoride (H 2 NbF 7 ) which is a complex. Since tantalum and niobium are produced together as ores such as tantalite and columbite, the aqueous solution is obtained by, for example, finely grinding an ore containing tantalum and niobium with a ball mill or the like, and using the obtained fine ore as a base. It can be obtained by dissolving in an acid and adjusting the fluoride ion concentration and sulfate ion concentration by adding sulfuric acid.
 次に、STEP12で、前記フッ化タンタル酸とフッ化ニオブ酸との混合水溶液にMIAKを添加し、フッ化タンタル酸とフッ化ニオブ酸とをMIAKに抽出する。 Next, in STEP 12, MIAK is added to the mixed aqueous solution of fluorinated tantalum acid and niobium fluoride to extract the tantalum fluoride and niobium fluoride into MIAK.
 次に、STEP13で、MIAKに希酸を加え、フッ化ニオブ酸を希酸中に抽出する一方、フッ化タンタル酸をMIAK中に残留させる。次いで、STEP14で油水分離することにより、タンタルのMIAK溶液(STEP15)と、ニオブの水溶液(STEP24)とが得られる。 Next, in STEP 13, dilute acid is added to MIAK, and niobic fluoride is extracted into dilute acid, while fluorinated tantalate is left in MIAK. Subsequently, oil-water separation is performed in STEP14, whereby a tantalum MIAK solution (STEP15) and a niobium aqueous solution (STEP24) are obtained.
 STEP15で得られたタンタルのMIAK溶液は、次いで、STEP16で水を添加することにより、タンタルが水溶液中に抽出される。次いで、STEP17で油水分離することにより、タンタルを含まないMIAK(STEP18)と、タンタルの水溶液(STEP19)とが得られる。STEP18で得られたMIAKは、回収されて再利用に供することができる。 The tantalum MIAK solution obtained in STEP 15 is extracted into an aqueous solution by adding water in STEP 16. Next, oil-water separation is performed at STEP 17 to obtain MIAK (STEP 18) not containing tantalum and an aqueous solution of tantalum (STEP 19). The MIAK obtained in STEP 18 can be collected and reused.
 STEP19で得られたタンタルの水溶液は、次にSTEP20でアルカリ水溶液を添加することにより、水酸化タンタル(Ta(OH))が沈殿する。そこで、STEP21で水酸化タンタルの沈殿を濾過し、得られた水酸化タンタルをSTEP22で仮焼することにより、酸化タンタル(Ta)としてタンタルを回収することができる(STEP23)。 The aqueous solution of tantalum obtained in STEP 19 is then added with an aqueous alkaline solution in STEP 20 to precipitate tantalum hydroxide (Ta (OH) 5 ). Therefore, tantalum hydroxide can be recovered as tantalum oxide (Ta 2 O 5 ) by filtering the precipitate of tantalum hydroxide in STEP 21 and calcining the obtained tantalum hydroxide in STEP 22 (STEP 23).
 一方、STEP24で得られたニオブの水溶液は、次にSTEP25でアルカリ水溶液を添加することにより、水酸化ニオブ(Nb(OH))が沈殿する。そこで、STEP26で水酸化ニオブの沈殿を濾過し、得られた水酸化ニオブをSTEP27で仮焼することにより、酸化ニオブ(Nb)としてニオブを回収することができる(STEP28)。 On the other hand, niobium hydroxide (Nb (OH) 5 ) is precipitated in the aqueous niobium solution obtained in STEP 24 by adding an alkaline aqueous solution in STEP 25. Then, the precipitation of niobium hydroxide is filtered at STEP 26, and the obtained niobium hydroxide is calcined at STEP 27, so that niobium can be recovered as niobium oxide (Nb 2 O 5 ) (STEP 28).
 尚、STEP11でフッ化タンタル酸のみを含む水溶液を調製する場合は、STEP12の後、STEP13~15を行わず、STEP16~23の操作を行えばよい。また、STEP11でフッ化ニオブ酸のみを含む水溶液を調製する場合は、STEP12の後、STEP13~24の操作を行わず、STEP25~28の操作を行えばよい。 When preparing an aqueous solution containing only fluorinated tantalum acid in STEP 11, STEP 13 to 15 may be performed after STEP 12 without performing STEP 13 to 15. Further, when an aqueous solution containing only niobium fluoride is prepared in STEP 11, after STEP 12, the operations in STEP 25 to 28 may be performed without performing the operations in STEP 13 to 24.
 また、フッ素錯体を形成し得る金属がタンタル又はニオブ以外の金属である場合については図示しないが、図2に示すタンタル又はニオブの場合と同様にして該金属のフッ素錯体をMIAKにより抽出し、タンタル又はニオブの場合と同様の手順により酸化物として該金属を回収することができる。 Although the case where the metal capable of forming the fluorine complex is a metal other than tantalum or niobium is not shown, the metal fluorine complex is extracted by MIAK in the same manner as in the case of tantalum or niobium shown in FIG. Alternatively, the metal can be recovered as an oxide by the same procedure as in the case of niobium.
 次に、本発明の実施例を示す。 Next, examples of the present invention will be described.
 〔実施例1〕
 本実施例では、まず、金の濃度が1000mg/リットルの市販の原子吸光分析用標準液(和光純薬工業株式会社製)を10ミリリットルずつ複数の容器に分取した。次に、各容器に塩酸と水とを添加し、各容器の塩素イオン濃度が0~10モル/リットルの範囲でそれぞれ異なる濃度となり、全体の液量が50ミリリットル(金濃度で50mg/リットル)になるように調整して、金の塩素錯体として塩化金酸を含む複数の試料溶液を調製した。各試料溶液は、した。各試料溶液の塩素イオン濃度は、イオンクロマトグラフにより測定した。
[Example 1]
In this example, first, a commercially available standard solution for atomic absorption analysis (manufactured by Wako Pure Chemical Industries, Ltd.) having a gold concentration of 1000 mg / liter was dispensed into a plurality of containers in a volume of 10 ml. Next, hydrochloric acid and water are added to each container, and the chlorine ion concentration in each container becomes a different concentration in the range of 0 to 10 mol / liter, and the total liquid volume is 50 milliliters (50 mg / liter in gold concentration). A plurality of sample solutions containing chloroauric acid as a gold chloride complex were prepared. Each sample solution was. The chlorine ion concentration of each sample solution was measured by an ion chromatograph.
 次に、各試料溶液のそれぞれとMIAKとを同体積ずつ分取して密封容器に封入した。このとき、各試料溶液中の金の初期質量Aを次式(1)により算出した。 Next, each sample solution and MIAK were dispensed in the same volume and sealed in a sealed container. At this time, the initial mass A of gold in each sample solution was calculated by the following equation (1).
 試料溶液中の金の初期質量A=試料溶液の金濃度×試料溶液の体積  ・・・(1)
 次に、前記密封容器を所定時間撹拌し、試料溶液中の塩化金酸をMIAK中に抽出した後、試料溶液中の金の濃度を誘導結合プラズマ発光分析(ICP-AES)により測定し、各試料溶液中の金の撹拌後の質量Bを次式(2)により算出した。
Initial mass of gold in sample solution A = gold concentration of sample solution × volume of sample solution (1)
Next, the sealed container is stirred for a predetermined time, and chloroauric acid in the sample solution is extracted into MIAK, and then the gold concentration in the sample solution is measured by inductively coupled plasma emission spectrometry (ICP-AES). The mass B after stirring of gold in the sample solution was calculated by the following formula (2).
 試料溶液中の金の撹拌後の質量B=試料溶液の撹拌後の金濃度×試料溶液の体積
                                  ・・・(2)
 そして、次式(3)により塩素イオン濃度に対する金の抽出率を算出した。
Mass B after stirring gold in sample solution = Gold concentration after stirring sample solution × Volume of sample solution (2)
And the extraction rate of gold | metal | money with respect to chlorine ion concentration was computed by following Formula (3).
  抽出率(%)={(A-B)/A}×100     ・・・(3)
 塩素イオン濃度に対する金の抽出率を図3に示す。
Extraction rate (%) = {(AB) / A} × 100 (3)
FIG. 3 shows the extraction rate of gold with respect to the chloride ion concentration.
 〔実施例2〕
 本実施例では、金に代えてレニウムを用いた以外は、実施例1と全く同一にして、塩素イオン濃度に対するレニウムの抽出率を算出した。塩素イオン濃度に対するレニウムの抽出率を図4に示す。
[Example 2]
In this example, the extraction rate of rhenium relative to the chlorine ion concentration was calculated in exactly the same manner as in Example 1 except that rhenium was used instead of gold. The extraction rate of rhenium with respect to the chlorine ion concentration is shown in FIG.
 〔実施例3〕
 本実施例では、まず、タンタルの濃度が1000mg/リットルの市販の原子吸光分析用標準液(和光純薬工業株式会社製)を0.5ミリリットルずつ複数の容器に分取した。次に、各容器にフッ酸と硫酸とを添加し、各容器のフッ素イオン濃度が0~5モル/リットルの範囲で、また硫酸イオン濃度が0~4モル/リットルの範囲で、それぞれ異なる濃度となり、全体の液量が50ミリリットル(タンタル濃度で10mg/リットル)になるように調整して、タンタルのフッ素錯体としてフッ化タンタル酸を含む複数の試料溶液を調製した。各試料溶液のフッ素イオン濃度及び硫酸イオン濃度は、イオンクロマトグラフにより測定した。
Example 3
In this example, first, a commercially available standard solution for atomic absorption analysis (manufactured by Wako Pure Chemical Industries, Ltd.) having a tantalum concentration of 1000 mg / liter was dispensed into a plurality of containers 0.5 ml each. Next, hydrofluoric acid and sulfuric acid are added to each container, and the concentration of fluorine ions in each container is in the range of 0 to 5 mol / liter, and the concentration is different in the range of sulfate ion concentration in the range of 0 to 4 mol / liter. Thus, a plurality of sample solutions containing fluorinated tantalum acid as a tantalum fluorine complex were prepared by adjusting the total liquid volume to 50 milliliters (10 mg / liter tantalum concentration). The fluorine ion concentration and the sulfate ion concentration of each sample solution were measured by an ion chromatograph.
 次に、各試料溶液のそれぞれとMIAKとを同体積ずつ分取して密封容器に封入した。このとき、各試料溶液中のタンタルの初期質量Aを次式(4)により算出した。 Next, each sample solution and MIAK were dispensed in the same volume and sealed in a sealed container. At this time, the initial mass A of tantalum in each sample solution was calculated by the following equation (4).
 試料溶液中のタンタルの初期質量A=試料溶液のタンタル濃度×試料溶液の体積
                                  ・・・(4)
 次に、前記密封容器を所定時間撹拌し、試料溶液中のフッ化タンタル酸をMIAK中に抽出した後、試料溶液中のタンタルの濃度を誘導結合プラズマ発光分析(ICP-AES)により測定し、各試料溶液中のタンタルの撹拌後の質量Bを次式(5)により算出した。
Initial mass of tantalum in sample solution A = Tantalum concentration of sample solution × Volume of sample solution (4)
Next, the sealed container is stirred for a predetermined time, and after extracting tantalum fluorinated acid in the sample solution into MIAK, the concentration of tantalum in the sample solution is measured by inductively coupled plasma emission spectrometry (ICP-AES), The mass B after stirring of tantalum in each sample solution was calculated by the following equation (5).
 試料溶液中のタンタルの撹拌後の質量B=試料溶液の撹拌後のタンタル濃度×試料溶液の体積    ・・・(5)
 そして、次式(6)によりフッ素イオン濃度及び硫酸イオン濃度に対するタンタルの抽出率を算出した。
Mass after stirring of tantalum in sample solution B = Concentration of tantalum after stirring of sample solution × Volume of sample solution (5)
And the extraction rate of the tantalum with respect to a fluorine ion concentration and a sulfate ion concentration was computed by following Formula (6).
  抽出率(%)={(A-B)/A}×100     ・・・(6)
 フッ素イオン濃度及び硫酸イオン濃度に対するタンタルの抽出率を図5に示す。
Extraction rate (%) = {(AB) / A} × 100 (6)
The extraction rate of tantalum with respect to the fluorine ion concentration and the sulfate ion concentration is shown in FIG.
 〔実施例4〕
 本実施例では、タンタルに代えてニオブを用いた以外は、実施例3と全く同一にして、フッ素イオン濃度及び硫酸イオン濃度に対するニオブの抽出率を算出した。フッ素イオン濃度及び硫酸イオン濃度に対するニオブの抽出率を図6に示す。
Example 4
In this example, the extraction rate of niobium with respect to the fluorine ion concentration and the sulfate ion concentration was calculated in exactly the same manner as in Example 3 except that niobium was used instead of tantalum. FIG. 6 shows the extraction rate of niobium with respect to the fluorine ion concentration and the sulfate ion concentration.
 図3~6から、本実施形態のMIAKからなる金属抽出剤によれば、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出することができることが明らかである。 3 to 6, according to the metal extractant composed of MIAK of this embodiment, the metal chlorine complex or fluorine complex is formed from the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or fluorine complex. It is clear that it can be extracted.
 符号なし。 No sign.

Claims (6)

  1.  5-メチル-2-ヘキサノンを含有し、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出するために用いられることを特徴とする金属用抽出剤。 An aqueous chlorine complex solution of a metal containing 5-methyl-2-hexanone and capable of forming a chlorine complex or a fluorine complex, or used for extracting the chlorine complex or fluorine complex of the metal from the aqueous solution of the fluorine complex. Metal extractant.
  2.  請求項1記載の金属用抽出剤において、前記塩素錯体を形成し得る金属は、金又はレニウムであることを特徴とする金属用抽出剤。 2. The metal extractant according to claim 1, wherein the metal capable of forming the chlorine complex is gold or rhenium.
  3.  請求項1記載の金属用抽出剤において、前記フッ素錯体を形成し得る金属は、タンタル又はニオブであることを特徴とする金属用抽出剤。 2. The metal extractant according to claim 1, wherein the metal capable of forming the fluorine complex is tantalum or niobium.
  4.  塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を5-メチル-2-ヘキサノンを有効成分とする抽出溶媒により抽出することを特徴とする抽出方法。 Extracting the chlorine complex or fluorine complex of a metal capable of forming a chlorine complex or a fluorine complex from the aqueous solution of the chlorine complex or the fluorine complex with an extraction solvent containing 5-methyl-2-hexanone as an active ingredient Extraction method.
  5.  請求項4記載の抽出方法において、前記塩素錯体を形成し得る金属は、金又はレニウムであることを特徴とする抽出方法。 5. The extraction method according to claim 4, wherein the metal capable of forming the chlorine complex is gold or rhenium.
  6.  請求項4記載の抽出方法において、前記フッ素錯体を形成し得る金属は、タンタル又はニオブであることを特徴とする抽出方法。 5. The extraction method according to claim 4, wherein the metal capable of forming the fluorine complex is tantalum or niobium.
PCT/JP2018/046870 2018-03-26 2018-12-19 Extraction agent for metals and extraction method using same WO2019187407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057834A JP6427698B1 (en) 2018-03-26 2018-03-26 Extraction method
JP2018-057834 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019187407A1 true WO2019187407A1 (en) 2019-10-03

Family

ID=64379238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046870 WO2019187407A1 (en) 2018-03-26 2018-12-19 Extraction agent for metals and extraction method using same

Country Status (2)

Country Link
JP (1) JP6427698B1 (en)
WO (1) WO2019187407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996798B1 (en) * 2021-05-31 2022-01-17 株式会社アサカ理研 Manufacturing method of tantalum oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235435A (en) * 1987-03-24 1988-09-30 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Manufacture of metallic tantalum

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1417483A (en) * 1973-01-06 1975-12-10 Ciba Geigy Ag Hydrazide salts
JPS63199831A (en) * 1987-02-16 1988-08-18 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Production of metallic ti, zr, hf, nb and ta
US5425855A (en) * 1994-04-08 1995-06-20 Lloyd Berg Separation of ethyl benzene from p-xylene by extractive distillation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235435A (en) * 1987-03-24 1988-09-30 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Manufacture of metallic tantalum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NETE. M. ET AL.: "Separation and isolation of tantalum and niobium from tantalite using solvent extraction and ion exchange", HYDROMETALLURGY, vol. 149, 22 July 2014 (2014-07-22), pages 31 - 40, XP055639189 *
PURCELL, W. ET AL.: "Possible methodology for niobium, tantalum and scandium separation in ferrocolumbite", MINERALS ENGINEERING, vol. 119, 4 February 2018 (2018-02-04), pages 57 - 66, XP055639193 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996798B1 (en) * 2021-05-31 2022-01-17 株式会社アサカ理研 Manufacturing method of tantalum oxide

Also Published As

Publication number Publication date
JP6427698B1 (en) 2018-11-21
JP2019167604A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
Kabangu et al. Separation of niobium and tantalum from Mozambican tantalite by ammonium bifluoride digestion and octanol solvent extraction
US5961938A (en) Method for recovering reusable elements from rare earth-iron alloy
Nete et al. Separation and isolation of tantalum and niobium from tantalite using solvent extraction and ion exchange
JP2008115063A (en) High purity hafnium material and method of manufacturing the material by using solvent extraction method
WO2015122397A1 (en) Scandium separation method
Abbott et al. Processing metal oxides using ionic liquids
JP2013204068A (en) Method for recovering tungsten or cobalt from cemented carbide powder
WO2019187407A1 (en) Extraction agent for metals and extraction method using same
JP5889455B1 (en) Recovery method of rare earth elements
Song et al. Separation of tungsten and cobalt from WC-Co hard metal wastes using ion-exchange and solvent extraction with ionic liquid
Rajak et al. Extractive metallurgy of columbite-tantalite ore: A detailed review
US20040244537A1 (en) Processing coal combustion products (CCP), ore, or other material using functionally electrolyzed water (FEW)
US7182925B2 (en) Tantalum concentrates dissolution and purification method
JP2019172653A (en) Extracting agent for metal and extracting method therewith
JP2019173178A (en) Extracting agent for metal and extracting method therewith
JP2011132552A (en) Method for reducing and recovering gold
JP5850966B2 (en) Cobalt extraction solution, cobalt solution, and cobalt recovery method
WO2014069463A1 (en) Method for collecting silver
JP6159630B2 (en) Gold collection method
JP2021025099A (en) Recovery method of scandium
JP7370919B2 (en) How to extract Sc
JP2022183612A (en) Production method of tantalum oxide
Ungerer Separation of tantalum and niobium by solvent extraction
CN111485122A (en) Method for recycling niobium from waste NbTaZr alloy
JP5498040B2 (en) Ruthenium recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911395

Country of ref document: EP

Kind code of ref document: A1