JP2019172653A - Extracting agent for metal and extracting method therewith - Google Patents

Extracting agent for metal and extracting method therewith Download PDF

Info

Publication number
JP2019172653A
JP2019172653A JP2018202826A JP2018202826A JP2019172653A JP 2019172653 A JP2019172653 A JP 2019172653A JP 2018202826 A JP2018202826 A JP 2018202826A JP 2018202826 A JP2018202826 A JP 2018202826A JP 2019172653 A JP2019172653 A JP 2019172653A
Authority
JP
Japan
Prior art keywords
complex
metal
gold
chlorine
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018202826A
Other languages
Japanese (ja)
Other versions
JP6562433B1 (en
Inventor
寛幸 田辺
Hiroyuki Tanabe
寛幸 田辺
加藤 義人
Yoshito Kato
義人 加藤
泰輔 下垣内
Taisuke Shimogouchi
泰輔 下垣内
佐藤 亮平
Ryohei Sato
亮平 佐藤
博人 井上
Hiroto Inoue
博人 井上
真行 黒滝
Masayuki Kurotaki
真行 黒滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Co Ltd
Original Assignee
Asaka Riken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Co Ltd filed Critical Asaka Riken Co Ltd
Priority to JP2018202826A priority Critical patent/JP6562433B1/en
Application granted granted Critical
Publication of JP6562433B1 publication Critical patent/JP6562433B1/en
Publication of JP2019172653A publication Critical patent/JP2019172653A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a new application of 5-methyl-2-hexanone.SOLUTION: An extracting agent for metal which the active component is 5-methyl-2-hexanone is used for extraction of chloride complex or fluorine complex of metals from the metal chloride complex water solution or the metal fluorine complex water solution. The metal can form the chloride complex or the fluorine complex.SELECTED DRAWING: Figure 1

Description

本発明は、金属用抽出剤及びそれを用いる抽出方法に関する。   The present invention relates to a metal extractant and an extraction method using the same.

従来、5−メチル−2−ヘキサノン(慣用名として、イソアミルメチルケトン又はメチルイソアミルケトン(MIAK))は、インキ、ペースト、塗料、レジスト等の溶媒としての用途が知られている(例えば、特許文献1参照)。   Conventionally, 5-methyl-2-hexanone (commonly known as isoamyl methyl ketone or methyl isoamyl ketone (MIAK)) has been known to be used as a solvent for inks, pastes, paints, resists, and the like (for example, Patent Documents). 1).

特開2005−120389号公報JP 2005-120389 A

しかしながら、5−メチル−2−ヘキサノンは、第2石油類に分類され、保管できる指定数量も第1石油類の200リットルに比較して1000リットルと大きいので、前記溶媒としての用途以外に新たな用途の開発が望まれる。   However, 5-methyl-2-hexanone is classified as a second petroleum, and the designated quantity that can be stored is as large as 1000 liters compared to 200 liters of the first petroleum. Development of applications is desired.

本発明は、かかる事情に鑑み、5−メチル−2−ヘキサノンの新たな用途を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a new use of 5-methyl-2-hexanone.

本発明者らは、5−メチル−2−ヘキサノンの新たな用途について鋭意検討した結果、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出する金属用抽出剤として有用であることを見いだし本発明に到達した。   As a result of intensive studies on a new use of 5-methyl-2-hexanone, the present inventors have found that a metal complex capable of forming a chlorine complex or a fluorine complex or a chlorine complex of the metal from the aqueous solution of the fluorine complex or the aqueous solution of the fluorine complex. It has been found that the present invention is useful as a metal extractant for extracting a fluorine complex, and has reached the present invention.

そこで、本発明の金属用抽出剤は、5−メチル−2−ヘキサノンを含有し、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出するために用いられることを特徴とする。   Therefore, the metal extractant of the present invention contains 5-methyl-2-hexanone, and can form a chlorine complex or a fluorine complex. It is used for extracting a complex.

本発明によれば、5−メチル−2−ヘキサノンを含有する金属用抽出剤を、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液に添加することにより、該水溶液から該金属の塩素錯体又はフッ素錯体を抽出することができる。   According to the present invention, by adding a metal extractant containing 5-methyl-2-hexanone to the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or a fluorine complex, the aqueous solution From the above, a chlorine complex or a fluorine complex of the metal can be extracted.

また、本発明の抽出方法は、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を5−メチル−2−ヘキサノンを有効成分とする抽出溶媒により抽出することを特徴とする。   In addition, the extraction method of the present invention comprises a metal complex capable of forming a chlorine complex or a fluorine complex or an aqueous solution of the chlorine complex or fluorine complex of the metal and 5-methyl-2-hexanone as an active ingredient. The extraction is performed using an extraction solvent.

本発明において、前記塩素錯体を形成し得る金属は、例えば、金又はレニウムであり、前記フッ素錯体を形成し得る金属は、例えば、タンタル又はニオブである。   In the present invention, the metal capable of forming the chlorine complex is, for example, gold or rhenium, and the metal capable of forming the fluorine complex is, for example, tantalum or niobium.

本発明の金属用抽出剤による金又はレニウムの抽出工程を示すフローチャート。The flowchart which shows the gold | metal | money or rhenium extraction process by the metal extracting agent of this invention. 本発明の金属用抽出剤によるタンタル又はニオブの抽出工程を示すフローチャート。The flowchart which shows the extraction process of tantalum or niobium by the metal extracting agent of this invention. 本発明の金属用抽出剤による塩素イオン濃度に対する金の抽出率を示すグラフ。The graph which shows the extraction rate of gold | metal | money with respect to the chlorine ion concentration by the extractant for metals of this invention. 本発明の金属用抽出剤による塩素イオン濃度に対するレニウムの抽出率を示すグラフ。The graph which shows the extraction rate of rhenium with respect to the chlorine ion concentration by the metal extracting agent of this invention. 本発明の金属用抽出剤によるフッ素イオン濃度及び硫酸イオン濃度に対するタンタルの抽出率を示すグラフ。The graph which shows the extraction rate of the tantalum with respect to the fluorine ion concentration and sulfate ion concentration by the metal extracting agent of this invention. 本発明の金属用抽出剤によるフッ素イオン濃度及び硫酸イオン濃度に対するニオブの抽出率を示すグラフ。The graph which shows the extraction rate of niobium with respect to the fluorine ion concentration and sulfate ion concentration by the metal extracting agent of this invention.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

本実施形態の金属抽出剤は、5−メチル−2−ヘキサノン(以下、MIAKと略記する)からなり、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出するために用いられる。   The metal extractant of the present embodiment is made of 5-methyl-2-hexanone (hereinafter abbreviated as MIAK), and the metal from the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or a fluorine complex. It is used to extract a chlorine complex or a fluorine complex.

ここで、前記塩素錯体を形成し得る金属は、例えば、金又はレニウムであり、前記フッ素錯体を形成し得る金属は、例えば、タンタル又はニオブである。   Here, the metal that can form the chlorine complex is, for example, gold or rhenium, and the metal that can form the fluorine complex is, for example, tantalum or niobium.

次に、図1を参照して、塩素錯体を形成し得る金属の該塩素錯体水溶液から該金属の塩素錯体を抽出し、該金属の粒子を回収する方法について、該金属が金である場合を例として説明する。   Next, referring to FIG. 1, a method of extracting the metal chlorine complex from the chlorine complex aqueous solution of a metal capable of forming a chlorine complex and recovering the metal particles is as follows. This will be described as an example.

塩素錯体を形成し得る金属が金(Au)である場合には、まず、STEP1で、金の塩素錯体である塩化金酸(HAuCl)の水溶液を調製する。塩化金酸の水溶液は、例えば、金を含む原材料を王水又は6〜6.5Nの塩酸に溶解することにより得ることができる。 When the metal capable of forming a chlorine complex is gold (Au), first, in STEP 1, an aqueous solution of chloroauric acid (HAuCl 4 ), which is a gold chlorine complex, is prepared. An aqueous solution of chloroauric acid can be obtained, for example, by dissolving a raw material containing gold in aqua regia or 6-6.5N hydrochloric acid.

次に、STEP2で、前記塩化金酸の水溶液にMIAKを添加し、塩化金酸をMIAKに抽出する。このとき、MIAKには塩化金酸以外の金属錯体等も抽出される。   Next, in STEP 2, MIAK is added to the aqueous solution of chloroauric acid, and chloroauric acid is extracted into MIAK. At this time, metal complexes other than chloroauric acid are also extracted in MIAK.

そこで、STEP3で、MIAKに希酸を添加して洗浄し、塩化金酸以外の金属錯体等を除去する。この結果、MIAKには実質的に塩化金酸のみが含有される状態となる。   Therefore, in STEP3, a dilute acid is added to MIAK and washed to remove metal complexes other than chloroauric acid. As a result, MIAK substantially contains only chloroauric acid.

次に、STEP4で、MIAKにアルカリ水溶液を添加して水酸化金(Au(OH))を生成させ、生成した水酸化金を水相に移動させる。次いで、STEP5で、油水分離することにより、MIAKから水酸化金を含むアルカリ水溶液を分離する。 Next, in STEP 4, an alkaline aqueous solution is added to MIAK to generate gold hydroxide (Au (OH) 3 ), and the generated gold hydroxide is moved to the aqueous phase. Next, in STEP5, the aqueous solution containing gold hydroxide is separated from MIAK by oil-water separation.

次に、STEP6で、分離されたアルカリ水溶液に塩酸を添加して、前記水酸化金を再び塩化金酸にする。そして、STEP7で、塩化金酸水溶液に還元性化合物を添加し、塩化金酸を還元することにより金の粒子を沈殿させ、STEP8で沈殿を濾別することにより金の粒子を回収する。   Next, in STEP 6, hydrochloric acid is added to the separated alkaline aqueous solution to convert the gold hydroxide into chloroauric acid again. In STEP 7, a reducing compound is added to the aqueous chloroauric acid solution, and gold particles are precipitated by reducing chloroauric acid, and the gold particles are recovered by filtering the precipitate in STEP8.

また、塩素錯体を形成し得る金属がレニウム等の金以外の金属である場合については図示しないが、図1に示す金の場合と同様にして該金属の塩素錯体をMIAKにより抽出し、金の場合と同様の手順により該金属の粒子を回収することができる。   Although the case where the metal capable of forming a chlorine complex is a metal other than gold, such as rhenium, is not illustrated, the metal chlorine complex is extracted by MIAK in the same manner as in the case of gold shown in FIG. The metal particles can be recovered by the same procedure as in the case.

次に、図2を参照して、フッ素錯体を形成し得る金属の該フッ素錯体水溶液から該金属のフッ素錯体を抽出し、該金属の粒子を回収する方法について、該金属がタンタルとニオブである場合を例として説明する。   Next, referring to FIG. 2, regarding a method of extracting the metal fluorine complex from the fluorine complex aqueous solution of the metal capable of forming a fluorine complex and recovering the metal particles, the metal is tantalum and niobium. A case will be described as an example.

フッ素錯体を形成し得る金属がタンタル(Ta)とニオブ(Nb)とである場合には、まず、STEP11で、タンタルのフッ素錯体であるフッ化タンタル酸(HTaF)と、ニオブのフッ素錯体であるフッ化ニオブ酸(HNbF)との混合水溶液を調製する。タンタルとニオブとは、タンタライト、コロンバイト等の鉱石として一緒に産出されるので、前記水溶液は、例えば、タンタルとニオブとを含む鉱石をボールミル等で微粉砕し、得られた粉鉱をフッ酸に溶解し、硫酸を加えてフッ素イオン濃度及び硫酸イオン濃度を調整することにより得ることができる。 When the metal capable of forming the fluorine complex is tantalum (Ta) and niobium (Nb), first, in STEP 11, fluorinated tantalum acid (H 2 TaF 7 ) which is a fluorine complex of tantalum and fluorine of niobium Prepare a mixed aqueous solution with niobium fluoride (H 2 NbF 7 ) which is a complex. Since tantalum and niobium are produced together as ores such as tantalite and columbite, the aqueous solution is obtained by, for example, pulverizing an ore containing tantalum and niobium with a ball mill or the like, and collecting the obtained ore. It can be obtained by dissolving in an acid and adjusting the fluoride ion concentration and sulfate ion concentration by adding sulfuric acid.

次に、STEP12で、前記フッ化タンタル酸とフッ化ニオブ酸との混合水溶液にMIAKを添加し、フッ化タンタル酸とフッ化ニオブ酸とをMIAKに抽出する。   Next, in STEP 12, MIAK is added to the mixed aqueous solution of tantalum fluorinated acid and niobium fluoride to extract tantalum fluorinated acid and niobium fluoride to MIAK.

次に、STEP13で、MIAKに希酸を加え、フッ化ニオブ酸を希酸中に抽出する一方、フッ化タンタル酸をMIAK中に残留させる。次いで、STEP14で油水分離することにより、タンタルのMIAK溶液(STEP15)と、ニオブの水溶液(STEP24)とが得られる。   Next, in STEP 13, dilute acid is added to MIAK, and niobic fluoride is extracted into dilute acid, while tantalum fluoride is left in MIAK. Subsequently, oil-water separation is performed in STEP14, whereby a tantalum MIAK solution (STEP15) and a niobium aqueous solution (STEP24) are obtained.

STEP15で得られたタンタルのMIAK溶液は、次いで、STEP16で水を添加することにより、タンタルが水溶液中に抽出される。次いで、STEP17で油水分離することにより、タンタルを含まないMIAK(STEP18)と、タンタルの水溶液(STEP19)とが得られる。STEP18で得られたMIAKは、回収されて再利用に供することができる。   In the tantalum MIAK solution obtained in STEP 15, the tantalum is extracted into the aqueous solution by adding water in STEP 16. Next, oil-water separation is performed at STEP 17 to obtain MIAK (STEP 18) not containing tantalum and an aqueous solution of tantalum (STEP 19). The MIAK obtained in STEP 18 can be collected and reused.

STEP19で得られたタンタルの水溶液は、次にSTEP20でアルカリ水溶液を添加することにより、水酸化タンタル(Ta(OH))が沈殿する。そこで、STEP21で水酸化タンタルの沈殿を濾過し、得られた水酸化タンタルをSTEP22で仮焼することにより、酸化タンタル(Ta)としてタンタルを回収することができる(STEP23)。 The aqueous solution of tantalum obtained in STEP 19 is then added with an aqueous alkaline solution in STEP 20 to precipitate tantalum hydroxide (Ta (OH) 5 ). Therefore, tantalum hydroxide can be recovered as tantalum oxide (Ta 2 O 5 ) by filtering the precipitate of tantalum hydroxide in STEP 21 and calcining the obtained tantalum hydroxide in STEP 22 (STEP 23).

一方、STEP24で得られたニオブの水溶液は、次にSTEP25でアルカリ水溶液を添加することにより、水酸化ニオブ(Nb(OH))が沈殿する。そこで、STEP26で水酸化ニオブの沈殿を濾過し、得られた水酸化ニオブをSTEP27で仮焼することにより、酸化ニオブ(Nb)としてニオブを回収することができる(STEP28)。 On the other hand, niobium hydroxide (Nb (OH) 5 ) is precipitated in the aqueous niobium solution obtained in STEP 24 by adding an alkaline aqueous solution in STEP 25. Then, the precipitate of niobium hydroxide is filtered at STEP 26, and the obtained niobium hydroxide is calcined at STEP 27, so that niobium can be recovered as niobium oxide (Nb 2 O 5 ) (STEP 28).

尚、STEP11でフッ化タンタル酸のみを含む水溶液を調製する場合は、STEP12の後、STEP13〜15を行わず、STEP16〜23の操作を行えばよい。また、STEP11でフッ化ニオブ酸のみを含む水溶液を調製する場合は、STEP12の後、STEP13〜24の操作を行わず、STEP25〜28の操作を行えばよい。   In addition, when preparing the aqueous solution which contains only a fluorinated tantalum acid by STEP11, STEP13 ~ 15 should just be performed after STEP12, without performing STEP13 ~ 15. Further, when preparing an aqueous solution containing only niobium fluoride in STEP 11, the operations of STEP 25 to 28 may be performed after STEP 12, without performing the operations of STEP 13 to 24.

また、フッ素錯体を形成し得る金属がタンタル又はニオブ以外の金属である場合については図示しないが、図2に示すタンタル又はニオブの場合と同様にして該金属のフッ素錯体をMIAKにより抽出し、タンタル又はニオブの場合と同様の手順により酸化物として該金属を回収することができる。   Although the case where the metal capable of forming the fluorine complex is a metal other than tantalum or niobium is not shown, the metal fluorine complex is extracted by MIAK in the same manner as in the case of tantalum or niobium shown in FIG. Alternatively, the metal can be recovered as an oxide by the same procedure as in the case of niobium.

次に、本発明の実施例を示す。   Next, examples of the present invention will be described.

〔実施例1〕
本実施例では、まず、金の濃度が1000mg/リットルの市販の原子吸光分析用標準液(和光純薬工業株式会社製)を10ミリリットルずつ複数の容器に分取した。次に、各容器に塩酸と水とを添加し、各容器の塩素イオン濃度が0〜10モル/リットルの範囲でそれぞれ異なる濃度となり、全体の液量が50ミリリットル(金濃度で50mg/リットル)になるように調整して、金の塩素錯体として塩化金酸を含む複数の試料溶液を調製した。各試料溶液は、した。各試料溶液の塩素イオン濃度は、イオンクロマトグラフにより測定した。
[Example 1]
In this example, first, a commercially available standard solution for atomic absorption analysis (manufactured by Wako Pure Chemical Industries, Ltd.) having a gold concentration of 1000 mg / liter was dispensed into a plurality of containers in a volume of 10 ml. Next, hydrochloric acid and water are added to each container, and the chlorine ion concentration in each container becomes a different concentration in the range of 0 to 10 mol / liter, and the total liquid volume is 50 milliliters (50 mg / liter in gold concentration). A plurality of sample solutions containing chloroauric acid as a gold chloride complex were prepared. Each sample solution was. The chlorine ion concentration of each sample solution was measured by an ion chromatograph.

次に、各試料溶液のそれぞれとMIAKとを同体積ずつ分取して密封容器に封入した。このとき、各試料溶液中の金の初期質量Aを次式(1)により算出した。   Next, each sample solution and MIAK were dispensed in the same volume and sealed in a sealed container. At this time, the initial mass A of gold in each sample solution was calculated by the following equation (1).

試料溶液中の金の初期質量A=試料溶液の金濃度×試料溶液の体積 ・・・(1)
次に、前記密封容器を所定時間撹拌し、試料溶液中の塩化金酸をMIAK中に抽出した後、試料溶液中の金の濃度を誘導結合プラズマ発光分析(ICP−AES)により測定し、各試料溶液中の金の撹拌後の質量Bを次式(2)により算出した。
Initial mass of gold in sample solution A = gold concentration of sample solution × volume of sample solution (1)
Next, the sealed container is stirred for a predetermined time, and chloroauric acid in the sample solution is extracted into MIAK, and then the gold concentration in the sample solution is measured by inductively coupled plasma emission spectrometry (ICP-AES). The mass B after stirring of gold in the sample solution was calculated by the following formula (2).

試料溶液中の金の撹拌後の質量B=試料溶液の撹拌後の金濃度×試料溶液の体積
・・・(2)
そして、次式(3)により塩素イオン濃度に対する金の抽出率を算出した。
Mass after stirring gold in sample solution B = Gold concentration after stirring sample solution × Volume of sample solution
... (2)
And the extraction rate of gold | metal | money with respect to chlorine ion concentration was computed by following Formula (3).

抽出率(%)={(A−B)/A}×100 ・・・(3)
塩素イオン濃度に対する金の抽出率を図3に示す。
Extraction rate (%) = {(A−B) / A} × 100 (3)
FIG. 3 shows the extraction rate of gold with respect to the chloride ion concentration.

〔実施例2〕
本実施例では、金に代えてレニウムを用いた以外は、実施例1と全く同一にして、塩素イオン濃度に対するレニウムの抽出率を算出した。塩素イオン濃度に対するレニウムの抽出率を図4に示す。
[Example 2]
In this example, the extraction rate of rhenium relative to the chlorine ion concentration was calculated in exactly the same manner as in Example 1 except that rhenium was used instead of gold. The extraction rate of rhenium with respect to the chlorine ion concentration is shown in FIG.

〔実施例3〕
本実施例では、まず、タンタルの濃度が1000mg/リットルの市販の原子吸光分析用標準液(和光純薬工業株式会社製)を0.5ミリリットルずつ複数の容器に分取した。次に、各容器にフッ酸と硫酸とを添加し、各容器のフッ素イオン濃度が0〜5モル/リットルの範囲で、また硫酸イオン濃度が0〜4モル/リットルの範囲で、それぞれ異なる濃度となり、全体の液量が50ミリリットル(タンタル濃度で10mg/リットル)になるように調整して、タンタルのフッ素錯体としてフッ化タンタル酸を含む複数の試料溶液を調製した。各試料溶液のフッ素イオン濃度及び硫酸イオン濃度は、イオンクロマトグラフにより測定した。
Example 3
In this example, first, a commercially available standard solution for atomic absorption analysis (manufactured by Wako Pure Chemical Industries, Ltd.) having a tantalum concentration of 1000 mg / liter was dispensed into a plurality of containers 0.5 ml each. Next, hydrofluoric acid and sulfuric acid are added to each container, and the fluorine ion concentration in each container is in the range of 0 to 5 mol / liter, and the sulfate ion concentration is in the range of 0 to 4 mol / liter. Thus, a plurality of sample solutions containing fluorinated tantalum acid as a tantalum fluorine complex were prepared by adjusting the total liquid volume to 50 milliliters (10 mg / liter tantalum concentration). The fluorine ion concentration and the sulfate ion concentration of each sample solution were measured by an ion chromatograph.

次に、各試料溶液のそれぞれとMIAKとを同体積ずつ分取して密封容器に封入した。このとき、各試料溶液中のタンタルの初期質量Aを次式(4)により算出した。   Next, each sample solution and MIAK were dispensed in the same volume and sealed in a sealed container. At this time, the initial mass A of tantalum in each sample solution was calculated by the following equation (4).

試料溶液中のタンタルの初期質量A=試料溶液のタンタル濃度×試料溶液の体積
・・・(4)
次に、前記密封容器を所定時間撹拌し、試料溶液中のフッ化タンタル酸をMIAK中に抽出した後、試料溶液中のタンタルの濃度を誘導結合プラズマ発光分析(ICP−AES)により測定し、各試料溶液中のタンタルの撹拌後の質量Bを次式(5)により算出した。
Initial mass of tantalum in sample solution A = Tantalum concentration of sample solution × Volume of sample solution
... (4)
Next, the sealed container is stirred for a predetermined time, and after extracting tantalum fluoric acid in the sample solution into MIAK, the concentration of tantalum in the sample solution is measured by inductively coupled plasma emission spectrometry (ICP-AES), The mass B after stirring of tantalum in each sample solution was calculated by the following equation (5).

試料溶液中のタンタルの撹拌後の質量B=試料溶液の撹拌後のタンタル濃度×試料溶液の体積 ・・・(5)
そして、次式(6)によりフッ素イオン濃度及び硫酸イオン濃度に対するタンタルの抽出率を算出した。
Mass after stirring of tantalum in sample solution B = Concentration of tantalum after stirring of sample solution × Volume of sample solution (5)
And the extraction rate of the tantalum with respect to a fluorine ion concentration and a sulfate ion concentration was computed by following Formula (6).

抽出率(%)={(A−B)/A}×100 ・・・(6)
フッ素イオン濃度及び硫酸イオン濃度に対するタンタルの抽出率を図5に示す。
Extraction rate (%) = {(A−B) / A} × 100 (6)
The extraction rate of tantalum with respect to the fluorine ion concentration and the sulfate ion concentration is shown in FIG.

〔実施例4〕
本実施例では、タンタルに代えてニオブを用いた以外は、実施例3と全く同一にして、フッ素イオン濃度及び硫酸イオン濃度に対するニオブの抽出率を算出した。フッ素イオン濃度及び硫酸イオン濃度に対するニオブの抽出率を図6に示す。
Example 4
In this example, the extraction rate of niobium with respect to the fluorine ion concentration and the sulfate ion concentration was calculated in exactly the same manner as in Example 3 except that niobium was used instead of tantalum. FIG. 6 shows the extraction rate of niobium with respect to the fluorine ion concentration and the sulfate ion concentration.

図3〜6から、本実施形態のMIAKからなる金属抽出剤によれば、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出することができることが明らかである。   3-6, according to the metal extractant comprising MIAK of the present embodiment, the metal chlorine complex or fluorine complex is formed from the chlorine complex aqueous solution or the fluorine complex aqueous solution of a metal capable of forming a chlorine complex or fluorine complex. It is clear that it can be extracted.

符号なし。   No sign.

本発明は、金属用抽出剤及びそれを用いる抽出方法に関する。   The present invention relates to a metal extractant and an extraction method using the same.

従来、5−メチル−2−ヘキサノン(慣用名として、イソアミルメチルケトン又はメチルイソアミルケトン(MIAK))は、インキ、ペースト、塗料、レジスト等の溶媒としての用途が知られている(例えば、特許文献1参照)。   Conventionally, 5-methyl-2-hexanone (commonly known as isoamyl methyl ketone or methyl isoamyl ketone (MIAK)) has been known to be used as a solvent for inks, pastes, paints, resists, and the like (for example, Patent Documents). 1).

特開2005−120389号公報JP 2005-120389 A

しかしながら、5−メチル−2−ヘキサノンは、第2石油類に分類され、保管できる指定数量も第1石油類の200リットルに比較して1000リットルと大きいので、前記溶媒としての用途以外に新たな用途の開発が望まれる。   However, 5-methyl-2-hexanone is classified as a second petroleum, and the designated quantity that can be stored is as large as 1000 liters compared to 200 liters of the first petroleum. Development of applications is desired.

本発明は、かかる事情に鑑み、5−メチル−2−ヘキサノンの新たな用途を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a new use of 5-methyl-2-hexanone.

本発明者らは、5−メチル−2−ヘキサノンの新たな用途について鋭意検討した結果、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出する金属用抽出剤として有用であることを見いだし本発明に到達した。   As a result of intensive studies on a new use of 5-methyl-2-hexanone, the present inventors have found that a metal complex capable of forming a chlorine complex or a fluorine complex or a chlorine complex of the metal from the aqueous solution of the fluorine complex or the aqueous solution of the fluorine complex. It has been found that the present invention is useful as a metal extractant for extracting a fluorine complex, and has reached the present invention.

そこで、本発明の金属用抽出剤は、5−メチル−2−ヘキサノンを含有し、金又はレニウムの塩素錯体水溶液か金又はレニウムの塩素錯体を抽出するために用いられることを特徴とする。 Therefore, for metals extraction agent of the present invention, the feature 5-methyl-2-hexanone contain, to be used to extract the chlorine complex aqueous solution or al gold or chlorine complex of rhenium gold or rhenium To do.

本発明によれば、5−メチル−2−ヘキサノンを含有する金属用抽出剤を、金又はレニウムの塩素錯体水溶液に添加することにより、該水溶液から金又はレニウムの塩素錯体を抽出することができる。 According to the present invention, 5-a metal-extractant containing methyl-2-hexanone, by adding chlorine complex aqueous solution of gold or rhenium, extracting chlorine complex of gold or rhenium from the aqueous solution Can do.

また、本発明の抽出方法は、金又はレニウムの塩素錯体水溶液か金又はレニウムの塩素錯体を5−メチル−2−ヘキサノンを有効成分とする抽出溶媒により抽出することを特徴とする。 The extraction method of the present invention is characterized by extracting the extraction solvent gold or rhenium which chlorine complex aqueous solution or al gold or chlorine complex of rhenium as active ingredient 5-methyl-2-hexanone.

本発明の金属用抽出剤による金又はレニウムの抽出工程を示すフローチャート。The flowchart which shows the gold | metal | money or rhenium extraction process by the metal extracting agent of this invention. 本発明の金属用抽出剤による塩素イオン濃度に対する金の抽出率を示すグラフ。The graph which shows the extraction rate of gold | metal | money with respect to the chlorine ion concentration by the extractant for metals of this invention. 本発明の金属用抽出剤による塩素イオン濃度に対するレニウムの抽出率を示すグラフ。The graph which shows the extraction rate of rhenium with respect to the chlorine ion concentration by the metal extracting agent of this invention.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

本実施形態の金属抽出剤は、5−メチル−2−ヘキサノン(以下、MIAKと略記する)からなり、金又はレニウムの塩素錯体水溶液か金又はレニウムの塩素錯体を抽出するために用いられる。 Metal extractants of the present embodiment, 5-methyl-2-hexanone (hereinafter, abbreviated as MIAK) consists, used to extract chlorine complex of gold or rhenium chlorine complex aqueous solution or al gold or rhenium It is done.

次に、図1を参照して、塩金又はレニウムの塩素錯体水溶液から金又はレニウムの塩素錯体を抽出し、金又はレニウムの粒子を回収する方法について、金の場合を例として説明する。 Next, referring to FIG. 1, it extracts a chlorine complex of gold or rhenium chlorine complex aqueous solution of a salt deposit or rhenium, the method for recovering particles of gold or rhenium, the case of gold as an example.

塩素錯体を形成し得る金属が金(Au)である場合には、まず、STEP1で、金の塩素錯体である塩化金酸(HAuCl)の水溶液を調製する。塩化金酸の水溶液は、例えば、金を含む原材料を王水又は6〜6.5Nの塩酸に溶解することにより得ることができる。 When the metal capable of forming a chlorine complex is gold (Au), first, in STEP 1, an aqueous solution of chloroauric acid (HAuCl 4 ), which is a gold chlorine complex, is prepared. An aqueous solution of chloroauric acid can be obtained, for example, by dissolving a raw material containing gold in aqua regia or 6-6.5N hydrochloric acid.

次に、STEP2で、前記塩化金酸の水溶液にMIAKを添加し、塩化金酸をMIAKに抽出する。このとき、MIAKには塩化金酸以外の金属錯体等も抽出される。   Next, in STEP 2, MIAK is added to the aqueous solution of chloroauric acid, and chloroauric acid is extracted into MIAK. At this time, metal complexes other than chloroauric acid are also extracted in MIAK.

そこで、STEP3で、MIAKに希酸を添加して洗浄し、塩化金酸以外の金属錯体等を除去する。この結果、MIAKには実質的に塩化金酸のみが含有される状態となる。   Therefore, in STEP3, a dilute acid is added to MIAK and washed to remove metal complexes other than chloroauric acid. As a result, MIAK substantially contains only chloroauric acid.

次に、STEP4で、MIAKにアルカリ水溶液を添加して水酸化金(Au(OH))を生成させ、生成した水酸化金を水相に移動させる。次いで、STEP5で、油水分離することにより、MIAKから水酸化金を含むアルカリ水溶液を分離する。 Next, in STEP 4, an alkaline aqueous solution is added to MIAK to generate gold hydroxide (Au (OH) 3 ), and the generated gold hydroxide is moved to the aqueous phase. Next, in STEP5, the aqueous solution containing gold hydroxide is separated from MIAK by oil-water separation.

次に、STEP6で、分離されたアルカリ水溶液に塩酸を添加して、前記水酸化金を再び塩化金酸にする。そして、STEP7で、塩化金酸水溶液に還元性化合物を添加し、塩化金酸を還元することにより金の粒子を沈殿させ、STEP8で沈殿を濾別することにより金の粒子を回収する。   Next, in STEP 6, hydrochloric acid is added to the separated alkaline aqueous solution to convert the gold hydroxide into chloroauric acid again. In STEP 7, a reducing compound is added to the aqueous chloroauric acid solution, and gold particles are precipitated by reducing chloroauric acid, and the gold particles are recovered by filtering the precipitate in STEP8.

また、レニウム場合については図示しないが、図1に示す金の場合と同様にしてレニウムの塩素錯体をMIAKにより抽出し、金の場合と同様の手順によりレニウムの粒子を回収することができる。 Although not shown for the case of Le chloride, it can be in the same manner as in the case of gold is shown in Figure 1 a chlorine complex of rhenium extracted with MIAK, recovering the particles of rhenium, possibly with the same procedure of Kim .

次に、本発明の実施例を示す。   Next, examples of the present invention will be described.

〔実施例1〕
本実施例では、まず、金の濃度が1000mg/リットルの市販の原子吸光分析用標準液(和光純薬工業株式会社製)を10ミリリットルずつ複数の容器に分取した。次に、各容器に塩酸と水とを添加し、各容器の塩素イオン濃度が0〜10モル/リットルの範囲でそれぞれ異なる濃度となり、全体の液量が50ミリリットル(金濃度で50mg/リットル)になるように調整して、金の塩素錯体として塩化金酸を含む複数の試料溶液を調製した。各試料溶液の塩素イオン濃度は、イオンクロマトグラフにより測定した。
[Example 1]
In this example, first, a commercially available standard solution for atomic absorption analysis (manufactured by Wako Pure Chemical Industries, Ltd.) having a gold concentration of 1000 mg / liter was dispensed into a plurality of containers in a volume of 10 ml. Next, hydrochloric acid and water are added to each container, and the chlorine ion concentration in each container becomes a different concentration in the range of 0 to 10 mol / liter, and the total liquid volume is 50 milliliters (50 mg / liter in gold concentration). A plurality of sample solutions containing chloroauric acid as a gold chloride complex were prepared . The chlorine ion concentration of each sample solution was measured by an ion chromatograph.

次に、各試料溶液のそれぞれとMIAKとを同体積ずつ分取して密封容器に封入した。このとき、各試料溶液中の金の初期質量Aを次式(1)により算出した。   Next, each sample solution and MIAK were dispensed in the same volume and sealed in a sealed container. At this time, the initial mass A of gold in each sample solution was calculated by the following equation (1).

試料溶液中の金の初期質量A=試料溶液の金濃度×試料溶液の体積 ・・・(1)
次に、前記密封容器を所定時間撹拌し、試料溶液中の塩化金酸をMIAK中に抽出した後、試料溶液中の金の濃度を誘導結合プラズマ発光分析(ICP−AES)により測定し、各試料溶液中の金の撹拌後の質量Bを次式(2)により算出した。
Initial mass of gold in sample solution A = gold concentration of sample solution × volume of sample solution (1)
Next, the sealed container is stirred for a predetermined time, and chloroauric acid in the sample solution is extracted into MIAK, and then the gold concentration in the sample solution is measured by inductively coupled plasma emission spectrometry (ICP-AES). The mass B after stirring of gold in the sample solution was calculated by the following formula (2).

試料溶液中の金の撹拌後の質量B=試料溶液の撹拌後の金濃度×試料溶液の体積
・・・(2)
そして、次式(3)により塩素イオン濃度に対する金の抽出率を算出した。
Mass after stirring gold in sample solution B = Gold concentration after stirring sample solution × Volume of sample solution
... (2)
And the extraction rate of gold | metal | money with respect to chlorine ion concentration was computed by following Formula (3).

抽出率(%)={(A−B)/A}×100 ・・・(3)
塩素イオン濃度に対する金の抽出率を図2に示す。
Extraction rate (%) = {(A−B) / A} × 100 (3)
The gold extraction rate with respect to the chloride ion concentration is shown in FIG .

〔実施例2〕
本実施例では、金に代えてレニウムを用いた以外は、実施例1と全く同一にして、塩素イオン濃度に対するレニウムの抽出率を算出した。塩素イオン濃度に対するレニウムの抽出率を図3に示す
[Example 2]
In this example, the extraction rate of rhenium relative to the chlorine ion concentration was calculated in exactly the same manner as in Example 1 except that rhenium was used instead of gold. The extraction rate of rhenium with respect to the chlorine ion concentration is shown in FIG .

図2〜3から、本実施形態のMIAKからなる金属抽出剤によれば、金又はレニウムの塩素錯体水溶液か金又はレニウムの塩素錯体を抽出することができることが明らかである。 From FIGS. 2-3, according to the metal extractant consisting MIAK of the present embodiment, it is apparent that it is possible to extract chlorine complex aqueous solution or al gold or chlorine complex of rhenium gold or rhenium.

符号なし。   No sign.

Claims (6)

5−メチル−2−ヘキサノンを含有し、塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を抽出するために用いられることを特徴とする金属用抽出剤。   It is used for extracting the chlorine complex or fluorine complex of the metal from the chlorine complex aqueous solution of the metal containing 5-methyl-2-hexanone and capable of forming a chlorine complex or fluorine complex or the fluorine complex aqueous solution. Metal extractant. 請求項1記載の金属用抽出剤において、前記塩素錯体を形成し得る金属は、金又はレニウムであることを特徴とする金属用抽出剤。   2. The metal extractant according to claim 1, wherein the metal capable of forming the chlorine complex is gold or rhenium. 請求項1記載の金属用抽出剤において、前記フッ素錯体を形成し得る金属は、タンタル又はニオブであることを特徴とする金属用抽出剤。   2. The metal extractant according to claim 1, wherein the metal capable of forming the fluorine complex is tantalum or niobium. 塩素錯体又はフッ素錯体を形成し得る金属の該塩素錯体水溶液又は該フッ素錯体水溶液から該金属の塩素錯体又はフッ素錯体を5−メチル−2−ヘキサノンを有効成分とする抽出溶媒により抽出することを特徴とする抽出方法。   Extracting the chlorine complex or fluorine complex of a metal capable of forming a chlorine complex or a fluorine complex from an aqueous solution of the chlorine complex or the fluorine complex with an extraction solvent containing 5-methyl-2-hexanone as an active ingredient Extraction method. 請求項4記載の抽出方法において、前記塩素錯体を形成し得る金属は、金又はレニウムであることを特徴とする抽出方法。   5. The extraction method according to claim 4, wherein the metal capable of forming the chlorine complex is gold or rhenium. 請求項4記載の抽出方法において、前記フッ素錯体を形成し得る金属は、タンタル又はニオブであることを特徴とする抽出方法。   5. The extraction method according to claim 4, wherein the metal capable of forming the fluorine complex is tantalum or niobium.
JP2018202826A 2018-10-29 2018-10-29 Metal extractant and extraction method using the same Active JP6562433B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018202826A JP6562433B1 (en) 2018-10-29 2018-10-29 Metal extractant and extraction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018202826A JP6562433B1 (en) 2018-10-29 2018-10-29 Metal extractant and extraction method using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018057834A Division JP6427698B1 (en) 2018-03-26 2018-03-26 Extraction method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019107893A Division JP2019173178A (en) 2019-06-10 2019-06-10 Extracting agent for metal and extracting method therewith

Publications (2)

Publication Number Publication Date
JP6562433B1 JP6562433B1 (en) 2019-08-21
JP2019172653A true JP2019172653A (en) 2019-10-10

Family

ID=67695602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018202826A Active JP6562433B1 (en) 2018-10-29 2018-10-29 Metal extractant and extraction method using the same

Country Status (1)

Country Link
JP (1) JP6562433B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235435A (en) * 1987-03-24 1988-09-30 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Manufacture of metallic tantalum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235435A (en) * 1987-03-24 1988-09-30 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Manufacture of metallic tantalum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NETE. M., ET AL.: "Separation and isolation of tantalum and niobium from tantalite using solvent extraction and ion exc", HYDROMETALLURGY, vol. 149, JPN6019005721, 22 July 2014 (2014-07-22), pages 31 - 40, ISSN: 0004064823 *
PURCELL, W. ET AL.: "Possible methodology for niobium, tantalum and scandium separation in ferrocolumbite", MINERALS ENGINEERING, vol. 119, JPN6019005722, 4 February 2018 (2018-02-04), pages 57 - 66, ISSN: 0004064824 *

Also Published As

Publication number Publication date
JP6562433B1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
US5961938A (en) Method for recovering reusable elements from rare earth-iron alloy
JP2008115063A (en) High purity hafnium material and method of manufacturing the material by using solvent extraction method
Abbott et al. Processing metal oxides using ionic liquids
EP3733884A1 (en) Solvent extraction method
JP6427698B1 (en) Extraction method
JP5889455B1 (en) Recovery method of rare earth elements
Song et al. Separation of tungsten and cobalt from WC-Co hard metal wastes using ion-exchange and solvent extraction with ionic liquid
Amaral et al. Equilibrium of zirconium and hafnium in the process of extraction with TBP in nitric medium–Influence in the Zr/Hf separation
Rajak et al. Extractive metallurgy of columbite-tantalite ore: A detailed review
JP2019172653A (en) Extracting agent for metal and extracting method therewith
US7182925B2 (en) Tantalum concentrates dissolution and purification method
Sanda et al. Solvent extraction of tantalum (V) from aqueous sulphate/fluoride solution using trioctyl phosphine oxide in MIBK
JP2019173178A (en) Extracting agent for metal and extracting method therewith
KR101699926B1 (en) Method for recovering nitric acid and gold from aqua regia solution
JP5678231B2 (en) Separation of rare earth elements from waste optical glass
JP5850966B2 (en) Cobalt extraction solution, cobalt solution, and cobalt recovery method
US3107976A (en) Niobium-tantalum separation
JP6159630B2 (en) Gold collection method
JP2013136830A (en) Method for recovering silver
CN111485122B (en) Method for recycling niobium from waste NbTaZr alloy
KR101545968B1 (en) Method for recovery of valuable metals from waste materials
JP2022183612A (en) Production method of tantalum oxide
Ungerer Separation of tantalum and niobium by solvent extraction
JP2000144275A (en) Method for recovering rare earth element
CN104928503A (en) Method for separating and extracting indium and gallium from indium-gallium solution

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190610

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190717

R150 Certificate of patent or registration of utility model

Ref document number: 6562433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150