JP2008115063A - High purity hafnium material and method of manufacturing the material by using solvent extraction method - Google Patents

High purity hafnium material and method of manufacturing the material by using solvent extraction method Download PDF

Info

Publication number
JP2008115063A
JP2008115063A JP2006326288A JP2006326288A JP2008115063A JP 2008115063 A JP2008115063 A JP 2008115063A JP 2006326288 A JP2006326288 A JP 2006326288A JP 2006326288 A JP2006326288 A JP 2006326288A JP 2008115063 A JP2008115063 A JP 2008115063A
Authority
JP
Japan
Prior art keywords
hafnium
nitric acid
zirconium
ppm
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006326288A
Other languages
Japanese (ja)
Inventor
Mitsuhide Kawasaki
光秀 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006326288A priority Critical patent/JP2008115063A/en
Publication of JP2008115063A publication Critical patent/JP2008115063A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a high purity hafnium material suitable for electronic materials has not been prepared so far since the separation of zirconium resembling to hafnium in chemical properties is difficult, although hafnium-based materials are expected to be used as frontier electronic materials such as insulated gate materials. <P>SOLUTION: The present invention can provide the high purity hafnium material containing 1 wt. ppm or lower of zirconium and other impurity elements by a method based on the solvent extraction method using a TBP (tributyl phosphate) solvent, and its manufacturing method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高純度ハフニウム材料および溶媒抽出法を用いた該材料の製造方法に関する。  The present invention relates to a high-purity hafnium material and a method for producing the material using a solvent extraction method.

ハフニウムは、熱中性子吸収断面積が大きいことを利用した原子炉制御棒被覆材料としての特殊用途あるいはガスタービンなどに用いる耐熱合金への添加目的で利用されているが、そのほかに近年、ハフニウムシリサイドなどのハフニウム系酸化物が、その高い誘電率から現行の酸化シリコンに代わる半導体デバイスの絶縁誘電ゲート材料として注目を集めるに到っている。  Hafnium has been used for special purposes as a reactor control rod coating material utilizing its large thermal neutron absorption cross section or for addition to heat-resistant alloys used in gas turbines, etc. Because of its high dielectric constant, the hafnium-based oxides have attracted attention as insulating dielectric gate materials for semiconductor devices that replace current silicon oxide.

ハフニウムは、もともとジルコニウム鉱物(ジルコン)に取り込まれて産出するものであり、ジルコニウムの副産物として生成する。両者の原子構造および化学的性質は非常によく類似していることから分離は困難で、原子力分野を除いて分離されずに利用されるのが一般的であった。  Hafnium is originally produced by being incorporated into a zirconium mineral (zircon) and is produced as a byproduct of zirconium. Since the atomic structures and chemical properties of the two are very similar, it is difficult to separate them, and it was generally used without separation except in the nuclear field.

しかしながら、ULSIにおける次世代絶縁ゲート材料など、数十ナノメートルから数ナノメートルオーダーの非常に微細領域での安定性が要求される先端電子材料用途としては、可能な限り不純物を低減することが望まれるようになってきており、このような電子材料用途を目的とした高純度ハフニウムの研究開発が行われるようになっている(特許文献1〜4および非特許文献1参照)。  However, it is desirable to reduce impurities as much as possible for advanced electronic materials that require stability in a very fine region of the order of several tens of nanometers to several nanometers, such as next-generation insulated gate materials in ULSI. As a result, research and development of high-purity hafnium for the purpose of using such electronic materials has been conducted (see Patent Documents 1 to 4 and Non-Patent Document 1).

ハフニウムの分離・精製技術としては、溶媒抽出による方法(特許文献1)、強塩基性陰イオン交換樹脂を利用する方法(特許文献2)、あるいはフラッシュクロマト法、減圧蒸留法、キレート剤による吸着および光照射法などを利用する方法(特許文献3)などが報告されている。  Hafnium separation / purification techniques include solvent extraction (Patent Document 1), strong basic anion exchange resin (Patent Document 2), flash chromatography, vacuum distillation, chelating agent adsorption and A method using a light irradiation method or the like (Patent Document 3) has been reported.

ハフニウムの高純度化を達成するために一番問題となるのは、前述のように化学的性質が非常に類似したジルコニウムの分離であり、今まで報告されている特許文献でもジルコニウム含有量が1〜1000重量ppmのオーダーまでの分離にとどまっている(特許文献1参照)。
国際公開番号WO2005/010220 再公表特許(A1)「高純度ハフニウム材料、同材料からなるターゲット及び薄膜並びに高純度ハフニウムの製造方法」日鉱金属株式会社 特開平10−204554 公開特許公報(A)「ジルコニウムおよび/またはハフニウム化合物の精製方法」同和鉱業株式会社 特開2005−314785 公開特許公報(A)「ハフニウム含有膜形成材料及び該材料から作製されたハフニウム含有薄膜の製造方法」三菱マテリアル株式会社 特許第3409290号「ゲート酸化膜形成材料」株式会社トリケミカル研究所 「別冊化学工業」Vol.26,No.3,p.117−124(1982)「ジルコニウムとハフニウムの分離」大塚たけお、宮崎英男
As described above, the most serious problem in achieving high purity of hafnium is the separation of zirconium having very similar chemical properties. In the patent literatures reported so far, the zirconium content is 1 The separation is limited to the order of ˜1000 ppm by weight (see Patent Document 1).
International Publication Number WO2005 / 010220 Republished Patent (A1) “High-Purity Hafnium Material, Target and Thin Film Made of the Same, and Method for Producing High-Purity Hafnium” Japanese Patent Laid-Open No. 10-204554 (A) “Purification Method of Zirconium and / or Hafnium Compound” Dowa Mining Co., Ltd. Japanese Patent Application Laid-Open No. 2005-314785 (A) “Hafnium-containing film forming material and method for producing hafnium-containing thin film made from the material” Mitsubishi Materials Corporation Patent No. 3409290 "Gate oxide film forming material" Trichemical Laboratories Co., Ltd. “Separate volume chemical industry” Vol. 26, no. 3, p. 117-124 (1982) "Separation of zirconium and hafnium" Takeo Otsuka, Hideo Miyazaki

以上のような状況を解決するために、本発明は、次世代の絶縁ゲート材料など先端電子材料用途に対応した残留ジルコニウム量が1重量ppm以下の高純度ハフニウム材料を提供する。  In order to solve the above situation, the present invention provides a high-purity hafnium material having an amount of residual zirconium of 1 ppm by weight or less corresponding to advanced electronic material applications such as next-generation insulated gate materials.

発明を解決するための手段Means for Solving the Invention

高純度ハフニウムを得るために最も重要となるジルコニウムを除去・分離する方法として本発明では、硝酸溶液中に溶解したハフニウム硝酸水溶液とリン酸トリブチル(TBP)溶媒を用いる溶媒抽出法を採用した。  In the present invention, a solvent extraction method using a hafnium nitric acid aqueous solution dissolved in a nitric acid solution and a tributyl phosphate (TBP) solvent is adopted as a method for removing and separating zirconium, which is most important for obtaining high-purity hafnium.

溶媒抽出としては、他に溶媒としてメチルイソブチルケトン(MBIK)を用いる方法もあるが、この薬剤は有害で危険性が高いため本発明のTBPを用いる系の方がより安全性が高い。  As another solvent extraction method, there is a method using methyl isobutyl ketone (MBIK) as a solvent, but since this drug is harmful and dangerous, the system using the TBP of the present invention is safer.

この方法ではハフニウムの硝酸水溶液とTBP溶媒を用意する必要があるが、ハフニウム硝酸水溶液は、例えば塩化ハフニウムを原料として図1に示す流れで調製することが可能である。  In this method, it is necessary to prepare a hafnium nitric acid aqueous solution and a TBP solvent. The hafnium nitric acid aqueous solution can be prepared, for example, in the flow shown in FIG. 1 using hafnium chloride as a raw material.

ハフニウム純金属あるいはハフニウム酸化物は、溶解が困難であるため図1のように塩化ハフニウムを用いるのが最も容易であるが、ハフニウム原料のアルカリ溶解、洗浄、硫酸脱水、水酸化物沈殿そして硝酸中への溶解によって、あるいはフッ酸またはフッ化アンモニウム酸との混合溶液であるバッファード酸フッ酸による溶解によっても、ハフニウム水溶液を得ることができ、これらからハフニウム硝酸水溶液を得ることがきる。  As hafnium pure metal or hafnium oxide is difficult to dissolve, it is easiest to use hafnium chloride as shown in FIG. 1, but hafnium raw material is dissolved in alkali, washed, sulfuric acid dehydrated, hydroxide precipitated and in nitric acid. A hafnium aqueous solution can also be obtained by dissolution in water, or by dissolution with buffered acid hydrofluoric acid, which is a mixed solution with hydrofluoric acid or ammonium fluoride, and a hafnium nitric acid aqueous solution can be obtained therefrom.

ハフニウム硝酸水溶液を調整後、この溶液とTBP溶媒(希釈剤としてノルマルドデカンを添加)を用いた抽出機による多段抽出を行う(図2参照)。  After adjusting the hafnium nitric acid aqueous solution, multistage extraction is performed with an extractor using this solution and a TBP solvent (added normal dodecane as a diluent) (see FIG. 2).

抽出機としては、例えば、バッチ式抽出器や、多段階の抽出操作が可能となるミキサセトラあるいはパルスカラムなどの種々の抽出装置を用いることができる。  As the extractor, for example, various extractors such as a batch type extractor, a mixer-settler or a pulse column capable of multistage extraction operations can be used.

抽出時の硝酸水溶液中の硝酸濃度は、ハフニウムおよびジルコニウムの抽出挙動に大きく影響するが、これらの濃度はハフニウムとジルコニウムの分離効率とハフニウムの回収率を考慮して最適な条件を得る必要がある。本発明では、種々の異なる条件でのデータを踏まえ、溶媒抽出時の原液として供給するハフニウム硝酸溶液中の硝酸濃度は6mol/Lから10mol/Lの間である必要があり、8mol/L程度が望ましい。  The concentration of nitric acid in the aqueous nitric acid solution during extraction greatly affects the extraction behavior of hafnium and zirconium, but these concentrations must be optimized in consideration of the separation efficiency of hafnium and zirconium and the hafnium recovery rate. . In the present invention, based on data under various different conditions, the nitric acid concentration in the hafnium nitric acid solution supplied as a stock solution at the time of solvent extraction needs to be between 6 mol / L and 10 mol / L, and about 8 mol / L is desirable.

原液とするハフニウム硝酸水溶液中のハフニウム濃度もハフニウムとジルコニウムの分離効率とハフニウムの回収率を考慮すると10g/L以上である必要があるが、100g/L程度が望ましい。  The hafnium concentration in the hafnium nitric acid aqueous solution as the stock solution needs to be 10 g / L or more in consideration of the separation efficiency of hafnium and zirconium and the hafnium recovery rate, but is preferably about 100 g / L.

除去が必要とされる不純物元素としては、ジルコニウムのほかに、半導体デバイスにダメージを与える放射性元素であるウラン、その他に絶縁ゲート接合部に悪影響を与える可能性のあるマグネシウム、アルミニウム、カルシウム、チタン、ニッケル、ニオブ、タンタル、および鉛があげられる。  In addition to zirconium, impurity elements that need to be removed include uranium, which is a radioactive element that damages semiconductor devices, and magnesium, aluminum, calcium, titanium, which may adversely affect the insulated gate junction, Examples include nickel, niobium, tantalum, and lead.

抽出によってジルコニウム量が1重量ppm以下となった溶液をアルカリ溶液を添加して中和することによって、高純度酸化ハフニウム粉末を得ることができるが、さらにこれを塩素化して四塩化ハフニウムとした後これを還元し、ハフニウムスポンジあるいはインゴットなどの高純度ハフニウム純金属材料を得ることができ、スパッタリング用ターゲットなどの薄膜作製用材料を提供することができる。  High-purity hafnium oxide powder can be obtained by neutralizing the solution having an amount of zirconium of 1 wt ppm or less by extraction by adding an alkaline solution. After further chlorination to obtain hafnium tetrachloride, By reducing this, a high-purity hafnium pure metal material such as hafnium sponge or ingot can be obtained, and a material for forming a thin film such as a sputtering target can be provided.

高純度ハフニウム純金属材料から、さらに単結晶成長を行うことによって、ハフニウム単結晶材料も得ることができる。  A hafnium single crystal material can also be obtained by performing single crystal growth from a high-purity hafnium pure metal material.

その他、精製ハフニウム材料から得られる高純度ハフニウム化合物としては、例えば、オキシ塩化ハフニウム、水素化ハフニウム、炭化ハフニウム、硫化ハフニウム、珪化ハフニウムなどがある。  In addition, examples of high-purity hafnium compounds obtained from purified hafnium materials include hafnium oxychloride, hafnium hydride, hafnium carbide, hafnium sulfide, and hafnium silicide.

上記精製ハフニウム材料から、さらにCVD法などによってハフニウム系酸化物膜を合成するための原料となる有機ハフニウム材料として、例えば、テトラメトキシハフニウム、テトラエトキシハフニウム、テトラ−i−ハフニウム、テトラ−t−ブトキシハフニウム、テトラキス(ジビロイルメタナト)ハフニウム、テトラキス(ジメチルアミ)ハフニウム、およびハフニウム原子と窒素原子の結合を有する有機ハフニウム化合物などがあげられる。  Examples of organic hafnium materials used as raw materials for synthesizing a hafnium-based oxide film from the purified hafnium material by a CVD method or the like include, for example, tetramethoxyhafnium, tetraethoxyhafnium, tetra-i-hafnium, tetra-t-butoxy. Examples thereof include hafnium, tetrakis (dibiroylmethanato) hafnium, tetrakis (dimethylami) hafnium, and organic hafnium compounds having a bond between a hafnium atom and a nitrogen atom.

発明の効果The invention's effect

本発明によって、次世代絶縁ゲート材料などの先端電子材料の原料として適した高純度ハフニウム材料を得ることができ、電子デバイスの高密度化に寄与できる。  According to the present invention, a high-purity hafnium material suitable as a raw material for advanced electronic materials such as next-generation insulated gate materials can be obtained, which can contribute to higher density of electronic devices.

本発明は、ハフニウム硝酸水溶液およびTBP溶媒を用いて多段抽出を行うことによって、特に分離困難なジルコニウム元素を1重量ppm以下まで減らした高純度ハフニウム材料を提供できる。  The present invention can provide a high-purity hafnium material in which zirconium element, which is particularly difficult to separate, is reduced to 1 ppm by weight or less by performing multistage extraction using an aqueous hafnium nitric acid solution and a TBP solvent.

その具体的な方法と結果について以下の実施例に述べるが、これは必ずしも本発明を制限するものではなく、本発明の基本的考え方の範囲における他の実施例および派生する例も本発明に含まれる。  The specific methods and results are described in the following examples, which do not necessarily limit the present invention, but include other examples and derived examples within the scope of the basic idea of the present invention. It is.

ハフニウム硝酸水溶液の調製は、図1に示す流れに沿って行った。原料の塩化ハフニウムは、三津和化学薬品製の試薬(Zrを除いて99.9%の純度)を用いた。塩化ハフニウム水溶液を500mL調製後、アンモニア水を添加して水酸化ハフニウムスラリーを生成させた後、吸引ろ過したこの沈殿物を硝酸に溶解して、抽出原液であるハフニウム硝酸溶液を生成した。この時の硝酸濃度は8mol/Lで、ハフニウム濃度は92g/Lである。  The hafnium nitric acid aqueous solution was prepared according to the flow shown in FIG. The raw material hafnium chloride used was a reagent (99.9% purity excluding Zr) manufactured by Mitsuwa Chemicals. After preparing 500 mL of an aqueous hafnium chloride solution, ammonia water was added to produce a hafnium hydroxide slurry, and the precipitate filtered by suction filtration was dissolved in nitric acid to produce a hafnium nitric acid solution as an extraction stock solution. The nitric acid concentration at this time is 8 mol / L, and the hafnium concentration is 92 g / L.

このハフニウム硝酸溶液と、8mol/Lの硝酸水溶液で前処理した30%TBP−ノルマルドデカン溶媒を用いて、抽出操作を20回まで繰り返し、ハフニウム硝酸溶液中に共存する不純物であるジルコニウムを有機相中に抽出することでジルコニウム含有量の小さいハフニウム硝酸溶液を得た。その抽出操作5回ごとのジルコニウムおよびハフニウム濃度変化を表1に示す。20回抽出操作を繰り返した後に、ハフニウム硝酸溶液中のジルコニウム含有量が1重量ppm以下まで減少していることがわかる。図3に、このジルコニウム量の変化をグラフで示す。  Using this hafnium nitric acid solution and 30% TBP-normal dodecane solvent pretreated with an 8 mol / L nitric acid aqueous solution, the extraction operation was repeated up to 20 times, and zirconium, an impurity coexisting in the hafnium nitric acid solution, was added to the organic phase. To obtain a hafnium nitric acid solution having a low zirconium content. Table 1 shows changes in zirconium and hafnium concentrations every five extraction operations. It can be seen that after repeating the extraction operation 20 times, the zirconium content in the hafnium nitric acid solution has decreased to 1 ppm by weight or less. FIG. 3 is a graph showing the change in the amount of zirconium.

最終的な抽出溶液を中和後、酸化ハフニウムとして回収した。この酸化ハフニウム粉末の分析を行った結果を表2にまとめて示す。分析元素であるウラン、マグネシウム、アルミニウム、カルシウム、チタン、ニッケル、ニオブ、タンタル、鉛はいずれも1重量ppm以下となっていることがわかる。  The final extract solution was neutralized and then recovered as hafnium oxide. The results of the analysis of this hafnium oxide powder are summarized in Table 2. It can be seen that the analytical elements uranium, magnesium, aluminum, calcium, titanium, nickel, niobium, tantalum, and lead are all 1 ppm by weight or less.

さらに、得られた酸化ハフニウムを塩素化後、四塩化ハフニウムの形態とし、さらにこれをマグネシウム還元して高純度ハフニウムスポンジを得た。このハフニウムスポンジを電子ビーム溶解することによって、5N(99.999重量パーセント)オーダーの高純度ハフニウム金属インゴットを得ることができた。

Figure 2008115063
Figure 2008115063
Further, the obtained hafnium oxide was chlorinated to form hafnium tetrachloride, which was further reduced with magnesium to obtain a high-purity hafnium sponge. This hafnium sponge was melted with an electron beam to obtain a high-purity hafnium metal ingot of the order of 5N (99.999 weight percent).
Figure 2008115063
Figure 2008115063

ハフニウム硝酸水溶液調製プロセスHafnium nitrate aqueous solution preparation process ハフニウム硝酸水溶液とTBP溶媒を用いたハフニウム抽出プロセスHafnium extraction process using hafnium nitrate aqueous solution and TBP solvent ジルコニウム濃度と抽出回数の関係Relationship between zirconium concentration and number of extractions

Claims (8)

含有ジルコニウム量が1重量ppm以下であることを特徴とする高純度ハフニウム化合物材料。  A high-purity hafnium compound material having a zirconium content of 1 ppm by weight or less. 含有ジルコニウム量が1重量ppm以下であることを特徴とする薄膜形成用有機ハフニウム材料。  An organic hafnium material for forming a thin film, wherein the content of zirconium is 1 ppm by weight or less. 含有ジルコニウム量が1重量ppm以下であることを特徴とするハフニウム純金属材料。  A hafnium pure metal material having a zirconium content of 1 ppm by weight or less. 含有ジルコニウム量が1重量ppm以下であることを特徴とするハフニウム単結晶材料。  A hafnium single crystal material having a zirconium content of 1 ppm by weight or less. マグネシウム、アルミニウム、カルシウム、チタン、ニッケル、ニオブ、タンタル、鉛、ウランの含有量がそれぞれ1重量ppm以下であることを特徴とする請求項1ないし4のいずれか1項に記載の高純度ハフニウム材料。  The high-purity hafnium material according to any one of claims 1 to 4, wherein the contents of magnesium, aluminum, calcium, titanium, nickel, niobium, tantalum, lead, and uranium are each 1 ppm by weight or less. . ハフニウム硝酸水溶液およびリン酸トリブチル(TBP)溶媒を用いた溶媒抽出法によって不純物除去を行うことによって、請求項1ないし5のいずれか1項に記載のハフニウム材料を得ることを特徴とする高純度ハフニウム材料の製造方法。  A high-purity hafnium characterized in that the hafnium material according to any one of claims 1 to 5 is obtained by removing impurities by a solvent extraction method using a hafnium nitric acid aqueous solution and a tributyl phosphate (TBP) solvent. Material manufacturing method. ハフニウム硝酸水溶液の硝酸濃度が6〜10mol/Lであることを特徴とする請求項6に記載の高純度ハフニウム材料の製造方法。  The method for producing a high-purity hafnium material according to claim 6, wherein the hafnium nitric acid aqueous solution has a nitric acid concentration of 6 to 10 mol / L. ハフニウム硝酸水溶液のハフニウム濃度が10g/L以上であることを特徴とする請求項6に記載の高純度ハフニウム材料の製造方法。  The method for producing a high purity hafnium material according to claim 6, wherein the hafnium nitric acid aqueous solution has a hafnium concentration of 10 g / L or more.
JP2006326288A 2006-11-06 2006-11-06 High purity hafnium material and method of manufacturing the material by using solvent extraction method Pending JP2008115063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326288A JP2008115063A (en) 2006-11-06 2006-11-06 High purity hafnium material and method of manufacturing the material by using solvent extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326288A JP2008115063A (en) 2006-11-06 2006-11-06 High purity hafnium material and method of manufacturing the material by using solvent extraction method

Publications (1)

Publication Number Publication Date
JP2008115063A true JP2008115063A (en) 2008-05-22

Family

ID=39501319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326288A Pending JP2008115063A (en) 2006-11-06 2006-11-06 High purity hafnium material and method of manufacturing the material by using solvent extraction method

Country Status (1)

Country Link
JP (1) JP2008115063A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674441B2 (en) * 2003-07-25 2010-03-09 Nippon Mining & Metals Co., Ltd Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
KR101316335B1 (en) 2012-01-26 2013-10-18 (주)포스코엠텍 Method of solvent extraction for separation of zirconium and hafnium
JPWO2013094695A1 (en) * 2011-12-20 2015-04-27 株式会社東芝 Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
JPWO2013103100A1 (en) * 2012-01-07 2015-05-11 株式会社東芝 Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
JPWO2013179519A1 (en) * 2012-05-29 2016-01-18 株式会社東芝 Tungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same
KR20160097206A (en) * 2013-12-12 2016-08-17 싱펑 주 Pyrometallurgical separation method of zirconia/hafnium oxide mixture
CN108085492A (en) * 2017-12-18 2018-05-29 中核二七二铀业有限责任公司 A kind of method of zirconium hafnium extract and separate system emulsion recycling TBP
CN109022777A (en) * 2018-10-26 2018-12-18 广东致远新材料有限公司 Extractant for extracting tantalum niobium and preparation method thereof, tantalum niobium extracting process
WO2019134185A1 (en) * 2018-01-03 2019-07-11 中南民族大学 Method for extracting and separating zirconium and hafnium from nitric acid medium
CN115595495A (en) * 2022-10-24 2023-01-13 南通晶朋新材料科技有限公司(Cn) Fe-Hf-rare earth intermediate alloy and preparation method thereof
CN115679124A (en) * 2022-11-07 2023-02-03 南通晶朋新材料科技有限公司 Process for separating hafnium and zirconium
CN116732353A (en) * 2023-06-16 2023-09-12 黄绍荣 Method for separating zirconium and hafnium from industrial zirconium sulfate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674441B2 (en) * 2003-07-25 2010-03-09 Nippon Mining & Metals Co., Ltd Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
US10167536B2 (en) 2011-12-20 2019-01-01 Kabushiki Kaisha Toshiba Tungsten alloy, tungsten alloy part, discharge lamp, transmitting tube, and magnetron
JPWO2013094695A1 (en) * 2011-12-20 2015-04-27 株式会社東芝 Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
US9834830B2 (en) 2011-12-20 2017-12-05 Kabushiki Kaisha Toshiba Tungsten alloy, tungsten alloy part, discharge lamp, transmitting tube, and magnetron
JPWO2013103100A1 (en) * 2012-01-07 2015-05-11 株式会社東芝 Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
KR101316335B1 (en) 2012-01-26 2013-10-18 (주)포스코엠텍 Method of solvent extraction for separation of zirconium and hafnium
JPWO2013179519A1 (en) * 2012-05-29 2016-01-18 株式会社東芝 Tungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same
US10998157B2 (en) 2012-05-29 2021-05-04 Kabushiki Kaisha Toshiba Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using the same
US10395879B2 (en) 2012-05-29 2019-08-27 Kabushiki Kaisha Toshiba Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using the same
KR102119063B1 (en) 2013-12-12 2020-06-04 싱펑 주 Pyrometallurgical separation method of zirconia/hafnium oxide mixture
KR20160097206A (en) * 2013-12-12 2016-08-17 싱펑 주 Pyrometallurgical separation method of zirconia/hafnium oxide mixture
CN108085492A (en) * 2017-12-18 2018-05-29 中核二七二铀业有限责任公司 A kind of method of zirconium hafnium extract and separate system emulsion recycling TBP
WO2019134185A1 (en) * 2018-01-03 2019-07-11 中南民族大学 Method for extracting and separating zirconium and hafnium from nitric acid medium
CN109022777A (en) * 2018-10-26 2018-12-18 广东致远新材料有限公司 Extractant for extracting tantalum niobium and preparation method thereof, tantalum niobium extracting process
CN115595495A (en) * 2022-10-24 2023-01-13 南通晶朋新材料科技有限公司(Cn) Fe-Hf-rare earth intermediate alloy and preparation method thereof
CN115679124A (en) * 2022-11-07 2023-02-03 南通晶朋新材料科技有限公司 Process for separating hafnium and zirconium
CN115679124B (en) * 2022-11-07 2023-08-18 南通晶朋新材料科技有限公司 Process for separating hafnium and zirconium
CN116732353A (en) * 2023-06-16 2023-09-12 黄绍荣 Method for separating zirconium and hafnium from industrial zirconium sulfate

Similar Documents

Publication Publication Date Title
JP2008115063A (en) High purity hafnium material and method of manufacturing the material by using solvent extraction method
Ayanda et al. A review of niobium-tantalum separation in hydrometallurgy
JP5565763B2 (en) High purity zinc oxide powder, high purity zinc oxide target and high purity zinc oxide thin film
KR101444568B1 (en) Low a-dose tin or tin alloy and method for producing same
JPH0328376B2 (en)
WO2016031699A1 (en) Method for separating scandium
JP2010180480A (en) High-purity hafnium, target and thin film comprising the same, and method for producing the high-purity hafnium
JP5032316B2 (en) High purity hafnium, target and thin film made of high purity hafnium, and method for producing high purity hafnium
US9376736B2 (en) Method for separating and recovering rare-earth elements
RU2013135239A (en) URANIUM AND MOLYBDENUM ALLOY POWDER APPLICABLE FOR THE PRODUCTION OF NUCLEAR FUEL AND TARGETS INTENDED FOR THE PRODUCTION OF RADIO ISOTOPES
US9206056B2 (en) Treatment of tantalum- and/or niobium-containing compounds
Mazurek Extraction of vanadium and potassium compounds from the spent vanadium catalyst from the metallurgical plant
JPH0564683B2 (en)
JP7311349B2 (en) Scandium recovery method
Berhe et al. Green extraction of niobium and tantalum from Kenticha tantalite ore using 1-ethyl-3-methyl imidazolium chloride ionic liquid
WO2012042525A1 (en) A tributyl phosphate-nitrate solvent extraction process for producing high purity nuclear grade rare earth metal oxides
WO2019187407A1 (en) Extraction agent for metals and extraction method using same
JP2017179563A (en) Method for treating denitration catalyst
JP2010229446A (en) Method of recovering platinum group element
TWI274042B (en) Purification method for producing high purity niobium compound and/or tantalum compound
JP2021172845A (en) Method for recovering rare metal
KR102319669B1 (en) The method of efficient recovering molybdenum from waste water
JP4699622B2 (en) Method for separating boron-containing solution from R (rare earth) -Fe-B magnet alloy sludge
JP6908725B2 (en) Metal recovery agent, metal recovery liquid, metal compound recovery method and metal recovery method
JP5327837B2 (en) Method for removing trace elements in titanium samples