WO2019187239A1 - Ablation device - Google Patents

Ablation device Download PDF

Info

Publication number
WO2019187239A1
WO2019187239A1 PCT/JP2018/036228 JP2018036228W WO2019187239A1 WO 2019187239 A1 WO2019187239 A1 WO 2019187239A1 JP 2018036228 W JP2018036228 W JP 2018036228W WO 2019187239 A1 WO2019187239 A1 WO 2019187239A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode needle
handle
liquid
flow path
ablation
Prior art date
Application number
PCT/JP2018/036228
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 児玉
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Publication of WO2019187239A1 publication Critical patent/WO2019187239A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to an ablation device provided with an electrode needle that is percutaneously punctured to an affected part in the body.
  • An ablation system that performs ablation (cauterization) on such an affected part has been proposed as one of medical devices for treating an affected part in a patient (for example, an affected part having a tumor such as cancer) (for example, Patent Document 1).
  • This ablation system includes an ablation device having an electrode needle that is punctured percutaneously into an affected part in the body, and a power supply device that supplies electric power for performing the ablation on the affected part.
  • the above-described ablation devices are generally required to improve convenience when used, for example. Therefore, it is desirable to provide an ablation device that can improve convenience.
  • An ablation device includes an electrode needle that is punctured percutaneously into an affected part of the body and that is supplied with electric power for ablation, and is positioned on the distal end side of the electrode needle.
  • An insulating tube that covers the periphery of the electrode needle along the axial direction of the electrode needle while exposing the electrode region to be formed, a flow path that is formed inside the electrode needle and through which a cooling liquid flows, and an electrode needle
  • the handle is disposed in the handle body as an exterior, an operation section for performing a predetermined operation for sliding the insulating tube along the axial direction, and temporarily supplying a cooling liquid.
  • the insulating tube is placed in parallel with the liquid container in the handle body and in parallel with the liquid container in the handle body, and slides along the axial direction in conjunction with the predetermined operation on the operation unit. And a slide mechanism that slides along the axial direction.
  • a liquid storage section that temporarily stores a cooling liquid and a slide that performs a predetermined operation for sliding the insulating tube along the axial direction.
  • the mechanisms are arranged in parallel with each other in the handle body. This avoids a decrease in the adjustable range for the electrode region (exposed region from the insulating tube) where the tip of the electrode needle is located while reducing the size of the entire handle. That is, it is possible to achieve both the miniaturization of the entire handle and the widening of the adjustable range for the electrode region.
  • the length of the handle along the axial direction is preferably 86 mm or less, for example.
  • the length along the axial direction of the handle is larger than 86 mm, for example, when performing a procedure in a state where a patient is in a circular CT (Computed Tomography) scanning apparatus, for example. This is because the handle and the CT scanning device may come into contact with each other.
  • CT Computerputed Tomography
  • the slide mechanism has a proximal end connected to the operation portion, and is linked to the handle body along the axial direction in the handle body in conjunction with the predetermined operation on the operation portion.
  • a slide bar portion that slides in a moving manner, and a joint portion that joins the distal end side of the slide bar portion and the vicinity of the proximal end of the insulating tube, and the slide bar portion of the handle main body
  • the liquid container may be extended so as to bypass the operation portion and the joint portion. In this case, when the predetermined operation is performed on the operation unit, interference between the slide bar unit and the liquid storage unit is prevented, and the entire handle can be easily downsized.
  • the flow path includes a first flow path that is a flow path when the cooling liquid flows from the proximal end side to the distal end side of the electrode needle, and the cooling
  • the liquid for use includes a second flow path that is a flow path when the liquid for use flows from the distal end side to the proximal end side of the electrode needle
  • the following may be performed. That is, the cooling liquid that has flowed into the handle body from the liquid feeding pipe is not directly stored in the liquid storage portion, but directly supplied into the first flow path, The cooling liquid supplied from above may be allowed to flow out of the handle body into the drain pipe after being temporarily stored in the liquid storage portion.
  • the liquid warmed during the ablation and temporarily stored in the liquid storage portion (the liquid on the drain side supplied from the second flow path) and the first flow
  • the liquid on the liquid feeding side supplied to the path is not mixed in the handle body. Therefore, a decrease in the cooling effect due to the cooling liquid due to the liquid on the liquid feeding side being warmed can be suppressed. As a result, the convenience when using the ablation device is further improved.
  • the cooling liquid may be directly supplied from the liquid feeding pipe into the inner pipe.
  • the inner pipe constituting the first flow path penetrates the liquid storage portion in the handle main body, thereby further reducing the size of the entire handle.
  • the adverse effect (reduction of cooling effect) on the liquid on the liquid feeding side due to the liquid (warmed liquid) is minimized. As a result, the convenience when using the ablation device is further improved.
  • the liquid storage portion and the slide mechanism are arranged in parallel with each other in the handle body.
  • the widening of the adjustable range can be achieved at the same time. Therefore, convenience when using the ablation device can be improved.
  • FIG. 3 is a side view schematically illustrating a configuration example of a main part inside the handle illustrated in FIG. 2.
  • FIG. 3 is a perspective view schematically illustrating a configuration example of a main part inside the handle illustrated in FIG. 2.
  • FIG. 5 is a schematic cross-sectional view showing an example of an internal configuration in the vicinity of the liquid container shown in FIGS. 3 and 4 and on the tip side of the electrode needle shown in FIG. 2.
  • FIG. 1 schematically shows a block diagram of an overall configuration example of an ablation system 5 including an ablation device (ablation device 1) according to an embodiment of the present invention.
  • the ablation system 5 is a system used when treating an affected part 90 in the body of a patient 9, and performs predetermined ablation (cauterization) on the affected part 90. It has become.
  • the above-mentioned affected part 90 includes, for example, an affected part having a tumor such as cancer (liver cancer, lung cancer, breast cancer, kidney cancer, thyroid cancer, etc.).
  • a tumor such as cancer (liver cancer, lung cancer, breast cancer, kidney cancer, thyroid cancer, etc.).
  • the ablation system 5 includes an ablation device 1, a liquid supply device 2, and a power supply device 3 as shown in FIG.
  • the counter electrode plate 4 shown in FIG. 1 is also used as appropriate.
  • the ablation device 1 is a device used in the above-described ablation, and includes an electrode needle 11 and an insulating tube 12 as will be described in detail later.
  • the electrode needle 11 is a needle that is punctured percutaneously into the affected part 90 in the body of the patient 9, for example, as indicated by an arrow P1 in FIG.
  • the liquid L supplied from the liquid supply apparatus 2 to be described later circulates in the electrode needle 11 (see FIG. 1).
  • the insulating tube 12 is a member that covers the periphery of the electrode needle 11 along the axial direction of the electrode needle 11 while exposing an electrode region (exposed region Ae described later) located on the distal end side of the electrode needle 11. .
  • the liquid supply apparatus 2 is an apparatus that supplies the cooling liquid L to the ablation device 1 (inside the electrode needle 11), and has a liquid supply section 21, for example, as shown in FIG.
  • Examples of the cooling liquid L include sterilized water and sterilized physiological saline.
  • the liquid supply unit 21 supplies the liquid L to the ablation device 1 as needed according to control by a control signal CTL2 described later. Specifically, for example, as shown in FIG. 1, the liquid supply unit 21 circulates the liquid L between the inside of the liquid supply device 2 and the inside of the electrode needle 11 (in a predetermined flow path 110 described later). In this way, the liquid L supply operation is performed. Further, according to the control by the control signal CTL2, the liquid L supply operation is executed or stopped.
  • a liquid supply part 21 is comprised including the liquid pump etc., for example.
  • the power supply device 3 supplies power Pout (for example, power of radio frequency (RF)) for performing ablation between the electrode needle 11 and the counter electrode plate 4 and the liquid L in the liquid supply device 2 described above. It is a device for controlling the supply operation. As shown in FIG. 1, the power supply device 3 includes an input unit 31, a power supply unit 32, a control unit 33, and a display unit 34.
  • Pout for example, power of radio frequency (RF)
  • RF radio frequency
  • the input unit 31 is a part for inputting various set values and an instruction signal (operation signal Sm) for instructing a predetermined operation to be described later.
  • Such an operation signal Sm is input from the input unit 31 in response to an operation by an operator (for example, an engineer) of the power supply device 3.
  • these various setting values are not input in response to an operation by the operator, but may be set in the power supply device 3 in advance, for example, when the product is shipped.
  • the set value input by the input unit 31 is supplied to the control unit 33 described later.
  • Such an input unit 31 is configured using, for example, a predetermined dial, button, touch panel, or the like.
  • the power supply unit 32 is a part that supplies the power Pout described above between the electrode needle 11 and the counter electrode plate 4 in accordance with a control signal CTL1 described later.
  • a power supply part 32 is comprised using the predetermined power supply circuit (for example, switching regulator etc.).
  • the predetermined power supply circuit for example, switching regulator etc.
  • the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
  • the control unit 33 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured using, for example, a microcomputer. Specifically, the control unit 33 first has a function (power supply control function) of controlling the supply operation of the power Pout in the power supply unit 32 using the control signal CTL1. In addition, the control unit 33 has a function (liquid supply control function) for controlling the supply operation of the liquid L in the liquid supply device 2 (liquid supply unit 21) using the control signal CTL2.
  • temperature information It measured in the ablation device 1 (a temperature sensor such as a thermocouple disposed inside the electrode needle 11) is supplied to the control unit 33 as needed. It has become so.
  • the measurement value of the impedance value Zm is supplied to the control unit 33 from the power supply unit 32 as needed.
  • the display unit 34 is a part (monitor) that displays various types of information and outputs the information to the outside. Examples of information to be displayed include the above-described various set values input from the input unit 31, various parameters supplied from the control unit 33, temperature information It supplied from the ablation device 1, and the like. However, the information to be displayed is not limited to these information, and other information may be displayed instead of or in addition to other information.
  • a display part 34 is comprised using the display (For example, a liquid crystal display, a CRT (Cathode * Ray * Tube) display, an organic EL (Electro * Luminescence) display, etc.) by various systems.
  • the counter electrode plate 4 is used while being attached to the body surface of the patient 9 during ablation. Although details will be described later, during ablation, high-frequency energization is performed (electric power Pout is supplied) between the electrode needle 11 (the electrode region described above) and the counter electrode plate 4 in the ablation device 1. ing. Although details will be described later, during such ablation, as shown in FIG. 1, the impedance value Zm between the electrode needle 11 and the counter electrode plate 4 is measured as needed, and the measured impedance value Zm is In the power supply device 3, power is supplied from the power supply unit 32 to the control unit 33.
  • FIG. 2 schematically shows a detailed configuration example of the ablation device 1 shown in FIG. 1 in a side view (YZ side view).
  • the portion indicated by the symbol P ⁇ b> 2 is enlarged and shown below in FIG. 2, as indicated by an arrow.
  • the electrode needle 11 is provided along the Z-axis direction as shown in FIG. 2, and the length (axial length) along the Z-axis direction is, for example, about 30 mm to 350 mm.
  • the electrode needle 11 has, along its axial direction (Z-axis direction), an exposed region Ae (electrode region that functions as an electrode during ablation) that is not covered with the insulating tube 12, and an insulating tube. 12 and the area
  • the electric power Pout for ablation is supplied between the exposed area Ae of the electrode needle 11 and the counter electrode plate 4.
  • hook 11 is comprised by metal materials, such as stainless steel, nickel titanium alloy, a titanium alloy, platinum, for example.
  • the insulating tube 12 is a member that covers the periphery of the electrode needle 11 along the Z-axis direction while partially exposing the distal end side (exposed region Ae) of the electrode needle 11.
  • the insulating tube 12 is attached to the electrode needle 11 along its axial direction (Z-axis direction), for example, as indicated by an arrow d2 in FIG.
  • Z-axis direction Z-axis direction
  • it is configured to be relatively slidable. Thereby, the length (axial direction length) along the Z-axis direction in the exposed region Ae of the electrode needle 11 can be adjusted.
  • the length (axial direction length) along the Z-axis direction in the exposed region Ae of the electrode needle 11 that can be adjusted by such an insulating tube 12 is, for example, about 3 mm to 50 mm.
  • the insulating tube 12 is made of, for example, a synthetic resin such as PEEK (polyether ether ketone), PI (polyimide), fluorine resin, or polyether block amide.
  • the handle 13 is a portion that is gripped (gripped) by an operator (doctor) when the ablation device 1 is used. As shown in FIG. 2, the handle 13 mainly includes a handle main body 130 attached to the proximal end side of the electrode needle 11 and an operation portion (slide knob portion) 131.
  • the handle body 130 corresponds to a portion (gripping portion) that is actually gripped by the operator, and is a portion that also functions as an exterior of the handle 13.
  • the handle body 130 is made of synthetic resin such as polycarbonate, acrylonitrile-butadiene-styrene copolymer (ABS), acrylic, polyolefin, polyoxymethylene, and the like.
  • the operation part 131 is a part where a predetermined operation (slide operation) for causing the insulating tube 12 to slide relative to the electrode needle 11 along its axial direction (Z-axis direction) is performed. It protrudes outside the handle body 130 (Y-axis direction).
  • the operation unit 131 is made of, for example, the same material (synthetic resin or the like) as the handle body 130 described above.
  • the operation unit 131 is configured to be slidable relative to the handle main body 130 along the axial direction (Z-axis direction) of the handle 13.
  • the insulating tube 12 moves along the Z-axis direction with respect to the electrode needle 11.
  • the sliding movement is relatively performed (see, for example, the arrow d2 in FIG. 2).
  • the length (axial direction length) along the Z-axis direction in the exposed region Ae of the electrode needle 11 can be adjusted.
  • FIG. 3 is a side view (YZ exploded side view) schematically showing an example of the configuration of the main part inside the handle 13 shown in FIG.
  • FIG. 4 is a perspective view schematically showing a configuration example of a main part inside the handle 13.
  • FIG. 5A is a schematic cross-sectional view (ZX cross-sectional view) showing an example of the internal configuration in the vicinity of the liquid storage portion (liquid storage portion 133 described later) shown in FIGS. is there.
  • FIG. 5B is a schematic cross-sectional view (ZX cross-sectional view) showing an example of the internal configuration of the tip side of the electrode needle 11 shown in FIG.
  • the handle main body 130 is illustrated with one side portion along the X-axis direction removed.
  • the illustration of the configuration other than the main part inside the handle 13 is omitted as appropriate.
  • a slide mechanism 132 and a liquid storage portion 133 are provided inside the handle 13 (inside the handle main body 130).
  • the slide mechanism 132 slides along the Z-axis direction in conjunction with the above-described slide operation on the operation unit 131, thereby causing the insulating needle 12 to move along the Z-axis direction along the electrode needle 11. It is a mechanism which carries out a sliding operation relative to. As shown in FIG. 3, the slide mechanism 132 has a slide bar portion (parallel bar portion) 132a and a joint portion 132b.
  • the joining portion 132 b is a portion that joins the distal end side of the slide bar portion 132 a described later and the vicinity of the proximal end of the insulating tube 12.
  • the slide bar portion 132 a is disposed between the operation unit 131 described above and other internal components such as the liquid storage unit 133 in parallel mainly along the Z-axis direction.
  • the slide bar portion 132a has a proximal end side connected to the operation portion 131 and a distal end side connected (joined) to the joint portion 132b.
  • Such a slide bar portion 132a slides relative to the handle main body 130 along the Z-axis direction in the handle main body 130 in conjunction with the slide operation on the operation portion 131 described above. Yes.
  • the tip of the slide bar portion 132 a is compared with the tips of other internal parts such as the liquid storage unit 133. It is located on the tip side.
  • the slide bar portion 132a bypasses other internal components such as the liquid storage portion 133 between the operation portion 131 and the joint portion 132b. It extends. This prevents interference between the slide bar portion 132a and other internal components such as the liquid storage portion 133 during the slide operation on the operation portion 131, and facilitates downsizing of the handle 13 as a whole.
  • slide bar portion 132a and the joint portion 132b, and the operation portion 131 described above are each integrally formed, for example.
  • the slide bar portion 132a, the joint portion 132b, and the operation portion 131 may be formed as separate bodies.
  • the slide mechanism 132 is arranged in parallel with the liquid storage portion 133 in the handle main body 130 as shown in FIGS. That is, in the handle main body 130, the slide mechanism 132 (slide bar portion 132a) and the liquid storage portion 133 are arranged in parallel (in this example, arranged in parallel along the Y-axis direction).
  • the liquid storage portion 133 is a member that temporarily stores the cooling liquid L in the handle main body 130 therein.
  • a liquid feed pipe for allowing the cooling liquid L to flow into the handle main body 130 is provided in the liquid storage part 133.
  • 81 and a drainage pipe 82 for discharging the cooling liquid L from the handle main body 130 (toward the liquid supply unit 21) are connected to each other.
  • a flow path through which the cooling liquid L reciprocates (circulates) is provided inside the handle main body 130 and the electrode needle 11 via the liquid supply pipe 81, the liquid storage portion 133, and the drainage pipe 82. Is formed.
  • the flow path 110 is formed along the axial direction (Z-axis direction) of the electrode needle 11 inside the electrode needle 11, and the cooling liquid L It is a flowing channel.
  • a flow path 110a electrode serving as a forward path for the cooling liquid L is provided in the flow path 110.
  • a flow path when flowing from the proximal end side of the needle 11 to the distal end side) and a flow path 110b serving as a return path (flow path when flowing from the distal end side of the electrode needle 11 to the proximal end side) are provided. Yes.
  • flow path 110 corresponds to a specific example of “flow path” in the present invention.
  • the flow path 110a corresponds to a specific example of “first flow path” in the present invention
  • the flow path 110b corresponds to a specific example of “second flow path” in the present invention.
  • the handle main body 130 penetrates the liquid storage portion 133 along the Z-axis direction (in FIG. 5A).
  • An inner tube 111 that constitutes the above-described flow path 110a (outward path) is provided inside the electrode needle 11 together with the reference P3).
  • the inner tube 111 is formed in the axial direction of the electrode needle 11 inside the handle main body 130, the electrode needle 11 (flow channel 110), and the liquid feeding tube 81. It is arranged along (Z-axis direction).
  • the cooling liquid L is directly supplied from the liquid feeding pipe 81 into the inner pipe 111.
  • the cooling liquid L that has flowed into the handle main body 130 from the liquid feeding pipe 81 is not temporarily stored in the liquid storage portion 133 (passes through the inner pipe 111). ) It is directly supplied into the forward flow path 110a (see FIG. 5A).
  • the cooling liquid L supplied from the flow path 110b serving as the return path is temporarily stored in the liquid storage section 133 and then flows out from the handle body 130 into the drain pipe 82. (See FIG. 5A).
  • the liquid feeding pipe 81 for allowing the cooling liquid L to flow into the handle main body 130 and the drainage pipe 82 for discharging the cooling liquid L from the handle main body 130 are mutually connected. It can be provided by branching.
  • the liquid supply device 2 is circulated so that the cooling liquid L circulates between the inside of the liquid supply device 2 and the inside of the electrode needle 11 (inside the flow path 110 described above).
  • the liquid L is supplied from the (liquid supply part 21) to the electrode needle 11 (see FIG. 1).
  • a cooling operation (cooling) is performed on the electrode needle 11 during ablation, and as a result, an excessive increase in the temperature (tissue temperature) of the affected area 90 is suppressed, and the impedance described above due to tissue carbonization. A sudden increase in the value Zm is prevented.
  • FIG. 6 schematically shows an example of the condition of cauterization in the affected area 90 due to such ablation.
  • the initial rugby ball-shaped (elliptical spherical) thermal coagulation region Ah1 gradually expands.
  • a substantially spherical thermocoagulation region Ah2 is obtained (see the broken arrow in FIG. 3).
  • isotropic ablation of the entire affected area 90 is performed, and as a result, effective treatment of the affected area 90 is performed.
  • the above-described slide operation on the operation unit 131 is performed on the handle 13 of the ablation device 1. Done in advance. Specifically, when a slide operation along the Z-axis direction is performed on the operation unit 131 (see, for example, the arrow d1 in FIGS. 2 and 7B), the operation unit 131 is interlocked with the slide operation. Thus, the slide mechanism 132 in the handle main body 130 performs a slide operation along the Z-axis direction (see arrow d0 in FIG. 7B).
  • the insulating tube 12 In conjunction with the slide operation of the slide mechanism 132, the insulating tube 12 also performs a slide operation along the Z-axis direction (see, for example, the arrow d2 in FIGS. 2 and 5B).
  • the size (length along the Z-axis direction) of the exposed area Ae on the distal end side of the electrode needle 11 is arbitrarily adjusted,
  • the ablation range at the time of ablation (the range corresponding to the exposure area Ae) is also arbitrarily adjusted.
  • the exposed area Ae (ablation range) is set small, and the tip of the electrode needle 11 is inserted to the affected area 90 to perform ablation.
  • the exposed area Ae cauterized selectively. That is, parts other than the affected part 90 are not cauterized, and the original function can be maintained.
  • the exposed area Ae cauterized together (collectively).
  • the slide operation on the operation unit 131 and the slide operation of the slide mechanism 132 and the insulating tube 12 in conjunction with the slide operation are stepwise along the axial direction (Z-axis direction) of the electrode needle 11. It may be adjustable (intermittently). In other words, the position when the operation unit 131, the slide mechanism 132, and the insulating tube 12 slide may be slightly fixed for each predetermined distance along the Z-axis direction.
  • the ablation device according to the comparative example for example, the following configuration can be considered. That is, the ablation device of this comparative example is different from the ablation device 1 of the present embodiment shown in FIGS. 3 and 4 in that the slide mechanism 132 and the liquid storage portion 133 are arranged in series in the handle body. (Arranged side by side along the Z-axis direction, which is the axial direction of the electrode needle 11).
  • a comparative ablation device may cause the following problems.
  • an ablation device when performing ablation treatment for liver cancer in, for example, radiology, an ablation device is generally used under a CT scan. That is, the ablation device is used in a state where the patient is in the circular CT scanning apparatus. Therefore, since it is difficult to use a large ablation device, it is generally required to reduce the handle of the ablation device.
  • the handle is downsized as it is (the ablation device of the comparative example described above). Then, it becomes as follows. That is, in the ablation device of this comparative example, the entire handle can be reduced in size, but the electrode region (exposed region Ae from the insulating tube 12) located at the tip of the electrode needle 11 is axially (Z-axis direction). ), The adjustable range is reduced. Such an electrode region (exposed region Ae) corresponds to the ablation range at the time of ablation using the electrode needle 11 as described above (see FIGS. 7A and 7B). If the adjustment range for the ablation range is reduced, the convenience when using the ablation device may be impaired.
  • the ablation device 1 of the present embodiment has the following configuration, unlike the ablation device of the comparative example. That is, the handle body 130 includes a liquid storage portion 133 that temporarily stores the cooling liquid L and a slide mechanism 132 that performs a predetermined operation for sliding the insulating tube 12 along the Z-axis direction. Are arranged in parallel with each other.
  • the ablation device 1 of the present embodiment is as follows, unlike the ablation device of the comparative example described above.
  • the overall size of the handle 13 is reduced.
  • the size of the entire handle 13 (the axial length Lz shown in FIG. 3 (the length along the Z-axis direction)) can be set to 86 mm or less (Lz ⁇ 86 mm), for example.
  • the handle 13 and the CT scanning device may come into contact with each other.
  • the lower limit value of the overall size of the handle 13 (axial length Lz) is, for example, 30 mm in consideration of securing the exposure area Ae (ablation range).
  • the liquid storage portion 133 and the slide mechanism 132 are arranged in parallel with each other in the handle main body 130, so that the overall size of the handle 13 and the ablation range can be reduced. It is possible to achieve both the widening of the adjustable range for. Therefore, in this ablation device 1, compared with the ablation device of the comparative example, for example, effective ablation can be performed. As a result, convenience in use can be improved.
  • the cooling liquid L that has flowed into the handle main body 130 from the liquid supply pipe 81 is not temporarily stored in the liquid storage portion 133, but becomes a forward flow. It is directly supplied into the passage 110a (inner pipe 111) (see FIG. 5A).
  • the cooling liquid L supplied from the flow path 110b serving as the return path is temporarily stored in the liquid storage section 133 and then flows out from the handle main body 130 into the drainage pipe 82 (FIG. 5 (A)).
  • FIG. 5A the liquid L that is warmed during ablation and is temporarily stored in the liquid storage portion 133 (the liquid L on the drain side supplied from the flow path 110b).
  • the liquid main body 133 is penetrated in the handle main body 130 and the flow path 110a (outward path) is formed inside the electrode needle 11.
  • a tube 111 is provided.
  • the cooling liquid L is directly supplied from the liquid feeding pipe 81 into the inner pipe 111 (see FIG. 5A).
  • the inner pipe 111 constituting the flow path 110a penetrates the liquid storage portion 133 in the handle main body 130, so that the size of the handle 13 as a whole can be further reduced.
  • the adverse effect (decrease in cooling effect) on the liquid L on the liquid feeding side due to L (warmed liquid L) is minimized.
  • the convenience when using the ablation device 1 can be further improved.
  • the material of each member described in the above embodiment is not limited, and other materials may be used.
  • the configuration of the ablation device or the like has been specifically described, but it is not always necessary to include all members, and other members may be further included.
  • the values, ranges, magnitude relationships, and the like of the various parameters described in the above embodiments are not limited to those described in the above embodiments, and may be other values, ranges, magnitude relationships, and the like.
  • the configuration of the electrode needle, the insulating tube, the handle and the like in the ablation device has been specifically described.
  • the configuration of each member is not described in the above embodiment.
  • the configuration is not limited, and other configurations may be used.
  • the electrode needle may be a bipolar type instead of the monopolar type described in the above embodiments and the like.
  • the cooling liquid may be temporarily stored in the liquid storage portion and then supplied into the flow path (first flow path).
  • the above-described inner tube (which constitutes the first flow path) may be configured not to penetrate the liquid storage part (a structure that bypasses the liquid storage part and reaches the flow path).
  • the block configurations of the liquid supply device 2 and the power supply device 3 are specifically described. However, it is not always necessary to include all the blocks described in the above-described embodiment. A block may be further provided.
  • the ablation system 5 as a whole may further include other devices in addition to the devices described in the above embodiment.
  • the ablation device in which high-frequency conduction is performed between the electrode needle 11 and the counter electrode plate 4 at the time of ablation has been specifically described, but is not limited to the above-described embodiment and the like. Absent. Specifically, for example, an ablation device that performs ablation using other electromagnetic waves such as radio waves and microwaves may be used.
  • control operation (ablation method) in the control unit 33 including the power supply control function and the liquid supply control function has been specifically described.
  • the control method (ablation method) in these power supply control function and liquid supply control function is not limited to the method described in the above embodiment.
  • the series of processing described in the above embodiment may be performed by hardware (circuit) or software (program).
  • the software is composed of a group of programs for causing each function to be executed by a computer.
  • Each program may be used by being incorporated in advance in the computer, for example, or may be used by being installed in the computer from a network or a recording medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

Provided is an ablation device which can improve convenience. An ablation device 1 comprises: an electrode needle 11 which percutaneously punctures an affected part 90 inside a body, and which is supplied with electric power Pout; an insulating tube 12 which exposes an electrode area (exposed area Ae) while covering the periphery of the electrode needle 11 along the axial direction (Z-axis direction) of the electrode needle 11; a flow path 110 which is formed inside the electrode needle 11 and through which a liquid L for cooling flows; and a handle 13 fitted to the base end side of the electrode needle 11. The handle 13 includes: a handle body 130; an operation part 131; a liquid storage section 133 which is disposed inside the handle body 130 and temporarily stores the liquid L for cooling; and a slide mechanism 132 which is disposed inside the handle body 130 in parallel to the liquid storage section 133 and which performs a slide operation along the axial direction in conjunction with a prescribed operation of the operation part 131, thereby causing a slide operation of the insulating tube 12 along the axial direction.

Description

アブレーションデバイスAblation device
 本発明は、体内の患部に対して経皮的に穿刺される電極針を備えた、アブレーションデバイスに関する。 The present invention relates to an ablation device provided with an electrode needle that is percutaneously punctured to an affected part in the body.
 患者体内の患部(例えば癌などの腫瘍を有する患部)を治療するための医療機器の1つとして、そのような患部に対してアブレーション(焼灼)を行う、アブレーションシステムが提案されている(例えば、特許文献1参照)。このアブレーションシステムは、体内の患部に対して経皮的に穿刺される電極針を有するアブレーションデバイスと、患部に対するアブレーションを行うための電力を供給する電源装置とを備えている。 An ablation system that performs ablation (cauterization) on such an affected part has been proposed as one of medical devices for treating an affected part in a patient (for example, an affected part having a tumor such as cancer) (for example, Patent Document 1). This ablation system includes an ablation device having an electrode needle that is punctured percutaneously into an affected part in the body, and a power supply device that supplies electric power for performing the ablation on the affected part.
特表2006-513830号公報JP-T-2006-513830
 ところで、上記したアブレーションデバイスでは一般に、例えば、使用する際の利便性を向上することが求められている。したがって、利便性を向上させることが可能なアブレーションデバイスを提供することが望ましい。 By the way, the above-described ablation devices are generally required to improve convenience when used, for example. Therefore, it is desirable to provide an ablation device that can improve convenience.
 本発明の一実施の形態に係るアブレーションデバイスは、体内の患部に対して経皮的に穿刺されると共に、アブレーションを行うための電力が供給される電極針と、この電極針の先端側に位置する電極領域を露出させつつ、電極針の軸方向に沿って電極針の周囲を被覆する絶縁性チューブと、電極針の内部に形成されており、冷却用の液体が流れる流路と、電極針の基端側に装着されたハンドルとを備えたものである。このハンドルは、外装としてのハンドル本体と、絶縁性チューブを上記軸方向に沿ってスライド動作させるための所定の操作が行われる操作部と、ハンドル本体内に配置され、冷却用の液体を一時的に収容する液体収容部と、ハンドル本体内において液体収容部に対して並列配置され、操作部に対する上記所定の操作に連動して上記軸方向に沿ってスライド動作することにより、絶縁性チューブを上記軸方向に沿ってスライド動作させるスライド機構とを有している。 An ablation device according to an embodiment of the present invention includes an electrode needle that is punctured percutaneously into an affected part of the body and that is supplied with electric power for ablation, and is positioned on the distal end side of the electrode needle. An insulating tube that covers the periphery of the electrode needle along the axial direction of the electrode needle while exposing the electrode region to be formed, a flow path that is formed inside the electrode needle and through which a cooling liquid flows, and an electrode needle And a handle attached to the base end side. The handle is disposed in the handle body as an exterior, an operation section for performing a predetermined operation for sliding the insulating tube along the axial direction, and temporarily supplying a cooling liquid. The insulating tube is placed in parallel with the liquid container in the handle body and in parallel with the liquid container in the handle body, and slides along the axial direction in conjunction with the predetermined operation on the operation unit. And a slide mechanism that slides along the axial direction.
 本発明の一実施の形態に係るアブレーションデバイスでは、冷却用の液体を一時的に収容する液体収容部と、絶縁性チューブを上記軸方向に沿ってスライド動作させるための所定の操作が行われるスライド機構とが、ハンドル本体内で互いに並列配置されている。これにより、ハンドル全体としての小型化が図られつつ、電極針の先端の位置する電極領域(絶縁性チューブからの露出領域)についての調整可能範囲の減少が、回避される。すなわち、ハンドル全体としての小型化と、電極領域についての調整可能範囲の広範化との両立が、実現される。 In an ablation device according to an embodiment of the present invention, a liquid storage section that temporarily stores a cooling liquid and a slide that performs a predetermined operation for sliding the insulating tube along the axial direction. The mechanisms are arranged in parallel with each other in the handle body. This avoids a decrease in the adjustable range for the electrode region (exposed region from the insulating tube) where the tip of the electrode needle is located while reducing the size of the entire handle. That is, it is possible to achieve both the miniaturization of the entire handle and the widening of the adjustable range for the electrode region.
 なお、上記ハンドルにおける上記軸方向に沿った長さは、例えば、86mm以下であるのが望ましい。上記ハンドルにおける上記軸方向に沿った長さが、例えば86mmよりも大きい場合、例えば円形状のCT(Computed Tomography;コンピュータ断層撮影)スキャン装置の内部に患者が入っている状態で手技を行う際に、ハンドルとこのCTスキャン装置とが、接触してしまう等のおそれがあるためである。 Note that the length of the handle along the axial direction is preferably 86 mm or less, for example. When the length along the axial direction of the handle is larger than 86 mm, for example, when performing a procedure in a state where a patient is in a circular CT (Computed Tomography) scanning apparatus, for example. This is because the handle and the CT scanning device may come into contact with each other.
 また、上記スライド機構が、基端側が上記操作部に接続されており、この操作部に対する上記所定の操作に連動して、上記ハンドル本体内において上記軸方向に沿ってこのハンドル本体に対して相対的にスライド動作するスライドバー部と、このスライドバー部の先端側と上記絶縁性チューブの基端付近とを接合する接合部とを有していると共に、上記スライドバー部が、上記ハンドル本体の基端側に位置するときに、上記操作部と上記接合部との間において上記液体収容部を迂回するように延びているようにしてもよい。このようにした場合、上記操作部に対する上記所定の操作の際に、スライドバー部と液体収容部との干渉が防止され、ハンドル全体の小型化が容易となる。 The slide mechanism has a proximal end connected to the operation portion, and is linked to the handle body along the axial direction in the handle body in conjunction with the predetermined operation on the operation portion. A slide bar portion that slides in a moving manner, and a joint portion that joins the distal end side of the slide bar portion and the vicinity of the proximal end of the insulating tube, and the slide bar portion of the handle main body When positioned on the base end side, the liquid container may be extended so as to bypass the operation portion and the joint portion. In this case, when the predetermined operation is performed on the operation unit, interference between the slide bar unit and the liquid storage unit is prevented, and the entire handle can be easily downsized.
 本発明の一実施の形態に係るアブレーションデバイスでは、上記流路が、上記冷却用の液体が電極針の基端側から先端側へと流れる際の流路である第1流路と、上記冷却用の液体が電極針の先端側から基端側へと流れる際の流路である第2流路と、を含んでいる場合において、以下のようにしてもよい。すなわち、送液管内からハンドル本体内に流入した上記冷却用の液体が、液体収容部内に一時的に収容されずに、上記第1流路内に直接供給されると共に、上記第2流路内から供給された上記冷却用の液体が、液体収容部内に一時的に収容された後に、ハンドル本体内から排液管内へと流出するようにしてもよい。このようにした場合、上記アブレーションの際に温められて液体収容部内に一時的に収容される液体(上記第2の流路内から供給される排液側の液体)と、上記第1の流路へ供給される送液側の液体とが、ハンドル本体内で混合されないことになる。したがって、送液側の液体が温められてしまうことに起因した、冷却用の液体による冷却効果の減少が、抑えられる。その結果、アブレーションデバイスを使用する際の利便性が、更に向上する。 In the ablation device according to an embodiment of the present invention, the flow path includes a first flow path that is a flow path when the cooling liquid flows from the proximal end side to the distal end side of the electrode needle, and the cooling In the case where the liquid for use includes a second flow path that is a flow path when the liquid for use flows from the distal end side to the proximal end side of the electrode needle, the following may be performed. That is, the cooling liquid that has flowed into the handle body from the liquid feeding pipe is not directly stored in the liquid storage portion, but directly supplied into the first flow path, The cooling liquid supplied from above may be allowed to flow out of the handle body into the drain pipe after being temporarily stored in the liquid storage portion. In this case, the liquid warmed during the ablation and temporarily stored in the liquid storage portion (the liquid on the drain side supplied from the second flow path) and the first flow The liquid on the liquid feeding side supplied to the path is not mixed in the handle body. Therefore, a decrease in the cooling effect due to the cooling liquid due to the liquid on the liquid feeding side being warmed can be suppressed. As a result, the convenience when using the ablation device is further improved.
 この場合において、上記ハンドル本体内において液体収容部を貫通すると共に、電極針の内部において上記軸方向に沿って配置され、電極針の内部において上記第1流路を構成する内管を更に設け、上記冷却用の液体が、上記送液管内から上記内管内に直接供給されるようにしてもよい。このようにした場合、上記第1流路を構成する上記内管が、ハンドル本体内において液体収容部を貫通することにより、ハンドル全体としての更なる小型化が図られつつ、上記した排液側の液体(温められた液体)による送液側の液体への悪影響(冷却効果の減少)が、最小限に抑えられる。その結果、アブレーションデバイスを使用する際の利便性が、より一層向上する。 In this case, while further penetrating the liquid storage portion in the handle body, is further provided along the axial direction inside the electrode needle, further provided an inner tube constituting the first flow path inside the electrode needle, The cooling liquid may be directly supplied from the liquid feeding pipe into the inner pipe. In this case, the inner pipe constituting the first flow path penetrates the liquid storage portion in the handle main body, thereby further reducing the size of the entire handle. The adverse effect (reduction of cooling effect) on the liquid on the liquid feeding side due to the liquid (warmed liquid) is minimized. As a result, the convenience when using the ablation device is further improved.
 本発明の一実施の形態に係るアブレーションデバイスによれば、上記液体収容部と上記スライド機構とをハンドル本体内で互いに並列配置するようにしたので、ハンドル全体としての小型化と、上記電極領域についての調整可能範囲の広範化とを、両立させることができる。よって、アブレーションデバイスを使用する際の利便性を、向上させることが可能となる。 According to the ablation device of an embodiment of the present invention, the liquid storage portion and the slide mechanism are arranged in parallel with each other in the handle body. The widening of the adjustable range can be achieved at the same time. Therefore, convenience when using the ablation device can be improved.
本発明の一実施の形態に係るアブレーションデバイスを備えたアブレーションシステムの全体構成例を模式的に表すブロック図である。It is a block diagram showing typically the example of the whole composition of the ablation system provided with the ablation device concerning one embodiment of the present invention. 図1に示したアブレーションデバイスの詳細構成例を表す模式側面図である。It is a model side view showing the detailed structural example of the ablation device shown in FIG. 図2に示したハンドルの内部の要部構成例を模式的に表す側面図である。FIG. 3 is a side view schematically illustrating a configuration example of a main part inside the handle illustrated in FIG. 2. 図2に示したハンドルの内部の要部構成例を模式的に表す斜視図である。FIG. 3 is a perspective view schematically illustrating a configuration example of a main part inside the handle illustrated in FIG. 2. 図3,図4に示した液体収容部付近および図2に示した電極針の先端側の内部構成例を表す模式断面図である。FIG. 5 is a schematic cross-sectional view showing an example of an internal configuration in the vicinity of the liquid container shown in FIGS. 3 and 4 and on the tip side of the electrode needle shown in FIG. 2. アブレーションによる患部での焼灼具合の一例を表す模式図である。It is a schematic diagram showing an example of the cauterization condition in the affected part by ablation. 図2に示したアブレーションデバイスにおけるスライド動作の一例を表す模式側面図である。It is a model side view showing an example of the slide operation | movement in the ablation device shown in FIG.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(ハンドル本体内で液体の収容部とスライド機構とを並列配置した例)
2.変形例
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (example in which a liquid container and a slide mechanism are arranged in parallel in the handle body)
2. Modified example
<1.実施の形態>
[アブレーションシステム5の全体構成]
 図1は、本発明の一実施の形態に係るアブレーションデバイス(アブレーションデバイス1)を備えたアブレーションシステム5の全体構成例を、模式的にブロック図で表したものである。
<1. Embodiment>
[Overall configuration of ablation system 5]
FIG. 1 schematically shows a block diagram of an overall configuration example of an ablation system 5 including an ablation device (ablation device 1) according to an embodiment of the present invention.
 このアブレーションシステム5は、例えば図1に示したように、患者9の体内における患部90を治療する際に用いられるシステムであり、そのような患部90に対して所定のアブレーション(焼灼)を行うようになっている。 For example, as shown in FIG. 1, the ablation system 5 is a system used when treating an affected part 90 in the body of a patient 9, and performs predetermined ablation (cauterization) on the affected part 90. It has become.
 なお、上記した患部90としては、例えば、癌(肝癌,肺癌,乳癌,腎臓癌,甲状腺癌など)等の腫瘍を有する患部が挙げられる。 The above-mentioned affected part 90 includes, for example, an affected part having a tumor such as cancer (liver cancer, lung cancer, breast cancer, kidney cancer, thyroid cancer, etc.).
 アブレーションシステム5は、図1に示したように、アブレーションデバイス1、液体供給装置2および電源装置3を備えている。また、このアブレーションシステム5を用いたアブレーションの際には、例えば図1に示した対極板4も、適宜使用されるようになっている。 The ablation system 5 includes an ablation device 1, a liquid supply device 2, and a power supply device 3 as shown in FIG. In the case of ablation using the ablation system 5, for example, the counter electrode plate 4 shown in FIG. 1 is also used as appropriate.
(アブレーションデバイス1)
 アブレーションデバイス1は、上記したアブレーションの際に使用されるデバイスであり、詳細は後述するが、電極針11および絶縁性チューブ12を主に備えている。
(Ablation device 1)
The ablation device 1 is a device used in the above-described ablation, and includes an electrode needle 11 and an insulating tube 12 as will be described in detail later.
 電極針11は、例えば図1中の矢印P1で示したように、患者9の体内における患部90に対して経皮的に穿刺される針である。なお、このような電極針11の内部には、後述する液体供給装置2から供給される液体Lが、循環して流れるようになっている(図1参照)。 The electrode needle 11 is a needle that is punctured percutaneously into the affected part 90 in the body of the patient 9, for example, as indicated by an arrow P1 in FIG. In addition, the liquid L supplied from the liquid supply apparatus 2 to be described later circulates in the electrode needle 11 (see FIG. 1).
 絶縁性チューブ12は、電極針11の先端側に位置する電極領域(後述する露出領域Ae)を露出させつつ、この電極針11の軸方向に沿って電極針11の周囲を被覆する部材である。 The insulating tube 12 is a member that covers the periphery of the electrode needle 11 along the axial direction of the electrode needle 11 while exposing an electrode region (exposed region Ae described later) located on the distal end side of the electrode needle 11. .
 なお、このようなアブレーションデバイス1の詳細構成例については、後述する(図2,図3参照)。 A detailed configuration example of such an ablation device 1 will be described later (see FIGS. 2 and 3).
(液体供給装置2)
 液体供給装置2は、アブレーションデバイス1(電極針11の内部)に対して冷却用の液体Lを供給する装置であり、例えば図1に示したように、液体供給部21を有している。なお、この冷却用の液体Lとしては、例えば、滅菌水や、滅菌した生理食塩水などが挙げられる。
(Liquid supply device 2)
The liquid supply apparatus 2 is an apparatus that supplies the cooling liquid L to the ablation device 1 (inside the electrode needle 11), and has a liquid supply section 21, for example, as shown in FIG. Examples of the cooling liquid L include sterilized water and sterilized physiological saline.
 液体供給部21は、後述する制御信号CTL2による制御に従って、上記した液体Lをアブレーションデバイス1に対して随時供給するものである。具体的には、例えば図1に示したように、液体供給部21は、液体供給装置2の内部と電極針11の内部との間(後述する所定の流路110内)を液体Lが循環するようにして、液体Lの供給動作を行う。また、上記した制御信号CTL2による制御に従って、このような液体Lの供給動作が実行されたり、停止されたりするようになっている。なお、このような液体供給部21は、例えば、液体ポンプ等を含んで構成されている。 The liquid supply unit 21 supplies the liquid L to the ablation device 1 as needed according to control by a control signal CTL2 described later. Specifically, for example, as shown in FIG. 1, the liquid supply unit 21 circulates the liquid L between the inside of the liquid supply device 2 and the inside of the electrode needle 11 (in a predetermined flow path 110 described later). In this way, the liquid L supply operation is performed. Further, according to the control by the control signal CTL2, the liquid L supply operation is executed or stopped. In addition, such a liquid supply part 21 is comprised including the liquid pump etc., for example.
(電源装置3)
 電源装置3は、電極針11と対極板4との間にアブレーションを行うための電力Pout(例えば高周波(RF;Radio Frequency)の電力)を供給すると共に、上記した液体供給装置2における液体Lの供給動作を制御する装置である。この電源装置3は、図1に示したように、入力部31、電源部32、制御部33および表示部34を有している。
(Power supply 3)
The power supply device 3 supplies power Pout (for example, power of radio frequency (RF)) for performing ablation between the electrode needle 11 and the counter electrode plate 4 and the liquid L in the liquid supply device 2 described above. It is a device for controlling the supply operation. As shown in FIG. 1, the power supply device 3 includes an input unit 31, a power supply unit 32, a control unit 33, and a display unit 34.
 入力部31は、各種の設定値や、後述する所定の動作を指示するための指示信号(操作信号Sm)を入力する部分である。このような操作信号Smは、電源装置3の操作者(例えば技師等)による操作に応じて、入力部31から入力されるようになっている。ただし、これらの各種の設定値が、操作者による操作に応じて入力されるのではなく、例えば、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。また、入力部31により入力された設定値は、後述する制御部33へ供給されるようになっている。なお、このような入力部31は、例えば所定のダイヤルやボタン、タッチパネル等を用いて構成されている。 The input unit 31 is a part for inputting various set values and an instruction signal (operation signal Sm) for instructing a predetermined operation to be described later. Such an operation signal Sm is input from the input unit 31 in response to an operation by an operator (for example, an engineer) of the power supply device 3. However, these various setting values are not input in response to an operation by the operator, but may be set in the power supply device 3 in advance, for example, when the product is shipped. The set value input by the input unit 31 is supplied to the control unit 33 described later. Such an input unit 31 is configured using, for example, a predetermined dial, button, touch panel, or the like.
 電源部32は、後述する制御信号CTL1に従って、上記した電力Poutを電極針11と対極板4との間に供給する部分である。このような電源部32は、所定の電源回路(例えばスイッチングレギュレータ等)を用いて構成されている。なお、電力Poutが高周波電力からなる場合、その周波数は、例えば450kHz~550kHz程度(例えば500kHz)である。 The power supply unit 32 is a part that supplies the power Pout described above between the electrode needle 11 and the counter electrode plate 4 in accordance with a control signal CTL1 described later. Such a power supply part 32 is comprised using the predetermined power supply circuit (for example, switching regulator etc.). When the power Pout is high frequency power, the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
 制御部33は、電源装置3全体を制御すると共に所定の演算処理を行う部分であり、例えばマイクロコンピュータ等を用いて構成されている。具体的には、制御部33は、まず、制御信号CTL1を用いて、電源部32における電力Poutの供給動作を制御する機能(電力供給制御機能)を有している。また、制御部33は、制御信号CTL2を用いて、液体供給装置2(液体供給部21)における液体Lの供給動作を制御する機能(液体供給制御機能)を有している。 The control unit 33 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured using, for example, a microcomputer. Specifically, the control unit 33 first has a function (power supply control function) of controlling the supply operation of the power Pout in the power supply unit 32 using the control signal CTL1. In addition, the control unit 33 has a function (liquid supply control function) for controlling the supply operation of the liquid L in the liquid supply device 2 (liquid supply unit 21) using the control signal CTL2.
 このような制御部33にはまた、例えば図1に示したように、アブレーションデバイス1(電極針11の内部に配置された熱電対等の温度センサ)において測定された温度情報Itが、随時供給されるようになっている。また、例えば図1に示したように、制御部33には、上記した電源部32から、インピーダンス値Zmの測定値が随時供給されるようになっている。 For example, as shown in FIG. 1, temperature information It measured in the ablation device 1 (a temperature sensor such as a thermocouple disposed inside the electrode needle 11) is supplied to the control unit 33 as needed. It has become so. For example, as shown in FIG. 1, the measurement value of the impedance value Zm is supplied to the control unit 33 from the power supply unit 32 as needed.
 表示部34は、各種の情報を表示して外部へと出力する部分(モニター)である。表示対象の情報としては、例えば、入力部31から入力される前述の各種の設定値や、制御部33から供給される各種パラメータ、アブレーションデバイス1から供給される温度情報Itなどが挙げられる。ただし、表示対象の情報としてはこれらの情報には限られず、他の情報を代わりに、あるいは他の情報を加えて表示するようにしてもよい。このような表示部34は、各種の方式によるディスプレイ(例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイなど)を用いて構成されている。 The display unit 34 is a part (monitor) that displays various types of information and outputs the information to the outside. Examples of information to be displayed include the above-described various set values input from the input unit 31, various parameters supplied from the control unit 33, temperature information It supplied from the ablation device 1, and the like. However, the information to be displayed is not limited to these information, and other information may be displayed instead of or in addition to other information. Such a display part 34 is comprised using the display (For example, a liquid crystal display, a CRT (Cathode * Ray * Tube) display, an organic EL (Electro * Luminescence) display, etc.) by various systems.
(対極板4)
 対極板4は、例えば図1に示したように、アブレーションの際に患者9の体表に装着された状態で用いられるものである。詳細は後述するが、アブレーションの際に、アブレーションデバイス1における電極針11(前述した電極領域)とこの対極板4との間で、高周波通電がなされる(電力Poutが供給される)ようになっている。また、詳細は後述するが、このようなアブレーションの際に、図1に示したように、電極針11と対極板4との間のインピーダンス値Zmが随時測定され、測定されたインピーダンス値Zmが、電源装置3内において電源部32から制御部33へと供給されるようになっている。
(Counter electrode 4)
For example, as shown in FIG. 1, the counter electrode plate 4 is used while being attached to the body surface of the patient 9 during ablation. Although details will be described later, during ablation, high-frequency energization is performed (electric power Pout is supplied) between the electrode needle 11 (the electrode region described above) and the counter electrode plate 4 in the ablation device 1. ing. Although details will be described later, during such ablation, as shown in FIG. 1, the impedance value Zm between the electrode needle 11 and the counter electrode plate 4 is measured as needed, and the measured impedance value Zm is In the power supply device 3, power is supplied from the power supply unit 32 to the control unit 33.
[アブレーションデバイス1の詳細構成]
 続いて、図2を参照して、前述したアブレーションデバイス1の詳細構成例について説明する。図2は、図1に示したアブレーションデバイス1の詳細構成例を、模式的に側面図(Y-Z側面図)で表したものである。なお、この図2では、符号P2で示した部分(電極針11および絶縁性チューブ12の一部領域)を、矢印で示したように、図2中の下方において拡大して示している。
[Detailed configuration of ablation device 1]
Next, a detailed configuration example of the ablation device 1 described above will be described with reference to FIG. FIG. 2 schematically shows a detailed configuration example of the ablation device 1 shown in FIG. 1 in a side view (YZ side view). In FIG. 2, the portion indicated by the symbol P <b> 2 (partial region of the electrode needle 11 and the insulating tube 12) is enlarged and shown below in FIG. 2, as indicated by an arrow.
(電極針11)
 電極針11は、図2に示したようにZ軸方向に沿って設けられており、このZ軸方向に沿った長さ(軸方向長)は、例えば、30mm~350mm程度である。また、電極針11はその軸方向(Z軸方向)に沿って、絶縁性チューブ12により被覆されていない先端側の露出領域Ae(アブレーションの際に電極として機能する電極領域)と、絶縁性チューブ12により被覆されている領域(基端側の被覆領域)とを有している。この電極針11の露出領域Aeと対極板4との間に、前述したように、アブレーションを行うための電力Poutが供給されるようになっている。なお、このような電極針11は、例えば、ステンレス鋼,ニッケルチタン合金,チタン合金,白金等の金属材料により構成されている。
(Electrode needle 11)
The electrode needle 11 is provided along the Z-axis direction as shown in FIG. 2, and the length (axial length) along the Z-axis direction is, for example, about 30 mm to 350 mm. The electrode needle 11 has, along its axial direction (Z-axis direction), an exposed region Ae (electrode region that functions as an electrode during ablation) that is not covered with the insulating tube 12, and an insulating tube. 12 and the area | region (covering area | region of a base end side) covered with 12. As described above, the electric power Pout for ablation is supplied between the exposed area Ae of the electrode needle 11 and the counter electrode plate 4. In addition, such an electrode needle | hook 11 is comprised by metal materials, such as stainless steel, nickel titanium alloy, a titanium alloy, platinum, for example.
(絶縁性チューブ12)
 絶縁性チューブ12は、上記したように、電極針11の先端側(露出領域Ae)を部分的に露出させつつ、Z軸方向に沿って電極針11の周囲を被覆する部材である。また、この絶縁性チューブ12は、後述するハンドル13に対する所定の操作に応じて、例えば図2中の矢印d2で示したように、その軸方向(Z軸方向)に沿って、電極針11に対して相対的にスライド可能に構成されている。これにより、電極針11の露出領域AeにおけるZ軸方向に沿った長さ(軸方向長)を、調節可能となっている。
(Insulating tube 12)
As described above, the insulating tube 12 is a member that covers the periphery of the electrode needle 11 along the Z-axis direction while partially exposing the distal end side (exposed region Ae) of the electrode needle 11. The insulating tube 12 is attached to the electrode needle 11 along its axial direction (Z-axis direction), for example, as indicated by an arrow d2 in FIG. On the other hand, it is configured to be relatively slidable. Thereby, the length (axial direction length) along the Z-axis direction in the exposed region Ae of the electrode needle 11 can be adjusted.
 なお、このような絶縁性チューブ12によって調節可能な、電極針11の露出領域AeにおけるZ軸方向に沿った長さ(軸方向長)は、例えば、3mm~50mm程度である。また、この絶縁性チューブ12は、例えば、PEEK(ポリエーテルエーテルケトン),PI(ポリイミド),フッ素系樹脂,ポリエーテルブロックアミド等の合成樹脂により構成されている。 In addition, the length (axial direction length) along the Z-axis direction in the exposed region Ae of the electrode needle 11 that can be adjusted by such an insulating tube 12 is, for example, about 3 mm to 50 mm. The insulating tube 12 is made of, for example, a synthetic resin such as PEEK (polyether ether ketone), PI (polyimide), fluorine resin, or polyether block amide.
(ハンドル13)
 ハンドル13は、アブレーションデバイス1の使用時に操作者(医師)が掴む(握る)部分である。このハンドル13は、図2に示したように、電極針11の基端側に装着されたハンドル本体130と、操作部(スライドノブ部)131とを主に有している。
(Handle 13)
The handle 13 is a portion that is gripped (gripped) by an operator (doctor) when the ablation device 1 is used. As shown in FIG. 2, the handle 13 mainly includes a handle main body 130 attached to the proximal end side of the electrode needle 11 and an operation portion (slide knob portion) 131.
 ハンドル本体130は、操作者が実際に握る部分(把持部)に相当し、ハンドル13における外装としても機能する部分である。なお、このハンドル本体130は、例えば、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリル、ポリオレフィン、ポリオキシメチレン等の合成樹脂により構成されている。 The handle body 130 corresponds to a portion (gripping portion) that is actually gripped by the operator, and is a portion that also functions as an exterior of the handle 13. The handle body 130 is made of synthetic resin such as polycarbonate, acrylonitrile-butadiene-styrene copolymer (ABS), acrylic, polyolefin, polyoxymethylene, and the like.
 操作部131は、絶縁性チューブ12をその軸方向(Z軸方向)に沿って、電極針11に対して相対的にスライド動作させるための所定の操作(スライド操作)が行われる部分であり、ハンドル本体130の外側(Y軸方向)に突出している。操作部131は、例えば、前述したハンドル本体130と同様の材料(合成樹脂等)により構成されている。この操作部131は、ハンドル13の軸方向(Z軸方向)に沿って、ハンドル本体130に対して相対的にスライド可能に構成されている。 The operation part 131 is a part where a predetermined operation (slide operation) for causing the insulating tube 12 to slide relative to the electrode needle 11 along its axial direction (Z-axis direction) is performed. It protrudes outside the handle body 130 (Y-axis direction). The operation unit 131 is made of, for example, the same material (synthetic resin or the like) as the handle body 130 described above. The operation unit 131 is configured to be slidable relative to the handle main body 130 along the axial direction (Z-axis direction) of the handle 13.
 詳細は後述するが、操作部131に対してこのようなスライド操作が行われることで(例えば図2中の矢印d1参照)、絶縁性チューブ12がZ軸方向に沿って、電極針11に対して相対的にスライド動作するようになっている(例えば図2中の矢印d2参照)。これにより、電極針11の露出領域AeにおけるZ軸方向に沿った長さ(軸方向長)を、調整することが可能となっている。 Although details will be described later, when such a slide operation is performed on the operation unit 131 (see, for example, the arrow d1 in FIG. 2), the insulating tube 12 moves along the Z-axis direction with respect to the electrode needle 11. The sliding movement is relatively performed (see, for example, the arrow d2 in FIG. 2). Thereby, the length (axial direction length) along the Z-axis direction in the exposed region Ae of the electrode needle 11 can be adjusted.
[ハンドル13の詳細構成]
 続いて、図3~図5を参照して、上記したハンドル13の詳細構成例について説明する。図3は、図2に示したハンドル13の内部の要部構成例を、模式的に側面図(Y-Z分解側面図)で表したものである。また、図4は、このようなハンドル13の内部の要部構成例を、模式的に斜視図で表したものである。図5(A)は、図3,図4に示した液体収容部(後述する液体収容部133)付近の内部構成例を、模式的に断面図(Z-X断面図)で表したものである。また、図5(B)は、図2に示した電極針11の先端側の内部構成例を、模式的に断面図(Z-X断面図)で表したものである。
[Detailed configuration of handle 13]
Next, a detailed configuration example of the handle 13 will be described with reference to FIGS. FIG. 3 is a side view (YZ exploded side view) schematically showing an example of the configuration of the main part inside the handle 13 shown in FIG. FIG. 4 is a perspective view schematically showing a configuration example of a main part inside the handle 13. FIG. 5A is a schematic cross-sectional view (ZX cross-sectional view) showing an example of the internal configuration in the vicinity of the liquid storage portion (liquid storage portion 133 described later) shown in FIGS. is there. FIG. 5B is a schematic cross-sectional view (ZX cross-sectional view) showing an example of the internal configuration of the tip side of the electrode needle 11 shown in FIG.
 なお、図3,図4ではそれぞれ、説明の便宜上、ハンドル本体130におけるX軸方向に沿った片側の部分を外した状態で、図示している。また、これらの図3,図4ではそれぞれ、説明の便宜上、ハンドル13の内部における要部以外の構成については、適宜、図示を省略している。 3 and 4, for convenience of explanation, the handle main body 130 is illustrated with one side portion along the X-axis direction removed. In FIGS. 3 and 4, for convenience of explanation, the illustration of the configuration other than the main part inside the handle 13 is omitted as appropriate.
 図3,図4,図5(A)に示したように、ハンドル13の内部(ハンドル本体130内)には、スライド機構132および液体収容部133が設けられている。 As shown in FIGS. 3, 4, and 5 (A), a slide mechanism 132 and a liquid storage portion 133 are provided inside the handle 13 (inside the handle main body 130).
(スライド機構132)
 スライド機構132は、詳細は後述するが、操作部131に対する前述したスライド操作に連動してZ軸方向に沿ってスライド動作することにより、絶縁性チューブ12をZ軸方向に沿って、電極針11に対して相対的にスライド動作させる機構である。このようなスライド機構132は、図3に示したように、スライドバー部(並行バー部)132aと、接合部132bとを有している。
(Slide mechanism 132)
Although details will be described later, the slide mechanism 132 slides along the Z-axis direction in conjunction with the above-described slide operation on the operation unit 131, thereby causing the insulating needle 12 to move along the Z-axis direction along the electrode needle 11. It is a mechanism which carries out a sliding operation relative to. As shown in FIG. 3, the slide mechanism 132 has a slide bar portion (parallel bar portion) 132a and a joint portion 132b.
 接合部132bは、図3に示したように、後述するスライドバー部132aの先端側と、絶縁性チューブ12の基端付近とを接合する部分である。 As shown in FIG. 3, the joining portion 132 b is a portion that joins the distal end side of the slide bar portion 132 a described later and the vicinity of the proximal end of the insulating tube 12.
 スライドバー部132aは、図3に示したように、前述した操作部131と、液体収容部133等の他の内部部品との間において、主にZ軸方向に沿って並行して配置されている。また、スライドバー部132aは、基端側が操作部131に接続されていると共に、先端側が接合部132bに接続(接合)されている。このようなスライドバー部132aは、上記した操作部131に対するスライド操作に連動して、ハンドル本体130内において、Z軸方向に沿ってハンドル本体130に対して相対的にスライド動作するようになっている。 As shown in FIG. 3, the slide bar portion 132 a is disposed between the operation unit 131 described above and other internal components such as the liquid storage unit 133 in parallel mainly along the Z-axis direction. Yes. The slide bar portion 132a has a proximal end side connected to the operation portion 131 and a distal end side connected (joined) to the joint portion 132b. Such a slide bar portion 132a slides relative to the handle main body 130 along the Z-axis direction in the handle main body 130 in conjunction with the slide operation on the operation portion 131 described above. Yes.
 また、図3に示したように、操作部131がハンドル本体130の基端側に位置するときに、スライドバー部132aの先端は、液体収容部133等の他の内部部品の先端と比べ、先端側に位置するようになっている。言い換えると、このスライドバー部132aは、ハンドル本体130の基端側に位置するときに、操作部131と接合部132bとの間において、液体収容部133等の他の内部部品を迂回するように延びている。これにより、上記した操作部131に対するスライド操作の際に、スライドバー部132aと、液体収容部133等の他の内部部品との干渉が防止され、ハンドル13全体の小型化が容易となる。 Further, as shown in FIG. 3, when the operation unit 131 is located on the proximal end side of the handle body 130, the tip of the slide bar portion 132 a is compared with the tips of other internal parts such as the liquid storage unit 133. It is located on the tip side. In other words, when the slide bar portion 132a is positioned on the proximal end side of the handle main body 130, the slide bar portion 132a bypasses other internal components such as the liquid storage portion 133 between the operation portion 131 and the joint portion 132b. It extends. This prevents interference between the slide bar portion 132a and other internal components such as the liquid storage portion 133 during the slide operation on the operation portion 131, and facilitates downsizing of the handle 13 as a whole.
 なお、これらのスライドバー部132aおよび接合部132bと、前述した操作部131とはそれぞれ、例えば、一体的に成形されるようになっている。ただし、これらのスライドバー部132a、接合部132bおよび操作部131がそれぞれ、別体として成形されているようにしてもよい。 Note that the slide bar portion 132a and the joint portion 132b, and the operation portion 131 described above are each integrally formed, for example. However, the slide bar portion 132a, the joint portion 132b, and the operation portion 131 may be formed as separate bodies.
 このようにしてスライド機構132は、図3,図4に示したように、ハンドル本体130内において、液体収容部133に対して並列配置されている。すなわち、ハンドル本体130内において、スライド機構132(スライドバー部132a)と、液体収容部133とが、並列配置(この例ではY軸方向に沿って並列配置)されるようになっている。 In this way, the slide mechanism 132 is arranged in parallel with the liquid storage portion 133 in the handle main body 130 as shown in FIGS. That is, in the handle main body 130, the slide mechanism 132 (slide bar portion 132a) and the liquid storage portion 133 are arranged in parallel (in this example, arranged in parallel along the Y-axis direction).
(液体収容部133)
 液体収容部133は、ハンドル本体130内において、冷却用の液体Lをその内部に一時的に収容する部材である。この液体収容部133には、例えば図4,図5(A)に示したように、冷却用の液体Lを(前述した液体供給部21から)ハンドル本体130内へ流入させるための送液管81と、冷却用の液体Lをハンドル本体130内から(液体供給部21へ向けて)排出させるための排液管82とが、それぞれ接続されている。また、このような送液管81、液体収容部133および排液管82を経由して、ハンドル本体130および電極針11の内部には、冷却用の液体Lが往復(循環)する流路が形成されている。
(Liquid storage part 133)
The liquid storage portion 133 is a member that temporarily stores the cooling liquid L in the handle main body 130 therein. For example, as shown in FIG. 4 and FIG. 5A, a liquid feed pipe for allowing the cooling liquid L to flow into the handle main body 130 (from the liquid supply part 21 described above) is provided in the liquid storage part 133. 81 and a drainage pipe 82 for discharging the cooling liquid L from the handle main body 130 (toward the liquid supply unit 21) are connected to each other. Further, a flow path through which the cooling liquid L reciprocates (circulates) is provided inside the handle main body 130 and the electrode needle 11 via the liquid supply pipe 81, the liquid storage portion 133, and the drainage pipe 82. Is formed.
(流路110)
 ここで、図5(A),図5(B)を参照して、電極針11の内部に形成される流路110の構成について、詳細に説明する。
(Channel 110)
Here, with reference to FIG. 5 (A) and FIG. 5 (B), the structure of the flow path 110 formed in the electrode needle 11 is demonstrated in detail.
 まず、図5(B)に示したように、流路110は、電極針11の内部において、電極針11の軸方向(Z軸方向)に沿って形成されており、冷却用の液体Lが流れる流路となっている。具体的には、例えば図5(A),図5(B)中の破線の矢印で示したように、この流路110には、冷却用の液体Lについての往路となる流路110a(電極針11の基端側から先端側へと流れる際の流路)と、復路となる流路110b(電極針11の先端側から基端側へと流れる際の流路)とが、設けられている。 First, as shown in FIG. 5B, the flow path 110 is formed along the axial direction (Z-axis direction) of the electrode needle 11 inside the electrode needle 11, and the cooling liquid L It is a flowing channel. Specifically, for example, as indicated by the broken-line arrows in FIGS. 5A and 5B, a flow path 110a (electrode) serving as a forward path for the cooling liquid L is provided in the flow path 110. A flow path when flowing from the proximal end side of the needle 11 to the distal end side) and a flow path 110b serving as a return path (flow path when flowing from the distal end side of the electrode needle 11 to the proximal end side) are provided. Yes.
 なお、このような流路110は、本発明における「流路」の一具体例に対応している。また、流路110aは、本発明における「第1流路」の一具体例に対応し、流路110bは、本発明における「第2流路」の一具体例に対応している。 It should be noted that such a flow path 110 corresponds to a specific example of “flow path” in the present invention. The flow path 110a corresponds to a specific example of “first flow path” in the present invention, and the flow path 110b corresponds to a specific example of “second flow path” in the present invention.
 また、例えば図5(A),図5(B)に示したように、ハンドル本体130内には、上記した液体収容部133をZ軸方向に沿って貫通する(図5(A)中の符号P3参照)と共に、電極針11の内部において上記した流路110a(往路)を構成する、内管111が設けられている。この内管111は、図5(A),図5(B)に示したように、ハンドル本体130、電極針11(流路110)および送液管81の内部において、電極針11の軸方向(Z軸方向)に沿って配置されている。そして図5(A)に示したように、冷却用の液体Lは、送液管81内からこの内管111内へ直接供給されるようになっている。 For example, as shown in FIGS. 5A and 5B, the handle main body 130 penetrates the liquid storage portion 133 along the Z-axis direction (in FIG. 5A). An inner tube 111 that constitutes the above-described flow path 110a (outward path) is provided inside the electrode needle 11 together with the reference P3). As shown in FIGS. 5A and 5B, the inner tube 111 is formed in the axial direction of the electrode needle 11 inside the handle main body 130, the electrode needle 11 (flow channel 110), and the liquid feeding tube 81. It is arranged along (Z-axis direction). As shown in FIG. 5A, the cooling liquid L is directly supplied from the liquid feeding pipe 81 into the inner pipe 111.
 このような構成により、上記した送液管81内からハンドル本体130内に流入した冷却用の液体Lは、液体収容部133内に一時的に収容されずに、(内管111を通過して)往路となる流路110a内に、直接供給されるようになっている(図5(A)参照)。また、復路となる流路110b内から供給された冷却用の液体Lは、液体収容部133内に一時的に収容された後に、ハンドル本体130内から排液管82内へと流出するようになっている(図5(A)参照)。このような構成により、冷却用の液体Lをハンドル本体130内へ流入させるための送液管81と、冷却用の液体Lをハンドル本体130内から排出させるための排液管82とを、互いに分岐して設けることができる。 With such a configuration, the cooling liquid L that has flowed into the handle main body 130 from the liquid feeding pipe 81 is not temporarily stored in the liquid storage portion 133 (passes through the inner pipe 111). ) It is directly supplied into the forward flow path 110a (see FIG. 5A). In addition, the cooling liquid L supplied from the flow path 110b serving as the return path is temporarily stored in the liquid storage section 133 and then flows out from the handle body 130 into the drain pipe 82. (See FIG. 5A). With such a configuration, the liquid feeding pipe 81 for allowing the cooling liquid L to flow into the handle main body 130 and the drainage pipe 82 for discharging the cooling liquid L from the handle main body 130 are mutually connected. It can be provided by branching.
[動作および作用・効果]
(A.基本動作)
 このアブレーションシステム5では、例えば癌等の腫瘍を有する患部90を治療する際に、そのような患部90に対して所定のアブレーションが行われる(図1参照)。このようなアブレーションでは、まず、例えば図1中の矢印P1で示したように、患者9の体内の患部90に対し、アブレーションデバイス1における電極針11が、その先端側(露出領域Ae側)から経皮的に穿刺される。そして、この電極針11と対極板4との間に、電源装置3(電源部32)から電力Pout(例えば高周波電力)が供給されることで、患部90に対して、ジュール発熱によるアブレーションが行われる。
[Operation and action / effect]
(A. Basic operation)
In this ablation system 5, when treating the affected part 90 which has tumors, such as cancer, for example, predetermined ablation is performed with respect to such an affected part 90 (refer FIG. 1). In such ablation, first, for example, as indicated by an arrow P1 in FIG. 1, the electrode needle 11 in the ablation device 1 is moved from the distal end side (exposed region Ae side) to the affected part 90 in the body of the patient 9. Punctured percutaneously. Then, power Pout (for example, high frequency power) is supplied from the power supply device 3 (power supply unit 32) between the electrode needle 11 and the counter electrode plate 4, so that the affected part 90 is ablated by Joule heat generation. Is called.
 また、このようなアブレーションの際には、液体供給装置2の内部と電極針11の内部(前述した流路110内)との間を冷却用の液体Lが循環するように、液体供給装置2(液体供給部21)から電極針11に対して液体Lが供給される(図1参照)。これにより、アブレーションの際に、電極針11に対する冷却動作(クーリング)が行われ、その結果、患部90の温度(組織温度)の過度な上昇が抑制され、組織の炭化に起因した、前述したインピーダンス値Zmの急激な上昇が防止される。 Further, at the time of such ablation, the liquid supply device 2 is circulated so that the cooling liquid L circulates between the inside of the liquid supply device 2 and the inside of the electrode needle 11 (inside the flow path 110 described above). The liquid L is supplied from the (liquid supply part 21) to the electrode needle 11 (see FIG. 1). As a result, a cooling operation (cooling) is performed on the electrode needle 11 during ablation, and as a result, an excessive increase in the temperature (tissue temperature) of the affected area 90 is suppressed, and the impedance described above due to tissue carbonization. A sudden increase in the value Zm is prevented.
 図6は、このようなアブレーションによる患部90での焼灼具合の一例を、模式的に表したものである。この図6に示したように、患部90に穿刺された電極針11を用いて上記したアブレーションがなされると、例えば、当初のラグビボール状(楕円球状)の熱凝固領域Ah1が、徐々に拡がっていくことで、ほぼ球状の熱凝固領域Ah2が得られる(図3中の破線の矢印を参照)。これにより、患部90全体への等方的なアブレーションが行われる結果、患部90への効果的な治療がなされることになる。 FIG. 6 schematically shows an example of the condition of cauterization in the affected area 90 due to such ablation. As shown in FIG. 6, when the above-described ablation is performed using the electrode needle 11 punctured in the affected area 90, for example, the initial rugby ball-shaped (elliptical spherical) thermal coagulation region Ah1 gradually expands. As a result, a substantially spherical thermocoagulation region Ah2 is obtained (see the broken arrow in FIG. 3). As a result, isotropic ablation of the entire affected area 90 is performed, and as a result, effective treatment of the affected area 90 is performed.
 また、例えば図2,図7(A),図7(B)に示したように、このようなアブレーションの際には、アブレーションデバイス1のハンドル13において、操作部131に対する前述したスライド操作が、事前に行われる。具体的には、操作部131に対してZ軸方向に沿ったスライド操作が行われると(例えば図2,図7(B)中の矢印d1参照)、この操作部131のスライド操作に連動して、ハンドル本体130内のスライド機構132がZ軸方向に沿ってスライド動作を行う(図7(B)中の矢印d0参照)。そして、このスライド機構132のスライド動作に連動して、絶縁性チューブ12もまた、Z軸方向に沿ってスライド動作を行う(例えば図2,図5(B)中の矢印d2参照)。これにより、例えば図7(A),図7(B)に示したように、電極針11における先端側の露出領域Aeの大きさ(Z軸方向に沿った長さ)が任意に調整され、アブレーションの際のアブレーション範囲(露出領域Aeに対応する範囲)も、任意に調整されることとなる。 For example, as shown in FIGS. 2, 7 (A), and 7 (B), in the case of such ablation, the above-described slide operation on the operation unit 131 is performed on the handle 13 of the ablation device 1. Done in advance. Specifically, when a slide operation along the Z-axis direction is performed on the operation unit 131 (see, for example, the arrow d1 in FIGS. 2 and 7B), the operation unit 131 is interlocked with the slide operation. Thus, the slide mechanism 132 in the handle main body 130 performs a slide operation along the Z-axis direction (see arrow d0 in FIG. 7B). In conjunction with the slide operation of the slide mechanism 132, the insulating tube 12 also performs a slide operation along the Z-axis direction (see, for example, the arrow d2 in FIGS. 2 and 5B). As a result, for example, as shown in FIGS. 7A and 7B, the size (length along the Z-axis direction) of the exposed area Ae on the distal end side of the electrode needle 11 is arbitrarily adjusted, The ablation range at the time of ablation (the range corresponding to the exposure area Ae) is also arbitrarily adjusted.
 これにより、例えば、肝臓における奥深い一部の領域に小さな腫瘍が形成されている場合には、露出領域Ae(アブレーション範囲)を小さく設定して、患部90まで電極針11の先端を差し込んでアブレーションを行うことで、患部90のみを選択的に焼灼することができる。すなわち、患部90以外の部分は焼灼されず、元の機能を保つことができる。一方、例えば、大きな腫瘍が形成されている場合には、露出領域Ae(アブレーション範囲)を大きく設定することで、その大きな腫瘍をまとめて(一括して)焼灼することができる。 Thereby, for example, when a small tumor is formed in a deep part of the liver, the exposed area Ae (ablation range) is set small, and the tip of the electrode needle 11 is inserted to the affected area 90 to perform ablation. By performing, only the affected part 90 can be cauterized selectively. That is, parts other than the affected part 90 are not cauterized, and the original function can be maintained. On the other hand, for example, when a large tumor is formed, by setting the exposed area Ae (ablation range) large, the large tumors can be cauterized together (collectively).
 なお、このような操作部131に対するスライド操作や、このスライド操作に連動したスライド機構132および絶縁性チューブ12のスライド動作はそれぞれ、電極針11の軸方向(Z軸方向)に沿って、段階的(断続的)に調節可能となっていてもよい。言い換えると、操作部131、スライド機構132および絶縁性チューブ12がそれぞれスライドする際の位置が、Z軸方向に沿った所定の距離ごとに、軽度に固定されるようにしてもよい。 The slide operation on the operation unit 131 and the slide operation of the slide mechanism 132 and the insulating tube 12 in conjunction with the slide operation are stepwise along the axial direction (Z-axis direction) of the electrode needle 11. It may be adjustable (intermittently). In other words, the position when the operation unit 131, the slide mechanism 132, and the insulating tube 12 slide may be slightly fixed for each predetermined distance along the Z-axis direction.
(B.比較例)
 ここで、比較例に係るアブレーションデバイスとして、例えば以下のような構成のものが考えられる。すなわち、この比較例のアブレーションデバイスは、図3,図4に示した本実施の形態のアブレーションデバイス1とは異なり、ハンドル本体内において、スライド機構132と液体収容部133とが、直列的に配置(電極針11の軸方向であるZ軸方向に沿って並んで配置)されている。ところが、このような比較例のアブレーションデバイスでは、以下のような問題が生じるおそれがある。
(B. Comparative example)
Here, as the ablation device according to the comparative example, for example, the following configuration can be considered. That is, the ablation device of this comparative example is different from the ablation device 1 of the present embodiment shown in FIGS. 3 and 4 in that the slide mechanism 132 and the liquid storage portion 133 are arranged in series in the handle body. (Arranged side by side along the Z-axis direction, which is the axial direction of the electrode needle 11). However, such a comparative ablation device may cause the following problems.
 すなわち、まず、例えば放射線科において、肝癌に対するアブレーション治療を行う際には、一般に、CTスキャンの下で、アブレーションデバイスが使用される。つまり、円形状のCTスキャン装置の内部に患者が入っている状態で、アブレーションデバイスが使用される。したがって、アブレーションデバイスが大きいと使用しにくいことから、一般に、アブレーションデバイスのハンドルを小型化することが求められている。 That is, first, when performing ablation treatment for liver cancer in, for example, radiology, an ablation device is generally used under a CT scan. That is, the ablation device is used in a state where the patient is in the circular CT scanning apparatus. Therefore, since it is difficult to use a large ablation device, it is generally required to reduce the handle of the ablation device.
 そこで、ハンドル本体内でスライド機構132と液体収容部133とが直列的に配置されている、アブレーションデバイスの一般的なハンドルにおいて、そのままハンドルの小型化を図った場合(上記した比較例のアブレーションデバイスでは)、以下のようになる。すなわち、この比較例のアブレーションデバイスでは、ハンドル全体としての小型化が図られるものの、電極針11の先端の位置する電極領域(絶縁性チューブ12からの露出領域Ae)について、軸方向(Z軸方向)に沿って調整可能な範囲が、減少してしまうことになる。このような電極領域(露出領域Ae)は、前述したように、電極針11を利用したアブレーションの際のアブレーション範囲に相当することから(図7(A),図7(B)参照)、このアブレーション範囲についての調整範囲が減少すると、アブレーションデバイスを使用する際の利便性が、損なわれてしまうおそれがある。 Therefore, in a general handle of an ablation device in which the slide mechanism 132 and the liquid storage portion 133 are arranged in series in the handle body, the handle is downsized as it is (the ablation device of the comparative example described above). Then, it becomes as follows. That is, in the ablation device of this comparative example, the entire handle can be reduced in size, but the electrode region (exposed region Ae from the insulating tube 12) located at the tip of the electrode needle 11 is axially (Z-axis direction). ), The adjustable range is reduced. Such an electrode region (exposed region Ae) corresponds to the ablation range at the time of ablation using the electrode needle 11 as described above (see FIGS. 7A and 7B). If the adjustment range for the ablation range is reduced, the convenience when using the ablation device may be impaired.
(C.本実施の形態)
 これに対して本実施の形態のアブレーションデバイス1では、図3に示したように、上記比較例のアブレーションデバイスとは異なり、以下のような構成となっている。すなわち、冷却用の液体Lを一時的に収容する液体収容部133と、絶縁性チューブ12をZ軸方向に沿ってスライド動作させるための所定の操作が行われるスライド機構132とが、ハンドル本体130内で互いに並列配置されている。
(C. This embodiment)
On the other hand, as shown in FIG. 3, the ablation device 1 of the present embodiment has the following configuration, unlike the ablation device of the comparative example. That is, the handle body 130 includes a liquid storage portion 133 that temporarily stores the cooling liquid L and a slide mechanism 132 that performs a predetermined operation for sliding the insulating tube 12 along the Z-axis direction. Are arranged in parallel with each other.
 このような構成により、本実施の形態のアブレーションデバイス1では、上記した比較例のアブレーションデバイスとは異なり、以下のようになる。 With this configuration, the ablation device 1 of the present embodiment is as follows, unlike the ablation device of the comparative example described above.
 すなわち、まず、ハンドル13全体としての小型化が図られる。具体的には、ハンドル13全体のサイズ(図3中に示した軸方向長Lz(Z軸方向に沿った長さ))を、例えば86mm以下(Lz≦86mm)にすることができる。これに対して、例えば、ハンドル13全体のサイズ(軸方向長Lz)が86mmよりも大きいと、前述したように、円形状のCTスキャン装置の内部に患者が入っている状態で手技を行う際に、ハンドル13とCTスキャン装置とが接触してしまう等のおそれがある。なお、ハンドル13全体のサイズ(軸方向長Lz)の下限値は、露出領域Ae(アブレーション範囲)を確保することを考慮すると、例えば30mmが挙げられる。すなわち、この場合、(30mm≦Lz≦86mm)を満たすことになる。また、このアブレーションデバイス1では、電極針11の先端の位置する電極領域(絶縁性チューブ12からの露出領域Ae)についての調整可能範囲の減少が、回避される(図7(A),図7(B)参照)。つまり、このアブレーションデバイス1では上記比較例のアブレーションデバイスとは異なり、ハンドル13全体としての小型化と、電極領域(上記したアブレーション範囲)についての調整可能範囲の広範化との両立が、実現される。 That is, first, the overall size of the handle 13 is reduced. Specifically, the size of the entire handle 13 (the axial length Lz shown in FIG. 3 (the length along the Z-axis direction)) can be set to 86 mm or less (Lz ≦ 86 mm), for example. On the other hand, for example, when the size of the entire handle 13 (the axial length Lz) is larger than 86 mm, as described above, when performing a procedure in a state where the patient is inside the circular CT scan apparatus, In addition, the handle 13 and the CT scanning device may come into contact with each other. Note that the lower limit value of the overall size of the handle 13 (axial length Lz) is, for example, 30 mm in consideration of securing the exposure area Ae (ablation range). That is, in this case, (30 mm ≦ Lz ≦ 86 mm) is satisfied. Further, in the ablation device 1, a decrease in the adjustable range for the electrode region (exposed region Ae from the insulating tube 12) where the tip of the electrode needle 11 is located is avoided (FIGS. 7A and 7). (See (B)). That is, in the ablation device 1, unlike the ablation device of the comparative example, both miniaturization of the handle 13 as a whole and widening of the adjustable range for the electrode region (ablation range described above) are realized. .
 以上のように、本実施の形態のアブレーションデバイス1では、液体収容部133とスライド機構132とをハンドル本体130内で互いに並列配置するようにしたので、ハンドル13全体としての小型化と、アブレーション範囲についての調整可能範囲の広範化とを、両立させることができる。よって、このアブレーションデバイス1では、例えば上記比較例のアブレーションデバイスと比べて、効果的なアブレーションを実施できるようになる結果、使用する際の利便性を向上させることが可能となる。 As described above, in the ablation device 1 according to the present embodiment, the liquid storage portion 133 and the slide mechanism 132 are arranged in parallel with each other in the handle main body 130, so that the overall size of the handle 13 and the ablation range can be reduced. It is possible to achieve both the widening of the adjustable range for. Therefore, in this ablation device 1, compared with the ablation device of the comparative example, for example, effective ablation can be performed. As a result, convenience in use can be improved.
 また、本実施の形態のアブレーションデバイス1では、送液管81内からハンドル本体130内に流入した冷却用の液体Lが、液体収容部133内に一時的に収容されずに、往路となる流路110a(内管111)内に、直接供給される(図5(A)参照)。また、復路となる流路110b内から供給された冷却用の液体Lが、液体収容部133内に一時的に収容された後に、ハンドル本体130内から排液管82内へと流出する(図5(A)参照)。これにより、図5(A)に示したように、アブレーションの際に温められて液体収容部133内に一時的に収容される液体L(流路110b内から供給される排液側の液体L)と、流路110aへ供給される送液側の液体Lとが、ハンドル本体130内で混合されないことになる。したがって、送液側の液体Lが温められてしまうことに起因した、冷却用の液体Lによる冷却効果の減少が、抑えられる。その結果、本実施の形態では、アブレーションデバイス1を使用する際の利便性を、更に向上させることが可能となる。 Further, in the ablation device 1 of the present embodiment, the cooling liquid L that has flowed into the handle main body 130 from the liquid supply pipe 81 is not temporarily stored in the liquid storage portion 133, but becomes a forward flow. It is directly supplied into the passage 110a (inner pipe 111) (see FIG. 5A). In addition, the cooling liquid L supplied from the flow path 110b serving as the return path is temporarily stored in the liquid storage section 133 and then flows out from the handle main body 130 into the drainage pipe 82 (FIG. 5 (A)). As a result, as shown in FIG. 5A, the liquid L that is warmed during ablation and is temporarily stored in the liquid storage portion 133 (the liquid L on the drain side supplied from the flow path 110b). ) And the liquid L on the liquid feeding side supplied to the flow path 110a are not mixed in the handle main body 130. Therefore, a decrease in the cooling effect due to the cooling liquid L caused by the liquid L on the liquid feeding side being warmed can be suppressed. As a result, in this embodiment, the convenience when using the ablation device 1 can be further improved.
 更に、本実施の形態では、図5(A)に示したように、ハンドル本体130内において液体収容部133を貫通すると共に、電極針11の内部において流路110a(往路)を構成する、内管111が設けられている。そして、冷却用の液体Lが、送液管81内からこの内管111内へ、直接供給されるようになっている(図5(A)参照)。これにより、流路110aを構成する内管111が、ハンドル本体130内において液体収容部133を貫通することにより、ハンドル13全体としての更なる小型化が図られつつ、上記した排液側の液体L(温められた液体L)による送液側の液体Lへの悪影響(冷却効果の減少)が、最小限に抑えられる。その結果、本実施の形態では、アブレーションデバイス1を使用する際の利便性を、より一層向上させることが可能となる。 Furthermore, in the present embodiment, as shown in FIG. 5A, the liquid main body 133 is penetrated in the handle main body 130 and the flow path 110a (outward path) is formed inside the electrode needle 11. A tube 111 is provided. Then, the cooling liquid L is directly supplied from the liquid feeding pipe 81 into the inner pipe 111 (see FIG. 5A). As a result, the inner pipe 111 constituting the flow path 110a penetrates the liquid storage portion 133 in the handle main body 130, so that the size of the handle 13 as a whole can be further reduced. The adverse effect (decrease in cooling effect) on the liquid L on the liquid feeding side due to L (warmed liquid L) is minimized. As a result, in this embodiment, the convenience when using the ablation device 1 can be further improved.
<2.変形例>
 以上、実施の形態を挙げて本発明を説明したが、本発明はこの実施の形態に限定されず、種々の変形が可能である。
<2. Modification>
While the present invention has been described with reference to the embodiment, the present invention is not limited to this embodiment, and various modifications can be made.
 例えば、上記実施の形態において説明した各部材の材料等は限定されるものではなく、他の材料としてもよい。また、上記実施の形態では、アブレーションデバイス等の構成を具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。更に、上記実施の形態で説明した各種パラメータの値や範囲、大小関係等についても、上記実施の形態で説明したものには限られず、他の値や範囲、大小関係等であってもよい。 For example, the material of each member described in the above embodiment is not limited, and other materials may be used. In the above-described embodiment, the configuration of the ablation device or the like has been specifically described, but it is not always necessary to include all members, and other members may be further included. Furthermore, the values, ranges, magnitude relationships, and the like of the various parameters described in the above embodiments are not limited to those described in the above embodiments, and may be other values, ranges, magnitude relationships, and the like.
 また、上記実施の形態では、アブレーションデバイスにおける電極針や絶縁性チューブ、ハンドル等の構成を具体的に挙げて説明したが、これらの各部材の構成は、上記実施の形態で説明したものには限られず、他の構成としてもよい。具体的には、例えば場合によっては、電極針が、上記実施の形態等で説明したモノポーラ型ではなく、バイポーラ型であってもよい。また、例えば、前述した送液側においても、冷却用の液体を液体収容部内に一時的に収容した後に、流路(第1流路)内に供給するようにしてもよい。また、例えば場合によっては、前述した内管(第1流路を構成)が、液体収容部を貫通しない構成(液体収容部を迂回して流路内に至る構成)としてもよい。 In the above embodiment, the configuration of the electrode needle, the insulating tube, the handle and the like in the ablation device has been specifically described. However, the configuration of each member is not described in the above embodiment. The configuration is not limited, and other configurations may be used. Specifically, for example, depending on the case, the electrode needle may be a bipolar type instead of the monopolar type described in the above embodiments and the like. For example, on the liquid feeding side described above, the cooling liquid may be temporarily stored in the liquid storage portion and then supplied into the flow path (first flow path). Further, for example, in some cases, the above-described inner tube (which constitutes the first flow path) may be configured not to penetrate the liquid storage part (a structure that bypasses the liquid storage part and reaches the flow path).
 更に、上記実施の形態では、液体供給装置2および電源装置3のブロック構成を具体的に挙げて説明したが、上記実施の形態で説明した各ブロックを必ずしも全て備える必要はなく、また、他のブロックを更に備えていてもよい。また、アブレーションシステム5全体としても、上記実施の形態で説明した各装置に加えて、他の装置を更に備えていてもよい。 Furthermore, in the above-described embodiment, the block configurations of the liquid supply device 2 and the power supply device 3 are specifically described. However, it is not always necessary to include all the blocks described in the above-described embodiment. A block may be further provided. The ablation system 5 as a whole may further include other devices in addition to the devices described in the above embodiment.
 また、上記実施の形態等では、アブレーションの際に、電極針11と対極板4との間で高周波通電がなされるアブレーションデバイスを具体的に挙げて説明したが、上記実施の形態等には限らない。具体的には、例えば、ラジオ波やマイクロ波などの他の電磁波を使用したアブレーションを行うアブレーションデバイスであってもよい。 Further, in the above-described embodiment and the like, the ablation device in which high-frequency conduction is performed between the electrode needle 11 and the counter electrode plate 4 at the time of ablation has been specifically described, but is not limited to the above-described embodiment and the like. Absent. Specifically, for example, an ablation device that performs ablation using other electromagnetic waves such as radio waves and microwaves may be used.
 加えて、上記実施の形態では、電力供給制御機能および液体供給制御機能を含む制御部33における制御動作(アブレーションの手法)について具体的に説明した。しかしながら、これらの電力供給制御機能および液体供給制御機能等における制御手法(アブレーションの手法)については、上記実施の形態で挙げた手法には限られない。 In addition, in the above embodiment, the control operation (ablation method) in the control unit 33 including the power supply control function and the liquid supply control function has been specifically described. However, the control method (ablation method) in these power supply control function and liquid supply control function is not limited to the method described in the above embodiment.
 また、上記実施の形態で説明した一連の処理は、ハードウェア(回路)で行われるようにしてもよいし、ソフトウェア(プログラム)で行われるようにしてもよい。ソフトウェアで行われるようにした場合、そのソフトウェアは、各機能をコンピュータにより実行させるためのプログラム群で構成される。各プログラムは、例えば、上記コンピュータに予め組み込まれて用いられてもよいし、ネットワークや記録媒体から上記コンピュータにインストールして用いられてもよい。 In addition, the series of processing described in the above embodiment may be performed by hardware (circuit) or software (program). When performed by software, the software is composed of a group of programs for causing each function to be executed by a computer. Each program may be used by being incorporated in advance in the computer, for example, or may be used by being installed in the computer from a network or a recording medium.
 更に、これまでに説明した各種の例を、任意の組み合わせで適用させるようにしてもよい。 Furthermore, the various examples described so far may be applied in any combination.

Claims (5)

  1.  体内の患部に対して経皮的に穿刺されると共に、アブレーションを行うための電力が供給される電極針と、
     前記電極針の先端側に位置する電極領域を露出させつつ、前記電極針の軸方向に沿って前記電極針の周囲を被覆する絶縁性チューブと、
     前記電極針の内部に形成されており、冷却用の液体が流れる流路と、
     前記電極針の基端側に装着されたハンドルと
     を備え、
     前記ハンドルは、
     外装としてのハンドル本体と、
     前記絶縁性チューブを前記軸方向に沿ってスライド動作させるための所定の操作が行われる操作部と、
     前記ハンドル本体内に配置され、前記冷却用の液体を一時的に収容する液体収容部と、
     前記ハンドル本体内において前記液体収容部に対して並列配置され、前記操作部に対する前記所定の操作に連動して前記軸方向に沿ってスライド動作することにより、前記絶縁性チューブを前記軸方向に沿ってスライド動作させるスライド機構と
     を有するアブレーションデバイス。
    An electrode needle that is punctured percutaneously into the affected part of the body and supplied with power for ablation;
    An insulating tube covering the periphery of the electrode needle along the axial direction of the electrode needle while exposing an electrode region located on the tip side of the electrode needle;
    Formed inside the electrode needle, and a flow path through which a cooling liquid flows;
    A handle attached to the proximal end side of the electrode needle,
    The handle is
    A handle body as an exterior,
    An operation unit for performing a predetermined operation for sliding the insulating tube along the axial direction;
    A liquid storage portion disposed in the handle body and temporarily storing the cooling liquid;
    In the handle body, the insulating tube is arranged along the axial direction by being arranged in parallel with the liquid storage portion and sliding along the axial direction in conjunction with the predetermined operation on the operating portion. An ablation device having a slide mechanism that slides.
  2.  前記スライド機構は、
     基端側が前記操作部に接続されており、前記操作部に対する前記所定の操作に連動して、前記ハンドル本体内において前記軸方向に沿って前記ハンドル本体に対して相対的にスライド動作するスライドバー部と、
     前記スライドバー部の先端側と前記絶縁性チューブの基端付近とを接合する接合部と
     を有しており、
     前記スライドバー部は、前記ハンドル本体の基端側に位置するときに、前記操作部と前記接合部との間において前記液体収容部を迂回するように延びている
     請求項1に記載のアブレーションデバイス。
    The slide mechanism is
    A slide bar that has a proximal end connected to the operation portion and slides relative to the handle body along the axial direction in the handle body in conjunction with the predetermined operation on the operation portion. And
    A joining portion that joins the distal end side of the slide bar portion and the vicinity of the proximal end of the insulating tube;
    The ablation device according to claim 1, wherein the slide bar portion extends so as to bypass the liquid storage portion between the operation portion and the joint portion when positioned on the proximal end side of the handle main body. .
  3.  前記ハンドルにおける前記軸方向に沿った長さが、86mm以下である
     請求項1または請求項2に記載のアブレーションデバイス。
    The ablation device according to claim 1, wherein a length of the handle along the axial direction is 86 mm or less.
  4.  前記流路が、
     前記冷却用の液体が前記電極針の基端側から先端側へと流れる際の流路である第1流路と、
     前記冷却用の液体が前記電極針の先端側から基端側へと流れる際の流路である第2流路と
     を含んでおり、
     送液管内から前記ハンドル本体内に流入した前記冷却用の液体が、前記液体収容部内に一時的に収容されずに、前記第1流路内に直接供給されると共に、
     前記第2流路内から供給された前記冷却用の液体が、前記液体収容部内に一時的に収容された後に、前記ハンドル本体内から排液管内へと流出する
     請求項1ないし請求項3のいずれか1項に記載のアブレーションデバイス。
    The flow path is
    A first flow path that is a flow path when the cooling liquid flows from the proximal end side to the distal end side of the electrode needle;
    A second flow path that is a flow path when the cooling liquid flows from the distal end side to the proximal end side of the electrode needle,
    The cooling liquid that has flowed into the handle main body from the liquid supply pipe is not directly stored in the liquid storage portion, but directly supplied into the first flow path,
    4. The cooling liquid supplied from the second flow path flows out of the handle body into the drain pipe after being temporarily stored in the liquid storage portion. 5. The ablation device according to any one of claims.
  5.  前記ハンドル本体内において前記液体収容部を貫通すると共に、前記電極針の内部において前記軸方向に沿って配置され、前記電極針の内部において前記第1流路を構成する内管を更に備え、
     前記冷却用の液体が、前記送液管内から前記内管内に直接供給される
     請求項4に記載のアブレーションデバイス。
    An inner tube that penetrates through the liquid container in the handle body, is disposed along the axial direction inside the electrode needle, and forms the first flow path inside the electrode needle;
    The ablation device according to claim 4, wherein the cooling liquid is directly supplied from the liquid feeding pipe into the inner pipe.
PCT/JP2018/036228 2018-03-27 2018-09-28 Ablation device WO2019187239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018059919A JP6871194B2 (en) 2018-03-27 2018-03-27 Ablation device
JP2018-059919 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019187239A1 true WO2019187239A1 (en) 2019-10-03

Family

ID=68060991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036228 WO2019187239A1 (en) 2018-03-27 2018-09-28 Ablation device

Country Status (3)

Country Link
JP (1) JP6871194B2 (en)
TW (1) TWI693920B (en)
WO (1) WO2019187239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113425407A (en) * 2021-04-29 2021-09-24 百德(苏州)医疗有限公司 Semi-rigid puncture type microwave ablation antenna, transmission line structure and assembling method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163130A1 (en) * 2002-02-28 2003-08-28 Manna Ronald R. Ultrasonic medical treatment device for bipolar RF cauterization and related method
US20140275767A1 (en) * 2013-03-14 2014-09-18 Cpsi Holdings Llc Endoscopic Cryoablation Catheter
US20150112335A1 (en) * 2013-10-18 2015-04-23 Ethicon Endo-Surgery, Inc. Electrosurgical devices with fluid flow control
JP5907545B2 (en) * 2011-05-12 2016-04-26 スターメド カンパニー リミテッド Electrode apparatus for high-frequency heat treatment provided with a flexible tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835703B2 (en) * 1995-05-01 2006-10-18 ボストン サイエンティフィック リミテッド System for sensing subsurface temperature of body tissue during ablation with actively cooled electrodes
US8882755B2 (en) * 2002-03-05 2014-11-11 Kimberly-Clark Inc. Electrosurgical device for treatment of tissue
CN100574719C (en) * 2006-12-26 2009-12-30 上海导向医疗系统有限公司 Gas throttling cooling type radio frequency ablation electrode
US8753335B2 (en) * 2009-01-23 2014-06-17 Angiodynamics, Inc. Therapeutic energy delivery device with rotational mechanism
US9993283B2 (en) * 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163130A1 (en) * 2002-02-28 2003-08-28 Manna Ronald R. Ultrasonic medical treatment device for bipolar RF cauterization and related method
JP5907545B2 (en) * 2011-05-12 2016-04-26 スターメド カンパニー リミテッド Electrode apparatus for high-frequency heat treatment provided with a flexible tube
US20140275767A1 (en) * 2013-03-14 2014-09-18 Cpsi Holdings Llc Endoscopic Cryoablation Catheter
US20150112335A1 (en) * 2013-10-18 2015-04-23 Ethicon Endo-Surgery, Inc. Electrosurgical devices with fluid flow control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113425407A (en) * 2021-04-29 2021-09-24 百德(苏州)医疗有限公司 Semi-rigid puncture type microwave ablation antenna, transmission line structure and assembling method thereof

Also Published As

Publication number Publication date
TWI693920B (en) 2020-05-21
JP6871194B2 (en) 2021-05-12
JP2019170465A (en) 2019-10-10
TW201941746A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
US9498282B2 (en) Medical probe with echogenic and insulative properties
DE60019195T2 (en) Treatment by ablation of bone metastases
JP4450622B2 (en) Impedance-controlled tissue peeling device and method
DE69828601T2 (en) SYSTEM WITH PLANAR ELECTRODE FOR HIGH-FREQUENCY ABLATION
DE60315135T2 (en) therapy probe
US20120277763A1 (en) Dynamic ablation device
EP2884928B1 (en) Ablation device with means for heating a fluid, with an electrode and with a handle provided at an angle
JP2011500164A (en) Method and system for controlled deployment of a needle in tissue
JP2010507437A (en) Thermal imaging feedback to optimize radiofrequency ablation therapy
JP2009018169A (en) System and method for thermally profiling radiofrequency electrode
EP2394598B1 (en) Energy applicator temperature monitoring for assessing ablation size
US20120010479A1 (en) Method, computer readable medium and device for determining the temperature distribution in a tissue
TWI670041B (en) Ablation system
CN110831506A (en) Method for monitoring ablation progress by Doppler ultrasound
KR101522662B1 (en) An electrode device for a high frequency treatment
WO2019187239A1 (en) Ablation device
WO2019187213A1 (en) Ablation device
Tomasian et al. Spinal osteoid osteoma: percutaneous radiofrequency ablation using a navigational bipolar electrode system
WO2019187238A1 (en) Ablation device
JP2003220074A (en) Medical apparatus
WO2021142389A1 (en) Microwave ablation systems and methods having adjustable ablation parameters and modes of operation
EP4099932B1 (en) Systems and methods for monitoring ablation antenna movement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912107

Country of ref document: EP

Kind code of ref document: A1