WO2019187060A1 - 鋼板およびその製造方法 - Google Patents
鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2019187060A1 WO2019187060A1 PCT/JP2018/013791 JP2018013791W WO2019187060A1 WO 2019187060 A1 WO2019187060 A1 WO 2019187060A1 JP 2018013791 W JP2018013791 W JP 2018013791W WO 2019187060 A1 WO2019187060 A1 WO 2019187060A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- steel
- less
- thickness
- heat treatment
- Prior art date
Links
- 0 C1[C@@]2C=*C=CC12 Chemical compound C1[C@@]2C=*C=CC12 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a steel plate and a manufacturing method thereof.
- a high-strength steel plate may be used as the material of the vehicle body.
- the higher the strength of the steel plate the more difficult the press forming. This is because, generally, as the strength of the steel plate increases, the formability such as ductility, bendability and hole expansibility decreases.
- Hydrogen embrittlement cracking is a phenomenon in which a steel member on which a high stress is applied under use conditions suddenly breaks due to hydrogen that has entered the steel from the environment. This phenomenon is also called delayed destruction because of the form of destruction.
- hydrogen embrittlement cracking of a steel sheet is more likely to occur as the tensile strength of the steel sheet increases. This is considered to be because the higher the tensile strength of the steel sheet, the greater the stress remaining on the steel sheet after forming the part.
- hydrogen embrittlement resistance This sensitivity to hydrogen embrittlement cracking (delayed fracture) is called hydrogen embrittlement resistance.
- hydrogen embrittlement cracking is particularly likely to occur at a bent portion where a large plastic strain is applied. Therefore, when a high-strength steel plate is used for an automobile member, not only formability such as ductility, bendability and hole expansibility, but also an improvement in hydrogen embrittlement resistance of the bent portion is required.
- DP steel (Dual Phase steel) having a ferrite phase and a martensite phase is known as a high-strength steel plate having high press workability (see, for example, Patent Document 1).
- DP steel has excellent ductility.
- DP steel is inferior in hole expansibility and bendability because the hard phase is the starting point for void formation.
- TRIP steel that uses the TRIP (transformation-induced plasticity) effect by leaving the austenite phase in the steel structure
- TRIP steel has higher ductility than DP steel.
- TRIP steel is inferior in hole expansibility.
- the TRIP steel needs to contain a large amount of an alloy such as Si in order to leave austenite. For this reason, TRIP steel is inferior in plating adhesion and chemical conversion treatment.
- Patent Document 4 describes a high-strength steel sheet that has a microstructure containing bainite or bainitic ferrite in an area ratio of 70% or more and has a tensile strength of 800 MPa or more and excellent in hole expansibility.
- Patent Document 5 discloses that the microstructure is bainite or bainitic ferrite as the main phase, austenite as the second phase, and ferrite or martensite as the remaining phase, and has excellent hole expandability and ductility with a tensile strength of 800 MPa or more. High strength steel sheets are described.
- Non-Patent Document 1 discloses that the elongation and hole expansibility of a steel sheet are improved by using a two-time annealing method of annealing a steel sheet twice. However, it has been difficult to simultaneously improve the ductility and hole expandability of the conventional high-strength steel sheet and the hydrogen embrittlement resistance of the bent portion.
- An object of the present invention is to provide a high-strength steel sheet excellent in formability, fatigue characteristics, and hydrogen embrittlement resistance of a bent portion, and a method for producing the same.
- the present inventor has made extensive studies.
- the heat-rolled steel sheet or the cold-rolled steel sheet having a predetermined chemical composition is subjected to two heat treatments (annealing) under different conditions so that the steel sheet has a predetermined steel structure and has a predetermined thickness and steel structure. It has been found that it is effective to form a surface layer.
- required by the steel plate for motor vehicles can be ensured by forming the internal oxide layer containing Si oxide in the predetermined depth.
- the metal structure inside the steel sheet and the surface layer of the steel sheet is made a structure mainly composed of a lath-like structure such as martensite.
- the maximum heating temperature is set to a two-phase region of ⁇ (ferrite) and ⁇ (austenite), and decarburization is performed at the same time.
- the steel sheet obtained after the two heat treatments has a steel structure in which the inside of the steel sheet is dispersed with acicular residual austenite, the surface layer is mainly composed of lath-shaped ferrite having a large aspect ratio, and has a predetermined thickness. It becomes. It has been found that such a steel sheet is excellent in all of excellent formability, fatigue characteristics, and hydrogen embrittlement resistance of the bent portion.
- an alloy element such as Si contained in the steel is prevented from being oxidized outside the steel plate, and an internal oxide layer containing Si oxide at a predetermined depth.
- excellent chemical conversion processability can be obtained.
- plating adhesion can be obtained.
- the steel sheet according to one embodiment of the present invention is, in mass%, C: 0.050% to 0.500%, Si: 0.01% to 3.00%, Mn: 0.50% to 5. 00%, P: 0.0001% to 0.1000%, S: 0.0001% to 0.0100%, Al: 0.001% to 2.500%, N: 0.0001% to 0.0100% , O: 0.0001% to 0.0100%, Ti: 0% to 0.300%, V: 0% to 1.00%, Nb: 0% to 0.100%, Cr: 0% to 2. 00%, Ni: 0% to 2.00%, Cu: 0% to 2.00%, Co: 0% to 2.00%, Mo: 0% to 1.00%, W: 0% to 1.
- B 0% to 0.0100%
- Sn 0% to 1.00%
- Sb 0% to 1.00%
- Ca 0% to 0.0100%
- Mg 0% to 0.0. 0100%
- Zr 0% to 0.0100%
- La 0% to 0.0100%
- Hf 0% to 0.0100%
- Bi 0% to 0.0100%
- REM Steel having a chemical composition comprising 0% to 0.0100%, the balance being Fe and impurities, and a thickness in the range of 1/8 thickness to 3/8 thickness centered at a 1/4 thickness position from the surface
- the structure contains a volume fraction of soft ferrite: 0% to 30%, retained austenite: 3% to 40%, fresh martensite: 0% to 30%, total of pearlite and cementite: 0% to 10%
- the balance includes hard ferrite, and in the range of 1/8 to 3/8 thickness, the ratio of the number of retained austenite having an aspect ratio of 2.0 or more in the total
- a region having a hardness of 80% or less of the surrounding hardness is defined as a soft layer
- the volume fraction of retained austenite in the above range in which the volume fraction of crystal grains having an aspect ratio of 3.0 or more is 50% or more and the volume fraction of retained austenite in the soft layer is 1/8 to 3/8 thickness.
- the chemical composition is one or more of Ti: 0.001% to 0.300%, V: 0.001% to 1.00%, Nb: 0.001% to 0.100%.
- the chemical composition is Cr: 0.001% to 2.00%, Ni: 0.001% to 2.00%, Cu: 0.001% to 2.00%, Co: 0.001% Contains 2.00%, Mo: 0.001% to 1.00%, W: 0.001% to 1.00%, B: 0.0001% to 0.0100%, or one or more of them.
- the chemical composition is Ca: 0.0001% to 0.0100%, Mg: 0.0001% to 0.0100%, Ce: 0.0001% to 0.0100%, Zr: 0.0001% -0.0100%, La: 0.0001% -0.0100%, Hf: 0.0001% -0.0100%, Bi: 0.0001% -0.0100%, REM: 0.0001% -0
- the steel sheet according to any one of (1) to (4) above, which contains one or more of 0100%.
- a method for producing a steel sheet according to another aspect of the present invention is a method for producing a steel sheet according to any one of (1) to (6) above, wherein (1) to (6) above.
- the following (a) to (e) are applied to a hot-rolled steel sheet that has been hot-rolled and pickled, or a cold-rolled steel sheet that has been cold-rolled from the hot-rolled steel sheet:
- the second heat treatment satisfying the following (A) to (E) is performed.
- a high-strength steel sheet excellent in ductility and hole-expandability, excellent in chemical conversion treatment and plating adhesion, and excellent in fatigue characteristics and hydrogen embrittlement resistance of bent parts, and a method for producing the same Can provide.
- FIG. 5 is a diagram showing a first example of a temperature / time pattern of second heat treatment to hot dip galvanizing / alloying treatment in the steel sheet manufacturing method according to the present embodiment.
- FIG. 6 is a diagram showing a second example of a temperature / time pattern of second heat treatment to hot dip galvanizing / alloying treatment in the method for producing a steel plate according to the present embodiment.
- FIG. 6 is a diagram showing a third example of the temperature / time pattern of the second heat treatment to hot dip galvanizing / alloying treatment in the steel sheet manufacturing method according to the present embodiment. It is a schematic diagram which shows the example of the hardness measurement of the steel plate which concerns on this embodiment.
- C 0.050 to 0.500%
- C is an element that greatly increases the strength of the steel sheet. C stabilizes austenite, and is an element necessary for obtaining retained austenite contributing to the improvement of ductility. Therefore, C is effective for achieving both strength and formability. If the C content is less than 0.050%, sufficient retained austenite cannot be obtained, and it becomes difficult to ensure sufficient strength and formability. For this reason, C content shall be 0.050% or more. In order to further increase the strength and formability, the C content is preferably 0.075% or more, and more preferably 0.100% or more. On the other hand, when the C content exceeds 0.500%, the weldability is remarkably deteriorated. For this reason, C content shall be 0.500% or less. From the viewpoint of spot weldability, the C content is preferably 0.350% or less, and more preferably 0.250% or less.
- Si: 0.01 to 3.00% Si is an element that stabilizes retained austenite by suppressing the formation of iron-based carbides in the steel sheet, and increases strength and formability.
- Si content shall be 0.01% or more.
- the lower limit value of Si is preferably 0.10% or more, and more preferably 0.25% or more.
- Si is an element that embrittles a steel material. If the Si content exceeds 3.00%, the hole expandability of the steel sheet becomes insufficient. On the other hand, when the Si content exceeds 3.00%, troubles such as cracking of the cast slab easily occur. For this reason, Si content shall be 3.00% or less. Furthermore, Si impairs the impact resistance of the steel sheet. Therefore, the Si content is preferably 2.50% or less, and more preferably 2.00% or less.
- Mn: 0.50 to 5.00% Mn is contained in order to increase the hardenability of the steel sheet and increase the strength. If the Mn content is less than 0.50%, a large amount of soft structure is formed during cooling after annealing, and it becomes difficult to ensure a sufficiently high tensile strength. Therefore, the Mn content needs to be 0.50% or more. In order to further increase the strength, the Mn content is preferably 0.80% or more, and more preferably 1.00% or more. On the other hand, if the Mn content exceeds 5.00%, the elongation and hole expansibility of the steel sheet become insufficient.
- Mn content if the Mn content exceeds 5.00%, a coarse Mn-concentrated portion is generated in the central part of the plate thickness of the steel sheet, and embrittlement easily occurs, and troubles such as cracking of the cast slab easily occur. . For this reason, Mn content shall be 5.00% or less. Further, since the spot weldability is also deteriorated when the Mn content is increased, the Mn content is preferably 3.50% or less, and more preferably 3.00% or less.
- P 0.0001 to 0.1000%
- P is an element that embrittles the steel material. If the P content exceeds 0.1000%, the elongation and hole expansibility of the steel sheet will be insufficient. On the other hand, when the P content exceeds 0.1000%, troubles such as cracking of the cast slab easily occur. For this reason, P content shall be 0.1000% or less.
- P is an element that embrittles the melted portion caused by spot welding. In order to obtain sufficient welded joint strength, the P content is preferably 0.0400% or less, and more preferably 0.0200% or less. On the other hand, making the P content less than 0.0001% is accompanied by a significant increase in production cost. For this reason, the P content is set to 0.0001% or more. The P content is preferably 0.0010% or more.
- S 0.0001 to 0.0100%
- S is an element that combines with Mn to form coarse MnS and reduces formability such as ductility, hole expansibility (stretch flangeability), and bendability. For this reason, S content shall be 0.0100% or less. Further, S deteriorates spot weldability. Therefore, the S content is preferably 0.0070% or less, and more preferably 0.0050% or less. On the other hand, making the S content less than 0.0001% is accompanied by a significant increase in production cost. For this reason, S content shall be 0.0001% or more. The S content is preferably 0.0003% or more, and more preferably 0.0006% or more.
- Al: 0.001 to 2.500% Al is an element that embrittles a steel material.
- Al content shall be 2.500% or less.
- the Al content is more preferably 2.000% or less, and further preferably 1.500% or less.
- the effect can be obtained even if the lower limit of the Al content is not particularly defined, but Al is an impurity present in a minute amount in the raw material, and in order to reduce the content to less than 0.001%, the manufacturing cost is greatly increased. Is accompanied. Therefore, the Al content is set to 0.001% or more.
- Al is an effective element as a deoxidizing material, and in order to obtain a sufficient deoxidizing effect, the Al content is preferably 0.010% or more. Furthermore, Al is an element that suppresses the formation of coarse carbides, and may be included for the purpose of stabilizing retained austenite. In order to stabilize the retained austenite, the Al content is preferably 0.100% or more, and more preferably 0.250% or more.
- N 0.0001 to 0.0100%
- N forms coarse nitrides and deteriorates formability such as ductility, hole expansibility (stretch flangeability), and bendability, so it is necessary to suppress the content thereof.
- the N content exceeds 0.0100%, the deterioration of moldability becomes significant. For this reason, the N content is set to 0.0100% or less.
- N causes the generation
- the N content is preferably 0.0075% or less, and more preferably 0.0060% or less.
- the N content is set to 0.0001% or more.
- the N content is preferably 0.0003% or more, and more preferably 0.0005% or more.
- O forms an oxide and deteriorates formability such as ductility, hole expansibility (stretch flangeability), and bendability, so the content needs to be suppressed. If the O content exceeds 0.0100%, the moldability deteriorates significantly, so the upper limit of the O content is 0.0100%.
- the O content is preferably 0.0050% or less, and more preferably 0.0030% or less. Although the effect is obtained even if the lower limit of the O content is not particularly defined, setting the O content to less than 0.0001% is accompanied by a significant increase in production cost, so 0.0001% is the lower limit. .
- Si + 0.1 ⁇ Mn + 0.6 ⁇ Al ⁇ 0.35 Residual austenite may be decomposed into bainite, pearlite or coarse cementite during heat treatment.
- Si, Mn and Al are particularly important elements for suppressing decomposition of retained austenite and improving formability. In order to suppress decomposition of retained austenite, it is preferable to satisfy the following formula (1).
- the value on the left side of the formula (1) is more preferably 0.60 or more, and further preferably 0.80 or more.
- Si + 0.1 ⁇ Mn + 0.6 ⁇ Al ⁇ 0.35 (1) (Si, Mn and Al in the formula (1) are the contents of each element in mass%.)
- the steel sheet according to the present embodiment is based on the inclusion of the above-described elements, and further, Ti, V, Nb, Cr, Ni, Cu, Co, Mo, W, B, Sn, Sb as necessary. , Ca, Mg, Ce, Zr, La, Hf, Bi, REM, or one or more elements may be contained. Since these elements are arbitrary elements and do not necessarily need to be contained, the lower limit is 0%.
- Ti 0 to 0.300%
- Ti is an element that contributes to increasing the strength of the steel sheet by precipitation strengthening, fine grain strengthening by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization.
- the Ti content exceeds 0.300%, the precipitation of carbonitride increases and the formability deteriorates. For this reason, even when it contains, it is preferable that Ti content is 0.300% or less.
- the Ti content is more preferably 0.150% or less.
- the Ti content is preferably 0.001% or more in order to sufficiently obtain the effect of increasing the strength due to the Ti content.
- the Ti content is more preferably 0.010% or more.
- V 0 to 1.00%
- V is an element contributing to an increase in the strength of the steel sheet by precipitation strengthening, fine grain strengthening by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization.
- V content exceeds 1.00%, carbonitrides are excessively precipitated and formability is deteriorated.
- V content is 1.00% or less, and it is more preferable that it is 0.50% or less.
- the V content is preferably 0.001% or more, and 0.010 % Or more is more preferable.
- Nb: 0 to 0.100% is an element that contributes to an increase in the strength of the steel sheet by precipitation strengthening, fine grain strengthening by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization.
- Nb content exceeds 0.100%, carbonitride precipitation increases and the formability deteriorates.
- the Nb content is more preferably 0.060% or less.
- the Nb content is preferably 0.001% or more in order to sufficiently obtain the effect of increasing the strength due to the Nb content.
- the Nb content is more preferably 0.005% or more.
- Cr: 0-2.00% Cr is an element that increases the hardenability of the steel sheet and is effective in increasing the strength. However, if the Cr content exceeds 2.00%, hot workability is impaired and productivity is lowered. From this, even when it is contained, the Cr content is preferably 2.00% or less, and more preferably 1.20% or less. The effect can be obtained even if the lower limit of the Cr content is not particularly defined, but in order to sufficiently obtain the effect of increasing the strength due to the Cr content, the Cr content is preferably 0.001% or more. More preferably, it is 010% or more.
- Ni 0-2.00%
- Ni is an element that suppresses phase transformation at high temperatures and is effective in increasing the strength of a steel sheet.
- the Ni content is preferably 2.00% or less, and more preferably 1.20% or less.
- the Ni content is preferably 0.001% or more in order to sufficiently obtain the effect of increasing the strength due to the Ni content. % Or more is more preferable.
- Cu 0-2.00%
- Cu is an element that increases the strength of the steel sheet by being present in the steel as fine particles.
- the Cu content is preferably 2.00% or less, and more preferably 1.20% or less.
- the Cu content is preferably 0.001% or more in order to sufficiently obtain the effect of increasing the strength due to the Cu content. % Or more is more preferable.
- Co 0-2.00%
- Co is an element that increases the hardenability and is effective in increasing the strength of the steel sheet.
- the Co content is preferably 2.00% or less, and more preferably 1.20% or less.
- the Co content is preferably 0.001% or more in order to sufficiently obtain the effect of increasing the strength due to the Co content. More preferably, it is 010% or more.
- Mo 0-1.00%
- Mo is an element that suppresses phase transformation at a high temperature and is effective in increasing the strength of the steel sheet.
- the Mo content is preferably 1.00% or less, and more preferably 0.50% or less.
- the Mo content is preferably 0.001% or more in order to sufficiently obtain the effect of increasing the strength due to the Mo content. More preferably, it is 005% or more.
- W 0-1.00%
- W is an element that suppresses phase transformation at high temperatures and is effective in increasing the strength of steel sheets.
- W content is preferably 1.00% or less, and more preferably 0.50% or less.
- the lower limit of the W content is not particularly defined, and the effect can be obtained.
- the W content is preferably 0.001% or more, and 0.010 % Or more is more preferable.
- B 0 to 0.0100%
- B is an element that suppresses phase transformation at high temperatures and is effective in increasing the strength of the steel sheet.
- the B content is preferably 0.0100% or less.
- the B content is more preferably 0.0050% or less.
- the B content is preferably 0.0001% or more in order to sufficiently obtain the effect of increasing the strength due to the B content.
- the B content is more preferably 0.0005% or more.
- Sn 0 to 1.00%
- Sn is an element that suppresses the coarsening of the structure and is effective for increasing the strength of the steel sheet.
- Sn content exceeds 1.00%, the steel plate becomes excessively brittle, and the steel plate may break during rolling. For this reason, even when it contains, it is preferable that Sn content is 1.00% or less.
- the lower limit of the Sn content is not particularly defined, and the effect can be obtained.
- the Sn content is preferably 0.001% or more, and 0.010% More preferably.
- Sb: 0 to 1.00% Sb is an element that suppresses the coarsening of the structure and is effective for increasing the strength of the steel sheet. However, if the Sb content exceeds 1.00%, the steel plate becomes excessively brittle, and the steel plate may break during rolling. For this reason, even when it contains, it is preferable that Sb content is 1.00% or less.
- the lower limit of the Sb content is not particularly defined, and the effect can be obtained. However, in order to sufficiently obtain the effect of increasing the strength by Sb, the Sb content is preferably 0.001% or more, and 0.005% More preferably.
- REM refers to an element belonging to the lanthanoid series, excluding Ce and La.
- REM, Ce, and La are often added by misch metal, and may contain lanthanoid series elements in a composite. Even if a lanthanoid series element other than La and / or Ce is contained as an impurity, the effect can be obtained. Moreover, even if the metal La and / or Ce is added, the effect can be obtained.
- the REM content is the total value of the contents of elements belonging to the lanthanoid series excluding Ce and La.
- Ca, Mg, Ce, Zr, La, Hf, Bi, and REM are elements effective for improving moldability, and one or two or more of them may be contained in an amount of 0.0001% to 0.0100%, respectively.
- the content of one or more of Ca, Mg, Ce, Zr, La, Hf, Bi, and REM exceeds 0.0100%, ductility may be reduced. For this reason, even when it contains, it is preferable that content of said each element is 0.0100% or less, and it is more preferable that it is 0.0070% or less.
- the total content of Ca, Mg, Ce, Zr, La, Hf, Bi, and REM is preferably 0.0100% or less.
- the content of each element is 0.0001% or more in order to sufficiently obtain the effect of improving the formability of the steel sheet. It is preferable.
- the total content of one or more of Ca, Mg, Ce, Zr, La, Hf, Bi, and REM is more preferably 0.0010% or more.
- the steel sheet according to the present embodiment contains the above elements, and the balance is Fe and impurities. Any of the above-described Ti, V, Nb, Cr, Ni, Cu, Co, Mo, W, B, Sn, and Sb is allowed even when a trace amount less than the lower limit value is contained as an impurity. Further, Ca, Mg, Ce, Zr, La, Hf, Bi, and REM are allowed to contain a trace amount less than the lower limit as an impurity.
- H, Na, Cl, Sc, Zn, Ga, Ge, As, Se, Y, Tc, Ru, Rh, Pd, Ag, Cd, In, Te, Cs, Ta, Re, Os, Ir , Pt, Au, and Pb are contained in a total amount of 0.0100% or less.
- the steel structure in the range 11 from 1/8 thickness to 3/8 thickness (hereinafter sometimes referred to as “steel structure inside the steel sheet”) is 0-30% for soft ferrite, 3-40% for retained austenite, It contains 0 to 30% of fresh martensite, 0 to 10% of the total of pearlite and cementite, and the proportion of the number of residual austenite with an aspect ratio of 2.0 or more in the total residual austenite is 50% or more.
- Soft ferrite 0-30% Ferrite is a structure having excellent ductility. However, since ferrite has low strength, it is a structure that is difficult to utilize in high-strength steel sheets.
- the steel structure inside the steel sheet contains 0% to 30% soft ferrite.
- the “soft ferrite” in the present embodiment means ferrite that does not contain residual austenite in the grains. Soft ferrite is low in strength, tends to concentrate strain compared to the peripheral part, and easily breaks. When the volume fraction of soft ferrite exceeds 30%, the balance between strength and formability is significantly deteriorated. For this reason, soft ferrite is limited to 30% or less.
- the soft ferrite is more preferably limited to 15% or less, and may be 0%.
- Residual austenite is a structure that increases the strength-ductility balance.
- the steel structure inside the steel plate contains 3% to 40% retained austenite.
- the volume fraction of retained austenite inside the steel sheet is 3% or more, preferably 5% or more, and more preferably 7% or more.
- the volume fraction of retained austenite is set to 40% or less.
- the volume fraction of retained austenite is preferably 30% or less, and more preferably 20% or less.
- Fresh martensite greatly improves the tensile strength. On the other hand, fresh martensite becomes a starting point of destruction and significantly deteriorates impact resistance. For this reason, the volume fraction of fresh martensite is 30% or less. In particular, in order to improve impact resistance, the fresh martensite volume fraction is preferably 15% or less, and more preferably 7% or less. Although fresh martensite may be 0%, it is preferably 2% or more in order to ensure the strength of the steel sheet.
- Total of perlite and cementite 0-10%
- the steel structure inside the steel plate may contain pearlite and / or cementite.
- the volume fraction of pearlite and / or cementite is large, ductility deteriorates.
- the volume fraction of pearlite and / or cementite is limited to 10% or less in total.
- the volume fraction of pearlite and / or cementite is preferably 5% or less in total, and may be 0%.
- the number ratio of retained austenite with an aspect ratio of 2.0 or more is 50% or more of the total retained austenite.”
- the aspect ratio of residual austenite grains in the steel structure inside the steel plate is important.
- the retained austenite having a large aspect ratio that is, elongated, is stable in the early stage of deformation of the steel sheet by processing.
- strain concentration occurs at the tip portion with the progress of processing, and it is transformed appropriately to produce a TRIP (transformation induced plasticity) effect.
- TRIP transformation induced plasticity
- the ratio of the number of retained austenite having an aspect ratio of 2.0 or more in the total retained austenite is set to 50% or more.
- the ratio of the number of retained austenite having an aspect ratio of 2.0 or more is preferably 70% or more, and more preferably 80% or more.
- Tempered martensite is a structure that greatly improves the tensile strength of the steel sheet without impairing the impact resistance, and may be contained in the steel structure inside the steel sheet. However, when a large amount of tempered martensite is generated inside the steel sheet, there is a case where sufficient retained austenite cannot be obtained. For this reason, the volume fraction of tempered martensite is preferably limited to 50% or less, and more preferably limited to 30% or less.
- the remaining structure in the steel structure inside the steel sheet is mainly “hard ferrite” that encloses retained austenite in the grains.
- Mainly means that hard ferrite has the largest volume fraction in the remaining structure.
- the hard ferrite is formed by performing a second heat treatment, which will be described later, on a steel sheet for heat treatment having a steel structure including a lath-like structure composed of one or more of bainite, tempered martensite, and fresh martensite. Since hard austenite is included in the grains, the hard ferrite has high strength. Further, hard ferrite has better formability because interfacial delamination between ferrite and residual austenite is less likely to occur than when residual austenite is present at ferrite grain boundaries.
- the remaining structure in the steel structure inside the steel sheet may contain bainite in addition to the hard ferrite.
- the bainite in the present embodiment includes granular bainite composed of fine BCC crystals and coarse iron-based carbides, upper bainite composed of lath-like BCC crystals and coarse iron-based carbides, and plate-like BCC crystals and the interior thereof.
- Bainitic ferrite which does not contain lower bainite iron-based carbides, which are composed of fine iron-based carbides arranged in parallel to each other.
- a soft layer having a thickness of 1 to 100 ⁇ m exists on the surface layer.
- the soft layer having a thickness of 1 to 100 ⁇ m in the thickness direction from the surface of the steel sheet exists.
- a soft layer having a hardness of 80% or less of the average hardness inside the steel plate exists in the surface layer portion of the steel plate, and the thickness of the soft layer is 1 to 100 ⁇ m.
- the thickness of the soft layer is less than 1 ⁇ m in the depth direction (plate thickness direction) from the surface, sufficient bendability after processing cannot be obtained.
- the thickness (depth range from the surface) of the soft layer is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
- the thickness of a soft layer shall be 100 micrometers or less.
- the thickness of the soft layer is preferably 70 ⁇ m or less.
- the volume fraction of crystal grains having an aspect ratio of 3.0 or more is 50% or more
- the volume fraction of crystal grains having an aspect ratio of 3.0 or more (the ratio of ferrite crystal grains having an aspect ratio of less than 3.0 to the volume fraction of all ferrite grains occupied in the soft layer) Is less than 50%, the hydrogen embrittlement resistance of the bent portion is deteriorated. Therefore, the volume fraction of crystal grains having an aspect ratio of 3.0 or more in the ferrite contained in the soft layer is set to 50% or more. Preferably it is 60% or more, more preferably 70% or more.
- the target ferrite includes soft ferrite and hard ferrite.
- the reason why the aspect ratio of the ferrite in the soft layer affects the hydrogen embrittlement resistance of the bent portion is not necessarily clear, but is estimated as follows. That is, in the steel sheet according to the present embodiment, the steel structure of the soft layer and the steel structure (internal structure) inside the steel sheet are greatly different. However, in the steel sheet according to this embodiment, the number ratio of crystal grains having an aspect ratio of 3.0 or more included in the surface layer is 50% or more, and thus the shape similarity between the surface layer and the internal structure is high. As a result, it is presumed that the local concentration of stress and strain due to bending at the boundary between the surface layer and the inside is suppressed, and the hydrogen embrittlement resistance is improved.
- the volume fraction of retained austenite in the soft layer is 80% or less of the volume fraction of retained austenite in the steel sheet]
- the volume fraction of retained austenite contained in the soft layer is the volume fraction of retained austenite contained in the range from 1/8 thickness to 3/8 thickness centered on the position of 1/4 thickness of the steel sheet thickness from the surface. If limited to 80% or less, the hydrogen embrittlement resistance of the bent portion is improved.
- the volume fraction of retained austenite contained in the soft layer with respect to the volume fraction of retained austenite contained in the range of 1/8 thickness to 3/8 thickness is preferably 50% or less, more preferably 30% or less.
- the mechanism by which the hydrogen embrittlement resistance of the bent portion is improved by the volume fraction of retained austenite in the soft layer is not clear, but is estimated as follows. That is, in the bent portion, a greater plastic strain is generated from the center of the plate thickness toward the outer surface of the bend. For this reason, most of the retained austenite existing in the vicinity of the surface outside the bend is transformed into martensite by the processing-induced transformation. It is considered that martensite in which such retained austenite undergoes work-induced transformation is extremely hard and brittle, and therefore adversely affects the resistance to hydrogen embrittlement cracking.
- the volume fraction of retained austenite contained in the soft layer is smaller than the volume fraction of retained austenite contained in the range of 1/8 to 3/8 thickness of the steel sheet, the hydrogen embrittlement resistance of the bent portion is reduced. It can be considered that the conversion characteristics are improved.
- the steel plate according to the present embodiment is more than 0.2 ⁇ m from the surface when the emission intensity at a wavelength indicating Si is analyzed by a high frequency glow discharge (high frequency GDS) analysis method in the depth direction (plate thickness direction) from the surface.
- a peak of emission intensity at a wavelength indicating Si appears in a range of 10.0 ⁇ m or less.
- the fact that the peak of the emission intensity at a wavelength indicating Si appears in the range of more than 0.2 ⁇ m and 10.0 ⁇ m or less from the surface means that the steel plate is internally oxidized and more than 0.2 ⁇ m and 10.0 ⁇ m or less from the surface of the steel plate. It represents having an internal oxide layer containing Si oxide in the range.
- Steel sheets having an internal oxide layer in the above-mentioned depth range have excellent chemical conversion treatment and plating adhesion because the formation of oxide films such as Si oxide on the steel sheet surface during heat treatment during production is suppressed.
- the steel sheet according to the present embodiment when analyzed by a high-frequency glow discharge analysis method in the depth direction from the surface, ranges from more than 0.2 ⁇ m to 10.0 ⁇ m from the surface and ranges from 0 ⁇ m to 0.2 ⁇ m from the surface ( And a peak of light emission intensity having a wavelength indicating Si in both the region and the region shallower than the depth of 0.2 ⁇ m. Having peaks in both ranges indicates that the steel sheet has an internal oxide layer and an external oxide layer containing Si oxide on the surface.
- FIG. 2 shows the depth from the surface and the emission intensity of the wavelength indicating Si when the emission intensity of the wavelength indicating Si is analyzed by the high-frequency glow discharge analysis method in the depth direction from the surface of the steel sheet according to the present embodiment. It is a graph which shows the relationship with (Intensity).
- a peak of emission intensity (derived from the internal oxide layer) having a wavelength indicating Si appears in the range of more than 0.2 ⁇ m and 10.0 ⁇ m or less from the surface.
- a peak of emission intensity at a wavelength indicating Si (derived from the external oxide layer (I MAX )) also appears in the range from 0 (outermost surface) to 0.2 ⁇ m from the surface. Therefore, it can be seen that the steel sheet shown in FIG. 2 has an internal oxide layer and an external oxide layer.
- FIG. 3 shows the relationship between the depth from the surface and the emission intensity (Intensity) of the wavelength indicating Si when the steel plate different from the present embodiment is analyzed from the surface in the depth direction by the high-frequency glow discharge analysis method. It is a graph.
- the peak of the emission intensity of the wavelength indicating Si appears in the range of 0 (outermost surface) to 0.2 ⁇ m from the surface, but in the range of more than 0.2 ⁇ m and less than 10.0 ⁇ m. Not appearing. This means that the steel sheet has no internal oxide layer and only an external oxide layer.
- a galvanized layer (hot dip galvanized layer or electrogalvanized layer) may be formed on the surface (both sides or one side) of the steel sheet according to the present embodiment.
- the galvanized layer may be an alloyed galvanized layer obtained by alloying the galvanized layer.
- the Fe content in the hot dip galvanized layer is preferably less than 7.0% by mass.
- the hot dip galvanized layer is an alloyed hot dip galvanized layer, the Fe content is preferably 6.0% by mass or more.
- the alloyed hot dip galvanized steel sheet has better weldability than the hot dip galvanized steel sheet.
- the coating amount of the galvanized layer is preferably 5 g / m 2 or more per side, within a range of 20 to 120 g / m 2 , and further 25 to 75 g / m 2. More preferably, it is within the range of 2 .
- an upper plating layer may be further provided on the zinc plating layer and the zinc plating layer for the purpose of improving paintability, weldability, and the like.
- the galvanized steel sheet may be subjected to various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, and weldability improvement treatment.
- the steel plate according to the present embodiment is formed by performing a second heat treatment described later on the following steel plate (a material before the second heat treatment; hereinafter referred to as “steel plate for heat treatment”) obtained by the process including the first heat treatment. Is done.
- the steel plate for heat treatment according to the present embodiment is used as a material for the steel plate according to the present embodiment.
- the steel plate for heat treatment used as the material of the steel plate according to the present embodiment has the same chemical composition as the steel plate according to the present embodiment, and has the following steel structure (microstructure). preferable.
- tissue shows [volume%] unless there is a notice.
- the steel structure (steel structure inside the steel sheet) in the range of 1/8 thickness to 3/8 thickness centering on the position of 1/4 thickness from the surface is bainite, tempered martensite, fresh martensite.
- the number density of residual austenite grains containing one or two or more lath-like structures in a volume fraction of 70% or more in total, including residual austenite, having an aspect ratio of less than 1.3 and a major axis of more than 2.5 ⁇ m is 1 It is preferable that the volume fraction of ferrite is less than 50% in the steel structure of the surface layer portion that is 0.0 ⁇ 10 ⁇ 2 pieces / ⁇ m 2 or less and in the range of 0 to 20 ⁇ m in the depth direction from the surface.
- the bainite includes granular bainite composed of fine BCC crystals and coarse iron-based carbides, upper bainite composed of lath-like BCC crystals and coarse iron-based carbides, and plate-like BCC crystals parallel to the inside thereof.
- Lower bainite composed of fine iron-based carbides arranged side by side, bainitic ferrite not containing iron-based carbides are included.
- a preferable steel structure (microstructure) of the heat-treating steel sheet used as the material of the steel sheet according to this embodiment will be described below. [%] In the description of the content of each tissue is [volume%].
- the steel sheet for heat treatment according to the present embodiment has a bainite steel structure (steel structure inside the steel sheet) in the range of 1/8 thickness to 3/8 thickness centered on the position of 1 ⁇ 4 thickness of the steel sheet thickness from the surface. It is preferable that a lath-like structure composed of one or more of tempered martensite and fresh martensite is contained in a total volume of 70% or more.
- the steel structure obtained by subjecting the heat-treating steel sheet to a second heat treatment to be described later has the steel structure inside the steel sheet mainly composed of hard ferrite.
- the steel structure obtained by subjecting the heat-treating steel sheet to the second heat treatment contains a large amount of soft ferrite in the steel structure inside the steel sheet.
- the steel plate which concerns on is not obtained.
- the steel structure in the steel sheet for heat treatment preferably contains the above lath structure in a volume fraction of 80% or more in total, more preferably 90% or more in total, and may be 100%. .
- the steel structure in the steel sheet for heat treatment may contain retained austenite in addition to the lath structure described above. However, when residual austenite is included, it is preferable to limit the number density of residual austenite grains having an aspect ratio of less than 1.3 and a major axis exceeding 2.5 ⁇ m to 1.0 ⁇ 10 ⁇ 2 particles / ⁇ m 2 or less. .
- the retained austenite present in the steel structure inside the steel sheet is a coarse lump, coarse agglomerated residual austenite grains are present inside the steel sheet obtained by subjecting the steel sheet for heat treatment to the second heat treatment, and the aspect ratio In some cases, the ratio of the number of retained austenite having a value of 2.0 or more cannot be sufficiently secured. Therefore, the number density of coarse agglomerated residual austenite grains having an aspect ratio of less than 1.3 and a major axis exceeding 2.5 ⁇ m is set to 1.0 ⁇ 10 ⁇ 2 particles / ⁇ m 2 or less.
- the number density of coarse agglomerated retained austenite grains is preferably as low as possible, and is preferably 0.5 ⁇ 10 ⁇ 2 particles / ⁇ m 2 or less.
- the volume fraction of the retained austenite contained in the steel structure inside the steel sheet for heat treatment is 10% or less.
- the volume fraction of ferrite is less than 20% in the surface layer that extends from the steel sheet surface to the depth of 20 ⁇ m.”
- the ferrite content is less than 20% in the range from the steel sheet surface to 20 ⁇ m in the depth direction.
- the volume fraction of ferrite is 20% or more, the volume fraction of ferrite grains having an aspect ratio exceeding 3.0 is predetermined in the soft layer formed on the steel sheet obtained by subjecting the steel sheet for heat treatment to the second heat treatment. Does not satisfy the range. The smaller the volume fraction of ferrite, the better. 10% or less is more preferable, and it may be 0%.
- a slab having the above chemical composition is hot-rolled, pickled hot-rolled steel sheet, or a cold-rolled steel sheet cold-rolled from the hot-rolled steel sheet, as shown below.
- a steel plate for heat treatment is manufactured by performing heat treatment. Then, the following 2nd heat processing shown below is given to the steel plate for heat processing.
- the first heat treatment and / or the second heat treatment may be performed using a dedicated heat treatment line, or may be performed using an existing annealing line.
- a slab having the above chemical component (composition) is cast.
- a slab produced by a continuous casting slab, a thin slab caster or the like can be used.
- the slab after casting may be hot-rolled after being cooled to room temperature, or may be directly hot-rolled at a high temperature. It is preferable to subject the slab after casting to hot rolling directly at a high temperature because the energy required for hot rolling can be reduced.
- f ⁇ is a value represented by the following formula (5)
- WMn ⁇ is a value represented by the following formula (6)
- D is a value represented by the following formula (7)
- A c1 is a value represented by the following formula (8)
- Ac3 is a value represented by the following formula (9)
- ts (T) is a slab residence time (sec) at the slab heating temperature T.
- T is the slab heating temperature (° C.)
- WC is the C content (mass%) in the steel
- a c1 is the value represented by the following formula (8)
- a c3 is the following formula ( It is the value shown in 9).
- T is the slab heating temperature (° C.)
- WMn is the Mn content (% by mass) in the steel
- a c1 is the value represented by the following formula (8)
- a c3 is the following formula ( It is the value shown in 9).
- T is a slab heating temperature (° C.)
- R is a gas constant; 8.314 J / mol.
- a c1 723-10.7 ⁇ Mn-16.9 ⁇ Ni + 29.1 ⁇ Si + 16.9 ⁇ Cr (8) (The element symbol in the formula (8) is the mass% of the element in steel. is there.)
- a c3 879-346 ⁇ C + 65 ⁇ Si-18 ⁇ Mn + 54 ⁇ Al (9) (The element symbol in the formula (9) is the mass% of the element in steel.)
- the molecule of formula (4) represents the degree of Mn content that is distributed from ⁇ to ⁇ during stay in the two-phase region of ⁇ (ferrite) and ⁇ (austenite).
- the denominator of Equation (4) is a term corresponding to the distance of Mn atoms that diffuse in ⁇ while staying in the ⁇ single phase region. The greater the denominator of Equation (4), the more uniform the Mn concentration distribution.
- the completion temperature of hot rolling is 850 degreeC or more. From the viewpoint of rolling reaction force, the completion temperature of hot rolling is preferably 870 ° C. or higher. On the other hand, in order to make the completion temperature of hot rolling higher than 1050 ° C., it is necessary to heat the steel sheet using a heating device or the like in the process from the end of heating of the slab to the completion of hot rolling, which requires high cost. It becomes.
- the completion temperature of hot rolling shall be 1050 degrees C or less.
- the completion temperature of hot rolling is preferably 1000 ° C. or less, and more preferably 980 ° C. or less.
- pickling process Next, pickling of the hot-rolled steel sheet thus manufactured is performed.
- Pickling is a process of removing oxides on the surface of a hot-rolled steel sheet, and is important for improving chemical conversion treatment properties and plating adhesion of the steel sheet.
- the hot-rolled steel sheet may be pickled once or may be divided into a plurality of times.
- the pickled hot-rolled steel sheet may be cold-rolled to obtain a cold-rolled steel sheet.
- a steel sheet having a predetermined thickness can be manufactured with high accuracy.
- the total rolling reduction cumulative rolling reduction in cold rolling
- the total rolling reduction is preferably 85% or less, and more preferably 75% or less.
- the lower limit of the total rolling reduction in the cold rolling process is not particularly defined, and the cold rolling may not be performed.
- the reduction ratio of the cold rolling is 0 in total. It is preferably 5% or more, more preferably 1.0% or more.
- the heat-treated steel sheet is manufactured by subjecting the pickled hot-rolled steel sheet or the cold-rolled steel sheet obtained by cold rolling the hot-rolled steel sheet to a first heat treatment.
- the first heat treatment is performed under the conditions satisfying the following (a) to (e).
- log is a common logarithm
- PH 2 O is a partial pressure of water vapor
- PH 2 is a partial pressure of hydrogen.
- H 2 in the atmosphere is less than 0.1% by volume, the oxide film present on the steel sheet surface cannot be sufficiently reduced, and an oxide film is formed on the steel sheet. For this reason, the chemical conversion property and plating adhesiveness of the steel plate obtained after the second heat treatment are lowered.
- the H 2 content in the atmosphere is more than 20% by volume, the effect is saturated. Further, if the H 2 content in the atmosphere is more than 20% by volume, the danger of hydrogen explosion in operation increases. Therefore, it is preferable to of H 2 content in the atmosphere is 20 vol% or less.
- log (PH 2 O / PH 2 ) is ⁇ 1.1 or more, the decarburization reaction proceeds in the surface layer portion of the steel sheet, and ferrite is formed in the surface layer portion. As a result, in the steel sheet after the second heat treatment, the proportion of ferrite grains having an aspect ratio of less than 3.0 increases.
- the maximum heating temperature is preferably A c3 ⁇ 15 ° C. or higher, and more preferably A c3 + 5 ° C. or higher.
- heating to an excessively high temperature increases the fuel cost required for heating and causes damage to the furnace body. For this reason, maximum heating temperature shall be 1000 degrees C or less.
- the holding time at the maximum heating temperature is 1 to 1000 seconds. If the holding time is less than 1 second, massive coarse ferrite remains in the steel structure inside the steel sheet for heat treatment. As a result, the volume fraction of soft ferrite in the steel sheet obtained after the second heat treatment becomes excessive, and the characteristics deteriorate.
- the holding time is preferably 10 seconds or more, and more preferably 50 seconds or more. On the other hand, when the holding time is too long, not only the effect of heating to the maximum heating temperature is saturated, but also productivity is impaired. Therefore, the holding time is 1000 seconds or less.
- (C) Heating is performed so that the average heating rate in the temperature range from 650 ° C. to the maximum heating temperature is 0.5 ° C./second to 500 ° C./second.
- the average heating rate from 650 ° C. to the maximum heating temperature is 0.5 ° C./second or more. Preferably, it is 1.5 ° C./second or more.
- the upper limit of the average heating rate is over 500 ° C./second because it is difficult in actual operation and the temperature control is also difficult.
- the average heating rate from 650 ° C. to the maximum heating temperature can be obtained by dividing the difference between 650 ° C. and the maximum heating temperature by the elapsed time until the steel sheet surface temperature reaches from the 650 ° C. to the maximum heating temperature.
- cooling is performed so that the average cooling rate in the temperature range from 700 ° C. to Ms becomes 5 ° C./second or more.
- first heat treatment in order to make the steel structure inside the steel sheet for heat treatment mainly composed of a lath structure, after holding at the highest heating temperature, cooling in a temperature range from 700 ° C. to Ms represented by the following formula (10) Cooling is performed so that the average cooling rate is 5 ° C./second or more. When the average cooling rate is less than 5 ° C./second, massive ferrite may be generated in the steel sheet for heat treatment.
- the average cooling rate is preferably 10 ° C./second or more, and more preferably 30 ° C./second or more.
- the upper limit of the average cooling rate is not particularly required, but special equipment is required for cooling at an average cooling rate exceeding 500 ° C./second. For this reason, it is preferable that an average cooling rate is 500 degrees C / sec or less.
- the average cooling rate in the temperature range from 700 ° C. to Ms or less can be obtained by dividing the difference between 700 ° C. and Ms by the elapsed time until the steel sheet surface temperature reaches 700 ° C. to Ms.
- Cooling at the above average cooling rate of 5 ° C./second or more is performed to a cooling stop temperature of Ms or less.
- cooling at which the average cooling rate in the temperature range from 700 ° C. to Ms is 5 ° C./second or more is performed to a cooling stop temperature of Ms or less represented by Expression (10).
- the cooling stop temperature may be room temperature (25 ° C.).
- the following second heat treatment may be continuously performed on the steel sheet cooled to a cooling stop temperature of Ms or lower and room temperature or higher in the first heat treatment. Moreover, after cooling to room temperature and winding up in 1st heat processing, you may perform 2nd heat processing shown below.
- the steel plate cooled to room temperature in the first heat treatment is the steel plate for heat treatment of the present embodiment described above.
- the steel plate for heat treatment becomes the steel plate according to the present embodiment by performing the second heat treatment described below.
- various treatments may be performed on the steel plate for heat treatment before the second heat treatment.
- the heat-treating steel plate may be subjected to temper rolling.
- a second heat treatment is performed on the steel plate subjected to the first heat treatment (steel plate for heat treatment).
- the second heat treatment is performed under the conditions satisfying the following (A) to (E).
- H 2 in the atmosphere is less than 0.1% by volume or O 2 is more than 0.020% by volume
- the oxide film present on the steel sheet surface cannot be sufficiently reduced, An oxide film is formed.
- a preferable range of H 2 is 1.0% by volume or more, more preferably 2.0% by volume or more.
- a preferable range of O 2 is 0.010% by volume or less, more preferably 0.005% by volume or less. If the H 2 content in the atmosphere is more than 20% by volume, the effect is saturated. Further, if the H 2 content in the atmosphere is more than 20% by volume, the danger of hydrogen explosion in operation increases. Therefore, it is preferable to of H 2 content in the atmosphere is 20 vol% or less.
- log (PH 2 O / PH 2 ) is set to ⁇ 1.1 or more.
- log (PH 2 O / PH 2 ) is ⁇ 0.8 or more.
- log (PH 2 O / PH 2 ) exceeds ⁇ 0.07, the decarburization reaction proceeds excessively, so that the strength of the steel sheet obtained after the second heat treatment is insufficient. Therefore, log (PH 2 O / PH 2 ) is set to ⁇ 0.07 or less.
- the maximum heating temperature is set to (A c1 +25) ° C. to (A c3 ⁇ 10) ° C.
- the maximum heating temperature is less than (A c1 +25) ° C., the cementite in the steel remains undissolved, the residual austenite fraction in the internal structure of the steel sheet obtained after the second heat treatment becomes insufficient, and the characteristics deteriorate.
- the maximum heating temperature exceeds ( Ac 3 -10) ° C.
- most or all of the internal steel structure becomes austenite, and the lath-like structure in the steel plate before the second heat treatment (heat treated steel plate) disappears.
- the lath-like structure of the steel plate before the second heat treatment is not inherited by the steel plate after the second heat treatment.
- the retained austenite fraction in the internal structure of the steel sheet obtained after the second heat treatment is insufficient, and the number ratio of retained austenite having an aspect ratio of 2.0 or more is insufficient, and the characteristics are greatly deteriorated. Therefore, the maximum heating temperature is (A c3 ⁇ 10) ° C. or lower.
- the maximum heating temperature is preferably (A c3 ⁇ 20) ° C. or lower, and (A c3 ⁇ 30) ° C. or lower. More preferably.
- the holding time at the maximum heating temperature is 1 to 1000 seconds. If the holding time is less than 1 second, cementite in the steel remains undissolved, and there is a concern that the properties of the steel sheet deteriorate.
- the holding time is preferably 30 seconds or longer. On the other hand, when the holding time is too long, not only the effect of heating to the maximum heating temperature is saturated, but also the productivity is lowered. Therefore, the holding time is 1000 seconds or less.
- (C) Heating is performed so that the average heating rate from 650 ° C. to the maximum heating temperature is 0.5 ° C./second to 500 ° C./second.
- the average heating rate from 650 ° C. to the maximum heating temperature in the second heat treatment is less than 0.5 ° C./second, the recovery of the lath-like structure created in the first heat treatment proceeds, and austenite grains are present in the grains. The volume fraction of soft ferrite that does not increase.
- the average heating rate exceeds 500 ° C./second, the decarburization reaction does not proceed sufficiently.
- cooling is performed from the maximum heating temperature to 480 ° C. or lower.
- the average cooling rate between 700 to 600 ° C. is set to 3 ° C./second or more.
- the average cooling rate is preferably 10 ° C./second or more.
- the upper limit of the average cooling rate may not be provided, but a special cooling device is required to exceed 200 ° C./sec. Therefore, the average cooling rate is preferably 200 ° C./sec or less.
- (E) Hold at 300 ° C. to 480 ° C. for 10 seconds or more. Subsequently, the steel plate is held for 10 seconds or more in a temperature range between 300 ° C. and 480 ° C.
- the holding time is less than 10 seconds, carbon is not sufficiently concentrated in the untransformed austenite. In this case, the lath-like ferrite does not grow sufficiently, and C enrichment to austenite does not proceed. As a result, fresh martensite is generated during the final cooling after the holding, and the characteristics of the steel sheet are greatly deteriorated.
- the holding time is preferably 100 seconds or more.
- the productivity may be lowered even if it is excessively long, so the holding time may be 1000 seconds or less.
- the cooling stop temperature is less than 300 ° C., it may be held after being reheated to 300 to 480 ° C.
- ⁇ Zinc plating process> You may perform the hot dip galvanization which forms the hot dip galvanization layer on the surface with respect to the steel plate after 2nd heat processing. Moreover, you may perform the alloying process of a plating layer following formation of a hot dip galvanization layer. Moreover, you may perform the electrogalvanization which forms an electrogalvanization layer on the surface with respect to the steel plate after 2nd heat processing.
- the hot dip galvanizing, alloying treatment, and electrogalvanizing may be performed at any timing after the completion of the cooling step (D) in the second heat treatment as long as the conditions specified by the present invention are satisfied.
- a plating treatment or an alloying treatment if necessary
- FIG. 5 As shown in FIG. 5 as pattern [2], after the cooling step (D), a plating treatment (or an alloying treatment if necessary) may be performed, and then an isothermal holding (E) may be performed.
- FIG. 6 as pattern [3]
- after cooling step (D) and isothermal holding step (E) it is once cooled to room temperature and then plated (and further alloyed as necessary) ) May be applied.
- plating conditions such as a galvanizing bath temperature and a galvanizing bath composition in the hot dip galvanizing process
- the plating bath temperature may be 420 to 500 ° C.
- the temperature of the intrusion plate into the plating bath may be 420 to 500 ° C.
- the immersion time may be 5 seconds or less.
- the plating bath is preferably a plating bath containing 0.08 to 0.2% Al, but may contain other inevitable impurities such as Fe, Si, Mg, Mn, Cr, Ti, and Pb.
- the basis weight of hot dip galvanizing is preferably controlled by a known method such as gas wiping.
- the basis weight is usually 5 g / m 2 or more per side, but is preferably 20 to 120 g / m 2 , more preferably 25 to 75 g / m 2 .
- an alloying treatment may be performed on the high-strength hot-dip galvanized steel sheet on which the hot-dip galvanized layer is formed as described above.
- the alloying treatment temperature is preferably 460 to 600 ° C.
- the alloying treatment temperature is more preferably 480 to 580 ° C.
- the heating time for the alloying treatment is desirably 5 to 60 seconds.
- the alloying treatment is preferably performed under conditions such that the iron concentration in the hot dip galvanized layer is 6.0% by mass or more.
- the conditions for electrogalvanizing are not particularly limited.
- the steel plate which concerns on this embodiment mentioned above is obtained.
- the steel plate may be cold-rolled for the purpose of shape correction.
- Cold rolling may be performed after performing the first heat treatment, or may be performed after performing the second heat treatment. Further, it may be performed both after the first heat treatment and after the second heat treatment.
- the rolling reduction of cold rolling is preferably 3.0% or less, and more preferably 1.2% or less.
- the rolling reduction of cold rolling exceeds 3.0%, some residual austenite is transformed into martensite by processing-induced transformation, so that there is a concern that the volume fraction of residual austenite is lowered and the characteristics are impaired.
- the lower limit value of the rolling ratio of cold rolling is not particularly defined, and the characteristics of the steel sheet according to the present embodiment can be obtained without performing cold rolling.
- a sample is taken with the plate thickness cross section parallel to the rolling direction of the steel plate as the observation surface, and the observation surface is polished and nital etched.
- the observation surface is polished and nital etched.
- a total area of 2.0 ⁇ 10 ⁇ 9 m 2 or more in one or a plurality of observation visual fields in the region including the depth range of the soft steel layer from the outermost layer of the steel plate Are observed with a field emission scanning electron microscope (FE-SEM).
- the area fractions of ferrite, bainite, tempered martensite, fresh martensite, pearlite, cementite, and retained austenite are measured, and are regarded as volume fractions.
- a region having a substructure in the grains and in which carbides are precipitated with a plurality of variants is determined as tempered martensite.
- a region where cementite is deposited in a lamellar shape is determined to be pearlite or cementite.
- a region where the luminance is small and the substructure is not recognized is determined as ferrite (soft ferrite or hard ferrite).
- a region where the luminance is high and the substructure is not revealed by etching is determined as fresh martensite or retained austenite.
- the remainder is judged to be bainite.
- Each volume fraction is calculated by the point counting method to obtain the volume fraction of each tissue.
- the volume fractions of hard ferrite and soft ferrite are obtained by the method described later based on the measured volume fraction of ferrite.
- the volume fraction of fresh martensite can be obtained by subtracting the volume fraction of retained austenite obtained by the X-ray diffraction method described later from the volume fraction of fresh martensite or retained austenite.
- the volume fraction of retained austenite contained in the steel plate is evaluated by the X-ray diffraction method. Specifically, in a range of 1/8 to 3/8 thickness centered on the position of 1/4 thickness from the surface of the plate thickness, a surface parallel to the plate surface is finished to a mirror surface, and FCC is performed by X-ray diffraction method. The area fraction of iron is measured and taken as the volume fraction of retained austenite.
- the ratio between the volume fraction of retained austenite contained in the soft layer and the volume fraction of retained austenite inside the steel sheet is a high resolution crystal structure by EBSD method (electron beam backscatter diffraction method). Evaluate by performing analysis. Specifically, a sample is taken with a cross section of the steel plate parallel to the rolling direction of the steel sheet as an observation surface, and the observation surface is polished to a mirror surface. Further, electropolishing or mechanical polishing using colloidal silica is performed to remove the surface processed layer.
- the total area of the observation field is 2 in total for the surface layer portion of the steel plate including the soft layer and the inside of the steel plate (in the range of 1/8 thickness to 3/8 thickness centered on the position of 1/4 thickness from the surface).
- Crystal structure analysis by EBSD method is performed so that it becomes 0.0 ⁇ 10 ⁇ 9 m 2 or more (a plurality of visual fields or the same visual field is acceptable).
- “OIM Analysis 6.0” manufactured by TSL is used.
- the distance between steps (step) is set to 0.01 to 0.20 ⁇ m. From the observation results, the region determined to be FCC iron is determined to be retained austenite, and the volume fraction of retained austenite inside the soft layer and the steel sheet is calculated.
- the aspect ratio and major axis of the retained austenite grains contained in the steel structure inside the steel plate are evaluated by performing high resolution crystal orientation analysis by the EBSD method. Specifically, a sample is taken with a cross section of the steel plate parallel to the rolling direction of the steel sheet as an observation surface, and the observation surface is polished to a mirror surface. Further, electropolishing or mechanical polishing using colloidal silica is performed to remove the surface processed layer.
- the aspect ratio is a value obtained by dividing the major axis length of residual austenite grains by the minor axis length.
- the major axis is the major axis length of the retained austenite grains. From this result, the ratio of the number of retained austenite having an aspect ratio of 2.0 or more in the total retained austenite is obtained.
- “OIM Analysis 6.0” manufactured by TSL is used for analysis of data obtained by the EBSD method.
- the distance between steps (step) is set to 0.01 to 0.20 ⁇ m.
- crystal grains are observed using FE-SEM, and high resolution crystal orientation analysis is performed by EBSD method. Specifically, a sample is taken with a cross section of the steel plate parallel to the rolling direction of the steel sheet as an observation surface, and the observation surface is polished to a mirror surface. Further, electropolishing or mechanical polishing using colloidal silica is performed to remove the surface processed layer.
- the crystal structure analysis is carried out by the EBSD method for the possible area.
- a boundary that causes a crystal orientation difference of 15 ° or more is defined as a crystal grain boundary, and a crystal grain boundary map of ferrite grains is drawn.
- a distribution map of crystal grains is drawn only with austenite grains having a major axis length of 0.1 ⁇ m or more, and is superimposed on a grain boundary map of ferrite grains. . If one ferrite grain contains at least one austenite grain that is completely taken into the ferrite grain, it is defined as “ferrite grain including austenite grain”. Moreover, the case where it is not adjacent to the austenite grains or is adjacent to the austenite grains only at the boundary with other grains is defined as “ferrite grains not including austenite grains”.
- the hardness distribution from the surface layer to the inside of the steel plate for determining the thickness of the soft layer can be obtained, for example, by the following method.
- a sample is taken with a plate thickness cross section parallel to the rolling direction of the steel sheet as an observation surface, the observation surface is polished to a mirror finish, and further, chemical polishing is performed using colloidal silica to remove the surface processed layer.
- the observation surface of the obtained sample is 10 ⁇ m in the thickness direction of the steel sheet from the surface to the position of 1/8 thickness of the plate starting from the position of the depth of 5 ⁇ m from the outermost layer using a micro hardness measuring device.
- a Vickers indenter with a quadrangular pyramid shape with an apex angle of 136 ° is pushed in at a pitch.
- the indentation load is set so that the mutual Vickers indentation does not interfere. For example, 2 gf.
- the diagonal length of the indentation is measured and converted to Vickers hardness (Hv).
- the measurement position is moved by 10 ⁇ m or more in the rolling direction, and the same measurement is performed from the outermost layer to the position of 1/8 thickness with the 10 ⁇ m depth position from the outermost layer.
- the measurement position is moved 10 ⁇ m or more in the rolling direction, and the same measurement is performed from the surface to a position of 1/8 thickness of the plate thickness starting from a position 5 ⁇ m deep from the outermost layer.
- the measurement position is moved by 10 ⁇ m or more in the rolling direction, and the same measurement is performed from the outermost layer to the position of 1/8 thickness with the 10 ⁇ m depth position as the starting point. As shown in FIG. 7, by repeating this, 5 points of Vickers hardness are measured for each thickness position. By doing so, hardness measurement data having a pitch of 5 ⁇ m in the depth direction can be obtained in practice. The reason why the measurement interval is not simply 5 ⁇ m is to avoid interference between the indentations.
- pieces be the hardness in the thickness position.
- a hardness profile in the depth direction is obtained by interpolating between each data with a straight line.
- the thickness of the soft layer is obtained by reading the depth position where the hardness is 80% or less of the base material hardness from the hardness profile.
- the hardness inside the steel sheet is measured at least 5 points using a micro hardness measuring device in the same manner as described above in the range of 1/8 to 3/8 thickness centered on the 1/4 thickness position. And by averaging the values.
- the microhardness measuring device for example, FISCHERSCOPE (registered trademark) HM2000 XYp can be used.
- the aspect ratio of the ferrite contained in soft layer and proportion of crystal grains with aspect ratio of 3.0 or more is evaluated by observing crystal grains using FE-SEM and performing high-resolution crystal orientation analysis by the EBSD method (electron beam backscatter diffraction method).
- EBSD method electron beam backscatter diffraction method
- the distance between steps (step) is set to 0.01 to 0.20 ⁇ m. From the observation results, the region determined to be BCC iron is ferrite, and a crystal orientation map is drawn. A boundary that causes a crystal orientation difference of 15 ° or more is regarded as a grain boundary.
- the aspect ratio is a value obtained by dividing the major axis length of each ferrite grain by the minor axis length.
- High-frequency glow discharge (high-frequency GDS) analysis When the steel plate according to the present embodiment and the steel plate for heat treatment are analyzed by a high frequency glow discharge analysis method, a known high frequency GDS analysis method can be used. Specifically, a method of analyzing in the depth direction while sputtering the steel plate surface in a state where the surface of the steel plate is in an Ar atmosphere and glow plasma is generated by applying a voltage is used. Then, the element contained in the material (steel plate) is identified from the emission spectrum wavelength peculiar to the element emitted when the atoms are excited in the glow plasma, and the amount of the element contained in the material is estimated from the emission intensity of the identified element. Data in the depth direction can be estimated from the sputtering time.
- the sputtering time can be converted into the sputtering depth by obtaining the relationship between the sputtering time and the sputtering depth in advance using a standard sample. Therefore, the sputter depth converted from the sputter time can be defined as the depth from the surface of the material.
- a commercially available analyzer can be used.
- a high-frequency glow discharge emission spectrometer GD-Profiler 2 manufactured by HORIBA, Ltd. is used.
- the conditions in the examples are one example of conditions used to confirm the feasibility and effects of the present invention.
- the present invention is not limited to this one condition example.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
- a steel having the chemical composition shown in Table 1 was melted to produce a slab.
- This slab was heated under the slab heating conditions shown in Tables 2 to 5 and the slab heating conditions represented by the formula (4) shown in Tables 2 to 5, and the rolling completion temperature was set to the temperatures shown in Tables 2 to 5.
- the hot rolled steel sheet was manufactured by performing hot rolling. Thereafter, the hot-rolled steel sheet was pickled and the surface scale was removed. Then, it cold-rolled to some hot-rolled steel sheets, and was set as the cold-rolled steel sheet.
- the first heat treatment and / or the second heat treatment described below were applied to the hot-rolled steel sheet having a thickness of 1.2 mm or the cold-rolled steel sheet having a thickness of 1.2 mm thus obtained.
- the cold-rolled steel sheets cooled to the cooling stop temperatures shown in Tables 6 to 9 in the first heat treatment were continuously subjected to the second heat treatment without being cooled to room temperature.
- the second heat treatment was performed after cooling to room temperature. In some examples, the second heat treatment was performed without performing the first heat treatment.
- Ac3 was determined by the following formula (9), and Ms was determined by the following formula (10).
- a c3 879-346C + 65Si-18Mn + 54Al (9) (The element symbol in the formula (9) is the mass% of the element in steel.)
- Ms 561-407 ⁇ C-7.3 ⁇ Si-37.8 ⁇ Mn-20.5 ⁇ Cu-19.5 ⁇ Ni-19.8 ⁇ Cr-4.5 ⁇ Mo (10) (The element symbol in the formula (10) is the mass% of the element in steel.)
- the hot dip galvanization was performed at a weight per unit area of 50 g / m 2 on both surfaces of the steel sheet by dipping in a hot dip zinc bath at 460 ° C.
- a c1 was obtained from the following equation (8), and A c3 was obtained from the above equation (9).
- a c1 723-10.7 ⁇ Mn-16.9 ⁇ Ni + 29.1 ⁇ Si + 16.9 ⁇ Cr (8) (The element symbol in the formula (8) is the mass% of the element in steel. is there.)
- a JIS No. 5 tensile test piece was taken so that the direction perpendicular to the rolling direction was the tensile direction, the maximum tensile stress and elongation were measured according to JIS Z2241, and the hole expandability was measured according to JIS Z2256. . And the thing whose maximum tensile stress is 700 Mpa or more was evaluated as favorable.
- the hydrogen embrittlement resistance of the bent part was evaluated by the following method. First, a strip-shaped test piece of 30 mm ⁇ 120 mm was taken from the steel plate so that the longitudinal direction of the test piece and the rolling direction of the steel plate were perpendicular to each other, and drilling for bolt fastening was performed on both ends of the test piece. Next, the test piece was bent 180 ° with a punch having a radius of 5 mm. After that, the U-bend test piece that was spring-backed was stressed by fastening with a bolt and a nut. At this time, a strain gauge of GL 5 mm was attached to the top of the U-bending test piece, and a stress 0.8 times the tensile strength was applied by controlling the amount of strain.
- the stress was set by converting the strain into a stress from a stress-strain curve obtained in advance by a tensile test.
- the end surface of the U-bending specimen was left as shear cut.
- Cathodic hydrogen charging was continuously performed on the U-bending test piece after application of stress until the test piece was broken using an electrochemical cell.
- the electrolyte was a 3% NaCl aqueous solution with 3 g / L ammonium thiocyanate added, and the charge current density was -0.05 mA / cm 2 .
- the test piece after breakage was immediately stored in liquid nitrogen, and the amount of hydrogen in the steel was measured by a temperature rising hydrogen analysis method using a gas chromatograph (temperature rising rate: 100 ° C./hour, measured up to 300 ° C.).
- the amount of hydrogen released from the steel material from room temperature to 200 ° C. was defined as the amount of diffusible hydrogen.
- the same test was performed three times, and the average value was defined as the limit diffusible hydrogen content. For materials with a tensile strength of 1100 MPa or less, “Ex” indicates that the limit diffusible hydrogen content is 1.0 ppm or more, “G” indicates that the amount is 0.6 to 1.0 ppm, and “B” indicates that the tensile strength is less than 0.6 ppm.
- a test piece having a width of 70 mm and a length of 150 mm was collected from the steel sheet on which the chemical conversion film was formed. Then, three places (center part and both ends) along the length direction of a test piece were observed at 1000-times magnification using the scanning electron microscope (SEM). And about each test piece, the adhesion degree of the crystal grain of a chemical conversion treatment film was evaluated by the following references
- the zinc phosphate crystals of the chemical conversion film are densely attached to the “Ex” surface.
- the “G” zinc phosphate crystals are sparse, and there are slight gaps between the adjacent crystals (the part generally called “ske” without the zinc phosphate coating).
- covered with the chemical conversion treatment film clearly on "B” surface is seen.
- EG electrogalvanized steel sheet
- GI indicates a hot dip galvanized steel sheet
- GA indicates an alloyed hot dip galvanized steel sheet.
- Test pieces of 30 mm ⁇ 100 mm were taken from these steel plates and subjected to a 90 ° V bending test. Thereafter, a commercially available cello tape (registered trademark) was pasted along the bending ridgeline, and the width of the plating adhered to the tape was measured as the peel width. Evaluation was as follows. Ex: Plating peeling small (peeling width less than 5mm) G: Peeling to an extent that does not interfere with practical use (peeling width 5 mm or more and less than 10 mm) B: Strong peeling (peeling width 10 mm or more) As for plating adhesion, Ex and G were regarded as acceptable.
- the steel plate of Experimental Example No. 5 has a low average heating rate from 650 ° C. to the maximum heating temperature in the first heat treatment, so the number ratio of retained austenite with an aspect ratio of 2.0 or more is insufficient, and the strength / elongation / hole The balance of the spreading rate was bad.
- the steel plates of Experimental Examples No. 6, 15, 16, and 24 had high log (PH 2 O / PH 2 ) in the first heat treatment, and the desired surface layer structure could not be obtained, so the hydrogen embrittlement resistance of the bent portion was poor. It was.
- the metal structure does not contain hard ferrite, and furthermore, the desired surface layer structure was not obtained, so the strength / elongation / hole expansion rate
- the steel plate of Experimental Example No. 35 had a poor holding time between 300 ° C. and 480 ° C. in the second heat treatment, so the fresh martens of the internal structure was poor. The site fraction increased, and the balance of strength, elongation, and hole expansion rate was poor.
- the steel compositions of Experimental Examples Nos. 71 to 75 have a chemical composition outside the scope of the present invention.
- the steel sheet of Experimental Example No. 71 had insufficient maximum tensile stress (TS) because of insufficient C content. Since the steel plate of Experimental Example No. 72 has a high Nb content, the bendability after processing deteriorated.
- the steel sheet of Experimental Example No. 73 had an insufficient maximum tensile stress (TS) because the Mn content was insufficient. Since the steel plate of Experimental Example No. 74 has a large Si content, the hole expandability deteriorated. Since the steel plate of Experimental Example No. 75 had a high Mn content and a high P content, the elongation and hole expandability deteriorated.
- Experimental Example No. 5 ′ steel sheet has a slow average heating rate from 650 ° C. to the maximum heating temperature in the first heat treatment, so the number ratio of retained austenite with an aspect ratio of 2.0 or more is insufficient, and the strength / elongation / The balance of the hole expansion rate has deteriorated.
- the steel plates of Experimental Examples No. 6 ′, 20 ′, 21 ′, and 29 ′ have high log (PH 2 O / PH 2 ) in the first heat treatment, and a desired surface layer structure was not obtained. The hydrogen embrittlement resistance was poor.
- the steel sheet of Experimental Example No. 8 has a high soft ferrite fraction because the cooling rate in the first heat treatment is slow. For this reason, the balance of strength, elongation, and hole expansion rate deteriorated.
- the steel plate of Experimental Example No. 31 ′ has a high maximum temperature in the second heat treatment, so that it does not contain hard ferrite in the metal structure, and furthermore, the desired surface layer structure could not be obtained. And the hydrogen embrittlement resistance of the bent portion was poor.
- the steel plate of Experimental Example No. 43 ′ has a high cooling stop temperature in the first heat treatment, so the number ratio of retained austenite having an aspect ratio of 2.0 or more is insufficient, and the balance of strength, elongation, and hole expansion rate is deteriorated. It was.
- the steel plate of Experimental Example No. 69 had a low maximum achievable temperature in the second heat treatment, and therefore the residual austenite fraction in the internal structure of the steel plate was insufficient, and the balance of strength, elongation, and hole expansion rate deteriorated.
- the steel compositions of Experimental Examples Nos. 76 'to 80' have a chemical composition outside the scope of the present invention.
- the steel plate of Experimental Example No. 76 ' was insufficient in the maximum tensile stress (TS) because the C content was insufficient.
- the steel plate of Experimental Example No. 77 ' has a high Nb content, the bendability after processing deteriorated.
- the steel plate of Experimental Example No. 78 ' had an insufficient maximum tensile stress (TS) due to insufficient Mn content.
- the steel plate of Experimental Example No. 79 ' has a high Si content, and therefore has poor hole expandability. Since the steel plate of Experimental Example No. 80 'had a high Mn content and a high P content, the elongation and hole expandability deteriorated.
- the present invention it is possible to provide a high-strength steel sheet excellent in ductility and hole expansibility, excellent in chemical conversion treatment and plating adhesion, and further in good bendability after processing, and a method for producing the same.
- the steel sheet of the present invention is suitable as an automotive steel sheet that is formed into various shapes by pressing or the like because it has excellent ductility and hole expansibility and good bendability after processing.
- the steel plate of this invention is excellent in chemical conversion treatment property and plating adhesiveness, it is suitable for the steel plate which forms a chemical conversion treatment film and a plating layer on the surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
しかしながら、従来の高強度鋼板の延性および穴広げ性、並びに、曲げ加工部の耐水素脆化特性について、同時に向上させることは困難であった。
また、所定の深さにSi酸化物を含む内部酸化層を形成することで、自動車用鋼板に求められるめっき密着性や化成処理性も確保できることを見出した。
本発明は、上記知見に基づいてなされたものである。本発明の要旨は以下のとおりである。
ことを特徴とする上記(1)~(4)のいずれか一項に記載の鋼板。
Si+0.1×Mn+0.6×Al≧0.35・・・(i)
(式(i)中のSi、MnおよびAlは質量%での各元素の含有量とする。)
(a)650℃~最高加熱温度に到達するまでの間において、0.1体積%以上のH2を含有し、下記式(ii)を満たす雰囲気とする。
(b)Ac3-30℃~1000℃の最高加熱温度で1秒~1000秒保持する。
(c)650℃~最高加熱温度までの温度範囲の平均加熱速度が0.5℃/秒~500℃/秒となるように加熱する。
(d)最高加熱温度で保持した後、700℃~Msまでの温度範囲の平均冷却速度が5℃/秒以上となるように冷却する。
(e)平均冷却速度5℃/秒以上での冷却をMs以下の冷却停止温度まで行う。
(A)650℃~最高加熱温度に到達するまでの間において、H2が0.1体積%以上、O2が0.020体積%以下、log(PH2O/PH2)が下記式(iii)を満たす雰囲気とする。
(B)Ac1+25℃~Ac3-10℃の最高加熱温度で1秒~1000秒保持する。
(C)650℃~最高加熱温度までの平均加熱速度が0.5℃/秒~500℃/秒となるように加熱する。
(D)700~600℃までの温度範囲の平均冷却速度が3℃/秒以上となるように冷却する。
(E)平均冷却速度3℃/秒以上で冷却した後、300℃~480℃の間で10秒以上保持する。
log(PH2O/PH2)<-1.1・・・(ii)
-1.1≦log(PH2O/PH2)≦-0.07・・・(iii)
(式(ii)および式(iii)において、PH2Oは水蒸気の分圧を示し、PH2は水素の分圧を示す。)
以下、本発明の一実施形態に係る鋼板(本実施形態に係る鋼板)について詳細に説明する。
まず、本実施形態に係る鋼板が有する化学組成について説明する。以下の説明において、元素の含有量を示す[%]は[質量%]を意味する。
Cは、鋼板の強度を大きく高める元素である。また、Cは、オーステナイトを安定化するので、延性の向上に寄与する残留オーステナイトを得るために必要な元素である。そのため、Cは、強度と成形性との両立に有効である。C含有量が0.050%未満であると、十分に残留オーステナイトが得られず、十分な強度および成形性を確保することが困難となる。このため、C含有量を0.050%以上とする。強度と成形性とをより一層高めるために、C含有量は0.075%以上であることが好ましく、0.100%以上であることがより好ましい。
一方、C含有量が0.500%を超えると、溶接性が著しく劣化する。このため、C含有量を0.500%以下とする。スポット溶接性の観点から、C含有量は0.350%以下であることが好ましく、0.250%以下であることがより好ましい。
Siは、鋼板における鉄系炭化物の生成を抑制することで残留オーステナイトを安定化し、強度と成形性とを高める元素である。Si含有量が0.01%未満では、粗大な鉄系炭化物が多量に生成され、強度および成形性が劣化する。このため、Si含有量は0.01%以上とする。この観点から、Siの下限値は0.10%以上であることが好ましく、0.25%以上がより好ましい。
一方、Siは、鋼材を脆化させる元素である。Si含有量が3.00%を超えると、鋼板の穴広げ性が不十分となる。また、Si含有量が3.00%を超えると、鋳造したスラブが割れるなどのトラブルが起こりやすくなる。このため、Si含有量は3.00%以下とする。さらに、Siは鋼板の耐衝撃特性を損なう。そのため、Si含有量は2.50%以下であることが好ましく、2.00%以下であることがより好ましい。
Mnは、鋼板の焼入れ性を高めて強度を高めるために含有される。Mn含有量が0.50%未満であると、焼鈍後の冷却中に軟質な組織が多量に形成されるので、充分に高い引張強度を確保することが難しくなる。したがって、Mn含有量は0.50%以上とする必要がある。強度をより高めるためには、Mn含有量は0.80%以上であることが好ましく、1.00%以上であることがより好ましい。
一方、Mn含有量が5.00%を超えると、鋼板の伸びおよび穴広げ性が不十分となる。また、Mn含有量が5.00%を超えると、鋼板の板厚中央部に粗大なMn濃化部が生じて、脆化が起こりやすくなり、鋳造したスラブが割れるなどのトラブルが起こりやすくなる。このため、Mn含有量は5.00%以下とする。また、Mn含有量が増大するとスポット溶接性も劣化するので、Mn含有量は3.50%以下であることが好ましく、3.00%以下であることがより好ましい。
Pは、鋼材を脆化させる元素である。P含有量が0.1000%を超えると、鋼板の伸びおよび穴広げ性が不十分となる。また、P含有量が0.1000%を超えると、鋳造したスラブが割れるなどのトラブルが起こりやすくなる。このため、P含有量は0.1000%以下とする。また、Pはスポット溶接によって生じる溶融部を脆化させる元素である。充分な溶接継手強度を得るためには、P含有量は0.0400%以下とすることが好ましく、0.0200%以下とすることが更に好ましい。
一方、P含有量を0.0001%未満とすることは、製造コストの大幅な増加を伴う。このことから、P含有量を0.0001%以上とする。P含有量は、0.0010%以上とすることが好ましい。
Sは、Mnと結びついて粗大なMnSを形成し、延性、穴拡げ性(伸びフランジ性)および曲げ性といった成形性を低下させる元素である。このため、S含有量を0.0100%以下とする。また、Sはスポット溶接性を劣化させる。そのため、S含有量を、0.0070%以下とすることが好ましく、0.0050%以下とすることがより好ましい。
一方、S含有量を0.0001%未満とすることは、製造コストの大幅な増加を伴う。このため、S含有量を0.0001%以上とする。S含有量は、0.0003%以上とすることが好ましく、0.0006%以上とすることがより好ましい。
Alは、鋼材を脆化させる元素である。Al含有量が2.500%を超えると、鋳造したスラブが割れるなどのトラブルが起こりやすくなる。このため、Al含有量は2.500%以下とする。また、Al含有量が増えるとスポット溶接性が悪化する。このため、Al含有量は2.000%以下とすることがより好ましく、1.500%以下とすることがさらに好ましい。
一方、Al含有量の下限は特に定めずとも効果は得られるが、Alは原料中に微量に存在する不純物であり、その含有量を0.001%未満とするには製造コストの大幅な増加が伴う。そのため、Al含有量を0.001%以上とする。Alは脱酸材としても有効な元素であり、脱酸の効果を十分に得るためには、Al含有量は0.010%以上とすることが好ましい。さらに、Alは粗大な炭化物の生成を抑制する元素であり、残留オーステナイトの安定化を目的として含有させても構わない。残留オーステナイトの安定化のためには、Al含有量を0.100%以上とすることが好ましく、0.250%以上とすることが更に好ましい。
Nは、粗大な窒化物を形成し、延性、穴拡げ性(伸びフランジ性)および曲げ性といった成形性を劣化させるので、その含有量を抑える必要がある。N含有量が0.0100%を超えると、成形性の劣化が顕著となる。このことから、N含有量を0.0100%以下とする。またNは、溶接時のブローホール発生の原因になるので、含有量が少ない方が良い。N含有量は0.0075%以下であることが好ましく、0.0060%以下であることがより好ましい。
N含有量の下限は、特に定めなくても効果は得られるが、N含有量を0.0001%未満にすることは、製造コストの大幅な増加を招く。このことから、N含有量を0.0001%以上とする。N含有量は、0.0003%以上であることが好ましく、0.0005%以上であることがより好ましい。
Oは、酸化物を形成し、延性、穴拡げ性(伸びフランジ性)および曲げ性といった成形性を劣化させるので、含有量を抑える必要がある。O含有量が0.0100%を超えると、成形性の劣化が顕著となるので、O含有量の上限を0.0100%とする。O含有量は、0.0050%以下であることが好ましく、0.0030%以下であることがより好ましい。
O含有量の下限は、特に定めなくても効果は得られるが、O含有量を0.0001%未満とすることは、製造コストの大幅な増加を伴うので、0.0001%を下限とする。
残留オーステナイトは、熱処理中にベイナイト、パーライトまたは粗大なセメンタイトに分解する懸念がある。Si、MnおよびAlは残留オーステナイトの分解を抑制し、成形性を高めるために特に重要な元素である。残留オーステナイトの分解を抑制するため、下記式(1)を満たすことが好ましい。式(1)の左辺の値は0.60以上であることがより好ましく、0.80以上であることが更に好ましい。
Si+0.1×Mn+0.6×Al≧0.35 ・・・(1)
(式(1)中のSi、MnおよびAlは質量%での各元素の含有量とする。)
Tiは、析出強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化によって、鋼板の強度上昇に寄与する元素である。しかしながら、Ti含有量が0.300%を超えると、炭窒化物の析出が多くなって成形性が劣化する。このため、含有させる場合でも、Ti含有量は0.300%以下であることが好ましい。また、成形性の観点から、Ti含有量は0.150%以下であることがより好ましい。
Ti含有量の下限は特に定めなくても効果は得られるが、Ti含有による強度上昇効果を十分に得るためには、Ti含有量は0.001%以上であることが好ましい。鋼板のより一層の高強度化のためには、Ti含有量は0.010%以上であることがより好ましい。
Vは、析出強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化により、鋼板の強度上昇に寄与する元素である。しかしながら、V含有量が1.00%を超えると、炭窒化物が過度に析出して成形性が劣化する。このため、含有させる場合でも、V含有量は1.00%以下であることが好ましく、0.50%以下であることがより好ましい。V含有量の下限は特に定めなくても効果は得られるが、Vの含有による強度上昇効果を十分に得るためには、V含有量は0.001%以上であることが好ましく、0.010%以上であることがより好ましい。
Nbは、析出強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化により、鋼板の強度上昇に寄与する元素である。しかしながら、Nb含有量が0.100%を超えると、炭窒化物の析出が多くなって成形性が劣化する。このため、含有させる場合でも、Nb含有量は0.100%以下であることが好ましい。成形性の観点から、Nb含有量は0.060%以下であることがより好ましい。Nb含有量の下限は特に定めなくても効果は得られるが、Nb含有による強度上昇効果を十分に得るには、Nb含有量は0.001%以上であることが好ましい。鋼板のより一層の高強度化のためには、Nb含有量は0.005%以上であることがより好ましい。
Crは、鋼板の焼入れ性を高め、高強度化に有効な元素である。しかしながら、Cr含有量が2.00%を超えると、熱間での加工性が損なわれて生産性が低下する。このことから、含有させる場合でも、Cr含有量は2.00%以下とすることが好ましく、1.20%以下であることがより好ましい。
Cr含有量の下限は特に定めなくても効果は得られるが、Cr含有による高強度化の効果を十分に得るためには、Cr含有量は0.001%以上であることが好ましく、0.010%以上であることがより好ましい。
Niは、高温での相変態を抑制し、鋼板の高強度化に有効な元素である。しかしながら、Ni含有量が2.00%を超えると、溶接性が損なわれる。このことから、含有させる場合でも、Ni含有量は2.00%以下とすることが好ましく、1.20%以下であることがより好ましい。
Ni含有量の下限は特に定めなくても効果は得られるが、Ni含有による高強度化の効果を十分に得るには、Ni含有量は0.001%以上であることが好ましく、0.010%以上であることがより好ましい。
Cuは、微細な粒子として鋼中に存在することにより鋼板の強度を高める元素である。しかしながら、Cu含有量が2.00%を超えると、溶接性が損なわれる。そのため、含有させる場合でも、Cu含有量は2.00%以下とすることが好ましく、1.20%以下であることがより好ましい。Cu含有量の下限は特に定めなくても効果は得られるが、Cu含有による高強度化の効果を十分に得るには、Cu含有量は0.001%以上であることが好ましく、0.010%以上であることがより好ましい。
Coは、焼入れ性を高め、鋼板の高強度化に有効な元素である。しかしながら、Co含有量が2.00%を超えると、熱間での加工性が損なわれて生産性が低下する。このことから、含有させる場合でも、Co含有量は2.00%以下とすることが好ましく、1.20%以下であることがより好ましい。
Co含有量の下限は特に定めなくても効果は得られるが、Co含有による高強度化の効果を十分に得るためには、Co含有量は0.001%以上であることが好ましく、0.010%以上であることがより好ましい。
Moは、高温での相変態を抑制し、鋼板の高強度化に有効な元素である。しかしながら、Mo含有量が1.00%を超えると、熱間での加工性が損なわれて生産性が低下する。このことから、含有させる場合でも、Mo含有量は1.00%以下とすることが好ましく、0.50%以下であることがより好ましい。
Mo含有量の下限は特に定めなくても効果は得られるが、Mo含有による高強度化の効果を十分に得るためには、Mo含有量は0.001%以上であることが好ましく、0.005%以上であることがより好ましい。
Wは、高温での相変態を抑制し、鋼板の高強度化に有効な元素である。しかしながら、W含有量が1.00%を超えると、熱間での加工性が損なわれて生産性が低下する。このことから、含有させる場合でも、W含有量は1.00%以下が好ましく、0.50%以下であることがより好ましい。
W含有量の下限は、特に定めることなく効果は得られるが、Wによる高強度化の効果を十分に得るためには、W含有量は0.001%以上であることが好ましく、0.010%以上であることがより好ましい。
Bは、高温での相変態を抑制し、鋼板の高強度化に有効な元素である。しかしながら、B含有量が0.0100%を超えると、熱間での加工性が損なわれて生産性が低下する。このことから、含有させる場合でも、B含有量は0.0100%以下とすることが好ましい。生産性の観点からは、B含有量は0.0050%以下であることがより好ましい。
B含有量の下限は特に定めなくても効果は得られるが、B含有による高強度化の効果を十分に得るには、B含有量を0.0001%以上とすることが好ましい。さらなる高強度化のために、B含有量は0.0005%以上であることがより好ましい。
Snは、組織の粗大化を抑制し、鋼板の高強度化に有効な元素である。しかしながら、Sn含有量が1.00%を超えると、鋼板が過度に脆化し、圧延時に鋼板が破断することがある。このため、含有させる場合でも、Sn含有量は、1.00%以下であることが好ましい。
Sn含有量の下限は、特に定めることなく効果は得られるが、Snによる高強度化効果を十分に得るためには、Sn含有量は0.001%以上であることが好ましく、0.010%以上であることがより好ましい。
Sbは、組織の粗大化を抑制し、鋼板の高強度化に有効な元素である。しかしながら、Sb含有量が1.00%を超えると、鋼板が過度に脆化し、圧延時に鋼板が破断することがある。このため、含有させる場合でも、Sb含有量は、1.00%以下であることが好ましい。
Sb含有量の下限は、特に定めることなく効果は得られるが、Sbによる高強度化効果を十分に得るためには、Sb含有量は0.001%以上であることが好ましく、0.005%以上であることがより好ましい。
REMとは、Rare Earth Metalの略であり、本実施形態では、Ce、Laを除く、ランタノイド系列に属する元素をさす。本実施形態において、REM、Ce、Laは、ミッシュメタルにて添加されることが多く、ランタノイド系列の元素を複合で含有する場合がある。Laおよび/またはCe以外のランタノイド系列の元素を、不純物として含んだとしてもその効果は得られる。また、金属Laおよび/またはCeを添加したとしてもその効果は得られる。本実施形態において、REMの含有量とはCe、Laを除くランタノイド系列に属する元素の含有量の合計値である。
Ca、Mg、Ce、Zr、La、Hf、Bi、REMは、成形性の改善に有効な元素であり、一種または二種以上を、それぞれ0.0001%~0.0100%含有させてもよい。Ca、Mg、Ce、Zr、La、Hf、Bi、REMの一種または二種以上の、各含有量が0.0100%を超えると、延性が低下するおそれがある。このため、含有させる場合でも、上記の各元素の含有量は0.0100%以下であることが好ましく、0.0070%以下であることがより好ましい。また、上記の元素を二種以上含む場合、Ca、Mg、Ce、Zr、La、Hf、Bi、REM含有量は、合計で0.0100%以下とすることが好ましい。
上記各元素の含有量の下限は、特に定めなくても効果は得られるが、鋼板の成形性を改善する効果を十分に得るためには、各元素の含有量は0.0001%以上であることが好ましい。成形性の観点から、Ca、Mg、Ce、Zr、La、Hf、Bi、REMの一種または二種以上の含有量の合計が0.0010%以上であることがより好ましい。
また、Ca、Mg、Ce、Zr、La、Hf、Bi、REMについても、前記下限値未満の極微量を不純物として含有することは許容される。
また、不純物として、H、Na、Cl、Sc、Zn、Ga、Ge、As、Se、Y、Tc、Ru、Rh、Pd、Ag、Cd、In、Te、Cs、Ta、Re、Os、Ir、Pt、Au、Pbを合計で0.0100%以下含有していることは許容される。
(鋼板内部の鋼組織)
図1に示すように、本実施形態に係る鋼板1において、鋼板1の表面から板厚の1/4厚の位置(表面から板厚方向に板厚の1/4の位置)を中心とした1/8厚~3/8厚の範囲11における鋼組織(以下、「鋼板内部の鋼組織」という場合がある。)は、軟質フェライトを0~30%、残留オーステナイトを3%~40%、フレッシュマルテンサイトを0~30%、パーライトとセメンタイトの合計を0~10%含有し、全残留オーステナイトに占める、アスペクト比2.0以上の残留オーステナイトの個数割合が50%以上である。
フェライトは、優れた延性を有する組織である。しかし、フェライトは、強度が低いので、高強度鋼板においては活用しづらい組織である。本実施形態に係る鋼板では、鋼板内部の鋼組織(鋼板内部のミクロ組織)が0%~30%の軟質フェライトを含有する。
本実施形態における「軟質フェライト」とは、粒内に残留オーステナイトを含まないフェライトであることを意味する。軟質フェライトは、強度が低く、周辺部に比べてひずみが集中しやすく、破壊が生じやすい。軟質フェライトの体積分率が30%を超えると、強度と成形性とのバランスが著しく劣化する。このため、軟質フェライトは30%以下に制限する。軟質フェライトは15%以下に制限することが更に好ましく、0%であっても構わない。
残留オーステナイトは、強度-延性バランスを高める組織である。本実施形態に係る鋼板では、鋼板内部の鋼組織が3%~40%の残留オーステナイトを含む。成形性の観点から、鋼板内部における残留オーステナイトの体積分率は3%以上とし、5%以上とすることが好ましく、7%以上とすることがより好ましい。
一方、残留オーステナイトの体積分率を40%超とするには、多量のC、Mnおよび/またはNiを含有させる必要がある。この場合、溶接性が著しく損なわれる。このため、残留オーステナイトの体積分率は40%以下とする。鋼板の溶接性を高め、利便性を高めるには、残留オーステナイトの体積分率は30%以下とすることが好ましく、20%以下とすることが更に好ましい。
フレッシュマルテンサイトは、引張強度を大きく向上させる。一方で、フレッシュマルテンサイトは、破壊の起点となって耐衝撃特性を著しく劣化させる。このため、フレッシュマルテンサイトの体積分率は30%以下とする。特に、耐衝撃特性を向上させるためには、フレッシュマルテンサイトの体積分率を15%以下とすることが好ましく、7%以下とすることがより好ましい。フレッシュマルテンサイトは、0%であってもよいが、鋼板の強度を確保するために2%以上であることが好ましい。
鋼板内部の鋼組織には、パーライトおよび/またはセメンタイトが含まれていてもよい。しかしながら、パーライトおよび/またはセメンタイトの体積分率が多いと、延性が劣化する。このため、パーライトおよび/またはセメンタイトの体積分率を合計で10%以下に制限する。パーライトおよび/またはセメンタイトの体積分率は、好ましくは合計で5%以下であり、0%であっても構わない。
本実施形態では、鋼板内部の鋼組織における残留オーステナイト粒のアスペクト比は、重要である。アスペクト比が大きい、すなわち伸長した残留オーステナイトは、加工による鋼板の変形初期には安定である。しかし、アスペクト比の大きい残留オーステナイトでは、加工の進展に伴って先端部分にひずみの集中が起こり、適度に変態してTRIP(変態誘起塑性)効果が生じる。このため、鋼板内部の鋼組織が、アスペクト比の大きい残留オーステナイトを含むことで、靭性、耐水素脆化特性、穴広げ性などを損なうことなく、延性を改善できる。以上の観点から、本実施形態に係る鋼板では、全残留オーステナイトに占める、アスペクト比2.0以上の残留オーステナイトの個数割合を、50%以上とする。アスペクト比2.0以上の残留オーステナイトの個数割合は、70%以上であることが好ましく、80%以上であることが更に好ましい。
焼戻しマルテンサイトは、耐衝撃特性を損なうことなく、鋼板の引張強度を大きく向上させる組織であり、鋼板内部の鋼組織に含まれていても構わない。しかし、鋼板内部に多量の焼戻しマルテンサイトを生成させると、残留オーステナイトが十分に得られない場合がある。このため、焼戻しマルテンサイトの体積分率は、50%以下に制限することが好ましく、30%以下に制限することがより好ましい。
硬質フェライトは、ベイナイト、焼戻しマルテンサイト、フレッシュマルテンサイトの1種または2種以上からなるラス状組織を含む鋼組織を有する熱処理用鋼板に、後述する第2熱処理を行うことにより形成される。硬質フェライトは、残留オーステナイトを粒内に内包するため、高い強度を有する。また、硬質フェライトは、フェライト粒界に残留オーステナイトが存在している場合と比べて、フェライトと残留オーステナイトとの界面剥離が起こりづらいため、良好な成形性を有する。
次に、鋼板の表層の鋼組織(ミクロ組織)について説明する。
加工後の曲げ性を改善するためには、鋼板の表層を軟質化することが必要な要件の一つである。本実施形態に係る鋼板では、硬度が鋼板内部の硬度(平均硬度)の80%以下である領域を軟質層と定義したとき、鋼板の表面から板厚方向に厚さが1~100μmの軟質層が存在する。言い換えれば、鋼板の表層部に、硬度が鋼板内部の平均硬度の80%以下である軟質層が存在し、その軟質層の厚さが1~100μmである。
一方、軟質層の厚さが100μmを超えると、鋼板の強度が大きく低下する。このため、軟質層の厚さは100μm以下とする。軟質層の厚さは70μm以下であることが好ましい。
軟質層に含まれるフェライトのうちアスペクト比3.0以上の結晶粒の体積分率(フェライトの全結晶粒が軟質層に占める体積分率に対する、アスペクト比3.0未満のフェライト結晶粒の割合)が50%未満であると、曲げ加工部の耐水素脆化特性が劣化する。そのため、軟質層に含まれるフェライトのうちアスペクト比3.0以上の結晶粒の体積分率を50%以上とする。好ましくは60%以上、より好ましくは70%以上である。ここで、対象とするフェライトは、軟質フェライト及び硬質フェライトを含む。
軟質層中のフェライトのアスペクト比が曲げ加工部の耐水素脆化に影響を及ぼす理由は必ずしも明らかでないが、以下のように推定される。すなわち、本実施形態に係る鋼板では、軟質層の鋼組織と、鋼板内部の鋼組織(内部組織)とが大きく異なる。しかしながら、本実施形態に係る鋼板では、表層に含まれるアスペクト比3.0以上の結晶粒の個数割合が50%以上であるので、表層と内部組織との形状類似性が高い。その結果、表層と内部との境界への曲げ加工に起因する応力および歪みの局所的な集中が抑制され、耐水素脆化特性が改善すると推定される。
軟質層に含まれる残留オーステナイトの体積分率を、表面から鋼板の板厚の1/4厚の位置を中心とした1/8厚~3/8厚の範囲に含まれる残留オーステナイトの体積分率の80%以下に制限すると、曲げ加工部の耐水素脆化特性が向上する。1/8厚~3/8厚の範囲に含まれる残留オーステナイトの体積分率に対する軟質層に含まれる残留オーステナイトの体積分率は、好ましくは50%以下、より好ましくは30%以下である。
軟質層における残留オーステナイトの体積分率によって曲げ加工部の耐水素脆化特性が向上するメカニズムは明らかでないが、以下のように推定される。すなわち、曲げ加工部においては、板厚中央から曲げ外表面に向かうほど大きな塑性ひずみが生じる。そのため、曲げ外側の表面近傍に存在する残留オーステナイトの大半は、加工誘起変態によりマルテンサイトに変態する。このような残留オーステナイトが加工誘起変態したマルテンサイトは極めて硬質で脆いために、耐水素脆化割れ特性に悪影響を及ぼすと考えられる。したがって、軟質層に含まれる残留オーステナイトの体積分率が、鋼板の1/8厚~3/8厚の範囲に含まれる残留オーステナイトの体積分率に対して小さいほど、曲げ加工部の耐水素脆化特性が向上すると考えらえる。
本実施形態に係る鋼板は、表面から深さ方向(板厚方向)に高周波グロー放電(高周波GDS)分析法で、Siを示す波長の発光強度を分析したときに、表面から0.2μm超、10.0μm以下の範囲に、Siを示す波長の発光強度のピークが現れる。表面から0.2μm超、10.0μm以下の範囲にSiを示す波長の発光強度のピークが現れるということは、鋼板が内部酸化していて、鋼板の表面から0.2μm超、10.0μm以下の範囲に、Si酸化物を含む内部酸化層を有することを表している。上記の深さの範囲に内部酸化層を有する鋼板は、製造時の熱処理に伴う鋼板表面でのSi酸化物などの酸化膜の生成が抑制されているので、優れた化成処理性及びめっき密着性を有する。
本実施形態に係る鋼板の表面(両面もしくは片面)には、亜鉛めっき層(溶融亜鉛めっき層または電気亜鉛めっき層)が形成されていてもよい。溶融亜鉛めっき層は、溶融亜鉛めっき層を合金化した合金化溶融亜鉛めっき層であってもよい。
溶融亜鉛めっき層が合金化していないものである場合、溶融亜鉛めっき層中のFe含有量は7.0質量%未満であることが好ましい。
溶融亜鉛めっき層が合金化した合金化溶融亜鉛めっき層である場合、Fe含有量が6.0質量%以上であることが好ましい。合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき鋼板よりも優れた溶接性を有する。
本実施形態に係る熱処理用鋼板は、本実施形態に係る鋼板の素材として用いられる。
具体的には、本実施形態に係る鋼板の素材となる熱処理用鋼板は、上記の本実施形態に係る鋼板と同様の化学組成を有し、以下に示す鋼組織(ミクロ組織)を有することが好ましい。なお、各組織の含有量の説明における[%]は断りがない限り[体積%]を示す。
「ラス状組織を体積分率で合計70%以上」
本実施形態の熱処理用鋼板は、表面から鋼板の板厚の1/4厚の位置を中心とした1/8厚~3/8厚の範囲における鋼組織(鋼板内部の鋼組織)が、ベイナイト、焼戻しマルテンサイト、フレッシュマルテンサイトの1種または2種以上からなるラス状組織を、体積分率で合計70%以上含有することが好ましい。
熱処理用鋼板における鋼板内部の鋼組織は、上述したラス状組織の他、残留オーステナイトを含んでもよい。ただし、残留オーステナイトを含む場合、アスペクト比が1.3未満でかつ長径が2.5μm超の残留オーステナイト粒の個数密度を、1.0×10-2個/μm2以下に制限することが好ましい。
「鋼板表面から深さ方向に20μmまでの範囲である表層部において、フェライトの体積分率が20%未満」
本実施形態に係る鋼板の素材となる熱処理用鋼板は、鋼板表面から深さ方向に20μmまでの範囲において、フェライトが、体積分率で20%未満であることが好ましい。フェライトの体積分率が20%以上であると、熱処理用鋼板に第2熱処理を施して得られる鋼板に形成される軟質層において、アスペクト比が3.0を超えるフェライト粒の体積分率が所定の範囲を満足しない。フェライトの体積分率は少ないほど好ましく、10%以下がより好ましく、0%であっても構わない。
次に、本実施形態に係る鋼板の製造方法について説明する。
本実施形態に係る鋼板を製造するには、まず、上記の化学成分(組成)を有するスラブを鋳造する。熱間圧延に供するスラブは、連続鋳造スラブや薄スラブキャスターなどで製造したものを用いることができる。鋳造後のスラブは、一旦常温まで冷却してから熱間圧延してもよいし、高温のまま直接熱間圧延してもよい。鋳造後のスラブを高温のまま直接熱間圧延に供することが、熱間圧延の加熱に必要なエネルギーを削減できるため、好ましい。
熱間圧延に先立ち、スラブを加熱する。本実施形態に係る鋼板を製造する場合、以下に示す式(4)を満足するスラブ加熱条件を選定することが好ましい。
(式(4)において、fγは下記式(5)で示される値であり、WMnγは下記式(6)で示される値であり、Dは下記式(7)で示される値であり、Ac1は下記式(8)で示される値であり、Ac3は下記式(9)で示される値であり、ts(T)はスラブ加熱温度Tにおけるスラブの滞在時間(sec)である。)
Ac3=879-346×C+65×Si-18×Mn+54×Al・・(9)
(式(9)式中の元素記号は、当該元素の鋼中の質量%である。)
式(4)の分母は、γ単相域滞在中にγ中で拡散するMn原子の距離に対応する項である。式(4)の分母が大きくなるほど、Mn濃度分布が均質化する。鋼中のMn濃度分布を十分に均質化させるためには、式(4)の値が1.0以下となるように、スラブ加熱条件を選定することが好ましい。式(4)の値が小さいほど、熱処理用鋼板および熱処理用鋼板に第2熱処理を行って得られる鋼板の、鋼板内部における粗大な塊状のオーステナイト粒の個数密度を低減できる。
スラブを加熱した後、熱間圧延を行う。熱間圧延の完了温度(仕上温度)が850℃未満では、圧延反力が高まり、指定の板厚を安定して得ることが困難となる。このため、熱間圧延の完了温度は850℃以上とすることが好ましい。圧延反力の観点から、熱間圧延の完了温度は870℃以上とすることが好ましい。一方、熱間圧延の完了温度を1050℃超とするには、スラブの加熱終了から熱間圧延の完了までの工程において、加熱装置などを用いて鋼板を加熱する必要があり、高いコストが必要となる。このため、熱間圧延の完了温度を1050℃以下とすることが好ましい。熱間圧延中の鋼板温度を確保しやすくするため、熱間圧延の完了温度は1000℃以下とすることが好ましく、980℃以下とすることが更に好ましい。
次に、このようにして製造した熱延鋼板の酸洗を行う。酸洗は、熱延鋼板の表面の酸化物を除去する工程であり、鋼板の化成処理性、めっき密着性の向上のために重要である。熱延鋼板の酸洗は、一回でも良いし、複数回に分けて行っても良い。
酸洗した熱延鋼板は、冷間圧延して冷延鋼板としても構わない。熱延鋼板に冷間圧延を行うことで、高精度で所定の板厚を有する鋼板を製造できる。冷間圧延では、圧下率の合計(冷間圧延での累積圧下率)が85%を超えると、鋼板の延性が失われ、冷間圧延中に鋼板が破断する危険性が高まる。このため、圧下率の合計を85%以下とすることが好ましく、75%以下とすることがより好ましい。冷間圧延工程における合計の圧下率の下限は特に定めず、冷間圧延を施さなくてもかまわない。鋼板の形状均質性を向上させて良好な外観を得るとともに、第1熱処理中および第2熱処理中の鋼板温度を均一にして良好な延性を得るために、冷間圧延の圧下率は合計で0.5%以上とすることが好ましく、1.0%以上とすることが更に好ましい。
次に、酸洗した熱延鋼板、または熱延鋼板を冷間圧延して得られた冷延鋼板に、第1熱処理を施すことにより熱処理用鋼板を製造する。第1熱処理は、下記(a)~(e)を満足する条件で行う。
(a)650℃~最高加熱温度に到達するまでの間において、0.1体積%以上のH2を含有し、かつ下記式(3)を満たす雰囲気とする。
log(PH2O/PH2)<-1.1・・・(3)
(式(3)において、logは常用対数、PH2Oは水蒸気の分圧を示し、PH2は水素の分圧を示す。)
一方、雰囲気中のH2含有量が20体積%超であると、効果が飽和する。また、雰囲気中のH2含有量が20体積%超であると、操業上水素爆発の危険性が増す。このため、雰囲気中のH2含有量を20体積%以下とすることが好ましい。
また、log(PH2O/PH2)が-1.1以上の場合、鋼板表層部における脱炭反応が進行し、表層部にフェライトが形成される。その結果、第2熱処理後の鋼板において、アスペクト比が3.0に満たないフェライト粒の割合が増大する。
第1熱処理では、最高加熱温度をAc3-30℃以上とする。最高加熱温度がAc3-30℃未満であると、熱処理用鋼板における鋼板内部の鋼組織に塊状の粗大なフェライトが残存する。その結果、熱処理用鋼板の第2熱処理後に得られる鋼板の軟質フェライト相の体積分率が過剰になるとともに、アスペクト比2.0以上の残留オーステナイトの個数割合が不足し、特性が劣化する。最高加熱温度はAc3-15℃以上が好ましく、Ac3+5℃以上とすることが更に好ましい。一方、過度に高温まで加熱すると加熱に要する燃料コストが増大し、また、炉体の損傷を招く。このため、最高加熱温度は1000℃以下とする。
第1熱処理において、加熱の際、650℃~最高加熱温度までの温度範囲において、平均加熱速度が0.5℃/秒未満であると、加熱処理中にMn偏析が進み、粗大な塊状Mn濃化領域が形成される。この場合、第2熱処理後に得られる鋼板の特性が劣化する。塊状のオーステナイトの生成を抑制するため、650℃~最高加熱温度の平均加熱速度は0.5℃/秒以上とする。好ましくは1.5℃/秒以上である。
一方、平均加熱速度の上限については、500℃/秒超とすることは実操業上困難であり、温度制御も難しいことから平均加熱速度は500℃/秒を上限とする。650℃~最高加熱温度までの平均加熱速度は、650℃と最高加熱温度との差を、鋼板表面温度が650℃から最高加熱温度に至るまでの経過時間で割ることで得られる。
第1熱処理では、熱処理用鋼板における鋼板内部の鋼組織をラス状組織主体とするために、最高加熱温度で保持した後、700℃~下記式(10)で示されるMsまでの温度範囲の冷却速度が平均冷却速度で5℃/秒以上となるように冷却する。平均冷却速度が5℃/秒未満であると、熱処理用鋼板において塊状フェライトが生成する場合がある。この場合、第2熱処理後に得られる鋼板の軟質フェライトの体積分率が過剰となり、引張強度等の特性が劣化する。平均冷却速度は10℃/秒以上とすることが好ましく、30℃/秒以上とすることが更に好ましい。
平均冷却速度の上限は特に定める必要はないが、500℃/秒超の平均冷却速度で冷却するには、特別な設備が必要となる。このため、平均冷却速度は500℃/秒以下であることが好ましい。700℃~Ms以下までの温度範囲の平均冷却速度は、700℃とMsとの差を、鋼板表面温度が700℃からMsに至るまでの経過時間で割ることで得られる。
(式(10)式中の元素記号は、当該元素の鋼中の質量%である。)
第1熱処理では、700℃~Msまでの温度範囲の平均冷却速度が5℃/秒以上となる冷却を、式(10)で示されるMs以下の冷却停止温度まで行う。冷却停止温度は室温(25℃)であってもよい。冷却停止温度をMs以下とすることで、第1熱処理後に得られる熱処理用鋼板における鋼板内部の鋼組織がラス状組織主体のものとなる。
本実施形態では、第2熱処理を行う前の熱処理用鋼板に、様々な処理を施しても構わない。例えば、熱処理用鋼板の形状を矯正するために、熱処理用鋼板に調質圧延処理を施してもよい。また、熱処理用鋼板の表面に存在する酸化物を除去するために、熱処理用鋼板に酸洗処理を施しても構わない。
第1熱処理を施した鋼板(熱処理用鋼板)に、第2熱処理を施す。第2熱処理は、下記(A)~(E)を満足する条件で行う。
(A)650℃~最高加熱温度に到達するまでの間において、H2が0.1体積%以上、O2が0.020体積%以下、log(PH2O/PH2)が下記式(4)を満たす雰囲気とする。
-1.1≦log(PH2O/PH2)≦-0.07・・・(4)
(式(3)において、logは常用対数、PH2Oは水蒸気の分圧を示し、PH2は水素の分圧を示す。)
第2熱処理において、上記(A)を満たすことにより、鋼板外部での酸化反応が抑制されるとともに、表層部の脱炭反応が促進される。
また、雰囲気中のH2含有量が20体積%超であると、効果が飽和する。また、雰囲気中のH2含有量が20体積%超であると、操業上水素爆発の危険性が増す。このため、雰囲気中のH2含有量を20体積%以下とすることが好ましい。
一方、log(PH2O/PH2)が-0.07を超えると、脱炭反応が過剰に進行するので、第2熱処理後に得られる鋼板の強度が不足する。そのため、log(PH2O/PH2)を-0.07以下とする。
第2熱処理では、最高加熱温度を(Ac1+25)℃~(Ac3-10)℃とする。最高加熱温度が(Ac1+25)℃未満であると、鋼中のセメンタイトが溶け残り、第2熱処理後に得られる鋼板の内部組織における残留オーステナイト分率が不足し、特性が劣化する。第2熱処理後に得られる鋼板における硬質組織分率を高めて、より高強度の鋼板を得るために、最高加熱温度を(Ac1+40)℃以上とすることが好ましい。
第2熱処理における650℃~最高加熱温度までの平均加熱速度が0.5℃/秒未満であると、第1熱処理で作りこんだラス状組織の回復が進行し、粒内にオーステナイト粒を有さない軟質フェライトの体積分率が増大する。一方、平均加熱速度が500℃/秒超であると、脱炭反応が十分進行しない。
第2熱処理において、最高加熱温度から480℃以下まで冷却する。このとき、700~600℃の間の平均冷却速度を3℃/秒以上とする。平均冷却速度が3℃/秒未満で上述の範囲を冷却すると、粗大な炭化物が生成して鋼板の特性が損なわれる。平均冷却速度は、10℃/秒以上とすることが好ましい。平均冷却速度の上限は特に設けずとも構わないが、200℃/秒超とするには特殊な冷却装置が必要となるため、200℃/秒以下とすることが好ましい。
続いて、300℃~480℃の間の温度域で、鋼板を10秒以上保持する。保持時間が10秒を下回ると、未変態オーステナイト中に炭素が十分濃化しない。この場合、ラス状のフェライトが十分に成長せず、オーステナイトへのC濃化が進まない。その結果、上記保持後の最終冷却時にフレッシュマルテンサイトが生成してしまい、鋼板の特性が大きく劣化する。オーステナイト中への炭素濃化を十分に進め、マルテンサイトの生成量を減らして、鋼板の特性を改善するため、保持時間は100秒以上とすることが好ましい。保持時間の上限を限定する必要はないが、過度に長くても生産性が低下するので、保持時間は、1000秒以下としてもよい。
冷却停止温度が300℃未満であった場合には、300~480℃に再加熱してから保持してもよい。
第2熱処理後の鋼板に対し、表面に溶融亜鉛めっき層を形成する溶融亜鉛めっきを行ってもよい。また、溶融亜鉛めっき層の形成に引き続いてめっき層の合金化処理を行ってもよい。
また、第2熱処理後の鋼板に対し、表面に電気亜鉛めっき層を形成する電気亜鉛めっきを行ってもよい。
合金化処理は、合金化処理温度を460~600℃とすることが好ましい。合金化処理が460℃未満であると、合金化速度が遅くなり、生産性が低下するだけでなく、合金化処理むらが発生する。
一方、合金化処理温度が600℃を超えると、合金化が過度に進行して、鋼板のめっき密着性が劣化する。合金化処理温度は、より好ましくは480~580℃である。合金化処理の加熱時間は5~60秒とすることが望ましい。
また合金化処理は、溶融亜鉛めっき層中の鉄濃度が6.0質量%以上となるような条件で行うことが好ましい。
本実施形態では、鋼板に対して、形状矯正を目的として冷間圧延を施しても構わない。冷間圧延は、第1熱処理を行った後に施しても構わないし、第2熱処理を行った後に施しても構わない。また、第1熱処理を行った後と、第2熱処理を行った後との両方で施しても構わない。冷間圧延の圧下率は、圧下率は3.0%以下とすることが好ましく、1.2%以下とすることが更に好ましい。冷間圧延の圧下率が3.0%を超えると、一部の残留オーステナイトが加工誘起変態によりマルテンサイトに変態することで、残留オーステナイトの体積分率が低下し、特性が損なわれる懸念がある。一方、冷間圧延の圧延率の下限値は特に定めず、冷間圧延を施さなくても本実施形態に係る鋼板の特性は得られる。
「鋼組織の測定」
鋼板内部および軟質層の鋼組織に含まれるフェライト(軟質フェライト、硬質フェライト)、ベイナイト、焼戻しマルテンサイト、フレッシュマルテンサイト、パーライト、セメンタイト、残留オーステナイトの体積分率は、以下に示す方法を用いて測定できる。
ここで、粒内に下部組織を有し、かつ、炭化物が複数のバリアントを持って析出している領域を焼戻しマルテンサイトと判断する。また、セメンタイトがラメラ状に析出している領域をパーライトまたはセメンタイトと判断する。輝度が小さく、かつ下部組織が認められない領域をフェライト(軟質フェライトまたは硬質フェライト)と判断する。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をフレッシュマルテンサイトまたは残留オーステナイトと判断する。残部をベイナイトと判断する。各々の体積分率を、ポイントカウンティング法によって算出することで、各組織の体積分率とする。
硬質フェライトおよび軟質フェライトの体積分率は、測定されたフェライトの体積分率をもとに、後述する方法で、それぞれの体積分率を求める。
フレッシュマルテンサイトの体積分率については、フレッシュマルテンサイトまたは残留オーステナイトである体積分率から、後述するX線回折法により求めた残留オーステナイトの体積分率を引くことにより、求めることができる。
本実施形態に係る鋼板において、軟質層に含まれる残留オーステナイトの体積分率と、鋼板内部の残留オーステナイトの体積分率との割合は、EBSD法(電子線後方散乱回折法)により高分解能結晶構造解析を行うことにより評価する。具体的には、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨して鏡面に仕上げる。更に、表層の加工層を除去するために電解研磨またはコロイダルシリカを用いた機械研磨を行う。次いで、軟質層を含む鋼板の表層部、および鋼板内部(表面から1/4厚の位置を中心とした1/8厚~3/8厚の範囲)について、観察視野の総面積が合計で2.0×10-9m2以上(複数視野ないし同一視野でも可)となるようにEBSD法による結晶構造解析を行う。測定に当たってEBSD法により得られたデータの解析には、TSL社製の「OIM Analysys 6.0」を用いる。また、評点間距離(step)は0.01~0.20μmとする。観察結果から、FCC鉄と判断される領域を残留オーステナイトと判断し、軟質層および鋼板内部の残留オーステナイトの体積分率をそれぞれ算出する。
鋼板内部の鋼組織に含まれる残留オーステナイト粒のアスペクト比および長径は、EBSD法によって高分解能結晶方位解析を行い、評価する。具体的には、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨して鏡面に仕上げる。更に、表層の加工層を除去するために電解研磨またはコロイダルシリカを用いた機械研磨を行う。次いで、鋼板内部(表面から1/4厚の位置を中心とした1/8厚~3/8厚の範囲)について、合計で2.0×10-9m2以上(複数視野ないし同一視野でも可)の面積についてEBSD法による結晶構造解析を行う。観察結果から、FCC鉄と判断される領域を残留オーステナイトとする。
次に、上記の方法により測定した残留オーステナイト粒の結晶方位から、測定エラーを避けるため、長軸長さが0.1μm以上のオーステナイト粒のみを抜き出して、結晶方位マップを描く。10°以上の結晶方位差を生じる境界を残留オーステナイト粒の結晶粒界とみなす。アスペクト比は、残留オーステナイト粒の長軸長さを短軸長さで除した値とする。長径は、残留オーステナイト粒の長軸長さとする。この結果から、全残留オーステナイトに占める、アスペクト比2.0以上の残留オーステナイトの個数割合を求める 。
EBSD法により得られたデータの解析には、TSL社製の「OIM Analysys 6.0」を用いる。また、評点間距離(step)は0.01~0.20μmとする。
フェライト粒のうち、オーステナイト粒を含む(内包する)粒と含まない粒とを分離する手法について述べる。まず、FE-SEMを用いて結晶粒を観察し、EBSD法により高分解能結晶方位解析を行う。具体的には、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨して鏡面に仕上げる。更に、表層の加工層を除去するために電解研磨またはコロイダルシリカを用いた機械研磨を行う。次いで、鋼板内部(表面から1/4厚の位置を中心とした1/8厚~3/8厚の範囲)について、合計で2.0×10-9m2以上(複数視野ないし同一視野でも可)の面積についてEBSD法による結晶構造解析を行う。次いで、BCC鉄から得られたデータに対し、15°以上の結晶方位差を生じる境界を結晶粒界とし、フェライト粒の結晶粒界マップを描く。次に、FCC鉄から得られたデータから、測定エラーを避けるため、長軸の長さが0.1μm以上のオーステナイト粒のみで結晶粒の分布マップを描き、フェライト粒の結晶粒界マップと重ねる。
一つのフェライト粒において、完全にその内部に取り込まれているオーステナイト粒が一つ以上あれば「オーステナイト粒を含むフェライト粒」とする。また、オーステナイト粒と隣接していないか、あるいは他の粒との境界でのみオーステナイト粒と隣接している場合を「オーステナイト粒を含まないフェライト粒」とする。
軟質層の厚さを決定するための表層~鋼板内部の硬度分布は、例えば以下の手法により求めることができる。
鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨して鏡面に仕上げ、さらに表層の加工層を除去するためにコロイダルシリカを用いて化学的研磨を行う。得られた試料の観察面について、微小硬度測定装置を用いて、最表層から5μm深さの位置を起点として、表面から板厚の1/8厚さの位置まで、鋼板の厚さ方向に10μmピッチで、頂角136°の四角錐形状のビッカース圧子を押し込む。このとき、押し込み荷重は互いのビッカース圧痕が干渉しないように設定する。例えば2gfである。その後、光学顕微鏡または走査型電子顕微鏡等を用いて、圧痕の対角線長さを測定し、ビッカース硬さ(Hv)に変換する。
次に、測定位置を圧延方向に10μm以上移動し、起点を最表層から10μm深さ位置として板厚1/8厚さの位置まで同様の測定を行う。次に、また測定位置を圧延方向に10μm以上移動し最表層から5μm深さの位置を起点として、表面から板厚の1/8厚さの位置まで、同様の測定を行う。次に、測定位置を圧延方向に10μm以上移動し、起点を最表層から10μm深さ位置として板厚1/8厚さの位置まで同様の測定を行う。図7に示すように、これを繰り返すことによって、各厚さ位置につき各5点ずつのビッカース硬さを測定する。こうすることにより、事実上、深さ方向に5μmピッチの硬度測定データが得られる。測定間隔を単純に5μmピッチとしないのは、圧痕同士の干渉を避けるためである。5点の平均値をその厚さ位置での硬さとする。各データ間は直線で補間することにより、深さ方向の硬さプロファイルを得る。硬さプロファイルから硬度が母材硬度の80%以下となる深さ位置を読み取ることで、軟質層の厚さを求める。
一方、鋼板内部の硬度は1/4厚さ位置を中心とする1/8厚~3/8厚の範囲について、少なくとも5点の硬度を、上記と同じ要領で微小硬度測定装置を用いて測定し、値を平均することにより求める。
微小硬度測定装置としては、例えばFISCHERSCOPE(登録商標)HM2000 XYpを用いることができる。
軟質層中のフェライトのアスペクト比は、FE-SEMを用いて結晶粒を観察し、EBSD法(電子線後方散乱回折法)により高分解能結晶方位解析を行い、評価する。EBSD法により得られたデータの解析には、TSL社製の「OIM Analysys 6.0」を用いる。また、評点間距離(step)は0.01~0.20μmとする。
観察結果から、BCC鉄と判断される領域をフェライトとし、結晶方位マップを描く。そして、15°以上の結晶方位差を生じる境界を結晶粒界とみなす。アスペクト比は、個々のフェライト粒の長軸長さを短軸長さで除した値とする。
本実施形態に係る鋼板および熱処理用鋼板を、高周波グロー放電分析法で分析する場合には、公知の高周波GDS分析法を用いることができる。
具体的には、鋼板の表面をAr雰囲気にし、電圧をかけてグロープラズマを発生させた状態で、鋼板表面をスパッタリングさせながら深さ方向に分析する方法を用いる。そして、グロープラズマ中で原子が励起されて発せられる元素特有の発光スペクトル波長から、材料(鋼板)に含まれる元素を同定し、同定した元素の発光強度から材料に含まれる元素の量を見積もる。深さ方向のデータは、スパッタ時間から見積もることができる。具体的には、予め標準サンプルを用いてスパッタ時間とスパッタ深さとの関係を求めておくことで、スパッタ時間をスパッタ深さに変換できる。したがって、スパッタ時間から変換したスパッタ深さを、材料の表面からの深さと定義できる。
高周波GDS分析では、市販の分析装置を用いることができる。本実施形態においては、堀場製作所社製の高周波グロー放電発光分析装置GD-Profiler2を用いる。
表6~表9に示す条件で、最高加熱温度に加熱し、最高加熱温度で保持した。その後、冷却停止温度まで冷却した。第1熱処理では、表6~表9に示す濃度でH2を含有し、log(PH2O/PH2)が表6~表9に示す数値である雰囲気で、650℃~最高加熱温度に到達するまで加熱した。
Ac3=879-346C+65Si-18Mn+54Al・・(9)
(式(9)式中の元素記号は、当該元素の鋼中の質量%である。)
Ms=561-407×C-7.3×Si-37.8×Mn-20.5×Cu-19.5×Ni-19.8×Cr-4.5×Mo・・(10)
(式(10)式中の元素記号は、当該元素の鋼中の質量%である。)
650℃~最高加熱温度までの平均加熱速度が表10~表13に示す条件になるように、最高加熱温度に加熱し、最高加熱温度で保持した。その後、700~600℃の平均冷却速度が表10~表13に示す平均冷却速度となるように冷却停止温度まで冷却した。第2熱処理では、表10~表13に示す雰囲気で、650℃~最高加熱温度に到達するまで加熱した。
また、各実験例のうち、実験例No.1’~80’については、表に示す条件にて冷却、等温保持を行った後のタイミングで(すなわち図4のパターン[1]に示すタイミングで)合金化溶融亜鉛めっきを施した。なおこれらの実験例No.1’~80’のうち、実験例1’~16’、18’~58’、60’~73’,75’~80’については、溶融亜鉛めっきに引き続いて合金化処理を行ったが、実験例17’、59’、74’については、溶融亜鉛めっき後に合金化処理を行なわなかった。
Ac1=723-10.7×Mn-16.9×Ni+29.1×Si+16.9×Cr・・(8)(式(8)式中の元素記号は、当該元素の鋼中の質量%である。)
これらの結果を表14~表17に示す。
そして、実験例No.1~No.78及び実験例No.1’~No.89’の鋼板において、表面から深さ方向に0.2μm超、10.0μm以下の深さの間に、Siを示す波長の発光強度のピークが現れたものを内部酸化ピーク「あり」と評価し、ピークが現れなかったものを内部酸化ピーク「なし」と評価した。結果を表18~表21に示す。
TS2×El×λ・・・(11)
(式(11)において、TSは最大引張応力(MPa)を示し、Elは伸び(%)を示し、λは穴広げ性(%)を示す。)
結果を表22~表25に示す。
まず、試験片の長手方向と鋼板の圧延方向とが垂直になるように、30mm×120mmの短冊状試験片を鋼板から採取し、試験片の両端にボルト締結用の穴開け加工を行った。次に、半径5mmのポンチで試験片に180°曲げを行った。その後、スプリングバックしたU曲げ試験片について、ボルトとナットとを用いて締結することで応力を負荷した。この時、U曲げ試験片の頂部にGL5mmのひずみゲージを貼り付け、ひずみ量制御により引張強度の0.8倍の応力を負荷した。その際、応力は、予め引張試験で採取した応力-ひずみ曲線から、ひずみを応力に換算して設定した。U曲げ試験片の端面はシャー切断ままとした。
応力付与後のU曲げ試験片に対して、電気化学セルを用いて試験片が破断に至るまで連続的に陰極水素チャージを行った。電解液には3%NaCl水溶液に3g/Lのチオシアン酸アンモニウムを加えたものを使用し、チャージ電流密度は-0.05mA/cm2とした。破断後の試験片は即座に液体窒素中に保管し、ガスクロマトグラフによる昇温水素分析法(昇温速度:100℃/時間、300℃まで測定)で鋼中の水素量を測定した。室温から200℃までに鋼材から放出された水素量を拡散性水素量とした。
同様の試験を3回行い、その平均値を限界拡散性水素量と定義した。引張強度が1100MPa以下の材料については、限界拡散性水素量が1.0ppm以上のものを「Ex」、0.6~1.0ppmのものを「G」、0.6ppm未満のものを「B」と判定した。引張強度が1100MPa超、1350MPa以下の材料については、限界拡散性水素量が0.8ppm以上のものを「Ex」、0.5~0.8ppmのものを「G」、0.5ppm未満のものを「B」と判定した。引張強度が1350MPaを超える材料については、限界拡散性水素量が0.6ppm以上のものを「Ex」、0.3~0.6ppmのものを「G」、0.3ppm未満のものを「B」と判定した。
鋼板を70mm×150mmに切断し、これに日本パーカライジング社製の脱脂剤(商品名:ファインクリーナーE2083)の18g/l水溶液を、40℃で120秒間スプレーして塗布した。次に、脱脂剤を塗布した鋼板を水洗して脱脂し、日本パーカライジング社製の表面調整剤(商品名:プレパレンXG)の0.5g/l水溶液に常温で60秒間浸漬した。その後、表面調整剤を塗布した鋼板を、日本パーカライジング社製のりん酸亜鉛処理剤(商品名:パルボンドL3065)に120秒間浸漬し、水洗し、乾燥した。このことにより、鋼板の表面にりん酸亜鉛被膜からなる化成処理膜を形成した。
「G」りん酸亜鉛結晶が疎で、隣り合う結晶間に僅かな隙間(りん酸亜鉛被膜が付着していない、一般に「スケ」と呼ばれる部分)が見られる。
「B」表面に明らかに化成処理被膜で被覆されていない箇所が見られる。
Ex:めっき剥離小(剥離幅5mm未満)
G:実用上差し支えない程度の剥離(剥離幅5mm以上10mm未満)
B:剥離が激しいもの(剥離幅10mm以上)
めっき密着性はEx、Gを合格とした。
実験例No.2の鋼板は、第1熱処理における最高加熱温度が低いため、軟質フェライトが多く、アスペクト比2.0以上の残留オーステナイトの個数割合が不足して、強度・伸び・穴広げ率のバランスが悪かった。
実験例No.6、15、16、24の鋼板は、第1熱処理におけるlog(PH2O/PH2)が高く、所望の表層組織が得られなかったため、曲げ加工部の耐水素脆性が悪かった。
実験例No.9、15、20、25、48、51の鋼板は、第2熱処理におけるlog(PH2O/PH2)が低く、所望の表層組織が得られなかったため、曲げ加工部の耐水素脆化特性が悪かった。
実験例No.35の鋼板は、第2熱処理における300℃~480℃の間での保持時間が不足したため、内部組織のフレッシュマルテンサイトの分率が多くなり、強度・伸び・穴広げ率のバランスが悪かった。
実験例No.43の鋼板は、第2熱処理における冷却速度が遅いため、鋼板の内部組織におけるパーライトとセメンタイトの合計の分率が多くなり、強度・伸び・穴広げ率のバランスが悪かった。
実験例No.65の鋼板は、第2熱処理におけるlog(PH2O/PH2)が大きいため、鋼板の表層組織における軟質層厚さが厚くなり、最大引張応力(TS)が不十分となった。
本発明の鋼板は、延性および穴広げ性に優れ、加工後の曲げ性が良好であるため、プレス加工などにより様々な形状に成形される自動車用鋼板として好適である。また、本発明の鋼板は、化成処理性、めっき密着性に優れるので、表面に化成処理皮膜やめっき層を形成する鋼板に好適である。
11 鋼板の表面から1/4厚位置を中心とした1/8厚位置~3/8厚の範囲(鋼板内部)
12 軟質層
Claims (9)
- 質量%で、
C:0.050%~0.500%、
Si:0.01%~3.00%、
Mn:0.50%~5.00%、
P:0.0001%~0.1000%、
S:0.0001%~0.0100%、
Al:0.001%~2.500%、
N:0.0001%~0.0100%、
O:0.0001%~0.0100%、
Ti:0%~0.300%、
V:0%~1.00%、
Nb:0%~0.100%、
Cr:0%~2.00%、
Ni:0%~2.00%、
Cu:0%~2.00%、
Co:0%~2.00%、
Mo:0%~1.00%、
W:0%~1.00%、
B:0%~0.0100%、
Sn:0%~1.00%、
Sb:0%~1.00%、
Ca:0%~0.0100%、
Mg:0%~0.0100%、
Ce:0%~0.0100%、
Zr:0%~0.0100%、
La:0%~0.0100%、
Hf:0%~0.0100%、
Bi:0%~0.0100%、
REM:0%~0.0100%、
を含有し、残部がFeおよび不純物からなる化学組成を有し、
表面から1/4厚の位置を中心とした1/8厚~3/8厚の範囲における鋼組織が、体積分率で、
軟質フェライト:0%~30%、
残留オーステナイト:3%~40%、
フレッシュマルテンサイト:0%~30%、
パーライトとセメンタイトの合計:0%~10%
を含有し、残部が硬質フェライトを含み、
前記1/8厚~3/8厚の前記範囲において、全残留オーステナイトに占める、アスペクト比2.0以上の残留オーステナイトの個数割合が50%以上であり、
前記1/8厚~3/8厚の前記範囲の硬度の80%以下の硬度を有する領域を軟質層と定義したとき、前記表面から板厚方向に厚さが1~100μmの軟質層が存在し、
前記軟質層に含まれるフェライトのうち、アスペクト比3.0以上の結晶粒の体積分率が50%以上であり、
前記軟質層における残留オーステナイトの体積分率が、前記1/8厚~3/8厚の前記範囲における残留オーステナイトの体積分率の80%以下であり、
前記表面から前記板厚方向に高周波グロー放電分析法でSiを示す波長の発光強度を分析したときに、前記表面から0.2μm超、10.0μm以下の範囲に、前記Siを示す波長の発光強度のピークが現れる
ことを特徴とする鋼板。 - 前記化学組成が、
Ti:0.001%~0.300%、
V:0.001%~1.00%、
Nb:0.001%~0.100%
のうち一種または二種以上を含有することを特徴とする、請求項1に記載の鋼板。 - 前記化学組成が、
Cr:0.001%~2.00%、
Ni:0.001%~2.00%、
Cu:0.001%~2.00%、
Co:0.001%~2.00%、
Mo:0.001%~1.00%、
W:0.001%~1.00%、
B:0.0001%~0.0100%
のうち一種または二種以上を含有することを特徴とする、請求項1または2に記載の鋼板。 - 前記化学組成が、
Sn:0.001%~1.00%、
Sb:0.001%~1.00%
のうち一種または二種を含有することを特徴とする、請求項1~3のいずれか一項に記載の鋼板。 - 前記化学組成が、
Ca:0.0001%~0.0100%、
Mg:0.0001%~0.0100%、
Ce:0.0001%~0.0100%、
Zr:0.0001%~0.0100%、
La:0.0001%~0.0100%、
Hf:0.0001%~0.0100%、
Bi:0.0001%~0.0100%、
REM:0.0001%~0.0100%
のうち一種または二種以上を含有する
ことを特徴とする請求項1~4のいずれか一項に記載の鋼板。 - 前記化学組成が、下記式(i)を満たすことを特徴とする、請求項1~5のいずれか一項に記載の鋼板。
Si+0.1×Mn+0.6×Al≧0.35・・・(i)
(式(i)中のSi、MnおよびAlは質量%での各元素の含有量とする。) - 表面に溶融亜鉛めっき層または電気亜鉛めっき層を有することを特徴とする、請求項1~6のいずれか一項に記載の鋼板。
- 請求項1~6のいずれか一項に記載の鋼板を製造する方法であって、
請求項1~6のいずれか一項に記載の化学組成を有するスラブを熱間圧延し、酸洗した熱延鋼板、または前記熱延鋼板を冷間圧延した冷延鋼板に、下記(a)~(e)を満足する第1熱処理を施した後、下記(A)~(E)を満足する第2熱処理を施すことを特徴とする鋼板の製造方法。
(a)650℃~最高加熱温度に到達するまでの間において、0.1体積%以上のH2を含有し、下記式(ii)を満たす雰囲気とする。
(b)Ac3-30℃~1000℃の最高加熱温度で1秒~1000秒保持する。
(c)650℃~最高加熱温度までの温度範囲の平均加熱速度が0.5℃/秒~500℃/秒となるように加熱する。
(d)最高加熱温度で保持した後、700℃~Msまでの温度範囲の平均冷却速度が5℃/秒以上となるように冷却する。
(e)平均冷却速度5℃/秒以上での冷却をMs以下の冷却停止温度まで行う。
(A)650℃~最高加熱温度に到達するまでの間において、H2が0.1体積%以上、O2が0.020体積%以下、log(PH2O/PH2)が下記式(iii)を満たす雰囲気とする。
(B)Ac1+25℃~Ac3-10℃の最高加熱温度で1秒~1000秒保持する。
(C)650℃~最高加熱温度までの平均加熱速度が0.5℃/秒~500℃/秒となるように加熱する。
(D)700~600℃までの温度範囲の平均冷却速度が3℃/秒以上となるように冷却する。
(E)平均冷却速度3℃/秒以上で冷却した後、300℃~480℃の間で10秒以上保持する。
log(PH2O/PH2)<-1.1・・・(ii)
-1.1≦log(PH2O/PH2)≦-0.07・・・(iii)
(式(ii)および式(iii)において、PH2Oは水蒸気の分圧を示し、PH2は水素の分圧を示す。) - 前記(D)の冷却過程より後の段階で溶融亜鉛めっき処理を施すことを特徴とする請求項8に記載の鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207027608A KR102467658B1 (ko) | 2018-03-30 | 2018-03-30 | 강판 및 그 제조 방법 |
US16/982,003 US11680303B2 (en) | 2018-03-30 | 2018-03-30 | Steel sheet and manufacturing method therefor |
MX2020009607A MX2020009607A (es) | 2018-03-30 | 2018-03-30 | Lamina de acero y metodo de fabricacion de la misma. |
JP2018543400A JP6418367B1 (ja) | 2018-03-30 | 2018-03-30 | 鋼板およびその製造方法 |
CN201880091732.2A CN111902554B (zh) | 2018-03-30 | 2018-03-30 | 钢板及其制造方法 |
PCT/JP2018/013791 WO2019187060A1 (ja) | 2018-03-30 | 2018-03-30 | 鋼板およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/013791 WO2019187060A1 (ja) | 2018-03-30 | 2018-03-30 | 鋼板およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019187060A1 true WO2019187060A1 (ja) | 2019-10-03 |
Family
ID=64098680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013791 WO2019187060A1 (ja) | 2018-03-30 | 2018-03-30 | 鋼板およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11680303B2 (ja) |
JP (1) | JP6418367B1 (ja) |
KR (1) | KR102467658B1 (ja) |
CN (1) | CN111902554B (ja) |
MX (1) | MX2020009607A (ja) |
WO (1) | WO2019187060A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI703220B (zh) * | 2020-01-06 | 2020-09-01 | 中國鋼鐵股份有限公司 | 汽車用鋼及其製造方法 |
US20220177995A1 (en) * | 2019-07-10 | 2022-06-09 | Nippon Steel Corporation | High strength steel sheet |
WO2022129989A1 (en) * | 2020-12-15 | 2022-06-23 | Arcelormittal | Annealing method |
WO2022149502A1 (ja) | 2021-01-07 | 2022-07-14 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
EP4029957A4 (en) * | 2019-10-23 | 2023-01-25 | JFE Steel Corporation | HIGH STRENGTH STEEL SHEET AND METHOD OF PRODUCTION THEREOF |
EP4029959A4 (en) * | 2019-10-23 | 2023-02-15 | JFE Steel Corporation | HIGH STRENGTH STEEL SHEET AND METHOD OF PRODUCTION THE SAME |
KR20230162110A (ko) | 2021-05-06 | 2023-11-28 | 제이에프이 스틸 가부시키가이샤 | 연속 어닐링로의 노점 제어 방법, 강판의 연속 어닐링 방법, 강판의 제조 방법, 연속 어닐링로, 연속 용융 아연 도금 설비 및 합금화 용융 아연 도금 설비 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2020009987A (es) * | 2018-03-30 | 2020-10-14 | Nippon Steel Corp | Lamina de acero y metodo para fabricar la misma. |
CN111690876A (zh) * | 2020-06-29 | 2020-09-22 | 马鞍山钢铁股份有限公司 | 一种高强度螺栓用盘条及其生产方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009108343A (ja) * | 2007-10-26 | 2009-05-21 | Sumitomo Metal Ind Ltd | 高強度鋼板及びその製造方法 |
JP2009209451A (ja) * | 2008-02-08 | 2009-09-17 | Jfe Steel Corp | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2011149066A (ja) * | 2010-01-22 | 2011-08-04 | Sumitomo Metal Ind Ltd | 冷延鋼板および熱延鋼板ならびにそれらの製造方法 |
WO2015151419A1 (ja) * | 2014-03-31 | 2015-10-08 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板及びその製造方法 |
WO2016013144A1 (ja) * | 2014-07-25 | 2016-01-28 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
WO2017029814A1 (ja) * | 2015-08-19 | 2017-02-23 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP2017145468A (ja) * | 2016-02-18 | 2017-08-24 | 新日鐵住金株式会社 | 高強度鋼板 |
WO2017164346A1 (ja) * | 2016-03-25 | 2017-09-28 | 新日鐵住金株式会社 | 高強度鋼板および高強度亜鉛めっき鋼板 |
JP2017186614A (ja) * | 2016-04-06 | 2017-10-12 | 新日鐵住金株式会社 | 厚鋼板およびその製造方法 |
WO2017183349A1 (ja) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | 鋼板、めっき鋼板、およびそれらの製造方法 |
WO2018030500A1 (ja) * | 2016-08-10 | 2018-02-15 | Jfeスチール株式会社 | 高強度薄鋼板およびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06128688A (ja) | 1992-10-20 | 1994-05-10 | Sumitomo Metal Ind Ltd | 疲労特性に優れた熱延鋼板およびその製造方法 |
JP3854506B2 (ja) | 2001-12-27 | 2006-12-06 | 新日本製鐵株式会社 | 溶接性、穴拡げ性および延性に優れた高強度鋼板およびその製造方法 |
JP3895986B2 (ja) | 2001-12-27 | 2007-03-22 | 新日本製鐵株式会社 | 溶接性および穴拡げ性に優れた高強度鋼板およびその製造方法 |
JP4716359B2 (ja) | 2005-03-30 | 2011-07-06 | 株式会社神戸製鋼所 | 均一伸びに優れた高強度冷延鋼板およびその製造方法 |
JP5245228B2 (ja) | 2006-08-31 | 2013-07-24 | 新日鐵住金株式会社 | 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 |
EP2762583B1 (en) * | 2011-09-30 | 2018-11-07 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance and manufacturing method thereof |
MX2020009987A (es) * | 2018-03-30 | 2020-10-14 | Nippon Steel Corp | Lamina de acero y metodo para fabricar la misma. |
US11447848B2 (en) * | 2018-03-30 | 2022-09-20 | Nippon Steel Corporation | Steel sheet and manufacturing method of therefor |
-
2018
- 2018-03-30 US US16/982,003 patent/US11680303B2/en active Active
- 2018-03-30 JP JP2018543400A patent/JP6418367B1/ja active Active
- 2018-03-30 KR KR1020207027608A patent/KR102467658B1/ko active IP Right Grant
- 2018-03-30 CN CN201880091732.2A patent/CN111902554B/zh active Active
- 2018-03-30 WO PCT/JP2018/013791 patent/WO2019187060A1/ja active Application Filing
- 2018-03-30 MX MX2020009607A patent/MX2020009607A/es unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009108343A (ja) * | 2007-10-26 | 2009-05-21 | Sumitomo Metal Ind Ltd | 高強度鋼板及びその製造方法 |
JP2009209451A (ja) * | 2008-02-08 | 2009-09-17 | Jfe Steel Corp | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2011149066A (ja) * | 2010-01-22 | 2011-08-04 | Sumitomo Metal Ind Ltd | 冷延鋼板および熱延鋼板ならびにそれらの製造方法 |
WO2015151419A1 (ja) * | 2014-03-31 | 2015-10-08 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板及びその製造方法 |
WO2016013144A1 (ja) * | 2014-07-25 | 2016-01-28 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
WO2017029814A1 (ja) * | 2015-08-19 | 2017-02-23 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP2017145468A (ja) * | 2016-02-18 | 2017-08-24 | 新日鐵住金株式会社 | 高強度鋼板 |
WO2017164346A1 (ja) * | 2016-03-25 | 2017-09-28 | 新日鐵住金株式会社 | 高強度鋼板および高強度亜鉛めっき鋼板 |
JP2017186614A (ja) * | 2016-04-06 | 2017-10-12 | 新日鐵住金株式会社 | 厚鋼板およびその製造方法 |
WO2017183349A1 (ja) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | 鋼板、めっき鋼板、およびそれらの製造方法 |
WO2018030500A1 (ja) * | 2016-08-10 | 2018-02-15 | Jfeスチール株式会社 | 高強度薄鋼板およびその製造方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220177995A1 (en) * | 2019-07-10 | 2022-06-09 | Nippon Steel Corporation | High strength steel sheet |
EP4029957A4 (en) * | 2019-10-23 | 2023-01-25 | JFE Steel Corporation | HIGH STRENGTH STEEL SHEET AND METHOD OF PRODUCTION THEREOF |
EP4029959A4 (en) * | 2019-10-23 | 2023-02-15 | JFE Steel Corporation | HIGH STRENGTH STEEL SHEET AND METHOD OF PRODUCTION THE SAME |
TWI703220B (zh) * | 2020-01-06 | 2020-09-01 | 中國鋼鐵股份有限公司 | 汽車用鋼及其製造方法 |
WO2022129989A1 (en) * | 2020-12-15 | 2022-06-23 | Arcelormittal | Annealing method |
WO2022130124A1 (en) * | 2020-12-15 | 2022-06-23 | Arcelormittal | Annealing method |
WO2022149502A1 (ja) | 2021-01-07 | 2022-07-14 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
KR20230086778A (ko) | 2021-01-07 | 2023-06-15 | 닛폰세이테츠 가부시키가이샤 | 강판 및 그 제조 방법 |
EP4223894A4 (en) * | 2021-01-07 | 2024-03-13 | Nippon Steel Corporation | STEEL SHEET AND ITS PRODUCTION METHOD |
KR20230162110A (ko) | 2021-05-06 | 2023-11-28 | 제이에프이 스틸 가부시키가이샤 | 연속 어닐링로의 노점 제어 방법, 강판의 연속 어닐링 방법, 강판의 제조 방법, 연속 어닐링로, 연속 용융 아연 도금 설비 및 합금화 용융 아연 도금 설비 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019187060A1 (ja) | 2020-04-30 |
US20210017620A1 (en) | 2021-01-21 |
CN111902554A (zh) | 2020-11-06 |
CN111902554B (zh) | 2022-03-29 |
KR20200123469A (ko) | 2020-10-29 |
US11680303B2 (en) | 2023-06-20 |
KR102467658B1 (ko) | 2022-11-18 |
JP6418367B1 (ja) | 2018-11-07 |
MX2020009607A (es) | 2020-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6418367B1 (ja) | 鋼板およびその製造方法 | |
JP6414371B1 (ja) | 鋼板およびその製造方法 | |
JP6421908B1 (ja) | 鋼板およびその製造方法 | |
US10113223B2 (en) | Hot-dip galvanized steel sheet | |
EP3216891B1 (en) | Hot-dip galvanized steel sheet | |
CN113166865B (zh) | 成形性、韧性及焊接性优异的高强度钢板及其制造方法 | |
JP7092258B2 (ja) | 亜鉛めっき鋼板およびその製造方法 | |
JP7273354B2 (ja) | 鋼板 | |
CN113614256A (zh) | 钢板及其制造方法 | |
JP6460238B2 (ja) | 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 | |
TWI671410B (zh) | 鋼板及其製造方法 | |
TWI650435B (zh) | 鋼板及其製造方法 | |
TWI664300B (zh) | 鋼板及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018543400 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18912491 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207027608 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18912491 Country of ref document: EP Kind code of ref document: A1 |