WO2019184932A1 - 地下中子能电站 - Google Patents

地下中子能电站 Download PDF

Info

Publication number
WO2019184932A1
WO2019184932A1 PCT/CN2019/079798 CN2019079798W WO2019184932A1 WO 2019184932 A1 WO2019184932 A1 WO 2019184932A1 CN 2019079798 W CN2019079798 W CN 2019079798W WO 2019184932 A1 WO2019184932 A1 WO 2019184932A1
Authority
WO
WIPO (PCT)
Prior art keywords
underground
power station
station according
layer
neutron power
Prior art date
Application number
PCT/CN2019/079798
Other languages
English (en)
French (fr)
Inventor
何满潮
吴宜灿
杨晓杰
汪建业
乔亚飞
王芳
王�琦
柏云清
Original Assignee
何满潮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 何满潮 filed Critical 何满潮
Publication of WO2019184932A1 publication Critical patent/WO2019184932A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/02Arrangements of feed-water pumps
    • F22D11/06Arrangements of feed-water pumps for returning condensate to boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • G21B3/006Fusion by impact, e.g. cluster/beam interaction, ion beam collisions, impact on a target
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/04Reactor and engine not structurally combined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of energy environment and underground space, in particular to an underground neutron power station.
  • nuclear power As a new type of energy, nuclear power has the potential to provide large-scale energy, but its development has encountered tremendous resistance: (1) nuclear accidents have great impact, such as nuclear island accidents in Japan; (2) lack of uranium resources in China, enrichment The fuel model of uranium is difficult to meet long-term development; (3) There is high-level nuclear waste, which has long-term hazard and high disposal costs. According to China's development plan, China's nuclear power installed capacity of 150 million kilowatts in 2030, accounting for 8% to 10% of the total power generation, there is no possibility of providing 30% energy.
  • the object of the present invention is to provide an underground neutron energy power station capable of fully utilizing fuel for power supply and heat supply, and having high fuel utilization rate.
  • the underground neutron power station is located in an underground space and is arranged in a long strip shape, and its key equipment Miniaturized, can permanently store fuel, safe and reliable.
  • the invention provides an underground neutron energy power station, which is located in an underground chamber, and includes:
  • a neutron source system located at one end of the underground chamber, the neutron source system having an ion beam tube for emitting ions;
  • An energy generating system which is located below the underground chamber, the energy generating system has a reaction vessel in which a core is placed, and a coupling structure is sealedly connected between the reaction vessel and the ion beam tube;
  • a power generation system located at the other end of the underground chamber, the power generation system being coupled to the energy generating system;
  • a waste heat collection utilization system is located at the other end of the underground chamber, and the waste heat collection utilization system is respectively connected to the energy generation system and the power generation system.
  • the underground neutron power station has the advantages of high fuel utilization, low waste, low radioactivity and high safety, and is distributed in the ground, in a long strip arrangement, key equipment Miniaturization is conducive to distributed construction throughout the country.
  • the underground neutron power station has a high fuel rate and has the potential to provide 30% of China's current energy consumption, and its power generation cost is also low.
  • the fuel of the underground neutron power station is easier to obtain than the conventional nuclear power plant, and the waste material of the conventional nuclear power can be used as a fuel, and there is no defect of fuel shortage.
  • the underground neutron power station is set underground and has an anti-nuclear migration barrier, which realizes the integrated installation of underground neutron power station construction, operation, decommissioning and waste disposal, reducing the overall construction investment.
  • FIG. 1 is a schematic front view showing the structure of an underground neutron power station of the present invention.
  • FIG. 2 is a schematic top plan view of an underground neutron power station of the present invention.
  • FIG. 3 is a schematic structural view of a coupling structure of the present invention.
  • Figure 4 is a schematic view of the plug structure of the top cover of the present invention.
  • Figure 5 is a perspective view of the top cover of the present invention.
  • Figure 6 is a structural view of a target device of the present invention.
  • Figure 7 is a front elevational view showing the structure of the anti-nuclear migration barrier of the present invention.
  • Figure 8 is a top plan view of the nuclides migration barrier of the present invention.
  • Figure 9 is a schematic view showing the structure of an embodiment of the clay layer of the anti-nuclear migration barrier of the present invention.
  • Figure 10 is a schematic view showing the structure of another embodiment of the clay layer of the anti-nuclear migration barrier of the present invention.
  • Figure 11 is a schematic view showing the structure of an embodiment of the bottom wall of the clay layer of the anti-nuclear migration barrier of the present invention.
  • Figure 12 is a schematic view showing the structure of another embodiment of the bottom wall of the clay layer of the anti-nuclear migration barrier of the present invention.
  • Figure 13 is a schematic view showing the structure of a waste heat collection and utilization system of the present invention.
  • Figure 14 is a schematic view showing the structure of a heat exchange tube of the waste heat collection and utilization system of the present invention.
  • Figure 15 is a schematic longitudinal cross-sectional view showing an embodiment of an underground chamber of the present invention.
  • Figure 16 is a schematic longitudinal cross-sectional view showing another embodiment of the underground chamber of the present invention.
  • the present invention provides an underground neutron energy power station, which is located in the underground chamber 10, and includes:
  • a neutron source system 1 located at one end of the underground chamber 10, the neutron source system 1 having an ion beam tube 11 for emitting ions;
  • An energy generating system 2 which is located below the underground chamber 10, the energy generating system 2 has a reaction vessel 21 in which a core 211 is placed, and the reaction vessel 21 is sealedly coupled to the ion beam tube 11 Structure 5;
  • a power generation system 4 located at the other end of the underground chamber 10, the power generation system 4 being connected to the energy generating system 2;
  • the waste heat collection utilization system 3 is located at the other end of the underground chamber 10, and the waste heat collection utilization system 3 is connected to the energy generation system 2 and the power generation system 4, respectively.
  • the underground chamber 10 has a main tunnel structure 101 and at least one branch tunnel structure 102 connected to one end of the main tunnel structure 101, and at least one branch tunnel structure 102 communicates with the main tunnel structure 101.
  • a shaft structure 7 is provided at the junction of the main tunnel structure 101 and the branch tunnel structure 102, and the shaft structure 7 is in communication with the main tunnel structure 101 and the branch tunnel structure 102, respectively, through which the worker can enter the underground. Drainage room 10.
  • the main tunnel structure 101 is a core chamber of an underground neutron power station, and has a substantially strip-shaped diverticulum structure.
  • the main tunnel structure 101 is horizontally arranged below the ground, and its vertical distance H from the ground is not less than 70 m.
  • the vertical distance H of the dome of the main tunnel structure 101 from the ground is not less than 70 m.
  • the longitudinal cross-sectional shape of the main tunnel structure 101 and the branch tunnel structure 102 of the underground chamber 10 may be circular; or, as shown in FIG. 16, the underground chamber
  • the longitudinal cross-sectional shape of the main tunnel structure 101 and the branch tunnel structure 102 of 10 may be horseshoe-shaped; of course, in other embodiments, the longitudinal section of the main tunnel structure 101 and the branch tunnel structure 102 of the underground chamber 10 Other shapes are also possible, and no limitation is imposed here.
  • the underground neutron power station is placed in the underground chamber 10, and the whole is located below 70m underground, which can effectively isolate the impact of underground neutron power station operation on the human living environment.
  • the neutron source system 1 is located at one end of the main tunnel structure 101 of the underground chamber 10, and includes an ion source 12, an accelerator 13 and an ion beam tube 11 which are sequentially connected.
  • the neutron source system 1 is used to provide an ion beam to the energy generating system 2, which in the present invention acts as a single or multiple parallel ion beam streams emitted by the ion source 12 at the accelerator 13.
  • the ion beam current is accelerated to a high-speed ion beam stream, and then output through the ion beam tube 11 to bombard the target with a high-speed ion beam stream to generate neutrons, which can effectively increase the release rate of energy energy.
  • the ion beam current can be ⁇ ion.
  • the neutron source system 1 can employ a gaseous target neutron source disclosed in Chinese Patent Application No. CN201710078364.5. In the present invention, the neutron source system 1 should be maintained at a certain level in the underground chamber 10.
  • the energy generating system 2 is located below the underground chamber 10, and has a reaction vessel 21 in which a core 211 is used, which is made of lead or lead-bismuth alloy as a coolant, which is a liquid/solid surrounding the fuel. Since the lead or lead-bismuth alloy is used as the coolant, the volume of the core 211 is greatly reduced.
  • the reaction vessel 21 is sealed to the ion beam tube 11 of the neutron source system 1 by a coupling structure 5.
  • the coupling structure 5 is connected between the neutron source system 1 and the energy generating system 2, the coupling structure 5 includes a target device 51 and a top cover 52, wherein: the target device 51 has a bundle a flow tube 511 and a target body 512 connected to the beam tube 511.
  • the beam tube 511 is connected to the ion beam tube 11;
  • the top cover 52 is sealingly connected to the reaction container 21, and the top cover 52 has at least two spliced together.
  • the top cover plate 521 and the at least two top cover plates 521 are formed with a connecting hole 522 through which the beam tube 511 is bored.
  • the target body 512 is a target.
  • the target body 512 connected to the end of the beam tube 511 is bombarded to form a neutron, and the neutron and energy generating system 2
  • the core 211 reacts to produce new fissile material and achieves a fission reaction that produces a large amount of energy.
  • high-temperature heat of more than 300 ° C is generated.
  • the coupling structure 5 is connected between the neutron source system 1 and the energy generating system 2, and has a compact structure.
  • the top cover 52 of the coupling structure 5 can be detachably connected to the target device 51, and the energy generating system 2 needs to be opened. When the refueling or the cover is repaired, the top cover 52 can be directly disassembled, the removal operation of the target device 51 from the energy generating system 2 is avoided, and the operation is more convenient.
  • the coupling structure 5 can effectively guarantee the neutron source system. 1 The stability of the connection between the connected target device 51 and the energy generating system 2.
  • the target device 51 of the coupling structure 5 has a beam tube 511 through which the ion beam passes, and the target body 512 is connected to the end of the beam tube 511; in the present invention, The outer portion of the beam tube 511 is sleeved with a double outer tube 513.
  • the double outer tube 513 has a vacuum chamber 514.
  • the vacuum chamber 514 is connected to the external vacuuming device through the pipeline to maintain the high vacuum of the vacuum chamber 514.
  • the vacuum chamber 514 is used to block heat exchange between the high temperature environment outside the isolation target device 51 and the target body 512.
  • a cooling tube 515 is further disposed outside the beam tube 511, and the cooling tube 515 is located between the beam tube 511 and the double outer tube 513.
  • the cooling tube 515 is connected by spiral winding.
  • the cooling tube 515 is used for cooling the beam tube 511.
  • the cooling tube 515 can pass a coolant, and the ion beam is carried away by the coolant in the cooling tube 515.
  • the heat generated on the target body 512 is bombarded.
  • the outer wall of the cooling tube 515 is provided with a reflective coating for reflecting the radiant heat generated by the high temperature environment outside the target device 51.
  • other cooling structures may be disposed outside the beam tube 511 as long as the heat generated by the ion beam bombardment on the target body 512 can be removed, which is not limited herein.
  • the top cover 52 of the coupling structure 5 is composed of at least two top cover plates 521.
  • the top cover 52 has a plug structure 523, and the at least two top covers The 521 are spliced to each other by the plug structure 523.
  • the plug structure 523 includes a plurality of ribs 5231 and a plurality of recesses 5232.
  • the ribs 5231 are inserted into the recesses 5232.
  • the plurality of ribs 5231 and the plurality of recesses 5232 are disposed on at least two top covers. 521 spliced on the end face.
  • top cover plates 521 there are two top cover plates 521, the top cover plate 521 is semi-circular, and the two top cover plates 521 are buckled to form a circular top cover 52.
  • a plurality of ribs 5231 and a plurality of grooves 5232 are respectively disposed on the splicing end faces of the two top cover plates 521, and when the two top cover plates 521 are buckled together, one of the top cover plates 521 is The ribs 5231 are inserted into the plurality of recesses 5232 on the other top cover 521, which enhances the shielding effect at the junction of the two top covers 521.
  • the top cover 52 may also be composed of three top cover plates 521, four top cover plates 521 or more top cover plates 521, which are not limited herein.
  • the top cover 52 of the present invention can be separated and assembled by a hoisting machine without affecting the target device 51.
  • a connecting hole 522 through which the beam tube 511 is bored is formed between the at least two top covers 521 of the top cover 52.
  • the double outer tube 513 and the outer sleeve of the beam tube 511 are connected.
  • a plurality of sealing rings are provided between the holes 522, and a mechanical static seal between the target device 51 and the top cover 52 is achieved by a plurality of sealing rings.
  • the top cover 52 is sealingly connected to the reaction container 21 of the energy generating system 2, and the core 211 in the reaction container 21 is installed concentrically with the reaction container 21, and a vacancy is reserved in the center of the core 211 for mounting the target of the target device 51.
  • the body 512 that is, the target body 512 is inserted into the core 211.
  • the outer diameter of the target body 512 of the target device 51 is smaller than the size of one fuel assembly of the core 211, and the target body 512 can replace one fuel assembly.
  • the target body 512 The outer diameter is not more than 125 mm, and it is installed at the center of the core 211.
  • the beam tube 511 is attached to the top cover 52 by a sealing flange 516. Further, the outer cover of the energy generating system 2 is provided with a safety shell 53, which is a circular deep top cover made of reinforced concrete, the safety shell 53 and the top cover 52, the reaction container 21 and the core The 211 is installed concentrically, and the beam tube 511 is vertically connected to the containment 53 through a fixed steel plate 517.
  • the coupling structure 5 adopts a separate design of the top cover 52, and the additional operation of the neutron source system 1 and the energy generating system 2 for the underground neutron power station can avoid the extra operation of the target device 51 every time the opening operation is performed. It is only necessary to simply perform the operation of the top cover 52.
  • the overall structure of the target device 51 is designed to be a long cylinder type and the outer diameter of the target body 512 is smaller than the core 211.
  • One fuel assembly size allows the target device 51 to operate in a high temperature environment during operation of the energy generating system 2, enabling it to be coupled with the energy generating system 2 to form a neutron source system 1 that operates safely and reliably with high resource utilization.
  • an anti-nuclear migration barrier 6 is provided below the underground chamber 10, the energy production system 2 being located within the anti-nuclear migration barrier 6.
  • the anti-nuclear migration barrier body 6 includes: an artificial barrier structure 61 disposed at a lower portion of the underground chamber 10, the artificial barrier structure 61 having a bottom wall 611, a peripheral sidewall 612, and A receiving cavity 614 is formed between the bottom wall 611, the bottom wall 611, the peripheral side wall 612 and the top wall 613, and the bottom wall 611, the peripheral side wall 612 and the top wall 613 have a lead powder concrete layer 615, a clay layer 616 and a reinforced concrete layer 617 arranged in order from the inside to the outside; a grouting layer 618 enclosing the outer side of the artificial barrier structure 61; that is, the grouting layer 618 is The outer side of the artificial barrier structure 61 is closed.
  • a surrounding rock layer 62 is located outside of the grouting layer 618, which has a surrounding rock thickness.
  • the energy generating system 2 of the underground neutron power station is placed in the receiving cavity 614 of the artificial barrier structure 61.
  • the artificial barrier structure 61 may be a cylindrical shape, a rectangular parallelepiped shape or a polygonal prism shape.
  • the artificial barrier structure 61 can also be designed into other structural shapes, which are not limited herein.
  • the bottom wall 611, the peripheral side wall 612, and the top wall 613 of the artificial barrier structure 61 each have a lead powder concrete layer 615, a clay layer 616, and a reinforced concrete layer 617 which are disposed in order from the inside to the outside.
  • a lead powder concrete layer 615 may be disposed around the top wall 613, and the middle portion of the top wall 613 may be provided.
  • the lead powder concrete layer 615 may not be provided, and is not limited herein.
  • the top wall 613 is connected to the bottom wall 104 of the underground chamber 10.
  • the artificial barrier structure 61 is embedded in the surrounding rock layer 62, and a grouting layer 618 is disposed between the artificial barrier structure 61 and the surrounding rock layer 62.
  • the outer layer of the reinforced concrete layer 617 of the bottom wall 611 of the artificial barrier structure 61 and the outer side of the reinforced concrete layer 617 of the peripheral side wall 612 are provided with the grouting layer 618.
  • composition and structure of the lead powder concrete layer 615, the clay layer 616, the reinforced concrete layer 617, and the grouting layer 618 are specifically described below:
  • the lead powder concrete layer 615 is made of lead powder of C40 or above, and the proportion of lead powder is determined according to the power of the energy generating system, but generally the amount of lead powder incorporated should not exceed 20% of the gelling material. Avoid its effects on concrete strength and workability.
  • the lead-pulverized concrete layer 615 has a thickness of 50 cm to 100 cm, and the thickness of the lead-pulverized concrete layer 615 is not limited thereto, and the thickness thereof should be appropriately increased as the design power of the underground neutron power station increases. .
  • the lead powder in the lead powder concrete layer 615 has good ⁇ shielding property and good heat conductivity.
  • the lead powder concrete layer 615 is mainly used for supporting the energy generating system 2 of the underground neutron power station, and effectively transmits the waste heat of the energy generating system 2, and can also effectively prevent the infiltration of groundwater and effectively shield the remaining rays and radioactive elements.
  • the lead powder concrete layer 615 may also be replaced by other radiation-proof concrete layers, such as radiation-proof concrete incorporated into heavy sand, and the like.
  • the clay layer 616 is disposed outside the lead powder concrete layer 615, and the selected clay should have good thermal conductivity, good ion adsorption, and certain self-sealing properties.
  • the clay selected from the clay layer 616 is Bentonite, etc.
  • the good thermal conductivity of the clay layer 616 can effectively ensure the elimination of residual heat of the energy generation system, and the good ion adsorption can effectively hinder the outward migration of the radioactive ions, and the expansion and self-sealing can prevent the inflow of the groundwater, thereby ensuring the The energy production system operates safely and isolates the connection with the outside world.
  • the clay layer 616 has a thickness of 30 cm to 40 cm, and the thickness thereof should be appropriately increased as the design power of the underground neutron power station increases.
  • the clay layer 616 includes a clay block inner layer 6161 and a clay powder outer layer 6162, the clay block inner layer 6161 being formed by splicing a plurality of clay blocks, the clay The powder outer layer 6162 is interposed between the inner layer 6161 of the clay block and the reinforced concrete layer 617.
  • the plurality of clay blocks of the inner layer 6161 of the clay block 612 may be curved blocks, as shown in FIG.
  • the plurality of clay blocks of the inner layer 6161 of the bottom wall 611 includes a plurality of curved blocks 6161a, a plurality of curved blocks 6161b, and a plurality of arc-like blocks.
  • 6161c and a square block 6161d that is, the bottom wall 611 may be a ring body formed by splicing a plurality of curved blocks 6161a arranged in order from the outside to the inside, and a ring formed by splicing a plurality of curved blocks 6161b.
  • the plurality of clay blocks of the inner layer 6161 of the clay block of the bottom wall 611 includes a plurality of arcuate blocks 6161a, a plurality of arcuate blocks 6161b, a plurality of arcuate blocks 6161c, and two trapezoidal blocks 6161d, that is,
  • the bottom wall 611 may be a ring body formed by splicing a plurality of curved blocks 6161a arranged in order from the outside to the inside, and a plurality of curved blocks 6161b.
  • the cross section of the artificial barrier structure 61 may also be other shapes For example, polygons or irregular polygons, etc., are not limited here.
  • the shape of the plurality of clay blocks of the clay layer 616 is also specifically divided according to the specific shape of the clay layer 616.
  • the outer layer 6162 of the clay powder of the bottom wall 611 should be first applied, and then the inner layer 6161 of the clay block of the bottom wall 611 is assembled, and after the inner layer 6161 of the clay block of the side wall 612 is assembled, An annular space is formed between the inner layer 6161 of the clay block of the peripheral side wall 612 and the reinforced concrete layer 617, and finally the annular space is backfilled with clay powder to form an outer layer 6162 of clay powder.
  • the clay layer 616 has good ion adsorption capacity and can be effectively adsorbed in the clay layer 616 to prevent outward migration when the nuclide escapes from the energy generating system.
  • the clay layer 616 is formed by splicing a plurality of clay blocks.
  • the plurality of clay blocks of the clay layer 616 of the peripheral side wall 612 may be curved blocks, as shown in FIG.
  • the plurality of clay blocks of clay layer 616 of bottom wall 611 includes a plurality of arcuate blocks 6161a, a plurality of arcuate blocks 6161b, a plurality of arcuate blocks 6161c, and square blocks.
  • the body 6161d that is, the bottom wall 611 may be a ring body formed by splicing a plurality of curved blocks 6161a arranged in order from the outside to the inside, and a ring body formed by splicing a plurality of curved blocks 6161b.
  • the annular body formed by the splicing of the arc-shaped blocks 6161c and the square block 6161d disposed at the middle are formed by splicing; or, in another possible embodiment of the bottom wall 611, as shown in FIG.
  • the bottom wall 611 is The plurality of clay blocks of the clay layer 616 include a plurality of arcuate blocks 6161a, a plurality of arcuate blocks 6161b, a plurality of arcuate blocks 6161c, and two trapezoidal blocks 6161d, that is, the bottom wall 611 can be a ring body formed by splicing a plurality of curved blocks 6161a arranged in order from the outside to the inside, and a ring formed by splicing a plurality of curved blocks 6161b a body, a ring body formed by splicing a plurality of arc-like blocks 6161c and two trapezoidal blocks 6161d disposed at a middle portion are formed by splicing; the cross-section of the artificial barrier structure 61 may also be other shapes, such as a polygon or not Regular polygons, etc., are not limited here. At the same time, the shape of the plurality of clay blocks of the clay layer 616 is also specifically
  • the clay layer 616 inevitably has gaps between the blocks due to the clay block assembly. These gaps are detrimental to the entire barrier system. For this reason, a composite structural layer of the inner layer 6161 of the clay block and the outer layer 6162 of the clay powder should preferably be used.
  • the reinforced concrete layer 617 is disposed outside the clay layer 616, and mainly functions to stabilize the surrounding rock and waterproof.
  • the reinforced concrete layer 617 is composed of high-performance concrete, and is mainly used to ensure the stability and safety of the underground chamber 10. At the same time, it can effectively avoid the infiltration of groundwater from the outside.
  • the reinforced concrete layer 617 has a thickness of 50 cm to 70 cm.
  • the reinforced concrete layer 617 can be designed and constructed with reference to the reinforced concrete layer of the general underground chamber. Generally, at the time of design, it should bear all the loads generated by the surrounding rock. Further, in the underground neutron power station, the reinforced concrete layer 617 is made of concrete having a rating of C35 or more.
  • the grouting layer 618 is disposed outside the reinforced concrete layer 617, and its main function is to reduce the permeability coefficient of the surrounding rock layer 62, improve the compactness of the surrounding rock layer 62, and use a slurry with a high viscous mineral content to improve the surrounding rock.
  • the ion-adsorbing ability of the layer 62, another function of the grouting layer 618 is to improve the stability of the surrounding rock when the stability of the surrounding rock mass is insufficient.
  • the grouting layer 618 should be grouted by slurry around the underground chamber 10 to form a closed grout for further isolating the transfer of moisture, nuclide and external systems within the energy generating system 2.
  • the construction of the grouting layer 618 may be before or after the construction of the reinforced concrete layer 617.
  • the grouting layer 618 should be prioritized. After the grouting pipe is evenly laid around the lower part of the underground diverting chamber 10, grouting is carried out with suitable grouting pressure, and the injection is effectively controlled. The amount of pulp; in the poor stability of the surrounding rock layer 62, the reinforced concrete layer 617 should be preferentially constructed, and then the grouting pipe is placed around the lower part of the underground chamber 10 for grouting reinforcement.
  • the grouting layer 618 should form a continuous shielding ring, and the thickness thereof can be 20 cm to 50 cm. After construction, the formation effect of the grouting layer 618 should be monitored by geophysical or geological radar.
  • the surrounding rock layer 62 located outside the artificial barrier structure 61 should be selected from a surrounding rock having good thermal conductivity and ion adsorption capability, such as soft rock or shale, and the surrounding rock.
  • the effective thickness of layer 62 should not be less than 70 m, so as to adsorb a small amount of radioactive ions that escape, and achieve complete isolation of the human accommodating environment by the underground neutron power station.
  • the vertical distance of the artificial barrier structure 61 from the ground is not less than 70 m.
  • the grouting layer 618 and the reinforced concrete layer 617 are respectively constructed, and then the clay layer 616 and the lead powder concrete layer 615 are applied, and then the energy generating system 2 is placed in the receiving cavity of the artificial barrier structure 61.
  • the energy generating system 2 is debugged, and after completion, the lead powder concrete layer 615, the clay layer 616, and the reinforced concrete layer 617 of the top wall 613 of the artificial barrier structure 61 are constructed to complete the sealing.
  • the anti-nuclear migration barrier body 6 has a multi-level barrier structure, high safety and practicability, and can effectively realize the energy exchange between the underground neutron energy power station and the outside world, and effectively prevent the nuclides in the whole life of the underground neutron energy power station.
  • the diffusion and migration can effectively isolate the underground neutron power station from the human living environment and ensure the safety of underground neutron power stations and human habitats.
  • the waste heat collection utilization system 3 is located at the other end of the main tunnel structure 101 of the underground chamber 10, and the waste heat collection utilization system 3 is connected to the energy generation system 2 and the power generation system 4, respectively. As shown in FIG. 13, the waste heat collection utilization system 3 includes:
  • a main power generation system waste heat collection utilization circuit 31 having a first heat exchanger 311 connected to the power generation system 4, the first heat exchanger 311 being connected to a first heat sink, the power generation system 4 and the energy The production system 2 is connected;
  • the shield structure waste heat collection utilization circuit 32 has a heat exchange tube 321, a second heat exchanger 322 and a second heat trap which are sequentially connected, and the heat exchange tubes 321 are disposed on the outer peripheral side of the energy generating system 2.
  • the waste heat collection and utilization system of the present invention collects the residual heat of the main power generation system.
  • the residual heat generated by the power generation system 4 is collected by the loop 31, and the waste heat generated by the energy generating system 2 is collected by the residual heat collection of the shield structure, thereby efficiently utilizing the energy of the underground neutron power station and the safety of the underground neutron power station. Operation provides protection.
  • the waste heat collection utilization system further includes a core waste heat collection utilization circuit 33 having a cooling water tank 331, a third heat exchanger 332 and a third heat trap connected in series, and the cooling water tank 331 is disposed in the energy generating system 2 Lower part.
  • the core waste heat recovery utilization circuit 33 can also be used to collect the waste heat generated by the energy generation system 2.
  • the waste heat collection and utilization system can select to open the main power generation system waste heat collection and utilization loop 31 and the shield structure waste heat collection and utilization loop 32 for collecting underground.
  • the residual heat in the operation process of the neutron power station in another feasible embodiment, the waste heat collection and utilization system can select the core waste heat recovery utilization circuit 33, the shield structure waste heat collection and utilization circuit 32, and the main power generation system waste heat collection and utilization circuit. 31, in order to more comprehensively collect the waste heat in the operation of the underground neutron power station.
  • the three waste heat collection and utilization loops for the waste heat collection and utilization system of the underground neutron power station that is, the core waste heat collection and utilization loop 33, the shield structure waste heat collection and utilization loop 32, and the main power generation system waste heat collection and utilization loop 31, mutual Independent and independent of each other, the efficiency of the waste heat collection and utilization of the present invention is increased.
  • the energy generation system 2 of the underground neutron power station is the core of the underground neutron power station and is a specific unit of energy generation.
  • the core 211 of the energy generation system 2 is the main place of fuel reaction and will generate higher energy.
  • the energy generating system 2 is placed in a subterranean anti-nuclear migration barrier body 6 having a receiving chamber 614 in which the energy generating system 2 is located.
  • the power generation system 4 has a steam generator 41, a steam turbine 42 and a generator 43 connected in series, which is connected to the energy generating system 2, which is located at an upper portion of the accommodating chamber 614 for the energy generating system 2
  • the released energy is converted into electrical energy.
  • the main power generation system waste heat collection utilization circuit 31 mainly collects the remaining high temperature steam of the power generation system 4 for reuse, having a first heat exchanger 311 connected to the power generation system 4, the first heat exchanger 311 and the first heat sink Connected.
  • the steam generator 41 of the power generation system 4 and the steam turbine 42 are connected by a fifth line 44, which is connected to the fifth line 44, that is, the steam generator 41 and the steam turbine 42.
  • the first heat exchanger 311 is connected end to end by a fifth line 44; the first heat exchanger 311 and the first heat sink are connected by a sixth line 312.
  • the power generation system 4 is connected to the energy generating system 2 by a steam generator 41 located at an upper portion of the accommodating chamber 614, which is realized by the built-in piping and the energy generating system 2
  • the lead or lead-bismuth alloy in the core 211 exchanges heat and generates high-temperature and high-pressure steam, which firstly drives the steam turbine 42 to rotate through the outlet pipe 441 of the fifth line 44, thereby causing the generator 43 to generate electric energy and realize
  • the steam passing through the steam turbine 42 still has a higher temperature, which will exchange heat with the first heat sink through the first heat exchanger 311, then become condensed water, and then pass through the fifth line 44.
  • the inlet pipe 442 is returned to the steam generator 41.
  • an acceleration pump may be provided on the first heat exchanger 311 and the sixth line 312 of the first heat trap as needed to accelerate circulation in the circuit.
  • the high temperature water in the sixth line 312 heated by the first heat exchanger 311 is heat exchanged with the first heat trap via the inlet pipe 3121 of the sixth line 312 to concentrate energy in the first heat trap.
  • the chilled water after the exchange continues to flow back to the first heat exchanger 311 through the outlet pipe 3122 of the sixth line 312 for recycling.
  • the shield structure waste heat collection utilization loop 32 mainly collects the waste heat of the energy generation system 2, which is composed of two loops connected in series, and the two loops realize heat exchange between the loops through the second heat exchanger 322.
  • the first circuit is composed of a heat exchange tube 321, a third line 323 and a second heat exchanger 322, and the heat exchange tube 321 and the second heat exchanger 322 are connected by a third line 323, the third
  • the second circulation pump 3233 is disposed on the pipeline 323, and the second circulation pump 3233 is configured to control the speed of the circulating water in the first circuit to realize the control of the waste heat collection; the second circuit is controlled by the second heat exchanger 322,
  • the fourth line 324 is composed of a second heat sink, and the second heat exchanger 322 and the second heat sink are connected by a fourth line 324.
  • the residual heat of the energy generating system 2 is collected by the heat exchange tube 321, and is exchanged with the second circuit through the second heat exchanger 322 through the outlet pipe 3232 of the third line 323, and then cooled.
  • the water flows back to the heat exchange tube 321 through the inlet pipe 3231 of the third line 323 to realize the closure of the first circuit.
  • the high temperature water in the second loop heated by the second heat exchanger 322 exchanges heat with the second heat trap via the inlet pipe 3242 of the fourth line 324 to concentrate energy in the second heat trap, and heat exchange
  • the subsequent cooling water continues to flow back to the second heat exchanger 322 through the outlet pipe 3241 of the fourth line 324 for recycling.
  • the heat exchange tube 321 includes a connected circumferential heat exchange tube 3211 and a vertical heat exchange tube 3212, and the vertical heat exchange tube 3212 is located at the peripheral side wall of the accommodating chamber 614.
  • the ring-shaped heat exchange tube 3211 is embedded in the anti-nuclear migration barrier body 6.
  • the vertical heat exchange tube 3212 has a connected vertical inlet pipe 32121 and a vertical outlet pipe 32122.
  • the circumferential heat exchange tube 3211 has a circumferential inlet pipe 32111 and a circumferential outlet pipe 32112.
  • the water pipe 32111 is connected to a vertical water inlet pipe 32121 which is connected to the vertical water outlet pipe 32122.
  • the vertical outlet pipe 32122 is disposed adjacent to the anti-nuclear migration barrier body 6, and the vertical inlet pipe 32121 is disposed adjacent to the energy generating system 2.
  • the vertical heat exchange tubes 3212 are evenly arranged around the outer circumference of the energy generating system 2, so that the heat exchange area of the vertical heat exchange tubes 3212 can be increased to maximize the residual heat of the energy generating system 2.
  • the annular heat exchange tube 3211 is arranged in the circumferential direction in the lead powder concrete layer of the anti-nuclear migration barrier body 6, and the circumferential inlet pipe 32111 and the circumferential outlet pipe of the circumferential heat exchange tube 3211 are required according to heat exchange.
  • the 32112 may be vertically arranged in a ring or a plurality of rings, and is not limited herein.
  • the circumferential inlet pipe 32111 and the annular outlet pipe 32112 of the annular heat exchange pipe 3211 are connected to the second heat exchanger 322 through the inlet pipe 3231 and the outlet pipe 3232 of the third pipe 323, respectively.
  • the core waste heat collection utilization circuit 33 mainly collects the waste heat of the energy generation system 2, which is composed of two circuits connected in series, and the two circuits realize heat exchange between the circuits through the third heat exchanger 332.
  • the first circuit is mainly composed of a cooling water tank 331 disposed at a lower portion of the energy generating system 2, a first pipeline 333 and a third heat exchanger 332.
  • the cooling water tank 331 and the third heat exchanger 332 pass through the first pipe.
  • the road 333 is connected to the first pipeline 333, and the first circulation pump 3333 is configured to control the speed of the circulating water in the first circuit to realize the control of the waste heat collection of the energy generation system 2;
  • the second circuit is mainly composed of a third heat exchanger 332, a second line 334 and a third heat trap, and the third heat exchanger 332 and the third heat sink are connected by a second line 334.
  • the cooling water tank 331 is located below the accommodating chamber 614 of the nuclides migration barrier body 6, and the cooling water in the first circuit first flows through the lower portion of the energy generating system 2 through the inlet pipe 3331 of the first pipe 333.
  • the heat exchange with the core 211 of the energy generating system 2 is realized at the cooling water tank 331, and then the heat exchange with the second circuit is realized by flowing back to the third heat exchanger 332 through the water outlet pipe 3332 of the first pipe 333, and The cooling water having a lower temperature is returned to the cooling water tank 331 through the inlet pipe 3331.
  • the high temperature water in the second circuit after being heated by the third heat exchanger 332 is heat exchanged with the third heat trap via the water inlet pipe 3341 of the second pipe 334 to concentrate the energy in the third heat sink, after the heat exchange.
  • the cooling water continues to flow back to the third heat exchanger 332 through the outlet pipe 3342 of the second line 334 for recycling.
  • the first circuit Since the cooling water in the cooling water tank 331 itself forms the first circuit, the first circuit does not exchange water with the second circuit in which the third heat trap is located, thereby preventing the outflow of high-level substances and preventing nuclear leakage.
  • the first circulation pump 3333 in the first circuit can be activated to accelerate the water flow rate of the cooling water tank 331 and the third heat exchanger 332, improve the heat exchange efficiency, and enhance the derivation heat of the core 211 to prevent the heat generation.
  • the core 211 is overheated and melted.
  • the first heat sink, the second heat sink, and the third heat sink may be respectively connected to the external heat supply system 37.
  • the first heat sink, the second heat sink and the third heat sink realize reuse of residual heat through the respective waste heat collection and utilization loops, and heat exchange between the respective circuits and the external heat supply system 37 requiring heat energy, the exchanged cooling water Recirculation into the first heat sink, the second heat sink, and the third heat sink for recycling.
  • the first heat sink, the second heat sink, and the third heat sink potential heating object, that is, the heat supply system 37 may include a floor heating system of a building, a winter heating system, or a municipal implementation such as a swimming pool.
  • the waste heat collection and utilization system for the underground neutron power station of the present invention adopts three methods of waste heat collection and utilization loops to respectively realize the core waste heat, the residual heat of the barrier structure and the waste heat of the main power generation system, and has the waste heat utilization surface. Wide, potential use and other advantages, effectively improve the energy efficiency of underground neutron power stations, and better solve the problem of 70% waste heat reuse.
  • the core waste heat collection and utilization loop 33 and the shield structure waste heat collection and utilization loop 32 can effectively derive the residual heat of the core 211 and the decay heat of the core 211, and prevent the pile 211 from overheating, which is beneficial to the underground neutron power station. Safety.
  • the waste heat collection and utilization system used in the underground neutron power station adopts multi-circuit series connection for waste heat collection, waste heat transfer and waste heat utilization, which can effectively avoid the transfer of radioactive elements to the outside through the heating water circuit.
  • three residual heat collection and utilization loops may be arranged in different spaces; in addition, three waste heat collection and utilization loops may share one heat trap, that is, the first heat.
  • the well, the second heat sink and the third heat sink are all the same heat sink 34.
  • the heat sink 34 is in heat exchange with the outside heating system 37 requiring heat energy through a loop 341, which is three
  • the waste heat collection utilizes the gathering place of the loop to facilitate construction and technical management, reducing overall investment.
  • the present invention may also adopt a form in which the first heat sink, the second heat sink and the third heat sink described in the above embodiments are separately provided, and is not limited herein. According to local conditions, the waste heat collected can be used for different purposes.
  • the underground neutron power station of the present invention further has a ventilation distribution system 8 housed in one of the branch tunnel structures 102 of the underground chamber 10, the ventilation distribution system 8 including electrical accessory devices 81 and a ventilating water supply and drainage device 82, both of which are existing mature technologies, which are not specifically described herein;
  • the underground neutron energy power plant further has a fuel storage system 9 which is placed in another of the underground chambers 10 Branched into the tunnel structure 102.
  • the branch tunnel structure 102 in which the fuel storage system 9 is placed is further provided with a screen door 103 for closing the branch tunnel to isolate the fuel storage system 9 from the outside.
  • the underground neutron power station of the present invention wherein the sub-source system 1, the energy generating system 2, the waste heat collection and utilization system 3, and the power generation system 4 are arranged in an elongated shape in the underground chamber 10, on the one hand, the underground chamber 10 is reduced.
  • the excavation span reduces construction costs, and on the other hand, facilitates the management of subterranean neutron power station partition blocks.
  • a shield door 103 is provided in the main tunnel structure 101, and the main tunnel structure 101 is divided into a neutron energy chamber 105 and a cogeneration chamber 106 by the screen door 103.
  • the screen door 103 enables isolation of neutron rays and nuclei from the outside.
  • the underground neutron power station of the invention has the advantages of high fuel utilization, low waste, low radioactivity and high safety, and is distributed in the underground, has a long strip arrangement, and the key equipment is miniaturized, which is beneficial to distributed construction in the country. Realize the safety of our functions. Due to the extremely high fuel rate of the underground neutron power station, there is a possibility of providing 30% of China's current energy consumption, and its power generation cost is also low. Therefore, it is one of the important ways to optimize China's energy structure and manage environmental problems.
  • the fuel of the underground neutron power station is easier to obtain than the conventional nuclear power plant, and the waste material of the conventional nuclear power can be used as a fuel, and there is no defect of fuel shortage.
  • the underground neutron power station is installed underground, and a multi-layer anti-nuclear migration barrier is installed to realize the integrated installation of underground neutron power station construction, operation, decommissioning and waste disposal, which reduces the overall construction investment.

Abstract

一种地下中子能电站,位于地下硐室(10)中,其包括:中子源系统(1),其位于地下硐室(10)的一端,中子源系统(1)具有用于发射离子的离子束管(11);能量产生系统(2),其位于地下硐室(10)的下方,能量产生系统(2)具有放置堆芯(211)的反应容器(21),反应容器(21)与离子束管(11)之间密封连接有耦合结构(5);发电系统(4),其位于地下硐室(10)的另一端,发电系统(4)与能量产生系统(2)相连;余热采集利用系统(3),其位于地下硐室(10)的另一端,余热采集利用系统(3)分别与能量产生系统(2)、发电系统(4)相连。

Description

地下中子能电站 技术领域
本发明涉及能源环境与地下空间领域,尤其涉及一种地下中子能电站。
背景技术
近年来,我国的环境污染越来越严重,上百个城市受雾霾困扰。通过对历史数据的分析和调研发现雾霾问题产生的根本原因在于煤炭消耗占比过高。2015年,我国煤炭消耗占比约64%,是导致我国环境问题和雾霾天气的主要原因。借鉴英德的经验,为治理环境问题,必须降低煤炭的消耗占比。当煤炭消耗占比降低到35%时,空气质量得到了明显好转;当煤炭消耗占比降低到25%时,雾霾等环境问题基本消除。为此,必须需要找到替代30%能源的清洁能源。
传统的清洁能源包括风能、太阳能、水能和地热能等。但是风能和太阳能受环境条件制约,设备利用率低,目前的技术不满足大规模发展的条件。水电由于水资源分布不均匀,开发潜力有限,且存在对生态环境破坏的风险。地热能属于新型能源,尚处于初步利用阶段,目前的技术大多利用浅层地热能,不具备提供大规模能源供应的可能。依据我国中长期规划,我国非石化能源在2030年占比约20%,不能满足大规模替代煤炭资源的可能性。
核电作为一种新型能源,具备提供大规模能源的可能,但是其发展却遇到了巨大的阻力:(1)核事故影响巨大,比如日本核岛事故;(2)我国铀矿资源缺乏,富集铀的燃料模式难以满足长久发展;(3)存在高放性核废料,具有长期危害性,且后期处置费用较高。依据我国发展规划,我国核电在2030年总装机量1.5亿千瓦,占总发电量的8%~10%,不存在提供30%能源的可能。
综上所述,目前常用的清洁能源不存在提供30%替代能源的可能性。
发明内容
本发明的目的是提供一种地下中子能电站,能充分利用燃料进行供电和供热,其燃料利用率高,该地下中子能电站位于地下空间内,呈长条形布置,其关键设备小型化,能永久封存燃料,安全可靠。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种地下中子能电站,所述地下中子能电站位于地下硐室中,其包括:
中子源系统,其位于所述地下硐室的一端,所述中子源系统具有用于发射离子的离子束管;
能量产生系统,其位于所述地下硐室的下方,所述能量产生系统具有放置堆芯的反应容器,所述反应容器与所述离子束管之间密封连接有耦合结构;
发电系统,其位于所述地下硐室的另一端,所述发电系统与所述能量产生系统相连;
余热采集利用系统,其位于所述地下硐室的另一端,所述余热采集利用系统分别与所述能量产生系统、所述发电系统相连。
本发明的地下中子能电站的特点及优点是:该地下中子能电站具有燃料利用高、废料少且放射性低、安全度高的优点,并且分布于地下,呈长条形布置,关键设备小型化,利于在全国进行分布式建设。该地下中子能电站的燃料率高,存在提供目前我国能源消耗量30%的可能,并且其发电成本亦较低。地下中子能电站的燃料比传统核电站易于获得,且可利用常规核电在的废料作为燃料,不存在燃料匮乏的缺陷。地下中子能电站设置于地下,且设置了防核素迁移屏障体,实现了地下中子能电站建设、运营、退役和废料处置的一体化设置,降低了整体建设投资。
附图说明
图1为本发明的地下中子能电站的主视结构示意图。
图2为本发明的地下中子能电站的俯视结构示意图。
图3为本发明的耦合结构的结构示意图。
图4为本发明的顶盖的插接结构的示意图。
图5为本发明的顶盖的立体图。
图6为本发明的靶装置的结构图。
图7为本发明的防核素迁移屏障体的主视结构图。
图8为本发明的防核素迁移屏障体的俯视结构图。
图9为本发明的防核素迁移屏障体的粘土层的一实施例的结构示意图。
图10为本发明的防核素迁移屏障体的粘土层的另一实施例的结构示意图。
图11为本发明的防核素迁移屏障体的粘土层的底壁的一实施例的结构示意图。
图12为本发明的防核素迁移屏障体的粘土层的底壁的另一实施例的结构示意图。
图13为本发明的余热采集利用系统的结构示意图。
图14为本发明的余热采集利用系统的换热管的结构示意图。
图15为本发明的地下硐室的一实施例的纵截面示意图。
图16为本发明的地下硐室的另一实施例的纵截面示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1和图2所示,本发明提供一种地下中子能电站,所述地下中子能电站位于地下硐室10中,其包括:
中子源系统1,其位于所述地下硐室10的一端,所述中子源系统1具有用于发射离子的离子束管11;
能量产生系统2,其位于所述地下硐室10的下方,所述能量产生系统2具有放置堆芯211的反应容器21,所述反应容器21与所述离子束管11之间密封连接有耦合结构5;
发电系统4,其位于所述地下硐室10的另一端,所述发电系统4与所述能量产生系统2相连;
余热采集利用系统3,其位于所述地下硐室10的另一端,所述余热采集利用系统3分别与所述能量产生系统2、所述发电系统4相连。
具体是,地下硐室10具有主隧洞结构体101以及连接在主隧洞结构体101一端的至少一个分支隧洞结构体102,至少一个分支隧洞结构体102与主隧洞结构体101相连通。在主隧洞结构体101与分支隧洞结构体102的连接处设有竖井结构7,该竖井结构7分别与主隧洞结构体101和分支隧洞结构体102相连通,工人可通过该竖井结构7进入地下硐室10。该主隧洞结构体101为地下中子能电站的核心硐室,其大体呈长条状硐室结构,该主隧洞结构体101水平布置在地面以下,其距离地面的垂直距离H不小于70m,也即,该主隧洞结构体101的拱顶距离地面的垂直距离H不小于70m。在本发明中,如图15所示,该地下硐室10的主隧洞结构体101和分支隧洞结构体102的纵截面形状可为圆环形;或者,如图16所示,该地下硐室10的主隧洞结构体101和分支隧洞结构体102的纵截面形状可为马蹄形;当然,在其他的实施例中,该地下硐室10的主隧洞结构体101和分支隧洞结构体102的纵截面也可为其他形状,在此不做限制。该地下中子能电站放置在地下硐 室10中,其整体位于地下70m以下,可有效隔绝地下中子能电站运营对人类居住环境的影响。
中子源系统1位于地下硐室10的主隧洞结构体101的一端,其包括依次相连的离子源12、加速器13和离子束管11。该中子源系统1用于为能量产生系统2提供离子束,在本发明中,该中子源系统1通过离子源12发射的单束或多束平行的离子束流,在加速器13的作用下被加速为高速离子束流,之后通过离子束管11输出,采用高速离子束流轰击靶,产生中子,可有效提高能源能量的释放率,在本发明中,该离子束流可为氘离子。该中子源系统1可采用中国专利申请号CN201710078364.5公开的气态靶中子源。在本发明中,该中子源系统1应在地下硐室10中保持一定的水平度。
能量产生系统2位于地下硐室10的下方,其具有放置堆芯211的反应容器21,该堆芯211采用铅或铅铋合金作为冷却剂,该冷却剂为包围在燃料周边的液/固体,由于采用铅或铅铋合金作为冷却剂,大大缩小了堆芯211的体积。
该反应容器21与中子源系统1的离子束管11之间通过耦合结构5密封相连。在本发明中,如图3所示,该耦合结构5连接在中子源系统1与能量产生系统2之间,该耦合结构5包括靶装置51和顶盖52,其中:靶装置51具有束流管511及连接在束流管511上的靶本体512,该束流管511与离子束管11相连;顶盖52密封连接在反应容器21上,该顶盖52具有相互拼接的至少两个顶盖板521,至少两个顶盖板521之间形成有供束流管511穿设的连接孔522。在本发明中,该靶本体512为氚靶。
自中子源系统1发出的离子束通过离子束管11以及束流管511后,轰击连接在束流管511端部的靶本体512而聚变形成中子,该中子与能量产生系统2中的堆芯211反应产生新的易裂变材料并实现裂变反应产生大量的能量。在离子束轰击靶本体512发生聚变反应产生中子的过程中,会产生大于300℃的高温热量。
该耦合结构5连接在中子源系统1与能量产生系统2之间,其结构紧凑,该耦合结构5的顶盖52能与靶装置51可拆卸地连接,当能量产生系统2需要进行开盖换料或者开盖维修等操作时,直接拆卸顶盖52即可,避免了靶装置51从能量产生系统2上的拆除操作,使得操作更简便,该耦合结构5能够有效保障与中子源系统1相连的靶装置51与能量产生系统2间的连接稳定性。
具体是,请配合参阅图6所示,该耦合结构5的靶装置51具有供离子束穿过的束流管511,靶本体512连接在束流管511的端部;在本发明中,在束流管511的外部套设有双层外管513,该双层外管513具有真空腔514,将真空腔514通过管路连接外部的抽真空设备, 可一直维持真空腔514的高真空度环境,该真空腔514用于阻断隔离靶装置51外面的高温环境与靶本体512之间的热交换。
进一步的,在束流管511的外部还设有冷却管515,该冷却管515位于束流管511与双层外管513之间,在本实施例中,冷却管515以螺旋缠绕的方式连接在束流管511的外壁上,该冷却管515用于对束流管511进行冷却处理,例如该冷却管515内可通入冷却剂,通过冷却剂在冷却管515内的流动带走离子束轰击在靶本体512上产生的热量。在本实施例中,该冷却管515的外壁上设有反射涂层,该反射涂层用于将靶装置51外面的高温度环境产生的辐射热反射回去。当然,在其他的实施方式中,在束流管511的外部还可设有其他制冷结构,只要能实现带走离子束轰击在靶本体512上产生的热量即可,在此不做限制。
如图4和图5所示,耦合结构5的顶盖52由至少两个顶盖板521拼接组成,在本实施方式中,该顶盖52具有插接结构523,该至少两个顶盖板521通过插接结构523相互拼接在一起。
具体的,该插接结构523包括多个凸棱5231及多个凹槽5232,该凸棱5231插入凹槽5232内,多个凸棱5231及多个凹槽5232设置在至少两个顶盖板521相拼接的端面上。
在本发明的实施例中,该顶盖板521为两个,该顶盖板521为半圆形,两个顶盖板521对扣形成圆形的顶盖52。在两个顶盖板521对扣的拼接端面上分别设有多个凸棱5231和多个凹槽5232,当两个顶盖板521对扣在一起时,其中一个顶盖板521上的多个凸棱5231插入另一顶盖板521上的多个凹槽5232内,这样可以增强两个顶盖板521连接处的屏蔽作用。当然,在其他的实施方式中,顶盖52也可由三个顶盖板521、四个顶盖板521或更多个顶盖板521拼接组成,在此不做限制。本发明的顶盖52可通过吊装机械进行分离操作和组合安装,而不影响靶装置51。
该顶盖52的至少两个顶盖板521之间形成有供束流管511穿设的连接孔522,在本实施例中,套设在束流管511外部的双层外管513与连接孔522之间设有多个密封圈,通过多个密封圈实现靶装置51与顶盖52之间的机械静密封。
该顶盖52密封连接在能量产生系统2的反应容器21上,反应容器21内的堆芯211与反应容器21同心安装,在堆芯211中心预留一个空位,用于安装靶装置51的靶本体512,也即靶本体512插入堆芯211中。在本实施例中,靶装置51的靶本体512的外径尺寸小于堆芯211的一个燃料组件的尺寸,该靶本体512可以替换掉一个燃料组件,在一具体实施例中,靶本体512的外径尺寸不大于125mm,其安装在堆芯211的中心位置处。
在本发明中,该束流管511通过密封法兰516连接在顶盖52上。进一步的,该能量产生系统2的外部罩设有安全壳53,该安全壳53为圆形深顶盖,其由钢筋混凝土制成,该安全壳53与顶盖52、反应容器21和堆芯211同心安装,该束流管511通过固定钢板517垂直连接在安全壳53上。
该耦合结构5采用顶盖52分离式设计,在每次开盖操作时,针对地下中子能电站中子源系统1和能量产生系统2耦合的特殊性,能够避免对靶装置51的额外操作,只需要简单的进行顶盖52操作即可;另外,通过在靶装置51中增加真空腔514,并将靶装置51的整体结构设计为长筒型且靶本体512的外径小于堆芯211的一个燃料组件尺寸,可以使靶装置51工作在能量产生系统2运行时的高温度环境,使之能够与能量产生系统2耦合形成运行安全可靠、资源利用率高的中子源系统1。
根据本发明的一个实施方式,该地下硐室10的下方设有防核素迁移屏障体6,该能量产生系统2位于防核素迁移屏障体6内。
如图7和图8所示,该防核素迁移屏障体6包括:设置在地下硐室10下部的人工屏障结构体61,所述人工屏障结构体61具有底壁611、周侧壁612及顶壁613,所述底壁611、所述周侧壁612及所述顶壁613之间形成有容纳腔614,所述底壁611、所述周侧壁612及所述顶壁613均具有由内至外依次设置的铅粉混凝土层615、粘土层616和钢筋混凝土层617;注浆层618,其围设在所述人工屏障结构体61的外侧;也即,该注浆层618在人工屏障结构体61的外侧形成闭合。围岩层62,其位于所述注浆层618的外侧,所述围岩层62具有围岩厚度。
具体的,地下中子能电站的能量产生系统2放置于该人工屏障结构体61的容纳腔614中,在本发明中,该人工屏障结构体61可为圆柱体形、长方体形或多棱柱体形,当然,该人工屏障结构体61还可设计为其他结构形状,在此不做限制。
该人工屏障结构体61的底壁611、周侧壁612及顶壁613均具有由内至外依次设置的铅粉混凝土层615、粘土层616和钢筋混凝土层617。其中,在本发明中,为了能使人工屏障结构体61中的能量产生系统2与外界的能量或物质进行交换,可在顶壁613的周边设置铅粉混凝土层615,而顶壁613的中部可不设置铅粉混凝土层615,在此不做限制。该顶壁613与地下硐室10的底壁104相连。
进一步的,该人工屏障结构体61埋设在围岩层62中,在人工屏障结构体61与围岩层62之间设有注浆层618。具体是,该人工屏障结构体61的底壁611的钢筋混凝土层617的外侧和周侧壁612的钢筋混凝土层617的外侧均设有该注浆层618。
下面具体说明铅粉混凝土层615、粘土层616、钢筋混凝土层617和注浆层618的组成和结构:
该铅粉混凝土层615由C40或以上标号的混凝土参入铅粉制成,铅粉的参入比例根据能量产生系统的功率确定,但一般地铅粉的参入量不应超过胶凝材料的20%,避免其对混凝土强度和工作性能的影响。在本实施例中,该铅粉混凝土层615的厚度为50cm~100cm,该铅粉混凝土层615的厚度并不限于此,其厚度应随地下中子能电站设计功率的增大而适当增大。该铅粉混凝土层615中的铅粉的γ屏蔽性好,传热导性能好。该铅粉混凝土层615主要用于支撑地下中子能电站的能量产生系统2,且有效传递能量产生系统2的余热,同时还可以有效防止地下水的渗入,有效屏蔽剩余的射线和放射性元素。在其它的实施例中,该铅粉混凝土层615还可以由其他防辐射混凝土层进行替换,例如参入重劲砂的防辐射混凝土等,在此不做限制。
该粘土层616设置在铅粉混凝土层615的外侧,其选用的粘土应具有良好的热传导性能、良好的离子吸附性、以及一定的膨胀自封闭性等特点,例如该粘土层616选用的粘土为膨润土等。该粘土层616良好的导热性能可以有效保证能量产生系统余热的排除,其良好的离子吸附性可以有效阻碍放射性离子的向外迁移,其膨胀自封闭性可以阻止地下水的向内流动,从而确保了能量产生系统的运营安全并隔绝与外界的联系。在本实施例中,该粘土层616的厚度为30cm~40cm,其厚度应随地下中子能电站设计功率的增大而适当增大。
在粘土层616的一可行实施方式中,如图9所示,该粘土层616包括粘土块内层6161和粘土粉外层6162,该粘土块内层6161由多个粘土块拼接形成,该粘土粉外层6162夹设在粘土块内层6161与钢筋混凝土层617之间。在本实施例中,当该人工屏障结构体61的横截面为圆环形时,周侧壁612的粘土块内层6161的多个粘土块可为弧形块体,如图11所示,在底壁611的一可行实施例中,该底壁611的粘土块内层6161的多个粘土块包括多个弧形块体6161a、多个弧形块体6161b、多个类弧形块体6161c和正方形块体6161d,也即该底壁611可为从外至内依次设置的由多个弧形块体6161a拼接形成的圆环体、由多个弧形块体6161b拼接形成的圆环体、由多个类弧形块体6161c拼接形成的圆环体和设置在中部的正方形块体6161d拼接形成;或者,在底壁611的另一可行实施例中,如图12所示,该底壁611的粘土块内层6161的多个粘土块包括多个弧形块体6161a、多个弧形块体6161b、多个类弧形块体6161c和两个梯形块体6161d,也即该底壁611可为从外至内依次设置的由多个弧形块体6161a拼接形成的圆环体、由多个弧形块体6161b拼接形成的 圆环体、由多个类弧形块体6161c拼接形成的圆环体和设置在中部的两个梯形块体6161d拼接形成;该人工屏障结构体61的横截面也可为其他形状,例如多边形或不规则多边形等,在此不做限制。同时,粘土层616的多个粘土块的形状亦随粘土层616的具体形状进行具体划分。
在该实施例中,在施工时,应先施工底壁611的粘土粉外层6162,然后拼装底壁611的粘土块内层6161,并结合拼装周侧壁612的粘土块内层6161后,在周侧壁612的粘土块内层6161与钢筋混凝土层617之间形成环形空间,最后用粘土粉回填该环形空间从而形成粘土粉外层6162。当有水分渗入粘土层616后,由于粘土的膨胀自封闭性,可以发生自我膨胀,进而填充粘土块内层6161中的两两相邻的粘土块之间的缝隙,并有效降低水分的渗透系数,阻碍地下水的渗入。该粘土层616具有良好的离子吸附能力,在有核素逃逸出能量产生系统时,可以有效地吸附在粘土层616内,防止其向外迁移。
在粘土层616的另一可行实施方式中,如图10所示,该粘土层616由多个粘土块拼接形成。在本实施例中,当该人工屏障结构体61的横截面为圆环形时,周侧壁612的粘土层616的多个粘土块可为弧形块体,如图11所示,在底壁611的一可行实施例中,该底壁611的粘土层616的多个粘土块包括多个弧形块体6161a、多个弧形块体6161b、多个类弧形块体6161c和正方形块体6161d,也即该底壁611可为从外至内依次设置的由多个弧形块体6161a拼接形成的圆环体、由多个弧形块体6161b拼接形成的圆环体、由多个类弧形块体6161c拼接形成的圆环体和设置在中部的正方形块体6161d拼接形成;或者,在底壁611的另一可行实施例中,如图12所示,该底壁611的粘土层616的多个粘土块包括多个弧形块体6161a、多个弧形块体6161b、多个类弧形块体6161c和两个梯形块体6161d,也即该底壁611可为从外至内依次设置的由多个弧形块体6161a拼接形成的圆环体、由多个弧形块体6161b拼接形成的圆环体、由多个类弧形块体6161c拼接形成的圆环体和设置在中部的两个梯形块体6161d拼接形成;该人工屏障结构体61的横截面也可为其他形状,例如多边形或不规则多边形等,在此不做限制。同时,粘土层616的多个粘土块的形状亦随粘土层616的具体形状进行具体划分。
该粘土层616由于粘土块拼装不可避免地存在块体间的缝隙,这些缝隙对整个屏障系统不利,为此,应优先采用粘土块内层6161和粘土粉外层6162的组合结构层。
该钢筋混凝土层617围设在粘土层616的外侧,其主要起到稳定围岩和防水的作用,该钢筋混凝土层617应由高性能混凝土构成,主要用于确保地下硐室10的稳定和安全,同时可以有效避免外界地下水的渗入。在本实施例中,该钢筋混凝土层617的厚度为 50cm~70cm。该钢筋混凝土层617可参照一般地下硐室的钢筋混凝土层进行设计施工,一般地,在设计时,其应承担围岩所产生的所有荷载。另外,在地下中子能电站中,该钢筋混凝土层617采用标号为C35以上的混凝土制成。
该注浆层618设置在钢筋混凝土层617的外侧,其主要作用是降低围岩层62的渗透系数,提高围岩层62的密实性,并且应采用粘性矿物含量较高的浆液,提高围岩层62的离子吸附能力,注浆层618的另一个作用是在围岩体稳定不足时,提高围岩的稳定程度。该注浆层618应采用浆液在地下硐室10周边进行注浆,形成封闭的注浆体,用于进一步隔绝能量产生系统2内部的水分、核素与外界系统的传递。在本实施例中,该注浆层618的施工可在钢筋混凝土层617施工之前或之后。在围岩层62稳定较好的地方,应优先施工注浆层618,可在地下硐室10的下部周围均匀打设注浆管后,采用合适的注浆压力进行注浆,并有效控制注浆量;在围岩层62稳定性较差的地方,应优先施工钢筋混凝土层617,然后再地下硐室10的下方周围打设注浆管,进行注浆加固。该注浆层618应形成连续的屏蔽圈,其厚度可在20cm~50cm,施工后应采用物探或地质雷达等监测注浆层618的形成效果。
在本发明的一个实施方式中,位于该人工屏障结构体61外侧的围岩层62,应选择具有良好的热传导性能和离子吸附能力的围岩,例如软岩或页岩等,且该围岩层62的有效厚度不应小于70m,以用来吸附少量逸散出来的放射性离子,实现地下中子能电站对人类居住环境的完全隔离。该人工屏障结构体61距离地面的垂直距离不小于70m。
在具体施工时应从外向内施工,最后封顶。根据围岩层62的稳定性情况,分别施工注浆层618和钢筋混凝土层617,然后施工粘土层616和铅粉混凝土层615,之后将能量产生系统2放置在人工屏障结构体61的容纳腔614中,随后,调试能量产生系统2,完毕后依此施工人工屏障结构体61的顶壁613的铅粉混凝土层615、粘土层616以及钢筋混凝土层617,完成密封。
该防核素迁移屏障体6具有多级屏障结构,安全性高、实用性强,并且能够有效实现地下中子能电站与外界的能量交换,有效防止地下中子能电站全寿命过程中核素的扩散和迁移,可实现地下中子能电站与人类居住环境的有效隔离,保证地下中子能电站和人类居住环境的安全。
余热采集利用系统3位于地下硐室10的主隧洞结构体101的另一端,该余热采集利用系统3分别与能量产生系统2、发电系统4相连。如图13所示,该余热采集利用系统3包括:
主发电系统余热采集利用回路31,其具有与所述发电系统4相连的第一换热器 311,所述第一换热器311与第一热阱相连,所述发电系统4与所述能量产生系统2相连;
屏蔽结构余热采集利用回路32,其具有依次相连的换热管321、第二换热器322和第二热阱,所述换热管321设置在所述能量产生系统2的外周侧。
依据地下中子能电站的运营状态,能量产生系统2的周围会存在大量的余热,同时经过发电系统4的蒸汽也将具有较高的能量,本发明的余热采集利用系统通过主发电系统余热采集利用回路31采集发电系统4产生的余热,并通过屏蔽结构余热采集利用回路32采集能量产生系统2产生的余热,从而高效利用了地下中子能电站的能源,并对地下中子能电站的安全运行提供保障。
进一步的,该余热采集利用系统还包括堆芯余热采集利用回路33,其具有依次相连的冷却水箱331、第三换热器332和第三热阱,该冷却水箱331设置在能量产生系统2的下部。该堆芯余热采集利用回路33也可用于采集能量产生系统2产生的余热。
由此可知,依据地下中子能电站的运营状态,在一可行的实施例中,该余热采集利用系统可选择开启主发电系统余热采集利用回路31和屏蔽结构余热采集利用回路32,以便采集地下中子能电站运营过程中的余热;在另一可行的实施例中,该余热采集利用系统可选择开启堆芯余热采集利用回路33、屏蔽结构余热采集利用回路32和主发电系统余热采集利用回路31,以便更加全面地采集地下中子能电站运营过程中的余热。
该用于地下中子能电站的余热采集利用系统的三个余热采集利用回路,也即,堆芯余热采集利用回路33、屏蔽结构余热采集利用回路32和主发电系统余热采集利用回路31,相互独立且互不干扰,增加了本发明的余热采集利用的效率。
地下中子能电站的能量产生系统2是地下中子能电站的核心,是能量产生的具体单位,该能量产生系统2的堆芯211是燃料反应的主要场所,将产生较高的能量,该能量产生系统2放置在位于地下的防核素迁移屏障体6内,该防核素迁移屏障体6具有容纳腔614,该能量产生系统2位于容纳腔614中。发电系统4具有依次相连的蒸汽发生器41、汽轮机42和发电机43,该蒸汽发生器41与能量产生系统2相连,其位于容纳腔614的上部,该发电系统4用于将能量产生系统2释放的能量转换为电能。
下面具体描述用于地下中子能电站的余热采集利用系统的三个余热采集利用回路的结构:
该主发电系统余热采集利用回路31主要采集发电系统4的剩余高温蒸汽,以便再利用,其具有与发电系统4相连的第一换热器311,该第一换热器311与第一热阱相连。其中,发电系统4的蒸汽发生器41和汽轮机42之间通过第五管路44相连,该第一换热器311 连接在第五管路44上,也即,该蒸汽发生器41、汽轮机42和第一换热器311之间通过第五管路44首尾相连;该第一换热器311和第一热阱之间通过第六管路312相连。
在本发明中,发电系统4通过蒸汽发生器41实现与能量产生系统2的连接,该蒸汽发生器41位于容纳腔614的上部,该蒸汽发生器41通过内置管路实现与能量产生系统2的堆芯211中的铅或铅铋合金进行热交换,并产生高温高压蒸汽,该高温高压蒸汽首先通过第五管路44的出水管441推动汽轮机42转动,进而使发电机43产生电能,并实现与外界的传递,经过汽轮机42的蒸汽仍具有较高的温度,其会通过第一换热器311实现与第一热阱的热交换,然后变为冷凝水,再经过第五管路44的进水管442回流到蒸汽发生器41。在本发明的一实施例中,可根据需要,在第一换热器311与第一热阱的第六管路312上设置加速泵,来加速回路中的循环。经第一换热器311加热后的第六管路312中的高温水,经第六管路312的进水管3121与第一热阱发生热交换,将能量聚集在第一热阱中,热交换以后的冷却水通过第六管路312的出水管3122继续流回第一换热器311处进行循环使用。
该屏蔽结构余热采集利用回路32主要采集能量产生系统2的余热,其由两个回路串联组成,两个回路通过第二换热器322实现回路间的热交换。其中,第一个回路由换热管321、第三管路323和第二换热器322组成,换热管321与第二换热器322之间通过第三管路323相连,该第三管路323上设有第二循环泵3233,该第二循环泵3233用于控制第一个回路中循环水的速度,实现对余热采集的控制;第二个回路由第二换热器322、第四管路324和第二热阱组成,该第二换热器322与第二热阱之间通过第四管路324相连。在本发明中,该能量产生系统2的余热通过换热管321实现采集,并通过第三管路323的出水管3232经第二换热器322实现与第二个回路的热交换,之后冷却水通过第三管路323的进水管3231流回换热管321循环利用,实现第一个回路的闭合。经第二换热器322加热后的第二个回路中的高温水,经第四管路324的进水管3242与第二热阱发生热交换,将能量聚集在第二热阱中,热交换以后的冷却水通过第四管路324的出水管3241继续流回第二换热器322处进行循环使用。
在本实施例中,如图14所示,换热管321包括相连接的环向换热管3211和竖向换热管3212,该竖向换热管3212位于容纳腔614的周侧壁处,该环向换热管3211埋设在防核素迁移屏障体6中。具体的,该竖向换热管3212具有相连接的竖向进水管32121和竖向出水管32122,该环向换热管3211具有环向进水管32111和环向出水管32112,该环向进水管32111与竖向进水管32121相连,该环向出水管32112与竖向出水管32122相连。其中, 竖向出水管32122靠近防核素迁移屏障体6设置,该竖向进水管32121靠近能量产生系统2设置。在本发明中,该竖向换热管3212绕能量产生系统2的外周环形均匀布置,这样可以增加竖向换热管3212的换热面积,以最大程度地将能量产生系统2的余热带走,该环向换热管3211在防核素迁移屏障体6的铅粉混凝土层中沿环向布置,根据换热需要,该环向换热管3211的环向进水管32111和环向出水管32112可均竖向布置一环或多环,在此不做限制。该环向换热管3211的环向进水管32111和环向出水管32112分别通过第三管路323的进水管3231和出水管3232与第二换热器322连接。
该堆芯余热采集利用回路33主要采集能量产生系统2的余热,其由两个回路串联组成,两个回路通过第三换热器332实现回路间的热交换。其中,第一个回路主要由设置在能量产生系统2下部的冷却水箱331、第一管路333和第三换热器332组成,冷却水箱331与第三换热器332之间通过第一管路333相连,该第一管路333上设有第一循环泵3333,该第一循环泵3333用于控制第一个回路中循环水的速度,实现对能量产生系统2的余热采集的控制;第二个回路主要由第三换热器332、第二管路334和第三热阱组成,该第三换热器332与第三热阱之间通过第二管路334相连。在本发明中,冷却水箱331位于防核素迁移屏障体6的容纳腔614下部,该第一个回路中的冷却水首先通过第一管路333的进水管3331流经能量产生系统2的下部,在冷却水箱331处实现与能量产生系统2的堆芯211的热交换,之后通过第一管路333的出水管3332流回第三换热器332实现与第二个回路的热交换,并变为温度较低的冷却水后通过进水管3331回流到冷却水箱331。经第三换热器332加热后第二个回路中的高温水,经第二管路334的进水管3341与第三热阱发生热交换,将能量聚集在第三热阱中,热交换以后的冷却水通过第二管路334的出水管3342继续流回第三换热器332处进行循环使用。由于冷却水箱331当中的冷却水自身形成第一个回路,该第一个回路不与第三热阱所在的第二个回路发生水交换,因此能避免高放物质的流出,阻止核泄漏。在紧急情况下,可以启动第一个回路中的第一循环泵3333,加速冷却水箱331与第三换热器332的水流速率,提高换热效率,加强堆芯211衰变热的导出能力,防止堆芯211过热融化。
在本发明中,该第一热阱、第二热阱和第三热阱可分别连接有外部供热系统37。该第一热阱、第二热阱和第三热阱通过各余热采集利用回路实现余热的再利用,其通过各回路与外界需要热能的供热系统37进行热交换,经交换后的冷却水回流到第一热阱、第二热阱和第三热阱中,实现循环利用。该第一热阱、第二热阱和第三热阱潜在的供热对象,也即该供热系统37,可包括建筑物的地暖系统、冬季供暖系统或游泳池等市政实施 等。
本发明的用于地下中子能电站的余热采集利用系统采用了三个余热采集利用回路的方式,分别实现堆芯余热、屏障结构余热和主发电系统余热的采集和再利用,具有余热利用面广,潜在利用方式多等优点,有效地提高了地下中子能电站的能源利用效率,较好地解决了70%余热的再利用问题。另外,堆芯余热采集利用回路33和屏蔽结构余热采集利用回路32能有效导出堆芯211余热和堆芯211衰变热,防止堆芯211过热产生的融堆现象,有利于地下中子能电站的安全。用于地下中子能电站的余热采集利用系统采用多回路串联的方式进行余热采集、余热传递和余热利用,可以有效规避放射性元素通过供热的水回路向外界传递。
在本发明的一实施方式中,根据地质条件和岩层状况,可对三个余热采集利用回路进行不同的空间布置;另外,三个余热采集利用回路可以共用一个热阱,也即,第一热阱、第二热阱和第三热阱均为同一个热阱34,在该实施例中,热阱34通过回路341与外界需要热能的供热系统37进行热交换,该热阱34是三个余热采集利用回路的聚集处,便于建设和技术管理,降低了整体投资。或者,本发明也可采用上述实施例中所述的第一热阱、第二热阱和第三热阱分开设置的形式,在此不做限制。根据当地实际情况,采集的余热可以用于不同的用途。
另外,本发明的地下中子能电站还具有通风配电系统8,该通风配电系统8安放在地下硐室10的其中一个分支隧洞结构体102中,该通风配电系统8包括电气配套装置81和通风给排水装置82,其均为现有成熟技术,在此不做具体描述;该地下中子能电站还具有燃料储存系统9,该燃料储存系统9放置在地下硐室10的另一个分支隧洞结构体102中。其中,在本发明中,放置有燃料储存系统9的分支隧洞结构体102内还设有屏蔽门103,该屏蔽门103用于封闭该分支隧洞,以实现燃料储存系统9与外部的隔离。
本发明的地下中子能电站,其中子源系统1、能量产生系统2、余热采集利用系统3和发电系统4呈长条形布置在地下硐室10中,一方面,缩小了地下硐室10的开挖跨度,降低建设成本,另一方面,方便地下中子能电站分区块管理。另外,在主隧洞结构体101内设有屏蔽门103,该主隧洞结构体101通过该屏蔽门103被分割为中子能硐室105和热电联供硐室106。其中,中子能硐室105内用于放置地下中子能电站的中子源系统1和能量产生系统2;热电联供硐室106内用于放置地下中子能电站的余热采集利用系统3和发电系统4。该屏蔽门103可实现中子射线和核素与外部的隔离。
本发明的地下中子能电站具有燃料利用高、废料少且放射性低、安全度高的优点, 并且分布于地下,呈长条化布置,其关键设备小型化,利于在全国进行分布式建设,实现我国功能的安全。由于地下中子能电站的燃料率极高,存在提供目前我国能源消耗量30%的可能,并且其发电成本亦较低。因此,它是优化我国能源结构,治理环境问题的重要途径之一。地下中子能电站的燃料比传统核电站易于获得,且可利用常规核电在的废料作为燃料,不存在燃料匮乏的缺陷。地下中子能电站设置与地下,且设置了多圈层的防核素迁移屏障体,实现了地下中子能电站建设、运营、退役和废料处置的一体化设置,降低了整体建设投资。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的内容可以对本发明实施例进行各种改动或变型而不脱离本发明的精神和范围。

Claims (30)

  1. 一种地下中子能电站,其中,所述地下中子能电站位于地下硐室中,其包括:
    中子源系统,其位于所述地下硐室的一端,所述中子源系统具有用于发射离子的离子束管;
    能量产生系统,其位于所述地下硐室的下方,所述能量产生系统具有放置堆芯的反应容器,所述反应容器与所述离子束管之间密封连接有耦合结构;
    发电系统,其位于所述地下硐室的另一端,所述发电系统与所述能量产生系统相连;
    余热采集利用系统,其位于所述地下硐室的另一端,所述余热采集利用系统分别与所述能量产生系统、所述发电系统相连。
  2. 如权利要求1所述的地下中子能电站,其中,所述地下硐室的下方设有防核素迁移屏障体,所述能量产生系统位于所述防核素迁移屏障体内。
  3. 如权利要求2所述的地下中子能电站,其中,所述防核素迁移屏障体包括:
    设置在所述地下硐室下部的人工屏障结构体,所述人工屏障结构体具有底壁、周侧壁及顶壁,所述底壁、所述周侧壁及所述顶壁之间形成有容纳腔,所述能量产生系统放置在所述容纳腔中,所述底壁、所述周侧壁及所述顶壁均具有由内至外依次设置的铅粉混凝土层、粘土层和钢筋混凝土层;
    注浆层,其围设在所述人工屏障结构体的外侧;
    围岩层,其位于所述注浆层的外侧,所述围岩层具有围岩厚度。
  4. 如权利要求3所述的地下中子能电站,其中,所述顶壁与所述地下硐室的底壁相连,所述底壁的所述钢筋混凝土层的外侧和所述周侧壁的所述钢筋混凝土层的外侧分别设有所述注浆层。
  5. 如权利要求3所述的地下中子能电站,其中,所述粘土层包括粘土块内层和粘土粉外层,所述粘土块内层由多个粘土块拼接形成,所述粘土粉外层夹设在所述粘土块内层与所述钢筋混凝土层之间。
  6. 如权利要求3所述的地下中子能电站,其中,所述粘土层由多个粘土块拼接形成。
  7. 如权利要求5所述的地下中子能电站,其中,所述底壁的所述粘土块内层包括多个圆环体以及设置在所述多个圆环体中部的中间块体,所述圆环体由多个弧形块体拼接形成。
  8. 如权利要求6所述的地下中子能电站,其中,所述底壁的所述粘土层包括多个圆 环体以及设置在所述多个圆环体中部的中间块体,所述圆环体由多个弧形块体拼接形成。
  9. 如权利要求7或8所述的地下中子能电站,其中,所述中间块体为正方形块体;或者,所述中间块体由两个梯形块体拼接组成。
  10. 如权利要求1所述的地下中子能电站,其中,所述地下硐室距离地面的垂直距离不小于70m。
  11. 如权利要求1所述的地下中子能电站,其中,所述耦合结构包括:
    靶装置,其具有束流管及连接在所述束流管上的靶本体,所述束流管与所述离子束管相连;
    顶盖,其密封连接在所述反应容器上,所述顶盖具有相互拼接的至少两个顶盖板,所述至少两个顶盖板之间形成有供所述束流管穿设的连接孔。
  12. 如权利要求11所述的地下中子能电站,其中,所述顶盖具有插接结构,所述至少两个顶盖板通过所述插接结构相互拼接在一起。
  13. 如权利要求12所述的地下中子能电站,其中,所述插接结构包括多个凸棱及多个凹槽,所述凸棱插入所述凹槽内,所述多个凸棱及所述多个凹槽设置在所述至少两个顶盖板相拼接的端面上。
  14. 如权利要求12所述的地下中子能电站,其中,所述顶盖板为两个,所述顶盖板为半圆形,两个所述顶盖板对扣形成所述顶盖。
  15. 如权利要求11所述的地下中子能电站,其中,所述束流管的外部套设有双层外管,所述双层外管具有真空腔。
  16. 如权利要求15所述的地下中子能电站,其中,所述束流管的外部缠绕有冷却管,所述冷却管位于所述双层外管与所述束流管之间。
  17. 如权利要求16所述的地下中子能电站,其中,所述冷却管的外部设有反射涂层。
  18. 如权利要求11所述的地下中子能电站,其中,所述能量产生系统的外部罩设有安全壳,所述束流管通过固定钢板连接在所述安全壳上。
  19. 如权利要求11所述的地下中子能电站,其中,所述靶本体插入所述能量产生系统的堆芯中。
  20. 如权利要求1所述的地下中子能电站,其中,所述余热采集利用系统包括:
    主发电系统余热采集利用回路,其具有与所述发电系统相连的第一换热器,所述第一换热器与第一热阱相连;
    屏蔽结构余热采集利用回路,其具有依次相连的换热管、第二换热器和第二热阱,所述换热管设置在所述能量产生系统的外周侧。
  21. 如权利要求20所述的地下中子能电站,其中,所述余热采集利用系统还包括:堆芯余热采集利用回路,其具有依次相连的冷却水箱、第三换热器和第三热阱,所述冷却水箱设置在所述能量产生系统的下部。
  22. 如权利要求20所述的地下中子能电站,其中,所述能量产生系统放置在位于地下的防核素迁移屏障体内,所述防核素迁移屏障体具有容纳腔,所述发电系统具有依次相连的蒸汽发生器、汽轮机和发电机,所述蒸汽发生器与所述能量产生系统相连,其位于所述容纳腔的上部。
  23. 如权利要求22所述的地下中子能电站,其中,所述换热管包括相连接的环向换热管和竖向换热管,所述竖向换热管位于所述容纳腔的周侧壁处,所述环向换热管埋设在所述防核素迁移屏障体中。
  24. 如权利要求23所述的地下中子能电站,其中,所述竖向换热管具有相连接的竖向进水管和竖向出水管,所述环向换热管具有环向进水管和环向出水管,所述环向进水管与所述竖向进水管相连,所述环向出水管与所述竖向出水管相连。
  25. 如权利要求23所述的地下中子能电站,其中,所述竖向出水管靠近所述防核素迁移屏障体设置,所述竖向进水管靠近所述能量产生系统设置。
  26. 如权利要求21所述的地下中子能电站,其中,所述冷却水箱与所述第三换热器之间通过第一管路相连,所述第三换热器与所述第三热阱之间通过第二管路相连,所述第一管路上设有用于控制循环水速度的第一循环泵。
  27. 如权利要求20所述的地下中子能电站,其中,所述换热管与所述第二换热器之间通过第三管路相连,所述第二换热器与所述第二热阱之间通过第四管路相连,所述第三管路上设有用于控制循环水速度的第二循环泵。
  28. 如权利要求22所述的地下中子能电站,其中,所述蒸汽发生器和所述汽轮机之间通过第五管路相连,所述第一换热器连接在所述第五管路上,所述第一换热器与所述第一热阱之间通过第六管路相连。
  29. 如权利要求21所述的地下中子能电站,其中,所述第一热阱、所述第二热阱和所述第三热阱分别连接有外部供热系统。
  30. 如权利要求1所述的地下中子能电站,其中,所述中子源系统包括依次相连的离子源、加速器和所述离子束管。
PCT/CN2019/079798 2018-03-29 2019-03-27 地下中子能电站 WO2019184932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810270105.7 2018-03-29
CN201810270105.7A CN108417283B (zh) 2018-03-29 2018-03-29 地下中子能电站

Publications (1)

Publication Number Publication Date
WO2019184932A1 true WO2019184932A1 (zh) 2019-10-03

Family

ID=63132614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079798 WO2019184932A1 (zh) 2018-03-29 2019-03-27 地下中子能电站

Country Status (2)

Country Link
CN (1) CN108417283B (zh)
WO (1) WO2019184932A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210296012A1 (en) * 2016-12-30 2021-09-23 Andras Kovacs Method and apparatus for producing energy from metal alloys

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343086A (zh) * 2018-03-29 2018-07-31 何满潮 用于地下中子能电站的防核素迁移屏障体及其施工方法
CN108417283B (zh) * 2018-03-29 2023-10-31 何满潮 地下中子能电站

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851183A (en) * 1988-05-17 1989-07-25 The United States Of America As Represented By The United States Department Of Energy Underground nuclear power station using self-regulating heat-pipe controlled reactors
JP2003255072A (ja) * 2002-03-06 2003-09-10 Shinichi Yokosuka 原子力発電所の安全性を考慮した建設
US20090252273A1 (en) * 2006-11-28 2009-10-08 John Rogers Gilleland Automated nuclear power reactor for long-term operation
CN106531265A (zh) * 2016-10-27 2017-03-22 长江勘测规划设计研究有限责任公司 一种地下核电站主厂房群全埋式布置设计方法
CN106683737A (zh) * 2017-02-14 2017-05-17 中国科学院合肥物质科学研究院 一种气态靶中子源
CN108417283A (zh) * 2018-03-29 2018-08-17 何满潮 地下中子能电站
CN208570131U (zh) * 2018-03-29 2019-03-01 何满潮 地下中子能电站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922455B2 (en) * 2002-01-28 2005-07-26 Starfire Industries Management, Inc. Gas-target neutron generation and applications
US20080232533A1 (en) * 2006-02-15 2008-09-25 Anatoly Blanovsky High flux sub-critical reactor for nuclear waste transmulation
CN101916607B (zh) * 2010-07-28 2012-06-13 北京大学 一种采用无窗气体靶的小型中子源
CN104167226B (zh) * 2014-09-05 2017-01-25 中国科学院合肥物质科学研究院 一种可实现临界及次临界运行实验的液态金属冷却反应堆实验系统
CN105407621B (zh) * 2015-11-13 2018-01-16 兰州大学 一种紧凑型d‑d中子发生器
CN106531229B (zh) * 2016-12-29 2017-10-13 中国科学院合肥物质科学研究院 一种新型环腔式多功能核能系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851183A (en) * 1988-05-17 1989-07-25 The United States Of America As Represented By The United States Department Of Energy Underground nuclear power station using self-regulating heat-pipe controlled reactors
JP2003255072A (ja) * 2002-03-06 2003-09-10 Shinichi Yokosuka 原子力発電所の安全性を考慮した建設
US20090252273A1 (en) * 2006-11-28 2009-10-08 John Rogers Gilleland Automated nuclear power reactor for long-term operation
CN106531265A (zh) * 2016-10-27 2017-03-22 长江勘测规划设计研究有限责任公司 一种地下核电站主厂房群全埋式布置设计方法
CN106683737A (zh) * 2017-02-14 2017-05-17 中国科学院合肥物质科学研究院 一种气态靶中子源
CN108417283A (zh) * 2018-03-29 2018-08-17 何满潮 地下中子能电站
CN208570131U (zh) * 2018-03-29 2019-03-01 何满潮 地下中子能电站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210296012A1 (en) * 2016-12-30 2021-09-23 Andras Kovacs Method and apparatus for producing energy from metal alloys

Also Published As

Publication number Publication date
CN108417283A (zh) 2018-08-17
CN108417283B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2019184932A1 (zh) 地下中子能电站
CN107068206B (zh) 集成的熔盐反应堆
US20060171498A1 (en) Reactor tray vertical geometry with vitrified waste control
US20100303192A1 (en) Supersafe and simply- / easily-decommissionable nuclear power plant
CN104409109A (zh) 超高比功率热中子钍增殖堆装置及增殖核燃料的方法
CN205810388U (zh) 一种深井式常压供热核反应堆
CN104051037A (zh) 阶地下埋型地下核电站
CN103531256B (zh) 压水堆预应力混凝土安全壳非能动冷却系统
CN105374408A (zh) 一种深井式常压供热核反应堆
EP2732159A1 (en) System and method for power generation using a hybrid geothermal power plant including a nuclear plant
CN208570131U (zh) 地下中子能电站
CN103366834A (zh) 利用钍生产核燃料的热中子高速增殖系统及增殖方法
CN203966573U (zh) 反应堆及带放射性的辅助厂房置于地下的大型核电站
RU2273901C2 (ru) Подземная атомная электростанция
CN102820070A (zh) 一种充氦气体颗粒物脱除系统
WO2019184927A1 (zh) 用于地下中子能电站的余热采集利用系统
KR20230067251A (ko) 산속에 건설된 원자력 발전장치
CN208154436U (zh) 用于地下中子能电站的余热采集利用系统
CN205541975U (zh) 一种深井式常压核供热系统
CN110534220A (zh) 一体化布置有低中放处置场的双堆t型核电站厂房群
Pryde et al. Soviet Nuclear Power: A different approach to nuclear safety
CN212303096U (zh) 一种利用废弃矿井安置核电站厂房的布置结构
CN109898900B (zh) 一种核反应堆厂房及其布置方法
CN217008664U (zh) 一种共用反应堆厂房的核能供热堆布置结构
JP2003270383A (ja) 原子力利用熱供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774362

Country of ref document: EP

Kind code of ref document: A1