WO2019184682A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2019184682A1
WO2019184682A1 PCT/CN2019/077470 CN2019077470W WO2019184682A1 WO 2019184682 A1 WO2019184682 A1 WO 2019184682A1 CN 2019077470 W CN2019077470 W CN 2019077470W WO 2019184682 A1 WO2019184682 A1 WO 2019184682A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
routing information
terminal device
information
timer
Prior art date
Application number
PCT/CN2019/077470
Other languages
English (en)
French (fr)
Inventor
汪红星
朱强华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019184682A1 publication Critical patent/WO2019184682A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1045Proxies, e.g. for session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1046Call controllers; Call servers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS

Definitions

  • the present application relates to the field of communications and, more particularly, to communication methods and communication devices.
  • QoS Quality of Service
  • VR Virtual Reality
  • AR Augmented Reality
  • the process of moving the terminal device for example, a process of riding a high-speed rail or a transportation device such as a car
  • the network-side device serving the terminal device may change.
  • IP Internet Protocol
  • the present application provides a communication method and a communication device capable of ensuring continuity of communication and improving reliability of communication when communication resources used by the terminal device change.
  • the first aspect provides a communication method, including: the first device sends the first indication information, where the first indication information is used to indicate that the routing information for the second device is changed from the first routing information to the second routing information, where The routing information includes an Internet Protocol IP address and/or a port; the first device controls data transmission or data reception for the second device according to the first routing information in a first time period after the first indication information is sent; After the first time period, the first device controls data transmission or data reception for the second device according to the second routing information.
  • the second device by causing the first device to send the changed routing information to the communication peer (ie, the second device), the second device can learn that the routing information of the first device changes, thereby enabling Avoiding communication errors caused by the second device not recognizing the changed routing information, and ensuring that the first device transmits data using the pre-change routing information for a certain period of time after transmitting the changed routing information, thereby ensuring After receiving the change information, the second device receives the data packet carrying the changed routing information, thereby further ensuring continuity of communication and improving communication reliability.
  • the method further includes: after the first device sends the first indication information, the first device confirms that the data packet carrying the second routing information in the destination address field is valid.
  • the acknowledgment that the destination address field carries the data packet of the second routing information is valid, and may be: the data packet that the second device carries the second routing information in the acknowledgment destination address field of the first device is a data packet that needs to be sent to the first device.
  • the “acknowledgment that the destination address field carries the data of the second routing information is valid” may be: the first device confirms that the destination address field carries the data of the second routing information, and the data packet of the service corresponding to the first routing information is the data packet of the service corresponding to the first routing information.
  • the first device is a terminal device
  • the second device is a proxy call session control function P-CSCF device in an Internet Protocol Multimedia Subsystem (IMS) network.
  • IMS Internet Protocol Multimedia Subsystem
  • the first device controls data transmission or data reception for the second device according to the first routing information in a first time period after the first indication information is sent, including: the first device The first routing information is carried in a source address field in a data packet that needs to be sent to the gateway device in a first time period after the first indication information is sent; and the first device is after the first time period, according to the first time period
  • the second routing information controls data transmission or data reception for the second device, including: after the first time period, the first device carries the second route in a source address field in a data packet that needs to be sent to the gateway device Information, wherein the gateway device is a gateway device controlled by the second device.
  • the first device controls data transmission or data reception for the second device according to the first routing information in a first time period after the first indication information is sent, including: the first The device confirms that the data packet carrying the first routing information is valid within the first time period after the first indication information is sent.
  • the terminal device considers that the data packet carrying the first routing information or the second routing information in the destination address field is a valid data packet in the first time period after the first indication information is sent. .
  • the terminal device considers that the data packet carrying the first routing information or the second routing information in the destination address field is a data packet belonging to the same service in the first time period after the first indication information is sent.
  • the first device is a call session control function CSCF device in an Internet Protocol Multimedia Subsystem (IMS) network
  • the second device is a terminal device.
  • IMS Internet Protocol Multimedia Subsystem
  • the first device controls data transmission or data reception for the second device according to the first routing information in the first time period after the first indication information is sent, including: the first device is in the self Controlling, by the first gateway device, data transmission or data reception by the first gateway device, where the first routing information is routing information of the first gateway device, where the first device is After the first time period, the data transmission or data reception for the second device is controlled according to the second routing information, including: after the first time period, the first device controls the second gateway device to perform data with the second device. Sending or receiving data, the second routing information is routing information of the second gateway device.
  • the first device controls the first gateway device to perform data transmission or data reception with the second device in the first time period after the first indication information is sent, including: the first device is self-sending the first In the first time period after the indication information, the first gateway device is controlled to send the data packet to the terminal device, and the first routing information is carried in the source address field in the data packet that needs to be sent to the terminal device.
  • the first device controls the second gateway device to perform data transmission or data reception with the second device: after the first time period, the first device controls the second gateway device to send the second gateway device to the terminal device.
  • the data packet, and the second routing information is carried in a source address field in a data packet that needs to be sent to the terminal device.
  • the first device controls data transmission or data reception for the second device according to the first routing information in a first time period after the first indication information is sent, including: the first The device controls the first gateway device to enable the first gateway device to confirm that the data packet carrying the first routing information is valid within a first time period after the first indication information is sent.
  • the first gateway device controlled by the P-CSCF device considers that the destination address field carries the first route in the first time period after the P-CSCF device sends the first indication information.
  • the information packet is a valid data packet.
  • the second gateway device controlled by the P-CSCF device considers that the destination address field carries the second routing information data packet as valid data in a second time period after the first indication information is sent by the P-CSCF device. package.
  • the method further includes: the first device releasing the first routing information after the first time period.
  • the first device may: if the first device receives the data packet with the first routing information in the destination address after the first time period, The packet is invalid.
  • the first device controls data transmission or data reception for the second device according to the first routing information in a first time period after the sending the first indication information, including: the first device is sending After the first indication information, the preset first timer is started, and before the first timer expires, data transmission or data reception for the second device is controlled according to the first routing information; and the first device After the first time period, the data transmission or data reception for the second device is controlled according to the second routing information, including: after the first timer expires, the first device controls, according to the second routing information, Data transmission or data reception of the second device, where the duration of the first timer is determined according to a transmission delay between the first device and the second device, and/or the duration of the first timer It is determined according to the moment when the first device releases the first routing information.
  • the first indication information is further used to indicate a duration of the first timer.
  • the method further includes: the first device receives the second indication information, where the second indication information is used to indicate that the second device receives the first indication information; and the first time period is from the first device And sending the first indication information to a time period between the first device and the second indication information.
  • the second indication information is further used to indicate a duration of the second timer, where the second timer is a timer that is started by the second device after receiving the first indication information, and the The mapping relationship between the device and the first routing information is deleted by the second device after the second timer expires.
  • the method further includes: the first device begins to experience the second indication information After the duration of the second timer, sending data according to the first routing information is prohibited.
  • the second indication information is further used to indicate a duration of the second timer, where the second timer is a timer that is started by the second device after receiving the first indication information, and the The mapping relationship between the device and the first routing information is deleted by the second device after the second timer expires.
  • the method further includes: the first device begins to experience the second indication information After the duration of the second timer, the mapping relationship between the first device and the first routing information is deleted.
  • the first device can use the changed routing information to send data after ensuring that the second device learns that the routing information of the first device is changed, thereby further improving communication. Reliability.
  • the second aspect provides a communication method, including: receiving, by the second device, first indication information, where the first indication information is used to indicate that routing information of the first device facing the second device is changed from the first routing information to the second Routing information, the routing information includes an internet protocol IP address and/or a port; the second device controls data transmission for the first device according to the first routing information in a first time period after receiving the first indication information Or data receiving; the second device controls data transmission or data reception for the first device according to the second routing information after the first time period.
  • the second device by causing the first device to send the changed routing information to the communication peer (ie, the second device), the second device can learn that the routing information of the first device changes, thereby enabling Avoiding communication errors caused by the second device not recognizing the changed routing information, and ensuring that the first device transmits data using the pre-change routing information for a certain period of time after transmitting the changed routing information, thereby ensuring After receiving the change information, the second device receives the data packet carrying the changed routing information, thereby further ensuring continuity of communication and improving communication reliability.
  • the method further includes: the second device starts to send the second routing information in the destination address field carrying of the data packet that needs to be sent to the first device, after the first indication information is sent.
  • the method further includes: after the second device sends the first indication information, determining that the data packet carrying the second routing information in the source address field carrying is valid.
  • the acknowledgment that the source address field carries the data packet of the second routing information is valid.
  • the second device confirms that the data packet carrying the second routing information in the source address field is a data packet from the first device.
  • the second device controls data transmission or data reception for the first device according to the first routing information in a first time period after receiving the first indication information, including: the second device is in the self After receiving the first indication information, determining that the source address carries the data packet of the first routing information is valid.
  • the acknowledgment that the source address field carries the data packet of the first routing information is valid, and the second device confirms that the data packet carrying the first routing information in the source address field is a data packet from the first device.
  • the second device controls data transmission or data reception for the first device according to the first routing information in a first time period after receiving the first indication information, including: the second device is receiving Starting a preset first timer after the first indication information, and controlling data transmission or data reception for the first device according to the first routing information before the first timer expires; and the second After the first time period, the device controls data transmission or data reception for the first device according to the second routing information, including: the second device controls, according to the second routing information, after the first timer expires Data transmission or data reception for the first device; wherein the duration of the first timer is determined according to a transmission delay between the first device and the second device, and/or the first timer The duration is determined according to the moment when the first device releases the first routing information.
  • the first indication information is further used to indicate a duration of the first timer.
  • the method further includes: sending, by the second device, the second indication information to the first device, where the second indication information is used to indicate that the second device receives the first indication information.
  • the second device controls data transmission or data reception for the first device according to the first routing information in a first time period after receiving the first indication information, including: the second device is sending After the second indication information, the preset second timer is started, and before the second timer expires, data transmission or data reception for the first device is controlled according to the first routing information; and the second device After the first time period, the data transmission or the data reception for the first device is controlled according to the second routing information, including: after the second timer expires, the second device controls, according to the second routing information, Data transmission or data reception of the first device; wherein the duration of the second timer is determined according to a transmission delay between the first device and the second device.
  • the first device can use the changed routing information to send data after ensuring that the second device learns that the routing information of the first device is changed, thereby further improving communication. Reliability.
  • the method further includes: deleting, by the second device, the mapping relationship between the first device and the first routing information after the second timer expires.
  • the first device is a terminal device
  • the second device is a proxy call session control function P-CSCF device in an Internet Protocol Multimedia Subsystem (IMS) network.
  • IMS Internet Protocol Multimedia Subsystem
  • the second device controls data transmission or data reception for the first device according to the first routing information in the first time period after receiving the first indication information, including: the second device is in the self After receiving the first indication information, the first gateway device controls the first gateway device to perform data transmission or reception with the first device according to the first routing information.
  • the second device notifies the first gateway device that the data packet carrying the first routing information is valid in the first time period after receiving the first indication information.
  • the second device in the first time period after receiving the first indication information, notifies the first gateway device that the first routing information is carried in the destination address field of the data packet sent to the terminal device.
  • the second device controls data transmission or data reception for the first device according to the second routing information, including: the second device controls the second after the first time period
  • the gateway device performs data transmission or data reception with the first device.
  • the second device after receiving the first indication information, notifies the second gateway device that the data packet carrying the second routing information in the source address field is valid.
  • the second device after receiving the first indication information, notifies the second gateway device to carry the second routing information in the destination address field of the data packet sent to the terminal device.
  • the first device is a proxy call session control function P-CSCF device in an Internet Protocol Multimedia Subsystem (IMS) network
  • the second device is a terminal device.
  • IMS Internet Protocol Multimedia Subsystem
  • a communication apparatus comprising means for performing the steps of the communication method of the first or second aspect and its implementations described above.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (eg, a terminal device, a P-CSCF device, or a gateway device, etc.), and the communication chip may include a transmitter for transmitting information or data, and for receiving information or Receiver of data.
  • a communication device eg, a terminal device, a P-CSCF device, or a gateway device, etc.
  • the communication chip may include a transmitter for transmitting information or data, and for receiving information or Receiver of data.
  • a communication device comprising: a processor, a memory for storing a computer program, the processor for calling and running the computer program from a memory, such that the communication device performs the first or second Aspects and communication methods in various possible implementations.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • the forwarding device further includes a transmitter (transmitter) and a receiver (receiver).
  • a communication system the first device and the second device are provided.
  • a computer program product comprising: a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a computer readable medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a computer program which may also be referred to as a code, or an instruction
  • a chip system comprising a memory and a processor for storing a computer program, the processor for calling and running the computer program from the memory, such that the communication device on which the chip system is installed performs the above.
  • the chip system may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the second device can be configured to change the routing information of the first device by causing the first device to send the changed routing information to the communication peer end (ie, the second device), thereby enabling Avoiding communication errors caused by the second device not recognizing the changed routing information, and ensuring that the first device transmits data using the pre-change routing information for a certain period of time after transmitting the changed routing information, thereby ensuring After receiving the change information, the second device receives the data packet carrying the changed routing information, thereby further ensuring continuity of communication and improving communication reliability.
  • the communication peer end ie, the second device
  • FIG. 1 is a schematic configuration diagram of an example of a communication system of the present application.
  • FIG. 2 shows a schematic structural diagram of an example of an access network.
  • FIG. 3 shows a schematic structural diagram of an example of a core network.
  • FIG. 4 is a schematic interaction diagram of an example of a communication method of the present application.
  • FIG. 5 is a configuration diagram of an example of change instruction information of the present application.
  • Fig. 6 is a configuration diagram showing another example of the change instruction information of the present application.
  • FIG. 7 is a schematic interaction diagram of another example of the communication method of the present application.
  • FIG. 8 is a configuration diagram of still another example of the change instruction information of the present application.
  • FIG. 9 is a schematic interaction diagram of another example of the communication method of the present application.
  • Fig. 10 is a schematic block diagram showing an example of a communication device of the present application.
  • Fig. 11 is a schematic block diagram showing still another example of the communication device of the present application.
  • FIG. 12 is a schematic configuration diagram of an example of a terminal device of the present application.
  • FIG. 1 illustrates a fault applicable to the present application.
  • IMS IP Multimedia Subsystem
  • FIG. 1 illustrates a fault applicable to the present application.
  • IMS IP Multimedia subsystem
  • the external network can provide business services to users.
  • the external network can be the Internet, the Public Switched Telephone Network (PSTN), and the like.
  • PSTN Public Switched Telephone Network
  • the access network may provide services for the cell, and the terminal device communicates with the access network network through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the access network may be, for example, a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, or a Wideband Code Division Multiple Access (Wideband Code Division).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G future 5th Generation
  • NR New Radio
  • WLAN Wireless Local Area Networks
  • the device providing the foregoing cell in the access network may be referred to as an access network device, and the access network device may be an access point (AP) in the WLAN, a base station (BTS) in GSM or CDMA, It can also be a base station (NodeB, NB) in WCDMA, or a gNB in a new wireless system (NR) system, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station. Or an access point, or an in-vehicle device, a wearable device, and an access network device in a future 5G network or an access network device in a future evolved PLMN network.
  • AP access point
  • BTS base station
  • NodeB base station
  • gNB new wireless system
  • NR new wireless system
  • Evolutional Node B, eNB or eNodeB evolved base station
  • the cell provided by the access network may refer to a cell corresponding to the access network device (for example, the base station), and the cell may belong to the macro base station, or may belong to the base station corresponding to the small cell, where the small cell may include: Metro cells, micro cells, Pico cells, femto cells, etc. These small cells have small coverage and low transmission power, and are suitable for providing high-speed data. Transfer service.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • FIG. 2 shows a schematic architectural diagram of an example of an access network.
  • the access network 100 includes an access network device 102, which may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • access network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components associated with signal transmission and reception (eg, processor, modulator, complex) Consumer, demodulator, demultiplexer or antenna, etc.).
  • Access network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that the access network device 102 can communicate with any number of terminal devices similar to the terminal device 116 or the terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of the access network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the coverage area of the access network device 102.
  • the access network device can transmit signals to all of the terminal devices in its corresponding sector by single antenna or multi-antenna transmit diversity.
  • the transmit antenna of the access network device 102 can also utilize beamforming to improve the forward links 118 and 124. Signal to noise ratio.
  • the access network device 102 utilizes beamforming to selectively distribute the terminal devices 116 and 122 in the associated coverage area as compared to the manner in which the access network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity.
  • beamforming When transmitting a signal, mobile devices in neighboring cells are subject to less interference.
  • the access network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network, a D2D network, an M2M network, an IoT network, or other networks.
  • FIG. 2 is only a simplified schematic diagram of an example, and the network may also include other access network devices, which are not shown in FIG. 2.
  • the embodiment of the present application is not limited to the network device in the access network or the network device in the PLMN network in the future.
  • the IMS may also be referred to as a core network for transmitting data from an access network to an external network or transmitting data of an external network to an access network. More specifically, the IMS provides multimedia services over an IP-based network. Universal network architecture.
  • the IMS may include, but is not limited to, the following network elements.
  • GW Gateway
  • a gateway device is a relay device that accesses data exchange between a terminal device in the network and an external network.
  • communication between a terminal device and a gateway device may be based on routing information.
  • the routing information can include an IP address or port.
  • the terminal device #1 when the terminal device #1 needs to transmit the data packet #1 to the external network, the terminal device #1 can carry the routing information #1 in the destination address field of the packet #1, wherein the routing information #1 is The gateway device (referred to as gateway device #1) serving the terminal device #1 is directed to the routing information (e.g., IP address or port) of the terminal device #1.
  • gateway device #1 serving the terminal device #1 is directed to the routing information (e.g., IP address or port) of the terminal device #1.
  • the “route information of the gateway device #1 facing the terminal device #1” may refer to: routing information that can indicate the gateway device #1.
  • the “route information of the gateway device #1 facing the terminal device #1” may specifically refer to: routing information that enables the terminal device #1 to identify the gateway device #1.
  • the gateway device #1 may have a plurality of routing information, and each routing information can indicate the gateway device #1.
  • the plurality of routing information may be respectively directed to different terminal devices, that is, the routing information obtained by the different terminal devices for indicating the network device #1 may be different.
  • the terminal device #1 may carry the routing information #2 in the source address field of the packet #1, where the routing information #2 is the routing information (for example, the IP address or the address information of the terminal device #1 facing the gateway device #1 port).
  • the "routing information of the terminal device #1 facing the gateway device #1" may be: routing information indicating the terminal device #1.
  • the "routing information of the terminal device #1 facing the gateway device #1" may specifically mean that the gateway device #1 can identify the routing information of the terminal device #1.
  • the terminal device #1 may have a plurality of routing information, and each routing information can indicate the terminal device #1.
  • the multiple routing information may be respectively directed to different gateway devices, that is, the routing information obtained by different gateway devices for indicating the terminal device #1 may be different.
  • the terminal device #1 may have a plurality of routing information, for example, different services (or sessions) of the terminal device #1 use different routing information, and each routing information can indicate the terminal device #1.
  • the device in the communication system can route the packet #1 to the gateway device #1 based on the routing information (ie, routing information #1) carried in the destination address field in the packet #1.
  • the gateway device #1 can recognize that the data packet #1 is from the terminal device #1 based on the routing information (ie, routing information #2) carried in the source address field in the packet #1.
  • the gateway device #1 may also identify the service (or session) corresponding to the data packet #1 based on the routing information #2.
  • the gateway device can transmit the data packet #1 to the external device based on the related information of the terminal device #1 (for example, information of the accessed service).
  • gateway device #1 when the gateway device #1 receives the data packet #2 from the external device, for example, based on the information such as the bearer corresponding to the data packet #2, it may be determined that the data packet #2 needs to be sent to the terminal device #1, Thus, gateway device #1 can carry routing information #2 in the destination address field of packet #2.
  • the gateway device #1 can carry the routing information #1 in the source address field of the packet #2.
  • the device in the communication system can route the packet #2 to the terminal device #1 based on the routing information (ie, routing information #2) carried in the destination address field in the packet #2.
  • the terminal device #1 can recognize that the data packet #2 is from the gateway device #1 based on the routing information (ie, routing information #1) carried in the source address field in the data packet #2.
  • the terminal device #1 may further identify the service (or session) corresponding to the data packet #2 based on the routing information #2.
  • multiple gateway devices may be included in the IMS system, and coverage of different gateway devices may be different.
  • the network device may be a variety of gateway devices such as a Translation Gateway (TrGW) or an IMS Access Gateway (AGW).
  • TrGW Translation Gateway
  • AGW IMS Access Gateway
  • CSCF Call Session Control Function
  • the CSCF device is a functional entity inside the IMS and is the core of the entire IMS. Mainly responsible for handling signaling control during multimedia call sessions. It manages the user authentication of the IMS, the QoS of the IMS bearer plane, the control of the Session Initiation Protocol (SIP) session with other network elements, and the service negotiation and resource allocation.
  • SIP Session Initiation Protocol
  • the CSCF device can communicate with the terminal device, and the CSCF device can communicate with the gateway device.
  • the CSCF device can select a gateway device that communicates with the terminal device, and the CSCF device can assign routing information, such as an IP address or port, to the terminal device and the gateway device.
  • routing information such as an IP address or port
  • the CSCF is divided into a proxy CSCF (Proxy CSCF, P-CSCF), a CSCF (Interrogating CSCF, I-CSCF ), a serving CSCF (Serving CSCF, S-CSCF ), and the like according to functions.
  • a proxy CSCF Proxy CSCF, P-CSCF
  • a CSCF Interrogating CSCF, I-CSCF
  • a serving CSCF Serving CSCF, S-CSCF
  • the P-CSCF is a unified entry point of the IMS visited network (an example of an access network). All session messages originating from the user equipment and terminating at the user equipment are passed through the P-CSCF.
  • P-CSCF as a SIP Proxy, responsible for user authentication and Internet security agreements related to the access network (Internet Protocol Security, IPSec) management, network security and anti-attack, carried out in order to save the SIP signaling compression and decompression wireless network resources
  • the user's roaming control through the Policy Decision Function (PDF), performs network address translation (NAT) and QoS functions on the bearer plane.
  • PDF Policy Decision Function
  • the P-CSCF may determine the I-CSCF according to the domain name provided by the user equipment, and forward the SIP registration request from the user equipment to the I-CSCF.
  • the P-CSCF may determine that the S-CSCF forwards the SIP message from the user equipment when the registration process is initiated by the user equipment.
  • the I-CSCF is the entry point to the IMS home network (another instance of the access network).
  • the I-CSCF selects an S-CSCF for the user by querying the HSS.
  • the call to the IMS network is first routed to the I-CSCF, and the I-CSCF obtains the S-CSCF address registered by the user from the HSS and routes the message to the S-CSCF.
  • the I-CSCF may specify a certain S-CSCF for the user equipment to perform SIP registration.
  • the I-CSCF can obtain the address of the S-CSCF from the HSS, forward the SIP request, or route SIP requests from other networks to the S-CSCF.
  • the S-CSCF is at the core of IMS network session control. It accepts registration requests forwarded from the visited network through the P-CSCF, and cooperates with the HSS for user authentication. And download the business data signed by the user from the HSS.
  • the S-CSCF performs routing management on the calling and called sides of the user, and triggers the application server (AS) to implement the rich IMS service function according to the Initial Filter Criteria (IFC).
  • AS application server
  • the S-CSCF may make the registration request take effect through the HSS after receiving the registration request.
  • the S-CSCF can control the registered session terminal and can act as a proxy server (Proxy-Server).
  • the S-CSCF may perform internal processing or forwarding after receiving the request, or may act as a User Agent (UA, User Agent) to interrupt or initiate a SIP transaction.
  • the S-CSCF can also interact with the service platform to provide multimedia services.
  • the P-CSCF the S-CSCF, and the I-CSCF may be independently configured in different entities or integrated into the same entity.
  • the CSCF device is collectively referred to as a CSCF device.
  • the network elements in the IMS network enumerated above are only exemplary descriptions, and the application is not limited thereto.
  • the IMS may also include but not limited to the following network elements:
  • HSS Home Subscriber Server
  • SCC AS Service Centralization and Continuity Application Server
  • ATCF Access Transfer Control Function
  • PDF Policy Decision Function
  • the terminal device may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device.
  • the terminal device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld device with wireless communication capabilities computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, for example, a terminal device in a 5G network or Terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system, and the IoT is an important component of future information technology development, and its main technical feature is to pass the article through the communication technology. Connected to the network to realize an intelligent network of human-machine interconnection and physical interconnection.
  • IoT Internet of Things
  • the IOT technology can achieve massive connection, deep coverage, and terminal power saving through, for example, Narrow Band NB technology.
  • the NB includes only one resource block (Resource Bloc, RB), that is, the bandwidth of the NB is only 180 KB.
  • the terminal must be required to be discrete in access. According to the communication method of the embodiment of the present application, the congestion problem of the IOT technology massive terminal when accessing the network through the NB can be effectively solved.
  • the communication device (for example, the foregoing terminal device, the CSCF device, or the gateway device, etc.) includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method provided by the embodiment of the present application is not particularly limited as long as the program of the code of the method provided by the embodiment of the present application can be run by using the program according to the present application.
  • the method can be communicated.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • multiple applications may be run at the application layer.
  • the application that performs the communication method of the embodiment of the present application is used to control the receiving device to complete the received data.
  • the application of the corresponding action can be a different application.
  • FIG. 4 shows a schematic flow of the communication method 400 of the present application in the case where the IP address of the terminal device #A is changed.
  • the terminal device #A (ie, an example of the first device) can communicate with the gateway device based on the IP address #A.
  • the IP address #A may be the IP address assigned to the terminal device #A by the 5G Core (5GC).
  • 5GC 5G Core
  • the IP address #A may correspond to a service (eg, session) #A, that is, the IP address #A may be an IP address used when transmitting data of the service #A between the gateway device and the terminal device #A.
  • a service eg, session
  • the IP address #A may be an IP address used when transmitting data of the service #A between the gateway device and the terminal device #A.
  • the gateway device can know that the IP address #A is the IP address of the terminal device #A.
  • the IP address #A may be an IP address of the terminal device #A facing the gateway device, that is, the gateway device may determine that the data packet carrying the IP address of the source address field is the IP address #A as the terminal device. A packet. And, the gateway device can carry the IP address #A in the destination IP address field of the data packet that needs to be sent to the terminal device #A.
  • the terminal device #A can determine that the IP address used by the terminal device #A is changed from the IP address #A to the IP address #B.
  • the IP address used by the terminal device #A is changed from the IP address #A to the IP address #B.
  • the IP address corresponding to the service #A is changed from the IP address #A to the IP address #B.
  • the terminal device #A moves to cause the terminal device #A to be away from the accessed access network device (for example, a base station), the distance between the terminal device #A and the access network device may increase.
  • the communication delay of the terminal device #A is increased, and the reliability and accuracy of the transmission are lowered.
  • the terminal device #A can access the access network device that is closer to the terminal device #A, and the 5GC can reassign the IP address to the terminal device #A ( Hereinafter, in order to facilitate understanding and distinction, it is referred to as IP address #B).
  • the IP address of the terminal device #A (for example, the IP address used when the terminal device #A transmits the service #A) is changed from the IP address #A to the IP address# B.
  • IP address that can be used by the terminal device #A is changed from the IP address #A to the IP address #B is merely an exemplary description, and the present application is not limited thereto, and the present application is applicable to any The scenario where the IP address used by the terminal device changes.
  • the terminal device #A may determine that if the destination address of the received data packet carries the IP address #B, the data packet needs to be sent. The packet to the terminal device #A. Alternatively, the terminal device #A may also determine that the data packet is a packet of the service #A.
  • the terminal device #A can prepare for receiving the data packet based on the IP address #B.
  • the terminal device #A may determine to carry the IP address #A or the The data packet of the IP address #B is a data packet that the terminal device #A needs to receive.
  • the terminal device #A can determine that the data packet carrying the IP address #A or the IP address #B is the service #A. Packet.
  • the terminal device #A may transmit the change instruction information (that is, an example of the first instruction information to the CSCF device in the communication system (that is, an example of the second device).
  • the change instruction is recorded for convenience of understanding and explanation.
  • Information #A wherein the change indication information #A can be used to indicate that the IP address used by the terminal device #A is changed to the IP address #B.
  • the change indication information may be application layer signaling.
  • FIG. 5 shows an example of the change instruction information #A.
  • the change instruction information #A may include a original IP address field and a change IP address field.
  • the IP address carried in the original IP address field is the IP address before the change (ie, IP address #A), and the IP address carried in the changed IP address field is the changed IP address (ie, IP address #B).
  • the location of the original IP address field and the changed IP address field in the change indication information may be specified by a communication protocol, or the location of the original IP address field and the changed IP address field in the change indication information may be
  • the terminal device #A and the CSCF device negotiate, and the present application is not particularly limited as long as the terminal device #A and the CSCF device can match the understanding of each field in the change indication information.
  • the CSCF device can determine that the IP address #A is changed to the IP address #B based on the change instruction information #A.
  • FIG. 6 shows another example of the change indication information #A.
  • the change indication information #A may include a device identification field and a change IP address field.
  • the identifier carried in the device identifier field can be used to identify the terminal device #A, and the IP address carried in the change IP address field is the changed IP address (that is, the IP address #B).
  • the correspondence between the terminal device #A and the IP address used therein can be saved in the CSCF device, that is, in the period #A, the correspondence can indicate that the identifier of the terminal device #A corresponds to the IP address #A.
  • the location of the device identifier field and the change IP address field in the change indication information may be specified by a communication protocol, or the location of the device identifier field and the change IP address field in the change indication information may be a terminal device.
  • the negotiation between the #A and the CSCF device is not particularly limited as long as the terminal device #A and the CSCF device can match the understanding of each field in the change indication information.
  • the CSCF device may determine that the identifier carried by the device identification field of the change indication information #A corresponds to the IP address #A based on the correspondence, and further determines that the IP address #A needs to be changed to IP address #B.
  • the CSCF device can notify the gateway device serving the terminal device #A that the IP address #A of the terminal device #A is changed to the IP address #B.
  • the CSCF device and the gateway device may determine that if the source address of the received data packet carries the IP address #B, it may be determined that the data packet is from the terminal device # A. Alternatively, the CSCF device and the gateway device may also determine that the data packet is a packet of service #A.
  • the gateway device can prepare for receiving the data packet based on the IP address #B.
  • the CSCF device and the gateway device can transmit data (for example, data of the service #A) to the terminal device #A using the IP address #B.
  • the CSCF device may send the response information #A (ie, an example of the second indication information) to the terminal device #A, where the response information #A may be used to instruct the CSCF device and the gateway device to confirm the IP address #A. Change to IP address #B.
  • the response information #A ie, an example of the second indication information
  • the terminal device after the IP address is changed, notifies the CSCF device of the change, and can prevent the gateway device controlled by the CSCF from being unable to recognize the change of the IP address of the terminal device because the CSCF cannot be notified. After the IP address of the packet.
  • the CSCF device determines that the IP address #A is changed to the IP address #B.
  • the terminal device #A determines the time when the IP address #A is changed to the IP address #B. Therefore, if the terminal device #A transmits the data using the IP address #B immediately after transmitting the change indication information #A, the CSCF device may not be It is determined that the IP address #A is changed to the IP address #B, and the gateway device controlled by the CSCF device cannot identify the data packet carrying the IP address #B, thereby affecting the continuity and reliability of the communication.
  • the data may be transmitted in at least one of the following manners.
  • the terminal device #A can start the timer #A (that is, an example of the first timer) after transmitting the change instruction information #A.
  • the terminal device #A transmits data (for example, data of the service #A) using the IP address #A.
  • the terminal device #A transmits data (for example, data of the service #A) using the IP address #B.
  • the duration of the timer #A may be determined according to a transmission delay (recorded as delay #A) between the terminal device #A and the CSCF device. For example, the duration of the timer #A may be greater than or equal to the duration of the delay #A.
  • the duration of the timer #A may also be determined according to a transmission delay (recorded, delay #B) between the CSCF device and the gateway device.
  • the duration of the timer #A may be greater than or equal to the sum of the durations of the delay #A and the delay #B.
  • the duration of the timer #A may also be determined according to the time when the transport layer of the terminal device releases the IP address #A.
  • the duration of the timer #A satisfies the following condition: releasing the IP address at the transport layer.
  • the terminal device prohibits the application layer from transmitting data using the IP address #A.
  • the time period from when the terminal device #A determines that the IP address #A is changed to the IP address #B to when the IP address #A is released at the transport layer is the time length # ⁇ , and the terminal device #A is determined to determine the IP address #A.
  • the duration of the timer #A is satisfied: the duration # ⁇ is less than or equal to the duration # ⁇ .
  • the duration of the timer #A may be obtained by the terminal device #A and the CSCF device according to the delay measurement of the prior communication, or the duration of the timer #A may be the administrator or the operator. This application is not specifically limited to the terminal device #A.
  • the terminal device #A may further send information about the duration of the timer #A to the CSCF device.
  • the information of the duration of the timer #A may be carried in the change indication information #A.
  • the CSCF device can determine, based on the duration of the timer #A, the time at which the terminal device #A stops transmitting data using the IP address #A (indicated as time # ⁇ ), and further, the CSCF device can be after the time # ⁇ , The mapping relationship between IP address #A and terminal device #A is released in the IMS.
  • the CSCF device can transmit the response information #A to the terminal device #A.
  • the terminal device #A transmits data (for example, data of the service #A) using the IP address #A.
  • the terminal device #A transmits data (for example, data of the service #A) using the IP address #B.
  • the terminal device #A determines the time when the CSCF device and the gateway device receive the change indication information #A.
  • the data may be received in at least one of the following manners.
  • the CSCF device can start the timer #B (ie, an example of the second timer) after transmitting the response message #A.
  • the CSCF device can control the gateway device to receive data using both the IP address #A and the IP address #B (for example, the data of the service #A), that is, at the timer #B to Before the time, the gateway device confirms that the data packet whose source address is IP address #A or IP address #B is from the terminal device #A.
  • the gateway device confirms that the data packet whose source address is IP address #A or IP address #B belongs to the service #A.
  • the CSCF device may prohibit receiving data (for example, data of the service #A) using the IP address #A.
  • the duration of the timer #B may be determined according to a transmission delay between the terminal device #A and the CSCF device (for example, the delay #A described above). For example, the duration of the timer #B may be greater than or equal to the duration of the delay #A.
  • the gateway device still receives the data transmission using the IP address #A before the terminal device stops using the IP address #A to transmit the data, and can avoid the transmission error caused by the gateway device not recognizing the IP address #A.
  • the CSCF device may further send information about the duration of the timer #B to the terminal device #A.
  • the information of the duration of the timer #B may be carried in the response information #A.
  • the terminal device can determine, based on the duration of the timer #B, the time at which the gateway device stops receiving data using the IP address #A (indicated as time # ⁇ ), and further, the terminal device can stop using the time before the time # ⁇ . IP address #A sends data.
  • the terminal device #A may send the deactivation information #A to the CSCF device, and the deactivation information #A may be used to instruct the terminal device #A to stop transmitting data using the IP address #A (for example, data of the service #A). .
  • the terminal device #A may transmit the stop information #A after receiving the response information #A.
  • the gateway device receives the data (for example, the data of the service #A) using the IP address #A before receiving the deactivation information #A. After receiving the disable information #A, the gateway device prohibits receiving data (for example, data of the service #A) using the IP address #A.
  • the gateway device still receives the data transmission using the IP address #A before the terminal device stops using the IP address #A to transmit the data, and can avoid the transmission error caused by the gateway device not recognizing the IP address #A.
  • the terminal device #A may start the timer #C after receiving the response information #A, and release the IP address #A at the application layer when the timer #C arrives.
  • the duration of the timer #C may also be determined according to the time when the transport layer of the terminal device releases the IP address #A.
  • the duration of the timer #C satisfies the following condition: the terminal device releases the IP at the transport layer.
  • the time of address #A is located after the terminal device releases the IP address #A at the application layer.
  • the control device by causing the terminal device to notify the control device in the IMS system of the changed IP address after the IP address is changed, the control device can be made aware of the change and perform data based on the changed IP address. Transmission, thereby improving the continuity and reliability of communication.
  • FIG. 7 shows a schematic flow of the communication method 700 of the present application in the case where the IP address of the terminal device # ⁇ is changed.
  • the terminal device # ⁇ (ie, an example of the first device) can communicate with the gateway device based on the IP address # ⁇ .
  • the IP address # ⁇ may be the IP address assigned to the terminal device # ⁇ by the 5G Core (5GC).
  • the IP address # ⁇ may correspond to a service (eg, session) # ⁇ , that is, the IP address # ⁇ may be an IP address used when transmitting data of the service # ⁇ between the gateway device and the terminal device # ⁇ . .
  • the gateway device can know that the IP address # ⁇ is the IP address of the terminal device # ⁇ .
  • the IP address # ⁇ may be an IP address of the terminal device # ⁇ facing the gateway device, that is, the gateway device may determine that the data packet carrying the IP address of the source address field is IP address # ⁇ is determined to be from the terminal device. # ⁇ . And, the gateway device can carry the IP address # ⁇ in the destination IP address field of the data packet that needs to be sent to the terminal device # ⁇ .
  • the terminal device # ⁇ can determine that the IP address used by the terminal device # ⁇ is changed from the IP address # ⁇ to the IP address # ⁇ .
  • the IP address used by the terminal device # ⁇ is changed from the IP address # ⁇ to the IP address # ⁇ .
  • the IP address corresponding to the service # ⁇ is changed from the IP address # ⁇ to the IP address # ⁇ .
  • the terminal device # ⁇ moves to cause the terminal device # ⁇ to move away from the accessed access network device (for example, a base station), the distance between the terminal device # ⁇ and the access network device may increase.
  • the communication delay of the terminal device # ⁇ is increased, and the reliability and accuracy of the transmission are lowered.
  • the terminal device # ⁇ can access the access network device that is closer to the terminal device # ⁇ , and the 5GC can reassign the IP address to the terminal device # ⁇ ( Hereinafter, in order to facilitate understanding and distinction, it is referred to as IP address # ⁇ ).
  • the IP address of the terminal device # ⁇ (for example, the IP address used when the terminal device # ⁇ transmits the service # ⁇ ) is changed from the IP address # ⁇ to the IP address# ⁇ .
  • the terminal device # ⁇ may determine that if the destination address of the received data packet carries the IP address # ⁇ , the data packet needs to be sent. The packet to the terminal device # ⁇ . Alternatively, the terminal device # ⁇ may also determine that the data packet is a data packet of the service # ⁇ .
  • the terminal device # ⁇ can prepare for receiving the data packet based on the IP address # ⁇ .
  • the terminal device # ⁇ may determine to carry the IP address # ⁇ or the The data packet of the IP address # ⁇ is a data packet that the terminal device # ⁇ needs to receive. Alternatively, the terminal device # ⁇ may determine that the data packet carrying the IP address # ⁇ or the IP address # ⁇ is the service # ⁇ . Packet.
  • the terminal device # ⁇ may transmit the change indication information (ie, another example of the first indication information) to the gateway device (ie, another example of the second device).
  • the change indication information may be referred to as # ⁇ ), wherein the change instruction information # ⁇ can be used to indicate that the IP address used by the terminal device # ⁇ is changed to the IP address # ⁇ .
  • the change indication information may be transport layer signaling.
  • the change indication information can be carried in a data packet.
  • FIG. 8 shows an example of the indication information # ⁇ .
  • the change indication information # ⁇ may be carried in a data packet, which may include a source address field (ie, IP address # ⁇ ).
  • the destination address resource and the change address resource, and the IP address carried in the change IP address field is the changed IP address (ie, IP address # ⁇ ).
  • the location of the changed IP address field in the data packet may be specified by the communication protocol, or the location of the changed IP address field in the data packet may be the terminal device # ⁇ and the gateway device (or the gateway device)
  • the management device is negotiated, and the present application is not particularly limited as long as the terminal device # ⁇ and the gateway device can match the understanding of each field in the change instruction information.
  • the gateway device may determine that if the source address of the received data packet carries the IP address # ⁇ , it may be determined that the data packet is from the terminal device # ⁇ . Alternatively, the gateway device may also determine that the data packet is a packet of service # ⁇ .
  • the gateway device can prepare for receiving the data packet based on the IP address # ⁇ .
  • the gateway device can transmit data (for example, data of the service # ⁇ ) to the terminal device # ⁇ using the IP address # ⁇ .
  • the network device may send the response information # ⁇ (ie, an example of the second indication information) to the terminal device # ⁇ , where the response information # ⁇ may be used to instruct the gateway device to confirm that the IP address # ⁇ is changed to IP. Address # ⁇ .
  • the response information # ⁇ ie, an example of the second indication information
  • the response information # ⁇ may be transport layer information, for example, the response information # ⁇ may be carried in a data packet transmitted by the network device to the terminal device # ⁇ .
  • the terminal device after the IP address is changed, the terminal device notifies the gateway device of the change, thereby preventing the gateway device from being unable to recognize that the IP address of the terminal device is changed, and thus the IP address carrying the changed IP address cannot be identified. data pack.
  • the gateway device determines that the IP address # ⁇ is changed to the IP address # ⁇ .
  • the terminal device # ⁇ determines the time at which the IP address # ⁇ is changed to the IP address # ⁇ . Therefore, if the terminal device # ⁇ transmits the data using the IP address # ⁇ immediately after transmitting the change indication information # ⁇ , the gateway device may not be Determining that the IP address # ⁇ is changed to the IP address # ⁇ causes the gateway device to fail to recognize the packet carrying the IP address # ⁇ , thereby affecting the continuity and reliability of the communication.
  • the data may be transmitted in at least one of the following manners.
  • the terminal device # ⁇ can start the timer # ⁇ (that is, an example of the first timer) after transmitting the change instruction information # ⁇ .
  • the terminal device # ⁇ transmits data (for example, data of the service # ⁇ ) using the IP address # ⁇ .
  • the terminal device # ⁇ transmits data (for example, data of the service # ⁇ ) using the IP address # ⁇ .
  • the duration of the timer # ⁇ may be determined according to a transmission delay (recorded as delay # ⁇ ) between the terminal device # ⁇ and the CSCF device. For example, the duration of the timer # ⁇ may be greater than or equal to the duration of the delay # ⁇ .
  • the duration of the timer # ⁇ may also be determined according to a transmission delay (referred to as delay # ⁇ ) between the CSCF device and the gateway device.
  • delay # ⁇ a transmission delay between the CSCF device and the gateway device.
  • the duration of the timer # ⁇ may be greater than or equal to the sum of the durations of the delay # ⁇ and the delay # ⁇ .
  • the duration of the timer # ⁇ may also be determined according to the time when the transmission layer of the terminal device releases the IP address # ⁇ .
  • the duration of the timer # ⁇ satisfies the following condition: releasing the IP address in the transport layer. After ⁇ , the terminal device prohibits the application layer from transmitting data using the IP address # ⁇ .
  • the period from the start of the terminal device # ⁇ to the IP address # ⁇ to the IP address # ⁇ to the release of the IP address # ⁇ at the transport layer is the time length # ⁇ , and the terminal device # ⁇ determines the IP address # ⁇ .
  • the duration of the timer # ⁇ is satisfied: the duration # ⁇ is less than or equal to the duration # ⁇ .
  • the duration of the timer # ⁇ may be obtained by the terminal device # ⁇ and the CSCF device according to the delay measurement of the prior communication, or the duration of the timer # ⁇ may be the administrator or the operator.
  • the present application is not specifically limited to the terminal device # ⁇ .
  • the terminal device # ⁇ may further send information about the duration of the timer # ⁇ to the gateway device.
  • the information of the duration of the timer # ⁇ may be carried in the change indication information # ⁇ .
  • the gateway device can determine, based on the duration of the timer # ⁇ , the time at which the terminal device # ⁇ stops transmitting data using the IP address # ⁇ (indicated as time # ⁇ ), and further, the gateway device can be after the time # ⁇ , The mapping relationship between the IP address # ⁇ and the terminal device # ⁇ is released at the IMS.
  • the gateway device can transmit the response information # ⁇ to the terminal device # ⁇ .
  • the terminal device # ⁇ transmits data (for example, data of the service # ⁇ ) using the IP address # ⁇ .
  • the terminal device # ⁇ transmits data (for example, data of the service # ⁇ ) using the IP address # ⁇ .
  • the terminal device # ⁇ determines the time at which the gateway device receives the change indication information # ⁇ (or The time at which the terminal device # ⁇ stops using the IP address # ⁇ to transmit data lags behind the time when the gateway device determines that the IP address # ⁇ is changed to the IP address # ⁇ , and therefore, if the gateway device receives the change instruction information # ⁇ , it is prohibited immediately. Receiving data based on the IP address # ⁇ may cause the gateway device to fail to identify the data packet carrying the IP address # ⁇ because the terminal device # ⁇ still uses the IP address # ⁇ to transmit data, thereby affecting the continuity and reliability of the communication.
  • the data may be received in at least one of the following manners.
  • the network device # ⁇ can start the timer # ⁇ (i.e., an example of the second timer) after transmitting the response information # ⁇ .
  • the gateway device receives data (for example, data of the service # ⁇ ) using both the IP address # ⁇ and the IP address # ⁇ , that is, before the timer # ⁇ expires, the gateway The device confirms that the data packet whose source address is IP address # ⁇ or IP address # ⁇ is from the terminal device # ⁇ .
  • the gateway device confirms that the data packet whose source address is IP address # ⁇ or IP address # ⁇ belongs to the service # ⁇ .
  • the gateway device may prohibit receiving data (for example, data of the service # ⁇ ) using the IP address # ⁇ .
  • the duration of the timer # ⁇ may be determined according to a transmission delay between the terminal device # ⁇ and the gateway device (for example, the delay # ⁇ described above). For example, the duration of the timer # ⁇ may be greater than or equal to the duration of the delay # ⁇ .
  • the gateway device still uses the IP address # ⁇ to receive the data transmission before the terminal device stops using the IP address # ⁇ to transmit the data, and it is possible to avoid the transmission error caused by the gateway device not recognizing the IP address # ⁇ .
  • the gateway device may further send information about the duration of the timer # ⁇ to the terminal device # ⁇ .
  • information about the duration of the timer # ⁇ may be carried in the response information # ⁇ .
  • the terminal device can determine, based on the duration of the timer # ⁇ , the time at which the gateway device stops receiving data using the IP address # ⁇ (indicated as time # ⁇ ), and further, the terminal device can stop using the time before the time # ⁇ . IP address # ⁇ sends data.
  • the terminal device # ⁇ may send the deactivation information # ⁇ to the gateway device, and the deactivation information # ⁇ may be used to instruct the terminal device # ⁇ to stop transmitting data using the IP address # ⁇ (for example, data of the service # ⁇ ) .
  • the terminal device # ⁇ may transmit the deactivation information # ⁇ after receiving the response information # ⁇ .
  • the gateway device receives the data (for example, the data of the service # ⁇ ) using the IP address # ⁇ before receiving the deactivation information # ⁇ . After receiving the disable information # ⁇ , the gateway device prohibits receiving data (for example, data of the service # ⁇ ) using the IP address # ⁇ .
  • the gateway device still uses the IP address # ⁇ to receive the data transmission before the terminal device stops using the IP address # ⁇ to transmit the data, and it is possible to avoid the transmission error caused by the gateway device not recognizing the IP address # ⁇ .
  • the terminal device # ⁇ may start the timer # ⁇ after receiving the response information # ⁇ , and release the IP address # ⁇ at the application layer when the timer # ⁇ is reached.
  • the duration of the timer # ⁇ may also be determined according to the moment when the transport layer of the terminal device releases the IP address # ⁇ .
  • the duration of the timer # ⁇ satisfies the following condition: the terminal device releases the IP at the transport layer.
  • the time of the address # ⁇ is located after the terminal device releases the IP address # ⁇ at the application layer.
  • the control device by causing the terminal device to notify the control device in the IMS system of the changed IP address after the IP address is changed, the control device can be made aware of the change and perform data based on the changed IP address. Transmission, thereby improving the continuity and reliability of communication.
  • FIG. 9 shows a schematic flow of the communication method 900 of the present application in the case where the IMS changes the IP address of the terminal device #1 (or the gateway device served for the terminal device #1).
  • the terminal device #1 ie, an example of the first device
  • the gateway device #1 can communicate with the gateway device #1 based on the IP address #1.
  • the IP address #1 may be the IP address assigned to the gateway device #1 by the 5G Core (5GC).
  • 5GC 5G Core
  • the IP address #1 may correspond to a service (eg, session) #1, that is, the IP address #1 may be used when the data of the service #1 is transmitted between the gateway device #1 and the terminal device #1. IP address.
  • the terminal device #1 can know that the IP address #1 is the IP address of the gateway device #1.
  • the IP address #1 may be the IP address of the gateway device #1 facing the terminal device #1, that is, the terminal device #1 may determine the data packet with the IP address carried in the source address field as the IP address #1 as A packet from gateway device #1. And, the terminal device #1 can carry the IP address #1 in the destination IP address field of the data packet that needs to be transmitted to the external network.
  • the CSCF device may determine that the IP address of the IMS for the terminal device #1 is changed from the IP address #1 to the IP address #2.
  • the IP address of the IMS for the terminal device #1 is changed from the IP address #1 to the IP address #2.
  • the IP address corresponding to the service #1 in the IMS is changed from the IP address #1 to the IP address.
  • the terminal device #1 moves to cause the terminal device #1 to move away from the accessed access network device (for example, a base station, hereinafter, for ease of understanding and differentiation, referred to as access network device #1)
  • the accessed access network device for example, a base station, hereinafter, for ease of understanding and differentiation, referred to as access network device #1
  • the distance between the terminal device #1 and the access network device #1 increases, resulting in an increase in the communication delay of the terminal device #1, and the reliability and accuracy of the transmission are reduced.
  • terminal device #1 can access an access network device that is closer to the terminal device #1 (for example, a base station, hereinafter, for ease of understanding and distinction, it is recorded as Networking device #2), and the management device (for example, CSCF device) in the IMS can change the gateway device serving the terminal device #1 from the above gateway device #1 to the gateway device #2, wherein the IP address #2 can be the IP address of the gateway device #2 for the terminal device #1.
  • the management device for example, CSCF device
  • the IP address on the IMS side (for example, the IP address used when the IMS side transmits the service #1) is changed from the IP address #1 to the IP address #2.
  • the reason for the above-mentioned IP address that can cause the IMS to be changed to the IP address #2 from the IP address #1 to the terminal device #1 is merely exemplary.
  • the present application is not limited thereto, and the present application is applicable to any A scenario that causes the IMS to change the IP address of the terminal device.
  • the CSCF device or the gateway device #1 may determine that if the destination address of the data packet received by the gateway device #2 carries the IP address #2, Then the packet is valid.
  • gateway device #2 may also determine that the data packet is a packet of service #1.
  • the gateway device #2 can prepare for receiving the data packet based on the IP address #2.
  • the CSCF device may determine to carry the IP address #1 or the IP address within a predetermined period of time after determining that the IP address #1 is changed to the IP address #2 (for example, before the terminal device #1 releases the IP address #1).
  • the data packets of #2 are all valid data packets.
  • the CSCF device may determine that the data packet carrying the IP address #1 or the IP address #2 is a packet of the service #1.
  • the CSCF device (that is, an example of the first device) transmits the change instruction information to the terminal device #1 (that is, an example of the first instruction information, and is hereinafter referred to as change instruction information #1 for ease of understanding and explanation).
  • the change indication information #1 can be used to indicate that the IP address on the IMS side is changed to the IP address #2.
  • the change indication information may be application layer signaling.
  • the specific format of the change instruction information #1 may be similar to the format of the change instruction information #A. Here, in order to avoid redundancy, detailed description thereof will be omitted.
  • the terminal device #1 may determine that if the source address of the received data packet carries the IP address #2, it may be determined that the data packet is valid data from the IMS. package. Alternatively, the terminal device #1 may also determine that the data packet is a data packet of the service #1.
  • the gateway device can prepare for receiving the data packet based on the IP address #2.
  • the CSCF device and the gateway device can transmit data (for example, data of the service #1) to the terminal device #1 using the IP address #2.
  • the CSCF device may send the response information #1 (ie, an example of the second indication information) to the terminal device #1, where the response information #1 may be used to instruct the CSCF device and the gateway device to confirm the IP address #1. Change to IP address #2.
  • the response information #1 ie, an example of the second indication information
  • the CSCF device after the IP address of the IMS side is changed, notifies the terminal device of the change, and can prevent the terminal device from recognizing the change of the IP address due to the change of the IP address of the IMS measurement. After the IP address of the packet.
  • the terminal device determines that the time when the IP address #1 is changed to the IP address #2 lags behind the CSCF. The device determines that the IP address #1 is changed to the time of the IP address #2. Therefore, if the CSCF device controls the gateway device #2 to transmit data using the IP address #2 immediately after transmitting the change indication information #1, it may be due to the terminal device #1. Failure to determine that the IP address #1 is changed to the IP address #2 causes the terminal device #1 to fail to recognize the packet carrying the IP address #2, thereby affecting the continuity and reliability of the communication.
  • the gateway device may be controlled to transmit data by using at least one of the following manners.
  • the CSCF device can start the timer #1 (that is, an example of the first timer) after transmitting the change instruction information #1.
  • the CSCF device controls the gateway device #1 to transmit data (for example, data of the service #1) using the IP address #1.
  • the CSCF device controls the gateway device #2 to transmit data (for example, data of the service #1) using the IP address #2.
  • the duration of the timer #1 may be determined according to a transmission delay (referred to as delay #1) between the terminal device #1 and the CSCF device.
  • delay #1 a transmission delay between the terminal device #1 and the CSCF device.
  • the duration of the timer #1 may be greater than or equal to the duration of the delay #1.
  • IP address #1 is still used for data transmission before the gateway device determines that the IP address #1 is changed to the IP address #2, and it is possible to avoid a transmission error caused by the terminal device not being able to recognize the IP address #2.
  • the CSCF device may further send information about the duration of the timer #1 to the terminal device #1.
  • the information of the duration of the timer #1 may be carried in the change indication information #1.
  • the terminal device #1 can determine, based on the duration of the timer #1, the time at which the gateway device #1 stops transmitting data using the IP address #1 (indicated as time # ⁇ ), and further, the terminal device can be at the time # ⁇ After that, the IP address #1 is released, and the correspondence between the IMS side and the IP address #1 is cleared.
  • the terminal device #1 can transmit the response information #1 to the CSCF device.
  • the CSCF device controls the gateway device #1 to transmit data (for example, data of the service #1) using the IP address #1.
  • the CSCF device After receiving the response information #1, the CSCF device controls the gateway device #2 to transmit data (for example, data of the service #1) using the IP address #2.
  • the CSCF device determines the time at which the terminal device #1 receives the change indication information #1 ( In other words, the time when the gateway device #1 stops using the IP address #1 to transmit data lags behind the terminal device #1 determines that the IP address #1 is changed to the time of the IP address #2, and therefore, if the terminal device #1 is transmitting the response information After #1 immediately prohibits receiving data based on IP address #1, it may be that the gateway device #1 still uses IP address #1 to transmit data, so that the terminal device 1 cannot recognize the packet carrying the IP address #1, thereby affecting the continuous communication. Sex and reliability.
  • the data may be received in at least one of the following manners.
  • the terminal device #1 can start the timer #2 (that is, an example of the second timer) after transmitting the response information #1.
  • the terminal device #1 can receive data (for example, data of the service #1) using both the IP address #1 and the IP address #2, that is, when the timer #2 expires Previously, the terminal device #1 can determine that the data packet whose source address is IP address #1 or IP address #2 is valid.
  • the terminal device #1 confirms that the data packet whose source address is IP address #1 or IP address #2 belongs to the service #1.
  • the terminal device #1 can prohibit reception of data using the IP address #1 (for example, data of the service #1). In other words, the terminal device #1 can release the IP address #1.
  • the duration of the timer #2 may be determined according to a transmission delay between the terminal device #1 and the CSCF device (for example, the delay #1 described above). For example, the duration of the timer #2 may be greater than or equal to the duration of the delay #1.
  • the terminal device #1 may further send information about the duration of the timer #2 to the CSCF device.
  • the information of the duration of the timer #2 may be carried in the response information #1.
  • the CSCF device can determine, based on the duration of the timer #2, the time at which the terminal device stops receiving data using the IP address #1 (recorded as time # ⁇ ), and further, the CSCF device can disable the gateway before the time # ⁇ .
  • Device #1 sends data using IP address #1.
  • the CSCF device may send the deactivation information #1 to the terminal device #1, which may be used to instruct the IMS to stop using the IP address #1 to transmit data (eg, the data of the service #1).
  • the CSCF device may send the disable information #1 after receiving the response information #1.
  • the terminal device #1 before receiving the disable information #1, the terminal device #1 receives data (for example, data of the service #1) using the IP address #1. After receiving the deactivation information #1, the terminal device #1 prohibits reception of data (for example, data of the service #1) using the IP address #1, that is, after receiving the deactivation information #1, the terminal device #1 It is determined that the packet carrying IP address #1 is invalid.
  • the terminal device #1 still receives the data transmission using the IP address #1 before the IMS side stops using the IP address #1 to transmit data, and can avoid the transmission error caused by the gateway device not recognizing the IP address #1.
  • mode 11 and mode 12 may be used alone or in combination, and the present application is not particularly limited.
  • the CSCF device may start the timer #3, and release the IP address #1 at the application layer when the timer #3 expires.
  • the duration of the timer #3 may also be determined according to the time when the transport layer of the gateway device #1 releases the IP address #1.
  • the duration of the timer #3 satisfies the following condition: the gateway device #1 is The moment when the transport layer releases the IP address #1 is located after the gateway device #1 releases the IP address #1 at the application layer.
  • the changed IP address is notified to the terminal device, so that the terminal device can learn the change and perform data transmission based on the changed IP address. Thereby, the continuity and reliability of communication can be improved.
  • the device 10 is a schematic diagram of a communication device 10 according to an embodiment of the present disclosure.
  • the device 10 may be a device for changing routing information, for example, the terminal device, a management device in an IMS (for example, The CSCF device, or a transmission device (for example, a gateway device) in the IMS, may also be a chip or a circuit, such as a chip or a circuit that can be disposed in the above-described routing information change device.
  • the apparatus 10 can include a processor 11 (i.e., an example of a processing unit) and a memory 12.
  • the memory 12 is configured to store instructions for executing the instructions stored by the memory 12 to cause the apparatus 20 to implement a device that changes routing information in a corresponding method as in FIG. 4, FIG. 7, or FIG. step.
  • the device 10 may further include an input port 13 (ie, an example of a communication unit) and an output port 14 (ie, another example of a communication unit).
  • the processor 11, memory 12, input port 13 and output port 14 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • the memory 12 is configured to store a computer program, and the processor 11 can be used to call and run the computer program from the memory 12 to control the input port 13 to receive signals, and control the output port 14 to send signals to complete the terminal device in the above method.
  • the memory 12 can be integrated in the processor 11 or can be provided separately from the processor 11.
  • the input port 13 is a receiver
  • the output port 14 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 13 is an input interface
  • the output port 14 is an output interface
  • the functions of the input port 13 and the output port 14 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 11 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a communication device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general purpose processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
  • Each of the modules or units in the communication device 10 can be used to perform various operations or processes performed by the device (for example, the first device) in which the routing information is changed in the above method.
  • the device for example, the first device
  • the routing information is changed in the above method.
  • detailed description thereof will be omitted.
  • FIG. 11 is a schematic diagram of a communication device 11 according to an embodiment of the present application.
  • the device 20 may be a device for changing routing information of a communication peer end, for example, management of the terminal device and the IMS.
  • a device for example, a CSCF device, or a transmission device (for example, a gateway device) in the IMS, may also be a chip or a circuit, such as a chip or a circuit of a device that can be set to change routing information of the communication peer.
  • the apparatus 20 can include a processor 21 (ie, an example of a processing unit) and a memory 22.
  • the memory 22 is configured to store instructions
  • the processor 21 is configured to execute the instructions stored in the memory 22, so that the apparatus 20 implements the change of routing information of the communication peer end in the corresponding method in FIG. 4, FIG. 7, or FIG. The steps performed by the device.
  • the device 20 may further include an input port 23 (ie, an example of a communication unit) and an output port 24 (ie, another example of a communication unit).
  • the processor 21, the memory 22, the input port 23, and the output port 24 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 can be used to call and run the computer program from the memory 22 to control the input port 23 to receive signals, and control the output port 24 to send signals to complete the terminal device in the above method.
  • the memory 22 can be integrated in the processor 21 or can be provided separately from the processor 21.
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the functions of the input port 23 and the output port 24 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 21 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a communication device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 21, the input port 23, and the output port 24 is stored in the memory 22, and the general purpose processor implements the functions of the processor 21, the input port 23, and the output port 24 by executing the code in the memory 22.
  • the modules or units in the communication device 20 can be used to perform the operations or processes performed by the routing information of the communication peer in the above method (ie, the second device). Here, in order to avoid redundancy, detailed description thereof is omitted. .
  • FIG. 12 is a schematic structural diagram of a terminal device 30 according to the present application. For the convenience of explanation, FIG. 12 shows only the main components of the terminal device. As shown in FIG. 12, the terminal device 30 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, in the embodiment of the indication method for supporting the terminal device to perform the foregoing transmission precoding matrix.
  • the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 5 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 5 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 201 of the terminal device 20, and the processor having the processing function is regarded as the processing unit 302 of the terminal device 30.
  • the terminal device 30 includes a transceiver unit 301 and a processing unit 302.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 301 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 301 is regarded as a sending unit, that is, the transceiver unit 301 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the terminal device shown in FIG. 12 can perform the operations performed by the terminal device in the above method 400, 700 or 900. Here, in order to avoid redundancy, detailed description thereof will be omitted.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该方法包括:第一设备发送第一指示信息,该第一指示信息用于指示面向第二设备的路由信息从第一路由信息变更为第二路由信息,该路由信息包括网际协议IP地址和/或端口;该第一设备在自发送该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第二设备的数据发送或数据接收;该第一设备在该第一时段之后,根据该第二路由信息控制针对该第二设备的数据发送或数据接收,从而,能够在终端设备使用的通信资源发生变化的情况下,确保通信的连续性,进而提高通信的可靠性。

Description

通信方法和通信装置
本申请要求于2018年3月29日提交中国国家知识产权局、申请号为201810272075.3、发明名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及通信方法和通信装置。
背景技术
随着通信技术的发展和普及,通信业务对于移动性的要求也逐渐提高,例如,在第五代移动通信系统(the Fifth-Generation mobile communications,5G)中,低时延和实时性等要求高服务质量(Quality of Service,QoS)的实时通信业务将越来越多,例如:虚拟现实(Virtual Reality,VR)业务或增强现实(Augmented Reality,AR)业务。
并且,在终端设备的移动过程(例如,乘坐高铁或汽车等交通设备的过程)中,为了确保上述业务的低时延要求,可能需要对为该终端设备服务的网络侧设备进行切换,即,终端设备使用的通信资源(例如,终端设备使用的网际协议(Internet Protocol,IP)地址或端口,或者为终端设备提供该业务服务的网络侧设备的IP地址或端口)可能发生变化。
此情况下,如何确保通信的连续性,成为业界亟需解决的问题。
发明内容
本申请提供一种通信方法和通信装置,能够在终端设备使用的通信资源发生变化的情况下,确保通信的连续性,进而提高通信的可靠性。
第一方面,提供了一种通信方法,包括:第一设备发送第一指示信息,该第一指示信息用于指示面向第二设备的路由信息从第一路由信息变更为第二路由信息,该路由信息包括网际协议IP地址和/或端口;该第一设备在自发送该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第二设备的数据发送或数据接收;该第一设备在该第一时段之后,根据该第二路由信息控制针对该第二设备的数据发送或数据接收。
根据本申请提供的通信方法,通过使第一设备将变更后的路由信息发送给通信对端(即,第二设备),能够使第二设备获知第一设备的路由信息发生变化,从而,能够避免因第二设备无法识别变更后的路由信息而导致通信出现错误,并且,通过使第一设备在发送该变更后的路由信息之后的一定时段内仍然使用变更前的路由信息传输数据,能够确保第二设备在接收到变更信息之后,才会接收到携带有变更后的路由信息的数据包,从而,能够进一步确保通信的连续性,进而提高通信的可靠性。
可选地,该方法还包括:该第一设备自发送该第一指示信息之后开始,确认目的地址字段携带有第二路由信息的数据包有效。
其中,“确认目的地址字段携带有第二路由信息的数据包有效”,可以是指:第一设备确认目的地址字段携带有第二路由信息的数据包是需要发送给第一设备的数据包。
或者,“确认目的地址字段携带有第二路由信息的数据包有效”,可以是指:第一设备确 认目的地址字段携带有第二路由信息的数据包是第一路由信息对应的业务的数据包。
可选地,该第一设备为终端设备,该第二设备为网际协议多媒体子系统IMS网络中的代理呼叫会话控制功能P-CSCF设备。
例如,此情况下,该第一设备在自发送该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第二设备的数据发送或数据接收,包括:该第一设备在自发送该第一指示信息之后的第一时段内,在需要发送给网关设备的数据包中的源地址字段携带该第一路由信息;并且,该第一设备在该第一时段之后,根据该第二路由信息控制针对该第二设备的数据发送或数据接收,包括:该第一设备在该第一时段之后,在需要发送给网关设备的数据包中的源地址字段携带该第二路由信息,其中,该网关设备是由该第二设备控制的网关设备。
再例如,此情况下,该第一设备在自发送该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第二设备的数据发送或数据接收,包括:该第一设备在自发送该第一指示信息之后的第一时段内,确认携带有该第一路由信息的数据包有效。
即,在本申请实施例中,终端设备在自发送该第一指示信息之后的第一时段内,认为目的地址字段携带有该第一路由信息或第二路由信息的数据包均为有效数据包。
可选地,终端设备在自发送该第一指示信息之后的第一时段内,认为目的地址字段携带有该第一路由信息或第二路由信息的数据包为属于同一业务的数据包。
可选地,该第一设备为网际协议多媒体子系统IMS网络中的呼叫会话控制功能CSCF设备,该第二设备为终端设备。
此情况下,该第一设备在自发送该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第二设备的数据发送或数据接收,包括:该第一设备在自发送该第一指示信息之后的第一时段内,控制第一网关设备与该第二设备进行数据发送或数据接收,该第一路由信息是该第一网关设备的路由信息;该第一设备在该第一时段之后,根据该第二路由信息控制针对该第二设备的数据发送或数据接收,包括:该第一设备在该第一时段之后,控制第二网关设备与该第二设备进行数据发送或数据接收,该第二路由信息是该第二网关设备的路由信息。
其中,该第一设备在自发送该第一指示信息之后的第一时段内,控制第一网关设备与该第二设备进行数据发送或数据接收,包括:该第一设备在自发送该第一指示信息之后的第一时段内,控制第一网关设备向终端设备发送数据包,并且,在需要发送给终端设备的数据包中的源地址字段携带该第一路由信息。
并且,该第一设备在该第一时段之后,控制第二网关设备与该第二设备进行数据发送或数据接收:该第一设备在该第一时段之后,控制第二网关设备向终端设备发送数据包,并且,在需要发送给终端设备的数据包中的源地址字段携带该第二路由信息。
再例如,此情况下,该第一设备在自发送该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第二设备的数据发送或数据接收,包括:该第一设备对第一网关设备进行控制,以使第一网关设备在自发送该第一指示信息之后的第一时段内,确认携带有该第一路由信息的数据包有效。
即,在本申请实施例中,P-CSCF设备所控制的第一网关设备在自该P-CSCF设备发送该第一指示信息之后的第一时段内,认为目的地址字段携带有该第一路由信息数据包为有效数据包。并且,该P-CSCF设备所控制的第二网关设备在自该P-CSCF设备发送该第一指示信 息之后的第二时段内,认为目的地址字段携带有该第二路由信息数据包为有效数据包。
可选地,该方法还包括:该第一设备在该第一时段之后,释放该第一路由信息。
其中,“该第一设备在该第一时段之后,释放该第一路由信息”可以是指:第一设备如果在第一时段后接收到目的地址携带有第一路由信息的数据包,则认为该数据包无效。
可选地,该第一设备在自发送该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第二设备的数据发送或数据接收,包括:该第一设备在发送该第一指示信息之后启动预设的第一定时器,并在该第一定时器到时之前,根据该第一路由信息控制针对该第二设备的数据发送或数据接收;以及该第一设备在该第一时段之后,根据该第二路由信息控制针对该第二设备的数据发送或数据接收,包括:该第一设备在该第一定时器到时之后,根据该第二路由信息控制针对该第二设备的数据发送或数据接收;其中,该第一定时器的时长是根据该第一设备和该第二设备之间的传输时延确定的,和/或该第一定时器的时长是根据该第一设备释放该第一路由信息的时刻确定的。
可选地,该第一指示信息还用于指示该第一定时器的时长。
通过基于预设的定时器确定第一时段,能够避免因协商第一时段而导致的信令开销。
可选地,该方法还包括:该第一设备接收第二指示信息,该第二指示信息用于指示该第二设备接收到该第一指示信息;以及该第一时段是自该第一设备发送该第一指示信息至该第一设备接收到第二指示信息之间的时段。
可选地,该第二指示信息还用于指示第二定时器的时长,其中,该第二定时器是该第二设备自接收到该第一指示信息之后启动的定时器,并且,该第一设备与该第一路由信息之间的映射关系在该第二定时器到时之后将被该第二设备删除,该方法还包括:该第一设备在自接收到该第二指示信息开始经历该第二定时器的时长之后,禁止根据该第一路由信息发送数据。
可选地,该第二指示信息还用于指示第二定时器的时长,其中,该第二定时器是该第二设备自接收到该第一指示信息之后启动的定时器,并且,该第一设备与该第一路由信息之间的映射关系在该第二定时器到时之后将被该第二设备删除,该方法还包括:该第一设备在自接收到该第二指示信息开始经历该第二定时器的时长之后,删除所述第一设备与所述第一路由信息之间的映射关系。
通过基于第二设备反馈的信息确定第一时段,能够使第一设备在确保第二设备获知该第一设备的路由信息变更后,才使用变更后的路由信息发送数据,从而,能够进一步提高通信的可靠性。
第二方面,提供了一种通信方法,包括:第二设备接收第一指示信息,该第一指示信息用于指示第一设备面向该第二设备的路由信息从第一路由信息变更为第二路由信息,该路由信息包括网际协议IP地址和/或端口;该第二设备在自接收该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第一设备的数据发送或数据接收;该第二设备在该第一时段之后,根据该第二路由信息控制针对该第一设备的数据发送或数据接收。
根据本申请提供的通信方法,通过使第一设备将变更后的路由信息发送给通信对端(即,第二设备),能够使第二设备获知第一设备的路由信息发生变化,从而,能够避免因第二设备无法识别变更后的路由信息而导致通信出现错误,并且,通过使第一设备在发送该变更后的路由信息之后的一定时段内仍然使用变更前的路由信息传输数据,能够确保第二设备在接收到变更信息之后,才会接收到携带有变更后的路由信息的数据包,从而,能够进一步确保通 信的连续性,进而提高通信的可靠性。
可选地,该方法还包括:该第二设备自发送该第一指示信息之后开始,在需要发送给第一设备的数据包的目的地址字段携带中携带第二路由信息。
可选地,该方法还包括:该第二设备自发送该第一指示信息之后开始,确定源地址字段携带中携带第二路由信息的数据包有效。
其中,“确认源地址字段携带有第二路由信息的数据包有效”,可以是指:第二设备确认源地址字段携带有第二路由信息的数据包是来自第一设备的数据包。
可选地,该第二设备在自接收该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第一设备的数据发送或数据接收,包括:该第二设备在自接收该第一指示信息之后的第一时段内,确定源地址携带有第一路由信息的数据包有效。
其中,“确认源地址字段携带有第一路由信息的数据包有效”,可以是指:第二设备确认源地址字段携带有第一路由信息的数据包是来自第一设备的数据包。
可选地,该第二设备在自接收该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第一设备的数据发送或数据接收,包括:该第二设备在接收到该第一指示信息之后启动预设的第一定时器,并在该第一定时器到时之前,根据该第一路由信息控制针对该第一设备的数据发送或数据接收;以及该第二设备在该第一时段之后,根据该第二路由信息控制针对该第一设备的数据发送或数据接收,包括:该第二设备在该第一定时器到时之后,根据该第二路由信息控制针对该第一设备的数据发送或数据接收;其中,该第一定时器的时长是根据该第一设备和该第二设备之间的传输时延确定的,和/或该第一定时器的时长是根据该第一设备释放该第一路由信息的时刻确定的。
可选地,该第一指示信息还用于指示该第一定时器的时长。
通过基于预设的定时器确定第一时段,能够避免因协商第一时段而导致的信令开销。
可选地,该方法还包括:该第二设备向该第一设备发送第二指示信息,该第二指示信息用于指示该第二设备接收到该第一指示信息。
此情况下,该第二设备在自接收该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第一设备的数据发送或数据接收,包括:该第二设备在发送该第二指示信息之后启动预设的第二定时器,并在该第二定时器到时之前,根据该第一路由信息控制针对该第一设备的数据发送或数据接收;以及该第二设备在该第一时段之后,根据该第二路由信息控制针对该第一设备的数据发送或数据接收,包括:该第二设备在该第二定时器到时之后,根据该第二路由信息控制针对该第一设备的数据发送或数据接收;其中,该第二定时器的时长是根据该第一设备和该第二设备之间的传输时延确定的。
通过基于第二设备反馈的信息确定第一时段,能够使第一设备在确保第二设备获知该第一设备的路由信息变更后,才使用变更后的路由信息发送数据,从而,能够进一步提高通信的可靠性。
可选地,该方法还包括:该第二设备在该第二定时器到时后,删除该第一设备与该第一路由信息之间的映射关系在。
可选地,该第一设备为终端设备,该第二设备为网际协议多媒体子系统IMS网络中的代理呼叫会话控制功能P-CSCF设备。
此情况下,该第二设备在自接收该第一指示信息之后的第一时段内,根据该第一路由信息控制针对该第一设备的数据发送或数据接收,包括:该第二设备在自接收该第一指示信息 之后的第一时段内,控制第一网关设备根据该第一路由信息与该第一设备进行数据发送或接收。
具体地说,该第二设备在自接收该第一指示信息之后的第一时段内,通知第一网关设备:源地址字段携带第一路由信息的数据包有效。
或者,该第二设备在自接收该第一指示信息之后的第一时段内,通知第一网关设备在发送给终端设备的数据包的目的地址字段携带有第一路由信息。
可选地,该第二设备在该第一时段之后,根据该第二路由信息控制针对该第一设备的数据发送或数据接收,包括:该第二设备在该第一时段之后,控制第二网关设备与该第一设备进行数据发送或数据接收。
具体地说,该第二设备在接收该第一指示信息之后,通知第二网关设备:源地址字段携带有第二路由信息的数据包有效。
或者,该第二设备在接收该第一指示信息之后,通知第二网关设备在发送给终端设备的数据包的目的地址字段携带第二路由信息。
可选地,该第一设备为网际协议多媒体子系统IMS网络中的代理呼叫会话控制功能P-CSCF设备,该第二设备为终端设备。
第三方面,提供了一种通信装置,包括用于执行上述第一方面或第二方面及其各实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备(例如,终端设备、P-CSCF设备或网关设备等),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第四方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一或第二方面及其各种可能实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该转发设备还包括,发射机(发射器)和接收机(接收器)。
第五方面,提供了一种通信系统,上述第一设备和第二设备。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面或第二方面中任一种可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
根据本申请实施例的方案,通过使第一设备将变更后的路由信息发送给通信对端(即, 第二设备),能够使第二设备获知第一设备的路由信息发生变化,从而,能够避免因第二设备无法识别变更后的路由信息而导致通信出现错误,并且,通过使第一设备在发送该变更后的路由信息之后的一定时段内仍然使用变更前的路由信息传输数据,能够确保第二设备在接收到变更信息之后,才会接收到携带有变更后的路由信息的数据包,从而,能够进一步确保通信的连续性,进而提高通信的可靠性。
附图说明
图1是本申请的通信系统的一例的示意性结构图。
图2示出了接入网络的一例的示意性结构图。
图3示出了核心网络的一例的示意性结构图。
图4是本申请的通信方法的一例的示意性交互图。
图5是本申请的变更指示信息的一例的结构图。
图6是本申请的变更指示信息的另一例的结构图。
图7是本申请的通信方法的另一例的示意性交互图。
图8是本申请的变更指示信息的再一例的结构图。
图9是本申请的通信方法的另一例的示意性交互图。
图10是本申请的通信装置的一例的示意性框图。
图11是本申请的通信装置的再一例的示意性框图。
图12是本申请的终端设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案,可以应用于能够通过接入网络和核心网络完成通信的各种通信系统,例如:IP多媒体子系统(IMS,Internet Protocol Multimedia Subsystem),图1示出了适用本申请的故障处理的方法的通信系统的示意性结构图,如图1所示,该通信系统可以包括接入网、IP多媒体子系统(IMS,IP Multimedia subsystem)和外部网络三部分。
下面,分别对该通信系统的三个部分进行详细说明。
1.外部网络
外部网络可以为用户提供业务服务,例如,该外部网络可以是互联网(Internet)、公共交换电话网络(PSTN,Public Switched Telephone Network)等。
2.接入网络
接入网络可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与接入网网络进行通信。作为示例而非限定,接入网络可以是例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New  Radio,NR)、无线局域网络(WLAN,Wireless Local Area Networks)等。
接入网中提供上述小区的设备可以称为接入网设备,接入网设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),或者是新型无线系统(New Radio,NR)系统中的gNB,还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等。
另外,接入网络提供的小区可以是指接入网设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentification,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
图2示出了接入网络的一例的示意性架构图。如图2所示,该接入网络100包括接入网设备102,接入网设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,接入网设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
接入网设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,接入网设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图2所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为接入网设备102的扇区。例如,可将天线组设计为与接入网设备102覆盖区域的扇区中的终端设备通信。接入网设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在接入网设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,接入网设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与接入网设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在接入网设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,接入网设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络、D2D网络、M2M网络、IoT网络或者其他网络,图2只是举例的简化示意图,网络中还可以包括其他接入网设备,图2中未予以画出。
另外,接入网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
3.IMS
IMS也可以称为核心网络,用于将来自接入网络的数据传输至外部网络,或者,将外部网络的数据传输至接入网络,更具体地,IMS是在基于IP的网络上提供多媒体业务的通用网络架构。
作为示例而非限定,如图3所示,在本申请中,IMS可以包括但不限于以下网元。
A.网关(Gateway,GW)设备
网关设备是接入网络中的终端设备与外部网络之间的数据交换的中转设备。
作为示例而非限定,在本申请中,终端设备和网关设备之间可以基于路由信息进行通信。
作为示例而非限定,该路由信息可以包括IP地址或端口。
具体地说,例如,当终端设备#1需要向外部网络发送数据包#1时,终端设备#1可以在数据包#1的目的地址字段携带路由信息#1,其中,该路由信息#1是为该终端设备#1服务的网关设备(记作网关设备#1)面向该终端设备#1的路由信息(例如,IP地址或端口)。
其中,“网关设备#1面向该终端设备#1的路由信息”可以是指:能够指示该网关设备#1的路由信息。
可选地,该“网关设备#1面向该终端设备#1的路由信息”具体可以是指:能够使终端设备#1识别出该网关设备#1的路由信息。具体地说,网关设备#1可以具有多个路由信息,并且,每个路由信息均能够指示该网关设备#1。在本申请中,该多个路由信息可以被分别面向不同的终端设备,即,不同的终端设备所获得的用于指示该网络设备#1的路由信息可以不同。
并且,终端设备#1可以在数据包#1的源地址字段携带路由信息#2,其中,该路由信息#2是该终端设备#1面向该网关设备#1的路由信息(例如,IP地址或端口)。
其中,“终端设备#1面向该网关设备#1的路由信息”可以是指:能够指示该终端设备#1的路由信息。
可选地,该“终端设备#1面向该网关设备#1的路由信息”具体可以是指:能够使网关设 备#1识别出该终端设备#1的路由信息。具体地说,终端设备#1可以具有多个路由信息,并且,每个路由信息均能够指示该终端设备#1。在本申请中,该多个路由信息可以分别面向不同的网关设备,即,不同的网关设备所获得的用于指示该终端设备#1的路由信息可以不同。
或者,终端设备#1可以具有多个路由信息,例如,终端设备#1的不同业务(或者说,会话)使用不同的路由信息,并且,每个路由信息均能够指示该终端设备#1。
由此,通信系统中的设备能够基于该数据包#1中的目的地址字段所携带的路由信息(即,路由信息#1)而将该数据包#1路由至网关设备#1。
并且,网关设备#1可以基于该数据包#1中的源地址字段所携带的路由信息(即,路由信息#2)识别出该数据包#1来自于终端设备#1。可选地,网关设备#1还可以基于该路由信息#2识别出该数据包#1所对应的业务(或者说,会话)。
从而,网关设备可以基于该终端设备#1的相关信息(例如,所访问的业务的信息)将该数据包#1发送至外部设备。
再例如,当网关设备#1接收到来自外部设备的数据包#2时,例如,可以基于该数据包#2所对应的承载等信息,确定该数据包#2需要发送给终端设备#1,从而,网关设备#1可以在数据包#2的目的地址字段携带路由信息#2。
并且,网关设备#1可以在数据包#2的源地址字段携带路由信息#1。
由此,通信系统中的设备能够基于该数据包#2中的目的地址字段所携带的路由信息(即,路由信息#2)而将该数据包#2路由至终端设备#1。
并且,终端设备#1可以基于该数据包#2中的源地址字段所携带的路由信息(即,路由信息#1)识别出该数据包#2来自于网关设备#1。可选地,终端设备#1还可以基于该路由信息#2识别出该数据包#2所对应的业务(或者说,会话)。
在本申请实施例中,IMS系统中可以包括多个网关设备,并且,不同的网关设备的覆盖范围可以不同。
作为示例而非限定,该网络设备可以是转换网关(Translation Gateway,TrGW)或IMS接入网关(Access Gateway,AGW)等各种网关设备。
B.呼叫会话控制功能(CSCF,Call Session Control Function)设备
CSCF设备是IMS内部的功能实体,是整个IMS的核心。主要负责处理多媒体呼叫会话过程中的信令控制。它管理IMS的用户鉴权、IMS承载面QoS、与其它网元配合进行会话初始协议(Session Initiation Protoco,SIP)会话的控制,以及业务协商和资源分配等。
其中,CSCF设备可以与终端设备通信,并且,CSCF设备可以与网关设备通信。
例如,该CSCF设备可以选择与终端设备通信的网关设备,并且,该CSCF设备可以为终端设备和网关设备分配路由信息,例如,IP地址或端口。
作为示例而非限定,CSCF根据功能分为代理CSCF(Proxy CSCF,P-CSCF),查询CSCF(Interrogating CSCF, I-CSCF),服务CSCF(Serving CSCF, S-CSCF)等。
其中,P-CSCF是IMS拜访网络(接入网络的一例)的统一入口点。所有发起于用户设备和终止于用户设备的会话消息都要通过P-CSCF。P-CSCF作为一个SIP Proxy,负责与接入网络相关的用户鉴权与互联网安全协定(Internet Protocol Security,IPSec)管理,网络防攻击与安全保护,为节约 无线网络资源进行SIP信令压缩与解压,用户的漫游控制,通过策略决策功能(Policy Decision Function,PDF)进行承载面的网络地址转换(Network Address Translation,NAT)与QoS等功能等。例如,P-CSCF可以根据用户设备提供的域名决定I-CSCF, 并向该I-CSCF转发来自用户设备的SIP注册请求。再例如,P-CSCF可以向在用户设备发起注册流程时确定S-CSCF转发来自该用户设备的SIP消息。
I-CSCF是IMS归属网络(接入网络的另一例)的入口点。在注册过程中,I-CSCF通过查询HSS,为用户选择一个S-CSCF。在呼叫过程中,去往IMS网络的呼叫首先路由到I-CSCF,由I-CSCF从HSS获取用户所注册的S-CSCF地址,将消息路由到S-CSCF。例如,I-CSCF可以为用户设备指定某个S-CSCF来执行SIP注册。再例如,I-CSCF可以从HSS中获取S-CSCF的地址,转发SIP请求,或者将其他网络传来的SIP请求路由到S-CSCF。
S-CSCF在IMS网络会话控制中处于核心地位,它接受来自拜访网络通过P-CSCF转发来的注册请求,与HSS配合进行用户鉴权。并从HSS处下载用户签约的业务数据。S-CSCF对于用户主叫及被叫侧进行路由管理,根据用户签约的初始过滤规则(Initial Filter Criteria,IFC),进行SIP应用服务器(Application Server,AS)触发,实现丰富的IMS业务功能。例如,S-CSCF可以在接收注册请求后,通过HSS使注册请求生效。再例如,S-CSCF可以控制已注册的会话终端,可作为代理服务器(Proxy-Server)。再例如,S-CSCF可以在接收请求后,进行内部处理或转发,也可作为用户代理(UA,User Agent),中断或发起SIP事务。再例如,S-CSCF还可以与业务平台进行交互,提供多媒体业务。
需要说明的是,上述 P-CSCF、S-CSCF、I-CSCF可以独立配置于不同实体,也可以集成于同一实体,以下,为了便于理解和说明,统称为CSCF设备。
应理解,以上列举的IMS网络中的网元仅为示例性说明,本申请并未限定于此,例如,IMS中还可以包括但不限于以下网元:
归属用户服务器(HSS,Home Subscriber Server)、服务集中化和连续性应用服务器(SCC AS,Service Centralization and Continuity Application Server)、接入切换控制功能(ATCF,Access Transfer Control Function)设备、策略决策功能(Policy Decision Function,PDF)等设备。
在本申请实施例中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(Internet of Things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技 术与网络连接,从而实现人机互连,物物互连的智能化网络。
在本申请实施例中,IOT技术可以通过例如窄带(Narrow Band)NB技术,做到海量连接,深度覆盖,终端省电。例如,NB只包括一个资源块(Resource Bloc,RB),即,NB的带宽只有180KB。要做到海量接入,必须要求终端在接入上是离散的,根据本申请实施例的通信方法,能够有效解决IOT技术海量终端在通过NB接入网络时的拥塞问题。
在本申请实施例中,通信设备(例如,上述终端设备、CSCF设备或网关设备等)包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
需要说明的是,在本申请实施例中,在应用层可以运行多个应用程序,此情况下,执行本申请实施例的通信方法的应用程序与用于控制接收端设备完成所接收到的数据所对应的动作的应用程序可以是不同的应用程序。
下面,结合图4至图9对本申请的通信方法进行详细说明。以下,为了便于理解和区分,以IP地址作为路由信息,对该通信方法的具体过程进行详细说明。
图4示出了终端设备#A的IP地址变更的情况下本申请的通信方法400的示意性流程。
如图4所示,在S410,在时段#A,终端设备#A(即,第一设备的一例)可以基于IP地址#A与网关设备通信。
作为示例而非限定,该IP地址#A可以是5G核心(5G Core,5GC)分配给终端设备#A的IP地址。
可选地,该IP地址#A可以与业务(例如,会话)#A对应,即,该IP地址#A可以是网关设备和终端设备#A之间传输业务#A的数据时使用的IP地址
并且,在时段#A之前,网关设备可以获知该IP地址#A是终端设备#A的IP地址。
具体地说,该IP地址#A可以是终端设备#A面向网关设备的IP地址,即,网关设备可以将源地址字段携带的IP地址为IP地址#A的数据包确定为来自于终端设备#A的数据包。并且,网关设备可以在需要发送给终端设备#A的数据包的目的IP地址字段中携带该IP地址#A。
需要说明的是,上述S410的该过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
在S420,终端设备#A可以确定该终端设备#A使用的IP地址由IP地址#A变更至IP地址#B。
可选地,“该终端设备#A使用的IP地址由IP地址#A变更至IP地址#B”具体可以是指:业务#A对应的IP地址由IP地址#A变更至IP地址#B。
例如,当终端设备#A发生移动而导致终端设备#A远离所接入的接入网设备(例如,基站)时,可能因该终端设备#A与该接入网设备的距离增大而导致终端设备#A的通信时延增大,传输的可靠性和准确性降低。特别是在业务#A要求低时延的情况下,终端设备#A可以接入距离该终端设备#A较近的接入网设备,并且,5GC可以为该终端设备#A重新分配IP地址(以下,为了便于理解和区分,记作IP地址#B)。
即,在本申请中,在业务#A的传输过程中,终端设备#A的IP地址(例如,终端设备#A传输业务#A时使用的IP地址)由IP地址#A变更为IP地址#B。
应理解,以上列举的能够导致终端设备#A使用的IP地址由IP地址#A变更为IP地址#B的原因仅为示例性说明,本申请并未限定于此,本申请适用于任何能够导致终端设备使用的IP地址发生变化的场景。
可选地,在确定IP地址#A变更为IP地址#B之后,终端设备#A可以确定:如果所接收到的数据包的目的地址携带有该IP地址#B,则该数据包是需要发送至该终端设备#A的数据包。可选地,终端设备#A还可以确定该数据包是业务#A的数据包。
即,在确定IP地址#A变更为IP地址#B之后,终端设备#A可以做好基于该IP地址#B接收数据包的准备。
或者说,在确定IP地址#A变更为IP地址#B之后的规定的时段内(例如,终端设备#A释放IP地址#A之前),终端设备#A可以确定携带该IP地址#A或该IP地址#B的数据包均为该终端设备#A需要接收的数据包,可选地,终端设备#A可以确定携带该IP地址#A或该IP地址#B的数据包均为业务#A的数据包。
在S430,终端设备#A可以向通信系统中的CSCF设备(即,第二设备的一例)发送变更指示信息(即,第一指示信息的一例,以下,为了便于理解和说明,记作变更指示信息#A),其中,该变更指示信息#A可以用于指示终端设备#A使用的IP地址变更为IP地址#B。
作为示例而非限定,该变更指示信息可以是应用层信令。
例如,图5示出了该变更指示信息#A的一例,如图5所示,该变更指示信息#A可以包括原始IP地址字段和变更IP地址字段。其中,原始IP地址字段承载的IP地址是变更前的IP地址(即,IP地址#A),变更IP地址字段承载的IP地址是变更后的IP地址(即,IP地址#B)。
需要说明的是,该原始IP地址字段和变更IP地址字段在变更指示信息中的位置可以是通信协议规定的,或者,该原始IP地址字段和变更IP地址字段在变更指示信息中的位置可以是终端设备#A和CSCF设备协商的,本申请并未特别限定,只要能够使终端设备#A和CSCF设备对于变更指示信息中的各字段的理解相一致即可。
从而,CSCF设备可以根据该变更指示信息#A,确定IP地址#A变更为IP地址#B。
再例如,图6示出了该变更指示信息#A的另一例,如图6所示,该变更指示信息#A可以包括设备标识字段和变更IP地址字段。其中,设备标识字段承载的标识能够用于识别终端设备#A,变更IP地址字段承载的IP地址是变更后的IP地址(即,IP地址#B)。
例如,在CSCF设备中可以保存终端设备#A与其使用的IP地址的对应关系,即,在时段#A,该对应关系可以指示终端设备#A的标识与IP地址#A对应。
需要说明的是,该设备标识字段和变更IP地址字段在变更指示信息中的位置可以是通信协议规定的,或者,该设备标识字段和变更IP地址字段在变更指示信息中的位置可以是终端设备#A和CSCF设备协商的,本申请并未特别限定,只要能够使终端设备#A和CSCF设备对于变更指示信息中的各字段的理解相一致即可。
CSCF设备在接收到该变更指示信息#A后,可以基于该对应关系,确定变更指示信息#A的设备标识字段承载的标识对应于IP地址#A,进而确定该IP地址#A需要被变更为IP地址#B。
其后,CSCF设备可以通知为该终端设备#A服务的网关设备:该终端设备#A的IP地址#A变更为IP地址#B。
在确定IP地址#A变更为IP地址#B之后,CSCF设备和网关设备可以确定:如果所接收到的数据包的源地址携带有该IP地址#B,则可以确定该数据包来自终端设备#A。可选地,CSCF设备和网关设备还可以确定该数据包是业务#A的数据包。
即,在确定IP地址#A变更为IP地址#B之后,网关设备可以做好基于该IP地址#B接收数据包的准备。
并且,在确定IP地址#A变更为IP地址#B之后,CSCF设备和网关设备可以使用IP地址#B向终端设备#A发送数据(例如,业务#A的数据)。
可选地,在S440,CSCF设备可以向终端设备#A发送响应信息#A(即,第二指示信息的一例),该响应信息#A可以用于指示CSCF设备和网关设备确认IP地址#A变更为IP地址#B。
根据本申请的通信方法,终端设备在IP地址发生变更后,将该变更情况通知CSCF设备,能够避免因CSCF无法获知终端设备的IP地址发生变更而导致CSCF所控制的网关设备无法识别携带有变更后的IP地址的数据包。
另外,在终端设备#A发送该变更指示信息#A之后,由于终端设备#A和CSCF设备之间存在数据传输时延,因此,CSCF设备确定IP地址#A变更为IP地址#B的时刻滞后于终端设备#A确定IP地址#A变更为IP地址#B的时刻,因此,如果终端设备#A在发送该变更指示信息#A之后立即使用IP地址#B发送数据,则可能因CSCF设备未确定IP地址#A变更为IP地址#B而导致该CSCF设备控制的网关设备无法识别携带有IP地址#B的数据包,从而影响通信的连续性和可靠性。
鉴于上述问题,在本申请中,在终端设备#A发送该变更指示信息#A之后,可以采用以下至少一种方式发送数据。
方式1
终端设备#A在发送变更指示信息#A后可以启动定时器#A(即,第一定时器的一例)。
并且,在该定时器#A到时之前,终端设备#A使用IP地址#A发送数据(例如,业务#A的数据)。在该定时器#A到时之后,终端设备#A使用IP地址#B发送数据(例如,业务#A的数据)。
其中,该定时器#A的时长可以是根据终端设备#A和CSCF设备之间的传输时延(记作,时延#A)确定的。例如,该定时器#A的时长可以大于或等于时延#A的时长。
可选地,该定时器#A的时长可以还可以是根据CSCF设备和网关设备之间的传输时延(记 作,时延#B)确定的。例如,该定时器#A的时长可以大于或等于时延#A与时延#B的时长之和。
从而,能够确保在网关设备确定IP地址#A变更为IP地址#B之前,仍然使用该IP地址#A进行数据传输,能够避免网关设备无法识别IP地址#B而导致的传输错误。
可选地,该定时器#A的时长还可以是根据终端设备的传输层释放IP地址#A的时刻确定的,例如,该定时器#A的时长满足以下条件:在传输层释放IP地址#A之后,终端设备禁止在应用层使用该IP地址#A发送数据。或者说,设自终端设备#A确定IP地址#A变更为IP地址#B开始至在传输层释放IP地址#A之间的时段为时长#α,设自终端设备#A确定IP地址#A变更为IP地址#B开始至定时器#A到时的时长为时长#β,则该定时器#A的时长满足:时长#β小于或等于时长#α。
从而,能够避免因应用层和传输层释放IP地址#A的时段不同而导致双发无法识别彼此发送的数据。
作为示例而非限定,该定时器#A的时长可以是终端设备#A和CSCF设备根据在先通信的时延测量而获得的,或者,该定时器#A的时长可以是管理员或运营商下发给终端设备#A的,本申请并未特别限定。
可选地,终端设备#A还可以向CSCF设备发送该定时器#A的时长的信息,例如,该定时器#A的时长的信息可以承载于上述变更指示信息#A中。
从而,CSCF设备可以基于该定时器#A的时长,确定终端设备#A停止使用IP地址#A发送数据的时刻(记作,时刻#α),进而,CSCF设备可以在该时刻#α之后,在IMS释放IP地址#A与终端设备#A的映射关系。
方式2
如上所述,在一种可能的实施方式中,CSCF设备可以向终端设备#A发送响应信息#A。
此情况下,并且,在接收到该响应信息#A之前,终端设备#A使用IP地址#A发送数据(例如,业务#A的数据)。在接收到该响应信息#A之后,终端设备#A使用IP地址#B发送数据(例如,业务#A的数据)。
从而,能够确保在网关设备确定IP地址#A变更为IP地址#B之前,仍然使用该IP地址#A进行数据传输,能够避免网关设备无法识别IP地址#B而导致的传输错误。
应理解,上述方式1和方式2可以单独使用也可以结合使用,本申请并未特别限定。
另外,在CSCF设备发送该响应信息#A之后,由于终端设备#A和CSCF设备之间存在数据传输时延,因此,终端设备#A确定CSCF设备和网关设备接收到变更指示信息#A的时刻(或者说,终端设备#A停止使用IP地址#A发送数据的时刻)滞后于CSCF设备和网关设备确定IP地址#A变更为IP地址#B的时刻,因此,如果CSCF设备和网关设备在接收到变更指示信息#A之后立即禁止基于IP地址#A接收数据,则可能因终端设备#A仍然使用IP地址#A发送数据导致该CSCF设备控制的网关设备无法识别携带有IP地址#A的数据包,从而影响通信的连续性和可靠性。
鉴于上述问题,在本申请中,在CSCF设备发送该响应信息#A之后,可以采用以下至少一种方式接收数据。
方式3
CSCF设备在发送响应信息#A后可以启动定时器#B(即,第二定时器的一例)。
并且,在该定时器#B到时之前,CSCF设备可以控制网关设备使用IP地址#A和IP地址 #B双方接收数据(例如,业务#A的数据),即,在该定时器#B到时之前,网关设备将源地址为IP地址#A或IP地址#B的数据包均确认为来自于终端设备#A。可选地,在该定时器#B到时之前,网关设备将源地址为IP地址#A或IP地址#B的数据包均确认为属于业务#A。
在该定时器#B到时之后,CSCF设备可以禁止使用IP地址#A接收数据(例如,业务#A的数据)。
其中,该定时器#B的时长可以是根据终端设备#A和CSCF设备之间的传输时延(例如,上述时延#A)确定的。例如,该定时器#B的时长可以大于或等于时延#A的时长。
从而,能够确保在终端设备停止使用IP地址#A发送数据之前,网关设备仍然使用该IP地址#A接收数据传输,能够避免网关设备无法识别IP地址#A而导致的传输错误。
可选地CSCF设备还可以向终端设备#A发送该定时器#B的时长的信息,例如,该定时器#B的时长的信息可以承载于上述响应信息#A中。
从而,终端设备可以基于该定时器#B的时长,确定网关设备停止使用IP地址#A接收数据的时刻(记作,时刻#β),进而,终端设备可以在该时刻#β之前,停止使用IP地址#A发送数据。
方式4
可选地,终端设备#A可以向CSCF设备发送停用信息#A,该停用信息#A可以用于指示终端设备#A停止使用IP地址#A发送数据(例如,业务#A的数据)。
可选地,终端设备#A可以在接收到该响应信息#A之后,发送该停用信息#A。
从而,在接收到该停用信息#A之前,网关设备使用IP地址#A接收数据(例如,业务#A的数据)。在接收到该停用信息#A之后,网关设备禁止使用IP地址#A接收数据(例如,业务#A的数据)。
从而,能够确保在终端设备停止使用IP地址#A发送数据之前,网关设备仍然使用该IP地址#A接收数据传输,能够避免网关设备无法识别IP地址#A而导致的传输错误。
应理解,上述方式3和方式4可以单独使用也可以结合使用,本申请并未特别限定。
可选地,在S450,终端设备#A在接收到响应信息#A之后,可以启动定时器#C,并在定时器#C到时候,在应用层释放IP地址#A。
可选地,该定时器#C的时长还可以是根据终端设备的传输层释放IP地址#A的时刻确定的,例如,该定时器#C的时长满足以下条件:终端设备在传输层释放IP地址#A的时刻位于终端设备在应用层释放该IP地址#A之后。
根据本申请的通信方法,通过使终端设备在IP地址变更后,将变更后的IP地址通知IMS系统中的控制设备,能够使该控制设备获知该变更情况,并基于变更后的IP地址进行数据传输,从而能够提高通信的连续性和可靠性。
图7示出了终端设备#α的IP地址变更的情况下本申请的通信方法700的示意性流程。
如图7所示,在S710,在时段#α,终端设备#α(即,第一设备的一例)可以基于IP地址#α与网关设备通信。
作为示例而非限定,该IP地址#α可以是5G核心(5G Core,5GC)分配给终端设备#α的IP地址。
可选地,该IP地址#α可以与业务(例如,会话)#α对应,即,该IP地址#α可以是网关设备和终端设备#α之间传输业务#α的数据时使用的IP地址。
并且,在时段#α之前,网关设备可以获知该IP地址#α是终端设备#α的IP地址。
具体地说,该IP地址#α可以是终端设备#α的面向网关设备的IP地址,即,网关设备可以将源地址字段携带的IP地址为IP地址#α的数据包确定为来自于终端设备#α的数据包。并且,网关设备可以在需要发送给终端设备#α的数据包的目的IP地址字段中携带该IP地址#α。
需要说明的是,上述S710的该过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
在S720,终端设备#α可以确定该终端设备#α使用的IP地址由IP地址#α变更至IP地址#β。
可选地,“该终端设备#α使用的IP地址由IP地址#α变更至IP地址#β”具体可以是指:业务#α对应的IP地址由IP地址#α变更至IP地址#β。
例如,当终端设备#α发生移动而导致终端设备#α远离所接入的接入网设备(例如,基站)时,可能因该终端设备#α与该接入网设备的距离增大而导致终端设备#α的通信时延增大,传输的可靠性和准确性降低。特别是在业务#α要求低时延的情况下,终端设备#α可以接入距离该终端设备#α较近的接入网设备,并且,5GC可以为该终端设备#α重新分配IP地址(以下,为了便于理解和区分,记作IP地址#β)。
即,在本申请中,在业务#α的传输过程中,终端设备#α的IP地址(例如,终端设备#α传输业务#α时使用的IP地址)由IP地址#α变更为IP地址#β。
应理解,以上列举的能够导致终端设备#α使用的IP地址由IP地址#α变更为IP地址#β的原因仅为示例性说明,本申请并未限定于此,本申请适用于任何能够导致终端设备使用的IP地址发生变化的场景。
可选地,在确定IP地址#α变更为IP地址#β之后,终端设备#α可以确定:如果所接收到的数据包的目的地址携带有该IP地址#β,则该数据包是需要发送至该终端设备#α的数据包。可选地,终端设备#α还可以确定该数据包是业务#α的数据包。
即,在确定IP地址#α变更为IP地址#β之后,终端设备#α可以做好基于该IP地址#β接收数据包的准备。
或者说,在确定IP地址#α变更为IP地址#β之后的规定的时段内(例如,终端设备#α释放IP地址#α之前),终端设备#α可以确定携带该IP地址#α或该IP地址#β的数据包均为该终端设备#α需要接收的数据包,可选地,终端设备#α可以确定携带该IP地址#α或该IP地址#β的数据包均为业务#α的数据包。
在S730,终端设备#α可以向网关设备(即,第二设备的另一例)发送变更指示信息(即,第一指示信息的另一例,以下,为了便于理解和说明,记作变更指示信息#α),其中,该变更指示信息#α可以用于指示终端设备#α使用的IP地址变更为IP地址#β。
作为示例而非限定,该变更指示信息可以是传输层信令。例如,该变更指示信息可以承载于数据包中。
例如,图8示出了该指示信息#α的一例,如图8所示,该变更指示信息#α可以承载于数据包中,该数据包可以包括源地址字段(即,IP地址#α),目的地址资源和变更地址资源,变更IP地址字段承载的IP地址是变更后的IP地址(即,IP地址#β)。
需要说明的是,该变更IP地址字段在数据包中的位置可以是通信协议规定的,或者,变更IP地址字段在数据包中的位置可以是终端设备#α和网关设备(或者,该网关设备的管理设备)协商的,本申请并未特别限定,只要能够使终端设备#α和网关设备对于变更指示信息中的各字段的理解相一致即可。
在确定IP地址#α变更为IP地址#β之后,网关设备可以确定:如果所接收到的数据包的源地址携带有该IP地址#β,则可以确定该数据包来自终端设备#α。可选地,网关设备还可以确定该数据包是业务#α的数据包。
即,在确定IP地址#α变更为IP地址#β之后,网关设备可以做好基于该IP地址#β接收数据包的准备。
并且,在确定IP地址#α变更为IP地址#β之后,网关设备可以使用IP地址#β向终端设备#α发送数据(例如,业务#α的数据)。
可选地,在S740,网络设备可以向终端设备#α发送响应信息#α(即,第二指示信息的一例),该响应信息#α可以用于指示网关设备确认IP地址#α变更为IP地址#β。
例如,该响应信息#α可以是传输层信息,例如,该响应信息#α可以承载于网络设备发送给终端设备#α的数据包中。
根据本申请的通信方法,终端设备在IP地址发生变更后,将该变更情况通知网关设备,能够避免因网关设备无法获知终端设备的IP地址发生变更而导致无法识别携带有变更后的IP地址的数据包。
另外,在终端设备#α发送该变更指示信息#α之后,由于终端设备#α和网关设备之间存在数据传输时延,因此,网关设备确定IP地址#α变更为IP地址#β的时刻滞后于终端设备#α确定IP地址#α变更为IP地址#β的时刻,因此,如果终端设备#α在发送该变更指示信息#α之后立即使用IP地址#β发送数据,则可能因网关设备未确定IP地址#α变更为IP地址#β而导致该网关设备无法识别携带有IP地址#β的数据包,从而影响通信的连续性和可靠性。
鉴于上述问题,在本申请中,在终端设备#α发送该变更指示信息#α之后,可以采用以下至少一种方式发送数据。
方式5
终端设备#α在发送变更指示信息#α后可以启动定时器#α(即,第一定时器的一例)。
并且,在该定时器#α到时之前,终端设备#α使用IP地址#α发送数据(例如,业务#α的数据)。在该定时器#α到时之后,终端设备#α使用IP地址#β发送数据(例如,业务#α的数据)。
其中,该定时器#α的时长可以是根据终端设备#α和CSCF设备之间的传输时延(记作,时延#α)确定的。例如,该定时器#α的时长可以大于或等于时延#α的时长。
可选地,该定时器#α的时长可以还可以是根据CSCF设备和网关设备之间的传输时延(记作,时延#β)确定的。例如,该定时器#α的时长可以大于或等于时延#α与时延#β的时长之和。
从而,能够确保在网关设备确定IP地址#α变更为IP地址#β之前,仍然使用该IP地址#α进行数据传输,能够避免网关设备无法识别IP地址#β而导致的传输错误。
可选地,该定时器#α的时长还可以是根据终端设备的传输层释放IP地址#α的时刻确定的,例如,该定时器#α的时长满足以下条件:在传输层释放IP地址#α之后,终端设备禁止在应用层使用该IP地址#α发送数据。或者说,设自终端设备#α确定IP地址#α变更为IP地址#β开始至在传输层释放IP地址#α之间的时段为时长#α,设自终端设备#α确定IP地址#α变更为IP地址#β开始至定时器#α到时的时长为时长#β,则该定时器#α的时长满足:时长#β小于或等于时长#α。
从而,能够避免因应用层和传输层释放IP地址#α的时段不同而导致双发无法识别彼此 发送的数据。
作为示例而非限定,该定时器#α的时长可以是终端设备#α和CSCF设备根据在先通信的时延测量而获得的,或者,该定时器#α的时长可以是管理员或运营商下发给终端设备#α的,本申请并未特别限定。
可选地,终端设备#α还可以向网关设备发送该定时器#α的时长的信息,例如,该定时器#α的时长的信息可以承载于上述变更指示信息#α中。
从而,网关设备可以基于该定时器#α的时长,确定终端设备#α停止使用IP地址#α发送数据的时刻(记作,时刻#α),进而,网关设备可以在该时刻#α之后,在IMS释放IP地址#α与终端设备#α的映射关系。
方式6
如上所述,在一种可能的实施方式中,网关设备可以向终端设备#α发送响应信息#α。
此情况下,并且,在接收到该响应信息#α之前,终端设备#α使用IP地址#α发送数据(例如,业务#α的数据)。在接收到该响应信息#α之后,终端设备#α使用IP地址#β发送数据(例如,业务#α的数据)。
从而,能够确保在网关设备确定IP地址#α变更为IP地址#β之前,仍然使用该IP地址#α进行数据传输,能够避免网关设备无法识别IP地址#β而导致的传输错误。
应理解,上述方式5和方式6可以单独使用也可以结合使用,本申请并未特别限定。
另外,在网关设备发送该响应信息#α之后,由于终端设备#α和网关设备之间存在数据传输时延,因此,终端设备#α确定网关设备接收到变更指示信息#α的时刻(或者说,终端设备#α停止使用IP地址#α发送数据的时刻)滞后于网关设备确定IP地址#α变更为IP地址#β的时刻,因此,如果网关设备在接收到变更指示信息#α之后立即禁止基于IP地址#α接收数据,则可能因终端设备#α仍然使用IP地址#α发送数据导致该网关设备无法识别携带有IP地址#α的数据包,从而影响通信的连续性和可靠性。
鉴于上述问题,在本申请中,在网关设备发送该响应信息#α之后,可以采用以下至少一种方式接收数据。
方式7
网设备#α在发送响应信息#α后可以启动定时器#β(即,第二定时器的一例)。
并且,在该定时器#β到时之前,网关设备使用IP地址#α和IP地址#β双方接收数据(例如,业务#α的数据),即,在该定时器#β到时之前,网关设备将源地址为IP地址#α或IP地址#β的数据包均确认为来自于终端设备#α。可选地,在该定时器#β到时之前,网关设备将源地址为IP地址#α或IP地址#β的数据包均确认为属于业务#α。
在该定时器#β到时之后,网关设备可以禁止使用IP地址#α接收数据(例如,业务#α的数据)。
其中,该定时器#β的时长可以是根据终端设备#α和网关设备之间的传输时延(例如,上述时延#α)确定的。例如,该定时器#β的时长可以大于或等于时延#α的时长。
从而,能够确保在终端设备停止使用IP地址#α发送数据之前,网关设备仍然使用该IP地址#α接收数据传输,能够避免网关设备无法识别IP地址#α而导致的传输错误。
可选地,网关设备还可以向终端设备#α发送该定时器#β的时长的信息,例如,该定时器#β的时长的信息可以承载于上述响应信息#α中。
从而,终端设备可以基于该定时器#β的时长,确定网关设备停止使用IP地址#α接收数 据的时刻(记作,时刻#β),进而,终端设备可以在该时刻#β之前,停止使用IP地址#α发送数据。
方式8
可选地,终端设备#α可以向网关设备发送停用信息#α,该停用信息#α可以用于指示终端设备#α停止使用IP地址#α发送数据(例如,业务#α的数据)。
可选地,终端设备#α可以在接收到该响应信息#α之后,发送该停用信息#α。
从而,在接收到该停用信息#α之前,网关设备使用IP地址#α接收数据(例如,业务#α的数据)。在接收到该停用信息#α之后,网关设备禁止使用IP地址#α接收数据(例如,业务#α的数据)。
从而,能够确保在终端设备停止使用IP地址#α发送数据之前,网关设备仍然使用该IP地址#α接收数据传输,能够避免网关设备无法识别IP地址#α而导致的传输错误。
应理解,上述方式7和方式8可以单独使用也可以结合使用,本申请并未特别限定。
可选地,在S750,终端设备#α在接收到响应信息#α之后,可以启动定时器#γ,并在定时器#γ到时候,在应用层释放IP地址#α。
可选地,该定时器#γ的时长还可以是根据终端设备的传输层释放IP地址#α的时刻确定的,例如,该定时器#γ的时长满足以下条件:终端设备在传输层释放IP地址#α的时刻位于终端设备在应用层释放该IP地址#α之后。
根据本申请的通信方法,通过使终端设备在IP地址变更后,将变更后的IP地址通知IMS系统中的控制设备,能够使该控制设备获知该变更情况,并基于变更后的IP地址进行数据传输,从而能够提高通信的连续性和可靠性。
图9示出了IMS向终端设备#1的IP地址变更(或者说,为终端设备#1服务的网关设备发生变更)的情况下本申请的通信方法900的示意性流程。
如图9所示,在S910,在时段#1,终端设备#1(即,第一设备的一例)可以基于IP地址#1与网关设备#1通信。
作为示例而非限定,该IP地址#1可以是5G核心(5G Core,5GC)分配给网关设备#1的IP地址。
可选地,该IP地址#1可以与业务(例如,会话)#1对应,即,该IP地址#1可以是网关设备#1和终端设备#1之间传输业务#1的数据时使用的IP地址。
并且,在时段#1之前,终端设备#1可以获知该IP地址#1是网关设备#1的IP地址。
具体地说,该IP地址#1可以是网关设备#1的面向终端设备#1的IP地址,即,终端设备#1可以将源地址字段携带的IP地址为IP地址#1的数据包确定为来自于网关设备#1的数据包。并且,终端设备#1可以在需要发送给外部网络的数据包的目的IP地址字段中携带该IP地址#1。
需要说明的是,上述S910的该过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
在S920,CSCF设备可以确定IMS面向终端设备#1的IP地址由IP地址#1变更至IP地址#2。
可选地,“IMS面向终端设备#1的IP地址由IP地址#1变更至IP地址#2”具体可以是指:IMS中业务#1对应的IP地址由IP地址#1变更至IP地址#2。
例如,当终端设备#1发生移动而导致终端设备#1远离所接入的接入网设备(例如,基站, 以下,为了便于理解和区分,记作接入网设备#1)时,可能因该终端设备#1与该接入网设备#1的距离增大而导致终端设备#1的通信时延增大,传输的可靠性和准确性降低。特别是在业务#1要求低时延的情况下,终端设备#1可以接入距离该终端设备#1较近的接入网设备(例如,基站,以下,为了便于理解和区分,记作接入网设备#2),并且,IMS中的管理设备(例如,CSCF设备)可以将为该终端设备#1服务的网关设备由上述网关设备#1变更为网关设备#2,其中,该IP地址#2可以为该网关设备#2的面向终端设备#1的IP地址。
即,在本申请中,在业务#1的传输过程中,IMS侧的IP地址(例如,IMS侧传输业务#1时使用的IP地址)由IP地址#1变更为IP地址#2。
应理解,以上列举的能够导致IMS面向终端设备#1的IP地址由IP地址#1变更为IP地址#2的原因仅为示例性说明,本申请并未限定于此,本申请适用于任何能够导致IMS面向终端设备的IP地址发生变化的场景。
可选地,在确定IP地址#1变更为IP地址#2之后,CSCF设备或网关设备#1可以确定:如果网关设备#2所接收到的数据包的目的地址携带有该IP地址#2,则该数据包有效的数据包。可选地,网关设备#2还可以确定该数据包是业务#1的数据包。
即,在确定IP地址#1变更为IP地址#2之后,网关设备#2可以做好基于该IP地址#2接收数据包的准备。
或者说,在确定IP地址#1变更为IP地址#2之后的规定的时段内(例如,终端设备#1释放IP地址#1之前),CSCF设备可以确定携带该IP地址#1或该IP地址#2的数据包均为有效的数据包,可选地,CSCF设备可以确定携带该IP地址#1或该IP地址#2的数据包均为业务#1的数据包。
在S930,CSCF设备(即,第一设备的一例)向终端设备#1发送变更指示信息(即,第一指示信息的一例,以下,为了便于理解和说明,记作变更指示信息#1),其中,该变更指示信息#1可以用于指示IMS侧的IP地址变更为IP地址#2。
作为示例而非限定,该变更指示信息可以是应用层信令。
其中,该变更指示信息#1的具体格式可以与上述变更指示信息#A的格式相似,这里,为了避免赘述,省略其详细说明。
在确定IP地址#1变更为IP地址#2之后,终端设备#1可以确定:如果所接收到的数据包的源地址携带有该IP地址#2,则可以确定该数据包来自IMS的有效数据包。可选地,终端设备#1还可以确定该数据包是业务#1的数据包。
即,在确定IP地址#1变更为IP地址#2之后,网关设备可以做好基于该IP地址#2接收数据包的准备。
并且,在确定IP地址#1变更为IP地址#2之后,CSCF设备和网关设备可以使用IP地址#2向终端设备#1发送数据(例如,业务#1的数据)。
可选地,在S440,CSCF设备可以向终端设备#1发送响应信息#1(即,第二指示信息的一例),该响应信息#1可以用于指示CSCF设备和网关设备确认IP地址#1变更为IP地址#2。
根据本申请的通信方法,CSCF设备在IMS侧的IP地址发生变更后,将该变更情况通知终端设备,能够避免因终端设备无法获知IMS测的IP地址发生变更而导致终端设备无法识别携带有变更后的IP地址的数据包。
另外,在CSCF设备发送该变更指示信息#1之后,由于终端设备#1和CSCF设备之间存在数据传输时延,因此,终端设备确定IP地址#1变更为IP地址#2的时刻滞后于CSCF设备 确定IP地址#1变更为IP地址#2的时刻,因此,如果CSCF设备在发送该变更指示信息#1之后立即控制网关设备#2使用IP地址#2发送数据,则可能因终端设备#1未确定IP地址#1变更为IP地址#2而导致该终端设备#1无法识别携带有IP地址#2的数据包,从而影响通信的连续性和可靠性。
鉴于上述问题,在本申请中,在CSCF设备发送该变更指示信息#1之后,可以采用以下至少一种方式控制网关设备发送数据。
方式9
CSCF设备在发送变更指示信息#1后可以启动定时器#1(即,第一定时器的一例)。
并且,在该定时器#1到时之前,CSCF设备控制网关设备#1使用IP地址#1发送数据(例如,业务#1的数据)。
在该定时器#1到时之后,CSCF设备控制网关设备#2使用IP地址#2发送数据(例如,业务#1的数据)。
其中,该定时器#1的时长可以是根据终端设备#1和CSCF设备之间的传输时延(记作,时延#1)确定的。例如,该定时器#1的时长可以大于或等于时延#1的时长。
从而,能够确保在网关设备确定IP地址#1变更为IP地址#2之前,仍然使用该IP地址#1进行数据传输,能够避免终端设备无法识别IP地址#2而导致的传输错误。
可选地,CSCF设备还可以向终端设备#1发送该定时器#1的时长的信息,例如,该定时器#1的时长的信息可以承载于上述变更指示信息#1中。
从而,终端设备#1可以基于该定时器#1的时长,确定网关设备#1停止使用IP地址#1发送数据的时刻(记作,时刻#α),进而,终端设备可以在该时刻#α之后,释放IP地址#1,清除IMS侧与IP地址#1的对应关系。
方式10
如上所述,在一种可能的实施方式中,终端设备#1可以向CSCF设备发送响应信息#1。
此情况下,并且,在接收到该响应信息#1之前,CSCF设备控制网关设备#1使用IP地址#1发送数据(例如,业务#1的数据)。
在接收到该响应信息#1之后,CSCF设备控制网关设备#2使用IP地址#2发送数据(例如,业务#1的数据)。
从而,能够确保在终端备#1确定IP地址#1变更为IP地址#2之前,仍然使用该IP地址#1进行数据传输,能够避免终端设备#1无法识别IP地址#2而导致的传输错误。
应理解,上述方式1和方式2可以单独使用也可以结合使用,本申请并未特别限定。
另外,在终端设备#1发送该响应信息#1之后,由于终端设备#1和CSCF设备之间存在数据传输时延,因此,CSCF设备确定终端设备#1接收到变更指示信息#1的时刻(或者说,网关设备#1停止使用IP地址#1发送数据的时刻)滞后于终端设备#1确定IP地址#1变更为IP地址#2的时刻,因此,如果终端设备#1在发送该响应信息#1之后立即禁止基于IP地址#1接收数据,则可能因网关设备#1仍然使用IP地址#1发送数据导致该终端设备1无法识别携带有IP地址#1的数据包,从而影响通信的连续性和可靠性。
鉴于上述问题,在本申请中,在终端设备#1发送该响应信息#1之后,可以采用以下至少一种方式接收数据。
方式11
终端设备#1在发送响应信息#1后可以启动定时器#2(即,第二定时器的一例)。
并且,在该定时器#2到时之前,终端设备#1可使用IP地址#1和IP地址#2双方接收数据(例如,业务#1的数据),即,在该定时器#2到时之前,终端设备#1可以确定源地址为IP地址#1或IP地址#2的数据包有效。可选地,在该定时器#2到时之前,终端设备#1将源地址为IP地址#1或IP地址#2的数据包均确认为属于业务#1。
在该定时器#2到时之后,终端设备#1可以禁止使用IP地址#1接收数据(例如,业务#1的数据)。或者说,终端设备#1可以释放IP地址#1。
其中,该定时器#2的时长可以是根据终端设备#1和CSCF设备之间的传输时延(例如,上述时延#1)确定的。例如,该定时器#2的时长可以大于或等于时延#1的时长。
从而,能够确保在IMS侧停止使用IP地址#1发送数据之前,终端设备仍然使用该IP地址#1接收数据传输,能够避免终端设备无法识别IP地址#1而导致的传输错误。
可选地,终端设备#1还可以向CSCF设备发送该定时器#2的时长的信息,例如,该定时器#2的时长的信息可以承载于上述响应信息#1中。
从而,CSCF设备可以基于该定时器#2的时长,确定终端设备停止使用IP地址#1接收数据的时刻(记作,时刻#β),进而,CSCF设备可以在该时刻#β之前,禁止网关设备#1使用IP地址#1发送数据。
方式12
可选地,CSCF设备可以向终端设备#1发送停用信息#1,该停用信息#1可以用于指示IMS测停止使用IP地址#1发送数据(例如,业务#1的数据)。
可选地,CSCF设备可以在接收到该响应信息#1之后,发送该停用信息#1。
从而,在接收到该停用信息#1之前,终端设备#1使用IP地址#1接收数据(例如,业务#1的数据)。在接收到该停用信息#1之后,终端设备#1禁止使用IP地址#1接收数据(例如,业务#1的数据),即,在接收到该停用信息#1之后,终端设备#1确定携带有IP地址#1的数据包无效。
从而,能够确保在IMS侧停止使用IP地址#1发送数据之前,终端设备#1仍然使用该IP地址#1接收数据传输,能够避免网关设备无法识别IP地址#1而导致的传输错误。
应理解,上述方式11和方式12可以单独使用也可以结合使用,本申请并未特别限定。
可选地,在S950,CSCF设备在接收到响应信息#1之后,可以启动定时器#3,并在定时器#3到时候,在应用层释放IP地址#1。
可选地,该定时器#3的时长还可以是根据网关设备#1的传输层释放IP地址#1的时刻确定的,例如,该定时器#3的时长满足以下条件:网关设备#1在传输层释放IP地址#1的时刻位于网关设备#1在应用层释放该IP地址#1之后。
根据本申请的通信方法,通过使CSCF设备在IMS侧IP地址变更后,将变更后的IP地址通知终端设备,能够使该终端设备获知该变更情况,并基于变更后的IP地址进行数据传输,从而能够提高通信的连续性和可靠性。
根据前述方法,图10为本申请实施例提供的通信装置10的示意图,如图10所示,该装置10可以为路由信息发生变更的设备,例如,上述终端设备、IMS中的管理设备(例如,CSCF设备)、或IMS中的传输设备(例如,网关设备),也可以为芯片或电路,比如可设置于上述路由信息发生变更设备的芯片或电路。
该装置10可以包括处理器11(即,处理单元的一例)和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图4、图7或 图9中对应的方法中路由信息发生变更的设备执行的步骤。
进一步的,该装置10还可以包括输入口13(即,通信单元的一例)和输出口14(即,通信单元的另一例)。进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序,该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中终端设备的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该通信装置10为通信设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中,通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
其中,通信装置10中各模块或单元可以用于执行上述方法中路由信息发生变更的设备(例如,第一设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图11为本申请实施例提供的通信装置11的示意图,如图11所示,该装置20可以为通信对端的路由信息发生变更的设备,例如,上述终端设备、IMS中的管理设备(例如,CSCF设备)、或IMS中的传输设备(例如,网关设备),也可以为芯片或电路,比如可设置于上述通信对端的路由信息发生变更的设备的芯片或电路。
该装置20可以包括处理器21(即,处理单元的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现如图4、图7或图9中对应的方法中通信对端的路由信息发生变更的设备执行的步骤。
进一步的,该装置20还可以包括输入口23(即,通信单元的一例)和输出口24(即,通信单元的另一例)。进一步的,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算计程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述方法中终端设备的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该通信装置20为通信设备,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
作为一种实现方式,输入口23和输出口24的功能可以考虑通过收发电路或者收发的专 用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器22中,通用处理器通过执行存储器22中的代码来实现处理器21、输入口23和输出口24的功能。
其中,通信装置20中各模块或单元可以用于执行上述方法中通信对端的路由信息发生变更(即,第二设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图12为本申请提供的一种终端设备30的结构示意图。为了便于说明,图12仅示出了终端设备的主要部件。如图12所示,终端设备30包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图5仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图5中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备20的收发单元201,将具有处理功能的处理器视为终端设备30的处理单元302。如图12所示,终端设备30包括收发单元301和处理单元302。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元301中用于实现接收功能的器件视为接收单元,将收发单 元301中用于实现发送功能的器件视为发送单元,即收发单元301包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图12所示的终端设备可以执行上述方法400、700或900中终端设备所执行的各动作,这里,为了避免赘述,省略其详细说明。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件 还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    第一设备发送第一指示信息,所述第一指示信息用于指示面向第二设备的路由信息从第一路由信息变更为第二路由信息,所述路由信息包括网际协议IP地址和/或端口;
    所述第一设备在自发送所述第一指示信息之后的第一时段内,根据所述第一路由信息控制针对所述第二设备的数据发送或数据接收;
    所述第一设备在所述第一时段之后,根据所述第二路由信息控制针对所述第二设备的数据发送或数据接收。
  2. 根据权利要求1所述的通信方法,其特征在于,所述方法还包括:
    所述第一设备在所述第一时段之后,释放所述第一路由信息。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述第一设备在自发送所述第一指示信息之后的第一时段内,根据所述第一路由信息控制针对所述第二设备的数据发送或数据接收,包括:
    所述第一设备在发送所述第一指示信息之后启动预设的第一定时器,并在所述第一定时器到时之前,根据所述第一路由信息控制针对所述第二设备的数据发送或数据接收;以及
    所述第一设备在所述第一时段之后,根据所述第二路由信息控制针对所述第二设备的数据发送或数据接收,包括:
    所述第一设备在所述第一定时器到时之后,根据所述第二路由信息控制针对所述第二设备的数据发送或数据接收;
    其中,所述第一定时器的时长是根据所述第一设备和所述第二设备之间的传输时延确定的,和/或
    所述第一定时器的时长是根据所述第一设备释放所述第一路由信息的时刻确定的。
  4. 根据权利要求3所述的通信方法,其特征在于,所述第一指示信息还用于指示所述第一定时器的时长。
  5. 根据权利要求1至3中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一设备接收第二指示信息,所述第二指示信息用于指示所述第二设备接收到所述第一指示信息;以及
    所述第一时段是自所述第一设备发送所述第一指示信息至所述第一设备接收到第二指示信息之间的时段。
  6. 根据权利要求5所述的通信方法,其特征在于,所述第二指示信息还用于指示第二定时器的时长,其中,所述第二定时器是所述第二设备自接收到所述第一指示信息之后启动的定时器,并且,所述第一设备与所述第一路由信息之间的映射关系在所述第二定时器到时之后将被所述第二设备删除,
    所述方法还包括:
    所述第一设备在自接收到所述第二指示信息开始经历所述第二定时器的时长之后,删除所述第一设备与所述第一路由信息之间的映射关系。
  7. 根据权利要求1至6中任一项所述的通信方法,其特征在于,所述第一设备为终端设备,所述第二设备为网际协议多媒体子系统IMS网络中的呼叫会话控制功能CSCF设备。
  8. 根据权利要求1至6中任一项所述的通信方法,其特征在于,所述第一设备为网际协 议多媒体子系统IMS网络中的代理会话控制功能CSCF设备,所述第二设备为终端设备,
    所述第一设备在自发送所述第一指示信息之后的第一时段内,根据所述第一路由信息控制针对所述第二设备的数据发送或数据接收,包括:
    所述第一设备在自发送所述第一指示信息之后的第一时段内,控制第一网关设备与所述第二设备进行数据发送或数据接收,所述第一路由信息是所述第一网关设备的路由信息;
    所述第一设备在所述第一时段之后,根据所述第二路由信息控制针对所述第二设备的数据发送或数据接收,包括:
    所述第一设备在所述第一时段之后,控制第二网关设备与所述第二设备进行数据发送或数据接收,所述第二路由信息是所述第二网关设备的路由信息。
  9. 一种通信方法,其特征在于,包括:
    第二设备接收第一指示信息,所述第一指示信息用于指示第一设备面向所述第二设备的路由信息从第一路由信息变更为第二路由信息,所述路由信息包括网际协议IP地址和/或端口;
    所述第二设备在自接收所述第一指示信息之后的第一时段内,根据所述第一路由信息控制针对所述第一设备的数据发送或数据接收;
    所述第二设备在所述第一时段之后,根据所述第二路由信息控制针对所述第一设备的数据发送或数据接收。
  10. 根据权利要求9所述的通信方法,其特征在于,所述第二设备在自接收所述第一指示信息之后的第一时段内,根据所述第一路由信息控制针对所述第一设备的数据发送或数据接收,包括:
    所述第二设备在接收到所述第一指示信息之后启动预设的第一定时器,并在所述第一定时器到时之前,根据所述第一路由信息控制针对所述第一设备的数据发送或数据接收;以及
    所述第二设备在所述第一时段之后,根据所述第二路由信息控制针对所述第一设备的数据发送或数据接收,包括:
    所述第二设备在所述第一定时器到时之后,根据所述第二路由信息控制针对所述第一设备的数据发送或数据接收;
    其中,所述第一定时器的时长是根据所述第一设备和所述第二设备之间的传输时延确定的,和/或
    所述第一定时器的时长是根据所述第一设备释放所述第一路由信息的时刻确定的。
  11. 根据权利要求10所述的通信方法,其特征在于,所述第一指示信息还用于指示所述第一定时器的时长。
  12. 根据权利要求9至11中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示所述第二设备接收到所述第一指示信息。
  13. 根据权利要求12所述的通信方法,其特征在于,所述第二设备在自接收所述第一指示信息之后的第一时段内,根据所述第一路由信息控制针对所述第一设备的数据发送或数据接收,包括:
    所述第二设备在发送所述第二指示信息之后启动预设的第二定时器,并在所述第二定时器到时之前,根据所述第一路由信息控制针对所述第一设备的数据发送或数据接收;以及
    所述第二设备在所述第一时段之后,根据所述第二路由信息控制针对所述第一设备的数 据发送或数据接收,包括:
    所述第二设备在所述第二定时器到时之后,根据所述第二路由信息控制针对所述第一设备的数据发送或数据接收;
    其中,所述第二定时器的时长是根据所述第一设备和所述第二设备之间的传输时延确定的。
  14. 根据权利要求13所述的通信方法,其特征在于,所述方法还包括:
    所述第二设备在所述第二定时器到时后,删除所述第一设备与所述第一路由信息之间的映射关系在。
  15. 根据权利要求9至14中任一项所述的通信方法,其特征在于,所述第一设备为终端设备,所述第二设备为网际协议多媒体子系统IMS网络中的呼叫会话控制功能CSCF设备,
    所述第二设备在自接收所述第一指示信息之后的第一时段内,根据所述第一路由信息控制针对所述第一设备的数据发送或数据接收,包括:
    所述第二设备在自接收所述第一指示信息之后的第一时段内,控制第一网关设备根据所述第一路由信息与所述第一设备进行数据发送或接收;
    所述第二设备在所述第一时段之后,根据所述第二路由信息控制针对所述第一设备的数据发送或数据接收,包括:
    所述第二设备在所述第一时段之后,控制第二网关设备与所述第一设备进行数据发送或数据接收。
  16. 根据权利要求9至14中任一项所述的通信方法,其特征在于,所述第一设备为网际协议多媒体子系统IMS网络中的呼叫会话控制功能CSCF设备,所述第二设备为终端设备。
  17. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至16中任一项所述的通信方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至16中任意一项所述的通信方法。
  19. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至16中任意一项所述的通信方法。
PCT/CN2019/077470 2018-03-29 2019-03-08 通信方法和通信装置 WO2019184682A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810272075.3A CN110324240A (zh) 2018-03-29 2018-03-29 通信方法和通信装置
CN201810272075.3 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019184682A1 true WO2019184682A1 (zh) 2019-10-03

Family

ID=68060928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077470 WO2019184682A1 (zh) 2018-03-29 2019-03-08 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN110324240A (zh)
WO (1) WO2019184682A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992632A (zh) * 2020-07-09 2022-01-28 华为技术有限公司 管理应用的方法和装置
CN117083844A (zh) * 2021-03-25 2023-11-17 华为技术有限公司 数据处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001216A (zh) * 2006-01-11 2007-07-18 华为技术有限公司 一种更改媒体流传输地址的方法
CN101772155A (zh) * 2009-01-05 2010-07-07 中兴通讯股份有限公司 Ip多媒体子系统集中业务的注销方法
US20120320733A1 (en) * 2011-06-14 2012-12-20 Qualcomm Incorporated Reducing evolved packet core internet protocol service disconnects during inter-radio access technology handover
CN103139148A (zh) * 2011-11-25 2013-06-05 中兴通讯股份有限公司 一种媒体面更新过程中实现业务连续性的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001216A (zh) * 2006-01-11 2007-07-18 华为技术有限公司 一种更改媒体流传输地址的方法
CN101772155A (zh) * 2009-01-05 2010-07-07 中兴通讯股份有限公司 Ip多媒体子系统集中业务的注销方法
US20120320733A1 (en) * 2011-06-14 2012-12-20 Qualcomm Incorporated Reducing evolved packet core internet protocol service disconnects during inter-radio access technology handover
CN103139148A (zh) * 2011-11-25 2013-06-05 中兴通讯股份有限公司 一种媒体面更新过程中实现业务连续性的方法及系统

Also Published As

Publication number Publication date
CN110324240A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
US11109263B2 (en) Data transmission method and data transmission apparatus
US11297557B2 (en) Communication method and communications device
WO2022016401A1 (zh) 通信方法和通信装置
US10785824B2 (en) Information processing method and related apparatus
JP6658893B2 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
WO2018166317A1 (zh) 一种业务的切换方法、上下文迁移方法及相关设备
US11751105B2 (en) Network handover method and apparatus
WO2013075602A1 (zh) 实现载波聚合的方法、基站和用户设备
US11553546B2 (en) Methods and systems for radio access network aggregation and uniform control of multi-RAT networks
US10986000B2 (en) Enabling new radio cellular quality of service for non-internet protocol data sessions
KR102337091B1 (ko) 다중 접속 통신 방법, 장치 및 단말
WO2021088074A1 (zh) Iab节点双连接建立的方法和通信装置
US11399307B2 (en) Service authorization method, terminal device and network device
WO2022007639A1 (zh) 管理应用的方法和装置
WO2019072170A1 (zh) 通信方法和通信装置
US20230086410A1 (en) Communication method and communication apparatus
WO2019076347A1 (zh) 通信方法和通信装置
WO2019184682A1 (zh) 通信方法和通信装置
US20220287137A1 (en) Ran node, radio terminal, and methods therefor
CN109155956B (zh) 一种数据传输方法、装置及系统
CN113853809A (zh) 用于处置ue类别信息的ue、网络节点
WO2024093719A1 (zh) 一种数据传输的方法和装置
WO2023050181A1 (zh) 无线通信方法及无线通信装置
WO2023051431A1 (zh) 通信的方法和装置
WO2022205453A1 (zh) 网络选择的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775667

Country of ref document: EP

Kind code of ref document: A1