WO2024093719A1 - 一种数据传输的方法和装置 - Google Patents

一种数据传输的方法和装置 Download PDF

Info

Publication number
WO2024093719A1
WO2024093719A1 PCT/CN2023/126128 CN2023126128W WO2024093719A1 WO 2024093719 A1 WO2024093719 A1 WO 2024093719A1 CN 2023126128 W CN2023126128 W CN 2023126128W WO 2024093719 A1 WO2024093719 A1 WO 2024093719A1
Authority
WO
WIPO (PCT)
Prior art keywords
gtp teid
cell
network device
gnb
terminal device
Prior art date
Application number
PCT/CN2023/126128
Other languages
English (en)
French (fr)
Inventor
酉春华
张宏卓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093719A1 publication Critical patent/WO2024093719A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the embodiments of the present application relate to the field of communication technology, and more specifically, to a method and device for data transmission.
  • Radio resource control is a very important feature in the 5G system, which is usually triggered by the movement of the terminal device in the radio resource control (RRC) connection state.
  • the basic goal of switching is to switch the terminal device to an adjacent cell with better signal quality before the signal quality of the terminal device's serving cell becomes unavailable for communication, thereby providing the terminal device with continuous and uninterrupted communication services and effectively preventing the terminal device from dropping calls due to the deterioration of the serving cell signal quality.
  • L3 switching is mainly performed by a central unit (CU) responsible for processing non-real-time signals, based on the terminal device's measurement results of the signal quality of the service cell, to determine whether to instruct the terminal device to initiate a cell switch.
  • the measurement results are sent by the terminal device to a distributed unit (DU) responsible for processing higher real-time signals, and then sent by the DU to the CU through the F1 interface.
  • the CU sends a switching command to the DU, which then forwards it to the terminal device, and the terminal device performs a cell switch according to the switching command. It can be seen that in the process of transmitting the relevant information of the switching, the information interaction between the CU and the DU must be transmitted through the F1 interface, so there is a certain switching delay.
  • the embodiments of the present application provide a method and device for data transmission, which can reduce the delay in the switching process and thus improve the user experience.
  • a method for data transmission comprising: a first network device receives a first request message from a second network device, the first request message comprising a first uplink general packet radio service tunneling protocol tunnel endpoint identifier UL GTP TEID, and identification information of at least one candidate cell corresponding to the first UL GTP TEID; the first network device sends a first response message to the second network device according to the first request message, the first response message comprising a first downlink general packet radio service tunneling protocol tunnel endpoint identifier DL GTP TEID, and configuration information of the at least one candidate cell corresponding to the first DL GTP TEID; the first network device receives a first message from the second network device, the first message comprising configuration information of the at least one candidate cell; the first network device sends the first message to a terminal device; the first network device sends a switching command to the terminal device according to a measurement report of the first cell, the switching command being used to instruct the terminal device to switch to
  • the first UL GTP TEID and the first DL GTP TEID are data forwarding tunnels established by the first network device and the second network device for the terminal device when or before the terminal device accesses the first cell, and the data forwarding tunnel is used to transmit relevant data of the terminal device in the first cell between the first network device and the second network device.
  • a first network device sends a first message to a terminal device, the first message comes from a second network device, the first message includes configuration information of at least one candidate cell, the terminal device determines a measurement report according to the first message, and the first network device determines a switching command according to the measurement report of the terminal device to instruct the terminal device to switch to the first cell, wherein the at least one candidate cell includes the first cell.
  • the first network device directly determines the switching command according to the measurement report, without sending the measurement report to the second network device, and the second network device determines the switching command according to the measurement report, thereby reducing the delay problem in the terminal device switching process and improving the user experience.
  • the method before the first network device sends the first data to the second network device through the first UL GTP TEID, the method also includes: the first network device determines that the terminal device successfully accesses the first cell.
  • the first network device sends access success indication information to the second network device, where the access success indication information is used to indicate that the terminal device has successfully accessed the first cell.
  • the method further includes: the first network device receives second data from the second network device through the first DL GTP TEID.
  • the second data is received by the first network device from the second network device through the first DL GTP TEID. After the first network device receives the second data, it sends the second data to the terminal device.
  • the first request message includes first indication information, and the first indication information is used to indicate the release or retention of the GTP TEID, and the GTP TEID includes UL GTP TEID and/or DL GTP TEID.
  • the method after the terminal device successfully switches to the first cell, the method also includes: the first network device releases or reserves a second UL GTP TEID and/or a second DL GTP TEID according to the first indication information, the second UL GTP TEID and the second DL GTP TEID correspond to a second cell, the second cell is the source cell before the terminal device switches to the first cell, the GTP TEID includes the second UL GTP TEID and the second DL GTP TEID, the second UL GTP TEID is different from the first UL GTP TEID, and the second DL GTP TEID is different from the first DL GTP TEID.
  • the first network device determines whether to release or retain the second UL GTP TEID and/or the second DL GTP TEID according to the first indication information, wherein, when the first indication information is used to indicate the retention of the second UL GTP TEID and/or the second DL GTP TEID, when the terminal device switches from other cells (for example, the first cell) to the second cell, the first network device can continue to use the second UL GTP TEID and/or the second DL GTP TEID; when the first indication information is used to indicate the release of the second UL GTP TEID and/or the second DL GTP TEID, the first network device can provide the second UL GTP TEID and/or the second DL GTP TEID to other terminal devices for use, so as to avoid waste of resources.
  • the first network device when the first indication information is used to indicate the release of the second UL GTP TEID and/or the second DL GTP TEID, the first network device releases the second UL GTP TEID and/or the second DL GTP TEID according to the first indication information, including: the first network device releases the second DL GTP TEID and/or the second UL GTP TEID according to the first indication information and the second indication information, wherein the second indication information is used to indicate the end of data forwarding transmitted on the second DL GTP TEID.
  • data #1 in the data transmitted on the second DL GTP TEID is the last data packet in the transmitted data, that is, when data #1 is forwarded, it means that the forwarding of the data transmitted on the second DL GTP TEID is completed.
  • the first network device determines to release the second UL GTP TEID and/or the second DL GTP TEID according to the first indication information and the second indication information, wherein the second indication information is used to indicate the end of data forwarding transmitted through the second DL GTP TEID, and the first network device determines the specific time to release the second DL GTP TEID according to the second indication information.
  • the first request message also includes a cell global identifier CGI of the first cell and/or configuration information of the second network device, wherein the configuration information of the second network device includes packet data convergence protocol PDCP configuration information.
  • a method for data transmission comprising: a second network device sends a first request message to a first network device, the first request message comprising a first uplink general packet radio service tunneling protocol tunnel endpoint identifier UL GTP TEID, and identification information of at least one candidate cell corresponding to the first UL GTP TEID; the second network device receives a first response message from the first network device, the first response message comprising a first downlink general packet radio service tunneling protocol tunnel endpoint identifier DL GTP TEID, and configuration information of at least one candidate cell corresponding to the first DL GTP TEID; the second network device sends a first message to the first network device, the first message comprising the configuration information of the at least one candidate cell; the second network device receives first data from the first network device through the first UL GTP TEID, the first data coming from the terminal device.
  • the second network device receives access success indication information from the first network device, and the access success indication information is used to indicate that the terminal device successfully accesses a first cell, and the first cell belongs to the at least one candidate cell.
  • the method further includes: the second network device sends second data to the first network device through the first DL GTP TEID.
  • the second data is sent from the second network device to the first network device via the first DL GTP TEID, and the first network device then sends the second data to the terminal device.
  • the first request message includes first indication information, and the first indication information is used to indicate the release or retention of the GTP TEID, and the GTP TEID includes UL GTP TEID and/or DL GTP TEID.
  • the method after the terminal device successfully switches to the first cell, the method also includes: the second network device releases or retains the second UL GTP TEID and/or the second DL GTP TEID according to the first indication information, wherein the second UL GTP TEID and the second DL GTP TEID correspond to the second cell, the second cell is the source cell before the terminal device switches to the first cell, the GTP TEID includes the second UL GTP TEID and the second DL GTP TEID, the second UL GTP TEID is different from the first UL GTP TEID, and the second DL GTP TEID is different from the first DL GTP TEID.
  • the second network device determines whether to release or retain the second UL GTP TEID and/or the second DL GTP TEID according to the first indication information, wherein, when the first indication information is used to indicate the retention of the second UL GTP TEID and/or the second DL GTP TEID, when the terminal device switches from other cells (for example, the first cell) to the second cell, the second network device can directly use the second UL GTP TEID and/or the second DL GTP TEID; when the first indication information is used to indicate the release of the second UL GTP TEID and/or the second DL GTP TEID, the second network device can provide the second UL GTP TEID and/or the second DL GTP TEID to other terminal devices for use, so as to avoid waste of resources.
  • the second network device when the first indication information is used to indicate the release of the second UL GTP TEID and/or the second DL GTP TEID, the second network device releases the second UL GTP TEID and/or the second DL GTP TEID according to the first indication information, including: the second network device releases the second DL GTP TEID and/or the second UL GTP TEID according to the first indication information and the second indication information, wherein the second indication information is used to indicate the end of data forwarding transmitted on the second UL GTP TEID.
  • data #2 in the data transmitted on the second UL GTP TEID is the last data packet in the transmitted data, that is, when data #2 is forwarded, it means that the forwarding of data transmitted on the second UL GTP TEID is completed.
  • the second network device determines to release the second UL GTP TEID and/or the second DL GTP TEID according to the first indication information and the second indication information, wherein the second indication information is used to indicate the last data packet of the second data or the third data transmitted through the second UL GTP TEID or the second DL GTP TEID, and the second network device determines the specific time to release the second DL GTP TEID according to the second indication information.
  • the first request message also includes a cell global identifier CGI of the first cell and/or configuration information of the second network device, wherein the configuration information of the second network device includes packet data convergence protocol PDCP configuration information.
  • a method for data transmission comprising:
  • the first network device determines reference configuration information of the low layer mobility LTM
  • the first network device sends a first request message to the second network device, where the first request message includes the reference configuration information and identification information of at least one candidate cell of the LTM;
  • the first network device receives a first response message from the second network device, where the first response message includes an incremental configuration of the at least one candidate cell, where the delta configuration of the at least one candidate cell is an incremental configuration based on the reference configuration information;
  • the first network device sends first information to the third network device, where the first information includes the delta configuration of the at least one candidate cell, and the first information is used to determine a reference configuration of the delta configuration.
  • the first network device sends the determined reference configuration information of the LTM to the second network device through a first request message
  • the second network device determines the delta configuration of at least one candidate cell of the LTM according to the reference configuration information, and sends the delta configuration to the first network device
  • the first network device sends the delta configuration received from the second network device to the third network device, wherein the delta configuration is used by the terminal device to determine the reference configuration of the delta configuration.
  • the delta configuration is determined by the information interaction and negotiation configuration of the first network device, the second network device, and the third network device, thereby reducing the overhead of air interface signaling and saving resources.
  • the first network device sends the reference configuration information to the terminal device.
  • the first information also includes identification information of a reference configuration of the candidate cell of the LTM.
  • the first information also includes the reference configuration information.
  • a fourth aspect provides a data transmission method, comprising:
  • the second network device receives a first request message from the first network device, where the first request message includes a parameter of the low layer mobility LTM.
  • the first request message includes a parameter of the low layer mobility LTM.
  • the second network device sends a first response message to the first network device based on the first request message, and the first response message includes an incremental configuration of the at least one candidate cell, and the incremental configuration of the at least one candidate cell is an incremental configuration based on the reference configuration information.
  • a fifth aspect provides a data transmission method, comprising:
  • the third network device receives first information from the first network device (CU), where the first information includes delta configuration of at least one candidate cell of the low layer mobility LTM;
  • the third network device sends the first information to the terminal device
  • the third network device receives a measurement report from the terminal device, where the measurement report is related to the first information
  • the third network device sends a switching command to the terminal device according to the measurement report, where the switching command is used to instruct the terminal device to switch to a first cell, where the first cell belongs to the at least one candidate cell.
  • the first information also includes identification information of a reference configuration of the candidate cell of the LTM.
  • the first information also includes the reference configuration information.
  • a sixth aspect provides a data transmission method, comprising:
  • the terminal device determines a measurement report according to the first information
  • the terminal device sends the measurement report to the third network device
  • the terminal device receives a switching command from the third network device, where the switching command is used to instruct the terminal device to switch to a first cell, where the first cell belongs to the at least one candidate cell.
  • the first information also includes identification information of the reference configuration or the reference configuration information.
  • the terminal device determines configuration information of the delta configuration based on the first information.
  • the method when the first information includes identification information of the reference configuration, the method further includes:
  • the terminal device receives reference configuration information of the LTM from the first network device.
  • a data transmission device which is used to execute various units or modules of the method in any aspect from the first aspect to the sixth aspect and any possible implementation thereof, such as a processing unit and/or a communication unit.
  • the communication unit is used to receive a first request message from a second network device, the first request message including a first uplink general packet radio service tunneling protocol tunnel endpoint identifier UL GTP TEID, and identification information of at least one candidate cell corresponding to the first UL GTP TEID;
  • the processing unit is used to send a first response message to the second network device according to the first request message, the first response message including a first downlink general packet radio service tunneling protocol tunnel endpoint identifier DL GTP TEID, and configuration information of the at least one candidate cell corresponding to the first DL GTP TEID;
  • the communication unit is also used to receive a first message from the second network device, the first message including configuration information of the at least one candidate cell;
  • the communication unit is also used to send the first message to a terminal device;
  • the processing unit is also used to send a switching command to the terminal device according to a measurement report of the first cell, the switching command being used to instruct the terminal device to switch to the first cell, the first cell
  • the processing unit is used to determine reference configuration information of the low-layer mobility LTM; the communication unit is used to send a first request message to the second network device, the first request message including the reference configuration information and identification information of at least one candidate cell of the LTM; the communication unit is also used to receive a first response message from the second network device, the first response message including an incremental configuration of the at least one candidate cell, the delta configuration of the at least one candidate cell being an incremental configuration based on the reference configuration information; the communication unit is also used to send first information to the third network device, the first information including the delta configuration of the at least one candidate cell, the first information being used to determine a reference configuration of the delta configuration.
  • the apparatus is a communication device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit for a communication device.
  • the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit;
  • the processing unit may be at least one processor, a processing circuit or a logic circuit.
  • a device for data transmission comprising: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute the method in any possible implementation of the first to sixth aspects above.
  • the device further comprises a memory, configured to store a computer program or instruction.
  • the device further comprises a communication interface, and the processor reads the computer program or instruction stored in the memory through the communication interface.
  • the apparatus is a communication device.
  • the apparatus is a chip, a chip system, or a circuit for a device.
  • the present application provides a processor for executing the methods provided in the above aspects.
  • a computer-readable storage medium which stores a program code for execution by a device, wherein the program code includes a method for executing any possible implementation of the first to sixth aspects above.
  • a computer program product comprising instructions
  • the computer program product when the computer program product is run on a computer, the computer is enabled to execute a method in any possible implementation of the first to sixth aspects above.
  • a communication system comprising one or more of the aforementioned terminal device, the first network device, the second network device, and the third network device.
  • a communication device comprising a first device and a second device, wherein the first device is used to execute the method as described in the first aspect, the method as described in the fourth aspect, or the method as described in the fifth aspect.
  • the first device is a DU and the second device is a CU.
  • FIG1 is a schematic diagram of a system architecture applicable to an embodiment of the present application.
  • FIG. 2 is a flowchart of a data transmission method 200 provided in an embodiment of the present application.
  • FIG. 3 is a flowchart of a data transmission method 300 provided in an embodiment of the present application.
  • FIG. 4 is a flowchart of a data transmission method 400 provided in an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a data transmission device provided in an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of another data transmission device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a chip system provided in an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), fifth generation (5G) system or new radio (NR), sixth generation (6G) system and other systems evolved after 5G, inter-satellite communication and satellite communication and other non-terrestrial communication networks (NTN) systems.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • 6G system sixth generation
  • the satellite communication system includes a satellite base station and a terminal device.
  • the satellite base station provides communication services for the terminal device.
  • the satellite base station can also communicate with the ground base station.
  • the satellite can be used as a base station or as a terminal device.
  • the satellite can refer to non-ground base stations or non-ground equipment such as drone
  • the technical solution of the embodiment of the present application is applicable to both homogeneous and heterogeneous network scenarios, and there is no restriction on the transmission point. It can be multi-point coordinated transmission between macro base stations, micro base stations, and macro base stations. It is applicable to FDD/TDD systems.
  • the technical solution of the embodiment of the present application is not only applicable to low-frequency scenarios (sub 6G), but also to high-frequency scenarios (above 6GHz), terahertz, optical communications, etc.
  • the technical solution of the embodiment of the present application is not only applicable to the communication between network devices and terminals, but also to Communication between network devices, communication between terminals, communication between Internet of Vehicles, Internet of Things, Industrial Internet, etc.
  • the technical solution of the embodiment of the present application can also be applied to the scenario where the terminal is connected to a single base station, wherein the base station to which the terminal is connected and the core network (CN) to which the base station is connected are of the same standard.
  • the base station to which the terminal is connected and the core network (CN) to which the base station is connected are of the same standard.
  • the CN is 5G Core
  • the base station corresponds to a 5G base station, and the 5G base station is directly connected to the 5G Core
  • the CN is 6G Core
  • the base station is a 6G base station, and the 6G base station is directly connected to the 6G Core.
  • the technical solution of the embodiment of the present application can also be applied to the dual connectivity (DC) scenario where the terminal is connected to at least two base stations.
  • DC dual connectivity
  • the technical solution of the embodiment of the present application can also use macro and micro scenarios composed of base stations of different forms in the communication network.
  • the base station can be a satellite, an aerial balloon station, a drone station, etc.
  • the technical solution of the embodiment of the present application is also suitable for scenarios where there are both wide coverage base stations and small coverage base stations.
  • 5.5G, 6G and later wireless communication systems can also be applied to 5.5G, 6G and later wireless communication systems, and applicable scenarios include but are not limited to ground cellular communications, NTN, satellite communications, high altitude platform station (HAPS) communications, vehicle-to-everything (V2X), integrated access and backhaul (IAB), and reconfigurable intelligent surface (RIS) communications.
  • HAPS high altitude platform station
  • V2X vehicle-to-everything
  • IAB integrated access and backhaul
  • RIS reconfigurable intelligent surface
  • the terminal in the embodiment of the present application can be a device with wireless transceiver function, which can specifically refer to user equipment (UE), access terminal, subscriber unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit
  • subscriber unit user station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • wireless communication device user agent or user device.
  • the terminal device can also be a satellite phone, a cellular phone, a smart phone, a tablet computer, a computer with wireless transceiver function, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a customer-premises equipment (CPE), an intelligent point of sale (POS) machine, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a communication device carried on a high-altitude aircraft, a wearable device, a drone, a robot,
  • D2D device-to-device
  • VR virtual reality
  • AR augmented reality
  • the device for realizing the function of the terminal device may be the terminal device; or it may be a device capable of supporting the terminal device to realize the function, such as a chip system.
  • the device may be installed in the terminal device or used in combination with the terminal device.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the network device in the embodiment of the present application is a device with wireless transceiver function, which is used to communicate with the terminal device.
  • the access network device can be a node in the radio access network (RAN), which can also be called a base station, or a RAN node.
  • RAN radio access network
  • It can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a transmission receiving point (transmission receiving point/transmission reception point, TRP); or a base station in a 5G network such as gNodeB (gNB) or a base station in a public land mobile network (PLMN) evolved after 5G, a broadband network service gateway (BNG), an aggregation switch or a third generation partnership project (3GPP) access device, etc.
  • gNB gNodeB
  • PLMN public land mobile network
  • BNG broadband network service gateway
  • 3GPP third generation partnership project
  • the network device in the embodiment of the present application can also be a base station subsequently evolved by 3GPP, an access node in a WiFi system, a wireless relay node, a wireless backhaul node, etc.
  • the network devices in the embodiments of the present application may also include various forms of base stations, for example: macro base stations, micro base stations (also called small stations), pico base stations, balloon stations, relay stations, transmitting points (transmitting and receiving points, TRP), transmitting points (transmitting points, TP), mobile switching centers, and devices that perform base station functions in device-to-device (D2D), vehicle-to-everything (V2X), and machine-to-machine (M2M) communications, etc., and may also include centralized units (CU) and distributed units (DU) in cloud radio access network (C-RAN) systems, and network devices in NTN communication systems, which are not specifically limited in the embodiments of the present application.
  • CU centralized units
  • DU distributed units
  • C-RAN cloud radio access network
  • the device for realizing the function of the network device in the embodiment of the present application may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system.
  • the device may be installed in the network device or used in combination with the network device.
  • the chip system in the embodiment of the present application may be composed of a chip, or may include a chip and other discrete devices.
  • the embodiments shown below do not particularly limit the specific structure of the execution subject of the method provided in the embodiments of the present application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • the server can also be called the cloud, which mainly provides computing or application services for devices that require integrity transmission services, including control servers, application servers and other devices.
  • the core network mainly includes three functions: registration, connection, and session management.
  • the core network includes: authentication server function (AUSF) network element, network exposure function (NEF) network element, policy control function (PCF) network element, unified data management (UDM), unified database (UDR), network storage function (NRF) network element, application function (AF) network element, access and mobility management function (AMF) network element, session management function module (SMF) network element, RAN and UPF network element, etc.
  • AUSF authentication server function
  • NEF network exposure function
  • PCF policy control function
  • UDM unified data management
  • UDR unified database
  • NRF network storage function
  • AF application function
  • AMF access and mobility management function
  • SMF session management function module
  • AUSF network element Mainly responsible for authenticating users to determine whether users or devices are allowed to access the network.
  • NEF network element exposes the services and capabilities of 3GPP network functions to AF, and also allows AF to provide information to 3GPP network functions.
  • PCF network element performs policy management of charging and QoS policies
  • UDM network element mainly responsible for managing contract data, user access authorization and other functions
  • UDR network element mainly responsible for the storage and access functions of contract data, policy data, application data and other types of data.
  • NRF network elements can be used to provide network element discovery functions and provide network element information corresponding to the network element type based on requests from other network elements.
  • NRF also provides network element management services, such as network element registration, update, deregistration, and network element status subscription and push.
  • AF network element mainly transmits the requirements of the application side to the network side;
  • AMF network element mainly performs functions such as mobility management and access authentication/authorization. In addition, it is also responsible for transmitting user policies between UE and PCF;
  • SMF network element completes session management functions such as UE IP address allocation, UPF selection, billing and QoS policy control;
  • UPF network element As the interface UPF with the data network, it completes functions such as user plane data forwarding, session/flow-level billing statistics, and bandwidth limitation.
  • PDCP is an abbreviation for Packet Convergence Data Protocol, which is a radio transmission protocol stack in UMTS and is responsible for compressing and decompressing IP headers, transmitting user data, and maintaining sequence numbers for radio bearers set up for lossless Radio Network Service Subsystem (SRNS).
  • SRNS Radio Network Service Subsystem
  • the wireless interface can be divided into three protocol layers, namely the physical layer (abbreviated as L1), the data link layer (abbreviated as L2), and the network layer (abbreviated as L3).
  • L1 physical layer
  • L2 data link layer
  • L3 network layer
  • L1 is mainly used to provide wireless physical channels for transmission of high-level services.
  • L2 mainly includes the medium access control (MAC) layer, the radio link control (RLC) layer and the PDCP layer.
  • MAC medium access control
  • RLC radio link control
  • L3 mainly includes the RRC sublayer in the access layer and the mobility management (MM) and call control (CC) in the non-access layer.
  • MM mobility management
  • CC call control
  • the packet data convergence protocol layer belongs to the second layer L2 of the radio interface protocol stack, which handles radio resource management on the control plane.
  • RRC radio resource management on the control plane.
  • the PDCP sublayer receives the IP data packet from the upper layer, it can compress and encrypt the IP data packet header and then submit it to the RLC sublayer.
  • the PDCP sublayer also provides in-order submission and duplicate packet detection functions to the upper layer.
  • the PDCP sublayer provides signaling transmission services for the upper layer RRC, implements encryption and consistency protection of RRC signaling, and implements decryption and consistency checking of RRC signaling in the reverse direction.
  • the PDCP protocol mainly includes the following specific supported functions:
  • Security functions encryption and decryption of user and control plane protocols; integrity protection and verification of control plane data.
  • Fig. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application.
  • the architecture shown in Fig. 1 is mainly introduced by taking the fifth generation wireless network technology as an example.
  • the RAN node may include gNB or ng-eNB.
  • gNB provides the termination point for NR user plane and control plane protocols
  • ng-eNB provides the termination point for E-UTRAN user plane and control plane protocol stack.
  • gNB and gNB, gNB and ng-eNB, and ng-eNB and ng-eNB are connected through the Xn interface.
  • gNB and ng-eNB are connected to 5GC (core network) through the NG interface respectively.
  • gNB and ng-eNB are connected to AMF through the NG-C interface respectively, and gNB and ng-eNB are connected to UPF through the NR-U interface respectively.
  • gNB and ng eNB are interconnected with each other through the Xn interface.
  • gNB and ng eNB are also connected to 5GC through the ng interface, more specifically, to AMF (Access and Mobility Management Function) through the ng-C interface and to UPF (User Plane Function) through the ng-U interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the quality of the cell currently providing services to the terminal device may become unavailable for communication, and the terminal device needs to switch to a cell with better signal quality for communication.
  • the terminal device switches to a cell with better signal quality for communication in advance before the signal quality of the current service cell becomes unavailable for communication, thereby ensuring uninterrupted communication services for the terminal device and effectively preventing problems such as dropped calls caused by changes in the signal quality of the service cell.
  • L3 switching means that the CU will receive the signal measurement result of the cell from the terminal device, and the signal measurement result will be forwarded to the CU through the DU.
  • the CU determines whether the terminal device initiates the switching based on the measurement result. For example, when the signal quality of the serving cell is poor, the CU sends the switching command to the DU, and the DU forwards it to the terminal device.
  • the information exchange between the CU and the DU is through the F1 interface.
  • the switching decision of the terminal device can be sent from the CU to the DU to reduce the delay of the information exchange of the F1 interface.
  • the DU determines whether the terminal device needs to switch based on the measurement result of the cell signal of the terminal device, and sends the switching decision to the terminal device.
  • the switching decision of the terminal device is determined by the DU and sent directly to the terminal device.
  • the radio link (Radio link control, RLC) does not need to be rebuilt, the PDCP does not need to be rebuilt, or the PDCP does not need to perform data recovery.
  • RLC Radio link control
  • FIG. 2 is a flowchart of a data transmission method 200 provided in an embodiment of the present application.
  • the gNB-CU sends relevant data to the gNB-DU through the uplink general packet radio service tunneling protocol tunnel endpoint identifier (uplink general packet radio service Tunneling Protocol Tunnel Endpoint Identifier, UL GTP TEID) (referred to as the second DL GTP TEID in the embodiment of the present application).
  • uplink general packet radio service tunneling protocol tunnel endpoint identifier uplink general packet radio service Tunneling Protocol Tunnel Endpoint Identifier, UL GTP TEID
  • the gNB-DU sends relevant data to the gNB-CU through the uplink general packet radio service tunneling protocol tunnel endpoint identifier (uplink general packet radio service Tunneling Protocol Tunnel Endpoint Identifier, UL GTP TEID) (referred to as the second UL GTP TEID in the embodiment of the present application).
  • uplink general packet radio service tunneling protocol tunnel endpoint identifier uplink general packet radio service Tunneling Protocol Tunnel Endpoint Identifier, UL GTP TEID
  • UL GTP TEID uplink general packet radio service Tunneling Protocol Tunnel Endpoint Identifier
  • PDCP reconstruction means retransmitting data that has not been successfully transmitted, and the key needs to be changed.
  • the key is used to retransmit the data that has not been successfully transmitted, including the subsequent new data.
  • the PDCP layer ensures that the AM data is not lost.
  • the gNB-CU reconstructs all PDCP entities and completes the PDCP entity in the switching through the reconstruction-related operations of the PDCP entity. Data processing, such as data rearrangement and AM data integrity assurance.
  • PDCP data recovery refers to retransmitting the data that was not successfully transmitted without changing the key, and continuing to use the original key to retransmit the data that was not successfully transmitted, including subsequent new data.
  • RLC reestablishment means that when a cell handover occurs in a terminal device, RLC will reset the state variables of all entities to facilitate synchronization with the network state.
  • gNB-DU reestablishes RLC.
  • the first cell represents the target cell to which the terminal device switches, and the first cell belongs to at least one candidate cell
  • the second cell represents the source cell of the terminal device, wherein the second cell may be the serving cell before the terminal device switches to the first cell, or the second cell belongs to at least one candidate cell, and the first cell and the second cell are not the same cell.
  • the first cell corresponds to the first UL GTP TEID and the first DL GTP TEID
  • the second cell corresponds to the second UL GTP TEID and the second DL GTP TEID.
  • gNB-DU sends the second uplink PDCP PDU to gNB-CU via the second UL GTP TEID.
  • the gNB-CU receives the second uplink PDCP PDU sent from the gNB-DU via the second UL GTP TEID.
  • the gNB-DU sends the second uplink PDCP PDU to the gNB-CU using the second UL GTP TEID.
  • gNB-CU sends the second downlink PDCP PDU to gNB-DU through the second DL GTP TEID.
  • the gNB-DU receives the second downlink PDCP PDU sent from the gNB-CU via the second DL GTP TEID.
  • the gNB-CU sends the second downlink PDCP PDU to the gNB-DU using the second DL GTP TEID.
  • the terminal device switches from the second cell to the first cell
  • the gNB-DU determines that the terminal has successfully completed access to the target cell
  • the gNB-CU determines that the terminal has successfully completed access to the target cell
  • the gNB-CU also needs to reestablish the PDCP or restore the PDCP data.
  • the method shown in FIG2 further includes:
  • gNB-DU sends the first uplink PDCP PDU to gNB-CU through the first UL GTP TEID.
  • the gNB-CU receives the first uplink PDCP PDU sent from the gNB-DU via the first UL GTP TEID.
  • the gNB-DU sends the first uplink PDCP PDU to the gNB-CU using the first UL GTP TEID.
  • the second uplink PDCP PDU and the first uplink PDCP PDU are different PDUs.
  • the method also includes: S204, the gNB-CU sends the first downlink PDCP PDU to the gNB-DU via the first DL GTP TEID.
  • the gNB-DU receives the first downlink PDCP PDU sent from the gNB-CU via the first DL GTP TEID.
  • the gNB-CU After the gNB-CU reestablishes PDCP or after PDCP data is recovered, the gNB-CU sends the first downlink PDCP PDU to the gNB-DU using the first DL GTP TEID.
  • the second downlink PDCP PDU and the first downlink PDCP PDU are different PDUs.
  • the terminal device and the network device may not have RLC reconstruction, PDCP reconstruction or PDCP recovery, then the method shown in FIG. 2 above is no longer applicable.
  • an embodiment of the present application provides a data forwarding method to solve the above technical method that can still support data forwarding when there is no RLC reconstruction, PDCP reconstruction or PDCP data recovery process between the terminal device and the network device.
  • FIG. 3 is a schematic flowchart of a method 300 for forwarding data provided in an embodiment of the present application.
  • the first cell represents the target cell to which the terminal device switches, and the first cell belongs to at least one candidate cell
  • the second cell represents the source cell of the terminal device
  • the second cell may be the serving cell before the terminal device switches to the first cell, or the second cell belongs to at least one candidate cell, and the first cell and the second cell are not the same cell.
  • the first cell corresponds to the first UL GTP TEID and the first DL GTP TEID
  • the second cell corresponds to the second UL GTP TEID and the second DL GTP TEID.
  • gNB-CU sends the second downlink data to gNB-DU through the second DL GTP TEID
  • gNB-DU sends the second uplink data to gNB-CU through the second UL GTP TEID.
  • the gNB-DU receives the second downlink data sent by the gNB-CU via the second DL GTP TEID, and the gNB-CU receives Second uplink data sent from the gNB-DU via the second UL GTP TEID.
  • the second uplink data and the second downlink data are data communications performed by a serving cell of the terminal device (referred to as a second cell in the embodiment of the present application).
  • the data communication of the second cell corresponds to the second DL GTP TEID and the second UL GTP TEID.
  • the terminal device switches from the second cell to the first cell, and the gNB-CU and gNB-DU do not need to re-establish PDCP, restore PDCP data, and re-establish RLC.
  • the gNB-CU and gNB-DU continue to use the relevant PDCP-related parameters and RLC-related parameters in the second cell.
  • gNB-CU sends a first request message to gNB-DU.
  • the gNB-DU receives the first request message from the gNB-CU.
  • the first request message is used to notify the gNB-DU to initiate preparation for L1/L2 mobility, wherein L1/L2 mobility can also be called LTM (L1/L2 triggered mobility).
  • the first request message includes the first UL GTP TEID and identification information of at least one candidate cell corresponding to the first UL GTP TEID.
  • the first request message also includes identification information of at least one candidate cell and/or configuration information of the gNB-CU.
  • the identification information of at least one candidate cell includes the identification information of the first cell, and the configuration information of the gNB-CU includes PDCP configuration information.
  • the identification information of the first cell may include a cell global identify (CGI) of the first cell, or the identification information may also include identification information of the first cell among candidate cells.
  • CGI cell global identify
  • the gNB-DU determines the configuration of at least one candidate cell and the first DL GTP TEID corresponding to the first cell based on the identification information of at least one candidate cell in the first request message.
  • the first request message may also include first indication information, and the first indication information is used to indicate the release or retention of the GTP TEID, wherein the GTP TEID includes DL GTP TEID and/or UL GTP TEID.
  • the GTP TEID includes a second DL GTP TEID and a second UL GTP TEID.
  • the first indication information may include indication information #1 and indication information #2.
  • Indication information #1 may be used to indicate the release or retention of the DL GTP TEID
  • indication information #2 may be used to indicate the release or retention of the UL GTP TEID.
  • indication information #1 and indication information #2 can be two different indication information, or the indication information #1 and indication information #2 can be the same indication information.
  • the first indication information can be used to indicate the release or retention of DL GTP TEID, and can also be used to indicate the release or retention of UL GTP TEID. This application does not limit this.
  • the gNB-CU and gNB-DU release the second UL GTP TEID according to the first indication information.
  • the gNB-CU and the gNB-DU need to continue to retain the second UL GTP TEID and the second DL GTP TEID. Otherwise, the gNB-CU and the gNB-DU release the second UL GTP TEID and the second DL GTP TEID.
  • the terminal device can continue to use the reserved second UL GTP TEID and second DL GTP TEID to forward data.
  • the second UL GTP TEID and the second DL GTP TEID will no longer be used to forward the data of the terminal device between the gNB-CU and the gNB-DU, but the second UL GTP TEID and the second DL GTP TEID can still forward data for other terminal devices.
  • gNB-DU sends a first response message to gNB-CU.
  • the gNB-CU receives the first response message from the gNB-DU.
  • the gNB-DU after receiving the first request message from the gNB-CU, the gNB-DU sends a first response message to the gNB-CU based on the first request message, wherein the first response message includes the first DL GTP TEID and the configuration information of at least one candidate cell corresponding to the first DL GTP TEID, and the configuration information of the at least one candidate cell is the same as the configuration information of the gNB-DU.
  • gNB-CU sends a first message to gNB-DU.
  • the gNB-DU receives the first message from the gNB-CU.
  • the first message includes configuration information of at least one candidate cell.
  • the gNB-CU After the gNB-CU receives the first response message of the gNB-DU, it determines the first message based on the first response message.
  • the first message may also include configuration identification information of at least one candidate cell.
  • gNB-DU sends a first message to the terminal device.
  • the terminal device receives the first message from the gNB-DU.
  • the gNB-DU after receiving the first message from the gNB-CU, the gNB-DU sends the first message to the terminal device.
  • S306 The terminal device sends a measurement report of the first cell to the gNB-DU.
  • the gNB-DU receives a measurement report on the first cell from the terminal device.
  • the terminal device After the terminal device receives the first message sent from the gNB-DU, it measures the first cell based on the configuration information of the at least one candidate cell and determines the measurement report.
  • the measurement report may include the measurement result of the terminal device on the signal quality of the first cell.
  • the measurement report includes a measurement result of a reference signal received power (RSRP) of the first cell and/or a measurement result of a signal to interference noise ratio (SINR) of the first cell by the terminal device.
  • RSRP reference signal received power
  • SINR signal to interference noise ratio
  • gNB-DU sends a switching command to the terminal device.
  • the terminal device receives a switching command from the gNB-DU.
  • the gNB-DU After the gNB-DU receives the measurement report from the terminal device, it determines the switching command based on the measurement report and sends the switching command to the terminal device.
  • the gNB-DU After the gNB-DU receives the measurement report from the terminal device, it determines whether the measurement result satisfies the first condition based on the measurement result of the first cell in the measurement report, and determines whether to send a handover command to the terminal device. Assume that when the measurement result satisfies the first condition, the gNB-DU sends a handover command to the terminal device; when the measurement result does not satisfy the first condition, the gNB-DU does not send a handover command to the terminal device.
  • the first condition can be a certain threshold range or other judgment conditions.
  • the first condition can be stipulated by the system protocol, or agreed upon by the network device and the terminal device, or determined by the network device itself. This application does not make any specific restrictions on this.
  • the gNB-DU determines the handover command based on the measurement report of the terminal device.
  • the gNB-DU does not need to send the measurement report to the gNB-CU through the F1 interface, and then the gNB-CU determines the handover command. This reduces the delay caused by the information exchange between the gNB-DU and the gNB-CU through the F1 interface, reduces the handover time of the terminal device, and improves the user experience.
  • the terminal device hands over the communication service from the second cell to the first cell, as shown in the method of FIG3, and the method further includes:
  • gNB-DU determines that the terminal device successfully accesses the first cell.
  • the gNB-DU After the gNB-DU sends the switching command to the terminal device, the gNB-DU performs access detection on the target cell of the terminal device to determine whether the terminal device has successfully accessed the first cell.
  • the terminal device and the network device establish access through a random access (RA) process. After the RA is successfully completed, the terminal device and the network device can perform normal data transmission, which means that the terminal device successfully accesses the second cell, that is, the gNB-DU can determine that the terminal device successfully accesses the first cell.
  • RA random access
  • the gNB-DU determines that the terminal device successfully accesses the first cell based on the random access process.
  • the terminal device accesses the first cell through contention-based four-step random access (4-step CBRA)
  • the terminal device sends a random access preamble to the gNB, and then the gNB sends a random access response message to the terminal device, which can be used to indicate the resource location of the physical uplink shared channel (PUSCH).
  • the terminal device sends a cell identifier including the terminal device to the gNB through the PUSCH according to the resource location of the PUSCH indicated in the random access response message received from the gNB.
  • the gNB After the gNB receives the request information of the terminal device, the gNB sends a response message (for example, the PDCCH of the C-RNTI) to the terminal device, and the response message can indicate that the terminal device has successfully accessed the first cell.
  • a response message for example, the PDCCH of the C-RNTI
  • the terminal device accesses the second cell through non-contention-based two-step random access (2-step CFRA)
  • the terminal device sends a preamble to the gNB, and then the gNB sends a random access response message to the terminal device, indicating that the terminal device successfully accesses the first cell.
  • 2-step CFRA non-contention-based two-step random access
  • the gNB-DU determines whether the terminal device successfully accesses the first cell based on RACH-less. For RACH-less, after receiving the relevant indication information (e.g., C-RNTI) of the successful access of the terminal device, it indicates that the terminal device successfully accesses the first cell.
  • the relevant indication information e.g., C-RNTI
  • the gNB-DU determines that the terminal device has successfully accessed the first cell, the gNB-DU does not need to reestablish the RLC, and the gNB-DU continues to use the data processed by the RLC in the second cell.
  • the terminal device successfully accesses the first cell.
  • the gNB-CU does not need to reestablish PDCP or recover PDCP data.
  • the gNB-CU continues to use the data processed by PDCP in the second cell.
  • gNB-DU sends access success indication information to gNB-CU.
  • the gNB-CU receives access success indication information from the gNB-DU.
  • the gNB-DU before the gNB-DU transmits data with the gNB-CU through the first UL GTP TEID, the gNB-DU sends an access success indication message to the gNB-CU, where the access success indication message is used to indicate that the terminal device has successfully accessed the first cell.
  • S310 The terminal device sends uplink data to the gNB-DU.
  • the gNB-DU receives uplink data from the terminal device.
  • the GTP TEID used by the first cell and the second cell are different, that is, the first DL GTP TEID is different from the second DL GTP TEID, as shown in case 1 in FIG3 :
  • gNB-DU sends the first uplink data to gNB-CU through the first UL GTP TEID.
  • the gNB-CU receives the first uplink data sent from the gNB-DU via the first UL GTP TEID.
  • gNB-CU sends the first downlink data to gNB-DU through the first DL GTP TEID.
  • the gNB-DU receives the first downlink data sent from the gNB-CU via the first DL GTP TEID.
  • the gNB-DU and the gNB-CU use the first UL GTP TEID and the first DL GTP TEID for data transmission.
  • gNB-DU sends the second uplink data to gNB-CU through the second UL GTP TEID.
  • the gNB-CU receives uplink data sent from the gNB-DU via the second UL GTP TEID.
  • gNB-CU sends the second downlink data to gNB-DU via the second DL GTP TEID.
  • the gNB-DU receives the second downlink data sent from the gNB-CU via the second DL GTP TEID.
  • the gNB-DU and the gNB-CU continue to use the GTP TEID of the terminal device in the second cell (i.e., the second UL GTP TEID, the second DL GTP TEID) for data transmission.
  • the terminal device measures at least one L1/L2 candidate cell according to the first message from the gNB-CU, and sends the measurement report to the gNB-DU.
  • the gNB-DU directly determines the switching command according to the measurement report, instructing the terminal device to switch from the second cell to the first cell, and there is no need to send the measurement report to the gNB-CU through the F1 interface, thereby reducing the delay in the switching process.
  • the gNB-DU and gNB-CU determine to use the UL GTP TEID and DL GTP TEID corresponding to the first cell for data transmission, ensuring the continuity of the terminal device communication, thereby improving the user experience.
  • the gNB-DU and gNB-CU do not rebuild RLC, rebuild PDCP, and recover PDCP data, and can still forward data.
  • the gNB-DU before step S390, before the gNB-DU determines that the terminal device has successfully accessed the first cell, the gNB-DU continues to use the second UL GTP TEID corresponding to the second cell to send the second uplink data (for example, UL PDCP PDU) to the gNB-CU, and does not use the first UL GTP TEID to send the first uplink data.
  • the second uplink data for example, UL PDCP PDU
  • the gNB-DU uses the first UL GTP TEID to send the first uplink data to the gNB-CU, and does not use the second UL GTP TEID to send the second uplink data to the gNB-CU.
  • the first uplink data is different from the second uplink data.
  • the second uplink data is data sent through the second UL GTP TEID before the terminal device successfully accesses the first cell.
  • the first uplink data is data sent through the first UL GTP TEID after the terminal device successfully accesses the first cell.
  • the gNB-DU uses the first UL GTP TEID to send data to the gNB-CU, the gNB-DU determines whether to release the second UL GTP TEID. The gNB-DU determines whether to release or retain the second UL GTP TEID according to the first indication information included in the first request message in the above step S320.
  • the first indication information is used to indicate the release of the second UL GTP TEID.
  • gNB-DU and gNB-CU determine that the terminal device has successfully accessed the first cell, they release the second UL GTP TEID.
  • the gNB-DU determines to release the second UL GTP TEID based on the first indication information and the UL end marker indication information.
  • the UL end marker indication information is used to indicate that the gNB-DU determines that the forwarding of the data sent through the second UL GTP TEID is completed (or forwarding is completed). After the gNB-DU determines that the terminal device has successfully accessed the first cell, the second UL GTP TEID is not released first. After the gNB-DU receives the DL end marker indication information and determines that the data sent through the second UL GTP TEID has been forwarded, the gNB-DU releases the second DL GTP TEID.
  • the gNB-DU After the gNB-DU determines that the terminal device successfully accesses the first cell, the gNB-DU first determines that the UL end marker indication information is successfully sent, and then releases the second UL GTP TEID. . After the gNB-DU determines that the data is sent through the second UL GTP TEID and successfully sends the data to the gNB-CU, the gNB-DU sends the UL end marker indication information to the gNB-CU, and the gNB-DU releases the second UL GTP TEID. After the gNB-CU receives the UL end marker indication information sent by the gNB-DU, the gNB-CU releases the second UL GTP TEID.
  • the gNB-DU and gNB-CU retain the second UL GTP TEID.
  • the gNB-DU and gNB-CU retain the second UL GTP TEID so that after the terminal device switches to the second cell in the future, the gNB-DU can continue to use the second UL GTP TEID for data forwarding (for example, sending data to the gNB-CU).
  • the terminal device switches from the second cell to the first cell, due to the movement of the terminal device, the terminal device switches from the first cell to the second cell.
  • the gNB-DU can continue to use the second UL GTP TEID for data forwarding.
  • each of the second UL GTP TEIDs may require its own UL end marker indication information, and the first indication information may indicate each individual second UL GTP TEID or may indicate all the second UL GTP TEIDs together.
  • the gNB-CU before step S390, before the gNB-CU determines that the terminal device has successfully accessed the first cell, the gNB-CU continues to use the second DL GTP TEID corresponding to the second cell to send the second downlink data (for example, DL PDCP PDU) to the gNB-DU, and does not use the first DL GTP TEID to send the first downlink data.
  • the second DL GTP TEID corresponding to the second cell
  • the second downlink data for example, DL PDCP PDU
  • the gNB-CU determines that the terminal device has successfully accessed the first cell, when the TEIDs of the first cell and the second cell are different, the gNB-CU uses the first DL GTP TEID to send the first downlink data to the gNB-DU, and does not use the second DL GTP TEID to send the second downlink data to the gNB-DU.
  • the first downlink data is different from the second downlink data.
  • the second downlink data is data sent through the second DL GTP TEID before the terminal device successfully accesses the first cell.
  • the first downlink data is data sent through the first DL GTP TEID after the terminal device successfully accesses the first cell.
  • the gNB-CU determines whether to release the second DL GTP TEID.
  • the gNB-CU determines whether to release or retain the second DL GTP TEID according to the first indication information.
  • the first indication information is used to indicate the release of the second DL GTP TEID.
  • gNB-DU and gNB-CU determine that the terminal device has successfully accessed the first cell, they release the second DL GTP TEID.
  • the gNB-DU determines to release the second DL GTP TEID based on the first indication information and the UL end marker indication information.
  • the UL end marker indication information is used to indicate that the gNB-CU determines that the forwarding of the data sent through the second DL GTP TEID is completed (or forwarding is completed). After the gNB-CU determines that the terminal device has successfully accessed the first cell, the second DL GTP TEID is not released first. After the gNB-CU receives the UL end marker indication information and determines that the data sent through the second DL GTP TEID has been forwarded, the gNB-CU releases the second DL GTP TEID.
  • the gNB-CU After the gNB-CU determines that the terminal device has successfully accessed the first cell, the gNB-CU first determines that the DL end marker indication information has been successfully sent, and then releases the second DL GTP TEID. Among them, after the gNB-CU determines that the data sent through the second DL GTP TEID and successfully sends these data to the gNB-DU, the gNB-CU sends the DL end marker indication information to the gNB-DU, and the gNB-CU releases the second DL GTP TEID. After the gNB-DU receives the DL end marker indication information sent by the gNB-CU, the gNB-DU releases the second DL GTP TEID.
  • the gNB-CU and gNB-DU retain the second DL GTP TEID.
  • the gNB-CU and gNB-DU retain the second DL GTP TEID so that after the terminal device switches to the second cell in the future, the gNB-CU can continue to use the second DL GTP TEID for data forwarding (for example, sending data to the gNB-DU).
  • the terminal device switches from the second cell to the first cell, due to the movement of the terminal device, the terminal device switches from the first cell to the first cell.
  • the gNB-CU can continue to use the second DL GTP TEID for data forwarding.
  • each of the second DL GTP TEIDs may require its own DL end marker indication information, and the first indication information may indicate each individual second DL GTP TEID or may indicate all the second DL GTP TEIDs together.
  • this application uses different GTP TEIDs to distinguish different data types, so as to better implement resource management of network devices.
  • the terminal device switches from the second cell to the first cell and successfully accesses the first cell. Due to the continued movement of the terminal device, based on the method shown in FIG3 , after completing the above steps S301 to S306, the terminal device, the first network device and the second network device may further perform the following steps:
  • the first network device receives the measurement report of the third cell from the terminal device, and accordingly, the terminal device sends the measurement report of the third cell of the terminal device to the first network device.
  • the third cell belongs to at least one candidate cell, and the third cell is different from the first cell.
  • step S306 the measurement report of the third cell determined by the terminal device is similar to step S306 shown in FIG. 3 above.
  • step S306 the introduction in step S306 above.
  • the terminal device, the first network device and the second network device continue to perform the following steps AS307 to AS312, which are as follows:
  • gNB-DU sends a switching command to the terminal device.
  • the terminal device receives a switching command from the gNB-DU.
  • the terminal device switches from the first cell to the third cell.
  • gNB-DU determines that the terminal device successfully accesses the third cell.
  • the gNB-DU After the gNB-DU sends the switching command to the terminal device, the gNB-DU performs access detection on the target cell of the terminal device to determine whether the terminal device has successfully accessed the third cell.
  • gNB-DU sends access success indication information to gNB-CU.
  • the gNB-CU receives access success indication information from the gNB-DU.
  • the gNB-DU before the gNB-DU transmits data with the gNB-CU through the third UL GTP TEID, the gNB-DU sends an access success indication message to the gNB-CU, where the access success indication message is used to indicate that the terminal device has successfully accessed the third cell.
  • the third cell corresponds to the third UL GTP TEID and the third DL GTP TEID.
  • the terminal device sends uplink data to the gNB-DU.
  • the gNB-DU receives uplink data from the terminal device.
  • gNB-DU sends the third uplink data to gNB-CU through the third UL GTP TEID.
  • the gNB-CU receives the third uplink data sent from the gNB-DU via the third UL GTP TEID.
  • the third UL GTP TEID is used to send the third uplink data
  • the third DL GTP TEID is used to send the third downlink data.
  • the third uplink data is different from the first uplink data
  • the third downlink data is different from the first downlink data.
  • gNB-CU sends the third downlink data to gNB-DU through the third DL GTP TEID.
  • the gNB-DU receives the third downlink data sent from the gNB-CU via the third DL GTP TEID.
  • the gNB-DU when the GTP TEIDs used by the first cell and the third cell are different, that is, the first DL GTP TEID is different from the third DL GTP TEID, the gNB-DU sends the third uplink data to the gNB-CU through the third UL GTP TEID, and the gNB-CU receives the third uplink data sent by the gNB-DU through the third UL GTP TEID.
  • the gNB-CU sends the third downlink data to the gNB-DU through the third DL GTP TEID. Accordingly, the gNB-DU receives the third downlink data sent by the gNB-CU through the third DL GTP TEID.
  • the gNB-DU when the GTP TEID used by the first cell and the third cell is the same, that is, the first DL GTP TEID is the same as the third DL GTP TEID, the gNB-DU sends the first uplink data to the gNB-CU through the first UL GTP TEID, and the gNB-CU receives the first uplink data sent by the gNB-DU through the first UL GTP TEID.
  • the gNB-CU sends the first downlink data to the gNB-DU through the first DL GTP TEID. Accordingly, the gNB-DU receives the first downlink data sent by the gNB-CU through the first DL GTP TEID.
  • FIG. 4 is a flowchart of a data transmission method 400 provided in an embodiment of the present application.
  • the first cell represents the target cell of the LTM cell switch of the terminal device, the first cell belongs to at least one candidate cell of the LTM, and the second cell represents the source cell of the LTM cell switch of the terminal device, wherein the second cell may be the service cell of the terminal device before switching to the first cell, or the second cell belongs to at least one candidate cell of the LTM, and the first cell and the second cell are not the same cell.
  • gNB-DU#1 represents at least one candidate gNB-DU of the terminal device
  • gNB-DU#2 represents the source gNB-DU of the terminal device.
  • gNB-CU determines reference configuration information of LTM.
  • the gNB-CU can determine the reference configuration information of the LTM based on the configuration of the second cell provided by gNB-DU#2 (for example, physical layer configuration, MAC layer configuration), or the gNB-CU can directly determine the reference configuration information of the LTM itself.
  • gNB-CU sends request message #1 to gNB-DU#1.
  • gNB-DU#1 receives request message #1 from gNB-CU.
  • the request message #1 can be the terminal device context establishment request information UE context setup request.
  • the gNB-CU After the gNB-CU determines the reference configuration information of the LTM, the gNB-CU sends a request message #1 to gNB-DU#1, where the request message #1 includes the reference configuration information and identification information of at least one candidate cell of the LTM.
  • the reference configuration information is used to determine the incremental configuration of the at least one candidate cell, and may also include the configuration of the primary cell and the configuration of the secondary cell.
  • gNB-DU#1 sends a response message #1 to gNB-CU.
  • the gNB-CU receives response message #1 from gNB-DU #1.
  • response message #1 can be a response message.
  • gNB-DU#1 receives the request message #1 from the gNB-CU, it determines the incremental (delta) configuration of the at least one candidate cell based on the reference configuration information in the request message #1, carries the configuration in the response message #1, and sends the response message #1 to the gNB-CU.
  • the response message #1 includes the delta configuration of the at least one candidate cell, wherein.
  • the delta configuration of the at least one candidate cell is an incremental configuration determined based on the reference configuration information.
  • parameter 1 and parameter 2 may be included in the reference configuration and the configuration of the candidate cell, and the default meanings are different, one is to continue to use, and the other is to release. In the reference configuration, both parameter 1 and parameter 2 appear to clearly indicate a certain function. If parameter 1 and parameter 2 in the candidate cell are default, then when the terminal receives the configuration of the candidate cell, it determines that the default parameter 1 is to continue to use parameter 1 in the reference configuration, and the default parameter 2 is to release parameter 2 in the reference configuration, and the function corresponding to parameter 2 will be released.
  • gNB-CU sends information #1 to gNB-DU #2.
  • gNB-DU#2 receives message #1 from gNB-CU.
  • message #1 can be a DL RRC message transfer message.
  • the message #1 includes the delta configuration of the at least one candidate cell.
  • the message #1 may also include identification information of a reference configuration of the LTM, for example, cell identification information of the second cell.
  • the identification information of the reference configuration is used by the terminal device to determine which configuration is the reference configuration of the LTM from the configuration information of the serving cell, wherein the serving cell does not belong to at least one candidate cell of the LTM.
  • the message #1 may also include reference configuration information of the LTM.
  • the terminal device receives message #1 from gNB-DU #2.
  • gNB-DU#2 After gNB-DU#2 receives message #1 from gNB-CU, it sends message #1 to the terminal device.
  • the terminal device sends a measurement report to gNB-DU#2.
  • gNB-DU#2 receives the measurement report from the terminal device.
  • the terminal device After receiving message #1, the terminal device measures the candidate cell according to message #1, generates a measurement report of the candidate cell, and sends the measurement report to gNB-DU #2.
  • the measurement report may include a measurement result for at least one candidate cell.
  • the measurement result includes a reference signal received power (RSRP) of at least one candidate cell and/or a signal to interference noise ratio (SINR) of at least one candidate cell.
  • RSRP reference signal received power
  • SINR signal to interference noise ratio
  • gNB-DU#2 sends a switching command to the terminal device.
  • the terminal device receives a switching command from gNB-DU#2.
  • gNB-DU#2 determines to send the switching command to the terminal device based on the measurement report.
  • the switching command is used to instruct the terminal device to perform LTM cell switching (cell switch), that is, switching to the first cell.
  • the terminal device determines the configuration of the first cell according to message #1.
  • the terminal device can determine the configuration of the first cell based on the delta configuration and reference configuration information of at least one candidate cell in the received message #1.
  • the reference configuration information may be carried in message #1 and sent to the terminal device, or the reference configuration information may be sent to the terminal device before step S410.
  • the first information includes identification information of the reference configuration.
  • the terminal device determines to use the configuration of the first cell to communicate with the network device based on the reference configuration information in the first information.
  • the gNB-DU and the gNB-CU determine the configuration through negotiation to determine the configuration information of the delta configuration of the candidate cell of the terminal device of the LTM, thereby saving the overhead of the air interface signaling and saving resources.
  • a method for data transmission provided by an embodiment of the present application is described in detail above in conjunction with FIGS. 2 to 4
  • a device for data transmission provided by an embodiment of the present application is described in detail below in conjunction with FIGS. 5 to 7 .
  • FIG5 is a schematic block diagram of a data transmission device provided in an embodiment of the present application.
  • the device 500 includes a transceiver unit 510 and a processing unit 520.
  • the transceiver unit 510 can be used to implement corresponding communication functions.
  • the transceiver unit 510 can also be called a communication interface or a communication unit.
  • the processing unit 520 can be used to implement corresponding processing functions.
  • the device 500 also includes a storage unit, which can be used to store instructions and/or data, and the processing unit 520 can read the instructions and/or data in the storage unit so that the device implements the actions of the device or network element in the aforementioned method embodiments.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 520 can read the instructions and/or data in the storage unit so that the device implements the actions of the device or network element in the aforementioned method embodiments.
  • the device 500 can be used to execute the actions performed by the gNB-DU, gNB-CU, or terminal device in the above method embodiments.
  • the device 500 can be a component of the gNB-DU, gNB-CU, or terminal device.
  • the transceiver unit 510 is used to execute the transceiver-related operations of the gNB-DU, gNB-CU, or terminal device in the above method embodiments
  • the processing unit 520 is used to execute the processing-related operations of the gNB-DU, gNB-CU, or terminal device in the above method embodiments.
  • the apparatus 500 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (e.g., a shared processor, a dedicated processor, or a group processor, etc.) and a memory for executing one or more software or firmware programs, a merged logic circuit, and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor e.g., a shared processor, a dedicated processor, or a group processor, etc.
  • memory for executing one or more software or firmware programs, a merged logic circuit, and/or other suitable components that support the described functions.
  • the apparatus 500 may be specifically the gNB-DU, gNB-CU, or terminal device in the above-mentioned embodiments, and may be used to execute the various processes and/or steps corresponding to the gNB-DU, gNB-CU, or terminal device in the above-mentioned method embodiments, or the apparatus 500 may be specifically the gNB-DU, gNB-CU, or terminal device in the above-mentioned embodiments, and may be used to execute the various processes and/or steps corresponding to the gNB-DU, gNB-CU, or terminal device in the above-mentioned method embodiments, and to avoid repetition, it will not be repeated here.
  • the apparatus 500 of each of the above schemes has the function of implementing the corresponding steps performed by the gNB-DU, gNB-CU, or terminal device in the above method, or the apparatus 500 of each of the above schemes has the function of implementing the corresponding steps performed by the gNB-DU, gNB-CU, or terminal device in the above method.
  • the function can be implemented by hardware, or the corresponding software can be implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor to respectively perform the transceiver operations and related processing operations in each method embodiment.
  • the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor to respectively perform the transceiver operations and related processing operations in each method embodiment.
  • the transceiver unit 510 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 5 may be a network element or device in the aforementioned embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input and output circuit or a communication interface; the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
  • an embodiment of the present application provides another communication device 600.
  • the device 600 includes a processor 610, the processor 610 is coupled to a memory 620, the memory 620 is used to store computer programs or instructions and/or data, and the processor 610 is used to execute the memory 620.
  • the stored computer programs or instructions, or the data stored in the memory 620 are read to execute the methods in the above method embodiments.
  • processors 610 there are one or more processors 610 .
  • the memory 620 is one or more.
  • the memory 620 is integrated with the processor 610 or provided separately.
  • the device 600 further includes a transceiver 630, and the transceiver 630 is used for receiving and/or sending signals.
  • the processor 610 is used for controlling the transceiver 630 to receive and/or send signals.
  • the device 600 is used to implement the operations performed by the gNB-DU, gNB-CU, or terminal device in the above method embodiments.
  • the processor 610 is used to execute the computer program or instructions stored in the memory 620 to implement the relevant operations of the first control plane device in each of the above method embodiments.
  • processors mentioned in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • processors mentioned in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM).
  • a RAM may be used as an external cache.
  • RAM includes the following forms: static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous link DRAM (SLDRAM), and direct rambus RAM (DR RAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) can be integrated into the processor.
  • memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • an embodiment of the present application provides a chip system 700 .
  • the chip system 700 (or also referred to as a processing system) includes a logic circuit 710 and an input/output interface 720 .
  • the logic circuit 710 can be a processing circuit in the chip system 700.
  • the logic circuit 710 can be coupled to the storage unit and call the instructions in the storage unit so that the chip system 700 can implement the methods and functions of each embodiment of the present application.
  • the input/output interface 720 can be an input/output circuit in the chip system 700, outputting information processed by the chip system 700, or inputting data or signaling information to be processed into the chip system 700 for processing.
  • the chip system 700 is used to implement the operations performed by the gNB-DU, gNB-CU, or terminal device in the above method embodiments.
  • the logic circuit 710 is used to implement the processing-related operations of the gNB-DU in the above method embodiments, such as the sending and/or receiving-related operations of the gNB-DU in the method embodiments of FIG. 2 to FIG. 4, such as the sending and/or receiving-related operations performed by the gNB-DU in any one of the embodiments shown in FIG. 2 to FIG. 4.
  • An embodiment of the present application also provides a computer-readable storage medium on which computer instructions for implementing the methods executed by the network element in the above-mentioned method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the user plane network element in each embodiment of the above method.
  • the method of execution when the computer program is executed by a computer, the computer can implement the user plane network element in each embodiment of the above method. The method of execution.
  • the computer when the computer program is executed by a computer, the computer can implement the method performed by the session management network element in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the edge application server discovering the network element in each embodiment of the above method.
  • An embodiment of the present application also provides a computer program product, comprising instructions, which, when executed by a computer, implement the methods performed by the network element in the above-mentioned method embodiments.
  • An embodiment of the present application also provides a communication system, comprising one or more of the aforementioned user plane network element, session management network element, and edge application server discovery network element.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输的方法和装置。该方法包括:第一网络设备与第二网络设备通过第一请求信息和第一响应信息进行信息交互。第一请求信息包括第一上行通用分组无线电业务隧道协议隧道端点标识UL GTP TEID和第一UL GTP TEID对应的至少一个候选小区的标识信息,第一响应信息包括第一下行DL GTP TEID和第一DL GTP TEID对应的至少一个候选小区的配置信息,第一网络设备根据至少一个候选小区的测量报告,向终端设备发送切换命令。第一网络设备根据测量报告确定切换命令,无需第一网络设备将测量报告发送给第二网络设备,由第二网络设备确定切换命令,减少切换时长,提高用户体验。

Description

一种数据传输的方法和装置
本申请要求于2022年11月03日提交中国专利局、申请号为202211371302.0、申请名称为一种数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术的领域,并且更具体地,涉及一种数据传输的方法和装置。
背景技术
小区切换是5G系统中的非常重要的特性,通常在无线资源控制(radio resource control,RRC)连接态下,由于终端设备的移动而触发。其中,切换的基本目标是,在终端设备的服务小区的信号质量变得无法通信之前,将终端设备切换到信号质量较好的相邻小区上,从而能够为终端设备提供连续的无中断的通信服务,有效的防止由于服务小区信号质量变差,而导致终端设备通信掉话。
在现有技术中,L3切换主要通过负责处理非实时的中央单元(central unit,CU)根据终端设备对服务小区的信号质量的测量结果,确定是否指示终端设备发起小区切换。其中,该测量结果是由终端设备发送给负责处理实时性较高的分布式单元(distributed unit,DU),再由DU通过F1接口发送给CU。其中,当终端设备的服务小区的信号质量较差时,CU将切换命令发送给DU,DU再转发给终端设备,终端设备根据切换命令进行小区切换。可以看出,在切换的相关信息传输的过程中,CU与DU之间的信息交互必须通过F1接口进行传输,则存在一定的切换时延。
因此,亟需一种能够减少切换时延,以此提高用户体验的方法。
发明内容
本申请实施例提供一种数据传输的方法和装置,能够减少切换过程中的时延,进而提高用户体验。
第一方面,提供了一种数据传输的方法,该方法包括:第一网络设备接收来自第二网络设备的第一请求消息,该第一请求消息包括第一上行通用分组无线电业务隧道协议隧道端点标识UL GTP TEID,和该第一UL GTP TEID对应的至少一个候选小区的标识信息;该第一网络设备根据该第一请求消息,向该第二网络设备发送第一响应消息,该第一响应消息包括第一下行通用分组无线电业务隧道协议隧道端点标识DL GTP TEID,和该第一DL GTP TEID对应的该至少一个候选小区的配置信息;该第一网络设备接收来自该第二网络设备的第一消息,该第一消息包括该至少一个候选小区的配置信息;该第一网络设备向终端设备发送该第一消息;该第一网络设备根据第一小区的测量报告,向该终端设备发送切换命令,该切换命令用于指示该终端设备切换至该第一小区,该第一小区属于该至少一个候选小区;该第一网络设备通过该第一UL GTP TEID向该第二网络设备发送第一数据,该第一数据来自该终端设备。
应理解,第一UL GTP TEID和第一DL GTP TEID是终端设备在接入第一小区时或之前,第一网络设备和第二网络设备针对该终端设备建立的数据转发隧道,该数据转发隧道用于在第一网络设备和第二网络设备之间传输该终端设备的在第一小区时的相关数据。
根据本申请提供的技术方法,第一网络设备将第一消息发送给终端设备,该第一消息来自第二网络设备,该第一消息中包括至少一个候选小区的配置信息,终端设备根据该第一消息确定测量报告,第一网络设备根据终端设备的测量报告确定切换命令用于指示终端设备切换至第一小区,其中,该至少一个候选小区包括第一小区。第一网络设备直接根据测量报告确定切换命令,无需再将该测量报告发送给第二网络设备,由第二网络设备根据测量报告确定切换命令,进而减少了终端设备切换过程中的时延问题,提高用户体验。
结合第一方面,在第一方面的某些实现方式中,在该第一网络设备通过该第一UL GTP TEID向第二网络设备发送第一数据之前,该方法还包括:该第一网络设备确定该终端设备成功接入该第一小区。
结合第一方面,在第一方面的某些实现方式中,该第一网络设备向该第二网络设备发送接入成功指示信息,该接入成功指示信息用于指示该终端设备成功接入该第一小区。
结合第一方面,在第一方面的某些实现方式中,在该第一网络设备确定该终端设备成功接入该第一小区之后,该方法还包括:该第一网络设备通过该第一DL GTP TEID接收来自该第二网络设备的第二数据。
应理解,该第二数据是第一网络设备通过第一DL GTP TEID接收来自第二网络设备的,第一网络设备接收到该第二数据之后,并将该第二数据发送给终端设备。
结合第一方面,在第一方面的某些实现方式中,该第一请求消息包括第一指示信息,该第一指示信息用于指示释放或者保留GTP TEID,该GTP TEID包括UL GTP TEID和/或DL GTP TEID。
结合第一方面,在第一方面的某些实现方式中,在该终端设备切换至该第一小区成功之后,该方法还包括:该第一网络设备根据该第一指示信息,释放或者保留第二UL GTP TEID和/或第二DL GTP TEID,该第二UL GTP TEID和该第二DL GTP TEID与第二小区相对应,该第二小区为该终端设备切换至该第一小区之前的源小区,该GTP TEID包括该第二UL GTP TEID和该第二DL GTP TEID,该第二UL GTP TEID与该第一UL GTP TEID不同,该第二DL GTP TEID与该第一DL GTP TEID不同。
基于上述技术方案,第一网络设备根据第一指示信息,确定释放或者保留第二UL GTP TEID和/或第二DL GTP TEID,其中,当第一指示信息用于指示保留该第二UL GTP TEID和/或第二DL GTP TEID时,在终端设备从其他小区(例如第一小区)又切换至第二小区,则第一网络设备可以继续使用第二UL GTP TEID和/或第二DL GTP TEID;当第一指示信息用于指示释放该第二UL GTP TEID和/或第二DL GTP TEID时,第一网络设备将该第二UL GTP TEID和/或第二DL GTP TEID可以提供给其他终端设备进行使用,避免资源浪费。
结合第一方面,在第一方面的某些实现方式中,在该第一指示信息用于指示释放该第二UL GTP TEID和/或该第二DL GTP TEID情况下,该第一网络设备根据该第一指示信息,释放该第二UL GTP TEID和/或该第二DL GTP TEID,包括:该第一网络设备根据该第一指示信息和第二指示信息,释放该第二DL GTP TEID和/或该第二UL GTP TEID,其中,第二指示信息用于指示在第二DL GTP TEID上传输的数据转发结束。
例如,当在第二DL GTP TEID上传输的数据中数据#1为传输数据中的最后一个数据包,即当数据#1转发完成时,则表示第二DL GTP TEID上传输的数据转发结束。
基于上述技术方案,第一网络设备根据第一指示信息和第二指示信息,确定释放第二UL GTP TEID和/或该第二DL GTP TEID,其中,第二指示信息用于指示通过第二DL GTP TEID传输的数据转发结束,第一网络设备根据第二指示信息,确定具体释放该第二DL GTP TEID的时间。
结合第一方面,在第一方面的某些实现方式中,该第一请求消息还包括该第一小区的小区全球标识CGI和/或该第二网络设备的配置信息,其中,该第二网络设备的配置信息包括分组数据汇聚协议PDCP配置信息。
第二方面,提供了一种数据传输的方法,该方法包括:第二网络设备向第一网络设备发送第一请求消息,该第一请求消息包括第一上行通用分组无线电业务隧道协议隧道端点标识UL GTP TEID,和该第一UL GTP TEID对应的至少一个候选小区的标识信息;该第二网络设备接收来自该第一网络设备的第一响应消息,该第一响应消息包括第一下行通用分组无线电业务隧道协议隧道端点标识DL GTP TEID,和该第一DL GTP TEID对应的至少一个候选小区的配置信息;该第二网络设备向第一网络设备第一消息,该第一消息包括该至少一个候选小区的配置信息;该第二网络设备通过该第一UL GTP TEID接收来自该第一网络设备的第一数据,该第一数据来自该终端设备。
结合第二方面,在第二方面的某些实现方式中,该第二网络设备接收该第一网络设备的接入成功指示信息,该接入成功指示信息用于指示该终端设备成功接入第一小区,该第一小区属于该至少一个候选小区。
结合第二方面,在第二方面的某些实现方式中,在该第一网络设备确定该终端设备成功接入该第一小区之后,该方法还包括:该第二网络设备通过该第一DL GTP TEID向该第一网络设备发送第二数据。
应理解,该第二数据是由第二网络设备通过第一DL GTP TEID发送给第一网络设备,第一网络设备再将该第二数据发送给终端设备。
结合第二方面,在第二方面的某些实现方式中,该第一请求消息包括第一指示信息,该第一指示信息用于指示释放或者保留GTP TEID,该GTP TEID包括UL GTP TEID和/或DL GTP TEID。
结合第二方面,在第二方面的某些实现方式中,在该终端设备切换至该第一小区成功之后,该方法还包括:该第二网络设备根据该第一指示信息,释放或者保留第二UL GTP TEID和/或第二DL GTP TEID,其中,该第二UL GTP TEID和该第二DL GTP TEID与第二小区相对应,该第二小区为该终端设备切换至该第一小区之前的源小区,该GTP TEID包括该第二UL GTP TEID和该第二DL GTP TEID,该第二UL GTP TEID与该第一UL GTP TEID不同,该第二DL GTP TEID与该第一DL GTP TEID不同。
基于上述技术方案,第二网络设备根据第一指示信息,确定释放或者保留第二UL GTP TEID和/或第二DL GTP TEID,其中,当第一指示信息用于指示保留该第二UL GTP TEID和/或第二DL GTP TEID时,在终端设备从其他小区(例如第一小区)又切换至第二小区,则就第二网络设备可以直接使用第二UL GTP TEID和/或第二DL GTP TEID;当第一指示信息用于指示释放该第二UL GTP TEID和/或第二DL GTP TEID时,第二网络设备将该第二UL GTP TEID和/或第二DL GTP TEID可以提供给其他终端设备进行使用,避免资源浪费。
结合第二方面,在第二方面的某些实现方式中,在该第一指示信息用于指示释放该第二UL GTP TEID和/或该第二DL GTP TEID情况下,该第二网络设备根据该第一指示信息,释放该第二UL GTP TEID和/或该第二DL GTP TEID,包括:该第二网络设备根据该第一指示信息和第二指示信息,释放该第二DL GTP TEID和/或该第二UL GTP TEID,其中,该第二指示信息用于指示在第二UL GTP TEID上传输的数据转发结束。
例如,当在第二UL GTP TEID上传输的数据中数据#2为传输数据中的最后一个数据包,即当数据#2转发完成时,则表示第二UL GTP TEID上传输的数据转发结束。
基于上述技术方案,第二网络设备根据第一指示信息和第二指示信息,确定释放第二UL GTP TEID和/或该第二DL GTP TEID,其中,第二指示信息用于指示通过第二UL GTP TEID或者第二DL GTP TEID传输的第二数据或者第三数据的最后一个数据包,第二网络设备根据第二指示信息,确定具体释放该第二DL GTP TEID的时间。
结合第二方面,在第二方面的某些实现方式中,该第一请求消息还包括该第一小区的小区全球标识CGI和/或该第二网络设备的配置信息,其中,该第二网络设备的配置信息包括分组数据汇聚协议PDCP配置信息。
第三方面,提供一种数据传输的方法,其特征在于,包括:
第一网络设备确定低层移动性LTM的参考配置信息;
该第一网络设备向第二网络设备发送第一请求消息,该第一请求消息包括该参考配置信息和该LTM的至少一个候选小区的标识信息;
该第一网络设备接收来自该第二网络设备的第一响应消息,该第一响应消息包括该至少一个候选小区的增量(delta)配置,该至少一个候选小区的delta配置是基于该参考配置信息的增量(delta)配置;
该第一网络设备向第三网络设备发送第一信息,该第一信息包括该至少一个候选小区的delta配置,该第一信息用于确定delta配置的参考配置。
基于上述技术方案,第一网络设备将确定的LTM的参考配置信息通过第一请求消息发送给第二网络设备,第二网络设备根据该参考配置信息确定LTM的至少一个候选小区的delta配置,并将该delta配置发送给第一网络设备,第一网络设备将接收来自第二网络设备的delta配置发送给第三网络设备,其中,该delta配置用于终端设备确定delta配置的参考配置。通过第一网络设备、第二网络设备、第三网络设备信息交互协商配置,确定delta配置,进而减少了空口信令的开销,节省资源。
结合第三方面,在第三方面的某些实现方式中,该第一网络设备向终端设备发送该参考配置信息。
结合第三方面,在第三方面的某些实现方式中,该第一信息还包括该LTM的候选小区的参考配置的标识信息。
结合第三方面,在第三方面的某些实现方式中,该第一信息还包括该参考配置信息。
第四方面,提供一种数据传输的方法,其特征在于,包括:
第二网络设备接收来自第一网络设备的第一请求消息,该第一请求消息包括低层移动性LTM的参 考配置信息和该LTM的至少一个候选小区的标识信息;
第二网络设备根据该第一请求消息,向该第一网络设备发送第一响应消息,该第一响应消息包括该至少一个候选小区的增量(delta)配置,该至少一个候选小区的增量(delta)配置是基于该参考配置信息的增量(delta)配置。
第五方面,提供一种数据传输的方法,其特征在于,包括:
第三网络设备(源DU)接收来第一网络设备(CU)的第一信息,该第一信息包括低层移动性LTM的至少一个候选小区的delta配置;
该第三网络设备向终端设备发送该第一信息;
该第三网络设备接收来自该终端设备的测量报告,该测量报告与该第一信息相关;
该第三网络设备根据该测量报告,向该终端设备发送切换命令,该切换命令用于指示该终端设备切换至第一小区,该第一小区属于该至少一个候选小区。
结合第五方面,在第五方面的某些实现方式中,该第一信息还包括该LTM的候选小区的参考配置的标识信息。
结合第五方面,在第五方面的某些实现方式中,该第一信息还包括该参考配置信息。
第六方面,提供一种数据传输的方法,其特征在于,包括:
终端设备向第三网络设备(源DU)的第一信息,该第一信息包括低层移动性LTM的至少一个候选小区的delta配置;
该终端设备根据该第一信息,确定测量报告;
该终端设备向第三网络设备发送该测量报告;
该终端设备接收来自该第三网络设备的切换命令,该切换命令用于指示该终端设备切换至第一小区,该第一小区属于该至少一个候选小区。
结合第六方面,在第六方面的某些实现方式中,该第一信息还包括该参考配置的标识信息或者该参考配置信息。
结合第六方面,在第六方面的某些实现方式中,该终端设备根据该第一信息确定delta配置的配置信息。
结合第六方面,在第六方面的某些实现方式中,当该第一信息包括该参考配置的标识信息时,该方法还包括:
该终端设备接收来自第一网络设备的该LTM的参考配置信息。
第七方面,提供了一种数据传输的装置,该装置用于执行第一方面至第六方面中任一方面及其任一种可能实现方式中方法的各个单元或者模块,如处理单元和/或通信单元。
例如,该通信单元,用于接收来自第二网络设备的第一请求消息,该第一请求消息包括第一上行通用分组无线电业务隧道协议隧道端点标识UL GTP TEID,和该第一UL GTP TEID对应的至少一个候选小区的标识信息;该处理单元,用于根据该第一请求消息,向该第二网络设备发送第一响应消息,该第一响应消息包括第一下行通用分组无线电业务隧道协议隧道端点标识DL GTP TEID,和该第一DL GTP TEID对应的该至少一个候选小区的配置信息;该通信单元,还用于接收来自该第二网络设备的第一消息,该第一消息包括该至少一个候选小区的配置信息;该通信单元还用于向终端设备发送该第一消息;该处理单元,还用于根据第一小区的测量报告,向该终端设备发送切换命令,该切换命令用于指示该终端设备切换至该第一小区,该第一小区属于该至少一个候选小区;该通信单元,还用于通过该第一UL GTP TEID向该第二网络设备发送第一数据,该第一数据来自该终端设备。
又例如,该处理单元,用于确定低层移动性LTM的参考配置信息;通信单元,用于向第二网络设备发送第一请求消息,该第一请求消息包括该参考配置信息和该LTM的至少一个候选小区的标识信息;通信单元,还用于接收来自该第二网络设备的第一响应消息,该第一响应消息包括该至少一个候选小区的增量(delta)配置,该至少一个候选小区的delta配置是基于该参考配置信息的增量(delta)配置;通信单元,还用于向第三网络设备发送第一信息,该第一信息包括该至少一个候选小区的delta配置,该第一信息用于确定delta配置的参考配置。
在一种实现方式中,该装置为通信设备。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于通信设备的芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第八方面,提供一种数据传输的装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第六方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为通信设备。
在另一种实现方式中,该装置为用于设备的芯片、芯片系统或电路。
第九方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第六方面中任一种可能实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一种可能实现方式中的方法。
第十二方面,提供一种通信系统,包括前述的终端设备、第一网络设备、第二网络设备、第三网络设备中的一个或多个。
第十三方面,提供一种通信设备,包括第一装置以及第二装置,其中,第一装置用于执行如第一方面所述的方法、执行如第四方面所述的方法或者第五方面所述的方法。示例性的,第一装置为DU,第二装置为CU。
附图说明
图1是本申请实施例的适用的一种系统架构示意图。
图2是本申请实施例提供的一种数据传输的方法200的流程性示意图。
图3是本申请实施例提供的一种数据传输的方法300的流程性示意图。
图4是本申请实施例提供的一种数据传输的方法400的流程性示意图。
图5是本申请实施例提供的一种数据传输的装置的示意性框图。
图6是本申请实施例提供的另一种数据传输的装置的示意性框图。
图7是本申请实施例提供的一种芯片系统的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新空口(new radio,NR)、第六代(6th generation,6G)系统等5G之后演进的系统、星间通信和卫星通信等非陆地通信网络(non-terrestrial network,NTN)系统。卫星通信系统包括卫星基站以及终端设备。卫星基站为终端设备提供通信服务。卫星基站也可以与地面基站进行通信。卫星可作为基站,也可作为终端设备。其中,卫星可以是指无人机,热气球,低轨卫星,中轨卫星,高轨卫星等非地面基站或非地面设备等。
本申请实施例的技术方案对于同构网络与异构网络的场景均适用,同时对于传输点也无限制,可以是宏基站与宏基站、微基站与微基站和宏基站与微基站之间的多点协同传输,对FDD/TDD系统均适用。本申请实施例的技术方案不仅适用于低频场景(sub 6G),也适用于高频场景(6GHz以上),太赫兹,光通信等。本申请实施例的技术方案不仅可以适用于网络设备和终端的通信,也可以适用于 网络设备和网络设备的通信,终端和终端的通信,车联网,物联网,工业互联网等的通信。
本申请实施例的技术方案也可以应用于终端与单个基站连接的场景,其中,终端所连接的基站以及基站所连接的核心网络(core network,CN)为相同制式。比如CN为5G Core,基站对应的为5G基站,5G基站直接连接5G Core;或者CN为6G Core,基站为6G基站,6G基站直接连接6G Core。本申请实施例的技术方案也可以适用于终端与至少两个基站连接的双连接(dual connectivity,DC)场景。
本申请实施例的技术方案也可以使用通信网络中不同形态的基站组成的宏微场景,例如,基站可以是卫星、空中气球站、无人机站点等。本申请实施例的技术方案也适合于同时存在广覆盖基站和小覆盖基站的场景。
还可以理解的是,本申请实施例的技术方案还可以应用于5.5G、6G及以后的无线通信系统,适用场景包括但不限于地面蜂窝通信、NTN、卫星通信、高空通信平台(high altitude platform station,HAPS)通信、车辆外联(vehicle-to-everything,V2X)、接入回传一体化(integrated access and backhaul,IAB),以及可重构智能表面(reconfigurable intelligent surface,RIS)通信等场景。
本申请实施例中的终端可以是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、平板电脑、带无线收发功能的电脑、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、客户终端设备(customer-premises equipment,CPE)、智能销售点(point of sale,POS)机、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、V2X中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者5G之后演进的通信网络中的终端设备等,本申请实施例不作限制。
本申请实施例中用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备具有无线收发功能的设备,用于与终端设备进行通信。接入网设备可以为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点。可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者收发点(transmission receiving point/transmission reception point,TRP);或者gNodeB(gNB)等5G网络中的基站或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。
其中,本申请实施例中的网络设备还可以是3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。
本申请实施例中的网络设备还可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、微微基站、气球站、中继站、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备,本申请实施例不作具体限定。
本申请实施例中用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中的芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的一种数据传输的方法。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。下文中所介绍的基本概念是以新一代无线通信系统(new radio,NR)协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于NR系统。因此,以NR系统为例描述时出现的标准名称,都是功能性描述,具体名称并不限定,仅表示设备的功能,可以对应的扩展到其它系统,比如第2代(2nd generation,2G)、第3代(3th generation,3G)、第4代(4th generation,4G)、第五代(5th generation,5G)或未来通信系统中。
1.服务器:
服务器还可以称为云端,主要针对需要完整性传输业务提供计算或应用服务的设备,包括控制服务器和应用服务器等多种设备。
2.核心网:
核心网主要包括完成注册、连接、会话管理三大功能。
其中,核心网包括:鉴权服务器功能(Authentication Server Function,AUSF)网元、网络开放功能(network exposure function,NEF)网元、策略控制功能(Policy Control Function,PCF)网元、统一数据管理(Unified Data Management,UDM)、统一数据库(Unified Data Repository,UDR)、网络存储功能(Network Repository Function,NRF)网元、应用功能(Application Function,AF)网元、接入与移动性管理功能(Access and Mobility Management Function,AMF)网元、会话管理功能模块(Session Management Function,SMF)网元、RAN以及UPF网元等。
AUSF网元:主要负责对用户进行鉴权,以确定是否允许用户或设备接入网络。
NEF网元:向AF暴露3GPP网络功能的业务和能力,同时也可以让AF向3GPP网络功能提供信息。
PCF网元:进行计费策略和QoS策略的策略管理;
UDM网元:主要负责管理签约数据、用户接入授权等功能;
UDR网元:主要负责签约数据、策略数据、应用数据等类型数据的存取功能。
NRF网元,可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。NRF还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。
AF网元:主要传递应用侧对网络侧的需求;
AMF网元:主要进行移动性管理、接入鉴权/授权等功能。此外,还负责在UE与PCF间传递用户策略;
SMF网元:完成UE IP地址分配,UPF选择,计费与QoS策略控制等会话管理功能;
UPF网元:作为和数据网络的接口UPF,完成用户面数据转发、基于会话/流级的计费统计,带宽限制等功能。
3.分组数据汇聚协议(packet data convergence protocol,PDCP)
PDCP是对分组汇聚数据协议的一个简称,它是UMTS中的一个无线传输协议栈,负责将IP头压缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS)设置的无线承载的序列号。
其中,无线接口可以分为三个协议层,分别是物理层(简称为L1)、数据链路层(简称L2)、网络层(简称L3)。
L1主要用于为高层业务提供传输的无线物理通道。
L2主要包括媒体介入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层和PDCP层。
L3主要包括接入层中的RRC子层和非接入层的移动性管理(mobility management,MM)和呼叫控制(call control,CC)。
应理解,分组数据汇聚协议层属于无线接口协议栈的第二层L2,处理控制平面上的无线资源管理 (RRC)消息以及用户平面上的因特网协议包。在用户平面上,PDCP子层得到来自上层的IP数据分组后,可以对IP数据分组进行头压缩和加密,然后递交到RLC子层。PDCP子层还向上层提供按序提交和重复分组检测功能。在控制平面,PDCP子层为上层RRC提供信令传输服务,并实现RRC信令的加密和一致性保护,以及在反方向上实现RRC信令的解密和一致性检查。
PDCP协议主要包括以下具体支持的功能:
(1)用户平面数据的报头压缩和解压缩。
(2)安全性功能:用户和控制平面协议的加密和解密;控制平面数据的完整性保护和验证。
(3)数据的传输功能:下层重建时,对向上层发送的PDU顺序发送和重排序;对映射到AM模式的RB的下层SDU进行重排序。
(4)数据包的丢弃。
下面将结合附图,详细介绍本申请实施例中的一种数据传输的方法和装置。
图1是本申请实施例的适用的一种系统架构示意图。其中,图1所示的架构主要以第五代无线网络技术作为示例进行介绍。
其中,RAN节点可以包括gNB或ng-eNB。
应理解,gNB提供NR用户面和控制面协议的终结点;ng-eNB提供E-UTRAN用户面和控制面协议栈的终结点。
还应理解,gNB与gNB,gNB与ng-eNB,ng-eNB与ng-eNB之间通过Xn接口进行连接。
结合图1可以看出,gNB和ng-eNB分别与5GC(核心网)通过NG接口进行连接,具体的,gNB和ng-eNB分别与AMF通过NG-C接口进行连接,gNB和ng-eNB分别与UPF通过NR-U接口进行连接。
gNB和ng eNB通过Xn接口彼此互连。gNB和ng eNB还通过ng接口连接到5GC,更具体地说,通过ng-C接口连接到AMF(接入和移动性管理功能),通过ng-U接口连接至UPF(用户平面功能)。
由于终端设备的移动,可能会导致目前为终端设备提供服务的小区质量变得无法通信,终端设备需要切换至信号质量较好小区上进行通信,一般在实现的过程中,终端设备在当前服务小区的信号质量变得无法通信之前,终端设备提前切换至信号质量较好的小区上进行通信,从而保证终端设备无中断的通信服务,有效的防止由于服务小区的信号质量变化而导致终端设备掉话等问题。
目前,L3切换是指CU会接收到来自终端设备对小区的信号测量结果,该信号测量结果通过DU转发给CU,CU根据该测量结果确定该终端设备是否发起切换,例如,服务小区的信号质量较差时,CU将切换命令发送给DU,DU再转发给终端设备。其中,CU和DU之间的信息交互是通过F1接口的交互,CU和DU传输信息存在一定传输时延,在一种可能实现的方式中,该时延大概是3ms到10ms。
为了减少切换时延,可以考虑在底层移动(Lower layer mobility,LTM)中,关于终端设备的切换决策,从CU向DU发送的过程中,可以减少F1接口的信息交互的时延,DU根据终端设备对小区信号的测量结果,确定终端设备是否需要进行切换,并将该切换决策发送给终端设备。特别的,在LMT中,相较于较少F1接口的延迟,由DU确定终端设备的切换决策并直接发送给终端设备,为了再减少终端设备由于自身处理带来的时延,可以考虑在移动场景中,无线链路(Radio link control,RLC)无需重建、PDCP无需重建或者PDCP无需进行数据恢复等方式。
图2是本申请实施例提供的一种数据传输的方法200的流程性示意图。
应理解,在intra-DU移动之前,gNB-CU重建PDCP之前或者恢复PDCP数据之前,gNB-CU通过上行通用分组无线电业务隧道协议隧道端点标识(uplink general packet radio service Tunneling Protocol Tunnel Endpoint Identifier,UL GTP TEID)(本申请实施例中称为第二DL GTP TEID)向gNB-DU发送相关数据。gNB-DU通过上行通用分组无线电业务隧道协议隧道端点标识(uplink general packet radio service Tunneling Protocol Tunnel Endpoint Identifier,UL GTP TEID)(本申请实施例中称为第二UL GTP TEID)向gNB-CU发送相关数据。对于intra-DU的移动,gNB-CU会提供新的UL GTP TEID(本申请实施例中称为第一UL GTP TEID)给gNB-DU,gNB-DU提供新的DL GTP TEID(本申请实施例中称为第一DL GTP TEID)给gNB-CU。
其中,PDCP重建是指,对没有传输成功的数据进行重传,需要换密钥,该密钥用于重发没有传输成功的数据还包括后续的新的数据。在终端设备发生小区切换时,由PDCP层保证AM数据不丢失,gNB-CU对所有的PDCP实体进行重建,通过对PDCP实体的重建相关操作完成切换中的PDCP实体 数据的处理,例如,数据的重排列、AM数据完整性的保证。
其中,PDCP数据恢复是指,对没有传输成功数据进行重传,无需换密钥,继续使用原来的密钥重发没有传输成功的数据还包括后续的新的数据。
其中,RLC重建是指,在终端设备发生小区切换时,RLC会将所有实体的状态变量复位,便于和网络的状态同步。gNB-DU对RLC进行重建。
还应理解,在本申请实施例中,以第一小区表示终端设备切换的目标小区,该第一小区属于至少一个候选小区,第二小区表示终端设备的源小区,其中,该第二小区可以是终端设备切换至第一小区之前的服务小区,或者该第二小区属于至少一个候选小区,且第一小区与第二小区不是同一小区。其中,第一小区对应第一UL GTP TEID和第一DL GTP TEID,第二小区对应第二UL GTP TEID和第二DL GTP TEID。
S201,gNB-DU通过第二UL GTP TEID向gNB-CU发送第二上行PDCP PDU。
相应地,gNB-CU接收来自gNB-DU通过第二UL GTP TEID发送的第二上行PDCP PDU。
应理解,在gNB-DU重建立RLC之前,gNB-DU使用第二UL GTP TEID向gNB-CU发送第二上行PDCP PDU。
S202,gNB-CU通过第二DL GTP TEID向gNB-DU发送第二下行PDCP PDU。
相应地,gNB-DU接收来自gNB-CU通过第二DL GTP TEID发送的第二下行PDCP PDU。
应理解,在gNB-CU重建立PDCP之前或者PDCP数据恢复之前,gNB-CU使用第二DL GTP TEID向gNB-DU发送第二下行PDCP PDU。
在终端设备从第二小区切换至第一小区的情况下,gNB-DU确定终端成功完成接入目标小区后,需要对RLC进行重建,gNB-CU确定终端成功完成接入目标小区后,gNB-CU也需要对PDCP重建立或者将PDCP数据恢复,其中,在RLC重建完成之后,如图2所示的方法,该方法还包括:
S203,gNB-DU通过第一UL GTP TEID向gNB-CU发送第一上行PDCP PDU。
相应地,gNB-CU接收来自gNB-DU通过第一UL GTP TEID发送的第一上行PDCP PDU。
应理解,在gNB-DU重建立RLC之后,gNB-DU使用第一UL GTP TEID向gNB-CU发送第一上行PDCP PDU。
还应理解,第二上行PDCP PDU和第一上行PDCP PDU是不同的PDU。
在gNB-CU对PDCP重建或者PDCP数据恢复之后,如图2所示的方法,该方法还包括:S204,gNB-CU通过第一DL GTP TEID向gNB-DU发送第一下行PDCP PDU。
相应地,gNB-DU接收来自gNB-CU通过第一DL GTP TEID发送的第一下行PDCP PDU。
应理解,在gNB-CU重建立PDCP之后或者PDCP数据恢复之后,gNB-CU使用第一DL GTP TEID向gNB-DU发送第一下行PDCP PDU。
还应理解,第二下行PDCP PDU和第一下行PDCP PDU是不同的PDU。
根据上述图2所示的方法,在L1和L2移动中,为了进一步减少终端设备的PDCP和RLC的处理时延,终端设备和网络设备可以没有RLC重建、PDCP重建或者PDCP恢复等行为时,则上述图2所示的方法不再适用。
在L2切换场景中,当终端设备和网络设备没有RLC重建、PDCP重建或者PDCP数据恢复的过程时,如何支持数据转发,以便识别不同的数据转发。
针对上述技术问题,本申请实施例提供的一种数据转发的方法,以解决上述在终端设备和网络设备没有RLC重建、PDCP重建或者PDCP数据恢复的过程,依旧能够支持数据转发的技术方法。
如图3所示,图3是本申请实施例提供的一种数据转发的方法300的示意性流程图。
应理解,在图3中的实施例中,以第一小区表示终端设备切换的目标小区,该第一小区属于至少一个候选小区,第二小区表示终端设备的源小区,该第二小区可以是终端设备切换至第一小区之前的服务小区,或者该第二小区属于至少一个候选小区,且第一小区与第二小区不是同一小区。其中,第一小区对应第一UL GTP TEID和第一DL GTP TEID,第二小区对应第二UL GTP TEID和第二DL GTP TEID。
S301,gNB-CU通过第二DL GTP TEID向gNB-DU发送第二下行数据,gNB-DU通过第二UL GTP TEID向gNB-CU发送第二上行数据。
相应地,gNB-DU接收来自gNB-CU通过第二DL GTP TEID发送的第二下行数据,gNB-CU接收 来自gNB-DU通过第二UL GTP TEID发送的第二上行数据。
应理解,该第二上行数据和该第二下行数据为终端设备的服务小区(本申请实施例中称为第二小区)进行上述数据通信。该第二小区的数据通信对应该第二DL GTP TEID和第二UL GTP TEID。
还应理解,由于终端设备的移动,终端设备从第二小区切换第一小区,gNB-CU和gNB-DU无需对重建PDCP、恢复PDCP数据、重建RLC,gNB-CU和gNB-DU继续使用在第二小区的相关PDCP相关参数和RLC相关参数。
S302,gNB-CU向gNB-DU发送第一请求消息。
相应地,gNB-DU接收来自gNB-CU的第一请求消息。
其中,该第一请求消息用于通知gNB-DU发起L1/L2移动性的准备,其中,L1/L2移动性也可以叫LTM(L1/L2triggered mobility),该第一请求消息包括第一UL GTP TEID和第一UL GTP TEID对应的至少一个候选小区的标识信息。
可选地,第一请求消息还包括至少一个候选小区的标识信息和/或gNB-CU的配置信息。
其中,至少一个候选小区的标识信息包括第一小区的标识信息,gNB-CU的配置信息包括PDCP配置信息。
其中,第一小区的标识信息可以包括该第一小区的小区全球标识(cell global identify,CGI)、或者该标识信息还可以包括该第一小区在候选小区中的标识信息。
应理解,gNB-DU根据第一请求消息中的至少一个候选小区的标识信息,确定至少一个候选小区的配置,以及第一小区对应的第一DL GTP TEID。
可选地,该第一请求消息还可以包括第一指示信息,该第一指示信息用于指示释放或者保留GTP TEID,其中,该GTP TEID包括DL GTP TEID和/或UL GTP TEID。
作为一种可能实现的方式,该GTP TEID包括第二DL GTP TEID和第二UL GTP TEID。
在第一指示信息用于指示释放或者保留DL GTP TEID和/或UL GTP TEID的情况下,该第一指示信息可以包括指示信息#1和指示信息#2。其中,指示信息#1可以用于指示释放或者保留DL GTP TEID,指示信息#2可以用于指示释放或者保留UL GTP TEID。
其中,指示信息#1和指示信息#2可以是通过两个不同的指示信息,或者该指示信息#1和指示信息#2是同一个指示信息,例如第一指示信息既可以用于指示释放或者保留DL GTP TEID,又可以用于指示释放或者保留UL GTP TEID,对此本申请不做限定。
作为一种可能实现的方式,当第一指示信息用于指示释放第二UL GTP TEID时,在终端设备切换至第一小区成功之后,则gNB-CU和gNB-DU根据第一指示信息对第二UL GTP TEID进行释放。
作为另一种可能实现的方式,当第一指示信息指示允许subsequent切换时,在终端设备切换至第一小区成功之后,则gNB-CU和gNB-DU需要继续保留第二UL GTP TEID和第二DL GTP TEID。否则,gNB-CU和gNB-DU就是释放第二UL GTP TEID和第二DL GTP TEID。
作为一种示例,在终端设备从第二小区切换至第一小区之后,由于终端设备的继续移动,终端设备从第一小区切换回至第二小区,那么第一网络设备可以继续使用保留的第二UL GTP TEID和第二DL GTP TEID进行数据的转发。
应理解,释放第二UL GTP TEID和释放第二DL GTP TEID,那么第二UL GTP TEID和第二DL GTP TEID将不在用于在gNB-CU和gNB-DU之间转发该终端设备的数据,但是该第二UL GTP TEID和第二DL GTP TEID依然还可以对其他终端设备的数据转发。
S303,gNB-DU向gNB-CU发送第一响应消息。
相应地,gNB-CU接收来自gNB-DU的第一响应消息。
具体地,gNB-DU接收来自gNB-CU的第一请求消息之后,并根据该第一请求消息,向gNB-CU发送第一响应消息,其中,该第一响应消息包括第一DL GTP TEID和第一DL GTP TEID对应的至少一个候选小区的配置信息,该至少一个候选小区的配置信息与gNB-DU的配置信息相同。
S304,gNB-CU向gNB-DU发送第一消息。
相应地,gNB-DU接收来自gNB-CU的第一消息。
其中,该第一消息包括至少一个候选小区的配置信息。
具体地,gNB-CU接收到gNB-DU的第一响应消息之后,并根据第一响应消息确定该第一消息。
可选地,该第一消息中还可以包括至少一个候选小区的配置标识信息。
S305,gNB-DU向终端设备发送第一消息。
相应地,终端设备接收来自gNB-DU的第一消息。
具体地,gNB-DU接收到来自gNB-CU的第一消息之后,并将该第一消息发送给终端设备。
S306,终端设备向gNB-DU发送第一小区的测量报告。
相应地,gNB-DU接收来自终端设备关于第一小区的测量报告。
具体地,终端设备接收到来自gNB-DU发送第一消息之后,并根据该至少一个候选小区的配置信息,对第一小区进行测量,确定测量报告。
其中,该测量报告可以包括终端设备对第一小区的信号质量的测量结果。
作为一种示例,该测量报告包括终端设备对第一小区的参考信号的接收功率(reference signal received power,RSRP)的测量结果和/或对第一小区的信号干扰噪声比(signal to interference noise ratio,SINR)的测量结果。
S307,gNB-DU向终端设备发送切换命令。
相应地,终端设备接收来自gNB-DU的切换命令。
具体地,gNB-DU接收到来自终端设备的测量报告之后,并根据该测量报告,确定该切换命令,将该切换命令发送给终端设备。
作为一种示例,当gNB-DU接收到来自终端设备的测量报告之后,根据测量报告中第一小区的测量结果,确定该测量结果是否满足第一条件,确定是否向终端设备发送切换命令。假设,当该测量结果满足第一条件时,gNB-DU向终端设备发送切换命令;当该测量结果不满足第一条件时,gNB-DU不向终端设备发送切换命令。
其中,该第一条件可以为某一阈值范围或者其他判断条件,该第一条件可以是系统协议规定,或者是由网络设备和终端设备相互约定的,或者由网络设备自身确定,对此本申请不做具体限制。
可以看出,上述是由gNB-DU根据该终端设备的测量报告,确定切换命令。gNB-DU无需将该测量报告通过F1接口向gNB-CU发送,再由gNB-CU确定切换命令。从而减少了gNB-DU与gNB-CU之间通过F1接口进行信息交互产生的时延,降低终端设备的切换时长,提高用户体验。
应理解,当终端设备接收到来自gNB-DU的切换命令之后,终端设备将通信业务从第二小区切换至第一小区,如图3所示的方法,该方法还包括:
S308,gNB-DU确定终端设备成功接入第一小区。
其中,gNB-DU向终端设备发送完切换命令之后,gNB-DU对终端设备进行目标小区的接入检测,确定终端设备是否成功接入第一小区。
应理解,终端设备与网络设备通过随机接入(random access,RA)进程建立接入,在RA成功完成之后,终端设备与网络设备能够进行正常的数据传输,则表示终端设备成功接入第二小区,即gNB-DU能够确定终端设备成功接入第一小区。
作为一种可能实现的方式,gNB-DU根据随机接入过程,确定终端设备成功接入第一小区。
例如,当终端设备通过基于竞争的四步随机接入(4-step contention based random access,4-step CBRA)接入第一小区时,首先,终端设备向gNB发送随机接入前导码(preamble),然后,gNB向终端设备发送随机接入响应信息,该随机接入响应信息可以用于指示物理上行共享信道(physical uplink shared channel,PUSCH)的资源位置,其次,终端设备根据接收来自gNB的随机接入响应信息中指示的PUSCH的资源位置,通过PUSCH向gNB发送包括终端设备的小区标识,最后,gNB接收到终端设备的请求信息之后,gNB向终端设备发送响应信息(例如,C-RNTI的PDCCH),该响应信息可以表示终端设备成功接入第一小区。
又例如,当终端设备通过基于非竞争的两步随机接入(2-step contention free random access,2-step CFRA)接入第二小区时,首先,终端设备向gNB发送preamble,然后,gNB向终端设备发送随机接入响应信息,则表示终端设备成功接入第一小区。
作为另一种可能实现的方法,gNB-DU根据RACH-less,确定终端设备是否成功接入第一小区。其中,对于RACH-less,接收到终端设备成功接入的相关指示信息(例如,C-RNTI)之后,表示终端设备成功接入第一小区。
应理解,当gNB-DU确定终端设备成功接入第一小区之后,gNB-DU无需重建RLC,gNB-DU继续使用在第二小区RLC处理的数据。gNB-CU接收到gNB-DU的接入成功指示信息,gNB-CU确定终 端设备成功接入第一小区,gNB-CU无需重建PDCP或者恢复PDCP数据,gNB-CU继续使用在第二小区PDCP处理的数据。
S309,gNB-DU向gNB-CU发送接入成功指示信息。
相应地,gNB-CU接收来自gNB-DU的接入成功指示信息。
具体地,当gNB-DU通过第一UL GTP TEID与gNB-CU进行传输数据之前,gNB-DU向gNB-CU发送接入成功指示信息,该接入成功指示信息用于指示该终端设备成功接入第一小区。
S310,终端设备向gNB-DU发送上行数据。
相应地,gNB-DU接收来自终端设备的上行数据。
在一种可能实现的方式中,当第一小区和第二小区使用的GTP TEID不相同时,即第一DL GTP TEID与第二DL GTP TEID不同,如图3所示的情况一:
S311,gNB-DU通过第一UL GTP TEID向gNB-CU发送该第一上行数据。
相应地,gNB-CU接收来自gNB-DU通过第一UL GTP TEID发送的第一上行数据。
S312,gNB-CU通过第一DL GTP TEID向gNB-DU发送该第一下行数据。
相应地,gNB-DU接收来自gNB-CU通过第一DL GTP TEID发送的第一下行数据。
应理解,当第一小区和第二小区使用的GTP TEID不相同时,终端设备成功从第二小区切换至第一小区之后,gNB-DU与gNB-CU使用第一UL GTP TEID和第一DL GTP TEID进行数据传输。
在另一种可能实现的方式中,当第一小区和第二小区使用的GTP TEID相同时,如图3所示的情况二:
S311’,gNB-DU通过第二UL GTP TEID向gNB-CU发送该第二上行数据。
相应地,gNB-CU接收来自gNB-DU通过第二UL GTP TEID发送的上行数据。
S312’,gNB-CU通过第二DL GTP TEID向gNB-DU发送该第二下行数据。
相应地,gNB-DU接收来自gNB-CU通过第二DL GTP TEID发送的第二下行数据。
应理解,当第一小区和第二小区使用的GTP TEID相同时,终端设备成功从第二小区切换至第一小区之后,gNB-DU与gNB-CU继续使用终端设备在第二小区时的GTP TEID(即第二UL GTP TEID,第二DL GTP TEID)进行数据传输。
根据上述图3所示的方法,在L1/L2移动的场景下,终端设备根据来自gNB-CU的第一消息,对至少一个L1/L2的候选小区进行测量,并将测量报告发送给gNB-DU,gNB-DU根据测量报告直接确定切换命令,指示终端设备从第二小区切换至第一小区,无需再将该测量报告通过F1接口发送给gNB-CU,从而减少了切换过程中的时延。同时,当检测到终端设备接入第一小区成功之后,gNB-DU和gNB-CU确定使用第一小区对应的UL GTP TEID和DL GTP TEID进行数据传输,保证终端设备通信的连续性,进而提高用户体验。在上述图3所示的方法中,在L1/L2移动场景中,gNB-DU和gNB-CU没有重建RLC、重建PDCP、PDCP数据恢复,依然能够进行数据的转发。
其中,如图3所示的方法,在步骤S390之前,gNB-DU在确定终端设备成功接入第一小区之前,gNB-DU继续使用第二小区对应的第二UL GTP TEID向gNB-CU发送第二上行数据(例如UL PDCP PDU),不会使用第一UL GTP TEID发送第一上行数据。
应理解,在gNB-DU在确定终端设备成功接入第一小区之后,当第一小区和第二小区的TEID不相同时,gNB-DU使用第一UL GTP TEID向gNB-CU发送第一上行数据,不使用第二UL GTP TEID向gNB-CU发送第二上行数据。
其中,第一上行数据和第二上行数据不同,第二上行数据是终端设备成功接入第一小区之前,通过第二UL GTP TEID发送的数据。第一上行数据是终端设备成功接入第一小区之后,通过第一UL GTP TEID发送的数据。
还应理解,当gNB-DU使用第一UL GTP TEID向gNB-CU发送数据时,gNB-DU确定是否释放第二UL GTP TEID。其中,gNB-DU根据上述步骤S320中第一请求消息中包括的第一指示信息确定释放或者保留第二UL GTP TEID。
作为一种可能实现的方式,第一指示信息用于指示释放第二UL GTP TEID。
例如,gNB-DU和gNB-CU确定终端设备成功接入第一小区之后,就释放第二UL GTP TEID。
作为另一种可能实现的方式,当第一指示信息用于指示gNB-DU释放第二UL GTP TEID,gNB-DU根据第一指示信息和UL end marker指示信息,确定释放第二UL GTP TEID。
例如,该UL end marker指示信息用于指示gNB-DU确定通过第二UL GTP TEID发送的数据转发结束(或者称为转发完成)。gNB-DU确定终端设备成功接入第一小区之后,先对第二UL GTP TEID不进行释放,gNB-DU接收到DL end marker指示信息之后,确定通过第二UL GTP TEID发送的数据已经转发完成之后,gNB-DU再释放第二DL GTP TEID。
又例如,gNB-DU确定终端设备成功接入第一小区之后,gNB-DU先确定成功发送UL end marker指示信息之后,再对第二UL GTP TEID进行释放。。其中,gNB-DU确定通过第二UL GTP TEID发送的数据,并将这些数据成功发送给gNB-CU之后,gNB-DU向gNB-CU发送UL end marker指示信息,gNB-DU再释放第二UL GTP TEID,gNB-CU接收到gNB-DU发送UL end marker指示信息之后,gNB-CU释放第二UL GTP TEID。
作为又一种可能实现的方式,当第一指示信息用于指示保留第二UL GTP TEID。
例如,在终端设备成功接入第一小区之后,gNB-DU和gNB-CU保留第二UL GTP TEID。
应理解,gNB-DU和gNB-CU保留该第二UL GTP TEID,以便未来终端设备切换至第二小区之后,gNB-DU能够继续使用第二UL GTP TEID进行数据转发(例如,向gNB-CU发送数据)。
例如,终端设备从第二小区切换至第一小区之后,由于终端设备的移动,终端设备又从第一小区切换至第二小区,终端设备成功接入第二小区之后,gNB-DU能够继续使用第二UL GTP TEID进行数据转发。
还应理解,当gNB-DU和gNB-CU之间存在多个第二UL GTP TEID时,其中每一个第二UL GTP TEID都可能需要各自的UL end marker指示信息,第一指示信息可以指示每一个单独的第二UL GTP TEID,也可以共同指示所有的第二UL GTP TEID。
其中,如图3所示的方法,在步骤S390之前,gNB-CU在确定终端设备成功接入第一小区之前,gNB-CU继续使用第二小区对应的第二DL GTP TEID向gNB-DU发送第二下行数据(例如DL PDCP PDU),不会使用第一DL GTP TEID发送第一下行数据。
应理解,在gNB-CU在确定终端设备成功接入第一小区之后,当第一小区和第二小区的TEID不相同时,gNB-CU使用第一DL GTP TEID向gNB-DU发送第一下行数据,不使用第二DL GTP TEID向gNB-DU发送第二下行数据。
其中,第一下行数据和第二下行数据不同,第二下行数据是终端设备成功接入第一小区之前,通过第二DL GTP TEID发送的数据。第一下行数据是终端设备成功接入第一小区之后,通过第一DL GTP TEID发送的数据。
还应理解,当gNB-CU使用第一DL GTP TEID向gNB-DU发送第一下行数据时,gNB-CU确定是否释放第二DL GTP TEID。其中,gNB-CU根据第一指示信息确定释放或者保留第二DL GTP TEID。
作为一种可能实现的方式,第一指示信息用于指示释放第二DL GTP TEID。
例如,gNB-DU和gNB-CU确定终端设备成功接入第一小区之后,就释放第二DL GTP TEID。
作为另一种可能实现的方式,当第一指示信息用于指示gNB-DU释放第二UL GTP TEID,gNB-DU根据第一指示信息和UL end marker指示信息,确定释放第二DL GTP TEID。
例如,该UL end marker指示信息用于指示gNB-CU确定通过第二DL GTP TEID发送的数据转发结束(或者称为转发完成)。gNB-CU确定终端设备成功接入第一小区之后,先对第二DL GTP TEID不进行释放,gNB-CU接收到UL end marker指示信息之后,确定通过第二DL GTP TEID发送的数据已经转发完成之后,gNB-CU再释放第二DL GTP TEID。
又例如,gNB-CU确定终端设备成功接入第一小区之后,gNB-CU先确定成功发送DL end marker指示信息之后,再对第二DL GTP TEID进行释放。其中,gNB-CU确定通过第二DL GTP TEID发送的数据,并将这些数据成功发送给gNB-DU之后,gNB-CU向gNB-DU发送DL end marker指示信息,gNB-CU再释放第二DL GTP TEID,gNB-DU接收到gNB-CU发送DL end marker指示信息之后,gNB-DU释放第二DL GTP TEID。
作为又一种可能实现的方式,当第一指示信息用于指示保留第二DL GTP TEID。
例如,在终端设备成功接入第一小区之后,gNB-CU和gNB-DU保留该第二DL GTP TEID。
应理解,gNB-CU和gNB-DU保留该第二DL GTP TEID,以便未来终端设备切换至第二小区之后,gNB-CU能够继续使用第二DL GTP TEID进行数据转发(例如,向gNB-DU发送数据)。
例如,终端设备从第二小区切换至第一小区之后,由于终端设备的移动,终端设备又从第一小区 切换至第二小区,终端设备成功接入第二小区之后,gNB-CU能够继续使用第二DL GTP TEID进行数据转发。
还应理解,当gNB-DU和gNB-CU之间存在多个第二DL GTP TEID时,其中每一个第二DL GTP TEID都可能需要各自的DL end marker指示信息,第一指示信息可以指示每一个单独的第二DL GTP TEID,也可以共同指示所有的第二DL GTP TEID。
根据上述介绍的可以看出,本申请通过不同的GTP TEID,区分不同的数据类型,从而能够更好的实现网络设备的资源管理。
终端设备从第二小区切换至第一小区,并成功接入该第一小区。由于终端设备的继续移动,基于上述图3所示的方法,在执行完成上述步骤S301至S306之后,终端设备、第一网络设备和第二网络设备还可能执行如下步骤:
第一网络设备接收到来自终端设备的第三小区的测量报告,相应地,终端设备向第一网络设备发送终端设备的第三小区的测量报告。
其中,第三小区属于至少一个候选小区,且该第三小区与第一小区不同。
应理解,终端设备确定的第三小区的测量报告与上述图3所示的步骤S306类似,具体请参见上述步骤S306中的介绍。
终端设备、第一网络设备和第二网络设备继续执行如下步骤AS307至步骤AS312,具体如下:
AS307,gNB-DU向终端设备发送切换命令。
相应地,终端设备接收来自gNB-DU的切换命令。
具体地,终端设备接收到切换命令之后,终端设备从第一小区切换至第三小区。
A308,gNB-DU确定终端设备成功接入第三小区。
其中,gNB-DU向终端设备发送完切换命令之后,gNB-DU对终端设备进行目标小区的接入检测,确定终端设备是否成功接入第三小区。
AS309,gNB-DU向gNB-CU发送接入成功指示信息。
相应地,gNB-CU接收来自gNB-DU的接入成功指示信息。
具体地,当gNB-DU通过第三UL GTP TEID与gNB-CU进行传输数据之前,gNB-DU向gNB-CU发送接入成功指示信息,该接入成功指示信息用于指示该终端设备成功接入第三小区。
其中,第三小区对应第三UL GTP TEID和第三DL GTP TEID。
AS310,终端设备向gNB-DU发送上行数据。
相应地,gNB-DU接收来自终端设备的上行数据。
上述步骤AS307至AS310与上述图3中的步骤S307至S310类似,此处不再赘述。
AS311,gNB-DU通过第三UL GTP TEID向gNB-CU发送该第三上行数据。
相应地,gNB-CU接收来自gNB-DU通过第三UL GTP TEID发送的第三上行数据。
应理解,第三UL GTP TEID用于发送第三上行数据,第三DL GTP TEID用于发送第三下行数据。第三上行数据与第一上行数据不同,第三下行数据与第一下行数据不同。
AS312,gNB-CU通过第三DL GTP TEID向gNB-DU发送该第三下行数据。
相应地,gNB-DU接收来自gNB-CU通过第三DL GTP TEID发送的第三下行数据。
在上述AS311至AS312中,gNB-CU与gNB-DU之间数据传输的详细过程,如下:
在一种可能实现的方式中,当第一小区和第三小区使用的GTP TEID不相同时,即第一DL GTP TEID与第三DL GTP TEID不同,gNB-DU通过第三UL GTP TEID向gNB-CU发送该第三上行数据,gNB-CU接收来自gNB-DU通过第三UL GTP TEID发送的第三上行数据。gNB-CU通过第三DL GTP TEID向gNB-DU发送该第三下行数据。相应地,gNB-DU接收来自gNB-CU通过第三DL GTP TEID发送的第三下行数据。
在另一种可能实现的方式中,当第一小区和第三小区使用的GTP TEID相同时,即第一DL GTP TEID与第三DL GTP TEID相同,gNB-DU通过第一UL GTP TEID向gNB-CU发送该第一上行数据,gNB-CU接收来自gNB-DU通过第一UL GTP TEID发送的第一上行数据。gNB-CU通过第一DL GTP TEID向gNB-DU发送该第一下行数据。相应地,gNB-DU接收来自gNB-CU通过第一DL GTP TEID发送的第一下行数据。
应理解,当终端设备从候选小区中的一个小区切换至候选小区中的另一个小区时,如上述介绍, 直接执行图3中的步骤S370至步骤S312即可。
图4是本申请实施例提供的一种数据传输的方法400的流程性示意图。
应理解,在图4中的实施例中,以第一小区表示终端设备LTM小区切换(Cell switch)的目标小区,第一小区属于LTM的至少一个候选小区,第二小区表示终端设备LTM小区切换的源小区,其中,第二小区可以是在切换至第一小区之前的终端设备的服务小区,或者该第二小区属于该LTM的至少一个候选小区,且第一小区和第二小区不是同一小区。gNB-DU#1表示终端设备的至少一个候选gNB-DU,gNB-DU#2表示终端设备的源gNB-DU。
S410,gNB-CU确定LTM的参考配置信息。
具体地,gNB-CU可以根据gNB-DU#2提供的第二小区的配置(例如,物理层配置,MAC层配置)确定该LTM的参考配置信息,或者gNB-CU直接自己确定LTM的参考配置信息。
S420,gNB-CU向gNB-DU#1发送请求消息#1。
相应地,gNB-DU#1接收到来自gNB-CU的请求消息#1。
应理解,该请求消息#1可以是终端设备上下文建立请求信息UE context setup request。
具体地,gNB-CU确定LTM的参考配置信息之后,gNB-CU向gNB-DU#1发送请求消息#1,该请求消息#1中包括该参考配置信息和LTM的至少一个候选小区的标识信息。
可选地,该参考配置信息是用于确定该至少一个候选小区的增量配置,还可以包括主小区的配置和辅小区的配置。
S430,gNB-DU#1向gNB-CU发送响应消息#1。
相应地,gNB-CU接收来自gNB-DU#1的响应消息#1。
应理解,该响应消息#1可以是response message。
具体地,gNB-DU#1接收到来自gNB-CU的请求消息#1之后,并根据请求消息#1中的参考配置信息,确定所述至少一个候选小区的增量(delta)配置,将该配置携带于响应消息#1中,并将该响应消息#1发送给gNB-CU。
应理解,该响应消息#1中包括该至少一个候选小区的增量(delta)配置,其中。该至少一个候选小区的delta配置是基于该参考配置信息确定的增量(delta)配置。例如,参数1和参数2可以包括在参考配置和候选小区的配置中,缺省表示的含义不同,一个是继续使用,一个是释放,在参考配置中,参数1和参数2都出现,用于明确指示某个功能,如果候选小区中参数1和参数2是缺省,那么终端在接收到候选小区的配置时候,就确定缺省的参数1是继续使用参考配置中的参数1,缺省的参数2是释放参考配置中的参数2,参数2对应的功能就会被释放掉。
S440,gNB-CU向gNB-DU#2发送信息#1。
相应地,gNB-DU#2接收来自gNB-CU的消息#1。
应理解,该消息#1可以是DL RRC message transfer message。
其中,该消息#1包括上述至少一个候选小区的delta配置。
可选地,该消息#1还可以包括该LTM的参考配置的标识信息,例如,第二小区的小区标识信息。
其中,该参考配置的标识信息用于终端设备从服务小区的配置信息中确定哪一个配置是该LTM的参考配置,其中,该服务小区不属于LTM的至少一个候选小区。
可选地,该消息#1还可以包括该LTM的参考配置信息。
S450,gNB-DU#2向终端设备发送消息#1。
相应地,终端设备接收来自gNB-DU#2的消息#1。
具体地,gNB-DU#2接收到来自gNB-CU的消息#1之后,并将该消息#1发送给终端设备。
S460,终端设备向gNB-DU#2发送测量报告。
相应地,gNB-DU#2接收来自终端设备的测量报告。
具体地,终端设备接收到消息#1之后,根据消息#1对候选小区进行测量,并生成候选小区的测量报告,并将该测量报告发送给gNB-DU#2。
其中,该测量报告可以包括针对至少一个候选小区的测量结果。
作为一种示例,该测量结果包括至少一个候选小区的参考信号的接收功率(reference signal received power,RSRP)和/或对至少一个候选小区的信号干扰噪声比(signal to interference noise ratio,SINR)。
S470,gNB-DU#2向终端设备发送切换命令。
相应地,终端设备接收来自gNB-DU#2的切换命令。
具体地,gNB-DU#2接收到来自终端设备的测量报告之后,gNB-DU#2根据该测量报告确定向终端设备发送该切换命令,该切换命令用于指示终端设备进行LTM的小区切换(cell switch),即,切换到第一小区。
S480,终端设备根据消息#1确定第一小区的配置。
应理解,终端设备可以根据接收到的消息#1中的至少一个候选小区的delta配置和参考配置信息,确定第一小区的配置。
其中,该参考配置信息可以在消息#1中携带发送给终端设备,或者该参考配置信息在步骤S410之前,发送给终端设备。在参考配置信息在步骤S410之前发送给终端设备的情况下,该第一信息包括参考配置的标识信息。终端设备根据第一信息中的参考配置信息,确定使用第一小区的配置与网络设备进行通信。
基于上述图4所示的方法,gNB-DU与gNB-CU之间通过协商确定配置,以便确定LTM的终端设备候选小区的delta配置的配置信息,进而能够节省空口信令的开销,节约资源。
上面结合图2至图4详细介绍了本申请实施例提供的一种数据传输的方法,下面结合图5至图7详细介绍本申请实施例提供的一种数据传输的装置。
以下,图5至图7中详细说明本申请实施例提供的一种数据传输的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
图5是本申请实施例提供的一种数据传输的装置的示意性框图。该装置500包括收发单元510和处理单元520。收发单元510可以用于实现相应的通信功能。收发单元510还可以称为通信接口或通信单元。处理单元520可以用于实现相应的处理功能。
可选地,该装置500还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元520可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中设备或网元的动作。
该装置500可以用于执行上文各个方法实施例中gNB-DU、gNB-CU、或终端设备所执行的动作,这时,该装置500可以为gNB-DU、gNB-CU、或终端设备的组成部件,收发单元510用于执行上文方法实施例中gNB-DU、gNB-CU、或终端设备的收发相关的操作,处理单元520用于执行上文方法实施例中gNB-DU、gNB-CU、或终端设备的处理相关的操作。
还应理解,这里的装置500以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置500可以具体为上述实施例中的gNB-DU、gNB-CU、或终端设备,可以用于执行上述各方法实施例中与gNB-DU、gNB-CU、或终端设备对应的各个流程和/或步骤,或者,装置500可以具体为上述实施例中的gNB-DU、gNB-CU、或终端设备,可以用于执行上述各方法实施例中与gNB-DU、gNB-CU、或终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置500具有实现上述方法中gNB-DU、gNB-CU、或终端设备所执行的相应步骤的功能,或者,上述各个方案的装置500具有实现上述方法中gNB-DU、gNB-CU、或终端设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元510还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图5中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
如图6所示,本申请实施例提供另一种通信装置600。该装置600包括处理器610,处理器610与存储器620耦合,存储器620用于存储计算机程序或指令和/或数据,处理器610用于执行存储器620 存储的计算机程序或指令,或读取存储器620存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器610为一个或多个。
可选地,存储器620为一个或多个。
可选地,该存储器620与该处理器610集成在一起,或者分离设置。
可选地,如图6所示,该装置600还包括收发器630,收发器630用于信号的接收和/或发送。例如,处理器610用于控制收发器630进行信号的接收和/或发送。
作为一种方案,该装置600用于实现上文各个方法实施例中由gNB-DU、gNB-CU、或终端设备执行的操作。
例如,处理器610用于执行存储器620存储的计算机程序或指令,以实现上文各个方法实施例中第一控制面设备的相关操作。例如,图2或图3中任意一个所示实施例中的gNB-DU,或图2或图3中任意一个所示实施例中的gNB-CU的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
如图7,本申请实施例提供一种芯片系统700。该芯片系统700(或者也可以称为处理系统)包括逻辑电路710以及输入/输出接口(input/output interface)720。
其中,逻辑电路710可以为芯片系统700中的处理电路。逻辑电路710可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统700可以实现本申请各实施例的方法和功能。输入/输出接口720,可以为芯片系统700中的输入输出电路,将芯片系统700处理好的信息输出,或将待处理的数据或信令信息输入芯片系统700进行处理。
作为一种方案,该芯片系统700用于实现上文各个方法实施例中由gNB-DU、gNB-CU、或终端设备执行的操作。
例如,逻辑电路710用于实现上文方法实施例中由gNB-DU的处理相关的操作,如图2至图4文方法实施例中由gNB-DU的发送和/或接收相关的操作,如图2至图4中任意一个所示实施例中的gNB-DU执行的发送和/或接收相关的操作。.
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由网元执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由用户面网元 执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由会话管理网元执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由边缘应用服务器发现网元执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由网元执行的方法。
本申请实施例还提供一种通信的系统,包括前述的用户面网元、会话管理网元、边缘应用服务器发现网元中的一个或多个。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种数据传输的方法,其特征在于,包括:
    第一网络设备接收来自第二网络设备的第一请求信息,所述第一请求信息包括第一上行通用分组无线电业务隧道协议隧道端点标识UL GTP TEID,和所述第一UL GTP TEID对应的至少一个候选小区的标识信息;
    所述第一网络设备根据所述第一请求信息,向所述第二网络设备发送第一响应信息,所述第一响应信息包括第一下行通用分组无线电业务隧道协议隧道端点标识DL GTP TEID,和所述第一DL GTP TEID对应的所述至少一个候选小区的配置信息;
    所述第一网络设备接收来自所述第二网络设备的第一消息,所述第一消息包括所述至少一个候选小区的配置信息;
    所述第一网络设备向终端设备发送所述第一消息;
    所述第一网络设备根据第一小区的测量报告,向所述终端设备发送切换命令,所述切换命令用于指示所述终端设备切换至所述第一小区,所述第一小区属于所述至少一个候选小区;
    所述第一网络设备通过所述第一UL GTP TEID向所述第二网络设备发送第一数据,所述第一数据来自所述终端设备。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一网络设备通过所述第一UL GTP TEID向第二网络设备发送第一数据之前,所述方法还包括:
    所述第一网络设备确定所述终端设备成功接入所述第一小区。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送接入成功指示信息,所述接入成功指示信息用于指示所述终端设备成功接入所述第一小区。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,在所述第一网络设备确定所述终端设备成功接入所述第一小区之后,所述方法还包括:
    所述第一网络设备通过所述第一DL GTP TEID接收来自所述第二网络设备的第二数据。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述第一请求信息包括第一指示信息,所述第一指示信息用于指示释放或者保留GTP TEID,所述GTP TEID包括UL GTP TEID和/或DL GTP TEID。
  6. 根据权利要求5所述的方法,其特征在于,在所述终端设备切换至所述第一小区成功之后,所述方法还包括:
    所述第一网络设备根据所述第一指示信息,释放或者保留第二UL GTP TEID和/或第二DL GTP TEID,
    其中,所述第二UL GTP TEID和所述第二DL GTP TEID与第二小区相对应,所述第二小区为所述终端设备切换至所述第一小区之前的源小区,所述GTP TEID包括所述第二UL GTP TEID和所述第二DL GTP TEID,所述第二UL GTP TEID与所述第一UL GTP TEID不同,所述第二DL GTP TEID与所述第一DL GTP TEID不同。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一指示信息用于指示释放所述第二UL GTP TEID和/或所述第二DL GTP TEID情况下,所述第一网络设备根据所述第一指示信息,释放所述第二UL GTP TEID和/或所述第二DL GTP TEID,包括:
    所述第一网络设备根据所述第一指示信息和第二指示信息,释放所述第二DL GTP TEID和/或所述第二UL GTP TEID,
    其中,所述第二指示信息用于指示第二数据的最后一个数据包,或者所述第二指示信息用于指示第三数据的最后一个数据包,所述第二数据为通过所述第二UL GTP TEID上传输的数据,所述第三数据为通过所述第二DL GTP TEID上传输的数据。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一请求信息还包括所述第一小区的小区全球标识CGI和/或所述第二网络设备的配置信息,
    其中,所述第二网络设备的配置信息包括分组数据汇聚协议PDCP配置信息。
  9. 一种数据传输的方法,其特征在于,包括:
    第二网络设备向第一网络设备发送第一请求信息,所述第一请求信息包括第一上行通用分组无线电业务隧道协议隧道端点标识UL GTP TEID,和所述第一UL GTP TEID对应的至少一个候选小区的标识信息;
    所述第二网络设备接收来自所述第一网络设备的第一响应信息,所述第一响应信息包括第一下行 通用分组无线电业务隧道协议隧道端点标识DL GTP TEID,和所述第一DL GTP TEID对应的至少一个候选小区的配置信息;
    所述第二网络设备向第一网络设备第一消息,所述第一消息包括所述至少一个候选小区的配置信息;
    所述第二网络设备通过所述第一UL GTP TEID接收来自所述第一网络设备的第一数据,所述第一数据来自所述终端设备。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备接收所述第一网络设备的接入成功指示信息,所述接入成功指示信息用于指示所述终端设备成功接入第一小区,所述第一小区属于所述至少一个候选小区。
  11. 根据权利要求9或10所述的方法,其特征在于,在所述第一网络设备确定所述终端设备成功接入所述第一小区之后,所述方法还包括:
    所述第二网络设备通过所述第一DL GTP TEID向所述第一网络设备发送第二数据。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,
    所述第一请求信息包括第一指示信息,所述第一指示信息用于指示释放或者保留GTP TEID,所述GTP TEID包括UL GTP TEID和/或DL GTP TEID。
  13. 根据权利要求12所述的方法,其特征在于,在所述终端设备切换至所述第一小区成功之后,所述方法还包括:
    所述第二网络设备根据所述第一指示信息,释放或者保留第二UL GTP TEID和/或第二DL GTP TEID,
    其中,所述第二UL GTP TEID和所述第二DL GTP TEID与第二小区相对应,所述第二小区为所述终端设备切换至所述第一小区之前的源小区,所述GTP TEID包括所述第二UL GTP TEID和所述第二DL GTP TEID,所述第二UL GTP TEID与所述第一UL GTP TEID不同,所述第二DL GTP TEID与所述第一DL GTP TEID不同。
  14. 根据权利要求13所述的方法,其特征在于,在所述第一指示信息用于指示释放所述第二UL GTP TEID和/或所述第二DL GTP TEID情况下,所述第二网络设备根据所述第一指示信息,释放所述第二UL GTP TEID和/或所述第二DL GTP TEID,包括:
    所述第二网络设备根据所述第一指示信息和第二指示信息,释放所述第二DL GTP TEID和/或所述第二UL GTP TEID,
    其中,所述第二指示信息用于指示第二数据的最后一个数据包,或者所述第二指示信息用于指示第三数据的最后一个数据包,所述第二数据为通过所述第二UL GTP TEID上传输的数据,所述第三数据为通过所述第二DL GTP TEID上传输的数据。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述第一请求信息还包括所述第一小区的小区全球标识CGI和/或所述第二网络设备的配置信息,
    其中,所述第二网络设备的配置信息包括分组数据汇聚协议PDCP配置信息。
  16. 一种数据传输的装置,其特征在于,所述装置包括:用于执行权利要求1至8
    中任一项所述的方法的单元,或者用于权利要求执行权利要求9至15中任一项所述的
    方法的单元。
  17. 一种数据传输的装置,其特征在于,包括:处理器和存储器;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至8中任一项所述的方法,或执行权利要9至15中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法,或执行权利要9至15中任一项所述的方法。
  19. 一种芯片系统,其特征在于,包括:处理器,用于存储器中调用并运行计算机程序,使得安装有所述芯片系统的信息处理配置的设备执行如权利要求1至8中任一项所述的方法,或执行权利要9至15中任一项所述的方法。
PCT/CN2023/126128 2022-11-03 2023-10-24 一种数据传输的方法和装置 WO2024093719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211371302.0 2022-11-03
CN202211371302.0A CN117998476A (zh) 2022-11-03 2022-11-03 一种数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2024093719A1 true WO2024093719A1 (zh) 2024-05-10

Family

ID=90901645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126128 WO2024093719A1 (zh) 2022-11-03 2023-10-24 一种数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN117998476A (zh)
WO (1) WO2024093719A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581810A (zh) * 2014-12-12 2015-04-29 北京北方烽火科技有限公司 一种基于载波聚合的切换方法、板间聚合切换方法和装置
CN111182591A (zh) * 2018-11-12 2020-05-19 华为技术有限公司 网络切换的方法和装置
WO2020226546A1 (en) * 2019-05-03 2020-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus in a network node or base station
WO2022151003A1 (en) * 2021-01-13 2022-07-21 Qualcomm Incorporated Measurement reporting and handover procedures between relay paths

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581810A (zh) * 2014-12-12 2015-04-29 北京北方烽火科技有限公司 一种基于载波聚合的切换方法、板间聚合切换方法和装置
CN111182591A (zh) * 2018-11-12 2020-05-19 华为技术有限公司 网络切换的方法和装置
WO2020226546A1 (en) * 2019-05-03 2020-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus in a network node or base station
WO2022151003A1 (en) * 2021-01-13 2022-07-21 Qualcomm Incorporated Measurement reporting and handover procedures between relay paths

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on intra-DU handover", 3GPP DRAFT; R3-180169_DISCUSSION ON INTRA-DU HANDOVER, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Sophia Antipolis, France; 20180101, 12 January 2018 (2018-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051387208 *

Also Published As

Publication number Publication date
CN117998476A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11950314B2 (en) Configuration method and apparatus, and system
US11477712B2 (en) Maintaining communication and signaling interfaces through a network role transition
US10785824B2 (en) Information processing method and related apparatus
CN109565732B (zh) 无线接入网节点、无线终端、核心网节点及其方法
WO2018029933A1 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
JP2020074656A (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
US20230009565A1 (en) Communication method and apparatus applied to multi-link device in wireless local area network
CN109315008B (zh) 多连接通信方法和设备
TW202106068A (zh) 減少行動中斷之方法和使用者設備
EP3713297B1 (en) Layer 2 processing method, central unit and distributed unit
WO2018127018A1 (zh) 多链接通信方法、设备和终端
CN112399507A (zh) 用于传输数据的方法、终端设备和网络设备
US20230012998A1 (en) Communication method, access network device, terminal device, and core network device
CN114205883B (zh) 网络切片重映射方法、装置及存储介质
JP2018526891A (ja) 3gpp−wlanのアグリゲーション方法及び装置
US20230254729A1 (en) Migration method and apparatus for iab-node
WO2020029080A1 (zh) 切换网络的方法、网络节点、芯片和通信系统
WO2022160303A1 (zh) 服务质量参数处理方法、终端设备、网络功能实体和网络设备
WO2024093719A1 (zh) 一种数据传输的方法和装置
WO2022082544A1 (zh) Iab节点的移植方法及装置
WO2023078321A1 (zh) 一种通信方法及装置
WO2023231503A1 (zh) 通信的方法和装置
WO2023050181A1 (zh) 无线通信方法及无线通信装置
WO2023283803A1 (zh) 通信方法及通信装置
US20240073762A1 (en) Communication method, apparatus, and system