WO2019184677A1 - 连续测量核心体温方法及装置 - Google Patents

连续测量核心体温方法及装置 Download PDF

Info

Publication number
WO2019184677A1
WO2019184677A1 PCT/CN2019/077340 CN2019077340W WO2019184677A1 WO 2019184677 A1 WO2019184677 A1 WO 2019184677A1 CN 2019077340 W CN2019077340 W CN 2019077340W WO 2019184677 A1 WO2019184677 A1 WO 2019184677A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
distribution data
temperature distribution
core
data
Prior art date
Application number
PCT/CN2019/077340
Other languages
English (en)
French (fr)
Inventor
杨松
Original Assignee
杨松
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨松 filed Critical 杨松
Publication of WO2019184677A1 publication Critical patent/WO2019184677A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms

Definitions

  • the present invention relates to the field of medical devices, and in particular to a method and apparatus for continuously measuring core body temperature.
  • the accuracy and clinical applicability of the plug-in temperature measurement method has not been surpassed so far, although many people try to use the externally attached body temperature continuous measurement, its accuracy and practicality make the medical institutions retreat.
  • the plug-in and external-stick body temperature measurement is different in method, and the externally-applied method and the plug-in evaluation will eventually lead to such measurements not being accepted by the medical community.
  • the main object of the present invention is to provide a method and a device for continuously measuring the core body temperature, and to solve the problem that the body temperature cannot be accurately measured by using the external frame method.
  • the invention provides a method for continuously measuring core body temperature, comprising:
  • the temperature sensing array acquires temperature distribution data of a designated area of the body surface corresponding to the main blood vessel at the head or neck position, wherein the main blood vessel is an artery or a vein 1 to 3 mm away from the skin;
  • the body core temperature is calculated.
  • the temperature sensing array further includes:
  • the temperature distribution data is stored in an array.
  • the step of determining whether the temperature distribution data meets a preset requirement comprises:
  • the temperature sensing array comprises a flexible circuit board and a plurality of metal film temperature sensing components printed on the flexible circuit board.
  • the metal film temperature sensing component comprises a copper film temperature sensing component or a platinum film temperature sensing component.
  • the step of calculating a body core temperature according to the temperature distribution data comprises:
  • the temperature distribution data is processed by the computing device to calculate a body core temperature.
  • the method further includes:
  • the reminder signal includes displaying a body temperature value, a color display of the device shell, a sound reminder, and a sound rhythm reminder One or more.
  • a continuous measurement of a core body temperature device comprising:
  • a data acquisition module configured to acquire temperature distribution data of a designated area of the body surface corresponding to the main blood vessel of the head and neck or the body position, wherein the main blood vessel is an artery or a vein 1 to 3 mm away from the skin;
  • the temperature calculation module is configured to calculate a body core temperature according to the temperature distribution data.
  • the method further comprises:
  • a data judging module configured to determine whether the temperature distribution data meets a preset requirement
  • the error reminder module is used to issue a reminder message if no.
  • the temperature distribution data is stored in an array.
  • the data judging module comprises:
  • a change trend unit for calculating a temperature data change trend of each row and/or each column of the temperature distribution data stored in an array manner
  • the matching unit is configured to determine whether the temperature distribution data meets a preset requirement according to the temperature data change trend
  • Determining the matching unit if yes, determining that the temperature distribution data meets the preset requirement
  • the temperature sensing array comprises a flexible circuit board and a plurality of metal film temperature sensing components printed on the flexible circuit board.
  • the metal film temperature sensing component comprises a copper film temperature sensing component or a platinum film temperature sensing component.
  • the temperature calculation module comprises:
  • a data sending unit configured to send the temperature distribution data to the computing device in a wireless or wired manner
  • the temperature calculation unit is configured to process the temperature distribution data by the computing device to calculate a body core temperature.
  • the method further comprises:
  • a response module configured to send the body temperature of the human body to the response device, so that the response device sends a reminder signal in response to the body temperature of the human body, the reminder signal includes a display body temperature value, a color display of the device shell, and a sound reminder One or more of the sound rhythm reminders.
  • the method and device for continuously measuring core body temperature proposed by the invention adopts a temperature sensing array to cover a body surface region with a blood vessel as an axis to obtain a set of temperature data, and considers the influence of the covered temperature sensing array on temperature loss, In addition, the effect of blood temperature will form a temperature and temperature difference distribution affected by ambient temperature, blood temperature and coverage in the coverage area. According to this distribution, the temperature of the blood flow in the body, that is, the body temperature, can be obtained very accurately. Compared with the existing measurement methods, the measurement method is simpler and more accurate, and can be continuously measured.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for continuously measuring a core body temperature according to the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a continuous measurement core body temperature device according to the present invention.
  • FIG. 3 is a schematic structural view of another embodiment of a continuous measurement core body temperature device according to the present invention.
  • an embodiment of the present invention provides a method for continuously measuring a core body temperature, including:
  • the temperature sensing array acquires temperature distribution data of a designated area of the body surface corresponding to the main blood vessel at the head or neck or the body position, wherein the main blood vessel is an artery or a vein 1 to 3 mm away from the skin;
  • the continuous measurement core body temperature method is mainly applied to a hospital or a scene requiring advanced care.
  • the method obtains a set of body surface temperature data of the tester through the temperature sensing array, and then processes the data to obtain the core temperature value of the tester.
  • the computing device can be configured as a dedicated device for calculating body temperature, or as a server with computing power.
  • Human core body temperature also known as core temperature (core Temperature), in the range of 36 to 38 degrees Celsius, so the human blood is between 36-37.5 degrees.
  • the temperature of the human body is set by the "temperature regulation center" located in the hypothalamus of the human brain. It maintains the body's core body temperature in a very stable state, with an average of about 37 ° C, and no more than 1 ° C to 1.3 ° C between the upper and lower.
  • the temperature sensing array can be configured in the form of a patch that is in close contact with the skin of the tester.
  • a plurality of miniature temperature sensors are disposed on the temperature sensing array.
  • the miniature temperature sensors can be arranged evenly or in a regular pattern.
  • the micro temperature sensor can have a distribution density of 1 to 5/mm 2 .
  • the micro-current is applied to the micro-temperature sensor to calculate the resistivity of the micro-temperature sensor, and then the temperature data measured by the micro-temperature sensor is obtained.
  • the temperature sensing array can acquire multiple temperature data at a time, and the temperature data is in one-to-one correspondence with the position of the micro temperature sensor to form temperature distribution data.
  • the temperature sensing array can generally cover the tester's torso or head position. If the area covered is the head, it is appropriate to select the tester's forehead as the test area.
  • the temperature distribution data may be processed using a dedicated processor to calculate the body core temperature.
  • the temperature sensing array can be used to obtain multiple sets of temperature distribution data, and the precise core body temperature corresponding to each group of temperature distribution data is measured by other methods, and the temperature distribution data is correlated with the accurate core body temperature to establish a mathematical model. The core body temperature can then be calculated from the mathematical model and the obtained temperature distribution data.
  • the dedicated processor here may specifically be a TPU (High Performance Processor).
  • TPU deducts the influence of the cover-temperature sensing array, combined with the ambient temperature, and considers the temperature change at different times during the measurement process, and finally calculates the core body temperature.
  • the influence of some local blood flow of the human body on the skin temperature is utilized, and the body temperature in the human body is pushed out.
  • step S10 the method further includes:
  • each of the micro temperature sensors of the temperature sensing array can be recorded as one particle.
  • the temperature distribution around the blood vessels has its inherent characteristics, and the temperature away from the blood vessels shows an obvious and regular downward trend. That is, when the particles are distributed around the main blood vessel, they record a temperature difference of a large temperature.
  • the above preset requirement is to ensure that the values in the temperature distribution data have a large difference distribution. If the difference is too low, it means that the part covered by the temperature sensing array has no main blood flow, and the measured data will also generate a large error. At this time, a reminder message is needed to remind the user to change the measurement position.
  • the temperature distribution data is stored in an array manner.
  • the obtained temperature distribution data is also stored in an array manner, corresponding to the arrangement of the micro temperature sensors.
  • the step of determining whether the temperature distribution data meets a preset requirement comprises:
  • each temperature sensor of the temperature sensing array can be recorded as one particle.
  • the recorded temperature difference is large, and a more accurate core body temperature value can be obtained. Therefore, the present embodiment is for determining whether the blood vessel is in the middle or near the middle of the temperature sensing array. In general, areas where blood vessels pass will have a higher temperature than other parts. Based on this characteristic, the temperature data trend of each row and/or column of the temperature matrix can be analyzed. For example, in a temperature matrix, if 50% of the rows or columns have high central temperature data and the temperature data at both ends is low, it can be determined that the temperature sensing array covers the region passing through the blood vessel. If the ratio is less than 50%, it is considered that the temperature sensing array does not cover the region passing through the blood vessel, and it is determined that the temperature distribution data does not meet the preset requirement.
  • the temperature sensing array comprises a flexible circuit board and a plurality of metal film temperature sensing components printed on the flexible circuit board.
  • the metal film temperature sensing component includes a copper film temperature sensing component or a platinum film temperature sensing component.
  • the above micro temperature sensor is a metal film temperature sensing component.
  • the temperature sensing array includes a flexible circuit board and a plurality of metal film temperature sensing components printed on the flexible circuit board.
  • the metal film temperature sensing component can be composed of an etched copper film or a platinum film. When the temperature changes, the resistance of the metal film temperature sensing component changes greatly, and the resistance change value is proportional to the temperature change value. Therefore, the temperature data can be indirectly obtained by measuring the change in the resistance of the metal film temperature sensing component.
  • step S20 includes:
  • the temperature distribution data is processed by the computing device to calculate a body core temperature.
  • the temperature calculation needs to consume more computing resources, and the temperature sensing array may not have corresponding computing power.
  • the temperature profile data obtained by the temperature sensing array can be sent to a specialized computing device to obtain the final desired body core temperature. If the temperature sensing array is directly connected to the computing device through the data line, and the energy consumed by the temperature sensing array is provided through the data line, the computing device can continuously acquire the data measured on the temperature sensing array. If the temperature sensing array is powered by the battery and the temperature distribution data is transmitted to the computing device in a wireless manner, the temperature distribution data is transmitted to the computing device at regular intervals in order to increase the battery life of the temperature sensing array. In this case, the temperature sensing array must establish a wireless connection with the computing device.
  • the battery and antenna required for the temperature sensing array can be placed in a headband or collar such that the temperature sensing array can wirelessly communicate temperature data to the computing device.
  • the connected data lines have a power transfer function and a signal transfer function.
  • the method further includes:
  • the reminder signal includes displaying a body temperature value, a color display of the device shell, a sound reminder, and a sound rhythm reminder One or more.
  • a response device can also be provided.
  • the response device can be a display screen, a sound alert device, or both.
  • a response device such as a display
  • a signal prompt light For example, when the body temperature is at a normal value, the signal light is green; when the body temperature is at an abnormal value, the signal light is red.
  • the method for continuously measuring the core body temperature proposed by the invention adopts a temperature sensing array to cover a body surface region with a blood vessel as an axis to obtain a set of temperature data, and considers the influence of the covered temperature sensing array on the loss of temperature, and the blood
  • the effect of temperature will form a temperature and temperature difference distribution affected by ambient temperature, blood temperature and coverage in the coverage area. According to this distribution, the temperature of the blood flow in the body, that is, the body temperature, can be obtained very accurately.
  • the measurement method is simpler and more accurate, and can be continuously measured.
  • an embodiment of the present invention further provides a continuous measurement core temperature device, including:
  • the data acquisition module 10 is configured to acquire temperature distribution data of a designated area of the body surface corresponding to the main blood vessel of the head or neck or the body position, wherein the main blood vessel is an artery or a vein 1 to 3 mm away from the skin;
  • the temperature calculation module 20 is configured to calculate a body core temperature according to the temperature distribution data.
  • the continuous measurement core body temperature device provided by the embodiments of the present invention is mainly applied to a hospital or a scene requiring advanced care.
  • the device acquires a set of body surface temperature data of the tester through the temperature sensing array, and then is processed by the computing device to obtain the core temperature value of the tester.
  • the computing device can be configured as a dedicated device for calculating body temperature, or as a server with computing power.
  • the temperature sensing array can be configured in the form of a patch that is in close contact with the skin of the tester.
  • a plurality of miniature temperature sensors are disposed on the temperature sensing array.
  • the miniature temperature sensors can be arranged evenly or in a regular pattern.
  • the micro temperature sensor can have a distribution density of 1 to 5/mm 2 .
  • the micro-current is applied to the micro-temperature sensor to calculate the resistivity of the micro-temperature sensor, and then the temperature data measured by the micro-temperature sensor is obtained.
  • the temperature sensing array can acquire multiple temperature data at a time, and the temperature data is in one-to-one correspondence with the position of the micro temperature sensor to form temperature distribution data.
  • the temperature sensing array can generally cover the tester's torso or head position. If the area covered is the head, it is appropriate to select the tester's forehead as the test area.
  • the temperature distribution data may be processed using a dedicated processor to calculate the body core temperature.
  • the temperature sensing array can be used to obtain multiple sets of temperature distribution data, and the precise core body temperature corresponding to each group of temperature distribution data is measured by other methods, and the temperature distribution data is correlated with the accurate core body temperature to establish a mathematical model. The core body temperature can then be calculated from the mathematical model and the obtained temperature distribution data.
  • the dedicated processor here may specifically be a TPU (High Performance Processor).
  • TPU deducts the influence of the cover-temperature sensing array, combined with the ambient temperature, and considers the temperature change at different times during the measurement process, and finally calculates the core body temperature.
  • the influence of some local blood flow of the human body on the skin temperature is utilized, and the body temperature in the human body is pushed out.
  • it also includes:
  • a data judging module configured to determine whether the temperature distribution data meets a preset requirement
  • the error reminder module is used to issue a reminder message if no.
  • each of the micro temperature sensors of the temperature sensing array can be recorded as one particle.
  • the recorded temperature difference is large, and a more accurate core body temperature value can be obtained.
  • the above preset requirement is to ensure that the values in the temperature distribution data have a large difference distribution. If the difference is too low, it means that the part covered by the temperature sensing array has no main blood flow, and the measured data will also generate a large error. At this time, a reminder message is needed to remind the user to change the measurement position.
  • the temperature distribution data is stored in an array manner.
  • the obtained temperature distribution data is also stored in an array manner, corresponding to the arrangement of the micro temperature sensors.
  • the data determining module includes:
  • a change trend unit for calculating a temperature data change trend of each row and/or each column of the temperature distribution data stored in an array manner
  • the matching unit is configured to determine whether the temperature distribution data meets a preset requirement according to the temperature data change trend
  • Determining the matching unit if yes, determining that the temperature distribution data meets the preset requirement
  • each temperature sensor of the temperature sensing array can be recorded as one particle.
  • the recorded temperature difference is large, and a more accurate core body temperature value can be obtained. Therefore, the present embodiment is for determining whether the blood vessel is in the middle or near the middle of the temperature sensing array. In general, areas where blood vessels pass will have a higher temperature than other parts. Based on this characteristic, the temperature data trend of each row and/or column of the temperature matrix can be analyzed. For example, in a temperature matrix, if 50% of the rows or columns have high central temperature data and the temperature data at both ends is low, it can be determined that the temperature sensing array covers the region passing through the blood vessel. If the ratio is less than 50%, it is considered that the temperature sensing array does not cover the region passing through the blood vessel, and it is determined that the temperature distribution data does not meet the preset requirement.
  • the temperature sensing array comprises a flexible circuit board and a plurality of metal film temperature sensing components printed on the flexible circuit board.
  • the metal film temperature sensing component includes a copper film temperature sensing component or a platinum film temperature sensing component.
  • the above micro temperature sensor is a metal film temperature sensing component.
  • the temperature sensing array includes a flexible circuit board and a plurality of metal film temperature sensing components printed on the flexible circuit board.
  • the metal film temperature sensing component can be composed of an etched copper film or a platinum film. When the temperature changes, the resistance of the metal film temperature sensing component changes greatly, and the resistance change value is proportional to the temperature change value. Therefore, the temperature data can be indirectly obtained by measuring the change in the resistance of the metal film temperature sensing component.
  • the temperature calculation module 20 includes:
  • a data sending unit configured to send the temperature distribution data to the computing device in a wireless or wired manner
  • the temperature calculation unit is configured to process the temperature distribution data by the computing device to calculate a body core temperature.
  • the temperature calculation needs to consume more computing resources, and the temperature sensing array may not have corresponding computing power.
  • the temperature profile data obtained by the temperature sensing array can be sent to a specialized computing device to obtain the final desired body core temperature. If the temperature sensing array is directly connected to the computing device through the data line, and the energy consumed by the temperature sensing array is provided through the data line, the computing device can continuously acquire the data measured on the temperature sensing array. If the temperature sensing array is powered by the battery and the temperature distribution data is transmitted to the computing device in a wireless manner, the temperature distribution data is transmitted to the computing device at regular intervals in order to increase the battery life of the temperature sensing array. In this case, the temperature sensing array must establish a wireless connection with the computing device.
  • the battery and antenna required for the temperature sensing array can be placed in a headband or collar such that the temperature sensing array can wirelessly communicate temperature data to the computing device.
  • the connected data lines have a power transfer function and a signal transfer function.
  • the continuous measurement core body temperature device further includes:
  • the response module 30 is configured to send the body temperature of the human body to the response device, so that the response device sends a reminder signal in response to the body temperature of the human body, the reminder signal includes a display body temperature value, a color display of the device shell, and a sound One or more of reminders and sound rhythm reminders.
  • a response device can also be provided.
  • the response device can be a display screen, a sound alert device, or both.
  • a response device such as a display
  • a signal prompt light For example, when the body temperature is at a normal value, the signal light is green; when the body temperature is at an abnormal value, the signal light is red.
  • the continuous measuring core body temperature device proposed by the invention adopts a temperature sensing array to cover a body surface region with a blood vessel as an axis to acquire a set of temperature data, and considers the influence of the covered temperature sensing array on the loss of temperature, and the blood
  • the effect of temperature will form a temperature and temperature difference distribution affected by ambient temperature, blood temperature and coverage in the coverage area. According to this distribution, the temperature of the blood flow in the body, that is, the body temperature, can be obtained very accurately.
  • the measurement method is simpler and more accurate, and can be continuously measured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

连续测量核心体温的方法及装置,采用温度传感阵列覆盖以血管为轴心的体表区域的方式获取一组温度数据,考虑覆盖的温度传感阵列对温度的散失产生的影响,加之血液温度的作用,会在覆盖区域形成一个受环境温度、血液温度、覆盖情况影响的温度及温度差异分布,依据这个分布,可以准确获取体内血流的温度,也就是体内体温。相较于现有的测量方式,测量更加简便和精确,可连续测量。

Description

连续测量核心体温方法及装置 技术领域
本发明涉及到医疗设备领域,特别是涉及到一种连续测量核心体温方法及装置。
背景技术
医用水银体温计问世超过一个世纪,其基本的插入式测量体温的方法至今未被颠覆。口腔式电子体温计还是沿用这一方法。而红外线体温测量仅适用于要求精度不高的体温筛查。
插入式测温方法的准确性和临床实用性至今没有被超越,虽然很多人尝试使用外贴式体温连续测量,其准确性和实用性都让医疗机构退避三舍。插入式与外贴式的体温测量具有方法上的本质不同,用外贴式的方法、插入式的评估,终究会导致这样的测量不会被医疗界所接受。
连续的体温测量已经变成越来越强的需求,这需要避免使用插入式体温测量方法,最好使用外贴式。找到外贴式的精确体温测量的方法成为必须。
技术问题
本发明的主要目的为提供一种连续测量核心体温方法及装置,解决当前无法采用外帖式方式精确测量体内体温的问题。
技术解决方案
本发明提出了一种连续测量核心体温方法,包括:
温度传感阵列获取头颈或躯体位置的主血管对应的体表指定区域的温度分布数据,所述主血管为距离皮肤1~3mm的动脉或静脉;
根据所述温度分布数据,计算出人体核心体温。
优选地,所述温度传感阵列获取头颈或躯体位置的主血管对应的体表指定区域的温度分布数据的步骤之后,还包括:
判断所述温度分布数据是否符合预设要求;
若是,则生成计算人体核心体温的指令,否则发出提醒信息。
优选地,所述温度分布数据以阵列方式存储。
优选地,所述判断所述温度分布数据是否符合预设要求的步骤,包括:
计算所述以阵列方式存储的温度分布数据的每一行和/或每一列的温度数据变化趋势;
根据所述温度数据变化趋势判断所述温度分布数据是否符合预设要求;
若是,则判定温度分布数据符合预设要求,否则判定温度分布数据不符合预设要求。
优选地,所述温度传感阵列包括柔性线路板以及柔性线路板上印制的多个金属膜温度感应组件。
优选地,所述金属膜温度感应组件包括铜膜温度感应组件或铂膜温度感应组件。
优选地,所述根据所述温度分布数据,计算出人体核心体温的步骤包括:
以无线或有线的方式将所述温度分布数据发送到计算设备;
通过所述计算设备处理所述温度分布数据,计算出人体核心体温。
优选地,所述根据所述温度分布数据,计算出人体核心体温的步骤之后,还包括:
将所述人体核心体温发送至响应装置,以使所述响应装置响应所述人体核心体温而发出提醒信号,所述提醒信号包括显示体温数值、设备外壳的颜色显示、声音提醒、声音节奏提醒中的一种或多种。
本发明的另一个方面,还提出了一种连续测量核心体温装置,包括:
数据获取模块,用于获取头颈或躯体位置的主血管对应的体表指定区域的温度分布数据,所述主血管为距离皮肤1~3mm的动脉或静脉;
温度计算模块,用于根据所述温度分布数据,计算出人体核心体温。
优选地,还包括:
数据判断模块,用于判断所述温度分布数据是否符合预设要求;
生成指令模块,用于若是,则生成计算人体核心体温的指令;
错误提醒模块,用于若否,则发出提醒信息。
优选地,所述温度分布数据以阵列方式存储。
优选地,所述数据判断模块包括:
变化趋势单元,用于计算所述以阵列方式存储的温度分布数据的每一行和/或每一列的温度数据变化趋势;
要求匹配单元,用于根据所述温度数据变化趋势判断所述温度分布数据是否符合预设要求;
判定符合单元,用于若是,则判定温度分布数据符合预设要求;
判定不符合单元,用于若否,则判定温度分布数据不符合预设要求。
优选地,所述温度传感阵列包括柔性线路板以及柔性线路板上印制的多个金属膜温度感应组件。
优选地,所述金属膜温度感应组件包括铜膜温度感应组件或铂膜温度感应组件。
优选地,所述温度计算模块包括:
数据发送单元,用于以无线或有线的方式将所述温度分布数据发送到计算设备;
温度计算单元,用于通过所述计算设备处理所述温度分布数据,计算出人体核心体温。
优选地,还包括:
响应模块,用于将所述人体核心体温发送至响应装置,以使所述响应装置响应所述人体核心体温而发出提醒信号,所述提醒信号包括显示体温数值、设备外壳的颜色显示、声音提醒、声音节奏提醒中的一种或多种。
有益效果
本发明提出的连续测量核心体温方法及装置,采用温度传感阵列覆盖以血管为轴心的体表区域的方式获取一组温度数据,考虑覆盖的温度传感阵列对温度的散失产生的影响,加之血液温度的作用,会在覆盖区域形成一个受环境温度、血液温度、覆盖情况影响的温度及温度差异分布,依据这个分布,可以十分准确获取体内血流的温度,也就是体内体温。相较于现有的测量方式,测量方式更加简便和精确,可连续测量。
附图说明
图1 为本发明连续测量核心体温方法一实施例的流程示意图;
图2 为本发明连续测量核心体温装置一实施例的结构示意图;
图3 为本发明连续测量核心体温装置另一实施例的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的最佳实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,本发明实施例提出了一种连续测量核心体温方法,包括:
S10、温度传感阵列获取头颈或躯体位置的主血管对应的体表指定区域的温度分布数据,所述主血管为距离皮肤1~3mm的动脉或静脉;
S20、根据所述温度分布数据,计算出人体核心体温。
本发明实施例提供的连续测量核心体温方法最主要应用于医院或需要高级护理的场景中。该方法通过温度传感阵列获取测试人员的一组体表温度数据,然后经计算设备处理,获得测试人员的核心体温数值。计算设备可以配置为计算体温的专用设备,也可以配置为具有计算能力的服务器。人体核心体温,又称核心温度(core temperature) ,为摄氏36~38度范围内,所以人体血液大约36-37.5度之间。人体的温度是由位于人体脑部下视丘的“体温调节中枢”所设定的。它可使人体核心体温维持在一个很稳定的状态,平均约为37℃左右,上下之间不超过1℃到1.3℃。
在步骤S10中,温度传感阵列可配置为贴片形式,与测试人员的皮肤紧贴。温度传感阵列上配置有多个微型温度感应器。微型温度感应器可以是均匀排布,也可以以一定规律排列。在一实施例中,微型温度感应器的分布密度可以达到1~5个/mm 2。采用微电流作用于微型温度感应器上,计算微型温度感应器的电阻率,进而获得微型温度感应器测量的温度数据。温度传感阵列一次可获取多个温度数据,将这些温度数据与微型温度感应器的位置一一对应,形成温度分布数据。温度传感阵列一般可覆盖于测试人员的躯干或头部位置。若覆盖的区域为头部,则选取测试人员的额头作为测试区域是比较适当的。
步骤S20中,当温度传感阵列获得温度分布数据之后,可使用专用处理器对温度分布数据进行处理,计算出人体核心体温。例如,可用上述温度传感阵列获取多组温度分布数据,同时采用其他方式测量出各组温度分布数据对应的精确核心体温,将温度分布数据与精确核心体温相关联,建立数学模型。然后便可以通过数学模型和获得的温度分布数据计算核心体温。
此处专用处理器具体可以是TPU(高性能处理器)。TPU根据温度数据的分布情况,扣除覆盖物——温度传感阵列的影响,结合环境温度,同时考虑测量的过程中,不同时间的温度变化,最终计算出核心体温。本实施例利用人体某些局部血流对皮肤温度的影响,倒推出人体体内体温。
可选的,步骤S10之后,还包括:
判断所述温度分布数据是否符合预设要求;
若是,则生成计算人体核心体温的指令,否则发出提醒信息。
本实施例中,可以将温度传感阵列的每一个微型温度感应器记为一个颗粒。血管周围的温度分布有其固有的特征,远离血管的温度呈现明显且有规律的下降趋势。也就是说,当颗粒分布于主血管周围时,其记录的温度较大的温度差异。上述预设要求在于确保温度分布数据内的数值有较大的差异分布。如果差异度过低,说明温度传感阵列覆盖的部分没有主血管流过,其测量的数据也会产生较大误差,此时需要发出提醒信息,提醒用户更换测量位置。
可选的,所述温度分布数据以阵列方式存储。
本实施例中,由于温度传感阵列的多个微型温度感应器以阵列方式排布,获得的温度分布数据也以阵列方式存储,与微型温度感应器的排布对应。
可选的,所述判断所述温度分布数据是否符合预设要求的步骤,包括:
计算所述以阵列方式存储的温度分布数据的每一行和/或每一列的温度数据变化趋势;
根据所述温度数据变化趋势判断所述温度分布数据是否符合预设要求;
若是,则判定温度分布数据符合预设要求,否则判定温度分布数据不符合预设要求。
本实施例中,可以将温度传感阵列的每一个温度感应器记为一个颗粒。当颗粒分布于血管周围时,其记录的温度差异较大,可以获得更为精确的核心体温数值。因此,本实施例用于判断血管是否处于温度传感阵列中部或接近中部的位置。一般而言,有血管经过的区域,其温度会比其他部位的温度高一些。可以根据此一特性分析温度矩阵每一行和/或每一列的温度数据变化趋势。例如,温度矩阵中,有50%的行或列出现中部温度数据高,两端温度数据低的情况,则可判定温度传感阵列覆盖了经过血管的区域。若低于50%的比例,则认为温度传感阵列没有覆盖经过血管的区域,则判定温度分布数据不符合预设要求。
可选的,所述温度传感阵列包括柔性线路板以及柔性线路板上印制的多个金属膜温度感应组件。所述金属膜温度感应组件包括铜膜温度感应组件或铂膜温度感应组件。
本实施例中,上述微型温度感应器,即为金属膜温度感应组件。温度传感阵列包括柔性线路板以及柔性线路板上印制的多个金属膜温度感应组件。金属膜温度感应组件可以由经过蚀刻的铜膜或铂膜组成。当温度发生变化时,金属膜温度感应组件的电阻会发生较大变化,且电阻变化值与温度变化值成一定比例。因此可通过测量金属膜温度感应组件的电阻变化情况,间接地获取温度数据。
可选的,步骤S20包括:
以无线或有线的方式将所述温度分布数据发送到计算设备;
通过所述计算设备处理所述温度分布数据,计算出人体核心体温。
本实施例中,温度计算需要消耗较多的计算资源,温度传感阵列可能不具有相应的计算能力。因此,可以将温度传感阵列获得的温度分布数据发送到专门的计算设备,以获得最终需要的人体核心体温。若温度传感阵列通过数据线直接与计算设备连接,温度传感阵列需要消耗的能量通过数据线提供,则计算设备可以连续获取温度传感阵列上测得的数据。若温度传感阵列由电池供能,采用无线的方式向计算设备传送温度分布数据,则为了提高温度传感阵列的续航时间,将按一定周期间隔向计算设备发送温度分布数据。在此情形下,温度传感阵列须与计算设备建立无线连接。在一应用实例中,可采用头带或项圈的方式放置温度传感阵列所需要具有的电池及天线,使得温度传感阵列能以无线的方式向计算设备传送温度数据。在另一应用实例中,若以有线的方式连接温度传感阵列与计算设备,则连接的数据线具有电能传递功能及信号传递功能。
可选的,所述根据所述温度分布数据,计算出人体核心体温的步骤之后,还包括:
将所述人体核心体温发送至响应装置,以使所述响应装置响应所述人体核心体温而发出提醒信号,所述提醒信号包括显示体温数值、设备外壳的颜色显示、声音提醒、声音节奏提醒中的一种或多种。
本实施例中,还可以设置响应装置。响应装置可以是显示屏,也可以是声音提醒装置,或者两者兼有。当体温数值传送至响应装置,如显示屏,人们可通过显示屏直接读取温度数值。也可以设置信号提示灯,例如当体温处于正常值时,信号提示灯成绿色;当体温处于异常值时,信号提示灯成红色。
本发明提出的连续测量核心体温方法,采用温度传感阵列覆盖以血管为轴心的体表区域的方式获取一组温度数据,考虑覆盖的温度传感阵列对温度的散失产生的影响,加之血液温度的作用,会在覆盖区域形成一个受环境温度、血液温度、覆盖情况影响的温度及温度差异分布,依据这个分布,可以十分准确获取体内血流的温度,也就是体内体温。相较于现有的测量方式,测量方式更加简便和精确,可连续测量。
参照图2,本发明实施例还提出了一种连续测量核心体温装置,包括:
数据获取模块10,用于获取头颈或躯体位置的主血管对应的体表指定区域的温度分布数据,所述主血管为距离皮肤1~3mm的动脉或静脉;
温度计算模块20,用于根据所述温度分布数据,计算出人体核心体温。
本发明实施例提供的连续测量核心体温装置最主要应用于医院或需要高级护理的场景中。该装置通过温度传感阵列获取测试人员的一组体表温度数据,然后经计算设备处理,获得测试人员的核心体温数值。计算设备可以配置为计算体温的专用设备,也可以配置为具有计算能力的服务器。
数据获取模块10中,温度传感阵列可配置为贴片形式,与测试人员的皮肤紧贴。温度传感阵列上配置有多个微型温度感应器。微型温度感应器可以是均匀排布,也可以以一定规律排列。在一实施例中,微型温度感应器的分布密度可以达到1~5个/mm 2。采用微电流作用于微型温度感应器上,计算微型温度感应器的电阻率,进而获得微型温度感应器测量的温度数据。温度传感阵列一次可获取多个温度数据,将这些温度数据与微型温度感应器的位置一一对应,形成温度分布数据。温度传感阵列一般可覆盖于测试人员的躯干或头部位置。若覆盖的区域为头部,则选取测试人员的额头作为测试区域是比较适当的。
温度计算模块20中,当温度传感阵列获得温度分布数据之后,可使用专用处理器对温度分布数据进行处理,计算出人体核心体温。例如,可用上述温度传感阵列获取多组温度分布数据,同时采用其他方式测量出各组温度分布数据对应的精确核心体温,将温度分布数据与精确核心体温相关联,建立数学模型。然后便可以通过数学模型和获得的温度分布数据计算核心体温。
此处专用处理器具体可以是TPU(高性能处理器)。TPU根据温度数据的分布情况,扣除覆盖物——温度传感阵列的影响,结合环境温度,同时考虑测量的过程中,不同时间的温度变化,最终计算出核心体温。本实施例利用人体某些局部血流对皮肤温度的影响,倒推出人体体内体温。
可选的,还包括:
数据判断模块,用于判断所述温度分布数据是否符合预设要求;
生成指令模块,用于若是,则生成计算人体核心体温的指令;
错误提醒模块,用于若否,则发出提醒信息。
本实施例中,可以将温度传感阵列的每一个微型温度感应器记为一个颗粒。当颗粒分布于血管周围时,其记录的温度差异较大,可以获得更为精确的核心体温数值。上述预设要求在于确保温度分布数据内的数值有较大的差异分布。如果差异度过低,说明温度传感阵列覆盖的部分没有主血管流过,其测量的数据也会产生较大误差,此时需要发出提醒信息,提醒用户更换测量位置。
可选的,所述温度分布数据以阵列方式存储。
本实施例中,由于温度传感阵列的多个微型温度感应器以阵列方式排布,获得的温度分布数据也以阵列方式存储,与微型温度感应器的排布对应。
可选的,所述数据判断模块包括:
变化趋势单元,用于计算所述以阵列方式存储的温度分布数据的每一行和/或每一列的温度数据变化趋势;
要求匹配单元,用于根据所述温度数据变化趋势判断所述温度分布数据是否符合预设要求;
判定符合单元,用于若是,则判定温度分布数据符合预设要求;
判定不符合单元,用于若否,则判定温度分布数据不符合预设要求。
本实施例中,可以将温度传感阵列的每一个温度感应器记为一个颗粒。当颗粒分布于血管周围时,其记录的温度差异较大,可以获得更为精确的核心体温数值。因此,本实施例用于判断血管是否处于温度传感阵列中部或接近中部的位置。一般而言,有血管经过的区域,其温度会比其他部位的温度高一些。可以根据此一特性分析温度矩阵每一行和/或每一列的温度数据变化趋势。例如,温度矩阵中,有50%的行或列出现中部温度数据高,两端温度数据低的情况,则可判定温度传感阵列覆盖了经过血管的区域。若低于50%的比例,则认为温度传感阵列没有覆盖经过血管的区域,则判定温度分布数据不符合预设要求。
可选的,所述温度传感阵列包括柔性线路板以及柔性线路板上印制的多个金属膜温度感应组件。所述金属膜温度感应组件包括铜膜温度感应组件或铂膜温度感应组件。
本实施例中,上述微型温度感应器,即为金属膜温度感应组件。温度传感阵列包括柔性线路板以及柔性线路板上印制的多个金属膜温度感应组件。金属膜温度感应组件可以由经过蚀刻的铜膜或铂膜组成。当温度发生变化时,金属膜温度感应组件的电阻会发生较大变化,且电阻变化值与温度变化值成一定比例。因此可通过测量金属膜温度感应组件的电阻变化情况,间接地获取温度数据。
可选的,温度计算模块20包括:
数据发送单元,用于以无线或有线的方式将所述温度分布数据发送到计算设备;
温度计算单元,用于通过所述计算设备处理所述温度分布数据,计算出人体核心体温。
本实施例中,温度计算需要消耗较多的计算资源,温度传感阵列可能不具有相应的计算能力。因此,可以将温度传感阵列获得的温度分布数据发送到专门的计算设备,以获得最终需要的人体核心体温。若温度传感阵列通过数据线直接与计算设备连接,温度传感阵列需要消耗的能量通过数据线提供,则计算设备可以连续获取温度传感阵列上测得的数据。若温度传感阵列由电池供能,采用无线的方式向计算设备传送温度分布数据,则为了提高温度传感阵列的续航时间,将按一定周期间隔向计算设备发送温度分布数据。在此情形下,温度传感阵列须与计算设备建立无线连接。
在一应用实例中,可采用头带或项圈的方式放置温度传感阵列所需要具有的电池及天线,使得温度传感阵列能以无线的方式向计算设备传送温度数据。在另一应用实例中,若以有线的方式连接温度传感阵列与计算设备,则连接的数据线具有电能传递功能及信号传递功能。
可选的,参照图3,连续测量核心体温装置还包括:
响应模块30,用于将所述人体核心体温发送至响应装置,以使所述响应装置响应所述人体核心体温而发出提醒信号,所述提醒信号包括显示体温数值、设备外壳的颜色显示、声音提醒、声音节奏提醒中的一种或多种。
本实施例中,还可以设置响应装置。响应装置可以是显示屏,也可以是声音提醒装置,或者两者兼有。当体温数值传送至响应装置,如显示屏,人们可通过显示屏直接读取温度数值。也可以设置信号提示灯,例如当体温处于正常值时,信号提示灯成绿色;当体温处于异常值时,信号提示灯成红色。
本发明提出的连续测量核心体温装置,采用温度传感阵列覆盖以血管为轴心的体表区域的方式获取一组温度数据,考虑覆盖的温度传感阵列对温度的散失产生的影响,加之血液温度的作用,会在覆盖区域形成一个受环境温度、血液温度、覆盖情况影响的温度及温度差异分布,依据这个分布,可以十分准确获取体内血流的温度,也就是体内体温。相较于现有的测量方式,测量方式更加简便和精确,可连续测量。
以上所述仅为本发明的实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (16)

  1. 一种连续测量核心体温方法,其特征在于,包括:
    温度传感阵列获取头颈或躯体位置的主血管对应的体表指定区域的温度分布数据,所述主血管为距离皮肤1~3mm的动脉或静脉;
    根据所述温度分布数据,计算出人体核心体温。
  2. 根据权利要求1所述的连续测量核心体温方法,其特征在于,所述温度传感阵列获取头颈或躯体位置的主血管对应的体表指定区域的温度分布数据的步骤之后,还包括:
    判断所述温度分布数据是否符合预设要求;
    若是,则生成计算人体核心体温的指令,否则发出提醒信息。
  3. 根据权利要求2所述的连续测量核心体温方法,其特征在于,所述温度分布数据以阵列方式存储。
  4. 根据权利要求3所述的连续测量核心体温的方法,其特征在于,所述判断所述温度分布数据是否符合预设要求的步骤,包括:
    计算所述以阵列方式存储的温度分布数据的每一行和/或每一列的温度数据变化趋势;
    根据所述温度数据变化趋势判断所述温度分布数据是否符合预设要求;
    若是,则判定温度分布数据符合预设要求,否则判定温度分布数据不符合预设要求。
  5. 根据权利要求1所述的连续测量核心体温方法,其特征在于,所述温度传感阵列包括柔性线路板以及柔性线路板上印制的多个金属膜温度感应组件。
  6. 根据权利要求5所述的连续测量核心体温方法,其特征在于,所述金属膜温度感应组件包括铜膜温度感应组件或铂膜温度感应组件。
  7. 根据权利要求1所述的连续测量核心体温方法,其特征在于,所述根据所述温度分布数据,计算出人体核心体温的步骤包括:
    以无线或有线的方式将所述温度分布数据发送到计算设备;
    通过所述计算设备处理所述温度分布数据,计算出人体核心体温。
  8. 根据权利要求1所述的连续测量核心体温方法,其特征在于,所述根据所述温度分布数据,计算出人体核心体温的步骤之后,还包括:
    将所述人体核心体温发送至响应装置,以使所述响应装置响应所述人体核心体温而发出提醒信号,所述提醒信号包括显示体温数值、设备外壳的颜色显示、声音提醒、声音节奏提醒中的一种或多种。
  9. 一种连续测量核心体温装置,其特征在于,包括:
    数据获取模块,用于获取头颈或躯体位置的主血管对应的体表指定区域的温度分布数据,所述主血管为距离皮肤1~3mm的动脉或静脉;
    温度计算模块,用于根据所述温度分布数据,计算出人体核心体温。
  10. 根据权利要求9所述的连续测量核心体温装置,其特征在于,还包括:
    数据判断模块,用于判断所述温度分布数据是否符合预设要求;
    生成指令模块,用于若是,则生成计算人体核心体温的指令;
    错误提醒模块,用于若否,则发出提醒信息。
  11. 根据权利要求10所述的连续测量核心体温装置,其特征在于,所述温度分布数据以阵列方式存储。
  12. 根据权利要求11所述的连续测量核心体温装置,其特征在于,所述数据判断模块包括:
    变化趋势单元,用于计算所述以阵列方式存储的温度分布数据的每一行和/或每一列的温度数据变化趋势;
    要求匹配单元,用于根据所述温度数据变化趋势判断所述温度分布数据是否符合预设要求;
    判定符合单元,用于若是,则判定温度分布数据符合预设要求;
    判定不符合单元,用于若否,则判定温度分布数据不符合预设要求。
  13. 根据权利要求9所述的连续测量核心体温装置,其特征在于,所述温度传感阵列包括柔性线路板以及柔性线路板上印制的多个金属膜温度感应组件。
  14. 根据权利要求13所述的连续测量核心体温装置,其特征在于,所述金属膜温度感应组件包括铜膜温度感应组件或铂膜温度感应组件。
  15. 根据权利要求9所述的连续测量核心体温装置,其特征在于,所述温度计算模块包括:
    数据发送单元,用于以无线或有线的方式将所述温度分布数据发送到计算设备;
    温度计算单元,用于通过所述计算设备处理所述温度分布数据,计算出人体核心体温。
  16. 根据权利要求9所述的连续测量核心体温装置,其特征在于,还包括:
    响应模块,用于将所述人体核心体温发送至响应装置,以使所述响应装置响应所述人体核心体温而发出提醒信号,所述提醒信号包括显示体温数值、设备外壳的颜色显示、声音提醒、声音节奏提醒中的一种或多种。
PCT/CN2019/077340 2018-03-26 2019-03-07 连续测量核心体温方法及装置 WO2019184677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810252256.X 2018-03-26
CN201810252256.XA CN108451509A (zh) 2018-03-26 2018-03-26 连续测量核心体温方法及装置

Publications (1)

Publication Number Publication Date
WO2019184677A1 true WO2019184677A1 (zh) 2019-10-03

Family

ID=63237838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077340 WO2019184677A1 (zh) 2018-03-26 2019-03-07 连续测量核心体温方法及装置

Country Status (2)

Country Link
CN (1) CN108451509A (zh)
WO (1) WO2019184677A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108451509A (zh) * 2018-03-26 2018-08-28 杨松 连续测量核心体温方法及装置
CN113679360B (zh) * 2020-05-15 2024-05-24 广东小天才科技有限公司 核心体温测量方法、装置、设备及可读介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392397A (zh) * 2001-06-18 2003-01-22 欧姆龙株式会社 电子体温计
CN101636647A (zh) * 2007-03-15 2010-01-27 皇家飞利浦电子股份有限公司 用于测量核心体温的方法和设备
CN101636105A (zh) * 2007-03-15 2010-01-27 皇家飞利浦电子股份有限公司 用于测量核心体温的方法和设备
CN104545823A (zh) * 2013-10-25 2015-04-29 江苏省农业科学院 家畜核心体温测量的方法和装置
CN107049253A (zh) * 2017-04-10 2017-08-18 深圳市共进电子股份有限公司 一种基于人工智能的红外热成像体温检测方法和装置
US20180049646A1 (en) * 2016-08-19 2018-02-22 Thalman Health Ltd. System and method for monitoring core body temperature
CN108451509A (zh) * 2018-03-26 2018-08-28 杨松 连续测量核心体温方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392397A (zh) * 2001-06-18 2003-01-22 欧姆龙株式会社 电子体温计
CN101636647A (zh) * 2007-03-15 2010-01-27 皇家飞利浦电子股份有限公司 用于测量核心体温的方法和设备
CN101636105A (zh) * 2007-03-15 2010-01-27 皇家飞利浦电子股份有限公司 用于测量核心体温的方法和设备
CN104545823A (zh) * 2013-10-25 2015-04-29 江苏省农业科学院 家畜核心体温测量的方法和装置
US20180049646A1 (en) * 2016-08-19 2018-02-22 Thalman Health Ltd. System and method for monitoring core body temperature
CN107049253A (zh) * 2017-04-10 2017-08-18 深圳市共进电子股份有限公司 一种基于人工智能的红外热成像体温检测方法和装置
CN108451509A (zh) * 2018-03-26 2018-08-28 杨松 连续测量核心体温方法及装置

Also Published As

Publication number Publication date
CN108451509A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
US11633110B2 (en) Biological data measurement device
US9204808B2 (en) Device for monitoring and/or improving the efficiency of physical training
EP2459976B1 (en) Sensor and method for determining a core body temperature
US20160058393A1 (en) Diagnostic apparatus, diagnostic method, and computer-readable storage medium
JP2017501793A (ja) 生命徴候のモニタリング及び管理
JP2019500180A5 (zh)
WO2019184677A1 (zh) 连续测量核心体温方法及装置
JP7073919B2 (ja) 生体内温度測定装置および生体内温度測定方法
CN102885629B (zh) 可测量体温的血氧测量仪
CN110375883B (zh) 基于主动热流控制的体温计及其测温方法
JPH0450009B2 (zh)
Niederauer et al. Development of a novel intra-abdominal pressure transducer for large scale clinical studies
Matsumoto et al. An earbud-type wearable (A hearable) with vital parameter sensors for early detection and prevention of heat-stroke
CN107397537A (zh) 一种移动终端以及体温测量方法
US11089999B1 (en) Hydration measurement with a watch
RU2537762C2 (ru) Способ и устройство для полуавтоматического диагностирования патологий молочных желез
de Oliveira et al. A silver nanowire-based flexible pressure sensor to measure the non-nutritive sucking power of neonates
CN209391915U (zh) 连续测量核心体温装置
CN212110347U (zh) 一种用于耳道检测的耳温枪
CN204133437U (zh) 手掌式多参数测量仪
TWM599627U (zh) 貼附式體溫測量裝置
CN114052669A (zh) 体温检测方法、耳挂式耳机、智能穿戴设备和存储介质
WO2022264271A1 (ja) 温度推定システムおよび温度推定方法
KR101738585B1 (ko) 발열액 또는 발열 화장품에 의한 피부 발열 온도 측정기
US20240123180A1 (en) Wristwatch System for Detecting Negative Emotional State of a Wearer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19777986

Country of ref document: EP

Kind code of ref document: A1