WO2019184581A1 - 一种车用电机控制器效率的测量方法、装置及系统 - Google Patents

一种车用电机控制器效率的测量方法、装置及系统 Download PDF

Info

Publication number
WO2019184581A1
WO2019184581A1 PCT/CN2019/073470 CN2019073470W WO2019184581A1 WO 2019184581 A1 WO2019184581 A1 WO 2019184581A1 CN 2019073470 W CN2019073470 W CN 2019073470W WO 2019184581 A1 WO2019184581 A1 WO 2019184581A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor controller
phase
voltage
under test
current
Prior art date
Application number
PCT/CN2019/073470
Other languages
English (en)
French (fr)
Inventor
宋强
王伟
李易庭
王明生
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2019184581A1 publication Critical patent/WO2019184581A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the present invention relates to the technical field of efficiency testing of a vehicle drive motor controller, and more particularly to a method, device and system for measuring the efficiency of a motor controller for a vehicle.
  • the efficiency test of the motor controller is an important test item for the motor controller test.
  • the method of motor controller efficiency test includes electricity quantity measurement method and heat quantity measurement method.
  • domestic and foreign research mainly focuses on the research of heat quantity measurement method, but the heat method can only test the efficiency of the motor controller in steady state, and the test needs The time is long, so this method is not suitable for measuring the instantaneous efficiency of the motor controller.
  • the electricity measurement method is generally adopted as the method for testing the efficiency of the motor controller by measuring the voltage and current of the input and output terminals of the motor controller, and obtaining the electric power of the input terminal and the output terminal through the power analyzer, thereby utilizing The formula calculates the efficiency of the motor controller.
  • the electricity quantity measurement method is theoretically feasible, but in the actual test process, due to the interference of various known or unknown factors and the existence of measurement errors, there is a problem that the efficiency test accuracy is not high to some extent. There is no accurate electricity measurement method for measuring the efficiency of the motor controller, which is a common problem in the efficiency test of the motor controller.
  • the efficiency of motor controllers is also one of the important performance indicators.
  • the efficiency test method of the motor controller usually adopts the above-mentioned conventional electric quantity measurement method, but in the actual test process, since the motor controller efficiency is generally very high, the motor controller generally adopts a high frequency IGBT module or a MOSFET module. High-frequency switching control, the resulting high-frequency harmonics and electromagnetic interference will have a large error impact on the signal measurement and efficiency calculation of the motor controller, and from time to time there will be more than 100 efficiency values of the motor controller. %Case.
  • the present invention provides a method, device and system for measuring the efficiency of a motor controller for a vehicle, which can effectively improve the accuracy of the efficiency test of the motor controller, and is important for the design and performance evaluation of the motor controller.
  • the meaning also applies to weapons and equipment, aerospace, mechanical electronics and many other fields.
  • a method for measuring the efficiency of a motor controller for a vehicle includes: obtaining an input of a motor controller under test according to an operating state of the motor under a preset working condition. power;
  • obtaining input power of the motor controller under test includes:
  • obtaining the energy loss power of the motor controller under test includes:
  • the current of each phase of the output end of the motor to be tested is divided into currents passing through the upper arm of each phase by a first preset formula. And the current through the lower arm of each phase;
  • the loss powers of the respective parts are added to obtain the total power loss of the motor controller under test.
  • a threshold is set according to the DC bus voltage, the threshold being 90% of the DC bus voltage
  • the first preset formula is:
  • I VTim and U VTim represent the current and voltage of the upper and lower arms of each phase
  • U DC represents the voltage of the DC terminal of the motor controller under test
  • i ⁇ ⁇ 1, 2, 3, ..., 2n ⁇ which means each bridge
  • I k represents the motor controller under test The current of each phase at the output; where, when i takes an odd number, When i takes an even number,
  • the second preset formula is:
  • P losses_m represents the power loss of the motor controller under test
  • T represents the fundamental period of the current at the output of the motor controller under test
  • t 1 is the arbitrary sampling start time
  • t 2 t 1 + T
  • U VTim indicates the voltage of the upper and lower arms of each phase
  • i ⁇ ⁇ 1, 2, 3, ..., 2n ⁇ which indicates the number of each bridge arm
  • I VTim (t) indicates the output of each motor controller under test.
  • a device for measuring the efficiency of a motor controller for a vehicle includes:
  • a first obtaining module configured to acquire an input power of the motor controller under test according to an operating state of the motor under a preset working condition
  • a second acquiring module configured to acquire energy loss power of the motor controller under test
  • a third acquiring module configured to acquire an output power of the motor controller under test according to the input power and the energy loss power
  • a fourth acquiring module configured to acquire, according to the output power and the input power, the efficiency of the measured motor controller.
  • the first acquiring module includes:
  • a first measuring submodule for respectively measuring a direct current and a direct current voltage at an input end of the motor controller to be tested by the current sensor and the voltage sensor;
  • a first acquiring submodule configured to acquire an input power of the motor controller under test according to the DC current and the DC voltage.
  • the second obtaining module includes:
  • a second measuring submodule configured to separately measure currents of the phases of the output of the motor controller to be tested
  • a second acquisition submodule configured to respectively measure a voltage V between a positive pole and a negative pole of the input end of the motor controller under test and each phase of the output end of the motor controller under test, and obtain the quilt according to the voltage V Measuring the voltage of the bridge arm on each phase of the output of the motor controller and the voltage of the lower arm of each phase;
  • a third obtaining sub-module configured to divide, according to the voltage of the upper arm of each phase and the voltage of the lower arm of each phase, the current of each phase of the output end of the motor controller to be tested by using a first preset formula Current through the upper arm of each phase and current through the lower arm of each phase;
  • a fourth obtaining submodule configured to: according to the voltage of the bridge arm on each phase of the output end of the motor controller to be tested, the voltage of the lower arm of each phase, the current passing through the upper arm of each phase, and the passing of the lower arm of each phase Current, obtaining the power loss of each part;
  • a fifth obtaining submodule configured to add the power loss of each part according to a second preset formula to obtain a total power loss of the motor controller under test.
  • a threshold is set according to a DC bus voltage, the threshold being 90% of a DC bus voltage; the first preset formula in the third acquisition submodule is:
  • I VTim and U VTim represent the current and voltage of the upper and lower arms of each phase
  • U DC represents the voltage of the DC terminal of the motor controller under test
  • i ⁇ ⁇ 1, 2, 3, ..., 2n ⁇ which means each bridge
  • I k represents the motor controller under test The current of each phase at the output; where, when i takes an odd number, When i takes an even number,
  • the second preset formula in the fifth obtaining submodule is:
  • P losses_m represents the power loss of the motor controller under test
  • T represents the fundamental period of the current at the output of the motor controller under test
  • t 1 is the arbitrary sampling start time
  • t 2 t 1 + T
  • U VTim indicates the voltage of the upper and lower arms of each phase
  • i ⁇ ⁇ 1, 2, 3, ..., 2n ⁇ indicating the number of each arm
  • changing to I VTim (t) indicates the output of the motor controller under test.
  • a measuring system for the efficiency of a motor controller for a vehicle which uses the measuring method of the efficiency of the motor controller for a vehicle according to any of the above embodiments to realize control of the motor for the vehicle Measurement of efficiency.
  • a method for measuring the efficiency of a motor controller for a vehicle includes: obtaining an input power of a motor controller under test according to an operating state of the motor under a preset working condition; acquiring the controller of the motor to be tested And an energy loss power; acquiring an output power of the motor controller under test according to the input power and the energy loss power; and acquiring, according to the output power and the input power, the efficiency of the motor controller under test.
  • the efficiency of the motor controller under test according to the requirements of the motor controller efficiency test, combined with the actual control strategy and working conditions of the vehicle drive motor controller, it is possible to test and calculate the junction temperature, motor running speed and torque of the motor controller at different power modules. Point motor controller efficiency.
  • the method provided by the embodiment of the invention takes into account the actual operating environment and working conditions of the motor system for the vehicle, and the motor controller has higher accuracy and less fluctuation of the efficiency value compared with the conventional measuring method; compared with the heat measuring method
  • the test equipment has a simple structure, which can effectively reduce the test time and reduce the test cost.
  • FIG. 1 is a flowchart of a method for measuring efficiency of a motor controller for a vehicle according to an embodiment of the present invention
  • FIG. 2 is a layout diagram of a test test bench used in an embodiment of the present invention.
  • FIG. 3 is a flowchart of obtaining energy loss power of a motor under test according to step S12 according to an embodiment of the present invention
  • FIG. 4A is a topological structural diagram of a motor controller according to an embodiment of the present invention.
  • 4B is a schematic diagram of a bridge arm voltage test at the output end of the motor controller according to an embodiment of the present invention
  • 4C is a schematic diagram of a bridge arm voltage test at the output end of the motor controller according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a device for measuring efficiency of a motor controller for a vehicle according to an embodiment of the present invention
  • FIG. 6 is a block diagram of a second obtaining module 52 according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method for measuring the efficiency of a motor controller for a vehicle, which will be described below with reference to the accompanying drawings.
  • a method for measuring the efficiency of a motor controller for a vehicle specifically includes the following steps:
  • the operating state of the motor under the preset working condition is based on the actual operating environment and working conditions of the motor system for the vehicle, wherein the working condition of the motor can be set according to the needs of the test, or the GB/ according to the current implementation can be selected.
  • T 18488.2-2015 “Motors for electric vehicles and their controllers Part 2: Test methods” is set up, the input power of the motor controller under test is obtained under the above conditions, and the energy loss power of the motor controller is obtained by calculation; Then, the input power is subtracted from the energy loss power to obtain the output power of the motor controller under test. The output power is compared with the input power, and the ratio can be used as the actual efficiency of the motor controller under test.
  • the method provided by the embodiment of the present invention is a power measurement method, and the efficiency of the motor controller under test is indirectly calculated by calculating the power loss of the motor controller under test.
  • the method provided by the embodiment of the present invention is Taking into account the actual operating environment and working conditions of the motor system of the vehicle, compared with the traditional measurement method, the measured motor controller has high accuracy and small fluctuation in efficiency; on the other hand, compared with the heat measurement method, the test equipment The structure is simple, which can effectively reduce the test time and reduce the test cost.
  • the test bench is composed of the following components: a battery simulator, a motor controller to be tested, a motor, Torque/speed sensor, coupling, dynamometer, dynamometer controller, liquid (water) circulating cooling system, current sensor, voltage sensor, power analyzer, control host computer & display interface, gantry system controller , data acquisition card, etc.
  • the test rig is cooled using a liquid (water) circulating cooling system with a temperature sensor that monitors the temperature of the coolant used by the motor and the motor controller under test.
  • the torque/speed sensor is connected to the motor and the dynamometer through a flexible coupling, wherein the connection with the motor is rigidly connected, and the connection with the dynamometer is elastically connected, so that the mechanical speed and torque of the motor output can be more accurately tested.
  • a current sensor and a voltage sensor are installed on the cable between the battery simulator and the motor controller to be tested.
  • a voltage sensor is installed between the input end and the output end of the motor controller to be tested, and the motor controller to be tested and the motor to be tested are A current sensor is mounted on the cable.
  • the test point of the voltage can be set between the input end and the output end of the motor controller, and the settings of other parts are the same as those of the conventional motor test bench.
  • the test process adopts the method of dragging and running with the dynamometer, and the thermistor is embedded in the internal part of the motor and the internal power module of the motor controller to be tested, so as to measure the motor winding and the power module of the motor controller under test.
  • the operating temperature is output to the gantry system controller.
  • the host computer is controlled to send a control command to the gantry system controller, and the gantry system controller sends a command to the battery simulator to control the battery simulator to operate according to a certain voltage or power mode, providing a device for the motor controller to be tested. Required voltage and current.
  • the gantry system controller controls the motor and the dynamometer to run according to certain instructions through the motor controller and the dynamometer controller.
  • the motor output speed and torque command are output to the gantry system controller through data acquisition. And save it automatically.
  • step S11 a current sensor and a voltage sensor are arranged at the input end of the motor controller to be tested, and the direct current and the direct current voltage at the input end of the motor controller to be tested can be measured.
  • the input power is equal to the input voltage of the motor controller under test multiplied by the input current, that is, according to the DC current and the DC voltage, thereby obtaining the input power of the motor controller under test.
  • step S12 the energy loss power of the motor controller under test is obtained, as shown in FIG. 3, including: S121 to S125;
  • a current sensor, an A current sensor, a B current sensor, and a C current sensor are arranged at the output end of the motor controller to be tested, and the sensor can be measured and measured.
  • the current at the output of the motor controller; at the same time, the voltage sensor is used to measure the voltages V 1 and V 2 between the positive and negative terminals of the input end of the motor controller under test and the terminal of a phase of the output terminal, and the voltages V 1 and V 2 can be used.
  • the current I 1 at the output of the motor controller under test is separated into an output current I 11 through the upper arm of the power module and an output current I 12 through the lower arm of the power module.
  • the output currents of the bridge arms and the lower arm of the B-phase and C-phase power modules can be obtained according to this method. Then input the measured current and voltage into the power analyzer, and calculate the loss power and input power of the motor controller under test. By using the power subtraction method, the output power of the motor controller under test can be obtained. Get the efficiency of the motor controller under test. In order to ensure the accuracy of the measurement during the test, the measurement points of voltage and current should be at the position of the motor controller under test close to the terminal.
  • the principle of the motor controller efficiency test method proposed by the present invention taking the A, B, C, and 3-phase output terminals as an example, the topology of the motor controller under test is shown inside the dotted line in FIG. 4A, and its output terminal A,
  • the currents of B and C are generated by the opening and closing of the upper and lower arms of the internal power module of the motor under test, such as the opening and closing of VT1 at the upper arm and VT2 at the lower arm.
  • a current sensor is arranged at the output of the motor controller under test to measure the current at the output of the motor controller under test.
  • the voltage drop of the laminated bus bar and the parasitic resistance of the power module is neglected (the value is very small), and the positive electrode and the input of the input end of the motor controller to be tested are measured by the voltage sensor.
  • the voltage of the bridge arm of the power module can be obtained by measuring the voltage V A1 between the phase A of the output of the motor controller.
  • the threshold is set, for example, 90% of the DC bus voltage (appropriately less than or greater than 90%, the larger the threshold, the higher the accuracy) is the threshold value, and the measured voltage is compared according to the first preset.
  • I VTim and U VTim represent the current and voltage of the upper and lower arms of the power module
  • U DC represents the voltage at the DC terminal of the motor controller under test
  • I k is the current at the output of the motor controller under test.
  • i represents the number of each bridge arm, such as number 1 in VT1, number 2 in VT2, etc.
  • m is the meaning of module , only the code name of the power module.
  • Subscript k A, B, C, k The name of each phase. Where i takes 1 and 2 in the above formula (1), k takes A, indicating the first phase; when i takes 3 and 4, k takes B, indicating the second phase; when i takes 5 and 6, k takes C , indicating the third phase.
  • ABC can be used to indicate each phase; when the output of the motor controller under test is greater than 3 phases, the names of the phases can be replaced by numbers, for example, the first phase and the second phase.
  • the phase, the third phase, and the fourth phase are equal.
  • the value of i is still 1 to 6, and for the fourth phase, i takes 7 and 8, and so on.
  • the current at the output of the motor controller under test can be divided into a current output through the upper arm and a current output through the lower arm.
  • the measured voltage between the positive and negative terminals of the input of the motor controller under test and the phase terminal of the output terminal and the separated current (for example, the voltages V 1 and V 2 of the first phase or the phase A) may be used.
  • the measured motor controller output current I 1 is separated by the output current I of the power module 11 of the arm 12) is input to a power analyzer and the output current I through the lower arm of the power module, the power loss of each part is obtained, Add the loss powers of these parts according to the second preset formula (2):
  • P losses_m represents the power loss of the motor controller under test, ie energy loss
  • T represents the fundamental period of the current at the output of the motor controller under test
  • t 1 is the start of any sampling
  • t 2 t 1 + T
  • U VTim represents the voltage of the upper and lower arms of each phase
  • i 1, 2, 3, 4, 5, 6... 2n
  • i is a positive integer
  • i represents the number of each bridge arm
  • I VTim (t) represents The current of the upper and lower arms of each phase of the output of the motor controller under test.
  • the total loss power of the motor controller under test can be obtained by the second preset formula (2).
  • the current sensor and the voltage sensor are respectively used to measure the DC current and the DC voltage at the input end of the motor controller under test, and the input electric power of the motor controller under test is calculated, and then the efficiency of the motor controller under test can be obtained, as shown in the formula (3). :
  • ⁇ mc represents the efficiency of the motor controller under test
  • P in represents the input power of the motor controller under test
  • P losses_m represents the power loss of the motor controller under test, ie energy loss.
  • the voltage between the negative electrode and the output phase A of the motor controller or other phases does not identify the voltage sensor in FIG. 2, but the test point is illustrated in FIG. 4C.
  • a voltage sensor can be added between the negative electrode and each phase such as ABC.
  • another method may be used, which uses a voltage sensor to measure the voltage between the positive electrode and each phase of the ABC to obtain the upper arm voltage of the output phase of the motor controller, and subtracts the voltage of the upper arm by the voltage at the input end of the motor controller. The corresponding lower arm voltage value can be obtained.
  • an embodiment of the present invention further provides a measuring device for the efficiency of a motor controller for a vehicle. Since the principle of solving the problem of the device is similar to the measuring method of the efficiency of the motor controller for the vehicle, the implementation of the device is See the implementation of the foregoing method, and the repeated description will not be repeated.
  • a device for measuring the efficiency of a motor controller for a vehicle includes:
  • the first obtaining module 51 is configured to obtain an input power of the motor controller under test according to an operating state of the motor under a preset working condition
  • a second obtaining module 52 configured to acquire energy loss power of the motor controller under test
  • a third obtaining module 53 configured to acquire, according to the input power and the energy loss power, an output power of the motor controller under test
  • the fourth obtaining module 54 is configured to acquire the measured motor controller efficiency according to the output power and the input power.
  • the first obtaining module 51 includes:
  • a first measuring sub-module 511 configured to respectively measure a direct current and a direct current voltage of the input end of the motor controller to be tested by the current sensor and the voltage sensor;
  • the first obtaining sub-module 512 is configured to acquire input power of the motor controller under test according to the DC current and the DC voltage.
  • the second obtaining module 52 includes:
  • a second measurement sub-module 521 configured to separately measure currents of the phases of the output of the motor controller to be tested
  • a second obtaining sub-module 522 configured to respectively measure a voltage V between a positive pole and a negative pole of the input end of the motor controller under test and each phase of the output end of the motor controller under test, and obtain the The voltage of the bridge arm on each phase of the output of the measured motor controller and the voltage of the lower arm of each phase;
  • a third obtaining sub-module 523 configured to divide, according to the voltage of the upper arm of each phase and the voltage of the lower arm of each phase, the current of each phase of the output end of the motor controller to be tested by a first preset formula The current through the upper arm of each phase and the current through the lower arm of each phase;
  • a fourth obtaining sub-module 524 configured to: according to the voltage of the bridge arm on each phase of the output of the motor controller to be tested, the voltage of each lower arm, the current through the upper arm of each phase, and the lower arm through each phase Current to obtain the power loss of each part;
  • the fifth obtaining sub-module 525 is configured to add the loss powers of the parts according to the second preset formula to obtain the total power loss of the tested motor controller.
  • a threshold is set according to the DC bus voltage, the threshold being 90% of the DC bus voltage
  • the first preset formula is:
  • I VTim and U VTim represent the current and voltage of the upper and lower arms of each phase
  • U DC represents the voltage of the DC terminal of the motor controller under test
  • i ⁇ ⁇ 1, 2, 3, ..., 2n ⁇ which means each bridge
  • I k represents the motor controller under test The current of each phase at the output; where, when i takes an odd number, When i takes an even number,
  • the second preset formula is:
  • P losses_m represents the power loss of the motor controller under test
  • T represents the fundamental period of the current at the output of the motor controller under test
  • t 1 is the arbitrary sampling start time
  • t 2 t 1 + T
  • U VTim indicates the voltage of the upper and lower arms of each phase
  • i ⁇ ⁇ 1, 2, 3, ..., 2n ⁇ which indicates the number of each bridge arm
  • I VTim (t) indicates the output of each motor controller under test.
  • a measuring system for the efficiency of a motor controller for a vehicle uses the method for measuring the efficiency of the motor controller for a vehicle according to any of the above embodiments. Achieve measurement of the efficiency of the motor controller for the vehicle.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

本发明涉及一种车用电机控制器效率的测量方法,包括:根据电机在预设工况下的运行状态,获取被测电机控制器的输入功率;获取所述被测电机控制器的能量损耗功率;根据所述输入功率和所述能量损耗功率,获取所述被测电机控制器的输出功率;根据所述输出功率和所述输入功率,获取所述被测电机控制器效率。本发明实施例所提供的方法考虑到了车用电机系统实际运行环境和工况,和传统的测量方法相比,试验得到的电机控制器效率值准确度高、波动小;和热量测量方法相比,试验设备结构简单,可以有效减少试验时间,降低试验成本。

Description

一种车用电机控制器效率的测量方法、装置及系统 技术领域
本发明涉及车用驱动电机控制器效率测试的相关技术领域,确切地说,涉及一种车用电机控制器效率的测量方法、装置及系统。
背景技术
电机控制器的效率测试是电机控制器试验的一个重要测试项目。
电机控制器效率测试的方法有电量测量法和热量测量法,国内外研究主要集中在对热量测量法的研究方面,但是由于热量法只能测试稳定状态时电机控制器的效率,且测试所需时间长,因此该方法并不适用于测量电机控制器的瞬时效率。为方便起见,目前一般采用电量测量法作为电机控制器效率测试的方法,其方法是通过测量电机控制器输入端和输出端的电压和电流,通过功率分析仪得到输入端和输出端的电功率,进而利用公式计算得到电机控制器的效率。电量测量法在理论上是可行的,但是在进行实际试验过程中,由于多种已知的或者未知的因素干扰,以及测量误差的存在,在一定程度上存在效率测试精度不高的问题,还没有比较准确的测量电机控制器效率的电量测量法,这是电机控制器效率测试的共性问题。
近二十年来,电动汽车技术获得了快速发展,随着人们环保意识的增强和对电动汽车技术的认可,电动汽车在世界范围内逐渐开始普及。车用驱动电机控制器作为电动汽车的核心零部件之一,在电动汽车中起着非常重要的作用,它直接关系到电动汽车的运行效率,影响电动汽车的续驶里程,因此车用驱动电机工作效率的准确测试对于车用电机性能的高效控制和车载能源的高效利用至关重要。
在电动汽车领域,电机控制器的效率也是重要性能指标之一。目前,电机 控制器的效率测试方法通常是采用上述传统的电量测量方法,但是在实际测试过程中,由于电机控制器效率一般都非常高,而电机控制器一般采用高频率的IGBT模块或者MOSFET模块进行高频开关控制,由此带来的高频谐波和电磁干扰都会对电机控制器的信号测量和效率计算带来很大的误差影响,并且不时还会出现电机控制器的效率值超过100%的情况。
因此,如何有效地提高电机控制器效率测试的精度,是同行业技术人员亟待解决的问题。
发明内容
鉴于上述问题,本发明提供一种车用电机控制器效率的测量方法、装置及系统,该测量方法,可以有效地提高电机控制器效率测试的精度,对电机控制器的设计和性能评价具有重要的意义,也适用于武器装备、航空航天、机械电子等诸多领域。
为实现上述目的,根据本公开实施例的第一方面,提供一种车用电机控制器效率的测量方法,包括:根据电机在预设工况下的运行状态,获取被测电机控制器的输入功率;
获取所述被测电机控制器的能量损耗功率;
根据所述输入功率和所述能量损耗功率,获取所述被测电机控制器的输出功率;
根据所述输出功率和所述输入功率,获取所述被测电机控制器效率。
在一个实施例中,获取被测电机控制器的输入功率,包括:
通过电流传感器和电压传感器分别测量被测电机控制器输入端的直流电流和直流电压;
根据所述直流电流和所述直流电压,获取被测电机控制器的输入功率。
在一个实施例中,获取所述被测电机控制器的能量损耗功率,包括:
分别测量所述被测电机控制器输出端各相的电流;
分别测量所述被测电机控制器输入端的正极和负极与所述被测电机控制器输出端各相之间的电压V,根据所述电压V,获取所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压;
根据所述各相上桥臂的电压和各相下桥臂的电压,通过第一预设公式,将所述被测电机控制器输出端各相的电流分为通过各相上桥臂的电流和通过各相下桥臂的电流;
根据所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压、通过各相上桥臂的电流和通过各相下桥臂的电流,获取各部分的损耗功率;
根据第二预设公式,将所述各部分的损耗功率相加,获得所述被测电机控制器总的损耗功率。
在一个实施例中,根据直流母线电压,设定阈值,所述阈值为直流母线电压的90%;
所述第一预设公式为:
Figure PCTCN2019073470-appb-000001
式中,I VTim和U VTim表示各相上下桥臂的电流和电压,U DC表示被测电机控制器直流端的电压;i∈{1,2,3,…,2n},表示的是各个桥臂的编号,下标k∈{1,2,3,…,n},表示各相,每相依次各包括相对应的两个连续编号的桥臂;I k表示的是被测电机控制器输出端各相的电流;其中,当i取奇数时,
Figure PCTCN2019073470-appb-000002
当i取偶数时,
Figure PCTCN2019073470-appb-000003
在一个实施例中,所述第二预设公式为:
Figure PCTCN2019073470-appb-000004
式中,P losses_m表示的是被测电机控制器的损耗功率,T表示的是被测电机控制器输出端电流的基波周期,t 1是任意采样开始时刻,t 2=t 1+T;U VTim表示各相上下桥臂的电压;i∈{1,2,3,…,2n},表示的是各个桥臂的编号,I VTim(t)表示的是被测电机控制器输出端各相的上下桥臂的电流。
根据本公开实施例的第二方面,提供一种车用电机控制器效率的测量装置, 包括:
第一获取模块,用于根据电机在预设工况下的运行状态,获取被测电机控制器的输入功率;
第二获取模块,用于获取所述被测电机控制器的能量损耗功率;
第三获取模块,用于根据所述输入功率和所述能量损耗功率,获取所述被测电机控制器的输出功率;
第四获取模块,用于根据所述输出功率和所述输入功率,获取所述被测电机控制器效率。
在一个实施例中,所述第一获取模块,包括:
第一测量子模块,用于通过电流传感器和电压传感器分别测量被测电机控制器输入端的直流电流和直流电压;
第一获取子模块,用于根据所述直流电流和所述直流电压,获取被测电机控制器的输入功率。
在一个实施例中,所述第二获取模块,包括:
第二测量子模块,用于分别测量所述被测电机控制器输出端各相的电流;
第二获取子模块,用于分别测量所述被测电机控制器输入端的正极和负极与所述被测电机控制器输出端各相之间的电压V,根据所述电压V,获取所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压;
第三获取子模块,用于根据所述各相上桥臂的电压和各相下桥臂的电压,通过第一预设公式,将所述被测电机控制器输出端各相的电流分为通过各相上桥臂的电流和通过各相下桥臂的电流;
第四获取子模块,用于根据所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压、通过各相上桥臂的电流和通过各相下桥臂的电流,获取各部分的损耗功率;
第五获取子模块,用于根据第二预设公式,将所述各部分的损耗功率相加,获得所述被测电机控制器总的损耗功率。
在一个实施例中,根据直流母线电压,设定阈值,所述阈值为直流母线电压的90%;所述第三获取子模块中的所述第一预设公式为:
Figure PCTCN2019073470-appb-000005
式中,I VTim和U VTim表示各相上下桥臂的电流和电压,U DC表示被测电机控制器直流端的电压;i∈{1,2,3,…,2n},表示的是各个桥臂的编号,下标k∈{1,2,3,…,n},表示各相,每相依次各包括相对应的两个连续编号的桥臂;I k表示的是被测电机控制器输出端各相的电流;其中,当i取奇数时,
Figure PCTCN2019073470-appb-000006
当i取偶数时,
Figure PCTCN2019073470-appb-000007
在一个实施例中,所述第五获取子模块中的所述第二预设公式为:
Figure PCTCN2019073470-appb-000008
式中,P losses_m表示的是被测电机控制器的损耗功率,T表示的是被测电机控制器输出端电流的基波周期,t 1是任意采样开始时刻,t 2=t 1+T;U VTim表示各相上下桥臂的电压;i∈{1,2,3,…,2n},表示的是各个桥臂的编号,改为I VTim(t)表示的是被测电机控制器输出端各相的上下桥臂的电流。
根据本公开实施例的第三方面,提供一种车用电机控制器效率的测量系统,使用如上述实施例任一项所述的车用电机控制器效率的测量方法,实现对车用电机控制器效率的测量。
本发明实施例提供的上述技术方案的有益效果至少包括:
本发明实施例提供的一种车用电机控制器效率的测量方法,包括:根据电机在预设工况下的运行状态,获取被测电机控制器的输入功率;获取所述被测电机控制器的能量损耗功率;根据所述输入功率和所述能量损耗功率,获取所述被测电机控制器的输出功率;根据所述输出功率和所述输入功率,获取所述被测电机控制器效率。上述方案中,按电机控制器效率试验的要求,结合车用驱动电机控制器实际控制策略和工作工况,可以试验测量和计算电机控制器在不同的功率模块结温、电机运行转速和转矩点的电机控制器效率。本发明实施 例所提供的方法考虑到了车用电机系统实际运行环境和工况,和传统的测量方法相比,试验得到的电机控制器效率值准确度高、波动小;和热量测量方法相比,试验设备结构简单,可以有效减少试验时间,降低试验成本。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明实施例提供的一种车用电机控制器效率的测量方法的流程图;
图2为本发明实施例所使用的测试试验台架布置图;
图3为本发明实施例提供的步骤S12获取被测电机控制器的能量损耗功率的流程图;
图4A为本发明实施例提供的电机控制器拓扑结构图;
图4B为本发明实施例提供的电机控制器输出端A相上桥臂电压测试示意图;
图4C为本发明实施例提供的电机控制器输出端A相下桥臂电压测试示意图;
图5为本发明实施例提供的车用电机控制器效率的测量装置的框图;
图6为本发明实施例提供的第二获取模块52的框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了 本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本发明实施例提供了一种车用电机控制器效率的测量方法,下面结合附图说明。
本发明实施例中,涉及一种车用电机控制器效率的测量方法,参照图1所示,具体包括以下步骤:
S11、根据电机在预设工况下的运行状态,获取被测电机控制器的输入功率;
S12、获取所述被测电机控制器的能量损耗功率;
S13、根据所述输入功率和所述能量损耗功率,获取所述被测电机控制器的输出功率;
S14、根据所述输出功率和所述输入功率,获取所述被测电机控制器效率。
本实施例中,电机在预设工况下的运行状态,是基于车用电机系统实际运行环境和工况,其中电机工作工况可以根据试验的需要设置,也可以选取依据现在实施的GB/T 18488.2-2015《电动汽车用电机及其控制器第2部分:试验方法》进行设置,在上述工况下获取被测电机控制器的输入功率,并通过计算获取电机控制器的能量损耗功率;然后将输入功率减去能量损耗功率可以得出被测电机控制器的输出功率,输出功率与输入功率相比,比值可以作为被测电机控制器的实际效率。
本发明实施例提供的方法为电量测量法,通过计算被测电机控制器的损耗功率来间接计算被测电机控制器的效率,与现有测量方法相比,本发明实施例提供的方法一方面考虑到了车用电机系统实际运行环境和工况,和传统的测量方法相比,测量得到的被测电机控制器效率值准确度高、波动小;另一方面和热量测量方法相比,试验设备结构简单,可以有效减少试验时间,降低试验成本。
本发明涉及的车用电机控制器效率的测量方法,所使用的测试试验台架布置,参照图2所示,试验台架由以下几部分组成:电池模拟器、被测电机控制器、电机、转矩/转速传感器、联轴器、测功机、测功机控制器、液体(水)循环冷却系统、电流传感器、电压传感器、功率分析仪、控制上位机&显示界面、台架系统控制器、数据采集卡等。试验台架使用液体(水)循环冷却系统进行冷却,液体(水)循环冷却系统中具有温度传感器,可以监测电机和被测电机控制器所使用的冷却液的温度。转矩/转速传感器通过弹性联轴器连接电机和测功机,其中与电机的连接为刚性连接,与测功机的连接为弹性连接,这样可以更加准确的测试电机输出的机械转速和转矩。电池模拟器和被测电机控制器之间的线缆上装有电流传感器和电压传感器,被测电机控制器的输入端和输出端之间装有电压传感器,被测电机控制器和被测电机之间的线缆上装有电流传感器。本实施例中,可将电压的测试点设置在电机控制器的输入端与输出端之间,其他部分的设置与传统电机试验台架布置方案相同。
试验过程采用与测功机对拖运行的方式,在电机内部和被测电机控制器内部功率模块的基板上先埋置好热敏电阻,以便于测量电机绕组和被测电机控制器功率模块的工作温度,将测量数据输出到台架系统控制器。测量过程中,控制上位机发送控制指令至台架系统控制器,台架系统控制器发送指令至电池模拟器,控制电池模拟器按照一定的电压或者功率模式工作,为被测电机控制器提供所需的电压和电流。同时,台架系统控制器分别通过被测电机控制器和测功机控制器控制电机和测功机按照一定的指令运行,电机输出的转速和转矩指令通过数据采集输出到台架系统控制器,并自动保存。
下面分别对上述步骤作进一步的说明。
在一个实施例中,步骤S11中,在被测电机控制器的输入端布置电流传感器和电压传感器,可以测量被测电机控制器输入端的直流电流和直流电压。输入功率等于被测电机控制器的输入电压乘以输入电流,即:根据直流电流和直流电压,从而获得被测电机控制器的输入功率。
进一步地,上述步骤S12中,获取被测电机控制器的能量损耗功率,参照图3所示,包括:S121~S125;
S121、分别测量所述被测电机控制器输出端各相的电流;
S122、分别测量所述被测电机控制器输入端的正极和负极与所述被测电机控制器输出端各相之间的电压V,根据所述电压V,获取所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压;
S123、根据所述各相上桥臂的电压和各相下桥臂的电压,通过第一预设公式,将所述被测电机控制器输出端各相的电流分为通过各相上桥臂的电流和通过各相下桥臂的电流;
S124、根据所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压、通过各相上桥臂的电流和通过各相下桥臂的电流,获取各部分的损耗功率;
S125、根据第二预设公式,将所述各部分的损耗功率相加,获得所述被测电机控制器总的损耗功率。
本实施例中,参照图2所示,以3相为例,在被测电机控制器的输出端位置布置电流传感器,A电流传感器、B电流传感器、C电流传感器,该传感器可以测得被测电机控制器输出端的电流;同时,利用电压传感器测量被测电机控制器输入端的正极和负极与输出端某一相端子之间的电压V 1、V 2,通过该电压V 1、V 2可以将被测电机控制器输出端的电流I 1分离为通过功率模块上桥臂的输出电流I 11和通过功率模块下桥臂的输出电流I 12。同理,可按照此方法得到B相和C相功率模块上桥臂和下桥臂的输出电流。再将上述测量得到的电流和电压输入到功率分析仪中,可以计算得到被测电机控制器的损耗功率和输入功率,利用功率相减的方法,可以得到被测电机控制器的输出功率,进而得到被测电机控制器的效率。试验过程中为保证测量的精度,在测量时,电压和电流的测量点应在被测电机控制器靠近接线端子处。
本发明提出的电机控制器效率测试方法原理:还是以A、B、C,3相输出 端为例,被测电机控制器的拓扑结构参照图4A中的虚线内部所示,其输出端A、B、C的电流是由被测电机控制器内部功率模块的上下桥臂的开通和关断产生的,例如上桥臂处VT1和下桥臂处VT2的开通和关断。在被测电机控制器的输出端布置电流传感器,可以测量被测电机控制器输出端的电流。
参照图4B所示,以输出A相的模块为例,忽略了电源模块的叠层母线和寄生电阻的电压降(其数值非常微小),通过电压传感器测量被测电机控制器输入端的正极与被测电机控制器输出端A相之间的电压V A1,即可获得功率模块上桥臂的电压。
参照图4C所示,以输出A相的模块为例,同理,通过电压传感器测量被测电机控制器输入端的负极与被测电机控制器输出端A相之间的电压V A2,可以获得功率模块下桥臂的电压。类似地,用这种测量方法可以得到其他模块上下桥臂的电压。根据直流母线电压,设定阈值,比如以直流母线电压的90%(适当小于或大于90%也可以,这个阈值越大,精度越高)为阈值,比较测得的电压,根据第一预设公式(1)所示:
公式(1):
Figure PCTCN2019073470-appb-000009
式中,I VTim和U VTim表示功率模块上下桥臂的电流和电压,U DC表示被测电机控制器直流端的电压,I k是被测电机控制器输出端的电流。式中i=1,2,3,4,5,6,i为正整数,i表示的是各个桥臂的编号,例如VT1中的编号1、VT2中的编号2等,m是module的意思,仅为功率模块的代号。下标k=A,B,C,k表示的各相的名称。其中,上述公式(1)中i取1和2时,k取A,表示第1相;i取3和4时,k取B,表示第2相;i取5和6时,k取C,表示第3相。
当上述电机控制器的输出相为3相,可以用ABC来表示各相;当被测电机控制器的输出端大于3相时,可以用数字代替各相的名称,例如第1相、第2相、第3相、第4相等,对于前3相,i的取值仍旧为1至6,对于第4相,i取7和8,依次类推。
通过第一预设公式(1),可以将被测电机控制器输出端的电流分为通过上桥臂输出的电流和通过下桥臂输出的电流。将测得的被测电机控制器输入端的正极和负极与输出端某一相端子之间的电压以及分离出的电流(例如,通过第1相或A相的电压V 1、V 2,可以将被测电机控制器输出端的电流I 1分离为通过功率模块上桥臂的输出电流I 11和通过功率模块下桥臂的输出电流I 12)输入到功率分析仪中,得到各部分的损耗功率,将这几部分的损耗功率相加,根据第二预设公式(2)所示:
公式(2):
Figure PCTCN2019073470-appb-000010
式中,P losses_m表示被测电机控制器的损耗功率,即能量损耗,T表示的是被测电机控制器输出端电流的基波周期,t 1是任意采样开始时刻,t 2=t 1+T;U VTim表示各相上下桥臂的电压;i=1,2,3,4,5,6…2n,i为正整数,i表示的是各个桥臂的编号,I VTim(t)表示的是被测电机控制器输出端各相的上下桥臂的电流。
通过第二预设公式(2)即可得到被测电机控制器总的损耗功率。
利用电流传感器和电压传感器分别测量被测电机控制器输入端的直流电流和直流电压,计算出被测电机控制器的输入电功率,进而就可以得到被测电机控制器的效率,公式(3)所示:
公式(3):
Figure PCTCN2019073470-appb-000011
式中,η mc表示的是被测电机控制器的效率,P in表示的是被测电机控制器的输入功率,P losses_m表示的是被测电机控制器的损耗功率,即能量损耗。
需要说明的是,负极与电机控制器输出端A相或其他相之间的电压,为了图形的简洁,在图2中没有标识电压传感器,但是在图4C中做了测试点的说明。需要测量时,可以在负极与ABC等各相之间增设电压传感器。需要进一步说明的是,在应用该方法的时候,实际上是需要同时测量正极与ABC等各 相之间电压,以及负极与ABC等各相之间电压。此外,也可以采用另外一种方法,用电压传感器测量正极与ABC等各相之间电压得到电机控制器输出相的上桥臂电压,利用电机控制器输入端的电压减去上桥臂的电压即可得到相应下桥臂电压值。
基于同一发明构思,本发明实施例还提供了一种车用电机控制器效率的测量装置,由于这些装置所解决问题的原理与前述车用电机控制器效率的测量方法相似,因此该装置的实施可以参见前述方法的实施,重复之处不再赘述。
根据本公开实施例的第二方面,本发明实施例提供的一种车用电机控制器效率的测量装置,参照图5所示,包括:
第一获取模块51,用于根据电机在预设工况下的运行状态,获取被测电机控制器的输入功率;
第二获取模块52,用于获取所述被测电机控制器的能量损耗功率;
第三获取模块53,用于根据所述输入功率和所述能量损耗功率,获取所述被测电机控制器的输出功率;
第四获取模块54,用于根据所述输出功率和所述输入功率,获取所述被测电机控制器效率。
在一个实施例中,所述第一获取模块51,包括:
第一测量子模块511,用于通过电流传感器和电压传感器分别测量被测电机控制器输入端的直流电流和直流电压;
第一获取子模块512,用于根据所述直流电流和所述直流电压,获取被测电机控制器的输入功率。
在一个实施例中,第二获取模块52,包括:
第二测量子模块521,用于分别测量所述被测电机控制器输出端各相的电流;
第二获取子模块522,用于分别测量所述被测电机控制器输入端的正极和负极与所述被测电机控制器输出端各相之间的电压V,根据所述电压V,获取 所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压;
第三获取子模块523,用于根据所述各相上桥臂的电压和各相下桥臂的电压,通过第一预设公式,将所述被测电机控制器输出端各相的电流分为通过各相上桥臂的电流和通过各相下桥臂的电流;
第四获取子模块524,用于根据所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压、通过各相上桥臂的电流和通过各相下桥臂的电流,获取各部分的损耗功率;
第五获取子模块525,用于根据第二预设公式,将所述各部分的损耗功率相加,获得所述被测电机控制器总的损耗功率。
在一个实施例中,根据直流母线电压,设定阈值,所述阈值为直流母线电压的90%;
所述第一预设公式为:
Figure PCTCN2019073470-appb-000012
式中,I VTim和U VTim表示各相上下桥臂的电流和电压,U DC表示被测电机控制器直流端的电压;i∈{1,2,3,…,2n},表示的是各个桥臂的编号,下标k∈{1,2,3,…,n},表示各相,每相依次各包括相对应的两个连续编号的桥臂;I k表示的是被测电机控制器输出端各相的电流;其中,当i取奇数时,
Figure PCTCN2019073470-appb-000013
当i取偶数时,
Figure PCTCN2019073470-appb-000014
在一个实施例中,所述第二预设公式为:
Figure PCTCN2019073470-appb-000015
式中,P losses_m表示的是被测电机控制器的损耗功率,T表示的是被测电机控制器输出端电流的基波周期,t 1是任意采样开始时刻,t 2=t 1+T;U VTim表示各相上下桥臂的电压;i∈{1,2,3,…,2n},表示的是各个桥臂的编号,I VTim(t)表示的是被测电机控制器输出端各相的上下桥臂的电流。
根据本公开实施例的第三方面,本发明实施例提供的一种车用电机控制器效率的测量系统,使用如上述实施例中任一项所述的车用电机控制器效率的测 量方法,实现对车用电机控制器效率的测量。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (9)

  1. 一种车用电机控制器效率的测量方法,其特征在于,包括:
    根据电机在预设工况下的运行状态,获取被测电机控制器的输入功率;
    获取所述被测电机控制器的能量损耗功率;
    根据所述输入功率和所述能量损耗功率,获取所述被测电机控制器的输出功率;
    根据所述输出功率和所述输入功率,获取所述被测电机控制器效率。
  2. 如权利要求1所述的一种车用电机控制器效率的测量方法,其特征在于,获取被测电机控制器的输入功率,包括:
    通过电流传感器和电压传感器分别测量被测电机控制器输入端的直流电流和直流电压;
    根据所述直流电流和所述直流电压,获取被测电机控制器的输入功率。
  3. 如权利要求1所述的一种车用电机控制器效率的测量方法,其特征在于,获取所述被测电机控制器的能量损耗功率,包括:
    分别测量所述被测电机控制器输出端各相的电流;
    分别测量所述被测电机控制器输入端的正极和负极与所述被测电机控制器输出端各相之间的电压V,根据所述电压V,获取所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压;
    根据所述各相上桥臂的电压和各相下桥臂的电压,通过第一预设公式,将所述被测电机控制器输出端各相的电流分为通过各相上桥臂的电流和通过各相下桥臂的电流;
    根据所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压、通过各相上桥臂的电流和通过各相下桥臂的电流,获取各部分的损耗功率;
    根据第二预设公式,将所述各部分的损耗功率相加,获得所述被测电机控制器总的损耗功率。
  4. 如权利要求3所述的一种车用电机控制器效率的测量方法,其特征在 于,根据直流母线电压,设定阈值,所述阈值为直流母线电压的90%;所述第一预设公式为:
    Figure PCTCN2019073470-appb-100001
    式中,I VTim和U VTim表示各相上下桥臂的电流和电压,U DC表示被测电机控制器直流端的电压;h∈{1,2,3,…,2n},表示的是各个桥臂的编号,下标k∈{1,2,3,…,n},表示各相,每相依次各包括相对应的两个连续编号的桥臂;I k表示的是被测电机控制器输出端各相的电流;其中,当i取奇数时,
    Figure PCTCN2019073470-appb-100002
    当i取偶数时,
    Figure PCTCN2019073470-appb-100003
  5. 如权利要求4所述的一种车用电机控制器效率的测量方法,其特征在于,所述第二预设公式为:
    Figure PCTCN2019073470-appb-100004
    式中,P losses_m表示的是被测电机控制器的损耗功率,T表示的是被测电机控制器输出端电流的基波周期,t 1是任意采样开始时刻,t 2=t 1香T;U VTim表示各相上下桥臂的电压;h∈{1,2,3,…,2n},表示的是各个桥臂的编号,I VTim(t)表示的是被测电机控制器输出端各相的上下桥臂的电流。
  6. 一种车用电机控制器效率的测量装置,其特征在于,包括:
    第一获取模块,用于根据电机在预设工况下的运行状态,获取被测电机控制器的输入功率;
    第二获取模块,用于获取所述被测电机控制器的能量损耗功率;
    第三获取模块,用于根据所述输入功率和所述能量损耗功率,获取所述被测电机控制器的输出功率;
    第四获取模块,用于根据所述输出功率和所述输入功率,获取所述被测电机控制器效率。
  7. 如权利要求6所述的一种车用电机控制器效率的测量装置,其特征在于,所述第一获取模块,包括:
    第一测量子模块,用于通过电流传感器和电压传感器分别测量被测电机控 制器输入端的直流电流和直流电压;
    第一获取子模块,用于根据所述直流电流和所述直流电压,获取被测电机控制器的输入功率。
  8. 如权利要求6所述的一种车用电机控制器效率的测量装置,其特征在于,所述第二获取模块,包括:
    第二测量子模块,用于分别测量所述被测电机控制器输出端各相的电流;
    第二获取子模块,用于分别测量所述被测电机控制器输入端的正极和负极与所述被测电机控制器输出端各相之间的电压V,根据所述电压V,获取所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压;
    第三获取子模块,用于根据所述各相上桥臂的电压和各相下桥臂的电压,通过第一预设公式,将所述被测电机控制器输出端各相的电流分为通过各相上桥臂的电流和通过各相下桥臂的电流;
    第四获取子模块,用于根据所述被测电机控制器输出端各相上桥臂的电压和各相下桥臂的电压、通过各相上桥臂的电流和通过各相下桥臂的电流,获取各部分的损耗功率;
    第五获取子模块,用于根据第二预设公式,将所述各部分的损耗功率相加,获得所述被测电机控制器总的损耗功率。
  9. 一种车用电机控制器效率的测量系统,其特征在于,使用如权利要求1-5任一项所述的车用电机控制器效率的测量方法,实现对车用电机控制器效率的测量。
PCT/CN2019/073470 2018-03-30 2019-01-28 一种车用电机控制器效率的测量方法、装置及系统 WO2019184581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810297009.1 2018-03-30
CN201810297009.1A CN108614151A (zh) 2018-03-30 2018-03-30 一种车用电机控制器效率的测量方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2019184581A1 true WO2019184581A1 (zh) 2019-10-03

Family

ID=63659476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073470 WO2019184581A1 (zh) 2018-03-30 2019-01-28 一种车用电机控制器效率的测量方法、装置及系统

Country Status (2)

Country Link
CN (1) CN108614151A (zh)
WO (1) WO2019184581A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614151A (zh) * 2018-03-30 2018-10-02 北京理工大学 一种车用电机控制器效率的测量方法、装置及系统
CN111289162A (zh) * 2018-12-07 2020-06-16 宝沃汽车(中国)有限公司 电机驱动系统效率测试方法、装置及系统
CN109649186B (zh) * 2018-12-10 2022-03-29 无锡华宸控制技术有限公司 直流功率估算方法、装置和电子设备
CN110912470A (zh) * 2019-10-22 2020-03-24 上海力信电气技术有限公司 基于功率流的车用永磁同步电机扭矩估算方法及介质
CN115615720B (zh) * 2022-12-16 2023-04-18 中安芯界控股集团有限公司 一种新能源汽车用动力总成测试系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052982A (zh) * 2010-10-09 2011-05-11 无锡市产品质量监督检验所 基于测功机的电动自行车电动机效率测量和分析方法
CN106092609A (zh) * 2016-08-04 2016-11-09 中国汽车工程研究院股份有限公司 电动汽车测试评价的多信息融合测试系统和方法
CN106357199A (zh) * 2016-08-31 2017-01-25 石光峰 电机节能控制系统及节能方法
CN108614151A (zh) * 2018-03-30 2018-10-02 北京理工大学 一种车用电机控制器效率的测量方法、装置及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847501B2 (en) * 2008-03-07 2010-12-07 Tesla Motors Varying flux versus torque for maximum efficiency
CN102692289B (zh) * 2012-06-25 2014-03-19 安徽安凯汽车股份有限公司 一种测量新能源汽车电驱动系统效率的测试方法
CN103324843B (zh) * 2013-06-09 2016-04-06 浙江大学 一种适用于不同子模块类型的mmc阀损耗计算方法
CN105514975B (zh) * 2015-11-27 2018-02-09 国网冀北电力有限公司电力科学研究院 一种光伏发电系统的能效预测方法
CN106646225B (zh) * 2016-10-10 2019-05-24 杭州戈虎达科技有限公司 一种便携式电机效率现场检测装置及方法
CN106556791B (zh) * 2016-10-13 2021-01-01 全球能源互联网研究院 一种大功率igbt动态测试电路及其控制方法
CN107479529A (zh) * 2017-07-11 2017-12-15 北京机械设备研究所 一种电机控制系统的测试系统和测试方法、电动汽车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052982A (zh) * 2010-10-09 2011-05-11 无锡市产品质量监督检验所 基于测功机的电动自行车电动机效率测量和分析方法
CN106092609A (zh) * 2016-08-04 2016-11-09 中国汽车工程研究院股份有限公司 电动汽车测试评价的多信息融合测试系统和方法
CN106357199A (zh) * 2016-08-31 2017-01-25 石光峰 电机节能控制系统及节能方法
CN108614151A (zh) * 2018-03-30 2018-10-02 北京理工大学 一种车用电机控制器效率的测量方法、装置及系统

Also Published As

Publication number Publication date
CN108614151A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2019184581A1 (zh) 一种车用电机控制器效率的测量方法、装置及系统
CN102393507B (zh) 一种电机参数检测方法及电机参数检测装置
CN1157845C (zh) 异步电机参数辨识方法
CN102694493B (zh) 一种故障模式下永磁电机转矩估算方法
CN102426337B (zh) 一种电机参数检测方法及电机参数检测装置
Boglietti et al. Efficiency determination of converter-fed induction motors: Waiting for the IEC 60034–2–3 standard
CN104034464B (zh) 偶数单元交流永磁电机转矩波动测试方法
CN104950257A (zh) 开放式绕组永磁同步电机测试系统及测试方法
CN109375102B (zh) 测取变频电机空载情况下由谐波引起的转子铜耗的方法
Ali et al. Power converter fault detection and isolation using high-frequency voltage injection in switched reluctance motor drives for automotive applications
CN102540076B (zh) 一种异步电机转子时间常数的测量方法
CN104697799A (zh) 一种发动机自动负荷加载测试系统及测试方法
CN106602953B (zh) 基于磁场定向准确性的感应电机转子时间常数的验证方法
Jiang et al. Experimental study on the influence of high frequency PWM harmonics on the losses of induction motor
CN104682721B (zh) 用于控制逆变器的设备和方法
CN104868815A (zh) 一种异步电机的高可靠性控制装置及方法
CN109861613A (zh) 一种电机的输出转矩的计算方法、装置及电子设备
CN112083349A (zh) 一种永磁同步电机定子绕组匝间短路故障诊断方法
Novak et al. Efficiency mapping of a 100 kW PMSM for traction applications
CN208420240U (zh) 一种基于纯电动汽车的电机效率实时车载测量系统
CN103713185B (zh) 交流变频电机的机端电压测量装置
CN109039208A (zh) 一种开关磁阻电机增量电感特性在线检测方法
Li et al. Assessing electric vehicle inverter to reduce energy consumption: using insulated gate bipolar transistor module to prevent the power loss and junction temperature
CN203732615U (zh) 交流变频电机的机端电压测量仪
CN110333711A (zh) 一种用于直流无刷电机控制器的老化测试装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776190

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776190

Country of ref document: EP

Kind code of ref document: A1