WO2019184560A1 - 基于视觉系统的滚压包边质量检测方法及系统 - Google Patents

基于视觉系统的滚压包边质量检测方法及系统 Download PDF

Info

Publication number
WO2019184560A1
WO2019184560A1 PCT/CN2019/071810 CN2019071810W WO2019184560A1 WO 2019184560 A1 WO2019184560 A1 WO 2019184560A1 CN 2019071810 W CN2019071810 W CN 2019071810W WO 2019184560 A1 WO2019184560 A1 WO 2019184560A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
quality
piping
workpiece
robot
Prior art date
Application number
PCT/CN2019/071810
Other languages
English (en)
French (fr)
Inventor
朱谷波
陈国金
杨晨
Original Assignee
广州瑞松北斗汽车装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州瑞松北斗汽车装备有限公司 filed Critical 广州瑞松北斗汽车装备有限公司
Publication of WO2019184560A1 publication Critical patent/WO2019184560A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1103Special, intelligent I-O processor, also plc can only access via processor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45066Inspection robot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field of automobile manufacturing, and relates to an automobile inner and outer panel edge wrapping process in automobile manufacturing, in particular to a rolling system quality detecting method and system based on a vision system.
  • the robot rolling edging technology is a new technology that has been developed and developed in recent years. Compared with the traditional edging technology, it has the advantages of equipment investment cost, good production flexibility and easy maintenance. It has become the edge technology of the automotive industry. hot spot. Factors such as the diameter of the roller, the height of the flanging, and the number of flanging during the rolling edge process all affect the forming quality of the piping.
  • Machine vision is a branch of artificial intelligence that is rapidly evolving. Simply put, machine vision is to use the machine instead of the human eye to make measurements and judgments.
  • the machine vision system converts the captured target into an image signal through a machine vision product (ie, an image capture device, divided into CMOS and CCD), and transmits it to a dedicated image processing system to obtain shape information of the target, according to pixel distribution. Information such as brightness and color is converted into a digitized signal; the image system performs various operations on these signals to extract features of the target, and then controls the action of the device on the basis according to the result of the discrimination.
  • a machine vision product ie, an image capture device, divided into CMOS and CCD
  • Information such as brightness and color is converted into a digitized signal; the image system performs various operations on these signals to extract features of the target, and then controls the action of the device on the basis according to the result of the discrimination.
  • the machine vision inspection method can greatly improve the efficiency and automation of production.
  • the application of the vision system is mentioned in the invention patent of the domestic authorization bulletin number CN104971973B, "An automobile wheel cover piping system and its use method", but it is limited to the positioning function of the vision system.
  • the application of vision system stays in the basic aspects of positioning and detection, and the application of vision system to quality inspection to improve the manufacturing quality of piping processing is still a blank.
  • the object of the present invention is to apply a vision system to the quality inspection of a rolling edging, and to provide a method and system for detecting the quality of the rolling edging based on a vision system.
  • the technical solution of the present invention is: a rolling edge quality detection method based on a vision system.
  • the vision system follows the image of the collected piping portion, and the piping is calculated by the image respectively.
  • the forming parameters of the workpiece in the process, and the quality of the piping is judged by the deviation analysis; the specific steps are as follows:
  • Step one parameter setting, inputting workpiece quality control parameters, including target indentation amount and target wave value, respectively in the piping controller of the piping system;
  • Step 2 following the data acquisition, the robot rolling edging system performs the piping, and the visual system follows the image of the portion where the rolling edging system is rolled;
  • Step 3 forming parameter analysis, the visual system analyzes the actual indentation amount and the actual wave value according to the image;
  • Step 4 the deviation calculation, comparing the actual indentation amount with the target indentation amount, obtaining the deviation of the indentation amount of the workpiece; comparing the actual wave value with the target wave value, obtaining the wave value deviation of the workpiece;
  • Step 5 Quality judgment, judge whether the deviation of the workpiece indentation amount and the deviation of the wave value are within a reasonable range. If yes, the workpiece quality is qualified; otherwise, the workpiece quality is unqualified, and the PLC controller of the piping system indicates that the quality problem occurs.
  • a rolling edge quality inspection system based on vision system comprising a rolling edge system and a vision system, the rolling edge system comprising a piping system PLC controller, a piping robot, a robot control cabinet; the piping system PLC
  • the controller is provided with a mass analysis module for storing workpiece quality control parameters, analyzing deviations, and a robot control module for controlling the robot through the robot control cabinet;
  • the vision system includes an image acquisition device, an image processing industrial computer; and the image acquisition device is installed
  • the image processing industrial computer is provided with a retracting amount analysis module and a wave value analysis module; and the image processing industrial computer is connected with the piping system PLC controller.
  • the invention applies the vision system to the quality inspection of the edge processing, replaces the backward method of the original manual detection and the post-test, optimizes the quality inspection to the on-line detection and online feedback in the machine vision, the processing follow, and further improves the robot rolling in the automobile manufacturing.
  • Figure 1 is a schematic view of the structure of the present invention.
  • a rolling edge quality detection method based on vision system In the process of rolling edge wrapping, the vision system follows the image of the collecting edge portion, and the forming parameters of the workpiece during the rolling process are calculated by the image respectively, and the piping is determined by the deviation analysis. Quality, problem diagnosis using the quality database.
  • the vision system is divided into an acquisition system, a data transmission system, and an image processing system.
  • Step one parameter setting, input quality control parameters in the piping controller of the piping system, and the quality control parameters include the target indentation amount and the target wave value.
  • the indentation amount refers to the relative difference between the farthest point of the arc-shaped expansion line of the workpiece after rolling and the front line expansion line.
  • the wave value is the wrinkle of the workpiece after the value is rolled.
  • the indentation and wave value are the two most representative quality control indicators in the robot rolling edging process, which can effectively reflect the forming quality of the workpiece.
  • Step 2 following the data acquisition, the robot rolling edging system performs the piping, and the visual system follows the image of the portion where the rolling edging system is rolled;
  • Step 3 forming parameter analysis, the visual system analyzes the actual indentation amount and the actual wave value according to the image;
  • Step 4 the deviation calculation, comparing the actual indentation amount with the target indentation amount, obtaining the deviation of the indentation amount of the workpiece, comparing the actual wave value with the target wave value, and obtaining the wave value deviation of the workpiece;
  • Step 5 Quality judgment, judge whether the deviation of the workpiece indentation amount and the deviation of the wave value are within a reasonable range; if yes, the workpiece quality is qualified; otherwise, the workpiece quality is unqualified, and the PLC controller of the piping system indicates that the quality problem occurs.
  • a vision system-based rolling edge quality inspection system includes a rolling edge system and a vision system, and the rolling edge system includes a piping system PLC controller, a piping robot, and a robot control cabinet.
  • the rolling system PLC controller is provided with a quality analysis module for storing workpiece quality control parameters, analyzing deviations, and a robot control module for controlling the robot through the robot control cabinet;
  • the vision system includes an image acquisition device and an image processing industrial computer;
  • the image acquisition device is installed on the rolling robot;
  • the image processing industrial computer is provided with a retraction amount analysis module and a wave value analysis module; and the image processing industrial computer is connected with the piping system PLC controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Manipulator (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • General Factory Administration (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种基于视觉系统的滚压包边质量检测方法及系统,在滚压包边过程中,视觉系统跟随采集滚边部位的图像,分别通过图像计算出滚边过程中工件的成形参数,通过偏差分析判断滚边的质量。质量检测系统包括滚压包边系统、视觉系统,滚压包边系统包括滚边系统PLC控制器、滚边机器人、机器人控制柜,视觉系统包括图像采集装置、图像处理工控机;图像采集装置安装在滚边机器人上。

Description

基于视觉系统的滚压包边质量检测方法及系统
技术领域
本发明涉及汽车制造领域,涉及汽车制造中的汽车内外板包边工艺,尤其涉及一种基于视觉系统的滚压包边质量检测方法及系统。
背景技术
机器人滚压包边技术是近几年兴起、发展的新技术,其余传统的包边技术相比,具有设备投资成本底、生产柔性好、维护保养容易等优点,成为了汽车业包边工艺的热点。滚压包边过程中滚轮直径、翻边高度、滚边次数等因素都会影响滚边的成形质量。
对包边工艺质量控制,只能在整套工艺流程完成之后,通过人工观察、测量评价产品质量。机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种),将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。在大批量重复性工业生产过程中,用机器视觉检测方法可以大大提高生产的效率和自动化程度。
国内授权公告号CN104971973B的发明专利《一种汽车轮罩滚边系统及其使用方法》中提到了视觉系统的应用,但其仅限于视觉系统的定位功能。在滚边加工领域,视觉系统的应用停留在定位、检测有无等基础方面,将视觉系统应用于质量检测,以提高滚边加工的制造质量,仍然属于空白。
发明内容
本发明的目的是将视觉系统应用于滚压包边的质量检测,提供一种基于视觉系统的滚压包边质量检测方法及系统。
为实现上述发明目的,本发明的技术方案是:一种基于视觉系统的滚压包边质量检测方法,在滚压包边过程中,视觉系统跟随采集滚边部位的图像,分别通过图像计算出滚边过程中工件的成形参数,通过偏差分析判断滚边的质量;具体步骤如下:
步骤一,参数设置,在滚边系统PLC控制器中分别输入工件质量控制参数,包括目标缩进量、目标波浪值;
步骤二,跟随数据采集,机器人滚压包边系统进行滚边,视觉系统跟随采集滚压包边系统滚过的部位的图像;
步骤三,成形参数分析,视觉系统根据图像分析滚边实际缩进量、实际波浪值;
步骤四,偏差计算,对比实际缩进量与目标缩进量,得到工件的缩进量偏差;对比实际波浪值与目标波浪值,得到工件的波浪值偏差;
步骤五,质量判断,判断工件缩进量偏差、波浪值偏差是否在合理范围,是,则说明工件质量合格;否,则说明工件质量不合格,滚边系统PLC控制器报警提示出现质量问题。
一种基于视觉系统的滚压包边质量检测系统,包括滚压包边系统、视觉系统,所述滚压包边系统包括滚边系统PLC控制器、滚边机器人、机器人控制柜;所述滚边系统PLC控制器设有用于存储工件质量控制参数、分析偏差的质量分析模块,和通过机器人控制柜控制机器人的机器人控制模块;所述视觉系统包括图像采集装置、图像处理工控机;所述图像采集装置安装在滚边机器人上;所述图像处理工控机内设缩进量分析模块、波浪值分析模块;所述图像处理工控机与滚边系统PLC控制器连接。
本发明的有益效果是:
本发明将视觉系统应用于滚边加工的质量检测,替代原有人工检测、事后检测的落后方法,将质量检测优化为机器视觉、加工跟随中的在线检测、在线反馈,进一步提高汽车制造中机器人滚压包边生产的自动化、智能化。
附图说明
图1为本发明结构示意图。
具体实施方式
下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述。
一种基于视觉系统的滚压包边质量检测方法,在滚压包边过程中,视觉系统跟随采集滚边部位的图像,分别通过图像计算出滚边过程中工件的成形参数,通过偏差分析判断滚边的质量,借助质量数据库进行问题诊断。视觉系统分为采集系统、数据传输系统、图像处理系统。
具体步骤如下:
步骤一,参数设置,在滚边系统PLC控制器中输入质量控制参数,质量控制参数包括目标缩进量、目标波浪值。缩进量是指滚边后的工件弧状扩线最远处相对滚边前扩线的相对差值。 波浪值是值滚边后工件的起皱情况。缩进量和波浪值是机器人滚压包边工艺中最有代表性的两个质量控制指标,能够有效反映工件成形质量。
步骤二,跟随数据采集,机器人滚压包边系统进行滚边,视觉系统跟随采集滚压包边系统滚过的部位的图像;
步骤三,成形参数分析,视觉系统根据图像分析滚边实际缩进量、实际波浪值;
步骤四,偏差计算,对比实际缩进量与目标缩进量,得到工件的缩进量偏差,对比实际波浪值与目标波浪值,得到工件的波浪值偏差;
步骤五,质量判断,判断工件缩进量偏差、波浪值偏差是否在合理范围;是,则说明工件质量合格;否,则说明工件质量不合格,滚边系统PLC控制器报警提示出现质量问题。
如图1所示,一种基于视觉系统的滚压包边质量检测系统,包括滚压包边系统、视觉系统,所述滚压包边系统包括滚边系统PLC控制器、滚边机器人、机器人控制柜;所述滚边系统PLC控制器设有用于存储工件质量控制参数、分析偏差的质量分析模块,和通过机器人控制柜控制机器人的机器人控制模块;所述视觉系统包括图像采集装置、图像处理工控机;所述图像采集装置安装在滚边机器人上;所述图像处理工控机内设缩进量分析模块、波浪值分析模块;所述图像处理工控机与滚边系统PLC控制器连接。
所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (2)

  1. 一种基于视觉系统的滚压包边质量检测方法,其特征在于,在滚压包边过程中,视觉系统跟随采集滚边部位的图像,分别通过图像计算出滚边过程中工件的成形参数,通过偏差分析判断滚边的质量;具体步骤如下:
    步骤一,参数设置,在滚边系统PLC控制器中分别输入工件质量控制参数,包括目标缩进量、目标波浪值;
    步骤二,跟随数据采集,机器人滚压包边系统进行滚边,视觉系统跟随采集滚压包边系统滚过的部位的图像;
    步骤三,成形参数分析,视觉系统根据图像分析滚边实际缩进量、实际波浪值;
    步骤四,偏差计算,对比实际缩进量与目标缩进量,得到工件的缩进量偏差;对比实际波浪值与目标波浪值,得到工件的波浪值偏差;
    步骤五,质量判断,判断工件缩进量偏差、波浪值偏差是否在合理范围,是,则说明工件质量合格;否,则说明工件质量不合格,滚边系统PLC控制器报警提示出现质量问题。
  2. 一种基于视觉系统的滚压包边质量检测系统,其特征在于,包括滚压包边系统、视觉系统,所述滚压包边系统包括滚边系统PLC控制器、滚边机器人、机器人控制柜;所述滚边系统PLC控制器设有用于存储工件质量控制参数、分析偏差的质量分析模块,和通过机器人控制柜控制机器人的机器人控制模块;所述视觉系统包括图像采集装置、图像处理工控机;所述图像采集装置安装在滚边机器人上;所述图像处理工控机内设缩进量分析模块、波浪值分析模块;所述图像处理工控机与滚边系统PLC控制器连接。
PCT/CN2019/071810 2018-03-28 2019-01-15 基于视觉系统的滚压包边质量检测方法及系统 WO2019184560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810263966.2 2018-03-28
CN201810263966.2A CN108363354B (zh) 2018-03-28 2018-03-28 基于视觉系统的滚压包边质量检测方法及系统

Publications (1)

Publication Number Publication Date
WO2019184560A1 true WO2019184560A1 (zh) 2019-10-03

Family

ID=63001187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071810 WO2019184560A1 (zh) 2018-03-28 2019-01-15 基于视觉系统的滚压包边质量检测方法及系统

Country Status (2)

Country Link
CN (1) CN108363354B (zh)
WO (1) WO2019184560A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331857B (zh) * 2018-11-02 2021-11-02 北部湾大学 板形工件包边装置的馈带机构控制系统
CN111331858B (zh) * 2018-11-02 2021-07-27 北部湾大学 板形工件包边系统软件上料取放流程
TWI840719B (zh) 2021-11-26 2024-05-01 財團法人工業技術研究院 摺邊加工路徑規劃方法與摺邊加工系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822578A (zh) * 2012-11-16 2014-05-28 现代自动车株式会社 用于车辆的检查系统以及用于车辆的门的检查方法
KR101438625B1 (ko) * 2013-03-26 2014-09-11 현대자동차 주식회사 차량용 갭 및 단차 측정 시스템 및 그 제어방법
CN104971973A (zh) * 2015-06-16 2015-10-14 上海君屹工业自动化股份有限公司 一种汽车轮罩滚边系统及其使用方法
CN105945164A (zh) * 2016-04-01 2016-09-21 安徽同步自动化科技有限公司 五轴联动汽车覆盖件柔性滚压包边装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018253B (zh) * 2012-11-30 2014-12-31 湖南大学 医药视觉检测机器人的安瓿瓶外观质量检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822578A (zh) * 2012-11-16 2014-05-28 现代自动车株式会社 用于车辆的检查系统以及用于车辆的门的检查方法
KR101438625B1 (ko) * 2013-03-26 2014-09-11 현대자동차 주식회사 차량용 갭 및 단차 측정 시스템 및 그 제어방법
CN104971973A (zh) * 2015-06-16 2015-10-14 上海君屹工业自动化股份有限公司 一种汽车轮罩滚边系统及其使用方法
CN105945164A (zh) * 2016-04-01 2016-09-21 安徽同步自动化科技有限公司 五轴联动汽车覆盖件柔性滚压包边装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EDAG VI- SIONSYSTEM-HEMQC, 12 January 2018 (2018-01-12), Retrieved from the Internet <URL:https://www.cn-fft.com> *

Also Published As

Publication number Publication date
CN108363354B (zh) 2019-12-27
CN108363354A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2019184560A1 (zh) 基于视觉系统的滚压包边质量检测方法及系统
WO2016201947A1 (zh) 一种轮形铸造产品缺陷自动检测方法
CN102581244B (zh) 一种连铸铸坯表面质量的在线控制系统及控制方法
CN104964886A (zh) 一种焊接构件疲劳应力及应变实时非接触式监测方法
CN104089586A (zh) 发动机曲轴轴颈形状误差的图像检测装置和图像检测方法
CN113617852B (zh) 一种基于数据驱动的楔横轧智能化控制系统
CN106056603A (zh) 基于立体视觉的焊接执行参数在线检测方法
CN104134211A (zh) 一种基于高斯滤波器多分辨率滤波的带钢缺陷检测方法
CN102999451A (zh) 钢材计数系统及方法
CN117664990A (zh) 一种pcba外观缺陷智能检测方法
CN113554587A (zh) 一种基于深度学习的熔池图像几何特征提取方法及系统
WO2021179400A1 (zh) 一种基于计算机视觉的装配过程几何参数自适应测量系统及方法
CN206550522U (zh) 一种轮焊焊接闭环控制生产系统
CN110064680B (zh) 一种棒材大弯曲变形快速测量方法
CN108363355B (zh) 基于视觉系统的滚压包边轨迹优化方法及系统
CN112025519B (zh) 检测抛光一体化智能设备
CN111539951B (zh) 一种陶瓷砂轮头轮廓尺寸视觉检测方法
CN212379309U (zh) 一种锅炉受热面外观缺陷在线检测与识别装置
CN205324387U (zh) 一种三通管内高压成形过程在线检测系统
CN114952052B (zh) 多牛腿复杂钢构件焊接热变形控制方法
CN116152187A (zh) 一种基于多区域监控的气瓶收口方法、设备及介质
CN113701652B (zh) 一种钢卷内径智能高精度检测及缺陷诊断系统
CN206241007U (zh) 机器人滚边系统
CN116165280A (zh) 一种对激光熔覆过程内部缺陷实时监测方法与系统
Fei et al. Machine Vision Analysis of Welding Region and its Application to Seam Tracking in Arc Welding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19778347

Country of ref document: EP

Kind code of ref document: A1