WO2019184301A1 - 触控面板及其驱动方法、触控装置 - Google Patents

触控面板及其驱动方法、触控装置 Download PDF

Info

Publication number
WO2019184301A1
WO2019184301A1 PCT/CN2018/110035 CN2018110035W WO2019184301A1 WO 2019184301 A1 WO2019184301 A1 WO 2019184301A1 CN 2018110035 W CN2018110035 W CN 2018110035W WO 2019184301 A1 WO2019184301 A1 WO 2019184301A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
signal line
tail
touch
head
Prior art date
Application number
PCT/CN2018/110035
Other languages
English (en)
French (fr)
Inventor
杨富成
王政
韩文出
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/471,910 priority Critical patent/US11416098B2/en
Priority to EP18887219.6A priority patent/EP3783464A4/en
Publication of WO2019184301A1 publication Critical patent/WO2019184301A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality

Definitions

  • Embodiments of the present disclosure relate to a touch panel, a driving method thereof, and a touch device.
  • a touch panel can be classified into a capacitive type, an electromagnetic type, a resistive type, and an optical type.
  • the capacitive touch panel can be divided into an add-on touch panel, an on-cell touch panel, and an in-cell touch panel.
  • the in-cell touch panel can realize touch detection by utilizing the principle of mutual capacitance or self-capacitance.
  • the single-layer multi-point in-cell touch panel can utilize the self-capacitance principle to achieve multi-touch.
  • each touch sensor unit needs to be connected to the touch driving chip through a wire, and then the capacitance change amount on each touch sensor unit is sensed by the touch driving chip. Determine the touch location.
  • At least one embodiment of the present disclosure provides a touch panel including: a plurality of electrode groups and a plurality of signal lines, wherein the plurality of electrode groups are sequentially arranged in a first direction, and the plurality of electrode groups are arranged in a most a front electrode group; the plurality of signal lines including at least a first signal line and a second signal line; the first electrode group including at least a first head electrode, a second head electrode, a third head electrode, and a fourth head electrode The second head electrode and the third head electrode are disposed between the first head electrode and the fourth head electrode; the first head electrode and the fourth head electrode are respectively associated with the first signal The line is electrically connected, and the second signal line is electrically connected only to the second head electrode.
  • the plurality of electrode groups further includes a tail electrode group arranged at a rearmost side, and the plurality of signal lines further includes at least a third signal line;
  • the tail electrode group includes at least a first tail electrode, a second tail electrode, a third tail electrode and a fourth tail electrode, and the second tail electrode and the third tail electrode are disposed at the first tail electrode and Between the fourth tail electrodes; the first tail electrode and the fourth tail electrode are electrically connected to the third signal line, respectively.
  • the plurality of signal lines further includes a fourth signal line, and the third head electrode and the second tail electrode are respectively electrically connected to the fourth signal line connection.
  • the plurality of signal lines further includes a fifth signal line, and the fifth signal line is only electrically connected to the third tail electrode.
  • the tail electrode group further includes a fifth tail electrode
  • the plurality of signal lines further includes a sixth signal line
  • the sixth signal line is only the The fifth tail electrode is electrically connected separately.
  • the tail electrode group further includes a fifth tail electrode and a sixth tail electrode
  • the plurality of signal lines further includes a fifth signal line and a sixth signal line
  • the sixth signal line is electrically connected only to the fifth tail electrode
  • the third tail electrode and the sixth tail electrode are electrically connected to the fifth signal line, respectively.
  • the first signal line and the third signal line are located on a first side of the first electrode group and the tail electrode group, and the second signal The line, the fourth signal line, and the fifth signal line are located on a second side of the first electrode group and the tail electrode group.
  • the first signal line, the second signal line, the third signal line, the fourth signal line, and the fifth signal line are located The same layer.
  • the plurality of electrode groups are located in a same layer, and the first signal line, the second signal line, the third signal line, and the plurality of The electrode groups are on the same layer.
  • the first electrode group further includes a fifth head electrode
  • the tail electrode group further includes the fifth tail electrode
  • the plurality of signal lines further includes a first a seventh signal line; the fifth head electrode and the fifth tail electrode are electrically connected to the seventh signal line, respectively.
  • the fifth head electrode is located between the second head electrode and the third head electrode, and the fifth tail electrode is located at the second tail Between the electrode and the third tail electrode.
  • the seventh signal line is located at a different layer from at least one of the first signal line, the second signal line, and the third signal line. .
  • the first head electrode, the second head electrode, the third head electrode, and the fourth head electrode are sequentially arranged.
  • the plurality of electrode groups further includes an intermediate electrode group located between the first electrode group and the tail electrode group, and the plurality of signal lines further includes a fourth signal line, an eighth signal line, and a ninth signal line;
  • the intermediate electrode group includes at least a first intermediate electrode, the second intermediate electrode, a third intermediate electrode, and a fourth intermediate electrode, the first intermediate electrode
  • the fourth intermediate electrode is electrically connected to the eighth signal line, respectively, the third head electrode and the second intermediate electrode are electrically connected to the fourth signal line, respectively, the third intermediate electrode and the The second tail electrodes are electrically connected to the ninth signal line, respectively.
  • the first electrode group further includes a fifth head electrode
  • the tail electrode group further includes a fifth tail electrode
  • the middle electrode group further includes the fifth electrode
  • the intermediate electrode, the plurality of signal lines further includes a seventh signal line and a tenth signal line
  • the fifth head electrode is electrically connected to the seventh signal line, the fifth tail electrode and the tenth signal line Electrically connecting;
  • the fifth intermediate electrode is electrically connected to the seventh signal line; or the fifth intermediate electrode is electrically connected to the tenth signal line.
  • At least one embodiment of the present disclosure provides a touch device including the touch panel according to any of the above.
  • the touch panel touch device provided by an embodiment of the present disclosure further includes a touch chip.
  • the plurality of signal lines are electrically connected to the touch chip, and the touch chip is configured to apply a touch driving signal to each of the plurality of electrode groups through the plurality of signal lines, and is further configured
  • the touch sensing signals of the electrodes of the plurality of electrode groups on the touch panel are read by the plurality of signal lines to determine a touch position.
  • At least one embodiment of the present disclosure further provides a method for driving a touch panel according to any one of the preceding claims, comprising: applying time-sharing to electrodes in a plurality of electrode groups of the touch panel by the plurality of signal lines Controlling a driving signal; reading, by the plurality of signal lines, a touch sensing signal of an electrode of the plurality of electrode groups on the touch panel, and determining a touch position of the touch operation according to the touch sensing signal.
  • determining the touch position of the touch operation according to the touch sensing signal includes: receiving a touch sensing signal according to the plurality of electrodes located in the first direction Determining a first coordinate of the touch operation, and determining a touch position of the touch operation according to the first coordinate; or determining the touch according to a touch sensing signal of a plurality of electrodes located in the first direction Controlling a first coordinate of the operation, determining a second coordinate of the touch operation according to a touch sensing signal of the plurality of electrodes located in the second direction, and determining the touch according to the first coordinate and the second coordinate Controlling the touch position of the operation, wherein the first direction is not parallel to the second direction.
  • 1 is a schematic plan view showing a planar structure of an in-cell touch panel
  • FIG. 2A is a schematic plan view showing a touch panel according to an embodiment of the present disclosure
  • 2B is a schematic plan view showing another touch panel according to an embodiment of the present disclosure.
  • FIG. 3A is a schematic structural diagram of a side of an opposite electrode of a touch panel in a touch panel according to an embodiment of the present disclosure
  • FIG. 3B is another schematic structural diagram of the opposite side of adjacent electrodes in the touch panel according to an embodiment of the present disclosure
  • FIG. 4A is a schematic plan view of still another touch panel according to an embodiment of the present disclosure.
  • FIG. 4B is a schematic plan view of another touch panel according to an embodiment of the present disclosure.
  • 4C is a schematic plan view of still another touch panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic plan view of a touch panel according to another embodiment of the present disclosure.
  • FIG. 6A is another schematic plan view of a touch panel according to an embodiment of the present disclosure.
  • FIG. 6B is still another schematic plan view of a touch panel according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic block diagram of a touch device according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a driving method of a touch panel according to an embodiment of the present disclosure.
  • FIG. 9A is a schematic diagram of a touch control for detecting a first coordinate of a touch operation according to an embodiment of the present disclosure
  • FIG. 9B is another schematic diagram of a touch control for detecting a first coordinate of a touch operation according to an embodiment of the present disclosure
  • FIG. 9C is another schematic diagram of a touch control for detecting a first coordinate of a touch operation according to an embodiment of the present disclosure
  • FIG. 9D is still another schematic diagram of a touch control for detecting a first coordinate of a touch operation according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of a touch control for detecting a first coordinate and a second coordinate of a touch operation according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a touch control for detecting a first coordinate of a multi-touch operation according to an embodiment of the present disclosure.
  • driver chips With the rapid development of the electronics industry, the integration of driver chips is also constantly evolving. At the same time as the driver chip is integrated, the driver chip needs to implement more functions, so it is necessary to increase the size of the driver chip, resulting in an increase in production cost.
  • FIG. 1 is a schematic plan view showing a planar structure of an in-cell touch panel.
  • each self-capacitance electrode 90 needs to be connected to the touch driving chip 92 through a wire 91 . Since the number of the self-capacitance electrodes 90 is large, the number of the wires 91 connected to the self-capacitance electrode 90 is also large. Therefore, the pin corresponding to the wire 91 on the touch driving chip 92 is more, causing the touch. The size of the control driving chip 92 is further increased, and the cost of the touch driving chip 92 is further increased. In addition, since the number of the wires 91 is large, the frame of the in-cell touch panel is large, which is disadvantageous for the narrow bezel design.
  • the embodiment of the present invention provides a touch panel, a driving method thereof, and a touch device, which share a signal line through a plurality of electrodes, thereby reducing the number of signal lines, reducing the size of the touch driving chip, and reducing the production cost. It also reduces drive time, increases refresh rate, reduces power consumption, reduces array trace space, and improves accuracy.
  • FIG. 2 is a schematic diagram of a planar structure of a touch panel according to an embodiment of the present disclosure
  • FIG. 2B is a schematic diagram of a planar structure of another touch panel according to an embodiment of the present disclosure.
  • the touch panel provided by the embodiment of the present disclosure includes a plurality of electrode groups 10 and a plurality of signal lines 30 .
  • a plurality of electrode groups 10 are sequentially arranged, and the plurality of electrode groups 10 include a first electrode group 11 arranged at the forefront and a tail electrode group 12 arranged at the rear.
  • the plurality of signal lines 30 include at least a first signal line 31, a second signal line 32, and a third signal line 33.
  • the first electrode group 11 includes at least a first head electrode P11, a second head electrode P12, a third head electrode P13, and a fourth head electrode P14.
  • the second head electrode P12 and the third head electrode P13 are disposed between the first head electrode P11 and the fourth head electrode P14.
  • the tail electrode group 12 includes at least a first tail electrode P21, a second tail electrode P22, a third tail electrode P23, and a fourth tail electrode P24.
  • the second tail electrode P22 and the third tail electrode P23 are disposed between the first tail electrode P21 and the fourth tail electrode P24.
  • a plurality of electrodes in each electrode group are located in the same column.
  • the first head electrode P11, the second head electrode P12, the third head electrode P13, and the fourth head electrode P14 in the first electrode group 11 are located in the same column, in the tail electrode group 12.
  • the first tail electrode P21, the second tail electrode P22, the third tail electrode P23, and the fourth tail electrode P24 are located in the same column.
  • first head electrode P11 and the fourth head electrode P14 are electrically connected to the first signal line 31, respectively, and the first tail electrode P21 and the fourth tail electrode P24 are electrically connected to the third signal line 33, respectively, and the second head electrode P12 is separately
  • the second signal line 32 is electrically connected, and the second signal line 32 is electrically connected only to the second head electrode P12.
  • the first head electrode P11 and the fourth head electrode P14 may share the first signal line 31, and the first tail electrode P21 and the fourth tail electrode P24 may share the third signal line 33. Therefore, the touch panel provided by the embodiment of the present disclosure can share one signal line through a plurality of electrodes, thereby reducing the number of signal lines and the terminals on the touch driving chip, reducing the size of the touch driving chip, and reducing the production cost.
  • the touch panel may include a base substrate (not shown), and the plurality of electrode groups 10 and the plurality of signal lines 30 are disposed on the base substrate.
  • the plurality of signal lines 30 further include a fourth signal line 34 and a fifth signal line 35.
  • the third head electrode P13 and the second tail electrode P22 are electrically connected to the fourth signal line 34, respectively, and the third tail electrode P23 is electrically connected to the fifth signal line 35, respectively, and The fifth signal line 35 is only electrically connected to the third tail electrode P23, so that eight independent electrodes can be electrically connected to the touch chip 50 through five signal lines to implement a touch operation.
  • the second electrode P12 and the third tail electrode P23 are respectively electrically connected to one signal line, thereby eliminating touch blind spots and improving touch accuracy.
  • the first head electrode P11, the second head electrode P12, the third head electrode P13, and the fourth head electrode P14 are sequentially arranged; the first tail electrode P21 and the second tail electrode P22, third tail electrode P23, and fourth tail electrode P24 are also sequentially arranged.
  • the array of the plurality of electrode groups 10 is arranged in a plurality of rows and columns.
  • the plurality of head electrode groups 11 (for example, the first head electrode group 11 and the second head electrode group 11') are arranged in a row
  • the plurality of tail electrode groups 12 (for example, the first tail electrode group 12 and The second tail electrode group 12') is arranged in a row.
  • the first head electrode group 11 and the first tail electrode group 12 are arranged in a row
  • the second head electrode group 11' and the second tail electrode group 12' are arranged in a row.
  • the first head electrode group 11 corresponds to the first tail electrode group 12, and the first head electrode group 11 and the first tail electrode group 12 are located in the same column.
  • the second first electrode group 11' corresponds to the second tail electrode group 12', and the second first electrode group 11' and the second tail electrode group 12' are located in the same column.
  • the electrodes in the plurality of electrode groups 10 constitute a self-capacitance electrode array, and thus can be used for touch detection.
  • first direction and the second direction are not parallel. As shown in FIG. 2B, the first direction and the second direction may be perpendicular to each other.
  • the first direction may be a column direction of the plurality of electrode groups 10 or a row direction of the plurality of electrode groups 10; correspondingly, the second direction may be a row direction of the plurality of electrode groups 10, or may be a plurality of electrode groups 10 Column direction.
  • first direction and the second direction are perpendicular to each other, the angle between the first direction and the second direction is 90 degrees, but is not limited thereto, and the first direction and the second direction are required according to practical applications.
  • the angle between them can also be 45 degrees or the like. The disclosure does not limit this.
  • the electrodes in the plurality of electrode groups 10 have the same shape, thereby ensuring that the electrical characteristics of the electrodes in the plurality of electrode groups 10 are substantially uniform, thereby ensuring the accuracy of touch detection.
  • the electrodes in the plurality of electrode groups 10 are all rectangular. However, it is not limited thereto, and the electrodes in the plurality of electrode groups 10 may have different shapes.
  • FIG. 3A is a schematic structural view of a touch panel in which a side of an adjacent electrode is curved in a touch panel according to an embodiment of the present invention
  • FIG. 3B is a phase diagram of a touch panel according to an embodiment of the present disclosure
  • Another structural schematic diagram of the opposite side of the adjacent electrode is a curve.
  • the shape of the electrodes in the plurality of electrode groups 10 may be a regular shape such as a square, a rectangle, a triangle, a trapezoid or a circle, or the like.
  • the shape of the electrodes in the plurality of electrode groups 10 may also be irregular.
  • the opposite sides of the adjacent two electrodes have a curved shape, and the curved shapes match each other.
  • two adjacent electrodes for example, an adjacent first head electrode P11' and a first head electrode P11, an adjacent second head electrode P12' and a second head electrode P12
  • the opposite sides each have a stepped structure, and the two stepped structures have the same shape and match each other.
  • FIG. 3A in one example, two adjacent electrodes (for example, an adjacent first head electrode P11' and a first head electrode P11, an adjacent second head electrode P12' and a second head electrode P12)
  • the opposite sides each have a stepped structure, and the two stepped structures have the same shape and match each other.
  • two adjacent electrodes eg, an adjacent first head electrode P11' and a first head electrode P11, an adjacent second head electrode P12' and a second head
  • the opposite sides of the electrode P12 each have a concave-convex structure, and the two concave-convex structure shapes are mirror-symmetrical to each other and match each other.
  • a plurality of electrode groups 10 are located in the same layer.
  • the first electrode group 11 and the tail electrode group 12 are located in the same layer, that is, the first head electrode P11, the second head electrode P12, the third head electrode P13, the fourth head electrode P14, and the first tail.
  • the electrode P21, the second tail electrode P22, the third tail electrode P23 and the fourth tail electrode P24 are all located in the same layer, so that the touch panel can be a single-layer multi-in-line (In-Cell) touch panel.
  • the touch panel may also be other types of panels, such as an On-Cell touch panel. The disclosure does not limit this.
  • the plurality of signal lines 30 are insulated from each other and are electrically connected to the touch chip 50.
  • Each of the plurality of electrode groups 10 (for example, the first head electrode P11, the second head electrode P12, the first tail electrode P21, the second tail electrode P22, etc.) are independent of each other, and the touch chip 50 passes through
  • the strip signal lines 30 respectively detect the amount of change in capacitance of each of the plurality of electrodes 10, thereby determining the touch position. If the touch point overlaps two or more adjacent electrodes, the touch chip 50 can accurately calculate the touch position by combining the amount of capacitance change on the two or more adjacent electrodes.
  • the plurality of signal lines 30 are parallel to each other and extend in the same direction.
  • the first signal line 31, the second signal line 32, the third signal line 33, the fourth signal line 34, and the fifth signal line 35 each extend in the first direction.
  • the present invention is not limited thereto, and the plurality of signal lines 30 may extend in different directions, and in this case, the plurality of signal lines 30 may be prepared on different layers, for example, the first signal line 31 and the third signal line 33. They are located in different layers to insulate each other.
  • the first signal line 31 and the third signal line 33 are located on the first side of the first electrode group 11 and the tail electrode group 12, and the second signal line 32, the fourth signal line 34, and the fifth signal line 35 are located in the first electrode group 11 And the second side of the tail electrode group 12, so that the first signal line 31, the second signal line 32, the third signal line 33, the fourth signal line 34, and the fifth signal line 35 can be prevented from crossing each other to make the first signal line 31.
  • the second signal line 32, the third signal line 33, the fourth signal line 34, and the fifth signal line 35 may be located in the same layer.
  • the first side of the first electrode group 11 and the tail electrode group 12 is the left side
  • the second side of the first electrode group 11 and the tail electrode group 12 is the right side.
  • the plurality of signal lines 30 may be located on the same layer.
  • the first signal line 31, the second signal line 32, the third signal line 33, the fourth signal line 34, and the fifth signal line 35 may be located in the same layer.
  • the plurality of signal lines 30 (for example, the first signal line 31, the second signal line 32, the third signal line 33, the fourth signal line 34, and the fifth signal line 35) may adopt the same metal film and pass through The same patterning process is formed, thereby simplifying the manufacturing process of the touch panel, saving production cost and facilitating wiring.
  • the plurality of signal lines 30 may be located in different layers.
  • the plurality of signal lines 30 and the plurality of electrode groups 10 may be located on the same layer, thereby reducing the thickness of the touch panel and saving manufacturing costs.
  • the first signal line 31, the second signal line 32, the third signal line 33, the fourth signal line 34, and the fifth signal line 35 and the plurality of electrode groups 10 (for example, the first electrode group 11) It is located on the same layer as the tail electrode group 12).
  • FIG. 4A is a schematic plan view of another touch panel according to an embodiment of the present disclosure
  • FIG. 4B is a schematic plan view of another touch panel according to an embodiment of the present disclosure.
  • the tail electrode group 12 may include five tail electrodes, as shown in FIG. 4A.
  • the tail electrode group 12 may include a first tail electrode P21, a second tail electrode P22, a third tail electrode P23, and a fourth The tail electrode P24 and the fifth tail electrode P25
  • the plurality of signal lines 30 may further include a sixth signal line 36.
  • the third head electrode P13 and the second tail electrode P22 are electrically connected to the fourth signal line 34
  • the third tail electrode P23 is electrically connected to the fifth signal line 35
  • the fifth tail electrode P25 is electrically connected to the sixth signal line 36. That is, the fifth signal line 35 is only electrically connected to the third tail electrode P23, and the sixth signal line 36 is only electrically connected to the fifth tail electrode P25.
  • the first tail electrode P21, the second tail electrode P22, the third tail electrode P23, the fourth tail electrode P24, and the fifth tail electrode P25 are sequentially arranged.
  • the tail electrode group 12 may include six tail electrodes, as shown in FIG. 4B.
  • the tail electrode group 12 may include a first tail electrode P21, a second tail electrode P22, and a third tail electrode P23,
  • the four tail electrodes P24, the fifth tail electrode P25 and the sixth tail electrode P26, the plurality of signal lines 30 may further include a sixth signal line 36.
  • the third electrode P13 and the second tail electrode P22 are electrically connected to the fourth signal line 34, respectively, and the fifth tail electrode P25 is electrically connected to the sixth signal line 36, that is, the sixth signal line 36 is electrically connected only to the fifth tail electrode P25.
  • the third tail electrode P23 and the sixth tail electrode P26 are electrically connected to the fifth signal line 35, respectively.
  • the first tail electrode P21, the second tail electrode P22, the third tail electrode P23, the fourth tail electrode P24, the fifth tail electrode P25, and the sixth tail electrode P26 are sequentially arrangement.
  • the tail electrode group 12 may include seven tail electrodes, as shown in FIG. 4C.
  • the tail electrode group 12 may include a first tail electrode P21, a second tail electrode P22, and a third tail electrode P23,
  • the four tail electrodes P24, the fifth tail electrode P25, the sixth tail electrode P26, and the eighth tail electrode P28, the plurality of signal lines 30 may further include a sixth signal line 36 and an eleventh signal line 41.
  • the third electrode P13 and the second tail electrode P22 are electrically connected to the fourth signal line 34, respectively, and the fifth tail electrode P25 is electrically connected to the sixth signal line 36, and the third tail electrode P23 and the sixth tail electrode P26 are respectively.
  • the fifth signal line 35 is electrically connected, and the eighth electrode P28 is electrically connected to the eleventh signal line 41 alone.
  • the first tail electrode P21, the second tail electrode P22, the third tail electrode P23, the fourth tail electrode P24, the fifth tail electrode P25, the sixth tail electrode P26, and The eighth tail electrode P28 is sequentially arranged.
  • the tail electrode group 12 when the tail electrode group 12 includes six electrodes or seven electrodes, the third tail electrode P23 and the sixth tail electrode P26 share the fifth signal line 35.
  • the tail electrode group 12 may include four, five, six or seven tail electrodes, depending on the actual situation.
  • the sixth signal line 36 and the eleventh signal line 41 may be located on both sides of the first electrode group 11 and the tail electrode group 12, respectively, for example, as shown in FIG. 4C, the sixth signal line 36 is located at the head electrode group 11 and the tail.
  • the eleventh signal line 41 is located on the second side of the first electrode group 11 and the tail electrode group 12.
  • the sixth signal line 36 and the eleventh signal line 41 may also be located on the same side of the first electrode group 11 and the tail electrode group 12, for example, the first side.
  • the sixth signal line 36 and the eleventh signal line 41 may be located in the same layer as the remaining ones of the plurality of signal lines 30 (ie, the first to fourth signal lines).
  • connection manners of the remaining electrodes in the examples shown in FIG. 4A to FIG. 4C are the same as those in the example shown in FIG. 2A, and the repeated portions are not described again.
  • the description of the first to fourth tail electrodes the fifth to seventh tail electrodes are equally applicable without conflict.
  • FIG. 5 is a schematic plan view of a touch panel according to another embodiment of the present disclosure.
  • each of the electrode groups includes four electrodes except the tail electrode group 12.
  • each of the electrode groups may include five electrodes in addition to the tail electrode group 12.
  • the tail electrode group 12 may include five, six, seven, eight or nine tail electrodes, depending on the actual situation.
  • the first electrode group 11 may include a first head electrode P11, a second head electrode P12, a third head electrode P13, a fourth head electrode P14, and a fifth head electrode P15
  • the electrode group 12 may include a first tail electrode P21, a second tail electrode P22, a third tail electrode P23, a fourth tail electrode P24, and a fifth tail electrode P25.
  • the plurality of signal lines 30 further include a seventh signal line 37.
  • the fifth electrode P15 and the fifth tail electrode P25 are electrically connected to the seventh signal line 37, respectively.
  • the fifth head electrode P15 is located between the second head electrode P12 and the third head electrode P13
  • the fifth tail electrode P25 is located between the second tail electrode P22 and the third tail electrode P23.
  • the seventh signal line 37 and the fourth signal line 34 cross each other.
  • the seventh signal line 37 and the fourth signal line 34 may be located at different layers, respectively.
  • the seventh signal line 37 and the remaining ones of the plurality of signal lines 30 are located at different layers, that is, the seventh signal line 37 and the first signal line 31, the second signal line 32, the third signal line 33, and the fourth At least one of the signal line 34 and the fifth signal line 35 is located at a different layer.
  • the first signal line 31, the second signal line 32, the third signal line 33, the fourth signal line 34, and the fifth signal line 35 may be located in the same layer, and the seventh signal line 37 and the first signal line 31 are respectively located in different layers.
  • Layers, for example, the first signal line 31, the second signal line 32, the third signal line 33, the fourth signal line 34, and the fifth signal line 35 may be located in the first layer, and the seventh signal line 37 may be located in the second layer.
  • An insulating layer is disposed between the first layer and the second layer to insulate each other.
  • the seventh signal line 37 and the fifth head electrode P15 and the fifth tail electrode P25 are respectively located in different layers.
  • the fifth head electrode P15 and the fifth tail electrode P25 may be located in the first layer, and the seventh signal line 37 may be located.
  • the seventh signal line 37 may be electrically connected to the fifth first electrode P15 and the fifth tail electrode P25 through via holes in the insulating layer between the first layer and the second layer.
  • connection manners of the remaining electrodes in the example shown in FIG. 5 are the same as those in the example shown in FIG. 2A, and the repeated portions are not described again.
  • each of the plurality of electrode groups 10 may further include six electrodes, seven electrodes, and the like according to actual needs. The disclosure does not limit this.
  • FIG. 6A is another schematic plan view of a touch panel according to an embodiment of the present disclosure
  • FIG. 6B is another schematic plan view of a touch panel according to an embodiment of the present disclosure.
  • the plurality of electrode groups 10 further includes an intermediate electrode group 13.
  • the first electrode group 11, the intermediate electrode group 13 and the tail electrode group 12 are located in the same column, and the intermediate electrode group 13 is located between the first electrode group 11 and the tail electrode group 12, and the plurality of signal lines 30 further include The eighth signal line 38 and the ninth signal line 39.
  • the intermediate electrode group 13 includes at least a first intermediate electrode P31, a second intermediate electrode P32, a third intermediate electrode P33, and a fourth intermediate electrode P34.
  • the second intermediate electrode P32 and the third intermediate electrode P33 are located between the first intermediate electrode P31 and the fourth intermediate electrode P34.
  • the first intermediate electrode P31, the second intermediate electrode P32, the third intermediate electrode P33, and the fourth intermediate electrode P34 are sequentially arranged.
  • the first intermediate electrode P31 and the fourth intermediate electrode P34 are electrically connected to the eighth signal line 38, respectively, and the third first electrode P13 and the second intermediate electrode P32 are electrically connected to the fourth signal line 34, respectively.
  • the third intermediate electrode P33 and the second tail electrode P22 are electrically connected to the ninth signal line 39, respectively. That is, for the intermediate electrode group 13, the second intermediate electrode P32 shares a signal line with the third electrode of the adjacent upper electrode group (the third first electrode P13 in FIG. 6A), and the third intermediate electrode P33 thereof
  • the second electrode adjacent to the next electrode group shares a signal line, and so on, thereby achieving electrical connection of the signal line to the electrode.
  • each of the two electrodes is electrically connected to the same signal line. Thereby reducing the number of signal lines.
  • the first electrode group 11 may further include a fifth head electrode P15
  • the tail electrode group 12 further includes a fifth tail electrode P25
  • the intermediate electrode group 13 further includes a fifth intermediate electrode P35.
  • the plurality of signal lines 30 may also include a tenth signal line 40.
  • the fifth electrode P15 is electrically connected to the seventh signal line 37.
  • the fifth tail electrode P25 is electrically connected to the tenth signal line 40.
  • the fifth intermediate electrode P35 is electrically connected to the seventh signal line 37; or, the fifth intermediate electrode P35 is electrically connected to the tenth signal line 40, that is, the fifth intermediate electrode P35 may be adjacent to the adjacent one of the previous electrode groups.
  • the five electrodes (the fifth head electrode P15 in FIG. 6B) share one signal line, and may share one signal line with the fifth electrode (for example, the fifth tail electrode P25) in the adjacent next electrode group.
  • FIGS. 6A and 6B show only one intermediate electrode group 13.
  • a plurality of intermediate electrode groups may be included between the first electrode group 11 and the tail electrode group 12, and in the first direction, the first electrode group 11, the plurality of intermediate electrode groups, and the tail electrode group 12 are located in the same column .
  • FIG. 7 is a schematic block diagram of a touch device according to an embodiment of the present disclosure.
  • the touch device 100 includes the touch panel 101 described in any of the above embodiments.
  • the touch panel 101 can be a rectangular touch panel, a circular touch panel, an elliptical touch panel, or a polygonal touch panel.
  • the touch panel 101 can be not only a flat touch panel but also a curved touch panel or even a spherical touch panel.
  • the touch panel 101 can be of any of various types, such as an OGS (One Glass Solution) type touch panel, an In-Cell touch panel, or an On-Cell touch panel.
  • OGS One Glass Solution
  • In-Cell touch panel an In-Cell touch panel
  • On-Cell touch panel an On-Cell touch panel
  • the touch device 100 can be any product or component having a touch function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a touch function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the touch device 100 further includes a touch chip 50 .
  • a plurality of signal lines on the touch panel 101 are electrically connected to the touch chip 50.
  • the touch chip 50 is configured to apply a touch drive signal to each of the plurality of electrode groups on the touch panel 101 through a plurality of signal lines.
  • the touch chip 50 is further configured to read a touch sensing signal of each of the plurality of electrode groups on the touch panel 101 by using a plurality of signal lines to determine a touch position, thereby implementing touch detection.
  • the touch chip 50 can be independently configured or integrated with other computing devices, for example, a dedicated computing device (such as a digital processor (DSP), etc.) or a general-purpose computing device (such as a central processing unit (CPU)). )achieve.
  • a dedicated computing device such as a digital processor (DSP), etc.
  • a general-purpose computing device such as a central processing unit (CPU)
  • the touch device 100 further includes a display panel (not shown).
  • the display panel is configured to overlap the touch panel 101 and is configured to display an image.
  • the touch panel 101 may be disposed on the display side of the display panel, or the touch panel 101 may share some components with the display panel.
  • the base substrate of the touch panel 101 may be the display side substrate of the display panel.
  • the touch panel 101 is further configured to display an image, that is, the touch panel 101 and the display panel are integrated.
  • the touch electrode group ie, the first electrode group 11 and the tail electrode group 12 shown in FIG. 2A
  • the touch electrode group that implements the touch function can be integrated in the display panel to realize integration of touch and display, thereby reducing production cost and reducing
  • the volume and weight of the display panel increase the added value of the product.
  • the touch panel 101 may include a first substrate (ie, a base substrate) and a second substrate, the first substrate and the second substrate being opposed to each other.
  • the plurality of electrode groups are disposed on a side of the first substrate away from the second substrate.
  • a plurality of display pixels of a plurality of rows and columns are disposed on the second substrate to realize a display function.
  • the first substrate is disposed on the display side of the touch panel 101, and the plurality of electrode groups are disposed on the light exiting side of the first substrate.
  • the electrodes of the plurality of electrode groups may be transparent electrodes.
  • the material of the transparent electrode may include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In 2 O 3 ), aluminum zinc oxide (AZO), carbon nanotubes, or the like.
  • touch device 100 such as a control device, an image data encoding/decoding device, a line scan driver, a column scan driver, a clock circuit, etc.
  • a control device such as a control device, an image data encoding/decoding device, a line scan driver, a column scan driver, a clock circuit, etc.
  • image data encoding/decoding device such as a line scan driver, a column scan driver, a clock circuit, etc.
  • FIG. 8 is a flowchart of a driving method of a touch panel according to an embodiment of the present disclosure.
  • the driving method of the touch panel provided by the embodiment of the present disclosure can be applied to the touch panel described in any of the above embodiments.
  • the driving method may include the following steps:
  • S20 The touch sensing signals of the electrodes in the plurality of electrode groups on the touch panel are read by the plurality of signal lines, and the touch position of the touch operation is determined according to the touch sensing signals.
  • the driving time can be reduced, the refresh frequency can be increased, and power consumption can be reduced.
  • the touch chip can generate and output a touch driving signal, and then the plurality of signal lines can simultaneously transmit the touch driving signals to the respective electrodes of the plurality of electrode groups.
  • the touch drive signal can be a pulse voltage signal.
  • determining a touch position of the touch operation according to the touch sensing signal includes: determining a first coordinate of the touch operation according to the touch sensing signals of the plurality of electrodes located in the first direction, and according to the first Determining a touch position of the touch operation; or determining a first coordinate of the touch operation according to the touch sensing signals of the plurality of electrodes located in the first direction, and determining according to the touch sensing signals of the plurality of electrodes located in the second direction a second coordinate of the touch operation, and determining a touch position of the touch operation according to the first coordinate and the second coordinate, wherein the first direction is not parallel to the second direction.
  • first direction and the second direction are perpendicular to each other.
  • the first direction shown in FIG. 2B is the column direction
  • the second direction shown in FIG. 2B is the row direction
  • the first coordinate is the ordinate and the second coordinate is the abscissa.
  • FIG. 9A-9D illustrate touch diagrams for detecting a first coordinate of a touch operation.
  • the Q1 point when the Q1 point has a touch operation, the Q1 point partially overlaps the first head electrode P11 and the second head electrode P12, so that the first head electrode P11 and the second head electrode P12 are The capacitance changes, and the capacitance signals on the first signal line 31 and the second signal line 32 both change.
  • the touch chip When the touch chip detects that the capacitance signal on the first signal line 31 changes, it can be determined that the capacitance on the first first electrode P11 or the fourth first electrode P14 changes, and then, when the touch chip detects the second When the capacitance signal on the signal line 32 changes, it can be determined that the capacitance on the second head electrode P12 changes, and since the capacitance signal on the fourth signal line 34 does not change, the capacitance on the third head electrode P13 No change has occurred, so that it can be determined that the touch point Q1 is located between the first head electrode P11 and the second head electrode P12. Thereby, the touch chip can determine the first coordinate of the touch position of the touch operation by detecting the amount of change of the capacitance signal on the first signal line 31 and the second signal line 32.
  • the touch chip may be based on the first signal line 31 and the second signal line 32.
  • the amount of change in the capacitance signal accurately determines the touch position of the touch operation.
  • the area of the overlapping area of the Q1 point and the first head electrode P11 is Y11
  • the area of the overlapping area of the Q1 point and the second head electrode P12 is Y12
  • Y11 is greater than Y12
  • the capacitance of the first signal line 31 The amount of change in the signal is greater than the amount of change in the capacitance signal on the second signal line 32, so that in the first direction, it can be determined that the center of the Q1 point is closer to the first head electrode P11.
  • the amount of change of the capacitance signal on the first signal line 31 is smaller than the amount of change of the capacitance signal on the second signal line 32, so that in the first direction, it can be determined that the center of the Q1 point is closer to the second head.
  • Electrode P12. If Y11 is equal to Y12, the amount of change of the capacitance signal on the first signal line 31 is equal to the amount of change in the capacitance signal on the second signal line 32, if the shapes of the first head electrode P11 and the second head electrode P12 are regular. Rectangle, then in the first direction, it can be determined that the center of the Q1 point is located at the midpoint of the line connecting the center of the first head electrode P11 and the center of the second head electrode P12.
  • the Q2 point when the Q2 point has a touch operation, the Q2 point partially overlaps the third head electrode P13 and the fourth head electrode P14, so that the third head electrode P13 and the fourth head electrode P14 are The capacitance changes, and the capacitance signals on the first signal line 31 and the fourth signal line 34 both change.
  • the touch chip can determine the first coordinate of the touch position of the touch operation by detecting the amount of change of the capacitance signal on the first signal line 31 and the fourth signal line 34.
  • the specific detection process of the Q2 point reference may be made to the above description of the detection process of the Q1 point.
  • the touch position of the touch operation can be determined by three signal lines.
  • the Q3 point when the Q3 point has a touch operation, the Q3 point partially overlaps the first tail electrode P21, the second tail electrode P22, and the third tail electrode P23, so that the first tail electrode P21 and the second tail
  • the capacitance on the electrode P22 and the third tail electrode P23 changes, and the capacitance signals on the third signal line 33, the fourth signal line 34, and the fifth signal line 35 change.
  • the touch chip can determine the first coordinate of the touch position of the touch operation by detecting the amount of change of the capacitance signal on the third signal line 33, the fourth signal line 34, and the fifth signal line 35.
  • the area of the overlapping area of the Q3 point and the first tail electrode P21 is Y31
  • the area of the overlapping area of the Q3 point and the second tail electrode P22 is Y32
  • the area of the overlapping area of the Q3 point and the third tail electrode P23 is Y33.
  • Y32 is larger than Y31 and larger than Y33, so that the amount of change of the capacitance signal on the fourth signal line 34 is the largest, and it can be determined that the center of the Q3 point is located at the second tail electrode P22.
  • the Q4 point when the Q4 point has a touch operation, the Q4 point partially overlaps the second tail electrode P22, the third tail electrode P23, and the fourth tail electrode P24, so that the second tail electrode P22, The capacitances on the third tail electrode P23 and the fourth tail electrode P24 are changed, since the first tail electrode P21 and the fourth tail electrode P24 are both electrically connected to the third signal line 33, so that for the O4 point, the third signal is still The capacitance signals on the line 33, the fourth signal line 34, and the fifth signal line 35 change.
  • the touch chip can determine the first coordinate of the touch position of the touch operation by detecting the amount of change of the capacitance signal on the third signal line 33, the fourth signal line 34, and the fifth signal line 35.
  • the area of the overlapping area of the Q4 point and the second tail electrode P22 is Y41
  • the area of the overlapping area of the Q4 point and the third tail electrode P23 is Y42
  • the area of the overlapping area of the Q4 point and the fourth tail electrode P24 is Y43.
  • Y42 is larger than Y41 and larger than Y43, so that the amount of change of the capacitance signal on the fifth signal line 35 is the largest, and it can be determined that the center of the Q4 point is located at the third tail electrode P23.
  • both the Q3 point and the Q4 point are determined by detecting the amount of change in the capacitance signal on the third signal line 33, the fourth signal line 34, and the fifth signal line 35.
  • the amount of change in the capacitance signal on the fourth signal line 34 is the largest; and in FIG. 9D, the amount of change in the capacitance signal on the fifth signal line 35 is the largest. That is, for the case shown in FIGS.
  • the amount of change in the capacitance signal on at least a portion of the third signal line 33, the fourth signal line 34, and the fifth signal line 35 is different, thereby, the touch
  • the chip can determine the center of the touch point according to the magnitude of the change amount of the capacitance signal on the third signal line 33, the fourth signal line 34, and the fifth signal line 35, thereby determining the accurate position of the touch point.
  • FIG. 10 is a schematic diagram of a touch control for detecting a first coordinate and a second coordinate of a touch operation according to an embodiment of the present disclosure.
  • the first of the first first electrode P11, the second first electrode P12, and the second first electrode group 11' in the first and second electrode groups 11 of Q5 and Q1 The first electrode P11' and the second first electrode P12' are partially overlapped so as to be based on the first signal line 31 electrically connected to the first head electrode P11 and the second signal line 32 electrically connected to the second head electrode P12.
  • the amount of change of the capacitance signal on the first signal line 31' electrically connected to the first electrode P11' and the second signal line 32' electrically connected to the second head electrode P12' determines the touch position of the touch operation (ie, Q5) The first and second coordinates of the point).
  • the touch chip detects that the capacitance signal on the first signal line 31 changes, it can be determined that the capacitance on the first head electrode P11 or the fourth head electrode P14 changes, and then, when the touch chip When it is detected that the capacitance signal on the second signal line 32 changes, it can be determined that the capacitance on the second head electrode P12 changes, and since the capacitance signal on the fourth signal line 34 does not change, the third head electrode P13 There is no change in the capacitance on the upper side, so that it can be determined that the touch point Q5 is located between the first head electrode P11 and the second head electrode P12 in the first direction.
  • the touch chip can determine the first coordinate of the touch position of the touch operation by detecting the amount of change of the capacitance signal on the first signal line 31 and the second signal line 32. Then, since the first signal line 31 electrically connected to the first head electrode P11 and the capacitance signal on the first signal line 31' electrically connected to the first head electrode P11' are changed, it can be determined that the touch is in the second direction.
  • the point Q5 is located between the first head electrode P11 and the first head electrode P11'.
  • the touch chip can determine the second coordinate of the touch position of the touch operation by detecting the amount of change of the capacitance signal on the first signal line 31 and the first signal line 31'.
  • the specific position of the touched point Q5 can be determined by combining the first coordinate and the second coordinate.
  • first signal line 31 electrically connected to the first head electrode P11 and the second signal line 32 electrically connected to the second head electrode P12 are shown in FIG. a first signal line 31' electrically connected to the first head electrode P11' and a second signal line 32' electrically connected to the second head electrode P12'.
  • FIG. 11 is a schematic diagram showing the touch of detecting the first coordinates of the touch operations of the plurality of touch points.
  • the touch chip can determine whether the touch operation is a single touch or a multi-touch according to different signal lines; and then determine the touch operation according to the change amount of the capacitance signal on the signal line. position.
  • the touch operation may be determined to be multi-touch; when detecting multiple signals with different capacitance signals If the distance between different electrodes corresponding to the line is less than the shortest touch distance, it can be determined that the touch operation is a single touch.
  • the shortest distance between touches of two touch points may be 10 mm, and the shortest pitch of the touch may be 2.5 times the width of the electrodes in the plurality of electrode groups, for example, each of the plurality of electrode groups
  • the maximum width of the electrodes can be 4 mm.
  • the Q6 point when there are touch operations simultaneously at the Q6 point and the Q7 point, the Q6 point partially overlaps the first head electrode P11 and the second head electrode P12, and the Q7 point and the second tail electrode P22 and the third portion
  • the tail electrodes P23 are partially overlapped, so that the capacitances on the first head electrode P11, the second head electrode P12, the second tail electrode P22, and the third tail electrode P23 are changed, that is, the first signal line 31 and the second signal are changed.
  • the capacitance signals on the line 32, the fourth signal line 34, and the fifth signal line 35 all change.
  • the distance between the first head electrode P11 corresponding to the first signal line 31 and the third tail electrode P23 corresponding to the fifth signal line 35 It is larger than the shortest distance of the touch, so it can be determined that there are two touch points on the touch panel. Then, the position of the Q6 point can be determined based on the first signal line 31 and the second signal line 32, and the position of the Q7 point can be determined based on the fourth signal line 34 and the fifth signal line 35.
  • the area of the overlap of the Q6 point and the first head electrode P11 and the second head electrode P12 is the same, and the amount of change of the capacitance signal on the first signal line 31 and the second signal line 32 is the same, for example, at the first On the signal line 31 and the second signal line 32, the amount of change of the normalized capacitance signal is 0.5.
  • the area of the overlap of the Q 7 point and the first tail electrode P21 and the third tail electrode P23 is also the same, and the amount of change in the capacitance signal on the fourth signal line 34 and the fifth signal line 35 is the same, for example, in the fourth On the signal line 34 and the fifth signal line 35, the amount of change of the normalized capacitance signal is 0.5.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板及其驱动方法、触控装置。该触控面板包括:多个电极组(10)和多条信号线(30)。在第一方向上,多个电极组(10)依次排列,多个电极组(10)包括排列在最前面的首电极组(11);多条信号线(30)至少包括第一信号线(31)和第二信号线(32);首电极组(11)包括第一首电极(P11)、第四首电极(P14)和设置在第一首电极(P11)和第四首电极(P14)之间的第二首电极(P12)和第三首电极(P13);第一首电极(P11)和第四首电极(P14)分别与第一信号线(31)电连接,第二信号线(32)仅与第二首电极(P12)单独电连接。

Description

触控面板及其驱动方法、触控装置
本申请要求于2018年03月26日递交的中国专利申请第201810253620.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种触控面板及其驱动方法、触控装置。
背景技术
随着触控技术的不断发展,触控技术在手机、平板、笔记本电脑等电子产品中的应用日益广泛。通常,触控面板(Touch Panel)可以分为电容式、电磁式、电阻式和光学式等类型。电容式触控面板可以分为外挂式触控面板(Add on Mode Touch Panel)、覆盖表面式触控面板(On Cell Touch Panel)、以及内嵌式触控面板(In Cell Touch Panel)。
内嵌式触控面板可以利用互电容或自电容的原理实现触控检测。单层多点内嵌式触控面板可以利用自电容原理,以实现多点触控。在单层多点内嵌式触控面板中,每个触控传感器单元需要通过一条导线连接至触控驱动芯片,然后通过触控驱动芯片感测每个触控传感器单元上的电容变化量以确定触摸位置。
发明内容
本公开至少一实施例提供一种触控面板,包括:多个电极组和多条信号线,在第一方向上,所述多个电极组依次排列,所述多个电极组包括排列在最前面的首电极组;所述多条信号线至少包括第一信号线和第二信号线;所述首电极组至少包括第一首电极、第二首电极、第三首电极和第四首电极,所述第二首电极和所述第三首电极设置在所述第一首电极和所述第四首电极之间;所述第一首电极和第四首电极分别与所述第一信号线电连接,所述第二信号线仅与所述第二首电极单独电连接。
例如,在本公开一实施例提供的触控面板中,所述多个电极组还包括排列在最后面的尾电极组,所述多条信号线至少还包括第三信号线;
所述尾电极组至少包括第一尾电极、第二尾电极、第三尾电极和第四尾电 极,所述第二尾电极和所述第三尾电极设置在所述第一尾电极和所述第四尾电极之间;所述第一尾电极和第四尾电极分别与所述第三信号线电连接。
例如,在本公开一实施例提供的触控面板中,所述多条信号线还包括第四信号线,所述第三首电极和所述第二尾电极分别与所述第四信号线电连接。
例如,在本公开一实施例提供的触控面板中,所述多条信号线还包括第五信号线,所述第五信号线仅与所述第三尾电极单独电连接。
例如,在本公开一实施例提供的触控面板中,所述尾电极组还包括第五尾电极,所述多条信号线还包括第六信号线;所述第六信号线仅与所述第五尾电极单独电连接。
例如,在本公开一实施例提供的触控面板中,所述尾电极组还包括第五尾电极和第六尾电极,所述多条信号线还包括第五信号线和第六信号线;所述第六信号线仅与所述第五尾电极单独电连接,所述第三尾电极和所述第六尾电极分别与所述第五信号线电连接。
例如,在本公开一实施例提供的触控面板中,所述第一信号线和所述第三信号线位于所述首电极组和所述尾电极组的第一侧,所述第二信号线、所述第四信号线和所述第五信号线位于所述首电极组和所述尾电极组的第二侧。
例如,在本公开一实施例提供的触控面板中,所述第一信号线、所述第二信号线、所述第三信号线、所述第四信号线和所述第五信号线位于同一层。
例如,在本公开一实施例提供的触控面板中,所述多个电极组位于同一层,且所述第一信号线、所述第二信号线、所述第三信号线与所述多个电极组位于同一层。
例如,在本公开一实施例提供的触控面板中,所述首电极组还包括第五首电极,所述尾电极组还包括所述第五尾电极,所述多条信号线还包括第七信号线;所述第五首电极和所述第五尾电极分别与所述第七信号线电连接。
例如,在本公开一实施例提供的触控面板中,所述第五首电极位于所述第二首电极和所述第三首电极之间,所述第五尾电极位于所述第二尾电极和所述第三尾电极之间。
例如,在本公开一实施例提供的触控面板中,所述第七信号线与所述第一信号线、所述第二信号线和所述第三信号线中的至少之一位于不同层。
例如,在本公开一实施例提供的触控面板中,在所述第一方向上,所述第一首电极、所述第二首电极、所述第三首电极和所述第四首电极依次排列,所 述第一尾电极、所述第二尾电极、所述第三尾电极和所述第四尾电极依次排列。
例如,在本公开一实施例提供的触控面板中,所述多个电极组还包括中间电极组,位于所述首电极组和所述尾电极组之间,所述多条信号线还包括第四信号线、第八信号线和第九信号线;所述中间电极组至少包括第一中间电极、所述第二中间电极、第三中间电极和第四中间电极,所述第一中间电极和所述第四中间电极分别与所述第八信号线电连接,所述第三首电极和所述第二中间电极分别与所述第四信号线电连接,所述第三中间电极和所述第二尾电极分别与所述第九信号线电连接。
例如,在本公开一实施例提供的触控面板中,所述首电极组还包括第五首电极,所述尾电极组还包括第五尾电极,所述中间电极组还包括所述第五中间电极,所述多条信号线还包括第七信号线和第十信号线,所述第五首电极与所述第七信号线电连接,所述第五尾电极与所述第十信号线电连接;所述第五中间电极与所述第七信号线电连接;或者,所述第五中间电极与所述第十信号线电连接。
本公开至少一实施例还提供一种触控装置,包括根据上述任一所述的触控面板。
例如,本公开一实施例提供的触控面板触控装置还包括触控芯片。所述多条信号线与所述触控芯片电连接,所述触控芯片被配置为通过所述多条信号线给所述多个电极组中的各电极施加触控驱动信号,还被配置为通过所述多条信号线读取所述触控面板上的多个电极组中的各电极的触控感应信号以判断触摸位置。
本公开至少一实施例还提供用于上述任一所述的触控面板的驱动方法,包括:通过所述多条信号线分时向所述触控面板的多个电极组中的电极施加触控驱动信号;通过所述多条信号线读取所述触控面板上的多个电极组中的电极的触控感应信号,并根据所述触控感应信号判断触控操作的触摸位置。
例如,在本公开一实施例提供的驱动方法中,根据所述触控感应信号判断所述触控操作的触摸位置,包括:根据位于所述第一方向上的多个电极的触控感应信号确定所述触控操作的第一坐标,以及根据所述第一坐标确定所述触控操作的触摸位置;或者根据位于所述第一方向上的多个电极的触控感应信号确定所述触控操作的第一坐标,根据位于第二方向上的多个电极的触控感应信号确定所述触控操作的第二坐标,以及根据所述第一坐标和所述第二坐标确定所 述触控操作的触摸位置,其中,所述第一方向与所述第二方向不平行。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种内嵌式触控面板的平面结构示意图;
图2A为本公开一实施例提供的一种触控面板的平面结构示意图;
图2B为本公开一实施例提供的另一种触控面板的平面结构示意图;
图3A为本公开一实施例提供的一种触控面板中相邻的电极相对的侧边为曲线时的一种结构示意图;
图3B为本公开一实施例提供的一种触控面板中相邻的电极相对的侧边为曲线时的另一种结构示意图;
图4A为本公开一实施例提供的又一种触控面板的平面示意图;
图4B为本公开一实施例提供的另一种触控面板的平面示意图;
图4C为本公开一实施例提供的再一种触控面板的平面示意图;
图5为本公开另一实施例提供的一种触控面板的平面示意图;
图6A为本公开一实施例提供的一种触控面板的另一平面示意图;
图6B为本公开一实施例提供的一种触控面板的又一平面示意图;
图7为本公开一实施例提供的一种触控装置的示意性框图;
图8为本公开一实施例提供的一种触控面板的驱动方法的流程图;
图9A为本公开一实施例提供的检测触控操作的第一坐标的一种触控示意图;
图9B为本公开一实施例提供的检测触控操作的第一坐标的另一种触控示意图;
图9C为本公开一实施例提供的检测触控操作的第一坐标的又一种触控示意图;
图9D为本公开一实施例提供的检测触控操作的第一坐标的再一种触控示意图;
图10为本公开一实施例提供的检测触控操作的第一坐标和第二坐标的触控示意图;
图11为本公开一实施例提供的检测多点触控操作的第一坐标的触控示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
随着电子行业的飞速发展,驱动芯片的集成化也在不断发展。在驱动芯片集成化的同时,驱动芯片还需要实现更多的功能,因此需要增大驱动芯片的尺寸,从而导致生产成本增加。
图1为一种内嵌式触控面板的平面结构示意图。如图1所示,在内嵌式触控面板中,每个自电容电极90需要通过一条导线91连接至触控驱动芯片92。由于自电容电极90的数量较多,从而导致与自电容电极90连接的导线91的数量也较多,因此,触控驱动芯片92上与导线91对应的管脚(pin)较多,导致触控驱动芯片92的尺寸进一步增大,触控驱动芯片92的成本进一步增加。另外,由于导线91数量较多,会造成内嵌式触摸面板的边框较大,不利于窄边框设计。
本公开实施例提供一种触控面板及其驱动方法、触控装置,其通过多个电 极共用一条信号线,从而减少信号线的数量,减少触控驱动芯片的尺寸,降低生产成本,另外,还可以减少驱动时间,提高刷新频率,降低功耗,减少阵列的走线空间,提高精度。
下面结合附图对本公开的几个实施例进行详细说明,但是本公开并不限于这些具体的实施例。
图2A为本公开一实施例提供的一种触控面板的平面结构示意图,图2B为本公开一实施例提供的另一种触控面板的平面结构示意图。
例如,如图2A所示,本公开实施例提供的触控面板包括多个电极组10和多条信号线30。在第一方向上,多个电极组10依次排列,多个电极组10包括排列在最前面的首电极组11和排列在最后面的尾电极组12。多条信号线30至少包括第一信号线31、第二信号线32、第三信号线33。
例如,首电极组11至少包括第一首电极P11、第二首电极P12、第三首电极P13和第四首电极P14。第二首电极P12和第三首电极P13设置在第一首电极P11和第四首电极P14之间。尾电极组12至少包括第一尾电极P21、第二尾电极P22、第三尾电极P23和第四尾电极P24。第二尾电极P22和第三尾电极P23设置在第一尾电极P21和第四尾电极P24之间。
例如,在第一方向上,每个电极组中的多个电极位于同一列。例如,如图2A和图2B所示,首电极组11中的第一首电极P11、第二首电极P12、第三首电极P13和第四首电极P14位于同一列,尾电极组12中的第一尾电极P21、第二尾电极P22、第三尾电极P23和第四尾电极P24位于同一列。
例如,第一首电极P11和第四首电极P14分别与第一信号线31电连接,第一尾电极P21和第四尾电极P24分别与第三信号线33电连接,第二首电极P12单独与第二信号线32电连接,且第二信号线32仅与第二首电极P12电连接。
例如,第一首电极P11和第四首电极P14可以共用第一信号线31,第一尾电极P21和第四尾电极P24可以共用第三信号线33。由此,本公开实施例提供的触控面板可以通过多个电极共用一条信号线,从而减少信号线的数量和触摸驱动芯片上的接线端子,减少触控驱动芯片的尺寸,降低生产成本。
例如,触控面板可以包括衬底基板(图中未示出),多个电极组10和多条信号线30均设置在衬底基板上。
例如,如图2A和图2B所示,多条信号线30还包括第四信号线34和第 五信号线35。
例如,如图2A所示,在一个示例中,第三首电极P13和第二尾电极P22分别与第四信号线34电连接,第三尾电极P23单独与第五信号线35电连接,且第五信号线35仅与第三尾电极P23电连接,从而八个独立的电极可以通过五条信号线与触控芯片50电连接,以实现触控操作。第二首电极P12和第三尾电极P23分别单独与一条信号线电连接,从而可以消除触控盲点,提高触控准确性。
例如,如图2A所示,在第一方向上,第一首电极P11、第二首电极P12、第三首电极P13和第四首电极P14依次排列;第一尾电极P21、第二尾电极P22、第三尾电极P23和第四尾电极P24也依次排列。
例如,如图2B所示,多个电极组10阵列排布为多行多列。在第二方向上,多个首电极组11(例如,第一首电极组11和第二首电极组11')排列为一行,多个尾电极组12(例如,第一尾电极组12和第二尾电极组12')排列为一行。在第一方向上,第一首电极组11和第一尾电极组12排列为一列,且第二首电极组11'和第二尾电极组12'排列为一列。如图2A和图2B所示,在第一方向上,第一首电极组11与第一尾电极组12对应,且第一首电极组11和第一尾电极组12位于同一列。如图2B所示,第二首电极组11'与第二尾电极组12'对应,且第二首电极组11'和第二尾电极组12'位于同一列。多个电极组10中的电极构成自电容电极阵列,从而可以用于触控检测。
例如,第一方向和第二方向不平行。如图2B所示,第一方向和第二方向可以相互垂直。第一方向可以为多个电极组10的列方向,或者为多个电极组10的行方向;相应地,第二方向可以为多个电极组10的行方向,或者为多个电极组10的列方向。
需要说明的是,当第一方向和第二方向相互垂直时,第一方向和第二方向之间的夹角为90度,但不限于此,根据实际应用需要,第一方向和第二方向之间的夹角还可以为45度等。本公开对此不作限制。
例如,多个电极组10中的电极具有相同的形状,从而保证多个电极组10中的电极的电气特性基本一致,进而保证触控检测的精确性。例如,如图2A所示,多个电极组10中的电极均为矩形。但不限于此,多个电极组10中的电极也可以具有不同的形状。
图3A为本公开一实施例提供的一种触控面板中相邻的电极相对的侧边为 曲线时的一种结构示意图;图3B为本公开一实施例提供的一种触控面板中相邻的电极相对的侧边为曲线时的另一种结构示意图。
例如,多个电极组10中的电极的形状可以为规则形状,例如正方形、矩形、三角形、梯形或圆形等。多个电极组10中的电极的形状也可以为不规则形状。例如,相邻的两个电极相对的侧边为曲线形状,且曲线形状相互匹配。如图3A所示,在一个示例中,相邻的两个电极(例如,相邻的第一首电极P11'和第一首电极P11,相邻的第二首电极P12'和第二首电极P12)相对的侧边均具有阶梯状结构,两阶梯状结构形状一致且相互匹配。如图3B所示,在另一个示例中,相邻的两个电极(例如,相邻的第一首电极P11'和第一首电极P11,相邻的第二首电极P12'和第二首电极P12)相对的侧边均具有凹凸状结构,两凹凸状结构形状彼此镜像对称且相互匹配。
例如,多个电极组10位于同一层。如图2A所示,首电极组11和尾电极组12位于同一层,也就是说,第一首电极P11、第二首电极P12、第三首电极P13、第四首电极P14、第一尾电极P21、第二尾电极P22、第三尾电极P23和第四尾电极P24均位于同一层,从而触控面板可以为单层多点内嵌式(In-Cell)触控面板。但不限于此,触控面板还可以为其他类型的面板,例如覆盖表面式(On-Cell)触控面板。本公开对此不作限制。
例如,如图2A所示,多条信号线30彼此绝缘,且均电连接至触控芯片50。多个电极组10中的每个电极(例如,第一首电极P11、第二首电极P12、第一尾电极P21、第二尾电极P22等)都是相互独立的,触控芯片50通过多条信号线30分别检测多个电极10中的每个电极的电容变化量,从而确定触摸位置。若触摸点与两个或多个相邻的电极交叠时,触控芯片50可以通过结合两个或多个相邻的电极上的电容变化量来准确计算出触摸位置。
例如,多条信号线30彼此平行,且沿同一方向延伸。如图2A所示,第一信号线31、第二信号线32、第三信号线33、第四信号线34和第五信号线35均沿第一方向延伸。但不限于此,多条信号线30还可以沿不同的方向延伸,并且在这种情况下,多条信号线30可以制备在不同层上,例如,第一信号线31和第三信号线33分别位于不同层,从而实现彼此绝缘。
例如,第一信号线31和第三信号线33位于首电极组11和尾电极组12的第一侧,第二信号线32、第四信号线34和第五信号线35位于首电极组11和尾电极组12的第二侧,从而可以避免第一信号线31、第二信号线32、第三信 号线33、第四信号线34和第五信号线35相互交叉,使第一信号线31、第二信号线32、第三信号线33、第四信号线34和第五信号线35可以位于同一层。例如,如图2A所示,首电极组11和尾电极组12的第一侧为左侧,首电极组11和尾电极组12的第二侧为右侧。
例如,多条信号线30可以位于同一层。如图2A所示,第一信号线31、第二信号线32、第三信号线33、第四信号线34和第五信号线35可以位于同一层。在制备过程中,多条信号线30(例如,第一信号线31、第二信号线32、第三信号线33、第四信号线34和第五信号线35)可以采用同一金属薄膜并通过同一构图工艺形成,从而简化触控面板的制作工艺,节约生产成本,便于布线。但不限于此,多条信号线30也可以位于不同层。
例如,多条信号线30和多个电极组10可以位于同一层,从而降低触控面板的厚度,节约制作成本。例如,如图2A所示,第一信号线31、第二信号线32、第三信号线33、第四信号线34和第五信号线35与多个电极组10(例如,首电极组11和尾电极组12)位于同一层。
图4A为本公开一实施例提供的又一种触控面板的平面示意图,图4B为本公开一实施例提供的另一种触控面板的平面示意图,图4C为本公开一实施例提供的再一种触控面板的平面示意图。
例如,尾电极组12可以包括五个尾电极,如图4A所示,在一个示例中,尾电极组12可以包括第一尾电极P21、第二尾电极P22、第三尾电极P23、第四尾电极P24和第五尾电极P25,多条信号线30还可以包括第六信号线36。第三首电极P13和第二尾电极P22分别与第四信号线34电连接,第三尾电极P23单独与第五信号线35电连接,第五尾电极P25单独与第六信号线36电连接,也就是说,第五信号线35仅电连接第三尾电极P23,第六信号线36仅电连接第五尾电极P25。
例如,如图4A所示,在第一方向上,第一尾电极P21、第二尾电极P22、第三尾电极P23、第四尾电极P24和第五尾电极P25依次排列。
例如,尾电极组12可以包括六个尾电极,如图4B所示,在又一个示例中,尾电极组12可以包括第一尾电极P21、第二尾电极P22、第三尾电极P23、第四尾电极P24、第五尾电极P25和第六尾电极P26,多条信号线30还可以包括第六信号线36。第三首电极P13和第二尾电极P22分别与第四信号线34电连接,第五尾电极P25单独与第六信号线36电连接,即第六信号线36仅电连接 第五尾电极P25,第三尾电极P23和第六尾电极P26分别与第五信号线35电连接。
例如,如图4B所示,在第一方向上,第一尾电极P21、第二尾电极P22、第三尾电极P23、第四尾电极P24、第五尾电极P25和第六尾电极P26依次排列。
例如,尾电极组12可以包括七个尾电极,如图4C所示,在另一个示例中,尾电极组12可以包括第一尾电极P21、第二尾电极P22、第三尾电极P23、第四尾电极P24、第五尾电极P25、第六尾电极P26和第八尾电极P28,多条信号线30还可以包括第六信号线36和第十一信号线41。第三首电极P13和第二尾电极P22分别与第四信号线34电连接,第五尾电极P25单独与第六信号线36电连接,第三尾电极P23和第六尾电极P26分别与第五信号线35电连接,第八电极P28单独与第十一信号线41电连接。
例如,如图4C所示,在第一方向上,第一尾电极P21、第二尾电极P22、第三尾电极P23、第四尾电极P24、第五尾电极P25、第六尾电极P26和第八尾电极P28依次排列。
综上所述,当尾电极组12包括六个电极或七个电极时,第三尾电极P23和第六尾电极P26共用第五信号线35。根据实际情况,尾电极组12可以包括四个、五个、六个或七个尾电极。
例如,第六信号线36和第十一信号线41可以分别位于首电极组11和尾电极组12的两侧,例如,如图4C所示,第六信号线36位于首电极组11和尾电极组12的第一侧,第十一信号线41位于首电极组11和尾电极组12的第二侧。但不限于此,第六信号线36和第十一信号线41也可以位于首电极组11和尾电极组12的同一侧,例如第一侧。
例如,第六信号线36和第十一信号线41可以与多条信号线30中的其余信号线(即第一至第四信号线)位于同一层。
需要说明的是,图4A-图4C所示的示例中其余电极的连接方式与图2A所示的示例相同,重复之处不再赘述。另外,关于第一尾电极至第四尾电极的描述,在不冲突的情况下同样适用第五尾电极至第七尾电极。
图5为本公开另一实施例提供的触控面板的平面示意图。
例如,在图2A、图2B和图4A-图4C所示的触控面板中,在多个电极组10中,除尾电极组12外,每个电极组均包括四个电极。如图5所示,在另一 个实施例中,在多个电极组10中,除尾电极组12外,每个电极组还可以均包括五个电极。根据实际情况,尾电极组12可以包括五个、六个、七个、八个或九个尾电极。
例如,如图5所示,在一个示例中,首电极组11可以包括第一首电极P11、第二首电极P12、第三首电极P13、第四首电极P14和第五首电极P15,尾电极组12可以包括第一尾电极P21、第二尾电极P22、第三尾电极P23、第四尾电极P24和第五尾电极P25。多条信号线30还包括第七信号线37。第五首电极P15和第五尾电极P25分别与第七信号线37电连接。
例如,如图5所示,第五首电极P15位于第二首电极P12和第三首电极P13之间,第五尾电极P25位于第二尾电极P22和第三尾电极P23之间。
例如,如图5所示,第七信号线37与第四信号线34相互交叉,为防止信号线相互干扰,第七信号线37与第四信号线34可以分别位于不同层。由此,第七信号线37与多条信号线30中的其余信号线位于不同层,即第七信号线37与第一信号线31、第二信号线32、第三信号线33、第四信号线34和第五信号线35中的至少之一位于不同层。例如,第一信号线31、第二信号线32、第三信号线33、第四信号线34和第五信号线35可以位于同一层,第七信号线37与第一信号线31分别位于不同层,例如,第一信号线31、第二信号线32、第三信号线33、第四信号线34和第五信号线35可以位于第一层,第七信号线37可以位于第二层,第一层和第二层之间设置有一绝缘层以实现互相绝缘。
例如,第七信号线37与第五首电极P15和第五尾电极P25分别位于不同层,例如,第五首电极P15和第五尾电极P25可以位于第一层,第七信号线37可以位于第二层,则第七信号线37可以通过第一层和第二层之间的绝缘层中的过孔与第五首电极P15和第五尾电极P25电连接。
需要说明的是,图5所示的示例中其余电极的连接方式与图2A所示的示例相同,重复之处不再赘述。
值得注意的是,根据实际需求,多个电极组10中的每个电极组还可以包括六个电极、七个电极等。本公开对此不作限制。
图6A为本公开一实施例提供的一种触控面板的另一平面示意图,图6B为本公开一实施例提供的一种触控面板的又一平面示意图。
例如,如图6A所示,多个电极组10还包括中间电极组13。在第一方向上,位于首电极组11、中间电极组13和尾电极组12位于同一列,且中间电极 组13位于首电极组11和尾电极组12之间,多条信号线30还包括第八信号线38和第九信号线39。中间电极组13至少包括第一中间电极P31、第二中间电极P32、第三中间电极P33和第四中间电极P34。第二中间电极P32和第三中间电极P33位于第一中间电极P31和第四中间电极P34之间。
例如,如图6A所示,在第一方向上,第一中间电极P31、第二中间电极P32、第三中间电极P33和第四中间电极P34依次排列。
例如,如图6A所示,第一中间电极P31和第四中间电极P34分别与第八信号线38电连接,第三首电极P13和第二中间电极P32分别与第四信号线34电连接,第三中间电极P33和第二尾电极P22分别与第九信号线39电连接。也就是说,对于中间电极组13,其第二中间电极P32与相邻上一个电极组的第三电极(图6A中为第三首电极P13)共用一条信号线,其第三中间电极P33与相邻下一个电极组的第二电极(图6A中为第二尾电极P22)共用一条信号线,以此类推,从而实现信号线与电极的电连接。由此,除了首电极组11和尾电极组12外,在其余电极组中,每两个电极与同一条信号线电连接。从而减少信号线的数量。
例如,如图6B所示,首电极组11还可以包括第五首电极P15,尾电极组12还包括第五尾电极P25,中间电极组13还包括第五中间电极P35。多条信号线30还可以包括第十信号线40。第五首电极P15与第七信号线37电连接。第五尾电极P25与第十信号线40电连接。第五中间电极P35与第七信号线37电连接;或者,第五中间电极P35与第十信号线40电连接,也就是说,第五中间电极P35可以与相邻上一个电极组中的第五电极(图6B中为第五首电极P15)共用一条信号线,也可以与相邻下一个电极组中的第五电极(例如第五尾电极P25)共用一条信号线。
例如,图6A和图6B仅示出一个中间电极组13。但不限于此,在首电极组11和尾电极组12之间可以包括多个中间电极组,且在第一方向上,首电极组11、多个中间电极组和尾电极组12位于同一列。
图7为本公开一实施例提供的一种触控装置的示意性框图。
例如,如图7所示,本公开实施例提供的触控装置100包括上述任一实施例所述的触控面板101。
例如,触控面板101可以为矩形触控面板、圆形触控面板、椭圆形触控面板或多边形触控面板等。另外,该触控面板101不仅可以为平面触控面板,也 可以为曲面触控面板,甚至球面触控面板。
例如,该触控面板101可以为多种类型,例如OGS(One Glass Solution)式触控面板、In-Cell触控面板或者On-Cell触控面板中的任意一种。
例如,触控装置100可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有触控功能的产品或部件。
例如,如图2A和图7所示,触控装置100还包括触控芯片50。触控面板101上的多条信号线与触控芯片50电连接。触控芯片50被配置为通过多条信号线给触控面板101上的多个电极组中的各电极施加触控驱动信号。触控芯片50还被配置为通过多条信号线读取触控面板101上的多个电极组中的各电极的触控感应信号以判断触摸位置,从而实现触控检测。
例如,触控芯片50可以独立设置,也可以和其他计算设备一体形成,例如可以采用专用计算设备(例如数字处理器(DSP)等),也可以采用通用计算设备(例如中央处理单元(CPU))实现。
例如,触控装置100还包括显示面板(图中未示出)。显示面板被配置为与触控面板101重叠,且被配置为显示图像。例如,触控面板101可以设置在显示面板的显示侧,或者触控面板101可以与显示面板共用部分部件,例如触控面板101的衬底基板可以为显示面板的显示侧基板。
又例如,触控面板101还被配置为显示图像,即触控面板101和显示面板集成为一体。也就是说,实现触控功能的触控电极组(即图2A所示的首电极组11和尾电极组12)可以集成在显示面板中,实现触控和显示一体化,降低生产成本,降低显示面板的体积和重量,提升产品的附加值。
例如,触控面板101可以包括第一基板(即衬底基板)和第二基板,第一基板和第二基板彼此对置。多个电极组设置在第一基板远离第二基板的一侧。在第二基板上设置有多行多列的多个显示像素,从而实现显示功能。第一基板设置在触控面板101的显示侧,且多个电极组设置在第一基板的出光侧。
例如,当触控面板101被配置为显示图像时,多个电极组中的电极可以为透明电极。透明电极的材料例如可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管等。
需要说明的是,对于该触控装置100的其它组成部分(例如控制装置、图像数据编码/解码装置、行扫描驱动器、列扫描驱动器、时钟电路等)均可以为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明 的限制。
图8为本公开一实施例提供的一种触控面板的驱动方法的流程图。
例如,本公开实施例提供的触控面板的驱动方法可以适用于上述任一实施例所述的触控面板。如图8所示,该驱动方法可以包括以下步骤:
S10:通过多条信号线分时向触控面板的多个电极组中的电极施加触控驱动信号;
S20:通过多条信号线读取触控面板上的多个电极组中的电极的触控感应信号,并根据触控感应信号判断触控操作的触摸位置。
在本公开实施例提供的驱动方法中,由于信号线的数量降低,从而可以减少驱动时间,提高刷新频率,降低功耗。
例如,在步骤S10中,触控芯片可以产生并输出触控驱动信号,然后多条信号线可以同时将触控驱动信号分别传输至多个电极组中的各电极。
例如,触控驱动信号可以为脉冲电压信号。
例如,在步骤S20中,根据触控感应信号判断触控操作的触摸位置,包括:根据位于第一方向上的多个电极的触控感应信号确定触控操作的第一坐标,以及根据第一坐标确定触控操作的触摸位置;或者根据位于第一方向上的多个电极的触控感应信号确定触控操作的第一坐标,根据位于第二方向上的多个电极的触控感应信号确定触控操作的第二坐标,以及根据第一坐标和第二坐标确定触控操作的触摸位置,其中,所述第一方向与所述第二方向不平行。
例如,第一方向和第二方向相互垂直。图2B所示的第一方向为列方向,图2B所示的第二方向为行方向,且第一坐标为纵坐标,第二坐标为横坐标。
下面以图2A和图2B所示的触控面板为例详细描述驱动方法的操作过程。图9A至图9D示出了检测触控操作的第一坐标的触控示意图。
例如,如图9A所示,当Q1点有触控操作时,Q1点与第一首电极P11和第二首电极P12均部分交叠,从而第一首电极P11和第二首电极P12上的电容量发生变化,第一信号线31和第二信号线32上的电容信号均会变化。当触控芯片检测到第一信号线31上的电容信号发生变化时,则可以确定第一首电极P11或第四首电极P14上的电容量发生变化,然后,当触控芯片检测到第二信号线32上的电容信号发生变化时,则可以确定第二首电极P12上的电容量发生变化,由于第四信号线34上的电容信号没有发生变化,则第三首电极P13上的电容量没有发生变化,从而可以确定触摸点Q1位于第一首电极P11和第 二首电极P12之间。由此,触控芯片可以通过检测第一信号线31和第二信号线32上的电容信号的变化量,从而确定触控操作的触摸位置的第一坐标。
例如,与Q1点交叠区域的面积越大的电极,与该电极电连接的信号线上的电容信号的变化量越大,触控芯片可以根据第一信号线31和第二信号线32上的电容信号的变化量的大小,准确地确定触控操作的触摸位置。例如,Q1点与第一首电极P11的交叠区域的面积为Y11,Q1点与第二首电极P12的交叠区域的面积为Y12,若Y11大于Y12,则第一信号线31上的电容信号的变化量大于第二信号线32上的电容信号的变化量,从而在第一方向上,可以确定Q1点的中心更靠近第一首电极P11。若Y11小于Y12,则第一信号线31上的电容信号的变化量小于第二信号线32上的电容信号的变化量,从而在第一方向上,可以确定Q1点的中心更靠近第二首电极P12。若Y11等于Y12,则第一信号线31上的电容信号的变化量等于第二信号线32上的电容信号的变化量,若第一首电极P11和第二首电极P12的形状均为规则的矩形,则在第一方向上,可以确定Q1点的中心位于第一首电极P11的中心和第二首电极P12的中心的连线的中点处。
例如,如图9B所示,当Q2点有触控操作时,Q2点与第三首电极P13和第四首电极P14均部分交叠,从而第三首电极P13和第四首电极P14上的电容量发生变化,第一信号线31和第四信号线34上的电容信号均会变化。触控芯片可以通过检测第一信号线31和第四信号线34上的电容信号的变化量,从而确定触控操作的触摸位置的第一坐标。关于Q2点的具体检测过程可以参考上述对Q1点的检测过程的描述。
例如,当触摸区域较大时,可以通过三条信号线确定触控操作的触摸位置。如图9C所示,当Q3点有触控操作时,Q3点与第一尾电极P21、第二尾电极P22和第三尾电极P23均部分交叠,从而第一尾电极P21、第二尾电极P22和第三尾电极P23上的电容量发生变化,第三信号线33、第四信号线34和第五信号线35上的电容信号均会变化。触控芯片可以通过检测第三信号线33、第四信号线34和第五信号线35上的电容信号的变化量,从而确定触控操作的触摸位置的第一坐标。
例如,Q3点与第一尾电极P21的交叠区域的面积为Y31,Q3点与第二尾电极P22的交叠区域的面积为Y32,Q3点与第三尾电极P23的交叠区域的面积为Y33。Y32大于Y31,也大于Y33,从而第四信号线34上的电容信号的 变化量最大,进而可以确定Q3点的中心位于第二尾电极P22处。
又例如,如图9D所示,当Q4点有触控操作时,Q4点与第二尾电极P22、第三尾电极P23和第四尾电极P24均部分交叠,从而第二尾电极P22、第三尾电极P23和第四尾电极P24上的电容量发生变化,由于第一尾电极P21和第四尾电极P24均与第三信号线33电连接,从而对于O4点,仍然是第三信号线33、第四信号线34和第五信号线35上的电容信号发生变化。触控芯片可以通过检测第三信号线33、第四信号线34和第五信号线35上的电容信号的变化量,从而确定触控操作的触摸位置的第一坐标。
例如,Q4点与第二尾电极P22的交叠区域的面积为Y41,Q4点与第三尾电极P23的交叠区域的面积为Y42,Q4点与第四尾电极P24的交叠区域的面积为Y43。Y42大于Y41,也大于Y43,从而第五信号线35上的电容信号的变化量最大,进而可以确定Q4点的中心位于第三尾电极P23处。
例如,如图9C和图9D所示,Q3点和Q4点均通过检测第三信号线33、第四信号线34和第五信号线35上电容信号的变化量确定。但是,在图9C中,第四信号线34上的电容信号的变化量最大;而在图9D中,第五信号线35上的电容信号的变化量最大。也就是说,对于图9C和图9D所示的情况,第三信号线33、第四信号线34和第五信号线35中的至少部分上的电容信号的变化量不同,由此,触控芯片可以根据第三信号线33、第四信号线34和第五信号线35上的电容信号的变化量的大小来判断触摸点的中心,从而确定触控点的准确位置。
图10为本公开一实施例提供的检测触控操作的第一坐标和第二坐标的触控示意图。
例如,如图10所示,当Q5点有触控操作时,Q5与第一首电极组11中的第一首电极P11、第二首电极P12和第二首电极组11'中的第一首电极P11'、第二首电极P12'均部分交叠,从而可以根据与第一首电极P11电连接的第一信号线31、与第二首电极P12电连接的第二信号线32、与第一首电极P11'电连接的第一信号线31'和与第二首电极P12'电连接的第二信号线32'上的电容信号的变化量来确定触控操作的触摸位置(即Q5点)的第一坐标和第二坐标。
例如,首先,当触控芯片检测到第一信号线31上的电容信号发生变化时,则可以确定第一首电极P11或第四首电极P14上的电容量发生变化,然后,当触控芯片检测到第二信号线32上的电容信号发生变化时,则可以确定第二首 电极P12上的电容量发生变化,由于第四信号线34上的电容信号没有发生变化,则第三首电极P13上的电容量没有发生变化,从而可以确定在第一方向上触摸点Q5位于第一首电极P11和第二首电极P12之间。由此,触控芯片可以通过检测第一信号线31和第二信号线32上的电容信号的变化量,从而确定触控操作的触摸位置的第一坐标。然后,由于与第一首电极P11电连接的第一信号线31和与第一首电极P11'电连接的第一信号线31'上的电容信号发生变化,则可以确定在第二方向上触摸点Q5位于第一首电极P11和第一首电极P11'之间。由此,触控芯片可以通过检测第一信号线31和第一信号线31'上的电容信号的变化量,从而确定触控操作的触摸位置的第二坐标。结合第一坐标和第二坐标则可以确定触摸点Q5的具体位置。
需要说明的是,为了清楚,在图10中仅示出了四条信号线,即与第一首电极P11电连接的第一信号线31、与第二首电极P12电连接的第二信号线32、与第一首电极P11'电连接的第一信号线31'和与第二首电极P12'电连接的第二信号线32'。
图11示出了检测多个触摸点的触控操作的第一坐标的触控示意图。
例如,在触控操作时,首先,触控芯片可以根据不同信号线判断触控操作是单点触控,还是多点触控;然后根据信号线上电容信号的变化量确定触控操作的触摸位置。当检测到电容信号有变化的多条信号线对应的不同电极之间的距离大于或等于最短触摸间距,则可以确定触控操作为多点触控;当检测到电容信号有变化的多条信号线对应的不同电极之间的距离小于最短触摸间距,则可以确定触控操作为单点触控。例如,对于多点触控,两个触摸点之间的触摸最短间距可以为10mm,该触摸最短间距可以为多个电极组中的电极的宽度的2.5倍,例如,多个电极组中的每个电极的最大宽度可以为4mm。
如图11所示,当Q6点和Q7点同时存在有触控操作时,Q6点与第一首电极P11和第二首电极P12均部分交叠,Q7点与第二尾电极P22和第三尾电极P23均部分交叠,从而第一首电极P11、第二首电极P12、第二尾电极P22和第三尾电极P23上的电容量均发生变化,即第一信号线31、第二信号线32、第四信号线34和第五信号线35上的电容信号均会变化。由于,第一信号线31和第五信号线35上的电容信号均发生变化,第一信号线31对应的第一首电极P11和第五信号线35对应的第三尾电极P23之间的距离大于触摸最短间距,因此,可以确定触控面板上存在两个触摸点。然后,根据第一信号线31和第 二信号线32可以确定Q6点的位置,根据第四信号线34和第五信号线35可以确定Q7点的位置。
例如,Q6点与第一首电极P11和第二首电极P12的交叠区域的面积相同,则第一信号线31和第二信号线32上的电容信号的变化量相同,例如,在第一信号线31和第二信号线32上,归一化的电容信号的变化量均为0.5。Q 7点与第一尾电极P21和第三尾电极P23的交叠区域的面积也相同,则第四信号线34和第五信号线35上的电容信号的变化量相同,例如,在第四信号线34和第五信号线35上,归一化的电容信号的变化量均为0.5。
需要说明的是,关于检测多个触摸点的触控操作的第一坐标和第二坐标的操作过程可以参考上述图10所示的示例的检测过程,重复之处不再赘述。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种触控面板,包括:多个电极组和多条信号线,其中,
    在第一方向上,所述多个电极组依次排列,所述多个电极组包括排列在最前面的首电极组;
    所述多条信号线至少包括第一信号线和第二信号线;
    所述首电极组至少包括第一首电极、第二首电极、第三首电极和第四首电极,所述第二首电极和所述第三首电极设置在所述第一首电极和所述第四首电极之间;
    所述第一首电极和第四首电极分别与所述第一信号线电连接,所述第二信号线仅与所述第二首电极单独电连接。
  2. 根据权利要求1所述的触控面板,其中,所述多个电极组还包括排列在最后面的尾电极组,所述多条信号线至少还包括第三信号线;
    所述尾电极组至少包括第一尾电极、第二尾电极、第三尾电极和第四尾电极,所述第二尾电极和所述第三尾电极设置在所述第一尾电极和所述第四尾电极之间;所述第一尾电极和第四尾电极分别与所述第三信号线电连接。
  3. 根据权利要求2所述的触控面板,其中,所述多条信号线还包括第四信号线,所述第三首电极和所述第二尾电极分别与所述第四信号线电连接。
  4. 根据权利要求3所述的触控面板,其中,所述多条信号线还包括第五信号线,所述第五信号线仅与所述第三尾电极单独电连接。
  5. 根据权利要求4所述的触控面板,其中,所述尾电极组还包括第五尾电极,所述多条信号线还包括第六信号线;
    所述第六信号线仅与所述第五尾电极单独电连接。
  6. 根据权利要求3所述的触控面板,其中,所述尾电极组还包括第五尾电极和第六尾电极,所述多条信号线还包括第五信号线和第六信号线;
    所述第六信号线仅与所述第五尾电极单独电连接,所述第三尾电极和所述第六尾电极分别与所述第五信号线电连接。
  7. 根据权利要求4-6任一项所述的触控面板,其中,所述第一信号线和所述第三信号线位于所述首电极组和所述尾电极组的第一侧,所述第二信号线、所述第四信号线和所述第五信号线位于所述首电极组和所述尾电极组的第二侧。
  8. 根据权利要求4-7任一项所述的触控面板,其中,所述第一信号线、所述第二信号线、所述第三信号线、所述第四信号线和所述第五信号线位于同一层。
  9. 根据权利要求2-8任一项所述的触控面板,其中,所述多个电极组位于同一层,且所述第一信号线、所述第二信号线、所述第三信号线与所述多个电极组位于同一层。
  10. 根据权利要求2-9任一项所述的触控面板,其中,所述首电极组还包括第五首电极,所述尾电极组还包括所述第五尾电极,所述多条信号线还包括第七信号线;
    所述第五首电极和所述第五尾电极分别与所述第七信号线电连接。
  11. 根据权利要求10所述的触控面板,其中,所述第五首电极位于所述第二首电极和所述第三首电极之间,所述第五尾电极位于所述第二尾电极和所述第三尾电极之间。
  12. 根据权利要求10或11所述的触控面板,其中,所述第七信号线与所述第一信号线、所述第二信号线和所述第三信号线中的至少之一位于不同层。
  13. 根据权利要求2-12任一项所述的触控面板,其中,在所述第一方向上,所述第一首电极、所述第二首电极、所述第三首电极和所述第四首电极依次排列,所述第一尾电极、所述第二尾电极、所述第三尾电极和所述第四尾电极依次排列。
  14. 根据权利要求2所述的触控面板,其中,所述多个电极组还包括中间电极组,位于所述首电极组和所述尾电极组之间,所述多条信号线还包括第四信号线、第八信号线和第九信号线;
    所述中间电极组至少包括第一中间电极、所述第二中间电极、第三中间电极和第四中间电极,
    所述第一中间电极和所述第四中间电极分别与所述第八信号线电连接,所述第三首电极和所述第二中间电极分别与所述第四信号线电连接,所述第三中间电极和所述第二尾电极分别与所述第九信号线电连接。
  15. 根据权利要求14所述的触控面板,其中,所述首电极组还包括第五首电极,所述尾电极组还包括第五尾电极,所述中间电极组还包括所述第五中间电极,所述多条信号线还包括第七信号线和第十信号线;
    所述第五首电极与所述第七信号线电连接,所述第五尾电极与所述第十信 号线电连接;
    所述第五中间电极与所述第七信号线电连接;或者,所述第五中间电极与所述第十信号线电连接。
  16. 一种触控装置,包括根据权利要求1-15任一所述的触控面板。
  17. 根据权利要求16所述的触控装置,还包括触控芯片,其中,
    所述多条信号线与所述触控芯片电连接,
    所述触控芯片被配置为通过所述多条信号线给所述多个电极组中的各电极施加触控驱动信号,还被配置为通过所述多条信号线读取所述触控面板上的多个电极组中的各电极的触控感应信号以判断触摸位置。
  18. 一种用于根据权利要求1-15任一项所述的触控面板的驱动方法,包括:
    通过所述多条信号线分时向所述触控面板的多个电极组中的电极施加触控驱动信号;
    通过所述多条信号线读取所述触控面板上的多个电极组中的电极的触控感应信号,并根据所述触控感应信号判断触控操作的触摸位置。
  19. 根据权利要求18所述的驱动方法,其中,根据所述触控感应信号判断所述触控操作的触摸位置,包括:
    根据位于所述第一方向上的多个电极的触控感应信号确定所述触控操作的第一坐标,以及根据所述第一坐标确定所述触控操作的触摸位置;或者
    根据位于所述第一方向上的多个电极的触控感应信号确定所述触控操作的第一坐标,根据位于第二方向上的多个电极的触控感应信号确定所述触控操作的第二坐标,以及根据所述第一坐标和所述第二坐标确定所述触控操作的触摸位置,其中,所述第一方向与所述第二方向不平行。
PCT/CN2018/110035 2018-03-26 2018-10-12 触控面板及其驱动方法、触控装置 WO2019184301A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/471,910 US11416098B2 (en) 2018-03-26 2018-10-12 Touch panel in which multiple electrode share one signal line, driving method thereof, and touch device
EP18887219.6A EP3783464A4 (en) 2018-03-26 2018-10-12 TOUCH PANEL AND ITS ATTACK METHOD, AND TOUCH DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810253620.4 2018-03-26
CN201810253620.4A CN109976567B (zh) 2018-03-26 2018-03-26 触控面板及其驱动方法、触控装置

Publications (1)

Publication Number Publication Date
WO2019184301A1 true WO2019184301A1 (zh) 2019-10-03

Family

ID=67075884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110035 WO2019184301A1 (zh) 2018-03-26 2018-10-12 触控面板及其驱动方法、触控装置

Country Status (4)

Country Link
US (1) US11416098B2 (zh)
EP (1) EP3783464A4 (zh)
CN (1) CN109976567B (zh)
WO (1) WO2019184301A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574494B (zh) * 2020-02-24 2023-02-24 京东方科技集团股份有限公司 触控结构、触控面板及触控驱动方法
CN111813275A (zh) * 2020-06-30 2020-10-23 厦门天马微电子有限公司 显示屏、显示屏的控制方法及其控制装置、电子设备
CN112256157A (zh) * 2020-10-09 2021-01-22 武汉华星光电半导体显示技术有限公司 点自电容屏及触控检测方法、装置、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130314373A1 (en) * 2012-05-25 2013-11-28 Crucialtec Co., Ltd. Touch detecting device using sensor pad scramble
WO2013180438A1 (ko) * 2012-05-29 2013-12-05 주식회사 아이피시티 개선된 원 레이어 정전식 터치 패널
KR20140010788A (ko) * 2012-07-17 2014-01-27 크루셜텍 (주) 데드존 최소화를 위한 터치 검출 장치 및 터치 검출 방법
US20160195981A1 (en) * 2015-01-06 2016-07-07 Samsung Display Co., Ltd. Touch panel including touch sensor and driving method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368657B2 (en) * 2008-12-01 2013-02-05 Freescale Semiconductor, Inc. Touch sensor panel using regional and local electrodes to increase number of sense locations
CN103970392B (zh) * 2014-04-18 2019-10-01 京东方科技集团股份有限公司 一种触摸屏及显示装置
US9933899B2 (en) 2014-05-30 2018-04-03 Boe Technology Group Co., Ltd. Capacitive touch structure, in-cell touch panel, display device and scanning method
CN104020907B (zh) * 2014-05-30 2017-02-15 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020912B (zh) * 2014-05-30 2017-02-15 京东方科技集团股份有限公司 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
CN104267862B (zh) 2014-09-19 2017-05-03 京东方科技集团股份有限公司 一种触摸屏、其触控定位方法及显示装置
JP6757327B2 (ja) * 2015-03-10 2020-09-16 サーク・コーポレーション 単一レイヤのタッチ・センサ上で電極ルーティングを減らす方法
EP3356916B1 (en) * 2015-09-30 2023-04-26 Apple Inc. High aspect ratio capacitive sensor panel
CN105094497B (zh) * 2015-09-30 2017-12-05 京东方科技集团股份有限公司 一种触控电极结构、触摸屏及显示装置
CN106066735B (zh) * 2016-06-28 2019-02-12 武汉华星光电技术有限公司 阵列基板及触控显示屏

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130314373A1 (en) * 2012-05-25 2013-11-28 Crucialtec Co., Ltd. Touch detecting device using sensor pad scramble
WO2013180438A1 (ko) * 2012-05-29 2013-12-05 주식회사 아이피시티 개선된 원 레이어 정전식 터치 패널
KR20140010788A (ko) * 2012-07-17 2014-01-27 크루셜텍 (주) 데드존 최소화를 위한 터치 검출 장치 및 터치 검출 방법
US20160195981A1 (en) * 2015-01-06 2016-07-07 Samsung Display Co., Ltd. Touch panel including touch sensor and driving method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783464A4 *

Also Published As

Publication number Publication date
EP3783464A4 (en) 2021-12-08
CN109976567A (zh) 2019-07-05
CN109976567B (zh) 2020-08-04
US20210333966A1 (en) 2021-10-28
US11416098B2 (en) 2022-08-16
EP3783464A1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US9703415B2 (en) Touch panel, touch positioning method thereof and display device
JP5439565B2 (ja) タッチパネル及びその製造方法
US9626055B2 (en) In-cell touch screen, touch detection method thereof and display device
US10013121B2 (en) In-cell touch panel and display device with self-capacitance electrodes
US9715294B2 (en) In-cell touch panel and manufacturing method thereof, and display device
EP2538313B1 (en) Touch sensor panel
EP3153956B1 (en) Capacitive touch structure, embedded touchscreen, display device and scanning method therefor
WO2016119323A1 (zh) 阵列基板、内嵌式触摸屏和显示装置
US20110210934A1 (en) Touch panel, and input device including the same
US20160011687A1 (en) Touch display panel and touch display apparatus
US20160048233A1 (en) In-cell touch panel and display device
US9535554B2 (en) Capacitive type touch panel
WO2019184301A1 (zh) 触控面板及其驱动方法、触控装置
US9250492B2 (en) In-cell touch panel structure of narrow border
WO2015135289A1 (zh) 内嵌式触摸屏及显示装置
US20180335878A1 (en) Touch control display panel
KR20160084939A (ko) 터치 센서를 포함하는 터치 패널 및 그 구동방법
CN112639706A (zh) 触控电极结构、触摸屏和触控显示装置
CN112083836B (zh) 一种触控面板及其驱动方法、触控显示装置
CN113010042A (zh) 一种触控显示面板
TWM481449U (zh) 高準確度之內嵌式平面顯示觸控結構
KR20120140126A (ko) 접촉 감지 패널
CN105022514A (zh) 侦测方法及其触控面板
TWI469012B (zh) 觸控面板及觸控顯示裝置
CN113574494B (zh) 触控结构、触控面板及触控驱动方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018887219

Country of ref document: EP

Effective date: 20201026