WO2019183979A1 - Cooling system assembly for compute devices - Google Patents

Cooling system assembly for compute devices Download PDF

Info

Publication number
WO2019183979A1
WO2019183979A1 PCT/CN2018/081484 CN2018081484W WO2019183979A1 WO 2019183979 A1 WO2019183979 A1 WO 2019183979A1 CN 2018081484 W CN2018081484 W CN 2018081484W WO 2019183979 A1 WO2019183979 A1 WO 2019183979A1
Authority
WO
WIPO (PCT)
Prior art keywords
metallic
thermal exchanger
thermal
securing devices
mounting block
Prior art date
Application number
PCT/CN2018/081484
Other languages
French (fr)
Inventor
David Zhou
Chris DU
Xiangde Liu
Original Assignee
Intel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corporation filed Critical Intel Corporation
Priority to DE112018007395.5T priority Critical patent/DE112018007395T5/en
Priority to PCT/CN2018/081484 priority patent/WO2019183979A1/en
Priority to TW108106471A priority patent/TWI844528B/en
Publication of WO2019183979A1 publication Critical patent/WO2019183979A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source

Definitions

  • Typical enterprise-level data centers can include several to hundreds of racks or cabinets, with each rack/cabinet housing multiple servers, sleds, or similar compute devices.
  • Each of the various servers of a data center may be communicatively connectable to each other via one or more local networking switches, routers, and/or other interconnecting devices, cables, and/or interfaces.
  • the number of racks and servers of a particular data center, as well as the complexity of the design of the data center, may depend on the intended use of the data center, as well as the quality of service the data center is intended to provide.
  • Traditional rack systems are self-contained physical support structures that include a number of pre-defined server spaces.
  • a corresponding server or compute device may be mounted in each pre-defined server space.
  • it may be desirable to dissipate heat produced by various components of the server, such as processors, during operation to improve performance of those components, and cooling systems may be employed to that end.
  • Design of cooling systems to improve performance of compute devices remains an area of interest.
  • FIG. 1 is a simplified block diagram of at least one embodiment of a rack that may be included in a corresponding data center;
  • FIG. 2 is a simplified block diagram of at least one embodiment of a compute device that may be installed in the rack of FIG. 1;
  • FIG. 3 is a partial perspective view of a cooling system assembly of the compute device of FIG. 2 with a thermal exchanger thermally coupled to a backplate by thermal exchanger securing devices that extend through a printed circuit board;
  • FIG. 4 is a partial front elevation view of the cooling system of FIG. 3;
  • FIG. 5 is a detail view of one of the thermal exchanger securing devices shown in FIG. 4;
  • FIG. 6 is an exploded perspective view of the compute device of FIG. 2;
  • FIG. 7 is a top view of the thermal exchanger of the cooling assembly shown in FIG. 3;
  • FIG. 8 is a partial sectional view of the underside of the thermal exchanger taken about line 8-8 of FIG. 7;
  • FIG. 9 is a partial perspective view of the thermal exchanger, a pair of thermal exchanger securing devices, and a pair of thermal inserts that may be included in the cooling system assembly shown in FIG 3;
  • FIG. 10 is a table of performance data of a number of cooling system assemblies.
  • FIG. 11 is a simplified flowchart of at least one embodiment of a method of assembling the cooling system assembly shown in FIG. 3.
  • references in the specification to “one embodiment, ” “an embodiment, ” “an illustrative embodiment, ” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may or may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • items included in a list in the form of “at least one A, B, and C” can mean (A) ; (B) ; (C) ; (A and B) ; (A and C) ; (B and C) ; or (A, B, and C) .
  • items listed in the form of “at least one of A, B, or C” can mean (A) ; (B) ; (C) ; (A and B) ; (A and C) ; (B and C) ; or (A, B, and C) .
  • the disclosed embodiments may be implemented, in some cases, in hardware, firmware, software, or any combination thereof.
  • the disclosed embodiments may also be implemented as instructions carried by or stored on a transitory or non-transitory machine-readable (e.g., computer-readable) storage medium, which may be read and executed by one or more processors.
  • a machine-readable storage medium may be embodied as any storage device, mechanism, or other physical structure for storing or transmitting information in a form readable by a machine (e.g., a volatile or non-volatile memory, a media disc, or other media device) .
  • an illustrative data center 100 may be generally representative of a data center or other type of computing network or collection of computing resources.
  • the data center 100 is shown to include a single rack 102, it should be appreciated that the data center 100 may include multiple racks, which may be substantially identical to the rack 102.
  • multiple racks 102 may be secured together to form a row of racks 102 and/or a pod of racks 102.
  • Each rack 102 is configured to house one or more compute devices, servers, sleds, or other computer equipment, which are illustratively shown as servers 104.
  • the rack 102 is shown to include three servers 104, it should be appreciated that the rack 102 may include additional or fewer servers 104 in other embodiments depending on, for example, the desired number of servers 104 to be housed and the size of the rack 102.
  • each of the servers 104 is supported by, or otherwise housed in, a corresponding server chassis 106 when installed in the rack 102.
  • Each server chassis 106 is received in a corresponding server space (not shown) of the rack 102 such that the server chassis 106, and the server 104 held thereby, are supported by the rack 102.
  • each of the servers 104 includes various physical resources 200, such as one or more processors 202, one or more memory devices 204, one or more storage devices 206, and/or other physical resources 208 depending on the type and implementation of the server 104.
  • Each of physical resources 200 of the server 104 is mounted to and/or or communicatively coupled to a corresponding a printed circuit board (PCB) 308 (as best seen in FIG. 3) .
  • PCB printed circuit board
  • each of the processors 202 may generate heat during operation of the server 104 depending on various factors such as the present workload of the server 104, the configuration of the server 104, and/or other factors.
  • the server 104 includes one or more cooling system assemblies 220, each of which is coupled to a corresponding processor 202 and secured to the PCB 308 as discussed in more detail below.
  • the cooling system assembly 220 is configured to cool the corresponding physical resource of the sled 104 to which it is coupled.
  • the cooling system assembly 220 and other technologies disclosed herein may be coupled to and used to cool other physical resources 200 of the sled 104 that generated heat during operation.
  • the cooling system assembly 220 includes a thermal exchanger 222, a metallic backplate 224, multiple metallic thermal exchanger securing devices 226, thermal inserts 968 (see FIG. 9) , and one or more cooling fans 228.
  • the thermal exchanger 222 is coupled to a corresponding processor 202 (or other heat-producing physical resource 200) to dissipate heat generated during operation of the processor 202.
  • the thermal exchanger 222 is secured to the PCB 308 via the thermal exchanger securing devices 226.
  • Each of the thermal exchanger securing devices 226 extends from the backplate 224, through the PCB 308, and into a mounting hole 318 formed in a mounting block 316 of the thermal exchanger 222 to secure the thermal exchanger 222 to the PCB 308, as best seen in FIG. 3.
  • Each of the thermal exchanger securing devices 226 are formed from a metallic material and, therefore, thermally couple the thermal exchanger 222 to the backplate 224 so that heat generated by each processor 202 is conducted away from the thermal exchanger 222 and to the backplate 224 via the thermal exchanger securing devices 226. In doing so, the thermal exchanger securing devices 226 facilitate dissipation of heat generated by each processor 202 to improve performance of each processor 202.
  • the compute device 104 is illustratively embodied as a server, it should be appreciated that the compute device 104 may be embodied as any type of compute device capable of performing various compute functions.
  • the compute device 104 may be embodied as a computer, a desktop computer, a mobile computer, a laptop computer, a tablet computer, a notebook, a netbook, an Ultrabook TM , a smart device, a personal digital assistant, a mobile Internet device, a router, a switch, a network compute device, and/or other compute device or other device having electronic circuitry included therein.
  • Each of the processors 202 may be embodied as any type of processor, controller, or other compute circuit capable of performing various tasks such as compute functions and/or controlling the functions of the server 104 depending on, for example, the type or intended functionality of the server 104.
  • each processor 202 may be embodied as a single or multi-core processor (s) , a microcontroller, or other processor or processing/controlling circuit.
  • each processor 202 may be embodied as, include, or be coupled to an FPGA, an application specific integrated circuit (ASIC) , reconfigurable hardware or hardware circuitry, or other specialized hardware to facilitate performance of the functions described herein.
  • ASIC application specific integrated circuit
  • each processor 202 may be embodied as a high-power processor in embodiments in which the server 104 is embodied as a compute server, as accelerator co-processors, FPGAs, or other circuits in embodiments in which the server 104 is embodied as an accelerator server, and/or as storage controllers in embodiments in which the server 104 is embodied as a storage server.
  • the sled 104 includes at least two processors 202 and a corresponding two cooling system assemblies 220 for operation with processors 202.
  • the sled 104 may include additional or fewer processors 202 and corresponding cooling system assemblies 220.
  • the one or more memory devices 204 may be embodied as any type of volatile (e.g., dynamic random access memory (DRAM) , etc. ) or non-volatile memory capable of storing data therein.
  • Volatile memory may be embodied as a storage medium that requires power to maintain the state of data stored by the medium.
  • Non-limiting examples of volatile memory may include various types of random access memory (RAM) , such as dynamic random access memory (DRAM) or static random access memory (SRAM) .
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • SDRAM synchronous dynamic random access memory
  • DRAM of a memory component may comply with a standard promulgated by JEDEC, such as JESD79F for DDR SDRAM, JESD79-2F for DDR2 SDRAM, JESD79-3F for DDR3 SDRAM, JESD79-4A for DDR4 SDRAM, JESD209 for Low Power DDR (LPDDR) , JESD209-2 for LPDDR2, JESD209-3 for LPDDR3, and JESD209-4 for LPDDR4 (these standards are available at www. jedec. org) .
  • LPDDR Low Power DDR
  • Such standards may be referred to as DDR-based standards and communication interfaces of the storage devices that implement such standards may be referred to as DDR-based interfaces.
  • the one or more memory devices 204 may each be embodied as a block addressable memory, such as those based on NAND or NOR technologies.
  • the one or more memory devices 204 may also include future generation nonvolatile devices, such as a three dimensional crosspoint memory device (e.g., Intel 3D XPoint TM memory) , or other byte addressable write-in-place nonvolatile memory devices.
  • the one or more memory devices 204 may be embodied as or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM) , a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM) , anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM) , or spin transfer torque (STT) -MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory.
  • PCM Phase Change Memory
  • MRAM magnetoresistive random access memory
  • STT spin
  • the memory device may refer to the die itself and/or to a packaged memory product.
  • 3D crosspoint memory e.g., Intel 3D XPoint TM memory
  • the one or more memory devices 204 may include multiple memory banks, which may be embodied as a collection of memory devices. Each memory bank may be associated with a corresponding processor. Additionally, in some embodiments, all or a portion of each memory device 204 may be integrated into the processor (s) 202. In operation, the one or more memory devices 204 may store various software and data used during operation such as task request data, kernel map data, telemetry data, applications, programs, libraries, and drivers.
  • the one or more storage devices 206 may each be embodied as any type of data storage device or collection of devices capable of short-term or long-term storage of data such as solid state drives, and may each utilize any suitable type of data storage technology (e.g., NAND memory devices) .
  • the one or more storage devices 206 may each be embodied as solid state drives (SSDs) that have a “ruler” form factor, or another suitable storage device form factor.
  • the fans 228 may be embodied as one or more fan arrays, each of which may include multiple fans capable of generating an airflow over heat-producing electrical components (e.g., the one or more processors 202) of the server 104 to dissipate the heat produced by those components during operation of the server 104.
  • the fans 228 may be positioned linearly in-line with the thermal exchangers 222 of the respective cooling system assemblies 220 along the PCB 308 so that airflow generated by the fans 228 passes over the thermal exchangers 222 during operation of the fans 228.
  • the server 104 may also include one or more other physical resources 208.
  • the physical resources 208 may include any number of physical resources and/or additional peripheral or interface devices, such as input/output devices, storage devices, accelerator devices, and so forth.
  • the particular devices included in the one or more physical resources 208 may depend on, for example, the type and/or configuration of each server 104.
  • the PCB 308 is illustratively embodied as a substrate or circuit board substrate having a top side 342 and a bottom side 344 opposite the top side 342.
  • the PCB 308 may be formed from an FR4 glass-reinforced epoxy laminate material.
  • the PCB 308 may be formed from another suitable material.
  • the PCB 308 includes apertures 346 that extend therethrough from the top side 342 to the bottom side 344. Each of the apertures 346 is sized to receive one of the thermal exchanger securing devices 226, as will be evident from the discussion below.
  • electrical traces may be coupled to, or otherwise integrated with, the top side 342 and/or the bottom side 344 of the PCB 308.
  • each of the apertures 346 may be located between at least two of the electrical traces to avoid interference with the at least two of the electrical traces.
  • the one or more processors 202 and the thermal exchanger 222 of the cooling system assembly 220 are mounted to the top side 342 of the PCB 308.
  • the metallic mounting block 316 of the thermal exchanger 222 is arranged in confronting relation with the top side 342 and coupled to one of the processors 202 to dissipate heat generated during operation of the processor 202.
  • the metallic mounting block 316 may directly contact the corresponding processor.
  • a thermal paste or other thermal interface material may be dispositioned between the metallic mounting block 316 and the corresponding processor 202.
  • the metallic backplate 224 of the cooling system assembly 220 is mounted to the bottom side 344 of the PCB 308.
  • Each of the metallic thermal exchanger securing devices 226 is positioned in a hole 348 that extends through the backplate 224.
  • Each of the thermal exchanger securing devices 226 extends from the backplate 224, through a corresponding aperture 346 of the PCB 308, and into a corresponding mounting hole 318 of the mounting block 316 to secure the thermal exchanger 222 to the PCB 308. Consequently, the thermal exchanger securing devices 226 thermally couple the thermal exchanger 222 with the backplate 224 and secure the backplate 224 to the mounting block 316 when the thermal exchanger 222 is secured to the PCB 308 by the thermal exchanger securing devices 226.
  • the illustrative cooling system assembly 220 includes a bolster plate 450 separate from the backplate 224 that contacts, or directly interfaces with, the top side 342 of the PCB 308, as shown in FIG. 4.
  • the bolster plate 450 is arranged between the mounting block 316 of the thermal exchanger 222 and the top side 342.
  • the bolster plate 450 includes holes 452 extending therethrough that are each sized to receive one of the thermal exchanger securing devices 226.
  • the bolster plate 450 may have a metallic construction. In other embodiments, however, the bolster plate 450 may have another suitable construction, such as a polymeric construction, for example.
  • each of the thermal exchanger securing devices 226 defines, and conducts heat generated by the one or more processors 202 along, a conduction path P.
  • the illustrative conduction path P extends from the mounting block 316 through the bolster plate 450, the PCB 308, and the backplate 224 to a thermal pad 454 included in the cooling system assembly 220.
  • each of the thermal exchanger securing devices 226 may define, and conduct heat along, another suitable conduction path that extends through fewer components, or through additional components.
  • the thermal pad 454 of the cooling system assembly 220 is applied to the backplate 224 and arranged between the backplate 224 and an interior surface 456 of the server chassis 106.
  • the thermal exchanger 222 is secured to the PCB 308 by the thermal exchanger securing devices 226 and thermally coupled to the backplate 224
  • the thermal exchanger securing devices 226 extend from the backplate 224 and contact the thermal pad 454.
  • the thermal exchanger securing devices 226 transfer heat along the conduction path P to the thermal pad 454 to dissipate the heat during operation of the server 104. Heat transferred to the thermal pad 454 by the thermal exchanger securing devices 226 is transferred to the server chassis 106 for further dissipation when the PCB 308 is installed in the server chassis 106.
  • the illustrative thermal pad 454 may be embodied as any type of pad, sheet, or layer of material that is capable of providing a thermal coupling between the backplate 224 and the interior surface 456 of the server chassis 106 to conduct heat generated by one or more of the processors 202 to the surface 456 during operation of the server 104.
  • the thermal pad 454 may include, or otherwise be embodied as, thermal grease.
  • the thermal pad 454 may include, or otherwise be embodied as, thermal glue, a thermal adhesive, or the like.
  • the thermal pad 454 has a heat transfer coefficient of 6.5 W/m 2 K. Of course, in other embodiments, it should be appreciated that the thermal pad 454 may have another suitable heat transfer coefficient.
  • each of the illustrative thermal exchanger securing devices 226 is illustratively embodied as a fastener that includes a flared head 558, a body 560 interconnected with the flared head 558, and a tapered tip 562 interconnected with the body 560.
  • the flared head 558 and the tapered tip 562 define opposite ends 564, 566 of each thermal exchanger securing device 226, respectively.
  • the body 560 has a width W1 and the flared head 558 has a width W2 that is greater than the width W1.
  • the tapered tip 562 has a width W3 that is less than the width W1.
  • the thermal exchanger securing devices 226 are embodied as fasteners that are formed from metallic materials, such as copper or steel, for example.
  • each illustrative thermal exchanger securing device 226 is sized to be received in a corresponding mounting hole 318 of the mounting block 316 of the thermal exchanger 222 when the thermal exchanger 222 is thermally coupled to the backplate 224 by the thermal exchanger securing devices 226.
  • the flared head 558 of each thermal exchanger securing device 226 is sized to be received in a corresponding hole 348 of the backplate 224 when the thermal exchanger 222 is thermally coupled to the backplate 224 by the thermal exchanger securing devices 226.
  • each thermal exchanger securing device 226 is sized to extend from the backplate 224, through a corresponding aperture 346 of the PCB 308, through a corresponding hole 452 of the bolster plate 450, and to the mounting block 316 when the tapered tip 562 is received in the corresponding mounting hole 318 and the flared head 558 is received in the corresponding hole 348.
  • the thermal exchanger securing devices 226 may have other suitable positional arrangements and/or orientations relative to the backplate 224, the bolster plate 450, the thermal exchanger 222, and the one or more processors 202 depending on, for example, the arrangement of those components on the top side 342 or the bottom side 344 of the PCB 308.
  • each thermal exchanger securing device 226 contacts the thermal pad 454 and provides an increased surface area for transferring heat conducted by the thermal exchanger securing device 226 to the thermal pad 454 than might otherwise be the case in other configurations. Accordingly, compared to other configurations, each thermal exchanger securing device 226 may facilitate, or otherwise be associated with, a greater degree of heat transfer to the thermal pad 454, and therefore greater dissipation of heat generated by the one or more processors 202 during operation thereof.
  • the tapered tip 562 of each illustrative thermal exchanger securing device 226 may be shaped to facilitate interaction with a thermal insert 968 that is further described below with reference to FIG. 9. Due at least in part to the complementary shapes of the tapered tip 562 of each thermal exchanger securing device 226, the corresponding thermal insert 968, and the corresponding mounting hole 318 in which the tapered tip 562 and the thermal insert 968 may be positioned, heat transfer from the mounting block 316 of the thermal exchanger 222 to the thermal insert 968, and from the thermal insert 968 to the tapered tip 562 of each thermal exchanger securing device 226, may be facilitated.
  • each thermal exchanger securing device 226 may facilitate, or otherwise be associated with, greater dissipation of heat generated by the one or more processors 202 during operation thereof.
  • each thermal exchanger securing device 226 has a frustoconical cross-sectional shape, as shown in FIGS. 4 and 5.
  • each of the mounting holes 318 of the mounting block 316 that is sized to receive the tapered tip 562 of one of the thermal exchanger securing devices 226 has a frustoconical cross-sectional shape.
  • each thermal exchanger securing device 226 and each mounting hole 318 may provide greater surface area and reduce tolerance effects for direct contact (e.g., in embodiments where the thermal insert 968 is omitted) between the mounting block 316 and each thermal exchanger securing device 226, and indirect contact (e.g., in embodiments where the thermal insert 968 is included) between the mounting block 316 and each thermal exchanger securing device 226, than might otherwise be the case if other shapes were employed.
  • a server 104 may include multiple cooling system assemblies 200 in some embodiments.
  • the server 104 includes two cooling system assemblies 200, each of which is coupled to a corresponding processor 202 (not shown in FIG. 6) .
  • the server 104 may include another suitable number of cooling system assemblies 200 depending on, for example, the number of processors 202 or other heat-producing physical resources 200 included in the server 104.
  • the thermal exchanger securing devices 226 of each cooling system assembly 200 include seven thermal exchanger securing devices 226.
  • the holes 348 formed in the backplate 224 illustratively include seven holes 348
  • the apertures 346 formed in the PCB 308 illustratively include seven apertures 346
  • the holes 452 formed in the bolster plate 450 illustratively include seven holes 452
  • the mounting holes 318 formed in the mounting block 316 of the thermal exchanger 222 illustratively include seven mounting holes 318.
  • the thermal exchanger securing devices 226 of the cooling system assembly 200 may include more than seven thermal exchanger securing devices 226, and the number of holes 348, apertures 346, holes 452, and mounting holes 318 may be increased in correspondence with the number of thermal exchanger securing devices 226 included in the cooling system assembly 220.
  • the thermal exchanger securing devices 226 of the cooling system assembly 200 may include nine thermal exchanger securing devices 226.
  • the thermal exchanger securing devices 226 may be integrated with the backplate 224. In such embodiments, the holes (e.g., the holes 348) formed in the backplate 224 may be omitted.
  • the illustrative thermal exchanger 222 may be embodied as any device, or collection of devices, capable of transferring away heat produced by the one or more of the processors 202 to dissipate the heat during operation of the server 104.
  • the thermal exchanger 222 may include, or otherwise be embodied as, a heat sink, a cold plate, a vapor chamber, or the like, for example.
  • the thermal exchanger 222 may include, or otherwise be embodied as, another suitable device or collection of devices.
  • the thermal exchanger 222 may include, or otherwise be embodied as, an embedded heat pipe exchanger, a shell and tube heat exchanger, a plate heat exchanger, a plate and shell heat exchanger, a plate fin heat exchanger, a pillow plate heat exchanger, a microchannel heat exchanger, a waste recovery unit, a helical-coil heat exchanger, a spiral heat exchanger, or the like, for example.
  • the thermal exchanger 222 includes conduits 776 that facilitate dissipation of heat produced by the one or more processors 202 during operation thereof. Accordingly, the thermal exchanger 222 may be said to include, or otherwise be embodied as, a thermal exchanger with one or more heat pipes or conduits 776 embedded on a heat sink base (e.g., the mounting block 316) . Each of the conduits 776 may include, or otherwise be embodied as, one or more heat pipes, vapor chambers, metal strips, graphite strips, or any other components formed from thermally conductive material. Although three conduits 776 are shown in FIG. 7, it should be appreciated that in other embodiments, the thermal exchanger 222 may include another suitable number of conduits 776. In addition to the conduits 776, in some embodiments, the thermal exchanger 222 may include one or more cold plates (not shown) .
  • the thermal exchanger 222 illustratively includes a finned metallic housing 878 that at least partially houses the conduits 776, as shown in FIG. 8.
  • the housing 878 includes fins 880 that extend outwardly away from the metallic mounting block 316.
  • the fins 880 may provide additional surface area to increase the rate of heat transfer from the thermal exchanger 222 to the surrounding environment, which may facilitate dissipation of heat generated by the one or more processors 202 during operation thereof.
  • the mounting block 316 is coupled to the finned housing 878 and configured to interface with the PCB 308, and in some embodiments, the mounting block 316 may at least partially house the conduits 776.
  • each of the mounting holes 318 formed in the mounting block 316 is sized to receive one of the thermal exchanger securing devices 226 to facilitate securement of the mounting block 316 to the PCB 308.
  • the finned housing 878 and the mounting block 316 may be constructed of aluminum. In other embodiments, the finned housing 878 and the mounting block 316 may be constructed of copper.
  • the illustrative mounting block 316 of the thermal exchanger 222 is formed to include seven mounting holes 318, as best seen in FIG. 7. As discussed above, the number of mounting holes 318 corresponds to the number of thermal exchanger securing devices 226 included in each one of the cooling system assemblies 220. The seven mounting holes 318 are located around the periphery of the conduits 776 to avoid interference with the conduits 776.
  • each of the illustrative mounting holes 318 formed in the mounting block 316 of the thermal exchanger 222 has a frustoconical cross-sectional shape.
  • Each of the mounting holes 318 is therefore shaped to complement the shape of the tapered tip 562 of a corresponding thermal exchanger securing device 226, as best seen in FIGS. 4 and 9.
  • each of the mounting holes 318 is sized to receive the tapered tip 562 of the corresponding thermal exchanger securing device 226 and a corresponding thermal insert 968.
  • one thermal insert 968 is positioned in each of the mounting holes 318 between the thermal exchanger 222 and the corresponding thermal exchanger securing device 226.
  • each of the thermal inserts 968 is shaped to complement the shape of the tapered tip 562 of the corresponding thermal exchanger securing device 226 and the corresponding mounting hole 318.
  • Each of the illustrative thermal inserts 968 therefore has a frustoconical cross-sectional shape.
  • Each of the thermal inserts 968 may be embodied as any type of insert or material that is capable of providing a thermal coupling between the mounting block 316 of the thermal exchanger 222 and the corresponding thermal exchanger securing device 226 to conduct heat generated by one or more of the processors 202 to the corresponding thermal exchanger securing device 226 during operation of the server 104.
  • each thermal insert 968 may include, or otherwise be embodied as, thermal interface material or thermal grease. In other embodiments, each thermal insert 968 may include, or otherwise be embodied as, thermal glue, a thermal adhesive, or the like. In the illustrative embodiment, each thermal insert 968 has a heat transfer coefficient of 6.5 W/m 2 K. Of course, in other embodiments, it should be appreciated that each thermal insert 968 may have another suitable heat transfer coefficient.
  • a table 1000 presents actual test data for a number of test cases 1002.
  • the test cases 1002 include a first test case for which data is provided in a row 1004 of the table 1000, a second test case for which data is provided in a row 1006 of the table 1000, a third test case for which data is provided in a row 1008 of the table 1000, and a fourth test case for which data is provided in a row 1010 of the table 1000.
  • the data contained in the row 1004 corresponds to, or otherwise be associated with, reference data used as a baseline for evaluation of each of the second, third, and fourth test cases relative to the first test case.
  • the data contained in row 1006 corresponds to, or otherwise be associated with, a server configuration in which a thermal pad similar to the thermal pad 454 is positioned between a backplate similar to the backplate 224 and an interior surface of a server chassis similar to the interior surface 456.
  • the seven thermal exchanger securing devices 226 i.e., the devices 226 included in each cooling system assembly 220 as shown in FIG. 6) have been omitted.
  • the data contained in row 1008 corresponds to, or otherwise be associated with, a server configuration in which seven copper fasteners similar to the thermal exchanger securing devices 226 thermally couple a backplate similar to the backplates 224 with a thermal exchanger similar to the thermal exchangers 222.
  • the thermal pad 454 (i.e., the thermal pad 454 included in each cooling system assembly 220 as shown in FIG. 6) has been omitted.
  • the data contained in row 1010 corresponds to, or otherwise be associated with, a server configuration in which the thermal exchanger securing devices 226 thermally couple the backplates 224 with the thermal exchangers 222 and in which the thermal pads 454 are positioned between the backplates 224 and the interior surface 456 of the server chassis 106. Accordingly, the data contained in row 1010 corresponds to, or otherwise be associated with, actual, measured performance data of the server 104 depicted in FIG. 6.
  • One cooling system assembly which may be referred to as a thermal test vehicle (TTV) , and for which data is provided in columns 1012, 1014, 1016, and 1018 of the table 1000, may be arranged closer to a front edge than an opposite rear edge of a substrate such that the one cooling system assembly may be said to be a “front” cooling system assembly having a “front” thermal exchanger.
  • TTV thermal test vehicle
  • Another cooling system assembly which may also be referred to as a thermal test vehicle (TTV) , and for which data is provided in columns 1020, 1022, 1024, and 1026 of the table 1000, may be arranged closer to the rear edge of the substrate than the front edge such that the another cooling system assembly may be said to be a “rear” cooling system assembly having a “rear” thermal exchanger.
  • the “front” thermal exchanger may be constructed of extruded aluminum, whereas the “rear” thermal exchanger may include a copper base and aluminum fins.
  • the data presented in Table 1000 may be based on actual tests performed at bench top, room temperature.
  • the thermal performance data associated with the second test case contained in row 1006, column 1016 indicates a thermal performance improvement of 1.5%compared to the applicable reference data for the first test case.
  • the thermal performance data associated with the second test case contained in row 1006, column 1024 indicates a thermal performance improvement of 1.6%compared to the applicable reference data for the first test case.
  • the thermal performance data associated with the third test case contained in row 1008, column 1016 indicates a thermal performance improvement of 3.7%compared to the applicable reference data for the first test case.
  • the thermal performance data associated with the third test case contained in row 1008, column 1024 indicates a thermal performance improvement of 9.7%compared to the applicable reference data for the first test case.
  • the thermal performance data associated with the fourth test case i.e., the tested performance data of one of the cooling system assemblies 220 contained in row 1010, column 1016 indicates a thermal performance improvement of 6.6%compared to the applicable reference data for the first test case.
  • the thermal performance data associated with the fourth test case i.e., the tested performance data of the other of the cooling system assemblies 220 contained in row 1010, column 1024 indicates a thermal performance improvement of 11.2%compared to the applicable reference data for the first test case.
  • the data contained in row 1010, column 1016 and in row 1010, column 1024 may be generated using thermal exchanger securing devices 226 formed from copper. When thermal exchanger securing devices 226 formed from steel rather than copper are employed, thermal performance improvements of 5.1%for the “front” thermal exchanger and 8.0%for the “rear” thermal exchanger compared to the applicable reference data for the first test case may be attained.
  • FIG. 11 an illustrative method 1100 of assembling the cooling system assembly 220 is shown. It should be appreciated, of course, that the method 1100 may be performed in a number of sequences other than the illustrative sequence of FIG. 11.
  • the method 1100 begins with block 1102 in which the bolster plate 450 of the cooling system assembly 220 is mounted on the top side 342 of the PCB 308. To do so, in block 1104, the holes 452 formed in the bolster plate 450 may be aligned with the apertures 346 formed in the PCB 308. That is, seven holes 452 formed in the bolster plate 450 may be aligned with seven apertures 346 formed in the PCB 308 in block 1104.
  • the method 1100 subsequently proceeds to block 1106, in which the thermal exchanger 222 of the cooling system assembly 220 is mounted relative to the bolster plate 450 on the top side 342 of the PCB 308. More specifically, the thermal exchanger 222 is mounted on the top side 342 in block 1106 such that the thermal exchanger 222 is coupled to one of the processors 202 mounted on the PCB 308.
  • the mounting holes 318 formed in the mounting block 316 may be aligned with the apertures 346 formed in the PCB 308 in block 1108. More precisely, seven mounting holes 318 formed in the mounting block 316 may be aligned with seven apertures 346 formed in the PCB 308 in block 1108.
  • the method 1100 optionally proceeds to block 1110, in which one of the thermal inserts 968 of the cooling system assembly 220 may be positioned in each mounting hole 318 formed in the mounting block 316. More specifically, in block 1110, one of the thermal inserts 968 may be positioned in each of seven mounting holes 318 formed in the mounting block 316.
  • the method 1100 subsequently proceeds to block 1112, in which the backplate 224 of the cooling system assembly 220 is mounted on the bottom side 344 of the PCB 308.
  • the holes 348 formed in the backplate 224 may be aligned with the apertures 346 formed in the PCB 308. That is, seven holes 348 formed in the backplate 224 may be aligned with seven apertures 346 formed in the PCB 308 in block 1114.
  • the method 1100 subsequently proceeds to block 1116, in which the thermal exchanger securing devices 226 of the cooling system assembly 220 are inserted (i) into the holes 348 formed in the backplate 224, the holes 452 formed in the bolster plate 450, and the mounting holes 318 formed in the mounting block 316 and (ii) through the apertures 346 formed in the PCB 308.
  • the thermal exchanger securing devices 226 are inserted through the backplate 224 and the PCB 308 and into the mounting holes 318 to thermally couple the thermal exchanger 222 with the backplate 224.
  • thermal exchanger securing devices 226 are inserted through the backplate 224 and the PCB 308 and into seven mounting holes 318 formed in the mounting block 316 to thermally couple with the thermal exchanger 222 with the backplate 224.
  • the thermal exchanger securing devices 226 may be retained by a press-fit technique, or by engagement between corresponding features (e.g., threads) of the thermal exchanger securing devices 226 and the mounting block 316.
  • the method 1100 subsequently proceeds to block 1118, in which the thermal pad 454 is applied to the backplate 224 such that the thermal pad 454 is in confronting relation with the bottom side 344 of the PCB 308.
  • the assembled cooling system assembly 220 of the server 104 may be installed in the server chassis 106.
  • the technologies and concepts disclosed herein may be applied to various cooling systems to increase the cooling efficiency of processors and/or other heat-producing components of a server or other compute device.
  • the cooling system assembly 220 may be used to cool peripheral component interconnect express (PCIe) heat sinks.
  • PCIe peripheral component interconnect express
  • a server 104 or other compute device may include any number of cooling system assemblies 220, depending on the number of components to be cooled and the available room within the corresponding server chassis 106.
  • additional cooling efficiency may be obtained via various modifications of the illustrative embodiment of the cooling system assembly 220.
  • a backplate e.g., the backplate 22
  • a substrate e.g., the PCB 308
  • additional apertures e.g., the apertures 346
  • fans e.g., the fans 2228
  • An embodiment of the technologies disclosed herein may include any one or more, and any combination of, the examples described below.
  • Example 1 includes a compute device for operation in a rack of a data center, the compute device comprising a printed circuit board having a top side and a bottom side opposite the top side, wherein the printed circuit board includes a plurality of apertures extending through the printed circuit board from the top side to the bottom side; a processor mounted to the top side of the printed circuit board; and a cooling system assembly including (i) a thermal exchanger including a metallic mounting block coupled to the processor to dissipate heat generated during operation of the processor, (ii) a metallic backplate, and (iii) a plurality of metallic thermal exchanger securing devices, wherein each of the metallic thermal exchanger securing devices extends from the metallic backplate, through a corresponding aperture of the plurality of apertures, and into a corresponding mounting hole formed in the metallic mounting block to secure the thermal exchanger to the printed circuit board, wherein the plurality of metallic thermal exchanger securing devices thermally couple the thermal exchanger with the metallic backplate.
  • a thermal exchanger including
  • Example 2 includes the subject matter of Example 1, and wherein (i) the thermal exchanger is mounted to the top side of the printed circuit board, (ii) the metallic backplate is mounted to the bottom side of the printed circuit board, and (iii) the plurality of metallic thermal exchanger securing devices extend from the metallic backplate to secure the metallic backplate to the metallic mounting block of the thermal exchanger when the thermal exchanger is secured to the printed circuit board by the metallic thermal exchanger securing devices.
  • Example 3 includes the subject matter of any of Examples 1 and 2, and wherein the cooling system assembly includes a thermal insert positioned in each of the mounting holes formed in the metallic mounting block of the thermal exchanger between the thermal exchanger and the corresponding metallic thermal exchanger securing device.
  • Example 4 includes the subject matter of any of Examples 1-3, and wherein each mounting hole formed in the metallic mounting block of the thermal exchanger has a frustoconical cross-sectional shape, and wherein each thermal insert has a frustoconical cross-sectional shape complementary to the shape of each mounting hole formed in the metallic mounting block of the thermal exchanger.
  • Example 5 includes the subject matter of any of Examples 1-4, and wherein each metallic thermal exchanger securing device includes a tip having a frustoconical cross-sectional shape complementary to the shape of each thermal insert.
  • Example 6 includes the subject matter of any of Examples 1-5, and wherein the plurality of apertures of the printed circuit board includes at least seven apertures, and wherein the plurality of metallic thermal exchanger securing devices includes a corresponding at least seven metallic thermal exchanger securing devices.
  • Example 7 includes the subject matter of any of Examples 1-6, and further including a metallic chassis, wherein when the printed circuit board is installed in the metallic chassis, the plurality of metallic thermal exchanger securing devices transfer heat generated by the processor during operation of the processor to the metallic chassis to dissipate the heat.
  • Example 8 includes the subject matter of any of Examples 1-7, and wherein the thermal exchanger includes a plurality of conduits housed by a finned metallic housing of the thermal exchanger, and wherein the metallic mounting block of the thermal exchanger is formed to include at least seven mounting holes that are located around the periphery of the plurality of conduits to avoid interference with the plurality of conduits.
  • Example 9 includes the subject matter of any of Examples 1-8, and wherein (i) the printed circuit board includes a plurality of electrical traces, (ii) the plurality of apertures of the printed circuit board includes at least seven apertures, and (iii) each of the at least seven apertures is located between at least two of the plurality of electrical traces to avoid interference with the at least two of the plurality of electrical traces.
  • Example 10 includes the subject matter of any of Examples 1-9, and wherein the cooling system includes a thermal pad applied to the metallic backplate, and wherein when the thermal exchanger is secured to the printed circuit board by the metallic thermal exchanger securing devices, the metallic thermal exchanger securing devices extend from the metallic backplate and contact the thermal pad to transfer heat generated by the processor during operation of the processor to the thermal pad to dissipate the heat.
  • Example 11 includes a cooling system comprising a thermal exchanger to dissipate heat produced by a heat-producing electrical component during operation thereof, wherein the thermal exchanger includes a metallic mounting block having a plurality of mounting holes; a metallic backplate; and a plurality of metallic thermal exchanger securing devices to secure the thermal exchanger and the metallic backplate to a substrate, wherein each of the plurality of metallic thermal exchanger securing devices is sized to be received in a corresponding one of the plurality of mounting holes of the metallic mounting block of the thermal exchanger, and wherein when the plurality of metallic thermal exchanger securing devices are received in the plurality of mounting holes of the metallic mounting block of the thermal exchanger, the plurality of metallic thermal exchanger securing devices thermally couple the thermal exchanger with the metallic backplate.
  • the thermal exchanger includes a metallic mounting block having a plurality of mounting holes; a metallic backplate; and a plurality of metallic thermal exchanger securing devices to secure the thermal exchanger and the metallic backplate to a substrate
  • Example 12 includes the subject matter of Example 11, and wherein the thermal exchanger includes a finned metallic housing that extends outwardly away from the metallic mounting block and houses a plurality of conduits of the thermal exchanger.
  • Example 13 includes the subject matter of any of Examples 11 and 12, and wherein the plurality of metallic thermal exchanger securing devices are sized to extend from the metallic backplate when the plurality of metallic thermal exchanger securing devices are received in the mounting holes of the metallic mounting block of the thermal exchanger.
  • Example 14 includes the subject matter of any of Examples 11-13, and further including a metallic bolster plate, separate from the metallic backplate, to interface with the substrate, wherein the plurality of metallic thermal exchanger securing devices are sized to extend through the metallic bolster plate when the plurality of metallic thermal exchanger securing devices are received in the metallic mounting holes of the mounting block of the thermal exchanger.
  • Example 15 includes the subject matter of any of Examples 11-14, and further including a plurality of thermal inserts, wherein each of the plurality of thermal inserts is sized to be received in a corresponding one of the mounting holes of the metallic mounting block of the thermal exchanger.
  • Example 16 includes the subject matter of any of Examples 11-15, and wherein each of the plurality of mounting holes of the metallic mounting block of the thermal exchanger has a frustoconical cross-sectional shape, and wherein each of the plurality of metallic thermal exchanger securing devices includes a tip having a frustoconical cross-sectional shape.
  • Example 17 includes a method of assembling a cooling system assembly, the method comprising mounting a thermal exchanger of the cooling system assembly on a top side of a printed circuit board such that the thermal exchanger is coupled to a processor mounted on the printed circuit board; mounting a metallic backplate of the cooling system assembly on a bottom side of the printed circuit board arranged opposite the top side; and inserting a plurality of metallic thermal exchanger securing devices of the cooling system assembly through each of the metallic backplate and the printed circuit board and into a plurality of mounting holes formed in a metallic mounting block of the thermal exchanger to thermally couple the thermal exchanger with the metallic backplate.
  • Example 18 includes the subject matter of Example 17, and further including positioning a thermal insert of the cooling system having a frustoconical cross-sectional shape in each of the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger prior to inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
  • Example 19 includes the subject matter of any of Examples 17 and 18, and wherein inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger comprises inserting a plurality of metallic thermal exchanger securing devices each including a tip having a frustoconical cross-sectional shape into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
  • Example 20 includes the subject matter of any of Examples 17-19, and wherein inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger comprises inserting several metallic thermal exchanger securing devices into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
  • Example 21 includes a thermal exchanger comprising a plurality of conduits to facilitate dissipation of heat produced by a heat-producing electrical component during operation thereof; a finned metallic housing to house the plurality of conduits; and a metallic mounting block to interface with a substrate, wherein the metallic mounting block is coupled to the finned metallic housing, and wherein the metallic mounting block is formed to include a plurality of mounting holes that are sized to receive a plurality of metallic thermal exchanger securing devices to facilitate securement of metallic mounting block to the substrate.
  • Example 22 includes the subject matter of Example 21, and wherein each of the plurality of mounting holes formed in the metallic mounting block has a frustoconical cross-sectional shape.
  • Example 23 includes the subject matter of any of Examples 21 and 22, and wherein the plurality of mounting holes of the metallic mounting block are located around the periphery of the plurality of conduits to avoid interference with the plurality of conduits.
  • Example 24 includes the subject matter of any of Examples 21-23, and wherein the plurality of mounting holes includes several mounting holes.
  • Example 25 includes the subject matter of any of Examples 21-24, and wherein the several mounting holes include at least seven mounting holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Compute devices, cooling systems, methods of assembling cooling system assemblies, and thermal exchangers are disclosed herein. A compute device for operation in a rack of a data center includes a printed circuit board, a processor, and a cooling system assembly. The printed circuit board has a top side and a bottom side opposite the top side, and the printed circuit board includes a plurality of apertures extending through the printed circuit board from the top side to the bottom side. The processor is mounted to the top side of the printed circuit board. The cooling system assembly has a thermal exchanger coupled to the processor to dissipate heat generated during operation of the processor, and a plurality of thermal exchanger securing devices to secure the thermal exchanger to the printed circuit board, as well as a backplate.

Description

COOLING SYSTEM ASSEMBLY FOR COMPUTE DEVICES BACKGROUND
Typical enterprise-level data centers can include several to hundreds of racks or cabinets, with each rack/cabinet housing multiple servers, sleds, or similar compute devices. Each of the various servers of a data center may be communicatively connectable to each other via one or more local networking switches, routers, and/or other interconnecting devices, cables, and/or interfaces. The number of racks and servers of a particular data center, as well as the complexity of the design of the data center, may depend on the intended use of the data center, as well as the quality of service the data center is intended to provide.
Traditional rack systems are self-contained physical support structures that include a number of pre-defined server spaces. A corresponding server or compute device may be mounted in each pre-defined server space. When mounted in the server space, it may be desirable to dissipate heat produced by various components of the server, such as processors, during operation to improve performance of those components, and cooling systems may be employed to that end. Design of cooling systems to improve performance of compute devices remains an area of interest.
BRIEF DESCRIPTION OF THE DRAWINGS
The concepts described herein are illustrated by way of example and not by way of limitation in the accompanying figures. For simplicity and clarity of illustration, elements illustrated in the figures are not necessarily drawn to scale. Where considered appropriate, reference labels have been repeated among the figures to indicate corresponding or analogous elements.
FIG. 1 is a simplified block diagram of at least one embodiment of a rack that may be included in a corresponding data center;
FIG. 2 is a simplified block diagram of at least one embodiment of a compute device that may be installed in the rack of FIG. 1;
FIG. 3 is a partial perspective view of a cooling system assembly of the compute device of FIG. 2 with a thermal exchanger thermally coupled to a backplate by thermal exchanger securing devices that extend through a printed circuit board;
FIG. 4 is a partial front elevation view of the cooling system of FIG. 3;
FIG. 5 is a detail view of one of the thermal exchanger securing devices shown in FIG. 4;
FIG. 6 is an exploded perspective view of the compute device of FIG. 2;
FIG. 7 is a top view of the thermal exchanger of the cooling assembly shown in FIG. 3;
FIG. 8 is a partial sectional view of the underside of the thermal exchanger taken about line 8-8 of FIG. 7;
FIG. 9 is a partial perspective view of the thermal exchanger, a pair of thermal exchanger securing devices, and a pair of thermal inserts that may be included in the cooling system assembly shown in FIG 3;
FIG. 10 is a table of performance data of a number of cooling system assemblies; and
FIG. 11 is a simplified flowchart of at least one embodiment of a method of assembling the cooling system assembly shown in FIG. 3.
DETAILED DESCRIPTION OF THE DRAWINGS
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will be described herein in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives consistent with the present disclosure and the appended claims.
References in the specification to “one embodiment, ” “an embodiment, ” “an illustrative embodiment, ” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may or may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other  embodiments whether or not explicitly described. Additionally, it should be appreciated that items included in a list in the form of “at least one A, B, and C” can mean (A) ; (B) ; (C) ; (A and B) ; (A and C) ; (B and C) ; or (A, B, and C) . Similarly, items listed in the form of “at least one of A, B, or C” can mean (A) ; (B) ; (C) ; (A and B) ; (A and C) ; (B and C) ; or (A, B, and C) .
The disclosed embodiments may be implemented, in some cases, in hardware, firmware, software, or any combination thereof. The disclosed embodiments may also be implemented as instructions carried by or stored on a transitory or non-transitory machine-readable (e.g., computer-readable) storage medium, which may be read and executed by one or more processors. A machine-readable storage medium may be embodied as any storage device, mechanism, or other physical structure for storing or transmitting information in a form readable by a machine (e.g., a volatile or non-volatile memory, a media disc, or other media device) .
In the drawings, some structural or method features may be shown in specific arrangements and/or orderings. However, it should be appreciated that such specific arrangements and/or orderings may not be required. Rather, in some embodiments, such features may be arranged in a different manner and/or order than shown in the illustrative figures. Additionally, the inclusion of a structural or method feature in a particular figure is not meant to imply that such feature is required in all embodiments and, in some embodiments, may not be included or may be combined with other features.
Referring now to FIG. 1, an illustrative data center 100 may be generally representative of a data center or other type of computing network or collection of computing resources. Although the data center 100 is shown to include a single rack 102, it should be appreciated that the data center 100 may include multiple racks, which may be substantially identical to the rack 102. For example, in some embodiments, multiple racks 102 may be secured together to form a row of racks 102 and/or a pod of racks 102. Each rack 102 is configured to house one or more compute devices, servers, sleds, or other computer equipment, which are illustratively shown as servers 104. Although the rack 102 is shown to include three servers 104, it should be appreciated that the rack 102 may include additional or fewer servers 104 in other embodiments depending on, for example, the desired number of servers 104 to be housed and the size of the rack 102. In any case, each of the servers 104 is supported by, or otherwise housed in, a corresponding server chassis 106 when installed in the rack 102. Each  server chassis 106 is received in a corresponding server space (not shown) of the rack 102 such that the server chassis 106, and the server 104 held thereby, are supported by the rack 102.
Referring now to FIG. 2, in the illustrative embodiment, each of the servers 104 includes various physical resources 200, such as one or more processors 202, one or more memory devices 204, one or more storage devices 206, and/or other physical resources 208 depending on the type and implementation of the server 104. Each of physical resources 200 of the server 104 is mounted to and/or or communicatively coupled to a corresponding a printed circuit board (PCB) 308 (as best seen in FIG. 3) . During operation, some of the physical resources 200 of the server (s) 104 generate significant heat. For example, in the illustrative embodiment in which a server 104 includes one or more processors 202, each of the processors 202 may generate heat during operation of the server 104 depending on various factors such as the present workload of the server 104, the configuration of the server 104, and/or other factors. As such, the server 104 includes one or more cooling system assemblies 220, each of which is coupled to a corresponding processor 202 and secured to the PCB 308 as discussed in more detail below. During use, the cooling system assembly 220 is configured to cool the corresponding physical resource of the sled 104 to which it is coupled. Although described below as being coupled to a processor 202, it should be appreciated that the cooling system assembly 220 and other technologies disclosed herein may be coupled to and used to cool other physical resources 200 of the sled 104 that generated heat during operation.
Among other features, the cooling system assembly 220 includes a thermal exchanger 222, a metallic backplate 224, multiple metallic thermal exchanger securing devices 226, thermal inserts 968 (see FIG. 9) , and one or more cooling fans 228. In use, the thermal exchanger 222 is coupled to a corresponding processor 202 (or other heat-producing physical resource 200) to dissipate heat generated during operation of the processor 202. To secure the thermal exchanger 222 in position, the thermal exchanger 222 is secured to the PCB 308 via the thermal exchanger securing devices 226. Each of the thermal exchanger securing devices 226 extends from the backplate 224, through the PCB 308, and into a mounting hole 318 formed in a mounting block 316 of the thermal exchanger 222 to secure the thermal exchanger 222 to the PCB 308, as best seen in FIG. 3. Each of the thermal exchanger securing devices 226 are formed from a metallic material and, therefore, thermally couple the thermal exchanger 222 to the backplate 224 so that heat generated by each processor 202 is conducted away from the thermal  exchanger 222 and to the backplate 224 via the thermal exchanger securing devices 226. In doing so, the thermal exchanger securing devices 226 facilitate dissipation of heat generated by each processor 202 to improve performance of each processor 202.
Although the compute device 104 is illustratively embodied as a server, it should be appreciated that the compute device 104 may be embodied as any type of compute device capable of performing various compute functions. In some embodiments, for example, the compute device 104 may be embodied as a computer, a desktop computer, a mobile computer, a laptop computer, a tablet computer, a notebook, a netbook, an Ultrabook TM, a smart device, a personal digital assistant, a mobile Internet device, a router, a switch, a network compute device, and/or other compute device or other device having electronic circuitry included therein.
Each of the processors 202 may be embodied as any type of processor, controller, or other compute circuit capable of performing various tasks such as compute functions and/or controlling the functions of the server 104 depending on, for example, the type or intended functionality of the server 104. For example, each processor 202 may be embodied as a single or multi-core processor (s) , a microcontroller, or other processor or processing/controlling circuit. In some embodiments, each processor 202 may be embodied as, include, or be coupled to an FPGA, an application specific integrated circuit (ASIC) , reconfigurable hardware or hardware circuitry, or other specialized hardware to facilitate performance of the functions described herein. For example, each processor 202 may be embodied as a high-power processor in embodiments in which the server 104 is embodied as a compute server, as accelerator co-processors, FPGAs, or other circuits in embodiments in which the server 104 is embodied as an accelerator server, and/or as storage controllers in embodiments in which the server 104 is embodied as a storage server. In the illustrative embodiment, the sled 104 includes at least two processors 202 and a corresponding two cooling system assemblies 220 for operation with processors 202. However, in other embodiments, the sled 104 may include additional or fewer processors 202 and corresponding cooling system assemblies 220.
The one or more memory devices 204 may be embodied as any type of volatile (e.g., dynamic random access memory (DRAM) , etc. ) or non-volatile memory capable of storing data therein. Volatile memory may be embodied as a storage medium that requires power to maintain the state of data stored by the medium. Non-limiting examples of volatile memory may include various types of random access memory (RAM) , such as dynamic random access  memory (DRAM) or static random access memory (SRAM) . One particular type of DRAM that may be used in a memory module is synchronous dynamic random access memory (SDRAM) . In particular embodiments, DRAM of a memory component may comply with a standard promulgated by JEDEC, such as JESD79F for DDR SDRAM, JESD79-2F for DDR2 SDRAM, JESD79-3F for DDR3 SDRAM, JESD79-4A for DDR4 SDRAM, JESD209 for Low Power DDR (LPDDR) , JESD209-2 for LPDDR2, JESD209-3 for LPDDR3, and JESD209-4 for LPDDR4 (these standards are available at www. jedec. org) . Such standards (and similar standards) may be referred to as DDR-based standards and communication interfaces of the storage devices that implement such standards may be referred to as DDR-based interfaces.
In some embodiments, the one or more memory devices 204 may each be embodied as a block addressable memory, such as those based on NAND or NOR technologies. The one or more memory devices 204 may also include future generation nonvolatile devices, such as a three dimensional crosspoint memory device (e.g., Intel 3D XPoint TM memory) , or other byte addressable write-in-place nonvolatile memory devices. In some embodiments, the one or more memory devices 204 may be embodied as or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM) , a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM) , anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM) , or spin transfer torque (STT) -MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory. The memory device may refer to the die itself and/or to a packaged memory product. In some embodiments, 3D crosspoint memory (e.g., Intel 3D XPoint TM memory) may comprise a transistor-less stackable cross point architecture in which memory cells sit at the intersection of word lines and bit lines and are individually addressable and in which bit storage is based on a change in bulk resistance.
In some embodiments, the one or more memory devices 204 may include multiple memory banks, which may be embodied as a collection of memory devices. Each memory bank may be associated with a corresponding processor. Additionally, in some embodiments, all or a  portion of each memory device 204 may be integrated into the processor (s) 202. In operation, the one or more memory devices 204 may store various software and data used during operation such as task request data, kernel map data, telemetry data, applications, programs, libraries, and drivers.
The one or more storage devices 206 may each be embodied as any type of data storage device or collection of devices capable of short-term or long-term storage of data such as solid state drives, and may each utilize any suitable type of data storage technology (e.g., NAND memory devices) . In some embodiments, the one or more storage devices 206 may each be embodied as solid state drives (SSDs) that have a “ruler” form factor, or another suitable storage device form factor.
The fans 228 may be embodied as one or more fan arrays, each of which may include multiple fans capable of generating an airflow over heat-producing electrical components (e.g., the one or more processors 202) of the server 104 to dissipate the heat produced by those components during operation of the server 104. In some embodiments, the fans 228 may be positioned linearly in-line with the thermal exchangers 222 of the respective cooling system assemblies 220 along the PCB 308 so that airflow generated by the fans 228 passes over the thermal exchangers 222 during operation of the fans 228.
In some embodiments, the server 104 may also include one or more other physical resources 208. The physical resources 208 may include any number of physical resources and/or additional peripheral or interface devices, such as input/output devices, storage devices, accelerator devices, and so forth. The particular devices included in the one or more physical resources 208 may depend on, for example, the type and/or configuration of each server 104.
Referring now to FIGS. 3 and 4, the PCB 308 is illustratively embodied as a substrate or circuit board substrate having a top side 342 and a bottom side 344 opposite the top side 342. In some embodiments, the PCB 308 may be formed from an FR4 glass-reinforced epoxy laminate material. Of course, it should be appreciated that in other embodiments, the PCB 308 may be formed from another suitable material. The PCB 308 includes apertures 346 that extend therethrough from the top side 342 to the bottom side 344. Each of the apertures 346 is sized to receive one of the thermal exchanger securing devices 226, as will be evident from the discussion below. In some embodiments, electrical traces (not shown) may be coupled to, or otherwise integrated with, the top side 342 and/or the bottom side 344 of the PCB 308. In those  embodiments, each of the apertures 346 may be located between at least two of the electrical traces to avoid interference with the at least two of the electrical traces.
In the illustrative embodiment, the one or more processors 202 and the thermal exchanger 222 of the cooling system assembly 220 are mounted to the top side 342 of the PCB 308. The metallic mounting block 316 of the thermal exchanger 222 is arranged in confronting relation with the top side 342 and coupled to one of the processors 202 to dissipate heat generated during operation of the processor 202. In some embodiments, the metallic mounting block 316 may directly contact the corresponding processor. However, in other embodiments, a thermal paste or other thermal interface material may be dispositioned between the metallic mounting block 316 and the corresponding processor 202. The metallic backplate 224 of the cooling system assembly 220 is mounted to the bottom side 344 of the PCB 308. Each of the metallic thermal exchanger securing devices 226 is positioned in a hole 348 that extends through the backplate 224. Each of the thermal exchanger securing devices 226 extends from the backplate 224, through a corresponding aperture 346 of the PCB 308, and into a corresponding mounting hole 318 of the mounting block 316 to secure the thermal exchanger 222 to the PCB 308. Consequently, the thermal exchanger securing devices 226 thermally couple the thermal exchanger 222 with the backplate 224 and secure the backplate 224 to the mounting block 316 when the thermal exchanger 222 is secured to the PCB 308 by the thermal exchanger securing devices 226.
The illustrative cooling system assembly 220 includes a bolster plate 450 separate from the backplate 224 that contacts, or directly interfaces with, the top side 342 of the PCB 308, as shown in FIG. 4. The bolster plate 450 is arranged between the mounting block 316 of the thermal exchanger 222 and the top side 342. The bolster plate 450 includes holes 452 extending therethrough that are each sized to receive one of the thermal exchanger securing devices 226. In some embodiments, the bolster plate 450 may have a metallic construction. In other embodiments, however, the bolster plate 450 may have another suitable construction, such as a polymeric construction, for example.
Referring now to FIGS. 4 and 5, when the thermal exchanger 222 is thermally coupled with the backplate 224 by the thermal exchanger securing devices 226, each of the thermal exchanger securing devices 226 defines, and conducts heat generated by the one or more processors 202 along, a conduction path P. The illustrative conduction path P extends from the  mounting block 316 through the bolster plate 450, the PCB 308, and the backplate 224 to a thermal pad 454 included in the cooling system assembly 220. Of course, it should be appreciated that in other embodiments, each of the thermal exchanger securing devices 226 may define, and conduct heat along, another suitable conduction path that extends through fewer components, or through additional components.
In the illustrative embodiment, the thermal pad 454 of the cooling system assembly 220 is applied to the backplate 224 and arranged between the backplate 224 and an interior surface 456 of the server chassis 106. When the thermal exchanger 222 is secured to the PCB 308 by the thermal exchanger securing devices 226 and thermally coupled to the backplate 224, the thermal exchanger securing devices 226 extend from the backplate 224 and contact the thermal pad 454. As such, the thermal exchanger securing devices 226 transfer heat along the conduction path P to the thermal pad 454 to dissipate the heat during operation of the server 104. Heat transferred to the thermal pad 454 by the thermal exchanger securing devices 226 is transferred to the server chassis 106 for further dissipation when the PCB 308 is installed in the server chassis 106.
The illustrative thermal pad 454 may be embodied as any type of pad, sheet, or layer of material that is capable of providing a thermal coupling between the backplate 224 and the interior surface 456 of the server chassis 106 to conduct heat generated by one or more of the processors 202 to the surface 456 during operation of the server 104. In some embodiments, the thermal pad 454 may include, or otherwise be embodied as, thermal grease. In other embodiments, the thermal pad 454 may include, or otherwise be embodied as, thermal glue, a thermal adhesive, or the like. In the illustrative embodiment, the thermal pad 454 has a heat transfer coefficient of 6.5 W/m 2K. Of course, in other embodiments, it should be appreciated that the thermal pad 454 may have another suitable heat transfer coefficient.
As best seen in FIG. 5, each of the illustrative thermal exchanger securing devices 226 is illustratively embodied as a fastener that includes a flared head 558, a body 560 interconnected with the flared head 558, and a tapered tip 562 interconnected with the body 560. The flared head 558 and the tapered tip 562 define  opposite ends  564, 566 of each thermal exchanger securing device 226, respectively. The body 560 has a width W1 and the flared head 558 has a width W2 that is greater than the width W1. The tapered tip 562 has a width W3 that is less than the width W1. In the illustrative embodiment, the thermal exchanger securing  devices 226 are embodied as
Figure PCTCN2018081484-appb-000001
fasteners that are formed from metallic materials, such as copper or steel, for example.
The tapered tip 562 of each illustrative thermal exchanger securing device 226 is sized to be received in a corresponding mounting hole 318 of the mounting block 316 of the thermal exchanger 222 when the thermal exchanger 222 is thermally coupled to the backplate 224 by the thermal exchanger securing devices 226. The flared head 558 of each thermal exchanger securing device 226 is sized to be received in a corresponding hole 348 of the backplate 224 when the thermal exchanger 222 is thermally coupled to the backplate 224 by the thermal exchanger securing devices 226. The body 560 of each thermal exchanger securing device 226 is sized to extend from the backplate 224, through a corresponding aperture 346 of the PCB 308, through a corresponding hole 452 of the bolster plate 450, and to the mounting block 316 when the tapered tip 562 is received in the corresponding mounting hole 318 and the flared head 558 is received in the corresponding hole 348. Of course, it should be appreciated that in other embodiments, the thermal exchanger securing devices 226 may have other suitable positional arrangements and/or orientations relative to the backplate 224, the bolster plate 450, the thermal exchanger 222, and the one or more processors 202 depending on, for example, the arrangement of those components on the top side 342 or the bottom side 344 of the PCB 308.
In the illustrative embodiment, the flared head 558 of each thermal exchanger securing device 226 contacts the thermal pad 454 and provides an increased surface area for transferring heat conducted by the thermal exchanger securing device 226 to the thermal pad 454 than might otherwise be the case in other configurations. Accordingly, compared to other configurations, each thermal exchanger securing device 226 may facilitate, or otherwise be associated with, a greater degree of heat transfer to the thermal pad 454, and therefore greater dissipation of heat generated by the one or more processors 202 during operation thereof.
In some embodiments, the tapered tip 562 of each illustrative thermal exchanger securing device 226 may be shaped to facilitate interaction with a thermal insert 968 that is further described below with reference to FIG. 9. Due at least in part to the complementary shapes of the tapered tip 562 of each thermal exchanger securing device 226, the corresponding thermal insert 968, and the corresponding mounting hole 318 in which the tapered tip 562 and the thermal insert 968 may be positioned, heat transfer from the mounting block 316 of the thermal exchanger 222 to the thermal insert 968, and from the thermal insert 968 to the tapered  tip 562 of each thermal exchanger securing device 226, may be facilitated. Thus, compared to other configurations that employ shapes different from the tapered tips 562 of the thermal exchanger securing devices 226, the thermal inserts 968, and the mounting holes 318, each thermal exchanger securing device 226 may facilitate, or otherwise be associated with, greater dissipation of heat generated by the one or more processors 202 during operation thereof.
In the illustrative embodiment, the tapered tip 562 of each thermal exchanger securing device 226 has a frustoconical cross-sectional shape, as shown in FIGS. 4 and 5. Similarly, each of the mounting holes 318 of the mounting block 316 that is sized to receive the tapered tip 562 of one of the thermal exchanger securing devices 226 has a frustoconical cross-sectional shape. The shapes of the tapered tip 562 of each thermal exchanger securing device 226 and each mounting hole 318 may provide greater surface area and reduce tolerance effects for direct contact (e.g., in embodiments where the thermal insert 968 is omitted) between the mounting block 316 and each thermal exchanger securing device 226, and indirect contact (e.g., in embodiments where the thermal insert 968 is included) between the mounting block 316 and each thermal exchanger securing device 226, than might otherwise be the case if other shapes were employed.
Referring now to FIG. 6, it should be appreciated that a server 104 may include multiple cooling system assemblies 200 in some embodiments. For example, in the illustrative embodiment of FIG. 6, the server 104 includes two cooling system assemblies 200, each of which is coupled to a corresponding processor 202 (not shown in FIG. 6) . Of course, it should be appreciated that in other embodiments, the server 104 may include another suitable number of cooling system assemblies 200 depending on, for example, the number of processors 202 or other heat-producing physical resources 200 included in the server 104.
In the illustrative embodiment, the thermal exchanger securing devices 226 of each cooling system assembly 200 include seven thermal exchanger securing devices 226. As such, the holes 348 formed in the backplate 224 illustratively include seven holes 348, the apertures 346 formed in the PCB 308 illustratively include seven apertures 346, the holes 452 formed in the bolster plate 450 illustratively include seven holes 452, and the mounting holes 318 formed in the mounting block 316 of the thermal exchanger 222 illustratively include seven mounting holes 318. In other embodiments, however, the thermal exchanger securing devices 226 of the cooling system assembly 200 may include more than seven thermal exchanger  securing devices 226, and the number of holes 348, apertures 346, holes 452, and mounting holes 318 may be increased in correspondence with the number of thermal exchanger securing devices 226 included in the cooling system assembly 220. For example, in some embodiments, the thermal exchanger securing devices 226 of the cooling system assembly 200 may include nine thermal exchanger securing devices 226. In some embodiments, rather than being provided as separate components, the thermal exchanger securing devices 226 may be integrated with the backplate 224. In such embodiments, the holes (e.g., the holes 348) formed in the backplate 224 may be omitted.
Referring now to FIGS. 7 and 8, the illustrative thermal exchanger 222 may be embodied as any device, or collection of devices, capable of transferring away heat produced by the one or more of the processors 202 to dissipate the heat during operation of the server 104. In some embodiments, the thermal exchanger 222 may include, or otherwise be embodied as, a heat sink, a cold plate, a vapor chamber, or the like, for example. Of course, it should be appreciated that in other embodiments, the thermal exchanger 222 may include, or otherwise be embodied as, another suitable device or collection of devices. In such embodiments, the thermal exchanger 222 may include, or otherwise be embodied as, an embedded heat pipe exchanger, a shell and tube heat exchanger, a plate heat exchanger, a plate and shell heat exchanger, a plate fin heat exchanger, a pillow plate heat exchanger, a microchannel heat exchanger, a waste recovery unit, a helical-coil heat exchanger, a spiral heat exchanger, or the like, for example.
In the illustrative embodiment, the thermal exchanger 222 includes conduits 776 that facilitate dissipation of heat produced by the one or more processors 202 during operation thereof. Accordingly, the thermal exchanger 222 may be said to include, or otherwise be embodied as, a thermal exchanger with one or more heat pipes or conduits 776 embedded on a heat sink base (e.g., the mounting block 316) . Each of the conduits 776 may include, or otherwise be embodied as, one or more heat pipes, vapor chambers, metal strips, graphite strips, or any other components formed from thermally conductive material. Although three conduits 776 are shown in FIG. 7, it should be appreciated that in other embodiments, the thermal exchanger 222 may include another suitable number of conduits 776. In addition to the conduits 776, in some embodiments, the thermal exchanger 222 may include one or more cold plates (not shown) .
The thermal exchanger 222 illustratively includes a finned metallic housing 878 that at least partially houses the conduits 776, as shown in FIG. 8. The housing 878 includes fins 880 that extend outwardly away from the metallic mounting block 316. In some embodiments, the fins 880 may provide additional surface area to increase the rate of heat transfer from the thermal exchanger 222 to the surrounding environment, which may facilitate dissipation of heat generated by the one or more processors 202 during operation thereof. The mounting block 316 is coupled to the finned housing 878 and configured to interface with the PCB 308, and in some embodiments, the mounting block 316 may at least partially house the conduits 776. As indicated above, each of the mounting holes 318 formed in the mounting block 316 is sized to receive one of the thermal exchanger securing devices 226 to facilitate securement of the mounting block 316 to the PCB 308. In some embodiments, the finned housing 878 and the mounting block 316 may be constructed of aluminum. In other embodiments, the finned housing 878 and the mounting block 316 may be constructed of copper.
The illustrative mounting block 316 of the thermal exchanger 222 is formed to include seven mounting holes 318, as best seen in FIG. 7. As discussed above, the number of mounting holes 318 corresponds to the number of thermal exchanger securing devices 226 included in each one of the cooling system assemblies 220. The seven mounting holes 318 are located around the periphery of the conduits 776 to avoid interference with the conduits 776.
Referring now to FIG. 9, each of the illustrative mounting holes 318 formed in the mounting block 316 of the thermal exchanger 222 has a frustoconical cross-sectional shape. Each of the mounting holes 318 is therefore shaped to complement the shape of the tapered tip 562 of a corresponding thermal exchanger securing device 226, as best seen in FIGS. 4 and 9. In the illustrative embodiment, each of the mounting holes 318 is sized to receive the tapered tip 562 of the corresponding thermal exchanger securing device 226 and a corresponding thermal insert 968. As such, when the cooling system assembly 220 is assembled as depicted in FIG. 4, one thermal insert 968 is positioned in each of the mounting holes 318 between the thermal exchanger 222 and the corresponding thermal exchanger securing device 226.
In the illustrative embodiment, each of the thermal inserts 968 is shaped to complement the shape of the tapered tip 562 of the corresponding thermal exchanger securing device 226 and the corresponding mounting hole 318. Each of the illustrative thermal inserts 968 therefore has a frustoconical cross-sectional shape. Each of the thermal inserts 968 may be  embodied as any type of insert or material that is capable of providing a thermal coupling between the mounting block 316 of the thermal exchanger 222 and the corresponding thermal exchanger securing device 226 to conduct heat generated by one or more of the processors 202 to the corresponding thermal exchanger securing device 226 during operation of the server 104. In some embodiments, each thermal insert 968 may include, or otherwise be embodied as, thermal interface material or thermal grease. In other embodiments, each thermal insert 968 may include, or otherwise be embodied as, thermal glue, a thermal adhesive, or the like. In the illustrative embodiment, each thermal insert 968 has a heat transfer coefficient of 6.5 W/m 2K. Of course, in other embodiments, it should be appreciated that each thermal insert 968 may have another suitable heat transfer coefficient.
Referring now to FIG. 10, a table 1000 presents actual test data for a number of test cases 1002. The test cases 1002 include a first test case for which data is provided in a row 1004 of the table 1000, a second test case for which data is provided in a row 1006 of the table 1000, a third test case for which data is provided in a row 1008 of the table 1000, and a fourth test case for which data is provided in a row 1010 of the table 1000. The data contained in the row 1004 corresponds to, or otherwise be associated with, reference data used as a baseline for evaluation of each of the second, third, and fourth test cases relative to the first test case. The data contained in row 1006 corresponds to, or otherwise be associated with, a server configuration in which a thermal pad similar to the thermal pad 454 is positioned between a backplate similar to the backplate 224 and an interior surface of a server chassis similar to the interior surface 456. In the configuration corresponding to row 1006, the seven thermal exchanger securing devices 226 (i.e., the devices 226 included in each cooling system assembly 220 as shown in FIG. 6) have been omitted. The data contained in row 1008 corresponds to, or otherwise be associated with, a server configuration in which seven copper fasteners similar to the thermal exchanger securing devices 226 thermally couple a backplate similar to the backplates 224 with a thermal exchanger similar to the thermal exchangers 222. In the configuration corresponding to row 1008, the thermal pad 454 (i.e., the thermal pad 454 included in each cooling system assembly 220 as shown in FIG. 6) has been omitted. The data contained in row 1010 corresponds to, or otherwise be associated with, a server configuration in which the thermal exchanger securing devices 226 thermally couple the backplates 224 with the thermal exchangers 222 and in which the thermal pads 454 are positioned between the backplates 224  and the interior surface 456 of the server chassis 106. Accordingly, the data contained in row 1010 corresponds to, or otherwise be associated with, actual, measured performance data of the server 104 depicted in FIG. 6.
A number of considerations may apply to the data presented in the table 1000. One cooling system assembly, which may be referred to as a thermal test vehicle (TTV) , and for which data is provided in  columns  1012, 1014, 1016, and 1018 of the table 1000, may be arranged closer to a front edge than an opposite rear edge of a substrate such that the one cooling system assembly may be said to be a “front” cooling system assembly having a “front” thermal exchanger. Another cooling system assembly, which may also be referred to as a thermal test vehicle (TTV) , and for which data is provided in  columns  1020, 1022, 1024, and 1026 of the table 1000, may be arranged closer to the rear edge of the substrate than the front edge such that the another cooling system assembly may be said to be a “rear” cooling system assembly having a “rear” thermal exchanger. The “front” thermal exchanger may be constructed of extruded aluminum, whereas the “rear” thermal exchanger may include a copper base and aluminum fins. The data presented in Table 1000 may be based on actual tests performed at bench top, room temperature.
The thermal performance data associated with the second test case contained in row 1006, column 1016 indicates a thermal performance improvement of 1.5%compared to the applicable reference data for the first test case. The thermal performance data associated with the second test case contained in row 1006, column 1024 indicates a thermal performance improvement of 1.6%compared to the applicable reference data for the first test case.
The thermal performance data associated with the third test case contained in row 1008, column 1016 indicates a thermal performance improvement of 3.7%compared to the applicable reference data for the first test case. The thermal performance data associated with the third test case contained in row 1008, column 1024 indicates a thermal performance improvement of 9.7%compared to the applicable reference data for the first test case.
The thermal performance data associated with the fourth test case (i.e., the tested performance data of one of the cooling system assemblies 220) contained in row 1010, column 1016 indicates a thermal performance improvement of 6.6%compared to the applicable reference data for the first test case. The thermal performance data associated with the fourth test case (i.e., the tested performance data of the other of the cooling system assemblies 220)  contained in row 1010, column 1024 indicates a thermal performance improvement of 11.2%compared to the applicable reference data for the first test case. The data contained in row 1010, column 1016 and in row 1010, column 1024 may be generated using thermal exchanger securing devices 226 formed from copper. When thermal exchanger securing devices 226 formed from steel rather than copper are employed, thermal performance improvements of 5.1%for the “front” thermal exchanger and 8.0%for the “rear” thermal exchanger compared to the applicable reference data for the first test case may be attained.
Referring now to FIG. 11, an illustrative method 1100 of assembling the cooling system assembly 220 is shown. It should be appreciated, of course, that the method 1100 may be performed in a number of sequences other than the illustrative sequence of FIG. 11.
The method 1100 begins with block 1102 in which the bolster plate 450 of the cooling system assembly 220 is mounted on the top side 342 of the PCB 308. To do so, in block 1104, the holes 452 formed in the bolster plate 450 may be aligned with the apertures 346 formed in the PCB 308. That is, seven holes 452 formed in the bolster plate 450 may be aligned with seven apertures 346 formed in the PCB 308 in block 1104.
The method 1100 subsequently proceeds to block 1106, in which the thermal exchanger 222 of the cooling system assembly 220 is mounted relative to the bolster plate 450 on the top side 342 of the PCB 308. More specifically, the thermal exchanger 222 is mounted on the top side 342 in block 1106 such that the thermal exchanger 222 is coupled to one of the processors 202 mounted on the PCB 308. To perform block 1106, the mounting holes 318 formed in the mounting block 316 may be aligned with the apertures 346 formed in the PCB 308 in block 1108. More precisely, seven mounting holes 318 formed in the mounting block 316 may be aligned with seven apertures 346 formed in the PCB 308 in block 1108.
The method 1100 optionally proceeds to block 1110, in which one of the thermal inserts 968 of the cooling system assembly 220 may be positioned in each mounting hole 318 formed in the mounting block 316. More specifically, in block 1110, one of the thermal inserts 968 may be positioned in each of seven mounting holes 318 formed in the mounting block 316.
The method 1100 subsequently proceeds to block 1112, in which the backplate 224 of the cooling system assembly 220 is mounted on the bottom side 344 of the PCB 308. To do so, in block 1114, the holes 348 formed in the backplate 224 may be aligned with the  apertures 346 formed in the PCB 308. That is, seven holes 348 formed in the backplate 224 may be aligned with seven apertures 346 formed in the PCB 308 in block 1114.
The method 1100 subsequently proceeds to block 1116, in which the thermal exchanger securing devices 226 of the cooling system assembly 220 are inserted (i) into the holes 348 formed in the backplate 224, the holes 452 formed in the bolster plate 450, and the mounting holes 318 formed in the mounting block 316 and (ii) through the apertures 346 formed in the PCB 308. In block 1116, the thermal exchanger securing devices 226 are inserted through the backplate 224 and the PCB 308 and into the mounting holes 318 to thermally couple the thermal exchanger 222 with the backplate 224. More specifically, in block 1116, seven thermal exchanger securing devices 226 are inserted through the backplate 224 and the PCB 308 and into seven mounting holes 318 formed in the mounting block 316 to thermally couple with the thermal exchanger 222 with the backplate 224. Following insertion of the thermal exchanger securing devices 226 in block 1116, or contemporaneously with insertion of the thermal exchanger securing devices 226 in block 1116, the thermal exchanger securing devices 226 may be retained by a press-fit technique, or by engagement between corresponding features (e.g., threads) of the thermal exchanger securing devices 226 and the mounting block 316.
The method 1100 subsequently proceeds to block 1118, in which the thermal pad 454 is applied to the backplate 224 such that the thermal pad 454 is in confronting relation with the bottom side 344 of the PCB 308. Following completion of block 1118, the assembled cooling system assembly 220 of the server 104 may be installed in the server chassis 106.
It should be appreciated that the technologies and concepts disclosed herein may be applied to various cooling systems to increase the cooling efficiency of processors and/or other heat-producing components of a server or other compute device. For example, the cooling system assembly 220, or an embodiment thereof, may be used to cool peripheral component interconnect express (PCIe) heat sinks. As such, a server 104 or other compute device may include any number of cooling system assemblies 220, depending on the number of components to be cooled and the available room within the corresponding server chassis 106. Furthermore, additional cooling efficiency may be obtained via various modifications of the illustrative embodiment of the cooling system assembly 220. For example, if a backplate (e.g., the backplate 224) with a relatively high thermal conductivity is employed, or if electrical traces are formed on a substrate (e.g., the PCB 308) to permit additional apertures (e.g., the apertures 346)  to be formed in the substrate, further thermal performance improvements may be achieved. Additionally, a predetermined level of thermal performance, the concepts disclosed herein may permit fans (e.g., the fans 228) to be operated at lower speeds than would otherwise be in the case in other configurations.
EXAMPLES
Illustrative examples of the technologies disclosed herein are provided below. An embodiment of the technologies may include any one or more, and any combination of, the examples described below.
Example 1 includes a compute device for operation in a rack of a data center, the compute device comprising a printed circuit board having a top side and a bottom side opposite the top side, wherein the printed circuit board includes a plurality of apertures extending through the printed circuit board from the top side to the bottom side; a processor mounted to the top side of the printed circuit board; and a cooling system assembly including (i) a thermal exchanger including a metallic mounting block coupled to the processor to dissipate heat generated during operation of the processor, (ii) a metallic backplate, and (iii) a plurality of metallic thermal exchanger securing devices, wherein each of the metallic thermal exchanger securing devices extends from the metallic backplate, through a corresponding aperture of the plurality of apertures, and into a corresponding mounting hole formed in the metallic mounting block to secure the thermal exchanger to the printed circuit board, wherein the plurality of metallic thermal exchanger securing devices thermally couple the thermal exchanger with the metallic backplate.
Example 2 includes the subject matter of Example 1, and wherein (i) the thermal exchanger is mounted to the top side of the printed circuit board, (ii) the metallic backplate is mounted to the bottom side of the printed circuit board, and (iii) the plurality of metallic thermal exchanger securing devices extend from the metallic backplate to secure the metallic backplate to the metallic mounting block of the thermal exchanger when the thermal exchanger is secured to the printed circuit board by the metallic thermal exchanger securing devices.
Example 3 includes the subject matter of any of Examples 1 and 2, and wherein the cooling system assembly includes a thermal insert positioned in each of the mounting holes  formed in the metallic mounting block of the thermal exchanger between the thermal exchanger and the corresponding metallic thermal exchanger securing device.
Example 4 includes the subject matter of any of Examples 1-3, and wherein each mounting hole formed in the metallic mounting block of the thermal exchanger has a frustoconical cross-sectional shape, and wherein each thermal insert has a frustoconical cross-sectional shape complementary to the shape of each mounting hole formed in the metallic mounting block of the thermal exchanger.
Example 5 includes the subject matter of any of Examples 1-4, and wherein each metallic thermal exchanger securing device includes a tip having a frustoconical cross-sectional shape complementary to the shape of each thermal insert.
Example 6 includes the subject matter of any of Examples 1-5, and wherein the plurality of apertures of the printed circuit board includes at least seven apertures, and wherein the plurality of metallic thermal exchanger securing devices includes a corresponding at least seven metallic thermal exchanger securing devices.
Example 7 includes the subject matter of any of Examples 1-6, and further including a metallic chassis, wherein when the printed circuit board is installed in the metallic chassis, the plurality of metallic thermal exchanger securing devices transfer heat generated by the processor during operation of the processor to the metallic chassis to dissipate the heat.
Example 8 includes the subject matter of any of Examples 1-7, and wherein the thermal exchanger includes a plurality of conduits housed by a finned metallic housing of the thermal exchanger, and wherein the metallic mounting block of the thermal exchanger is formed to include at least seven mounting holes that are located around the periphery of the plurality of conduits to avoid interference with the plurality of conduits.
Example 9 includes the subject matter of any of Examples 1-8, and wherein (i) the printed circuit board includes a plurality of electrical traces, (ii) the plurality of apertures of the printed circuit board includes at least seven apertures, and (iii) each of the at least seven apertures is located between at least two of the plurality of electrical traces to avoid interference with the at least two of the plurality of electrical traces.
Example 10 includes the subject matter of any of Examples 1-9, and wherein the cooling system includes a thermal pad applied to the metallic backplate, and wherein when the thermal exchanger is secured to the printed circuit board by the metallic thermal exchanger  securing devices, the metallic thermal exchanger securing devices extend from the metallic backplate and contact the thermal pad to transfer heat generated by the processor during operation of the processor to the thermal pad to dissipate the heat.
Example 11 includes a cooling system comprising a thermal exchanger to dissipate heat produced by a heat-producing electrical component during operation thereof, wherein the thermal exchanger includes a metallic mounting block having a plurality of mounting holes; a metallic backplate; and a plurality of metallic thermal exchanger securing devices to secure the thermal exchanger and the metallic backplate to a substrate, wherein each of the plurality of metallic thermal exchanger securing devices is sized to be received in a corresponding one of the plurality of mounting holes of the metallic mounting block of the thermal exchanger, and wherein when the plurality of metallic thermal exchanger securing devices are received in the plurality of mounting holes of the metallic mounting block of the thermal exchanger, the plurality of metallic thermal exchanger securing devices thermally couple the thermal exchanger with the metallic backplate.
Example 12 includes the subject matter of Example 11, and wherein the thermal exchanger includes a finned metallic housing that extends outwardly away from the metallic mounting block and houses a plurality of conduits of the thermal exchanger.
Example 13 includes the subject matter of any of Examples 11 and 12, and wherein the plurality of metallic thermal exchanger securing devices are sized to extend from the metallic backplate when the plurality of metallic thermal exchanger securing devices are received in the mounting holes of the metallic mounting block of the thermal exchanger.
Example 14 includes the subject matter of any of Examples 11-13, and further including a metallic bolster plate, separate from the metallic backplate, to interface with the substrate, wherein the plurality of metallic thermal exchanger securing devices are sized to extend through the metallic bolster plate when the plurality of metallic thermal exchanger securing devices are received in the metallic mounting holes of the mounting block of the thermal exchanger.
Example 15 includes the subject matter of any of Examples 11-14, and further including a plurality of thermal inserts, wherein each of the plurality of thermal inserts is sized to be received in a corresponding one of the mounting holes of the metallic mounting block of the thermal exchanger.
Example 16 includes the subject matter of any of Examples 11-15, and wherein each of the plurality of mounting holes of the metallic mounting block of the thermal exchanger has a frustoconical cross-sectional shape, and wherein each of the plurality of metallic thermal exchanger securing devices includes a tip having a frustoconical cross-sectional shape.
Example 17 includes a method of assembling a cooling system assembly, the method comprising mounting a thermal exchanger of the cooling system assembly on a top side of a printed circuit board such that the thermal exchanger is coupled to a processor mounted on the printed circuit board; mounting a metallic backplate of the cooling system assembly on a bottom side of the printed circuit board arranged opposite the top side; and inserting a plurality of metallic thermal exchanger securing devices of the cooling system assembly through each of the metallic backplate and the printed circuit board and into a plurality of mounting holes formed in a metallic mounting block of the thermal exchanger to thermally couple the thermal exchanger with the metallic backplate.
Example 18 includes the subject matter of Example 17, and further including positioning a thermal insert of the cooling system having a frustoconical cross-sectional shape in each of the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger prior to inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
Example 19 includes the subject matter of any of Examples 17 and 18, and wherein inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger comprises inserting a plurality of metallic thermal exchanger securing devices each including a tip having a frustoconical cross-sectional shape into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
Example 20 includes the subject matter of any of Examples 17-19, and wherein inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger comprises inserting several metallic  thermal exchanger securing devices into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
Example 21 includes a thermal exchanger comprising a plurality of conduits to facilitate dissipation of heat produced by a heat-producing electrical component during operation thereof; a finned metallic housing to house the plurality of conduits; and a metallic mounting block to interface with a substrate, wherein the metallic mounting block is coupled to the finned metallic housing, and wherein the metallic mounting block is formed to include a plurality of mounting holes that are sized to receive a plurality of metallic thermal exchanger securing devices to facilitate securement of metallic mounting block to the substrate.
Example 22 includes the subject matter of Example 21, and wherein each of the plurality of mounting holes formed in the metallic mounting block has a frustoconical cross-sectional shape.
Example 23 includes the subject matter of any of Examples 21 and 22, and wherein the plurality of mounting holes of the metallic mounting block are located around the periphery of the plurality of conduits to avoid interference with the plurality of conduits.
Example 24 includes the subject matter of any of Examples 21-23, and wherein the plurality of mounting holes includes several mounting holes.
Example 25 includes the subject matter of any of Examples 21-24, and wherein the several mounting holes include at least seven mounting holes.

Claims (25)

  1. A compute device for operation in a rack of a data center, the compute device comprising:
    a printed circuit board having a top side and a bottom side opposite the top side, wherein the printed circuit board includes a plurality of apertures extending through the printed circuit board from the top side to the bottom side;
    a processor mounted to the top side of the printed circuit board; and
    a cooling system assembly including (i) a thermal exchanger including a metallic mounting block coupled to the processor to dissipate heat generated during operation of the processor, (ii) a metallic backplate, and (iii) a plurality of metallic thermal exchanger securing devices, wherein each of the metallic thermal exchanger securing devices extends from the metallic backplate, through a corresponding aperture of the plurality of apertures, and into a corresponding mounting hole formed in the metallic mounting block to secure the thermal exchanger to the printed circuit board, wherein the plurality of metallic thermal exchanger securing devices thermally couple the thermal exchanger with the metallic backplate.
  2. The compute device of claim 1, wherein (i) the thermal exchanger is mounted to the top side of the printed circuit board, (ii) the metallic backplate is mounted to the bottom side of the printed circuit board, and (iii) the plurality of metallic thermal exchanger securing devices extend from the metallic backplate to secure the metallic backplate to the metallic mounting block of the thermal exchanger when the thermal exchanger is secured to the printed circuit board by the metallic thermal exchanger securing devices.
  3. The compute device of claim 1, wherein the cooling system assembly includes a thermal insert positioned in each of the mounting holes formed in the metallic mounting block of the thermal exchanger between the thermal exchanger and the corresponding metallic thermal exchanger securing device.
  4. The compute device of claim 3, wherein each mounting hole formed in the metallic mounting block of the thermal exchanger has a frustoconical cross-sectional shape, and  wherein each thermal insert has a frustoconical cross-sectional shape complementary to the shape of each mounting hole formed in the metallic mounting block of the thermal exchanger.
  5. The compute device of claim 4, wherein each metallic thermal exchanger securing device includes a tip having a frustoconical cross-sectional shape complementary to the shape of each thermal insert.
  6. The compute device of claim 5, wherein the plurality of apertures of the printed circuit board includes at least seven apertures, and wherein the plurality of metallic thermal exchanger securing devices includes a corresponding at least seven metallic thermal exchanger securing devices.
  7. The compute device of claim 6, further comprising a metallic chassis, wherein when the printed circuit board is installed in the metallic chassis, the plurality of metallic thermal exchanger securing devices transfer heat generated by the processor during operation of the processor to the metallic chassis to dissipate the heat.
  8. The compute device of claim 1, wherein the thermal exchanger includes a plurality of conduits housed by a finned metallic housing of the thermal exchanger, and wherein the metallic mounting block of the thermal exchanger is formed to include at least seven mounting holes that are located around the periphery of the plurality of conduits to avoid interference with the plurality of conduits.
  9. The compute device of claim 1, wherein (i) the printed circuit board includes a plurality of electrical traces, (ii) the plurality of apertures of the printed circuit board includes at least seven apertures, and (iii) each of the at least seven apertures is located between at least two of the plurality of electrical traces to avoid interference with the at least two of the plurality of electrical traces.
  10. The compute device of claim 1, wherein the cooling system includes a thermal pad applied to the metallic backplate, and wherein when the thermal exchanger is  secured to the printed circuit board by the metallic thermal exchanger securing devices, the metallic thermal exchanger securing devices extend from the metallic backplate and contact the thermal pad to transfer heat generated by the processor during operation of the processor to the thermal pad to dissipate the heat.
  11. A cooling system comprising:
    a thermal exchanger to dissipate heat produced by a heat-producing electrical component during operation thereof, wherein the thermal exchanger includes a metallic mounting block having a plurality of mounting holes;
    a metallic backplate; and
    a plurality of metallic thermal exchanger securing devices to secure the thermal exchanger and the metallic backplate to a substrate, wherein each of the plurality of metallic thermal exchanger securing devices is sized to be received in a corresponding one of the plurality of mounting holes of the metallic mounting block of the thermal exchanger, and wherein when the plurality of metallic thermal exchanger securing devices are received in the plurality of mounting holes of the metallic mounting block of the thermal exchanger, the plurality of metallic thermal exchanger securing devices thermally couple the thermal exchanger with the metallic backplate.
  12. The cooling system of claim 11, wherein the thermal exchanger includes a finned metallic housing that extends outwardly away from the metallic mounting block and houses a plurality of conduits of the thermal exchanger.
  13. The cooling system of claim 11, wherein the plurality of metallic thermal exchanger securing devices are sized to extend from the metallic backplate when the plurality of metallic thermal exchanger securing devices are received in the mounting holes of the metallic mounting block of the thermal exchanger.
  14. The cooling system of claim 13, further comprising a metallic bolster plate, separate from the metallic backplate, to interface with the substrate, wherein the plurality of metallic thermal exchanger securing devices are sized to extend through the metallic bolster plate  when the plurality of metallic thermal exchanger securing devices are received in the metallic mounting holes of the mounting block of the thermal exchanger.
  15. The cooling system of claim 14, further comprising a plurality of thermal inserts, wherein each of the plurality of thermal inserts is sized to be received in a corresponding one of the mounting holes of the metallic mounting block of the thermal exchanger.
  16. The cooling system of claim 11, wherein each of the plurality of mounting holes of the metallic mounting block of the thermal exchanger has a frustoconical cross-sectional shape, and wherein each of the plurality of metallic thermal exchanger securing devices includes a tip having a frustoconical cross-sectional shape.
  17. A method of assembling a cooling system assembly, the method comprising:
    mounting a thermal exchanger of the cooling system assembly on a top side of a printed circuit board such that the thermal exchanger is coupled to a processor mounted on the printed circuit board;
    mounting a metallic backplate of the cooling system assembly on a bottom side of the printed circuit board arranged opposite the top side; and
    inserting a plurality of metallic thermal exchanger securing devices of the cooling system assembly through each of the metallic backplate and the printed circuit board and into a plurality of mounting holes formed in a metallic mounting block of the thermal exchanger to thermally couple the thermal exchanger with the metallic backplate.
  18. The method of claim 17, further comprising positioning a thermal insert of the cooling system having a frustoconical cross-sectional shape in each of the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger prior to inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
  19. The method of claim 18, wherein inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger comprises inserting a plurality of metallic thermal exchanger securing devices each including a tip having a frustoconical cross-sectional shape into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
  20. The method of claim 19, wherein inserting the plurality of metallic thermal exchanger securing devices through each of the metallic backplate and the printed circuit board and into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger comprises inserting several metallic thermal exchanger securing devices into the plurality of mounting holes formed in the metallic mounting block of the thermal exchanger.
  21. A thermal exchanger comprising:
    a plurality of conduits to facilitate dissipation of heat produced by a heat-producing electrical component during operation thereof;
    a finned metallic housing to house the plurality of conduits; and
    a metallic mounting block to interface with a substrate, wherein the metallic mounting block is coupled to the finned metallic housing, and wherein the metallic mounting block is formed to include a plurality of mounting holes that are sized to receive a plurality of metallic thermal exchanger securing devices to facilitate securement of metallic mounting block to the substrate.
  22. The thermal exchanger of claim 21, wherein each of the plurality of mounting holes formed in the metallic mounting block has a frustoconical cross-sectional shape.
  23. The thermal exchanger of claim 22, wherein the plurality of mounting holes of the metallic mounting block are located around the periphery of the plurality of conduits to avoid interference with the plurality of conduits.
  24. The thermal exchanger of claim 23, wherein the plurality of mounting holes includes several mounting holes.
  25. The thermal exchanger of claim 24, wherein the several mounting holes include at least seven mounting holes.
PCT/CN2018/081484 2018-03-31 2018-03-31 Cooling system assembly for compute devices WO2019183979A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018007395.5T DE112018007395T5 (en) 2018-03-31 2018-03-31 Cooling system assembly for computing devices
PCT/CN2018/081484 WO2019183979A1 (en) 2018-03-31 2018-03-31 Cooling system assembly for compute devices
TW108106471A TWI844528B (en) 2018-03-31 2019-02-26 Compute device, cooling system, method of assembling cooling system assembly and thermal exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081484 WO2019183979A1 (en) 2018-03-31 2018-03-31 Cooling system assembly for compute devices

Publications (1)

Publication Number Publication Date
WO2019183979A1 true WO2019183979A1 (en) 2019-10-03

Family

ID=68062172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081484 WO2019183979A1 (en) 2018-03-31 2018-03-31 Cooling system assembly for compute devices

Country Status (2)

Country Link
DE (1) DE112018007395T5 (en)
WO (1) WO2019183979A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828363A (en) * 2020-06-29 2020-10-27 苏州浪潮智能科技有限公司 Heat dissipation adjusting system and method for board card device in voltage regulation and measurement process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206743752U (en) * 2017-05-02 2017-12-12 江苏群达智能科技有限公司 A kind of heat radiating type convertible frequency air-conditioner control panel
CN206963251U (en) * 2017-05-09 2018-02-02 石家庄市科恒电子有限公司 A kind of protection circuit for improving circuit rectifies quality
CN207053869U (en) * 2017-06-05 2018-02-27 绍兴上虞锴达电子有限公司 A kind of layer-stepping wiring board
CN207083328U (en) * 2017-07-24 2018-03-09 深圳市君晟宏翔科技有限公司 A kind of double-deck PCBA for electric heating hair straightener job control
CN207118219U (en) * 2017-09-08 2018-03-16 太仓市同维电子有限公司 A kind of radiating subassembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206743752U (en) * 2017-05-02 2017-12-12 江苏群达智能科技有限公司 A kind of heat radiating type convertible frequency air-conditioner control panel
CN206963251U (en) * 2017-05-09 2018-02-02 石家庄市科恒电子有限公司 A kind of protection circuit for improving circuit rectifies quality
CN207053869U (en) * 2017-06-05 2018-02-27 绍兴上虞锴达电子有限公司 A kind of layer-stepping wiring board
CN207083328U (en) * 2017-07-24 2018-03-09 深圳市君晟宏翔科技有限公司 A kind of double-deck PCBA for electric heating hair straightener job control
CN207118219U (en) * 2017-09-08 2018-03-16 太仓市同维电子有限公司 A kind of radiating subassembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828363A (en) * 2020-06-29 2020-10-27 苏州浪潮智能科技有限公司 Heat dissipation adjusting system and method for board card device in voltage regulation and measurement process

Also Published As

Publication number Publication date
TW201943329A (en) 2019-11-01
DE112018007395T5 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
AU2019202222B2 (en) Thermal management for solid-state drive
US9668377B2 (en) Storage device
US7400506B2 (en) Method and apparatus for cooling a memory device
US10306805B2 (en) Cooling mechanism of high mounting flexibility
US7480147B2 (en) Heat dissipation apparatus utilizing empty component slot
US10736235B2 (en) Cooling mechanism of high mounting flexibility
JP5826956B1 (en) System and method for thermally coupling a plurality of memory devices to a memory controller in a computer memory board
US11011449B1 (en) Apparatus and method for dissipating heat in multiple semiconductor device modules
US20110032672A1 (en) Memory Heat Sink System
WO2019183979A1 (en) Cooling system assembly for compute devices
TWI844528B (en) Compute device, cooling system, method of assembling cooling system assembly and thermal exchanger
US10653033B1 (en) Kits for enhanced cooling of components of computing devices and related computing devices, systems and methods
CN105764302B (en) heat conduction pad, radiator and radiating assembly
CN111240445A (en) Server heat radiation structure
US11317542B2 (en) Technologies for improving processor thermal design power
US20080266786A1 (en) Method and apparatus for heat dissipation
US20240179873A1 (en) Heat transfer devices for enhanced thermal performance of electronic systems
US20230038805A1 (en) Methods, systems, apparatus, and articles of manufacture to control load distribution of integrated circuit packages
CN214960711U (en) Heat pipe radiating device
CN212484242U (en) Server case and server
US11160196B1 (en) Micro-strand heat dissipation system
US20220113773A1 (en) Add-in card having high performance semiconductor chip packages with dedicated heat
US20240178867A1 (en) Multiple transceiver cooling system
US20230027076A1 (en) Methods, systems, apparatus, and articles of manufacture to control load distribution of integrated circuit packages
US20220077023A1 (en) Tunable stack-up dimm form factor cold plate with embedded peltier devices for enhanced cooling capability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912682

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18912682

Country of ref document: EP

Kind code of ref document: A1