WO2019182926A1 - Compositions de déodorant - Google Patents
Compositions de déodorant Download PDFInfo
- Publication number
- WO2019182926A1 WO2019182926A1 PCT/US2019/022660 US2019022660W WO2019182926A1 WO 2019182926 A1 WO2019182926 A1 WO 2019182926A1 US 2019022660 W US2019022660 W US 2019022660W WO 2019182926 A1 WO2019182926 A1 WO 2019182926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stick
- deodorant
- deodorant stick
- antimicrobial
- melting point
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q15/00—Anti-perspirants or body deodorants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0216—Solid or semisolid forms
- A61K8/0229—Sticks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
- A61K8/375—Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/92—Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
- A61K8/922—Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
Definitions
- the present disclosure relates to deodorant compositions and methods relating thereto.
- a deodorant stick comprising: at least about 25% of a liquid triglyceride; at least one antimicrobial; a primary structurant with a melting point at least about 50°C; and less than 8% of secondary structurants having a melting point of at least about 60°C; said stick being free of an aluminum salt; and said stick having a hardness from about 80 mm* 10 to about 140 mm* 10, as measured by penetration with ASTM D-1321 needle.
- the present invention can comprise, consist of, or consist essentially of the essential elements and limitations of the invention described herein, as well any of the additional or optional ingredients, components, or limitations described herein.
- compositions and methods/processes of the present invention can comprise, consist of, and consist essentially of the essential elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein.
- an effective means an amount of a subject active high enough to provide a significant positive modification of the condition to be treated.
- An effective amount of the subject active will vary with the particular condition being treated, the severity of the condition, the duration of the treatment, the nature of concurrent treatment, and like factors.
- anhydrous as used herein means substantially free of added or free water. From a formulation standpoint, this means that the anhydrous deodorant stick compositions of the present invention contain less than about 1%, and more specifically zero percent, by weight of free or added water, other than the water of hydration typically associated with the particulate deodorant active prior to formulation.
- ambient conditions refers to surrounding conditions under about one atmosphere of pressure, at about 50% relative humidity, and at about 25 °C, unless otherwise specified. All values, amounts, and measurements described herein are obtained under ambient conditions unless otherwise specified.
- major refers to greater than about 51 % of the stated component or parameter. “Substantially free of’ refers to about 2% or less, about 1% or less, or about 0.1% or less of a stated ingredient. “Free of’ refers to no detectable amount of the stated ingredient or thing.
- volatile refers to those materials that have a measurable vapor pressure at 25 °C. Such vapor pressures typically range from about 0.01 millimeters of Mercury (mm Hg) to about 6 mmHg, more typically from about 0.02 mmHg to about 1.5 mmHg; and have an average boiling point at one (1) atmosphere of pressure of less than about 250 °C, more typically less than about 235 °C. Conversely, the term “non-volatile” refers to those materials that are not “volatile” as defined herein.
- Emollients derived from natural oils are derived from plant sources, such as palm oil or coconut oil.
- emollient derived from natural oils may be a liquid triglyceride, defined as liquid at 25°C.
- products that hope to emphasize natural ingredients may have a significant amount of a liquid triglyceride, for example.
- the formulation may also include a number of waxes and other structurants.
- the structurants used may lead to deodorant sticks that are very hard.
- a currently marketed product, Comparative Formula 1 below has 34.15% liquid triglyceride, along with a number of structurants, resulting in a very hard stick, scoring 63 on a needle penetration test under ASTM D-1321 (as described herein). So while Comparative Formula 1 uses consumer-preferred natural ingredients, it does not necessarily provide a good consumer experience when used, given its hardness. Comparative Formula 2 contains even higher levels of structurants, resulting in a harder stick with an even lower hardness score. In comparison, Inventive Examples 1-5, while comprising consumer-preferred natural ingredients, have higher hardness scores, meaning they are softer products. Table 1:
- the structurants generally have a melting point above 50°C to provide a stable structure to the stick.
- the present inventors have discovered that a deodorant stick having at least about 25% of a liquid triglyceride, and that uses a primary structurant that has a melting point of at least about 50°C, in some embodiments from about 50°C to 70°C and in still other embodiments from about 50°C to about 75°C, while limiting the amount of secondary structurants having a melting point of at least about 60°C to 8% or less, can result in a deodorant stick with a hardness from about 80 mm* 10 to about 140 mm* 10.
- Such a deodorant stick is able to comprise consumer-perceived natural ingredients, while offering a pleasant consumer experience in terms of its hardness.
- the deodorant compositions of the present invention comprise a suitable concentration of structurants to help provide the compositions with the desired viscosity, rheology, texture and/or product hardness, or to otherwise help suspend any dispersed solids or liquids within the composition.
- the primary structurant in the present invention may have a melting point of at least about 50°C, in some embodiments from about 50°C to about 70°C, and in other embodiments from about 50°C to about 75°C, and in other embodiments from about 60°C to 80°C.
- a primary structurant is defined as the structurant that is present in the composition in the greatest amount (liquid triglycerides are not considered a structurant in this context). Some embodiments may have just a single structurant, so may have only a primary structurant. Other embodiments may have a primary structurant and then secondary structurants, those structurants that are used in a lesser amount than the primary structurant.
- the primary structurant may comprise from about 5 % to about 20%, in some cases 7-17% of the deodorant stick.
- the secondary structurants may cumulatively comprise about 12% or less, or about 8% or less of the deodorant stick, in some embodiments less than about 5%, less than about 3%, or less than about 1% of the deodorant stick.
- the deodorant stick may be free of or substantially free of any secondary structurants
- some secondary structurants may have a melting point less than 60°C, and then remaining secondary structurants have a melting point of at least about 60°C.
- the percentage of secondary structurants having a melting point less than 60°C may not be as significant as the percentage of secondary structurants having a melting point of at least about 60°C, as the higher melting structurants are what contribute more to the hardness of the deodorant stick. So in some embodiments, the secondary structurants having a melting point of at least about 60°C may cumulatively comprise 8% or less of the deodorant stick, in some embodiments less than about 5% of the deodorant stick, less than about 3% of the deodorant stick, or less than about 1% of the deodorant stick.
- the deodorant stick may be free of or substantially free of any secondary structurants having a melting point of at least about 60°C.
- structurant means any material known or otherwise effective in providing suspending, gelling, viscosifying, solidifying, and/or thickening properties to the composition or which otherwise provide structure to the final product form.
- Waxes with melting points between 50°C and 70°C include Japan wax, lemon wax, grapefruit wax, beeswax, ceresine, paraffin, hydrogenated jojoba, ethylene glycol distearate, stearyl stearate, palmityl stearate, stearyl behenate, cetearyl behenate, hydrogenated high erucic acid rapeseed oil, and stearyl alcohol.
- Waxes with melting points above 70°C include ozokerite, candelilla, carnauba, espartograss, cork wax, guaruma, rice oil wax, sugar cane wax, ouricury, montan ester wax, sunflower wax, shellac, ozocerite, microcrystalline wax, sasol wax, polyethylenes, polymethylenes, ethylene glycol dipalmitate, ethylene glycol di(l2-hydroxystearate), behenyl behenate, glyceryl tribehenate, hydrogenated castor oil (castor wax), and behenyl alcohol.
- Waxes with melting points that could vary and possibly fall into either of the two previous groups include C18-C36 triglyceride, Fischer-Tropsch waxes, silicone waxes, C30-50 alkyl beeswax, C20-40 alkyl erucates, C18-38 alkyl hydroxy stearoyl stearates, C20-40 dialkyl esters of dimer acids, Cl 6-40 alkyl stearates, C20-40 alkyl stearates, cetyl ester wax, and spermaceti.
- Suitable gelling agents include fatty acid gellants such as fatty acid and hydroxyl or alpha hydroxyl fatty acids, having from about 10 to about 40 carbon atoms, and ester and amides of such gelling agents.
- Non-limiting examples of such gelling agents include, but are not limited to, 12- hydroxystearic acid, l2-hydroxylauric acid, l6-hydroxyhexadecanoic acid, behenic acid, eurcic acid, stearic acid, caprylic acid, lauric acid, isostearic acid, and combinations thereof.
- Preferred gelling agents are l2-hydroxystearic acid, esters of l2-hydroxystearic acid, amides of 12- hydroxystearic acid and combinations thereof.
- These solid structurants include gelling agents, and polymeric or non-polymeric or inorganic thickening or viscosifying agents. Such materials will typically be solids under ambient conditions and include organic solids, crystalline or other gellants, inorganic particulates such as clays or silicas, or combinations thereof.
- the concentration and type of solid structurant selected for use in the deodorant compositions will vary depending upon the desired product hardness, rheology, and/or other related product characteristics.
- the total structurant concentration ranges from about 5% to about 35%, more typically from about 10% to about 30%, or from about 7% to about 20%, by weight of the composition.
- Non-limiting examples of suitable primary structurants include stearyl alcohol and other fatty alcohols; hydrogenated castor wax (e.g., Castorwax MP80, Castor Wax, etc.); hydrocarbon waxes include paraffin wax, beeswax, carnauba, candelilla, spermaceti wax, ozokerite, ceresin, baysberry, synthetic waxes such as Fisher-Tropsch waxes, and microcrystalline wax; polyethylenes with molecular weight of 200 to 1000 daltons; solid triglycerides; behenyl alcohol, or combinations thereof.
- the deodorant stick may further comprise one or more structural elements selected from the group consisting of waxes, natural oils, coconut oil, fractionated coconut oil, jojoba seed oil, olive oil, soybean oil, sunflower oil, and combinations thereof.
- Non-limiting examples of suitable additional structurants include stearyl alcohol and other fatty alcohols; hydrogenated castor wax (e.g., Castorwax MP80, Castor Wax, etc.); hydrocarbon waxes include paraffin wax, beeswax, carnauba, candelilla, spermaceti wax, ozokerite, ceresin, baysberry, synthetic waxes such as Fisher-Tropsch waxes, and microcrystalline wax; polyethylenes with molecular weight of 200 to 1000 dal tons; and solid triglycerides; behenyl alcohol, or combinations thereof.
- hydrogenated castor wax e.g., Castorwax MP80, Castor Wax, etc.
- hydrocarbon waxes include paraffin wax, beeswax, carnauba, candelilla, spermaceti wax, ozokerite, ceresin, baysberry, synthetic waxes such as Fisher-Tropsch waxes, and microcrystalline wax
- an effective and consumer-preferred emollient may be a liquid triglyceride. Derived directly from plant sources, they are often short chains. Longer chain triglycerides may be used as structurants in deodorant or antiperspirant sticks, but the triglycerides of the present invention are liquid at room temperature (25 °C) and tend to be shorter chains.
- An example may be caprylic / capric triglyceride (coconut oil fractionated).
- the present inventive deodorant sticks may comprise at least about 25% of one or more liquid triglyceride, in some embodiments, at least about 30%, at least 35%, at least about 40% , at least about 45%, or at least about 50% liquid triglyceride, by weight of the composition.
- the deodorant stick comprises from about 25% to about 60%, by weight of the composition, of one or more liquid triglyceride, from about 25% to about 50%, from about 30% to about 50%, from about 35% to about 60%, from about 35% to about 50%, from about 40% to about 60%, or from about 40% to about 50%, by weight of the composition, of one or more liquid triglyceride.
- the greater amount of liquid in the formulation the softer the deodorant stick may be.
- the more solids in the formulation leads to greater hardness.
- it can be beneficial to formulate with higher amounts of liquids such as liquid triglyceride.
- the level of liquid triglyceride as referred to herein may be the sum total of one or more types of liquid triglyceride in a particular deodorant stick.
- additional emollients may be used, such as plant oils (generally used at less than 10%) including olive oil, coconut oil, sunflower seed oil, jojoba seed oil, avocado oil, canola oil, and corn oil.
- Additional emollients including mineral oil; shea butter, PPG- 14 butyl ether; isopropyl myristate; petrolatum; butyl stearate; cetyl octanoate; butyl myristate; myristyl myristate; C12-15 alkylbenzoate (e.g., Finsolv.TM.); octyldodecanol; isostearyl isostearate; octododecyl benzoate; isostearyl lactate; isostearyl palmitate; isobutyl stearate; dimethicone, and any mixtures thereof.
- the present invention may include one or more antimicrobial compositions.
- antimicrobials may include, without being limited to, baking soda, hexamidine, magnesium carbonate, zinc carbonate, thymol, magnesium hydroxide, magnesium hydroxide and magnesium carbonate hydroxide (dead sea salt), partially carbonated magnesium hydroxide, sodium carbonate, calcium carbonate, magnesium carbonate hydroxide, cinnamon essential oil, cinnamon bark essential oil, cinnamic aldehyde, polyvinyl formate, salycilic acid, niacinamide, phenoxyethanol, eugenol, linolenic acid, dimethyl succinate, citral, triethyl citrate, sepiwhite, an substituted or unsubstituted 2-pyridinol-N-oxide material (piroctone olamine), and combinations thereof.
- the deodorant stick may be free of or substantially free of a substituted or unsubstituted 2-pyridinol- N-oxide material
- the total amount of antimicrobial used in the present invention may be from about 0.1% to about 30%, by weight, of the deodorant.
- Some antimicrobials may be used in amounts as low as about 0.1%, by weight of the deodorant stick, such as if using piroctone olamine or hexamidine as the primary antimicrobial, while others could be as high as about 25% if using magnesium hydroxide or magnesium hydroxide and magnesium carbonate hydroxide as the primary antimicrobial (primary antimicrobial being the antimicrobial present in the composition in the highest amount).
- baking soda might still be used at a lower level, such as from about 0.1% to about 6%, as a secondary antimicrobial, or not at all.
- antimicrobials of the present invention may be used as powders. It is believed that antimicrobial powders may provide a better deposition and have more longevity on the skin than antimicrobials delivered in a different form. In addition, it is believed that antimicrobial powders of a certain average particle size, typically from about 1 micron to about 5 microns, may provide a significant increase in antimicrobial efficacy. Many antimicrobials can be effective at minimizing the skin surface bacteria. However, as a leave-on product where odor may not occur until later, even hours after application, deodorant antimicrobials are needed that will be effective for long periods of time.
- the present invention may target methods and mechanisms that can more effectively deliver antimicrobials not only to the skin surface, but to the bacteria in and around the hair follicle.
- the inventors of the present inventor believe that powders, specifically powders with an average particle size of less than about 10 microns, in some cases from about 1 micron to about 5 microns, are more efficient at getting into the hair follicle where the bacteria live and repopulate the skin surface.
- the antimicrobials may be a combination of larger sized particles and smaller particles that are from 1 to 10 microns.
- solids such as powders can impact the overall hardness of the deodorant stick. In general, greater amounts of powders and structurants increase the deodorant stick’s hardness.
- the present inventors have discovered that the water solubilities of certain components in the solid stick deodorant have great importance. Some deodorant ingredients will bring in moisture to the batch, which can solvate these components to different extents when the water evaporates and subsequently recondenses as free water in the batch. Certain batch processing conditions (such as a closed top on the tank) could more effectively trap this water in the tank, where it is then free to interact with components of the batch.
- highly water soluble alkaline powders can contribute negatively towards natural and essential oil stability when dissolved. This is because many natural and essential oils contain a broad range of perfume chemicals, many of which can undergo degradation reactions when exposed to extreme pH or heat. This is why many natural and essential oils have shorter shelf lives than many commercial synthetic chemicals or perfumes.
- certain antimicrobials may cause irritation due to high water solubility. Further, high water solubility can lead to grittier products as the more water soluble powders can agglomerate when exposed to moisture released from powders during the heat of manufacture.
- embodiments of the present invention may include an antimicrobial with a low water solubility.
- An antimicrobial with a low water solubility may be, in some embodiments, an antimicrobial with a water solubility of at most 90 g/L at 25°C, in other embodiments at most 75 g/L at 25 °C, or in still other embodiments at most 50 g/L at 25 °C.
- Materials with a water solubility above 90 g/L @25°C include but are not limited to: potassium carbonate, potassium bicarbonate, sodium carbonate, sodium sesquicarbonate, triethyl citrate, and baking soda.
- Materials with a water solubility below 90 g/L @25°C include but are not limited to: beryllium carbonate, magnesium carbonate, calcium carbonate, magnesium hydroxide, magnesium hydroxide and magnesium carbonate hydroxide, partially carbonated magnesium hydroxide, piroctone olamine, hexamidine, zinc carbonate, thymol, polyvinyl formate, salycilic acid, phenoxyethanol, eugenol, linolenic acid, dimethyl succinate, citral, and triethyl citrate.
- Each of beryllium carbonate, magnesium carbonate, calcium carbonate, magnesium hydroxide, magnesium hydroxide and magnesium carbonate hydroxide, partially carbonated magnesium hydroxide, piroctone olamine, hexamidine, zinc carbonate, thymol, polyvinyl formate, salycilic acid, phenoxyethanol, eugenol, linolenic acid, dimethyl succinate, and citral have a water solubility below 75 g/L @25°C, below 50 g/L @25°C, below 1 g/L @25°C, and below 0.2 g/L @25°C.
- Table 2 shows the raw material microbial inhibition concentration data tested against two key underarm bacteria strains.
- the first three listed antimicrobials lupamin, hexamidine, and piroctone olamine, perform particularly well against the bacteria as raw materials.
- Also performing well as raw materials are phenoxyethanol, eugenol, linolenic acid, dimethyl succinate, citral, triethyl citrate, and sepiwhite.
- Also performing moderately well against the bacteria as raw materials were magnesium carbonate/magnesium hydroxide and calcium carbonate.
- the deodorant compositions as described herein can contain a structurant, an antimicrobial, a perfume, and additional chassis ingredient(s).
- the deodorant composition may further comprise other optional ingredient(s).
- the compositions can be in the form of a solid stick.
- the compositions may be free of dipropylene glycol, added water, castor wax, or any combination thereof.
- the compositions may be substantially free of or free of a substituted or unsubstituted 2- pyridinol-N-oxide material (piroctone olamine).
- the deodorant composition may be anhydrous.
- the deodorant composition may be free of added water.
- the deodorant compositions of the present invention may have a product or stick hardness from about 80 mm*10 to about 140 mm*l0, as measured by penetration with ASTM D-1321 needle (see Hardness test method below).
- the product hardness may be from about 80 to about 120 mm* 10, and in others from about 85 to about 100 mm* 10.
- Perfumes are often a combination of many raw materials, known as perfume raw materials. Any perfume suitable for use in a deodorant composition may be used herein.
- the deodorant composition may be free of, or substantially free of a synthetic fragrance.
- a synthetic fragrance is one mostly derived through chemical synthesis where the starting material is no longer intact, but is converted to the new fragrance chemical.
- a natural or essential oil fragrance is a result of natural sources wherein the fragrance material is not altered (chemically modified) but extracted from its natural source. These sources can include, but are not limited to, bark, flowers, blossoms, fruits, leaves, resins, roots, bulbs, and seeds. Natural or essential oils go through an extraction process instead of chemical synthesis. Extraction processes include, but are not limited to, maceration, solvent extraction, distillation, expression of a fruit peel, or effleurage.
- the deodorant composition may comprise a starch powder for dry feel or wetness absorption.
- starch powder for dry feel or wetness absorption. Examples include but are not limited to arrowroot powder, tapioca starch, and com starch.
- Non-volatile organic fluids may be present, for example, in an amount of about 15% or less, by weight of the composition.
- Non-limiting examples of nonvolatile organic fluids include mineral oil, PPG- 14 butyl ether, isopropyl myristate, petrolatum, butyl stearate, cetyl octanoate, butyl myristate, myristyl myristate, C12-15 alkylbenzoate (e.g., Finsolv.TM.), octyldodecanol, isostearyl isostearate, octododecyl benzoate, isostearyl lactate, isostearyl palmitate, and isobutyl stearate.
- the anhydrous deodorant compositions of the present invention may further comprise any optional material that is known for use in antiperspirant and deodorant compositions or other personal care products, or which is otherwise suitable for topical application to human skin.
- scent expression material Scent expression or release technology may be employed with some or all of the fragrance materials to define a desired scent expression prior to use and during use of the deodorant products.
- scent expression or release technology can include cyclodextrin complexing material, like beta cyclodextrin.
- Other materials such as, for example, starch-based matrices or microcapsules may be employed to "hold" fragrance materials prior to exposure to bodily- secretions (e.g., perspiration).
- the encapsulating material may have release mechanisms other than via a solvent; for example, the encapsulating material may be frangible, and as such, rupture or fracture with applied shear and/or normal forces encountered during application and while wearing.
- a microcapsule may be made from many materials, one example is poly acrylates.
- clay mineral powders such as talc, mica, sericite, silica, magnesium silicate, synthetic fluorphlogopite, calcium silicate, aluminum silicate, bentonite and montomorillonite
- pearl pigments such as alumina, barium sulfate, calcium secondary phosphate, calcium carbonate, titanium oxide, finely divided titanium oxide, zirconium oxide, zinc oxide, hydroxy apatite, iron oxide, iron titrate, ultramarine blue, Prussian blue, chromium oxide, chromium hydroxide, cobalt oxide, cobalt titanate, titanium oxide coated mica
- organic powders such as polyester, polyethylene, polystyrene, methyl methacrylate resin, cellulose, l2-nylon, 6- nylon, styrene-acrylic acid copolymers, poly propylene, vinyl chloride polymer, tetrafluoroethylene polymer, boron nitride, fish scale guanine, laked
- Nonlimiting examples of other optional materials include emulsifiers, distributing agents, antimicrobials, pharmaceutical or other topical active, preservatives, surfactants, chelants, and so forth. Examples of such optional materials are described in U.S. Pat. No. 4,049,792 (Elsnau); U.S. Pat. No. 5,019,375 (Tanner et al.); and U.S. Pat. No. 5,429,816 (Hofrichter et al.); which descriptions are incorporated herein by reference.
- the deodorant stick products of the present invention may be made by mixing all the components of the products in an open-top or vented tank. Many powders come with bound moisture, especially naturally high moisture powders like starches. In a mostly anhydrous process with waxes, melting the waxes above their melt point can release this bound water as the batch temperature increases. In a closed tank process this water vapor will condense in the tank and drip back into the batch as water. This water can interact with the most water soluble ingredients in the batch to have negative effects on the product, including releasing the pH of any antimicrobial ingredient, which can then degrade any perfume ingredients in the batch. Additionally, the condensed water can interfere with the wax and produce a stick softer than intended.
- the present invention reduces the risk of these negative consequences.
- the ideal process remedy for this behavior is to produce the batches in one of four ways:
- a vented closed tank to also remove water vapor during the batch process.
- a dual phase process where the moisture containing powders can be put into the cold phase separate from the wax phase which is heated. These two phases are then mixed before filling.
- a low residence time batch process for a closed system where the product has less than 3 hours residence time above 50°C to reduce the rate of reaction from the moisture.
- a method of making a deodorant composition or stick may comprise the steps of combining any of the herein described deodorant composition components in an open tank system or a vented closed tank.
- the components may be mixed, heated, and then cooled into a stick product.
- the deodorant components may comprise at least about 40% of a liquid triglyceride, by weight of the composition, and an antimicrobial in an open tank system, heating the components, mixing the components, and cooling the components.
- the penetration test is a physical test method that provides a measure of the firmness of waxy solids and extremely thick creams and pastes with penetration values not greater than 250 when using a needle for D 1321.
- the method is based on the American Society for Testing and Materials Methods D-5, D1321 and D217 and DIN 51 579 and is suitable for all solid antiperspirant and deodorant products.
- a needle or polished cone of precisely specified dimensions and weight is mounted on the bottom of a vertical rod in the test apparatus.
- the sample is prepared as specified in the method and positioned under the rod.
- the apparatus is adjusted so that the point of the needle or cone is just touching the top surface of the sample. Consistent positioning of the rod is critical to the measured penetration value.
- the rod is then released and allowed to travel downward, driven only by the weight of the needle (or cone) and the rod. Penetration is the tenths of a millimeter travelled following release.
- Penetrometer with Timer see attached drawings Penetrometer Suitable For ASTM D-5 and D-
- Attachment 1 and Attachment 2) 1321 methods methods; Examples: Precision or
- SOLIDS can use:
- Electronic Timer is correctly set to 5.0 seconds.
- the appropriate needle is installed and is clean, straight and without obvious defects (visual inspection)
- the penetrometer is level and the shaft is clean, straight and falls freely (visual inspection) Once level, avoid shifting the position of the unit to maintain level.
- lubricate the needle by gently wiping with a lint-free tissue coated with a small amount of the product to be tested. This small amount is typically taken from the shaved top.
- a weak light at the side of the penetrometer which casts a shadow of the needle on the surface of the sample may be helpful in determining this contact.
- the needle height over the sample is correctly adjusted. The light should not be strong enough to heat or melt the sample surface.
- the needle should be just close enough to scratch the sample surface.
- Steps 2 through 4 at the other test point, i.e., at the other point 9-1 1 mm inside of the canister wall on the long axis.
- Disposable sterile gloves Sterile petri dishes; Standard microbiological lab equipment
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Emergency Medicine (AREA)
- Cosmetics (AREA)
Abstract
La présente invention concerne un bâton déodorant comprenant : au moins environ 25 % d'un triglycéride liquide ; au moins un agent antimicrobien ; un agent structurant primaire présentant un point de fusion d'au moins environ 50 °C ; et moins de 8 % d'agents structurants secondaires présentant un point de fusion d'au moins environ 60 °C ; ledit bâton étant exempt de sel d'aluminium ; et ledit bâton présentant une dureté d'environ 80 mm*10 à environ 140 mm*10, telle que mesurée par pénétration avec aiguille selon l'ASTM D-1321.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3091378A CA3091378A1 (fr) | 2018-03-23 | 2019-03-18 | Deodorants et antisudorifiques comprenant du triglyceride liquide, un structurant primaire, un structurant secondaire et un antimicrobien |
MX2020009917A MX2020009917A (es) | 2018-03-23 | 2019-03-18 | Composiciones desodorantes. |
EP19714293.8A EP3768230A1 (fr) | 2018-03-23 | 2019-03-18 | Compositions de déodorant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862647104P | 2018-03-23 | 2018-03-23 | |
US62/647,104 | 2018-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019182926A1 true WO2019182926A1 (fr) | 2019-09-26 |
Family
ID=65955295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/022660 WO2019182926A1 (fr) | 2018-03-23 | 2019-03-18 | Compositions de déodorant |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3768230A1 (fr) |
CA (1) | CA3091378A1 (fr) |
MX (1) | MX2020009917A (fr) |
WO (1) | WO2019182926A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020210772A1 (de) | 2020-08-26 | 2022-03-03 | Henkel Ag & Co. Kgaa | Geruchsabsorbierende Wirkstoffkombination für Deodorantien |
EP4058154A4 (fr) * | 2019-11-13 | 2023-12-20 | Revlon Consumer Products LLC | Compositions anti-transpirantes/déodorantes |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049792A (en) | 1973-06-26 | 1977-09-20 | The Procter & Gamble Company | Antiperspirant stick |
US5019375A (en) | 1989-03-14 | 1991-05-28 | The Procter & Gamble Company | Low residue antiperspirant creams |
US5429816A (en) | 1992-05-12 | 1995-07-04 | Procter & Gamble | Antiperspirant gel stick compositions |
US5744146A (en) * | 1995-03-06 | 1998-04-28 | Peters; Kimberly T. | Anhydrous delivery vehicle for cosmetic ingredients |
US5891424A (en) | 1996-10-29 | 1999-04-06 | Procter & Gamble | Antiperspirant cream compositions having improved rheology |
US5976514A (en) | 1998-11-20 | 1999-11-02 | Procter & Gamble Company | Low-irritation antiperspirant and deodorant compositions containing a volatile, nonpolar hydrocarbon liquid |
WO2013052454A1 (fr) * | 2011-10-04 | 2013-04-11 | Isp Investments Inc. | Compositions antisudorales/désodorisantes |
WO2016048425A1 (fr) * | 2014-09-23 | 2016-03-31 | Colgate-Palmolive Company | Compositions de soins personnels non grasses |
-
2019
- 2019-03-18 CA CA3091378A patent/CA3091378A1/fr active Pending
- 2019-03-18 WO PCT/US2019/022660 patent/WO2019182926A1/fr active Application Filing
- 2019-03-18 EP EP19714293.8A patent/EP3768230A1/fr active Pending
- 2019-03-18 MX MX2020009917A patent/MX2020009917A/es unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049792A (en) | 1973-06-26 | 1977-09-20 | The Procter & Gamble Company | Antiperspirant stick |
US5019375A (en) | 1989-03-14 | 1991-05-28 | The Procter & Gamble Company | Low residue antiperspirant creams |
US5429816A (en) | 1992-05-12 | 1995-07-04 | Procter & Gamble | Antiperspirant gel stick compositions |
US5744146A (en) * | 1995-03-06 | 1998-04-28 | Peters; Kimberly T. | Anhydrous delivery vehicle for cosmetic ingredients |
US5891424A (en) | 1996-10-29 | 1999-04-06 | Procter & Gamble | Antiperspirant cream compositions having improved rheology |
US5976514A (en) | 1998-11-20 | 1999-11-02 | Procter & Gamble Company | Low-irritation antiperspirant and deodorant compositions containing a volatile, nonpolar hydrocarbon liquid |
WO2013052454A1 (fr) * | 2011-10-04 | 2013-04-11 | Isp Investments Inc. | Compositions antisudorales/désodorisantes |
WO2016048425A1 (fr) * | 2014-09-23 | 2016-03-31 | Colgate-Palmolive Company | Compositions de soins personnels non grasses |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4058154A4 (fr) * | 2019-11-13 | 2023-12-20 | Revlon Consumer Products LLC | Compositions anti-transpirantes/déodorantes |
DE102020210772A1 (de) | 2020-08-26 | 2022-03-03 | Henkel Ag & Co. Kgaa | Geruchsabsorbierende Wirkstoffkombination für Deodorantien |
Also Published As
Publication number | Publication date |
---|---|
CA3091378A1 (fr) | 2019-09-26 |
EP3768230A1 (fr) | 2021-01-27 |
MX2020009917A (es) | 2022-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11844752B2 (en) | Deodorant compositions | |
US20230041345A1 (en) | Antiperspirant and deodorant compositions | |
EP4132457A1 (fr) | Composition de matière solide rhéologique | |
US12036301B2 (en) | Deodorant and antiperspirant compositions | |
US20200121566A1 (en) | Methods of Making Solid Stick Antiperspirant Compositions | |
US20240050327A1 (en) | Deodorant compositions with natural wax | |
EP3768230A1 (fr) | Compositions de déodorant | |
US20170296448A1 (en) | Antiperspirant Compositions | |
US12109282B2 (en) | Deodorant compositions with metal oxides | |
CN108601714A (zh) | O/w乳剂形式的止汗棒 | |
CA2054478A1 (fr) | Composition antisudorifique | |
US20230390171A1 (en) | Deodorant compositions comprising lipophilic carboxylic acids | |
CA3091381A1 (fr) | Deodorants et antisudorifiques comprenant du triglyceride liquide, fragrances naturelles et olamine de piroctone | |
JP2010260824A (ja) | 油性組成物及び棒状製品 | |
JP7022535B2 (ja) | 油性化粧料 | |
EP3041458A1 (fr) | Compositions antiperspirantes comprenant de l'hydroxyalkyl urée |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19714293 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3091378 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019714293 Country of ref document: EP |