WO2019182422A1 - Novel genetically modified natural killer cell line and use thereof - Google Patents

Novel genetically modified natural killer cell line and use thereof Download PDF

Info

Publication number
WO2019182422A1
WO2019182422A1 PCT/KR2019/003427 KR2019003427W WO2019182422A1 WO 2019182422 A1 WO2019182422 A1 WO 2019182422A1 KR 2019003427 W KR2019003427 W KR 2019003427W WO 2019182422 A1 WO2019182422 A1 WO 2019182422A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cell line
gene
cells
cancer
Prior art date
Application number
PCT/KR2019/003427
Other languages
French (fr)
Korean (ko)
Inventor
성영철
김세원
강문철
황인정
Original Assignee
주식회사 에스엘바이젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엘바이젠 filed Critical 주식회사 에스엘바이젠
Publication of WO2019182422A1 publication Critical patent/WO2019182422A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4613Natural-killer cells [NK or NK-T]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464466Adhesion molecules, e.g. NRCAM, EpCAM or cadherins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to novel cell lines and their uses, and more particularly to novel genetically modified natural killer cell lines and their use.
  • Natural killer cells (hereinafter referred to as 'NK cells') have the ability to kill abnormal autologous cells, or cancer cells, present in the body.
  • CTL cytotoxic T cells
  • CTLs Cytotoxic T cells that specifically recognize MHC and antigen peptides of target cells using antigen specific antigen receptors (hereinafter CTL) have a responsiveness to a single target, whereas for NK cells, NK activation on the surface of cancer cells Relatively broad range because it can kill cells by recognizing various abnormal changes that occur in cells, such as the expression of Killer cell activation receptors (KAR) and KIR (Killer cell inhibitory receptors) and the absence of surface MHC I antigens Of cancer cell death (Min Cheng, 20131, Cellular & Molecular immunology).
  • KAR Killer cell activation receptors
  • KIR Kitiller cell inhibitory receptors
  • NK cells remove leukemia cells or cancer cells without causing graft-versus-host disease, they have been regarded as suitable cells for adoptive cell therapy in that their side effects are very low (Glienke et. al ., Front. Pharmacol ., 6: 21, 2015).
  • NK cells unlike T cells, do not have immune memory, and thus are killed by themselves after being activated by cancer cells. Therefore, anticancer therapy using NK cells has very little possibility of side effects compared to the therapy based on T cells that have formed immune memory in the body for a long time.
  • NK cells Although therapeutic agents are established by isolating, activating, and amplifying primary NK cells of patient-derived cells or allogeneic cells, the cellular resources can be obtained. Over-amplification is limited, the process is complicated by using a feeder cell and a production process using various cytokines, and the limitation due to the possibility of batch-to-batch variation of the therapeutic agent There is. In addition, the cells can be proliferated for a limited time in vitro, thus enhancing the effect through gene insertion / modification may be somewhat limited. In order to overcome these limitations, the development of a cell therapy based on a single NK cell line may be an effective method.
  • NK cells may be used as an effective therapeutic agent, which enhances cell killing ability of NK cell lines, secures additional safety when administering patients, facilitates the cultivation process during production, and the immunosuppressive environment in patients. It can be prevented by the loss of function, etc., cell line-based therapeutic agent is very easy to construct a single cell-derived cell therapy with an additional therapeutic gene compared to the primary cultured cells.
  • NK cells require NK cell activation receptors (KARs), cell adhesion molecules, NK costimulatory molecules, etc. in order to exhibit assassination effects.
  • KARs NK cell activation receptors
  • the origin of the cell line may be cancerous or immortalized, and thus, a problem such as tumor formation may occur when introduced into a patient, and an immune cell line having high immune activity may cause unexpected hyperactivity in the patient. This may need to be prepared.
  • NK cell line that can maximize the anticancer cell killing ability of the isolated and constructed NK cell line, improve its proliferation, and minimize side effects.
  • Such genetically modified NK cell lines include NK-92 cells transformed to express the Fc receptor (CD16) (US20060292156A1).
  • NK-92-CD16 the genetically modified NK cell line (NK-92-CD16) of the prior document only enhanced the cancer cell killing ability (ADCC) of NK cells by the antibody, did not increase its own cancer cell killing ability, and the cell proliferation and side effects of It has nothing to do with minimization.
  • an object of the present invention is to provide a genetically modified NK cell line that can be easily proliferated and minimize side effects due to immune and activation while further improving cell killing ability based on NK cells.
  • Still another object of the present invention is to provide a pharmaceutical composition for treating cancer comprising the genetically modified NK cell line as an active ingredient.
  • a genetically modified NK cell line in which a polynucleotide encoding an NK cell coactivator is transduced into an isolated NK cell line having the following characteristics such that the NK cell coactivator is expressed:
  • CD2 CD11a, CD25, CD45, CD54, DNAM-1, CD62L and CD56 are positive;
  • CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCR ⁇ and TCR ⁇ are negative.
  • a pharmaceutical composition for the treatment and prevention of cancer comprising the genetically modified NK cell line as an active ingredient.
  • a transgenic NK cell line transduced with a polynucleotide encoding a NK cell coactivator, an NK cell proliferation factor, a cytoplasmic domain-deleted TGF ⁇ receptor, and / or an apoptosis gene in an isolated NK cell line Is provided.
  • a pharmaceutical composition for the treatment and prevention of cancer comprising the genetically modified NK cell line as an active ingredient.
  • kits for treating cancer comprising the genetically modified NK cell line and suicide inducing agent.
  • the treatment of a subject with cancer comprising the step of administering a therapeutically effective amount of any one of the above genetically modified NK cell lines and optionally suicide inducing agent to the subject with cancer A method is provided.
  • the isolated NK cell line is transduced with polynucleotides and apoptosis genes encoding the NK cell coactivator, cell membrane-bound IL-15, and TGF ⁇ receptor, respectively, cancer antigen specific chimeric antigen
  • a polynucleotide encoding a receptor is transduced to provide a genetically modified NK cell line expressing the cancer antigen specific chimeric antigen receptor.
  • NK cell line is superior to the conventionally reported NK cell line, the economic efficiency is very high, the cancer cell killing ability is significantly improved compared to the parent cell line, cancer antigen specific using chimeric antigen receptor It has been proved experimentally that it can be used as a platform for chemotherapy, and thus it can be used very efficiently as a cell therapy for cancer treatment.
  • Figure 1a is a graph showing the degree of cell proliferation according to the passage of the NK101 cell line of the present invention
  • Figure 1b is a dot graph confirming that NK101 cells are CD3, CD20, and CD16 negative and CD56 positive NK cells.
  • Figure 1c is a photograph taken by using a microscope of the morphology of the NK101 cells when cultured
  • Figure 1d is a photograph of the shape of the NK101 cells using Wright-Giemsa staining method
  • Figure 1e is the NK101 cells It is confirmed by the fluorescent staining technique that expresses the major cell death factors of NK cells, Perforin (green) and Granzyme (red)
  • Figure 1f is a cancer cell of NK101 through co-culture of NK101 and K562, MHC class I negative cells This graph shows the result of confirming the killing ability.
  • Figure 2a is a graph of comparative analysis of the IL-2 concentration-dependent cell growth rate and sensitivity of NK101 and NK-92 using MTS analysis
  • Figure 2b is a flow cytometric analysis of the difference in the expression of IL-2 receptor subunits of NK101 and NK-92
  • Figure 2c is a graph showing the results of comparing the cell proliferation and survival rate from the thawing time of NK101 and NK-92 in the same culture conditions
  • Figure 2d is a comparison of the growth and doubling time after culture adaptation It is a graph.
  • Figure 3a is a histogram showing the results of flow cytometry analysis of the main lineage or progenitor marker expression in NK101 cells
  • Figure 3b shows the flow cytometry results for the expression of activated and inactivated receptors in NK101 cells Histogram
  • FIG. 3C is a histogram showing the results of flow cytometry analysis of cell adhesion factor expression in NK101 cells
  • 3D is a CD107a, perforin, granzyme, FasL and TRAIL involved in NK cell dependent cytotoxicity in NK101 cells It is a histogram showing the flow cytometry results for expression, Figure 3e is a histogram showing the flow cytometry results for cytokine receptor expression in NK101 cells, Figure 3f is for the expression of various CC chemokine receptors and CXC chemokine receptors in NK101 cells Histogram showing flow cytometry results.
  • Figure 4a is a histogram showing the results of flow cytometry confirming the CD56 expression of NK101, NK-92 and peripheral culture CD56 + peripheral blood NK cells
  • Figure 4b is a two-dimensional contour line showing the flow cytometry results confirming the CD56 and CD62L expression of the cells It is a graph.
  • FIG. 5A is a graph confirming the proliferation rate of NK101 cells after treatment with each indicated cytokine in a culture solution for 3 days (left) and the production of NK activated cytokine IFN- ⁇ by ELISA (right),
  • FIG. 5b is a graph showing the results obtained by multiplex analysis of cytokines secreted after NK101 cells were co-cultured with K562 or THP-1 cancer cell lines for 24 hours.
  • Figure 6a is a graph showing the results of confirming the killing of cancer cells by co-culture of various cancer cell lines and NK101 cells at various cell ratios for 24 hours
  • Figure 6b is acute myeloid treatment of the neutralizing antibodies to the surface antibodies respectively marked on NK101 cells The cell death was measured after 24 hours co-culture with leukemia cell line THP-1 and 4: 1 ratio
  • Figure 6c is treated with neutralizing antibodies to the surface antibody labeled on NK101 cells and chronic myeloid leukemia cell line K562 and 4
  • FIG. 6D shows a neutral lymphocytic leukemia cell line Jurkat and 4: 1 ratio treated with neutralizing antibodies to surface antibodies labeled on NK101 cells, respectively. After 24 hours co-culture with a graph showing the results of measuring apoptosis, Figure 6e is treated with DNAM-1, CD54 or DNAM-1 and CD54 neutralizing antibodies to NK101, respectively, It is a graph showing the result of confirming the synergistic inhibition by the simultaneous neutralization of markers.
  • Figure 7a is a histogram showing the results of confirming the expression patterns of CD7, CD28 costimulatory factors in NK101 and the established cell lines KHYG-1, and NK-92 through flow cytometry
  • Figure 7b is a cancer cell killing effect of NK101 cells
  • Figure 7c is a schematic diagram of the gene construct introduced for enhancement
  • Figure 7b is a flow cytometric analysis of CD7, CD28 expression in the NK101 cells (named SL-K01) introduced with the gene construct shown in FIG. It is a histogram showing a result
  • FIG. 7D is a photograph showing the result confirmed by reverse transcription PCR of CD :: UPRT expression in SL-K01 cells.
  • Figure 8a is a graph showing the results of measuring cancer cell death frequency through flow cytometry after co-culture of HDLM-2, IM-9, JEKO-1 and K562 cancer cells with NK101 or SL-K01 cells at 4: 1 ratio for 24 hours
  • 8B is a graph showing the results obtained after 48 hours of treatment with various concentrations of 5-FC in NK101 or SL-K01 cells through MTS analysis
  • FIG. 8C is an IM-9 cell line and NK101 or SL. It is a graph showing the result of measuring the frequency of IM-9 cancer cell death by flow cytometry when 5-K01 cells are co-cultured in a 2: 1, 1: 1 or 0.5: 1 ratio with or without 5-FC.
  • Figure 9a is a schematic diagram of the gene constructs introduced for the enhancement of additional cancer cell killing effect of SL-K01 cells and the induction of resistance to the immunosuppressive factor TGF- ⁇
  • Figure 9b is a gene shown in SL-K01 and Figure 9a
  • a histogram showing the results of confirming IL-15 expression on the surface of the construct-induced SL-K01 cells (named NK111) through flow cytometry
  • FIG. 9c shows the flow cytometry of TGF ⁇ RII ⁇ cyto expression in SL-K01 and NK111 cells. This is a histogram showing the result of checking through.
  • FIG. 10A is a graph showing the population doubling level according to the presence or absence of IL-2 in the culture of SL-K01 and NK111 cells
  • FIG. 10B is a flow chart of NKG2D expression in NK101, SL-K01 and NK111 cells. The histogram showing the results confirmed through the analysis
  • FIG. 10C shows the IM according to the presence or absence of 5-FC when co-culture of the IM-9 cell line and SL-K01 or NK111 cells in a 2: 1, 1: 1, or 0.5: 1 ratio.
  • FIG. -9 is a graph showing the result of measuring the death frequency of cancer cells through flow cytometry
  • Figure 10d is co-culture of OVCAR-3 or THP-1 cell line with SL-K01 and NK111 cells, after treatment with various concentrations of TGF ⁇ 1
  • FIG. 11A is a schematic diagram of a chimeric antigen receptor gene construct introduced to enhance EpCAM specific cancer cell killing ability of NK111 cells according to one embodiment of the present invention
  • FIG. 11B is a gene construct shown in FIG. 11A in NK111.
  • FIG. 11c is a human ovarian cancer cell line RMG-1 (left) and KOC-2S (right) )
  • FIG. The culture supernatant of the co-culture sample was collected and the graph showing the result of ELISA analyzing the level of IFN- ⁇ and granzyme B.
  • CAR construct is an abbreviation for “chimeric antigen receptor construct” and is typically a single chain-based antibody analogue such as a ligand or scFv, sdAb as an antigen recognition site.
  • Anti-cancer activity against immune cells of immune cells expressing CAR constructs by transducing immune cells such as T cells and expressing cancer cell-specific antigens as a synthetic protein composed of a cell membrane transmembrane domain-co-stimulatory factor-intracellular signaling domain It is well known to improve.
  • the term "scFv” is an abbreviation for "single chain variable fragment” and is not a fragment of an actual antibody.
  • the linker is about 25 aa in size for the heavy chain variable region (V H ) and the light chain variable region (V L ). It is a kind of fusion protein prepared by linking with peptides and is known to have antigen binding ability despite not being an inherent antibody fragment (Glockshuber et al ., Biochem . 29 (6): 1362-1367, 1990).
  • sdAb single domain antibody
  • nanobody an antibody fragment consisting of a single variable region fragment of an antibody.
  • sdAbs mainly derived from heavy chains are used, single variable region fragments derived from light chains have also been reported to have specific binding to antigens.
  • antibody mimetic is the smallest unit that maintains antigen binding ability, unlike conventional full-length antibodies in which two heavy and two light chains function by forming a quaternary structure of heterotetramers.
  • Fragments eg, Fab, F (ab ') 2 , Fab' or single-chain variable fragment (scFv), which is an artificial fragment linking the variable regions of the heavy and light chains with a linker, without the light chain
  • Fragments eg, Fab, F (ab ') 2 , Fab' or single-chain variable fragment (scFv), which is an artificial fragment linking the variable regions of the heavy and light chains with a linker, without the light chain
  • Concepts include antibody-like proteins made from camelaceae cartilage-derived antibody fragments (V H H, V NAR, etc.) consisting of heavy chains only, or protein scaffolds derived from non-antibodies such as nanobody, monobody, variable lymphocyte receptor (VLR) to be.
  • costimulatory domain refers to the transmembrane domain and cytoplasmic domain of costimulatory factor, an immune-related protein that aids T / NK activation.
  • costimulatory domains are CD28, inducible costimulator (ICOS), cytotoxic T lymphocyte associated protein 4 (CTLA4), programmed cell death protein 1 (PD1), B and T lymphocyte associated protein (BTLA), death receptor 3 (DR3), 4 -1BB, CD2, CD7, CD40, CD30, CD27, signaling lymphocyte activation molecule (SLAM), 2B4 (CD244), NKp30, NKp44, NKp46, NKp80, natural-killer group 2, member D), DAP12 (DNAX- activating protein 12), DAP10, DNAM-1, NTB-A, T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3 (lymphocyte activation gene 3
  • intracellular signaling domain refers to a domain that generates signals that induce activation of immune cells when antigen recognition sites specifically bind to cancer antigens in CAR constructs.
  • TCR CD3 ⁇ domain and the like are known.
  • CD16, NKp30, NKp44, NKp46, NKp80, DAP10, DAP12 and the like are known.
  • genetically modified refers to a host cell or host cell or polynucleotide or vector according to one embodiment of the present invention introduced into one of the predecessors / parents. Means to include in addition to their genome.
  • the polynucleotide or vector according to an embodiment of the present invention may exist in a genetically modified host cell as an independent molecule, preferably a replicable molecule outside the genome, or stably into the genome of the host immune cell. Can be inserted.
  • cell suicide gene refers to a gene that induces cytotoxicity or triggers apoptosis mechanisms to induce the death of cells in which the gene is expressed.
  • gene expression itself does not trigger apoptosis, but metabolites produced by metabolizing prodrugs by apoptotic genes when treating certain prodrugs (prodrugs) trigger cell cytotoxicity or apoptosis mechanisms. It can lead to death.
  • apoptosis genes include the herpes herpes simplex virus thymidine phosphorylation gene (HSV TK) and 6-methoxypurine arabinonucleoside, which use gancyclovir as a suicide induction signal.
  • Cytosine deminase and uracil phosphoribosyltransferase UPRT
  • irinotecan Varicela zoster virus thymidine kinase (VZV TK)
  • 5-fluorocytosine 5-FC
  • CB1954 aziridin-1-yl) -2,4-dinitrobenzamide
  • CB1954 CPT-11
  • Suicide induction signal using 4-[(2-chloroethyl) (2-mesyloxyethyl) amino] benzoyl-l-glutamic acid (CMDA) as a suicide induction signal, carboxypeptides G2, an intermolecular dimerization dimerizer Inductive casing Izu is a 9 (iCas9) are
  • a genetically modified NK cell line in which a polynucleotide encoding an NK cell coactivator is transduced into an isolated NK cell line having the following characteristics such that the NK cell coactivator is expressed:
  • CD2 CD11a, CD25, CD45, CD54, DNAM-1, CD62L and CD56 are positive;
  • CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCR ⁇ and TCR ⁇ are negative.
  • the isolated NK cell line may be an NK101 cell line deposited with accession number KCTC 13305BP.
  • the NK cell coactivator may be any one or more selected from the group consisting of Ly49, natural cytotoxicity receptor (NCR), CD7, CD16, and CD28.
  • the NK cell coactivator may be CD7 and / or CD28.
  • polynucleotides encoding at least one or more NK cell proliferation factors may be further transduced.
  • the NK cell proliferation factor is at least one cytokine or cytokine selected from the group consisting of IL-2, IL-12, IL-15, IL-18 and IL-21. It may be a variant.
  • the IL-15 may be membrane-bound IL-15.
  • apoptotic genes may be further transduced.
  • the apoptosis gene is a uracil phosphoribosyltransferase (UPRT) gene, herpes simplex virus thymidine phosphorylation gene (HSV TK), varicella zoster virus thymidine kinase (VZV TK) Gene, cytosine deminase gene, carboxyl esterase gene, nitroreductase gene, carboxypeptide G2 gene, or inducible caspase 9 (iCas9) gene.
  • UPRT uracil phosphoribosyltransferase
  • HSV TK herpes simplex virus thymidine phosphorylation gene
  • VZV TK varicella zoster virus thymidine kinase
  • polynucleotides encoding cytoplasmic domain deleted TGF ⁇ receptors may be further transduced.
  • the cytoplasmic domain deleted TGF ⁇ receptor may be cytoplasmic domain deleted TGF ⁇ receptor II.
  • a polynucleotide encoding a chimeric antigen receptor that specifically recognizes a cancer antigen may be further transduced.
  • the cancer antigen is CD19, CD22, prostate specific antigen (PSA), carcinoembryonic antigen (CEA), CA-125, mucin 1, alphafetoprotein (AFP), epipithelial tumor antigen (ETA), tyrosine Naese, CD52, PD-L1 (programmed death-ligand 1), CTLA4 (cytotoxic T-lymphocyte-associated protein 4), CD20, MAGE (melanoma-associated antigen), FAP (fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13R ⁇ 2 or an epithelial cell adhesion molecule (EpCAM).
  • PSA prostate specific antigen
  • CEA carcinoembryonic antigen
  • CA-125 CA-125
  • mucin 1 mucin 1
  • AFP alphafetoprotein
  • ETA epipithelial tumor antigen
  • tyrosine Naese CD52
  • PD-L1 programmed death-ligand
  • the chimeric antigen receptor may be a fusion protein comprising a ligand or antibody analog-transmembrane domain-co-stimulatory factor-cellular signaling domain that specifically binds to cancer antigen.
  • the antibody analog may be scFv, sdAb, nanobody, V H H, V NAR , VLR, or monobody.
  • the costimulatory factors are CD28, inducible costimulator (ICOS), cytotoxic T lymphocyte associated protein 4 (CTLA4), programmed cell death protein 1 (PD1), B and T lymphocyte associated protein (BTLA), Death receptor 3 (DR3), 4-1BB, CD2, CD7, CD40, CD30, CD27, signaling lymphocyte activation molecule (SLAM), 2B4 (CD244), NKp30, NKp44, NKp46, NKp80, NKG2D (natural-killer group 2, member D) / DAP12 (DNAX-activating protein 12), DAP10, DNAM-1, NTB-A, TIM1 (T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3 (lymphocyte activation gene 3), B7-1, B7-H1, glucocorticoid-induced TNFR family related protein (GITR), herpesvirus
  • the intracellular signaling domain may be a CD3 ⁇ domain, a CD16, NKp30, NKp44, NKp46, NKp80, DAP10, or DAP12 of a T cell receptor.
  • one or more genes may be removed as necessary.
  • the gene may be determined according to the genotype of the patient, and may be a gene capable of causing side effects or inhibiting the activity of the administered cells by inducing an excessive immune response upon administration to the patient. Genome editing tools such as TALEN or CRISPR can be used to remove these genes.
  • a pharmaceutical composition for preventing and treating cancer comprising any one of the above genetically modified NK cell line as an active ingredient.
  • a cancer treatment kit comprising any one of the above genetically modified NK cell line and suicide inducing agent.
  • the suicide inducing agent is gancyclovir or 6-methoxypurine arabinonucleoside, if the apoptosis gene is HSV TK or VZV TK, respectively.
  • a method for treating cancer in a subject comprising administering to a subject with cancer a therapeutically effective amount of any one of the above genetically modified NK cell lines and optionally suicide inducing agent. Is provided.
  • a genetically modified NK cell line transduced with a polynucleotide and an apoptotic gene encoding the NK cell coactivator, NK cell proliferation factor, cytoplasmic domain deletion TGF ⁇ receptor, respectively, to an isolated NK cell line do.
  • the isolated NK cell line may have the following characteristics:
  • CD2 CD11a, CD25, CD45, CD54, DNAM-1, CD62L, and CD56 are positive;
  • CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCR ⁇ and TCR ⁇ are negative.
  • the isolated NK cell line may be an NK101 cell line deposited with accession number KCTC 13305BP.
  • the NK cell coactivator may be selected from the group consisting of Ly49, natural cytotoxicity receptor (NCR), CD7, CD16, and CD28.
  • NCR natural cytotoxicity receptor
  • the NK cell coactivator may be CD7 and / or CD28.
  • the NK cell proliferation factor is at least one cytokine or cytokine selected from the group consisting of IL-2, IL-12, IL-15, IL-18 and IL-21. It may be a variant.
  • the cytoplasmic domain deleted TGF ⁇ receptor may be cytoplasmic domain deleted TGF ⁇ receptor II.
  • the apoptosis gene is a uracilphosphoribosyltransferase (UPRT) gene, herpes simplex virus thymidine phosphorylation gene (HSV TK), varicella zoster virus thymidine kinase (VZV TK) Gene, cytosine deminase gene, carboxyl esterase gene, nitroreductase gene, carboxypeptide G2 gene, or inducible caspase 9 (iCas9) gene.
  • UPRT uracilphosphoribosyltransferase
  • HSV TK herpes simplex virus thymidine phosphorylation gene
  • VZV TK varicella zoster virus thymidine kinase
  • one or more genes may be removed as necessary.
  • the gene may be determined according to the genotype of the patient, and may be a gene capable of causing side effects or inhibiting the activity of the administered cells by inducing an excessive immune response upon administration to the patient. Genome editing tools such as TALEN or CRISPR can be used to remove these genes.
  • the genetically modified NK cell line may be further transduced with a polynucleotide encoding a chimeric antigen receptor that specifically recognizes a cancer antigen.
  • the cancer antigen can be used any known cancer antigen
  • the cancer antigen is CD19, CD22, PSA (prostate specific antigen), CEA (carcinoembryonic antigen), CA-125, mucin 1, AFP (alphafetoprotein), Epithelial tumor antigen (ETA), tyrosinase, CD52, programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), CD20, melanoma-associated antigen (MAGE), fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13R ⁇ 2, or epithelial cell adhesion molecule (EpCAM).
  • the chimeric antigen receptor may be a fusion protein comprising a ligand or an antibody analog-transmembrane domain-co-stimulatory factor-cellular signaling domain that specifically binds to cancer antigens, wherein the antibody analog is scFv, sdAb, It may be a nanobody, V H H, V NAR , VLR, or monobody, the co-stimulatory factors are CD28, inducible costimulator (ICOS), cytotoxic T lymphocyte associated protein 4 (CTLA4), programmed cell death protein 1 (PD1) , B and T lymphocyte associated protein (BTLA), death receptor 3 (DR3), 4-1BB, CD2, CD7, CD40, CD30, CD27, signaling lymphocyte activation molecule (SLAM), 2B4 (CD244), NKp30, NKp44, NKp46 , NKp80, NKG2D (natural-killer group 2, member D) / DAP12 (DNAX-activating protein 12), DAP10,
  • the NK cell coactivator, NK cell proliferation factor, cytoplasmic domain deletion TGF ⁇ receptor and apoptosis genes are expressed individually, simultaneously expressed in one gene construct, or two or more genes. Divided into constructs can be expressed. For example, some of the introduced genes are expressed in the form of a fusion protein linked by a linker or linked to a protease recognition site and automatically cleaved by a protease expressed in a cell to be expressed as a mature protein, or IRES. It is also possible to be expressed as a single mRNA linked to the back, and then expressed as individual proteins during translation.
  • genes constructs are operably linked to one or more promoters and can be inserted into expression vectors optimized for expression in mammalian cells, particularly NK cells, and transduced with a variety of eukaryotic transduction methods.
  • transduction can be performed using a variety of methods, including lipopexen, calcium phosphate transfection, gene gun, electroporation, and genome editing tools such as TALEN or CRISPR for more sophisticated intranuclear transduction. Can be used.
  • operably linked to means that a particular polynucleotide is linked to another polynucleotide so that it can function.
  • the operably linked polynucleotide encoding a particular protein means that the polynucleotide encoding the specific protein is linked to be transcribed into mRNA and translated into the protein by the action of the promoter.
  • An operably linked polynucleotide encoding another protein may allow the particular protein to be expressed in the form of a fusion protein with the other protein.
  • regulators responsible for transcription initiation and, optionally, poly-A signals responsible for transcription termination and stabilization of the transcript usually include, in addition to transcriptional regulators, translation enhancers and / or naturally-combined or heterologous promoter regions.
  • possible regulators that allow expression in mammalian host cells include the CMV-HSV thymidine kinase promoter, SV40, RSV (Loose Sarcoma Virus) promoter, human kidney element 1 ⁇ -promoter, glucocorticoid-induced MMTV-promoter (Molony mouse tumor virus), metallothionein-induced or tetracycline-induced promoters or amplification agents such as CMV amplifiers or SV40-amplifiers.
  • neurofiber-promoter, PGDF-promoter, NSE-promoter, PrP-promoter or thy-1-promoter may be used.
  • promoters are known in the art and described in Charron, J. Biol. Chem. 1995, 270: 25739-25745.
  • these regulators include transcription termination signals, such as the SV40-poly-A site or the TK-poly-A site, downstream of the polynucleotide according to one embodiment of the invention. You may.
  • suitable expression vectors are known in the art, for example, the Okayama-Berg cDNA expression vector pcDV1 (Parmacia), pRc / CMV, pcDNA1, pcDNA3 (In-vitrogene), pSPORT1 (GIBCO BRL). ), pX (Pagano (1992) Science 255, 1144-1147), yeast two-hybrid vectors such as pEG202 and dpJG4-5 (Gyuris et al ., Cell 75, 791-803, 1995) or prokaryotic Expression vectors such as lambda gt11 or pGEX (Amersham-Pharmacia).
  • the vector may further comprise a polynucleotide encoding a secretory signal.
  • the secretion signals are well known to those skilled in the art.
  • a leader sequence capable of directing the peptide of the present invention to the cell compartment is combined with the coding sequence of the polynucleotide according to an embodiment of the present invention, and preferably the translated protein.
  • the heterologous sequence can encode a fusion protein comprising a C-terminal or N-terminal tag peptide that confers desired properties such as stabilization or simple purification of the expressed recombinant product.
  • Such tags include, but are not limited to, FLAG, GST (glutathione S transferase), HisX6, and the like.
  • a pharmaceutical composition for cancer treatment and cancer prevention comprising the genetically modified NK cell line as an active ingredient.
  • the cancer may be hematological cancer or solid cancer
  • the solid cancer is liver cancer, lung cancer, pancreatic cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, gallbladder cancer, gastric cancer, biliary cancer, colon cancer, head Cervical cancer, esophageal cancer, thyroid cancer, brain tumor, malignant melanoma, prostate cancer, testicular cancer, tongue cancer, lymphoma or leukemia
  • the solid cancer may be metastatic cancer.
  • the pharmaceutical composition of the present invention may contain at least one known active ingredient having an anticancer effect together with the genetically modified NK cell line.
  • the composition for treating cancer of the present invention means a pharmaceutical composition formulated by mixing the genetically modified NK cell line and a known active ingredient together with a pharmaceutically acceptable carrier, and if not formulated together, separately packaged. And may be administered simultaneously or sequentially. In the latter case, it may be referred to as a kit rather than a composition.
  • composition may further include a pharmaceutically acceptable excipient or diluent in addition to the pharmaceutically acceptable carrier.
  • Such pharmaceutically acceptable carriers include, for example, carriers for parenteral administration such as water, suitable oils, saline, aqueous glucose and glycols, and the like, and may further include stabilizers and preservatives.
  • Suitable stabilizers include antioxidants such as sodium hydrogen sulfite, sodium sulfite or ascorbic acid.
  • Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol.
  • the cell therapy according to the present invention if necessary according to the administration method or dosage form, suspensions, dissolution aids, stabilizers, isotonic agents, preservatives, adsorption agents, surfactants, diluents, excipients, pH adjusters, analgesics, buffers And antioxidants may be included as appropriate.
  • Pharmaceutically acceptable carriers and formulations suitable for the present invention including those exemplified above, are described in detail in Remington's Pharmaceutical Sciences, latest edition.
  • the dosage of the pharmaceutical composition according to an embodiment of the present invention may be 10 7 to 10 11 cells on the basis of the cell number, the dosage is depending on the sex, age, disease progression, treatment purpose of the patient Can be adjusted. In general, this amount will be sufficient to obtain localization in the target cell, eg, cancer antigen overexpressing cancer cell, and to kill the cancer cell, eg, by phagocytosis or lysis.
  • the cell therapy agent may further include a pharmaceutically acceptable carrier, diluent, or excipient in addition to the carrier.
  • the term "pharmaceutically acceptable” refers to a composition that is physiologically acceptable and does not normally cause an allergic reaction, such as gastrointestinal disorders, dizziness, or the like when administered to a human.
  • cell therapeutic agents according to one embodiment of the present invention can be formulated using methods known in the art to allow for rapid release, or sustained or delayed release of the active ingredient when administered to a mammal.
  • Formulations include powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powder forms.
  • compositions according to one embodiment of the invention can be administered by a variety of routes, for example, oral, parenteral, e.g. suppositories, transdermal, intravenous, abdominal, intramuscular, intracranial, intralesional, nasal It can be administered intrathecal, and can also be administered using a sustained release or implantable device for continuous or repeated release.
  • the frequency of administration can be administered once a day or divided into several times within the desired range, the administration period is not particularly limited.
  • kits for treating cancer comprising the genetically modified NK cell line and suicide inducing agent.
  • the cancer treatment kit includes the genetically modified NK cell line and suicide inducer, but the two components are not provided in a mixed form, but are provided separately packaged, and these two components may be administered at the same time or through different routes. It can be, but is distinguished from the general pharmaceutical composition in that it is administered at regular intervals according to the doctor's prescription.
  • the kit of the present invention first administers the genetically modified NK cell line, and then, at an appropriate time point, such as, for example, administration of the genetically modified NK cell line, 1 day, 2 days, 3 days, 4 days, or 5 days after administration.
  • the first dose It may then be administered in multiple doses two or more times at intervals of two days, three days, four days, five days, six days, or one week.
  • the kit may be the same or different route of administration of each component.
  • the suicide-inducing agent may be administered orally, or intraperitoneally or intravenously, at about the same time interval or at predetermined intervals.
  • the route of administration of the suicide inducing agent may be appropriately determined according to the characteristics of the suicide inducing agent.
  • compositions for cancer treatment comprising the genetically modified NK cell line and suicide inducer as active ingredients are as described above.
  • the suicide inducing agent depends on the type of suicide gene.
  • the suicide gene is HSV TK or VZV TK, gancyclovir or 6-methoxypurine arabinonucleoside, respectively.
  • 5-fluorocytosine 5-FC
  • UPRT uracil phosphoribosyl transferase
  • CPT-11 irinotecan
  • nitroreductase may be 5 (aziridin-1-yl) -2,4-dinitrobenzamide (CB1954), and in the case of carboxypeptides G2, 4-[(2-chloroethyl) (2-mesyloxyethyl) amino] benzoyl-L-glutamic acid (CMDA), iCas9 may be an iCas9 dimer, and iCas9 dimer may be AP20187 or AP1903.
  • CB1954 carboxypeptides G2
  • CMDA 4-[(2-chloroethyl) (2-mesyloxyethyl) amino] benzoyl-L-glutamic acid
  • iCas9 may be an iCas9 dimer
  • iCas9 dimer may be AP20187 or AP1903.
  • a method for treating a subject with cancer comprising administering a therapeutically effective amount of said genetically modified NK cell line or optionally suicide inducing agent to the subject with cancer.
  • terapéuticaally effective amount means an amount that significantly inhibits the death of cancer cells or at least the growth of cancer tissue.
  • Cancer that can be treated through the use of a pharmaceutical composition for treating cancer or a kit for cancer treatment according to an embodiment of the present invention is liver cancer, lung cancer, pancreatic cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, gallbladder cancer, gastric cancer, biliary tract Cancer, colorectal cancer, head and neck cancer, esophageal cancer, thyroid cancer, brain tumor, malignant melanoma, prostate cancer, testicular cancer, tongue cancer, lymphoma or leukemia.
  • the isolated NK cell line is transduced with polynucleotides and apoptosis genes encoding NK cell coactivator, cell membrane-bound IL-15, and TGF ⁇ receptor, respectively, and is a cancer antigen specific chimeric antigen receptor.
  • a polynucleotide encoding a gene is transduced to provide a genetically modified NK cell line expressing the cancer antigen specific chimeric antigen receptor.
  • the cancer antigen is CD19, CD22, prostate specific antigen (PSA), carcinoembryonic antigen (CEA), CA-125, mucin 1, alphafetoprotein (AFP), epipithelial tumor antigen (ETA), tyrosinase, CD52, PD-L1 ( programmed death-ligand 1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), CD20, melanoma-associated antigen (MAGE), fibroblast activation protein (FAP), fms like tyrosine kinase 3 (FLT3), IL13R ⁇ 2 or epipithelial (EpCAM) cell adhesion molecule).
  • PSA prostate specific antigen
  • CEA carcinoembryonic antigen
  • CA-125 CA-125
  • mucin 1 alphafetoprotein
  • ETA epipithelial tumor antigen
  • ETA epipithelial tumor antigen
  • tyrosinase CD52
  • PD-L1 programmed
  • the present inventors have isolated a new NK cell line having the characteristics shown in Table 1 from cancer tissues of patients with NK lymphoma, and as a result of investigating various characteristics thereof, as shown in FIGS. It was confirmed that it is a multifunctional NK cell line having both cancer cell killing ability and immunomodulatory ability. In particular, the proliferative capacity is significantly higher than that of NK-92, the only NK cell line currently undergoing clinical trials, and it is identified as an economically viable cell. These cells are named 'NK101' and are located at 181, Sinpsin-gil, Jeongeup-si, Jeollabuk-do, Korea.
  • KCTC Korean Collection for Type Culture
  • Figure 7b is a schematic diagram showing the structure of the gene construct CD7-CD28-CD :: UPRT used in the production of the genetically modified NK cell line SL-K01 according to an embodiment of the present invention to achieve the above object;
  • 9A is a schematic diagram schematically showing the structure of the gene construct mbIL-15-mTGF ⁇ II ⁇ cyto used for the preparation of the genetically modified NK cell line NK111 according to one embodiment of the present invention.
  • the NK101 cells (accession number KCTC 13305BP) previously established by the present inventors, coactivating receptors of NK cells, apoptosis genes, membrane bound cytokines, mutations
  • the TGF ⁇ receptor was introduced to construct an NK111 cell line capable of enhancing anticancer effects of the NK cells and proliferating independently of cytokine supplements (see FIGS. 9B and 9C).
  • FIG. 7 shows cell surface markers of a genetically modified NK cell line (SL-K01) and a parent cell line NK101 of the SL-K01, and conventionally constructed NK cell lines KHYG-1 and NK-92 according to an embodiment of the present invention.
  • Figure 7a is a histogram showing the results of flow cytometry analysis of the expression of CD7 and CD28 in NK101, KHYG-1 and NK-92
  • Figure 7c is shown in Figure 7b
  • Figure 7b It is a histogram showing the result of confirming the expression of CD7 and CD28 in the genetically modified cell line SL-K01 cells according to an embodiment of the present invention transduced by flow cytometry.
  • FIG. 7 shows cell surface markers of a genetically modified NK cell line (SL-K01) and a parent cell line NK101 of the SL-K01, and conventionally constructed NK cell lines KHYG-1 and NK-92 according to an embodiment of the present invention.
  • NK-92 which are known to have high cancer cell killing ability among conventionally constructed NK cell lines, have a characteristic of expressing CD7, and NK-92 cells have CD7 as well as CD28. While NK101 has the characteristic of expressing at the same time, it was confirmed that both co-stimulatory factors are not expressed at all. Therefore, the present inventors attempted to evaluate whether cancer cell killing ability is enhanced by introducing CD7 and CD28 into NK101 cells.
  • FIG. 8 is a result of analyzing apoptosis of various cancer cells of the genetically modified NK cell line SL-K01 and the parent cell line NK101 of the SL-K01 according to an embodiment of the present invention
  • FIG. 8A illustrates HDLM-2 and IM-. 9
  • JEKO-1 and K562 cancer cells were cocultured with NK101 or SL-K01 cells at 4: 1 ratio for 24 hours, and then the cancer cell death frequency was measured by flow cytometry.
  • FIG. 8 is a result of analyzing apoptosis of various cancer cells of the genetically modified NK cell line SL-K01 and the parent cell line NK101 of the SL-K01 according to an embodiment of the present invention
  • FIG. 8A illustrates HDLM-2 and IM-. 9
  • JEKO-1 and K562 cancer cells were cocultured with NK101 or SL-K01 cells at 4: 1 ratio for 24 hours, and then the cancer cell death frequency was measured by flow cytometry.
  • FIG. 8B is a graph showing various concentrations of 5 -FC treated with NK101 or SL-K01 cells for 48 hours, the cell growth rate is a graph showing the results confirmed by the MTS analysis
  • Figure 8c is an IM-9 cell line and NK101 or SL-K01 cells 1: 1, 2 When co-cultured in the ratio of 1: 1 or 4: 1, the graph shows the result of measuring the flow rate of IM-9 cancer cells by flow cytometry with or without 5-FC.
  • the genetically modified NK cell line SL-K01 according to an embodiment of the present invention shows excellent killing ability in various cancer cell lines compared to NK101, the killing ability of NK101 cells was enhanced through the introduction of CD7, CD28 I could confirm it.
  • Figure 9 shows the construction of a genetically modified NK cell line NK111 cell line according to another embodiment of the present invention
  • Figure 9a is an additional cancer cell killing effect of SL-K01 cells and resistance to the immunosuppressive factor
  • TGF- ⁇ 9A is a schematic diagram of a gene construct introduced for induction
  • FIG. 9B shows IL-15 expression on the surface of SL-K01 and SL-K01 cells (named 'NK111') into which the gene construct shown in FIG. 9A is introduced.
  • Is a histogram showing the results confirmed by flow cytometry
  • Figure 9c is a histogram showing the results confirmed by flow cytometry TGF ⁇ RII ⁇ cyto expression in SL-K01 and NK111 cells.
  • FIG. 9a is an additional cancer cell killing effect of SL-K01 cells and resistance to the immunosuppressive factor
  • TGF- ⁇ 9A is a schematic diagram of a gene construct introduced for induction
  • FIG. 9B shows IL-15 expression on the surface of SL
  • CD7 / CD28 introduction showed a moderate effect on the killing of NK101 cells.
  • the present inventors tried to transduce SL-K01 cells with a membrane bound IL-15 (mbIL-15), a representative NK cell coactivator, To induce resistance to the inhibitor TGF- ⁇ overexpressed TGF ⁇ RII ⁇ cyto deleted from the cytoplasmic domain to act as a decoy receptor.
  • mbIL-15 membrane bound IL-15
  • TGF- ⁇ RII ⁇ cyto deleted from the cytoplasmic domain to act as a decoy receptor.
  • FIG. 10 is a result of comparing and analyzing the anticancer activity and safety of NK111, a genetically modified NK cell line according to an embodiment of the present invention
  • Figure 10a shows the number of cells according to the presence or absence of IL-2 in the culture of SL-K01 and NK111 cells
  • 10B is a histogram showing the results of confirming NKG2D expression in NK101, SL-K01 and NK111 cells through flow cytometry
  • FIG. 10C is an IM-9 cell line and SL-K01. Or when the NK111 cells are co-cultured at a ratio of 1: 1, 2: 1, or 4: 1, the death frequency of IM-9 cancer cells with or without 5-FC is measured by flow cytometry, and FIG. 10D.
  • NK111 according to an embodiment of the present invention is capable of cell growth independently of IL-2, which increases the convenience in production.
  • NKG2D expression a representative activating receptor of NK cells, was upregulated through the introduction of IL-15, thereby enhancing killing ability against cancer cells.
  • the inventors of the present invention to determine whether the NK111 cells according to an embodiment of the present invention can act as a platform for delivery of cancer antigen-specific chimeric antigen receptor (CAR) that can achieve antigen-specific anticancer activity
  • CAR cancer antigen-specific chimeric antigen receptor
  • a cancer antigen FOG. 11A
  • a SL-K10 cell line transduced with NK111 cells was prepared, and the SL-K10 cell line normally expressed an EpCAM specific CAR ( 11b), KOC, which is a control cancer cell that does not express EpCAM, was analyzed as a result of analyzing cancer cell killing ability when co-cultured at RGF-1 cells overexpressing EpCAM under in vitro conditions at various effector: target (E: T) ratios.
  • E target
  • NK111 cells according to an embodiment of the present invention can be used very efficiently as a platform for the next generation CAR-expressing cell therapy which can be used for the treatment of solid cancer as well as blood cancer.
  • NK cell-derived cell line To prepare an NK cell-derived cell line, the following process was carried out. A patient-derived extranudal NK lymphoma is placed on a 40 ⁇ m strainer and Cellgro ® stem cell growth medium containing 20% fetal bovine serum (GE Healthcare, USA) and 1% antibiotic (Gibco, USA) SCGM (CellGenix, Germany, hereinafter referred to as 'NK media') was added to 10 mL and then separated into single cells using the shear force of the piston of a 5 mL syringe and suspended.
  • 'NK media' 20% fetal bovine serum
  • SCGM CellGenix, Germany
  • NK cells in single cell suspensions were isolated using NK isolation kit (Milltenyi Biotec, Germany) and then 1000 U / mL of recombinant human IL-2 (rhIL-2; Prometheus Laboratories Inc., USA) Incubated for 3 weeks in the added NK media.
  • NK media containing IL-2 was added twice a week, and it was confirmed that stable cell lines were formed by continuously culturing dividing cell lines up to 30 passages (FIG. 1A). Since the cell line expresses CD56 without expressing CD3, CD20, and CD16, it was confirmed that the origin of the cells is NK cells (FIG. 1B). The cell line was confirmed under a microscope to form a spheroid in culture (Fig.
  • CFDA Carboxyfluorescein Diacetate
  • NK101 is an immortalized cell that can be passaged continuously, forms a colony in culture, and has a characteristic that the phenotype and function are consistent with previously known NK cells.
  • the cell line was named 'NK101' by identifying the cell line and the characteristics of the NK cell.
  • KCTC was deposited on August 7, 2017, and received the accession number of KCTC 13305BP on August 24, 2017. The depositary body is an international depositary body under the Budapest Treaty.
  • NK101 expresses CD25, which is a high affinity IL-2 receptor, higher than that of NK-92.
  • NK101 and NK-92 after freezing cell growth rate and survival rate were analyzed under the same culture conditions, NK101 recovered cell growth after 2 days (1 passage) after thawing, but NK-92 10 days after thawing (5 passages) Since it was confirmed that reached a certain cell growth (Fig. 2c).
  • NK101 cells of the invention Item NK101 cells Clinical data Age / gender 56 year old male race Asian Diagnosis Extraranodal NK / T lymphoma Cell culture Growth pattern Multicellular Aggregates in Suspension Doubling Time 18-32 hours Cell concentration 1.2x10 6 cells / ml Minimum cell concentration 0.5x10 5 cells / ml Cytokine dependence IL-2 dependency (500 IU / ml) Optimal cleavage Every 2-3 days Immunological properties T / NK marker CD2 +, CD3 -, CD4 - , CD7 -, CD8 -, CD16 -, CD56 + B cell marker CD10 -, CD19 -, CD20 - Bone Supranuclear Markers CD13 -, CD14 -, CD33 + NK cell activating receptor NKp46 + , NKp30 + , NKG2D + NK cell inhibitory receptor KIR2DL1 -, KIR2DL2 -, ILT2
  • Example 3 Surface Marker Analysis
  • the NK101 cell line of the present invention prepared in Example 1 had the characteristics of floating cells, and the expression level of the surface antigen of the cells was confirmed by flow cytometry.
  • the NK101 cell line of the present invention expresses CD2 and CD56, which are surface antigens of NK cells, but does not express CD16, but CD3, CD4, CD8, TCR ⁇ and TCR ⁇ and B cells, which are surface antigens of T cells. It had a phenotype of NK cells not expressing the surface antigen CD20 and monocyte expressing antigen CD14 (FIG. 3A).
  • the NK101 cell line of the present invention expressed NKG2D, NKp30, NKp46, DNAM-1, 2B4, which are activating receptors of NK cells, and expressed inactive receptors, CD94, NKG2A, but KIR2DL1 / S1 / S3 / S5, KIR2DL2 / DL3. , And CD85j and the like were not expressed (FIG. 3B).
  • they express the cell adhesion molecules CD2, CD11a, CD19, ICAM-1, CD7 was not expressed (Fig. 3c).
  • the NK101 cell line of the present invention is highly expressed CD107a, Perforin, Granzyme B, which is involved in the cytotoxicity and immune activation of NK cells, and TRAIL and FASL are expressed at a low level (Fig. 3d), cytokines of NK cells Among the caine receptors, it was confirmed that they express CD25, IL-2 receptors (CD122, CD132) and IL-15Ra, which are IL-2 high affinity receptors (FIG. 3E). Among chemokine receptors involved in the mobility of NK cell lines, CCR4, CCR6, CCR7, CXCR3, and CXCR4 were expressed, but other CCRs and CXCRs were not expressed (FIG. 3F).
  • the NK101 cell line of the present invention exhibits the phenotype of activated NK cells, and is distinguished from other NK cell lines in that CD25 is highly expressed.
  • CD25 is an indicator of activated NK cells and is a marker of NK cells with high division ability.
  • NK101 In order to analyze the characteristics of NK101 cells, expression of CD56 and CD62L, markers of NK cells, was identified by flow cytometry in comparison with NK-92 and primary cultured NK cells. It was. As shown in FIG. 4A, NK101 cells were identified as CD56 dim NK cells having a lower CD56 expression level than NK-92 cells. In addition, as shown in the contour graph of FIG. 4B, NK101 cells express high CD62L markers, which are unexpressed in NK-92 cells and are expressed in limited numbers in some cultured NK cells.
  • CD56 dim and CD56 bright can be classified according to the expression of CD56, which is thought to be composed of two populations, each of which is more dominant in cytotoxicity or cytokine production.
  • CD56 bright NK cells show high cell proliferation ability, secrete IFN- ⁇ upon activation by cytokines, and show low cancer cell killing ability.
  • CD56 dim NK cells have low cell proliferation ability, as opposed to CD56 bright NK cells, Secrete IFN- ⁇ and have high cytotoxicity.
  • Recently validated CD56 dim CD62L + NK cells Juelke, K et al ,, Blood , 116 (8): 1299-1307, 2010; Luetke-Eversolh, M et al ., Front.
  • CD56 dim NK cells are reported as a multi-functional NK cells that have both characteristics.
  • NK101 can secrete proliferation and IFN- [gamma] by cytokine stimulation (FIG. 5a), and it has been confirmed that it secretes various types of cytokines even upon recognition of target cells (FIG. 5b).
  • NK101 has the phenotype and characteristics of CD56 dim CD62L + NK cells, and NK101 has been reported for either primary cultured NK cells or ex vivo expanded primary cultured NK cells expressing CD56 dim CD62L + characteristic markers. Is an immortalized NK cell line, which is distinguished from them, which can be said to be a unique characteristic not found among known NK cell lines.
  • Example 5 In vitro cancer cell killing ability and cytotoxicity mechanism of NK101
  • CFDA-labeled human-derived cancer cell lines THP-1, KG-1, HL-60 (acute myeloid leukemia), HCT116 (colon cancer), U373 (brain cancer), A2780 (ovarian cancer), A549 (lung adenocarcinoma) ), And SK-BR3 (breast cancer) cells were seeded in 1-well at 3x10 5 cells / mL concentration in 24-well plates, respectively.
  • the cell pellet was suspended in a solution diluted with 5 ⁇ L of Annexin V APC (Biolegend, USA) in 100 ⁇ L of 1 ⁇ Annexin V binding buffer, and reacted at room temperature for 20 minutes.
  • Cell death was determined by flow cytometry using viable cells (annexin V-negative / LIVE / DEAD-negative), early apoptotic cells (annexin V-positive / LIVE / DEAD-negative), late apoptotic cells (annexin V-positive / LIVE / DEAD-positive) and necrotic cells (annexin V-negative / LIVE / DEAD-positive). As shown in FIG.
  • the NK101 cell-administered group showed cell killing ability against various human cancer cell lines.
  • THP-1 (FIG. 6B) after treatment with neutralizing antibodies to CD25, CD62L, DNAM-1, and CD54 (ICAM-1), which are highly expressed in NK cells, to identify the major markers of cell killing ability of NK101 cells, Apoptosis was analyzed after co-culture with K562 (FIG. 6C), Jurkat (FIG. 6D) and an effector cell-to-target cell ratio of 4: 1.
  • K562 FIG. 6C
  • Jurkat FIG. 6D
  • an effector cell-to-target cell ratio of 4: 1 As a result, the cell killing ability of NK101 was reduced by treatment of neutralizing antibodies such as DNAM-1 and CD54 in KP, CD562 in K562 and CD25, CD62L and CD54 in Jurkat.
  • KHYG-1 and NK-92 are known to have high cancer cell killing ability among the established NK cell lines, and they have the characteristic of expressing CD7 and CD28 in common, whereas NK101 does not express both co-stimulatory factors at all.
  • the present inventors attempted to evaluate whether cancer cell killing ability is enhanced when the NK101 is transduced with genes encoding CD7 and CD28.
  • the present inventors prepared a nucleic acid molecule (SEQ ID NO: 16) and a CD28 immune cell co-stimulatory factor (SEQ ID NO: 17) encoding CD7 (SEQ ID NO: 15) to the NK101 cells prepared in Example 1 to produce a functionally enhanced NK cell line.
  • the nucleic acid molecule encoding (SEQ ID NO: 18) is linked to the nucleic acid molecule encoding the 2A peptide (SEQ ID NO: 20), and the nucleic acid molecule encoding the CD :: UPRT (SEQ ID NO: 21) is added.
  • the lentivirals collected in the medium were collected, centrifuged for 5 minutes (4 ° C., 4000 rpm), the supernatant was collected, and the cell debris was removed using a 0.45 ⁇ m filter (Millipore, USA). It was. To concentrate the lentiviral, Lenti-X concentrator (Clontech, USA) reagent was added to the filtered lentiviral supernatant and stored at 4 ° C. overnight.
  • the lentiviral-concentrator mixture was centrifuged at 4000 rpm for 60 minutes, the supernatant was removed, and the recovered lentivirus in pellet form was diluted with 1-2 mL of culture and stored at -80 ° C until use. .
  • the CD7-CD28-CD :: UPRT lentivirus prepared in Example 6-2 was transfected into NK101 cells using protamine sulfate (Sigma, USA) and then incubated at 37 ° C for 4 hours. After two times of infection, 72 hours after infection, the expression of CD7 and CD28, the immune cell co-stimulatory factors, was confirmed by flow cytometry, and 1 week later, the fluorescence activated cell sorter (BD FACSMelody, BD, USA) was used to selectively isolate only NK101 cells expressing the transgene. Expression of the membrane surface proteins CD7 and CD28 in the isolated and propagated NK101-CD7-CD28-CD :: UPRT cell lines was confirmed by flow cytometry (FIG. 7C). We named the genetically modified NK101 cell line expressing CD7-CD28-CD :: UPRT as 'SL-K01'.
  • Total RNA was isolated using RNA extraction kit (iNtRON, South Korea).
  • Reverse transcription polymerase chain reaction was carried out using a QuantiTect Reverse Transcription Kit (QIAGEN, Germany) to synthesize cDNA, and then mixed the synthesized cDNA with Taq polymerase and primers, and then subjected to heavy enzyme chain reaction (PCR).
  • the amplified PCR product was electrophoresed on a 1% agarose gel to confirm the presence of the CD :: UPRT gene. As a result, as shown in Figure 7d, it was confirmed that the transduced CD :: UPRT gene is normally expressed.
  • HDLM-2 human Hodgkin's lymphoma
  • IM9 human lymphoblastoma
  • Jeko-1 human mantle cell lymphoma
  • K562 Chironic myeloid leukemia
  • NK101 and SL-K01 cells were suspended in the culture medium at a desired ratio, and then 1 mL was dispensed into 24-well plates containing the target tumor cell line and co-cultured at 37 ° C. for 24 hours. As a result, it was confirmed that the cell killing ability increased in all target cell lines (Fig. 8a).
  • UPRT which is an apoptosis gene introduced into SL-K01 cells prepared in Example 6, the cells were prepared in 20% FBS composition in SCGM medium with 2x10 4 cells / 90 ⁇ L / well Aliquots in 96-well plates (Corning, USA) and diluted to concentrations (0, 0.1, 1, 10, 100, 1000 ⁇ g / mL, respectively), 5-Fluorocytosine (5-FC; Sigma, USA).
  • positive control group 1% Triton-X was inoculated in 10 ⁇ L of the wells, and incubated for 48 hours at 5% CO 2 , 37 ° C.
  • apoptosis was further increased in the experimental group treated with 5-FC.
  • the therapeutic effect can be maximized by the bystander effect of killing not only NK cells into which apoptotic genes have been introduced, but also target cancer cells.
  • Nucleic acid molecule (SEQ ID NO: 27) encoding TGF ⁇ RII ⁇ cyto (SEQ ID NO: 26) from which the cytoplasmic domain was removed was prepared by constructing a gene construct linked to a nucleic acid molecule (SEQ ID NO: 20) encoding a 2A peptide (SEQ ID NO: 19) for the production of lentiviral.
  • PWPT-mbIL-15-TGF ⁇ RII ⁇ cyto was prepared by cloning into the transfer vector pWPT (FIG. 9A).
  • MbIL-15-TGF ⁇ RII lentiviral was prepared in the same manner as described in Example 6, and then infected with SL-K01 cells, and only SL-K01 cells expressing the transgene were selectively isolated using a fluorescent activated cell separator. Expression of membrane surface proteins IL-15 and TGF ⁇ RII in the isolated SL-K01-mbIL-15-TGF ⁇ RII cell line was confirmed by flow cytometry (FIG. 9B).
  • the SL-K01 cell line expressing mbIL-15-TGF ⁇ RII was named 'NK111'.
  • the SL-K01 cells and NK111 cells were 48 ⁇ under 250 U / mL IL-2 at a concentration of 2 ⁇ 10 5 cells / mL. After culturing in a time cycle, the cells were collected and the number of viable cells was measured by trypan blue staining (Trypan Blue). As can be seen in Figure 10a, SL-K01 cells were not cell proliferation under IL-2 deficiency conditions, cell growth was confirmed in the IL-2 treatment conditions. It was observed that NK111 cells introduced with mbIL-15 proliferated similarly to SL-K01 under IL-2 treatment conditions.
  • NK111-based cell line therapeutics may have high productivity with only a deficiency condition of IL-2, a culture supplement.
  • expression of CD314 (NKG2D), one of the natural killer cell activation receptors, was confirmed by flow cytometry in NK101, SL-K01, and NK111 cell lines (FIG. 10B).
  • IM9 human lymphoblasts
  • C9-labeled IM9 cells were treated with 5-FC together with SL-K01 cells and NK111 cells, and cultured for 48 hours, and cell death was confirmed by flow cytometry.
  • NK111 cells into which mbIL-15 was introduced increased cancer cell killing ability against target cells, and apoptosis was significantly increased in the experimental group treated with 5-FC (FIG. 10C).
  • the present inventors performed the following experiments to determine whether the TGF ⁇ 1 immunosuppressive effect, which is well known as an immunosuppressive factor present in a large amount in the patient's body, is inhibited by TGF ⁇ RII ⁇ cyto introduced into NK111 cells.
  • CTV-labeled OVCAR-3 (human ovarian cancer) cells and THP-1 (acute myeloid leukemia) cells and effector cells SL-K01 and NK111 cells were prepared at a concentration of 3x10 5 cells / mL and 1 mL in a 24-well plate.
  • SL-K01 cells significantly increased the cancer cell killing ability compared to the parental cell line NK101 while maintaining the main characteristics of the parental cell line NK101, and further enhanced the performance of the SL-K01
  • the NK111 cells have increased cancer cell killing ability significantly compared to SL-K01 cells, and can avoid the inhibition of TGF ⁇ -induced cell killing ability, and thus, it is expected that the NK111 cells can be used as a very effective cancer treatment agent when administered in vivo.
  • the present inventors investigated whether antigen-specific cancer cell killing ability is enhanced when NK111 prepared in Example 8 is transduced with a polynucleotide encoding a chimeric antigen receptor. To this end, the present inventors specifically prepared an EpCAM targeting chimeric antigen receptor gene construct and transduced it into NK111 to prepare NK111-EpCAM-CAR cells and evaluated their function.
  • the present inventors used scFv and modified human immunoglobulin (Fc) domain, CD28 transmembrane domain, DAP10 intracellular activation domain, scFv targeting EpCAM to NK111 cells prepared in Example 8 to produce tumor target NK cell lines.
  • Gene constructs comprising a DAP12 intracellular activation domain and a polynucleotide encoding the anti-EpCAM scFv-CAR protein (SEQ ID NO: 14) consisting of CD3z (SEQ ID NO: 15) were cloned into the transfer vector pWPT for lentiviral preparation.
  • PWPT-EpCAM scFv-CAR was prepared (FIG. 11A).
  • Lenti-X cells cultured for 48 hours or 72 hours for lentiviral production 12 ⁇ g of the transfer vector pWPT-EpCAM scFv-CAR prepared in Example 10-1 and 12 ⁇ g of the packaging plasmid psPAX2 and the outer skin plasmid.
  • 2.4 ⁇ g of pMD2.G was mixed with Lipofectamine Invitrogen, USA to transduce Lenti-X 293T cells (Clontech, USA). After 6 hours of incubation at 37 ° C., the medium was removed and fresh growth medium was added.
  • the lentiviral produced in the medium was collected, centrifuged for 5 minutes (4 ° C., 4000 rpm), the supernatant was collected, and the cell debris was removed using a 0.45 ⁇ m filter (Millipore, USA). It was. To concentrate the lentiviral, Lenti-X concentrator (Clontech, USA) reagent was added to the filtered lentiviral supernatant and stored at 4 ° C. overnight.
  • the lentiviral-concentrator mixture was centrifuged at 4000 rpm for 60 minutes, the supernatant was removed, and the recovered lentivirus in pellet form was diluted with 1-2 mL of culture and stored at -80 ° C until use. .
  • the inventors of the anti-EpCAM scFv-CAR lentivirus prepared in Example 10-2 was infected with NK111 cells using protamine sulfate (Sigma, USA) and incubated for 4 hours at 37 °C. After performing a total of two infection processes, the expression of the chimeric antigen receptor was confirmed by flow cytometry 72 hours after infection, and one week later, the transgene was introduced using a fluorescence activated cell sorter (BD FACSMelody, BD, USA). Only NK111 cells expressing T cells were selectively isolated. Expression of EpCAM-CAR in the isolated and propagated NK111-EpCAM-CAR cell line was confirmed by flow cytometry (FIG. 11B).
  • the present inventors performed the following experiment using NK111 and NK111-EpCAM-CAR cell lines to verify target specific cancer cell killing ability of the NK111-EpCAM-CAR cell line prepared in Example 10-3.
  • EpCAM-positive RMG-1 cells and EpCAM-negative KOC-2S in human-derived ovarian cancer cell lines labeled with CTV (celltracker violet dye) were seeded 1 ml at a concentration of 3x10 5 cells / ml in a 24-well culture dish. .
  • NK111-EpCAM-CAR cells showed significantly higher cell killing ability than ENK-expressing cells RMG-1, compared to the control group NK111, whereas ENKC cell lines showed equivalent cell killing ability. It was confirmed.
  • NK111 according to one embodiment of the present invention is a cell platform suitable for enhancing antigen-specific cancer cell killing ability through the chimeric antigen receptor.
  • Recombinant NK111 cells 1x10 8 to 5x10 12 cells
  • the amount of the above ingredient was prepared per ampoule (2 ml).
  • NK cell line can be used in the production of a medicament for the treatment of cancer.

Abstract

The present invention relates to a novel genetically modified NK cell line and a use thereof and, more specifically, provides: a genetically modified NK cell line into which polynucleotides encoding CD7, CD28, cell membrane-bound IL-15 and a TGFβ receptor, respectively, and an apoptotic gene are transduced into an isolated NK cell line; and a use thereof, such as in a pharmaceutical composition for treating cancer, containing the cell line.

Description

신규 유전자 변형 자연살해 세포주 및 그의 용도New genetically modified natural killer cell lines and uses thereof
본 출원은 2018년 3월 23일자로 출원된 대한민국 특허출원 제2018-0034079 호에 대한 우선권을 주장한다. 상기 특허출원서에 기재된 사항은 본 문서에 참조로 삽입된다.This application claims priority to Korean Patent Application No. 2018-0034079, filed March 23, 2018. The matters described in this patent application are incorporated herein by reference.
본 발명은 신규한 세포주 및 그의 용도에 관한 것으로, 구체적으로는 신규 유전자 변형 자연살해(genetically modified natural killer) 세포주 및 그의 용도에 관한 것이다. The present invention relates to novel cell lines and their uses, and more particularly to novel genetically modified natural killer cell lines and their use.
자연살해세포(이하 'NK 세포'라 함)는 체내에 존재하는 비정상적인 자가세포, 즉 암세포를 살상할 수 있는 능력을 가지고 있다. NK 세포와 세포독성 T 세포 (이하 CTL)의 차이점은 항원 특이성의 유무이다. 항원 특이적 항원수용체를 이용하여 표적세포의 MHC와 항원 펩타이드를 특이적으로 인식하는 세포독성 T세포 (이하 CTL)는 단일한 표적에 대한 반응성이 존재하는 반면, NK 세포의 경우 암세포 표면의 NK 활성화 수용체(Killer cell activation receptor, KAR)와 비활성화 수용체(Killer cell inhibitory receptor, KIR)의 발현 및 표면 MHC I 항원의 부재 등 세포에서 발생하는 다양한 비정상적 변화를 인지하여 세포를 살상할 수 있기 때문에 비교적 넓은 범주의 암세포 살상에 효과가 있다(Min Cheng, 20131, Cellular & Molecular immunology). 특히 NK 세포는 이식편대숙주병을 일으키지 않으면서 백혈병 세포나 암세포를 제거하기 때문에 환자에 대한 투여부작용이 현저히 적다는 점에서 입양전입세포치료(adoptive cell therapy)에 적합한 세포로 각광받고 있다 (Glienke et al., Front. Pharmacol., 6: 21, 2015). 뿐만 아니라 NK 세포는 T 세포와는 달리 면역기억이 존재하지 않으므로 암세포에 의해 활성화 된 후 자체적으로 사멸된다. 따라서 체내에 면역기억을 형성하여 장기간 존재하는 T 세포를 기반으로 한 치료법에 비해 NK 세포를 이용한 항암치료는 그 부작용 가능성이 매우 적다. Natural killer cells (hereinafter referred to as 'NK cells') have the ability to kill abnormal autologous cells, or cancer cells, present in the body. The difference between NK cells and cytotoxic T cells (hereinafter CTL) is the presence or absence of antigen specificity. Cytotoxic T cells (hereinafter CTLs) that specifically recognize MHC and antigen peptides of target cells using antigen specific antigen receptors (hereinafter CTL) have a responsiveness to a single target, whereas for NK cells, NK activation on the surface of cancer cells Relatively broad range because it can kill cells by recognizing various abnormal changes that occur in cells, such as the expression of Killer cell activation receptors (KAR) and KIR (Killer cell inhibitory receptors) and the absence of surface MHC I antigens Of cancer cell death (Min Cheng, 20131, Cellular & Molecular immunology). Since NK cells remove leukemia cells or cancer cells without causing graft-versus-host disease, they have been regarded as suitable cells for adoptive cell therapy in that their side effects are very low (Glienke et. al ., Front. Pharmacol ., 6: 21, 2015). In addition, NK cells, unlike T cells, do not have immune memory, and thus are killed by themselves after being activated by cancer cells. Therefore, anticancer therapy using NK cells has very little possibility of side effects compared to the therapy based on T cells that have formed immune memory in the body for a long time.
그러나, 현재 NK 세포를 이용한 면역세포 치료방식의 경우, 환자의 자가유래 세포나 동종이계의 초도배양 NK 세포(primary NK cell)를 분리, 활성화 및 증폭시켜 치료제를 구축하고 있으나, 얻을 수 있는 세포자원과 증폭량이 한정적이고, 배양 보조세포(feeder cell) 및 다양한 사이토카인을 이용한 생산공정을 이용하여 과정이 복잡하고, 치료제가 가진 배치 간 변동(batch-to-batch variation)의 존재 가능성 등으로 그 한계가 있다. 또한 체외에서 제한된 시간 동안 세포를 증식할 수 있어 유전자 삽입/변형을 통한 효력 증강이 다소 제한적일 수 있다. 이러한 제한점을 극복하기 위한 방법으로는 단일 NK 세포주를 기반으로 한 세포치료제 개발이 유효한 방법일 수 있으며, 이를 통해 세포자원의 제한 극복, 공정의 단순성, 대량생산의 가능성, 치료제의 균질성을 확보할 수 있다. 추가적으로, NK 세포가 효과적인 치료제로 사용되기 위해서는 몇 가지 요소가 추가적으로 필요할 수 있으며, 이는 NK 세포주의 세포살상능 강화, 환자 투여시 추가적인 안전성 확보, 생산시 배양공정의 용이성 확보, 및 환자내 면역억제 환경에 의한 기능 소실 방지 등이 있을 수 있고, 세포주 기반 치료제는 치료유전자를 추가로 도입한 단일세포 기원 세포치료제의 구축이 초도배양 세포 대비 매우 용이하다.However, in the case of immune cell treatment using NK cells, although therapeutic agents are established by isolating, activating, and amplifying primary NK cells of patient-derived cells or allogeneic cells, the cellular resources can be obtained. Over-amplification is limited, the process is complicated by using a feeder cell and a production process using various cytokines, and the limitation due to the possibility of batch-to-batch variation of the therapeutic agent There is. In addition, the cells can be proliferated for a limited time in vitro, thus enhancing the effect through gene insertion / modification may be somewhat limited. In order to overcome these limitations, the development of a cell therapy based on a single NK cell line may be an effective method. Through this, it is possible to overcome the limitation of cellular resources, the simplicity of the process, the possibility of mass production, and the homogeneity of the therapeutic agent. have. In addition, several factors may be necessary for NK cells to be used as an effective therapeutic agent, which enhances cell killing ability of NK cell lines, secures additional safety when administering patients, facilitates the cultivation process during production, and the immunosuppressive environment in patients. It can be prevented by the loss of function, etc., cell line-based therapeutic agent is very easy to construct a single cell-derived cell therapy with an additional therapeutic gene compared to the primary cultured cells.
그러나, 확립된 NK 세포주일지라도 최적의 세포살상능을 나타내는데 필요한 인자의 발현이 결여되어 있는 경우가 종종 있기 때문에, 확립된 NK 세포를 그대로 항암치료제의 유효물질로 사용하는 것은 쉽지 않은 일이다.However, even in established NK cell lines, since expression of a factor necessary for showing optimal cell killing ability is often lacking, it is difficult to use the established NK cells as an effective substance for anticancer drugs.
NK 세포는 암살상 효과를 나타내기 위해 NK 활성화 수용체(NK cell activation receptor, KAR), 세포부착분자(cell adhesion molecule), NK 공동활성화 수용체(NK costimulatory molecule) 등을 필요로 한다. 아울러, 세포주 기반 치료제의 경우 해당 세포주의 기원이 암세포이거나 불멸화하였으므로 환자 내 투입시 종양형성 등의 문제가 발생할 수 있고, 면역활성 기능이 높은 면역세포주의 경우 환자 내에서 예측하지 못한 과활성이 유발될 수 있으므로, 이에 대한 대비가 필요하다. NK cells require NK cell activation receptors (KARs), cell adhesion molecules, NK costimulatory molecules, etc. in order to exhibit assassination effects. In addition, in the case of cell line-based therapeutics, the origin of the cell line may be cancerous or immortalized, and thus, a problem such as tumor formation may occur when introduced into a patient, and an immune cell line having high immune activity may cause unexpected hyperactivity in the patient. This may need to be prepared.
뿐만 아니라, 세포주 생산에 있어, 최소한의 배양보조세포 및 사이토카인 보충제를 이용하는 것이 공정을 단순하게 하며 생산 효율을 증가 시킬 수 있다. In addition, in the production of cell lines, the use of minimal supplemental cells and cytokine supplements can simplify the process and increase production efficiency.
마지막으로, 면역세포의 경우 환자 체내에 존재하는 다양한 면역억제 환경[조절 T 세포(regulatory T cell), 골수유래 억제세포(myeloid derived suppressor cells), 면역억제 사이토카인(immune suppressive cytokine)] 등에 의하여 그 활성 기능이 저해될 수 있다. 따라서, 분리되어 구축된 NK 세포주의 항암 세포살상능을 극대화하고 이의 증식을 향상시키며, 부작용을 최소화시킬 수 있는 유전자 변형 NK 세포주의 확립이 요구되고 있다.Lastly, in the case of immune cells, various immunosuppressive environments (regulatory T cells, myeloid derived suppressor cells, immunosuppressive cytokines) exist in the patient's body. Active function may be inhibited. Therefore, there is a need to establish a genetically modified NK cell line that can maximize the anticancer cell killing ability of the isolated and constructed NK cell line, improve its proliferation, and minimize side effects.
이러한 유전자 변형 NK 세포주로는 Fc 수용체(CD16)를 발현하도록 형질전환된 NK-92 세포가 존재한다(US20060292156A1). Such genetically modified NK cell lines include NK-92 cells transformed to express the Fc receptor (CD16) (US20060292156A1).
그러나, 상기 선행문헌의 유전자 변형 NK 세포주(NK-92-CD16)는 항체에 의한 NK세포의 암세포 살상능(ADCC)만이 증진되었을 뿐, 자체적인 암세포 살상능력은 증가되지 않았고, 세포 증식 및 부작용의 최소화와는 관련이 없다.However, the genetically modified NK cell line (NK-92-CD16) of the prior document only enhanced the cancer cell killing ability (ADCC) of NK cells by the antibody, did not increase its own cancer cell killing ability, and the cell proliferation and side effects of It has nothing to do with minimization.
이에 본 발명의 목적은 NK 세포를 기반으로 세포살상능이 더욱 향상되면서도, 증식이 용이하고 면역과활성화로 인한 부작용을 최소화할 수 있는 유전자 변형 NK 세포주를 제공하는 것이다.Accordingly, an object of the present invention is to provide a genetically modified NK cell line that can be easily proliferated and minimize side effects due to immune and activation while further improving cell killing ability based on NK cells.
본 발명의 또 다른 목적은 상기 유전자 변형 NK 세포주를 유효성분으로 포함하는 암 치료용 약학적 조성물을 제공하는 것이다.Still another object of the present invention is to provide a pharmaceutical composition for treating cancer comprising the genetically modified NK cell line as an active ingredient.
본 발명의 일 관점에 따르면, 하기 특성을 갖는 분리된 NK 세포주에 NK 세포 보조활성화 인자를 암호화하는 폴리뉴클레오타이드가 형질도입되어 상기 NK 세포 보조활성화 인자가 발현되는, 유전자 변형 NK 세포주가 제공된다:According to one aspect of the present invention, there is provided a genetically modified NK cell line in which a polynucleotide encoding an NK cell coactivator is transduced into an isolated NK cell line having the following characteristics such that the NK cell coactivator is expressed:
CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L 및 CD56은 양성; 및CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L and CD56 are positive; And
CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ 및 TCRγδ는 음성.CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ and TCRγδ are negative.
본 발명의 다른 일 관점에 따르면, 상기 유전자 변형 NK 세포주를 유효성분으로 포함하는 암 치료 및 예방용 약학적 조성물이 제공된다.According to another aspect of the invention, there is provided a pharmaceutical composition for the treatment and prevention of cancer comprising the genetically modified NK cell line as an active ingredient.
본 발명의 일 관점에 따르면, 분리된 NK 세포주에 NK 세포 보조활성화 인자, NK 세포 증식 인자, 세포질 도메인 결실 TGFβ 수용체를 각각 암호화하는 폴리뉴클레오타이드 및/또는 세포자살 유전자가 형질도입된 유전자 변형 NK 세포주가 제공된다. According to one aspect of the present invention, a transgenic NK cell line transduced with a polynucleotide encoding a NK cell coactivator, an NK cell proliferation factor, a cytoplasmic domain-deleted TGFβ receptor, and / or an apoptosis gene in an isolated NK cell line Is provided.
본 발명의 다른 일 관점에 따르면, 상기 유전자 변형 NK 세포주를 유효성분으로 포함하는 암 치료 및 예방용 약학적 조성물이 제공된다.According to another aspect of the invention, there is provided a pharmaceutical composition for the treatment and prevention of cancer comprising the genetically modified NK cell line as an active ingredient.
아울러 본 발명의 또 다른 일 관점에 따르면, 상기 유전자 변형 NK 세포주 및 자살유도제를 포함하는 암 치료용 키트가 제공된다.In addition, according to another aspect of the present invention, there is provided a kit for treating cancer comprising the genetically modified NK cell line and suicide inducing agent.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 중 어느 하나의 유전자 변형 NK 세포주 및 선택적으로 자살유도제를 추가로 암에 걸린 개체에 투여하는 단계를 포함하는 상기 암에 걸린 개체의 치료방법이 제공된다.According to another aspect of the invention, the treatment of a subject with cancer comprising the step of administering a therapeutically effective amount of any one of the above genetically modified NK cell lines and optionally suicide inducing agent to the subject with cancer A method is provided.
본 발명의 다른 일 관점에 따르면, 분리된 NK 세포주에 NK 세포 보조활성화 인자, 세포막 결합 IL-15, 및 TGFβ 수용체를 각각 암호화하는 폴리뉴클레오타이드 및 세포자살 유전자가 형질도입되고, 암항원 특이적 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드가 형질도입되어 상기 암항원 특이적 키메라 항원 수용체를 발현하는 유전자 변형 NK 세포주가 제공된다.According to another aspect of the invention, the isolated NK cell line is transduced with polynucleotides and apoptosis genes encoding the NK cell coactivator, cell membrane-bound IL-15, and TGFβ receptor, respectively, cancer antigen specific chimeric antigen A polynucleotide encoding a receptor is transduced to provide a genetically modified NK cell line expressing the cancer antigen specific chimeric antigen receptor.
본 발명의 일 실시예에 따른 유전자 변형 NK 세포주는 종래 보고된 NK 세포주에 비해 세포능식능이 뛰어나 경제성이 매우 높고 모세포주에 비하여 암세포 살상능이 현저하게 개선되었으며, 키메라 항원 수용체를 이용한 암항원 특이적 항암치료를 위한 플랫폼으로도 사용 가능함이 실험적으로 입증되었는 바, 암치료를 위한 세포치료제로 매우 효율적으로 사용될 수 있다.Genetically modified NK cell line according to an embodiment of the present invention is superior to the conventionally reported NK cell line, the economic efficiency is very high, the cancer cell killing ability is significantly improved compared to the parent cell line, cancer antigen specific using chimeric antigen receptor It has been proved experimentally that it can be used as a platform for chemotherapy, and thus it can be used very efficiently as a cell therapy for cancer treatment.
도 1a는 본 발명의 NK101 세포주의 계대에 따른 세포증식 정도를 나타내는 그래프이고, 도 1b는 NK101 세포가 CD3, CD20, 및 CD16 음성이며 CD56 양성인 NK세포임을 확인한 도트 그래프이다. 도 1c는 상기 NK101 세포의 배양시 확인되는 세포형태를 현미경을 이용하여 촬영한 사진이며, 도 1d는 Wright-Giemsa 염색법을 이용하여 NK101 세포의 형태를 촬영한 사진이고, 도 1e는 상기 NK101 세포가 NK세포의 주요 세포 사멸인자인 Perforin(녹색) 및 Granzyme(적색)을 발현함을 형광염색 기법을 통해 확인한 사진이며, 도 1f는 NK101와 MHC class I 음성 세포인 K562의 공배양을 통해 NK101의 암세포 사멸능을 확인한 결과를 나타내는 그래프이다. Figure 1a is a graph showing the degree of cell proliferation according to the passage of the NK101 cell line of the present invention, Figure 1b is a dot graph confirming that NK101 cells are CD3, CD20, and CD16 negative and CD56 positive NK cells. Figure 1c is a photograph taken by using a microscope of the morphology of the NK101 cells when cultured, Figure 1d is a photograph of the shape of the NK101 cells using Wright-Giemsa staining method, Figure 1e is the NK101 cells It is confirmed by the fluorescent staining technique that expresses the major cell death factors of NK cells, Perforin (green) and Granzyme (red), Figure 1f is a cancer cell of NK101 through co-culture of NK101 and K562, MHC class I negative cells This graph shows the result of confirming the killing ability.
도 2a NK101와 NK-92의 IL-2 농도 의존적 세포 성장률 및 민감도를 MTS 분석을 이용하여 비교 분석한 그래프이고, 도 2b는 NK101 및 NK-92의 IL-2 수용체 소단위의 발현도의 차이를 유세포 분석을 이용해 확인한 히스토그램이며, 도 2c는 NK101 및 NK-92의 해동 시점부터 세포증식 및 생존율을 동일 배양조건에서 비교한 결과를 나타내는 그래프이고, 도 2d는 배양적응 후 증식정도 및 배가시간을 비교하여 나타낸 그래프이다. Figure 2a is a graph of comparative analysis of the IL-2 concentration-dependent cell growth rate and sensitivity of NK101 and NK-92 using MTS analysis, Figure 2b is a flow cytometric analysis of the difference in the expression of IL-2 receptor subunits of NK101 and NK-92 Figure 2c is a graph showing the results of comparing the cell proliferation and survival rate from the thawing time of NK101 and NK-92 in the same culture conditions, Figure 2d is a comparison of the growth and doubling time after culture adaptation It is a graph.
도 3a는 NK101 세포에서의 주요 계통 (lineage) 또는 조상 표지자 (progenitor marker) 발현에 대한 유세포 분석 결과를 나타내는 히스토그램이고, 도 3b는 NK101 세포에서의 활성화 수용체 및 비활성화 수용체 발현에 대한 유세포 분석 결과를 나타내는 히스토그램이며, 도 3c는 NK101 세포에서의 세포부착 인자 발현에 대한 유세포 분석 결과를 나타내는 히스토그램이고, 도 3d는 NK101 세포에서의 NK 세포 의존적 세포독성에 관여하는 CD107a, 퍼포린, 그랜자임, FasL 및 TRAIL 발현에 대한 유세포 분석 결과를 나타내는 히스토그램이며, 도 3e는 NK101 세포에서의 사이토카인 수용체 발현에 대한 유세포 분석 결과를 나타내는 히스토그램이고, 도 3f는 NK101 세포에서의 다양한 C-C 케모카인 수용체 및 C-X-C 케모카인 수용체 발현에 대한 유세포 분석 결과를 나타내는 히스토그램이다.Figure 3a is a histogram showing the results of flow cytometry analysis of the main lineage or progenitor marker expression in NK101 cells, Figure 3b shows the flow cytometry results for the expression of activated and inactivated receptors in NK101 cells Histogram, FIG. 3C is a histogram showing the results of flow cytometry analysis of cell adhesion factor expression in NK101 cells, and FIG. 3D is a CD107a, perforin, granzyme, FasL and TRAIL involved in NK cell dependent cytotoxicity in NK101 cells It is a histogram showing the flow cytometry results for expression, Figure 3e is a histogram showing the flow cytometry results for cytokine receptor expression in NK101 cells, Figure 3f is for the expression of various CC chemokine receptors and CXC chemokine receptors in NK101 cells Histogram showing flow cytometry results.
도 4a는 NK101, NK-92 및 초도배양 CD56+ 말초혈액 NK 세포의 CD56 발현을 확인한 유세포 분석 결과를 나타내는 히스토그램이고, 도 4b는 상기 세포들의 CD56 및 CD62L 발현을 확인한 유세포 분석 결과를 나타내는 2차원 등고선 그래프이다. Figure 4a is a histogram showing the results of flow cytometry confirming the CD56 expression of NK101, NK-92 and peripheral culture CD56 + peripheral blood NK cells, Figure 4b is a two-dimensional contour line showing the flow cytometry results confirming the CD56 and CD62L expression of the cells It is a graph.
도 5a는 각각 표기된 사이토카인을 3일간 배양액에 처리한 후 NK101 세포의 증식률을 MTS 분석법으로 확인한 그래프(좌측) 및 NK 활성화 사이토카인인 IFN-γ의 생성을 ELISA로 확인한 그래프(우측)이고, 도 5b는 NK101 세포를 K562 또는 THP-1 암세포주와 24시간 공배양한 후 분비되는 사이토카인을 Multiplex 분석법으로 확인한 결과를 나타내는 그래프이다.5A is a graph confirming the proliferation rate of NK101 cells after treatment with each indicated cytokine in a culture solution for 3 days (left) and the production of NK activated cytokine IFN-γ by ELISA (right), FIG. 5b is a graph showing the results obtained by multiplex analysis of cytokines secreted after NK101 cells were co-cultured with K562 or THP-1 cancer cell lines for 24 hours.
도 6a는 다양한 암세포주와 NK101 세포를 다양한 세포비율로 24시간 공배양하여 암세포의 사멸도를 확인한 결과를 나타내는 그래프이고, 도 6b는 NK101 세포에 각각 표기된 표면항체에 대한 중화항체를 처리하고 급성골수성백혈병 세포주 THP-1과 4:1 비율로 24시간 공배양한 후 세포사멸도를 측정한 그래프이며, 도 6c는 NK101 세포에 각각 표기된 표면항체에 대한 중화항체를 처리하고 만성골수성백혈병 세포주 K562와 4:1 비율로 24시간 공배양한 후 세포사멸도를 측정한 결과를 나타내는 그래프이고, 도 6d는 NK101 세포에 각각 표기된 표면항체에 대한 중화항체를 처리하고 급성림프구성백혈병 세포주 Jurkat과 4:1 비율로 24시간 공배양한 후 세포사멸도를 측정한 결과를 나타내는 그래프이며, 도 6e는 NK101에 각각 DNAM-1, CD54 혹은 DNAM-1 및 CD54 중화항체를 처리한 후, 각 표지자의 동시 중화에 의한 상승적 저해작용(synergistic inhibition)을 확인한 결과를 나타내는 그래프이다.Figure 6a is a graph showing the results of confirming the killing of cancer cells by co-culture of various cancer cell lines and NK101 cells at various cell ratios for 24 hours, Figure 6b is acute myeloid treatment of the neutralizing antibodies to the surface antibodies respectively marked on NK101 cells The cell death was measured after 24 hours co-culture with leukemia cell line THP-1 and 4: 1 ratio, Figure 6c is treated with neutralizing antibodies to the surface antibody labeled on NK101 cells and chronic myeloid leukemia cell line K562 and 4 A graph showing the result of measuring apoptosis after co-culture at 1: 1 ratio for 24 hours, and FIG. 6D shows a neutral lymphocytic leukemia cell line Jurkat and 4: 1 ratio treated with neutralizing antibodies to surface antibodies labeled on NK101 cells, respectively. After 24 hours co-culture with a graph showing the results of measuring apoptosis, Figure 6e is treated with DNAM-1, CD54 or DNAM-1 and CD54 neutralizing antibodies to NK101, respectively, It is a graph showing the result of confirming the synergistic inhibition by the simultaneous neutralization of markers.
도 7a는 NK101 및 기존에 구축된 세포주 KHYG-1, 및 NK-92에서의 CD7, CD28 보조자극인자의 발현 양상을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이고, 도 7b는 NK101 세포의 암세포 사멸 효과 증진을 위해 도입된 유전자 컨스트럭트의 개요도이며, 도 7c는 상기 도 7b에 도시된 유전자 컨스트럭트가 도입된 NK101 세포(SL-K01로 명명)에서의 CD7, CD28 발현을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이고, 도 7d는 SL-K01 세포에서의 CD::UPRT 발현을 역전사 PCR을 통해 확인한 결과를 나타내는 사진이다.Figure 7a is a histogram showing the results of confirming the expression patterns of CD7, CD28 costimulatory factors in NK101 and the established cell lines KHYG-1, and NK-92 through flow cytometry, Figure 7b is a cancer cell killing effect of NK101 cells Figure 7c is a schematic diagram of the gene construct introduced for enhancement, Figure 7b is a flow cytometric analysis of CD7, CD28 expression in the NK101 cells (named SL-K01) introduced with the gene construct shown in FIG. It is a histogram showing a result, and FIG. 7D is a photograph showing the result confirmed by reverse transcription PCR of CD :: UPRT expression in SL-K01 cells.
도 8a는 HDLM-2, IM-9, JEKO-1 및 K562 암세포를 NK101 또는 SL-K01 세포와 4:1 비율로 24시간 공배양한 후 암세포 사멸빈도를 유세포 분석을 통해 측정한 결과를 나타내는 그래프이고, 도 8b는 다양한 농도의 5-FC를 NK101 또는 SL-K01 세포에 48시간 처리한 뒤, 세포 성장률을 MTS 분석을 통하여 확인한 결과를 나타내는 그래프이며, 도 8c는 IM-9 세포주와 NK101 또는 SL-K01 세포를 2:1, 1:1 또는 0.5:1 비율로 공배양 시, 5-FC 유무에 따른 IM-9 암세포 사멸 빈도를 유세포 분석을 통해 측정한 결과를 나타내는 그래프이다. Figure 8a is a graph showing the results of measuring cancer cell death frequency through flow cytometry after co-culture of HDLM-2, IM-9, JEKO-1 and K562 cancer cells with NK101 or SL-K01 cells at 4: 1 ratio for 24 hours 8B is a graph showing the results obtained after 48 hours of treatment with various concentrations of 5-FC in NK101 or SL-K01 cells through MTS analysis, and FIG. 8C is an IM-9 cell line and NK101 or SL. It is a graph showing the result of measuring the frequency of IM-9 cancer cell death by flow cytometry when 5-K01 cells are co-cultured in a 2: 1, 1: 1 or 0.5: 1 ratio with or without 5-FC.
도 9a는 SL-K01 세포의 추가적 암세포 사멸 효과 증진 및 면역억제인자 TGF-β에 대한 저항성 유도를 위해 도입된 유전자 컨스트럭트의 개요도이고, 도 9b는 SL-K01 및 상기 도 9a에 도시된 유전자 컨스트럭트가 도입된 SL-K01 세포(NK111로 명명) 표면에서의 IL-15 발현을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이며, 도 9c는 SL-K01 및 NK111 세포에서의 TGFβRIIΔcyto 발현을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이다. Figure 9a is a schematic diagram of the gene constructs introduced for the enhancement of additional cancer cell killing effect of SL-K01 cells and the induction of resistance to the immunosuppressive factor TGF-β, Figure 9b is a gene shown in SL-K01 and Figure 9a A histogram showing the results of confirming IL-15 expression on the surface of the construct-induced SL-K01 cells (named NK111) through flow cytometry, and FIG. 9c shows the flow cytometry of TGFβRIIΔcyto expression in SL-K01 and NK111 cells. This is a histogram showing the result of checking through.
도 10a는 SL-K01 및 NK111 세포의 배양 시, IL-2 유무에 따른 세포수 증식수준(population doubling level)을 나타낸 그래프이고, 도 10b는 NK101, SL-K01 및 NK111 세포에서의 NKG2D 발현을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이며, 도 10c는 IM-9 세포주와 SL-K01 또는 NK111 세포를 2:1, 1:1, 또는 0.5:1 비율로 공배양 시, 5-FC 유무에 따른 IM-9 암세포의 사멸빈도를 유세포 분석을 통해 측정한 결과를 나타내는 그래프이고, 도 10d는 OVCAR-3 또는 THP-1 세포주를 SL-K01 및 NK111 세포와 공배양시, 다양한 농도의 TGFβ1을 처리한 후, 암세포 사멸능에 미치는 영향을 나타낸 그래프이다.FIG. 10A is a graph showing the population doubling level according to the presence or absence of IL-2 in the culture of SL-K01 and NK111 cells, and FIG. 10B is a flow chart of NKG2D expression in NK101, SL-K01 and NK111 cells. The histogram showing the results confirmed through the analysis, FIG. 10C shows the IM according to the presence or absence of 5-FC when co-culture of the IM-9 cell line and SL-K01 or NK111 cells in a 2: 1, 1: 1, or 0.5: 1 ratio. -9 is a graph showing the result of measuring the death frequency of cancer cells through flow cytometry, Figure 10d is co-culture of OVCAR-3 or THP-1 cell line with SL-K01 and NK111 cells, after treatment with various concentrations of TGFβ1 , Is a graph showing the effect on cancer cell killing ability.
도 11a는 본 발명의 일 실시예에 따른 NK111 세포의 EpCAM 특이적 암세포 살상능을 증진시키기 위해 도입된 키메라 항원 수용체 유전자 컨스트럭트의 개요도이고, 도 11b는 NK111에 상기 도 11a에 도시된 유전자 컨스트럭트가 도입된 NK111-EpCAM-CAR 세포 표면에서 키메라 항원 수용체 발현 여부를 확인하기 위한 유세포 분석 결과를 나타내는 히스토그램이며, 도 11c는 인간 난소암 세포주인 RMG-1(좌측) 및 KOC-2S(우측)의 EpCAM 항원의 발현양상을 분석한 결과를 나타내는 히스토그램(상단) 및 상기 암세포와 NK101, NK111, 또는 NK111-EpCAM-CAR의 공배양시 암세포 사멸 정도를 나타낸 그래프이며, 도 11d는 상기 도 11c의 공배양 시료의 배양상등액을 수거하여 IFN-γ 및 그랜자임 B의 수준을 분석한 ELISA 결과를 나타내낸 그래프이다.FIG. 11A is a schematic diagram of a chimeric antigen receptor gene construct introduced to enhance EpCAM specific cancer cell killing ability of NK111 cells according to one embodiment of the present invention, and FIG. 11B is a gene construct shown in FIG. 11A in NK111. It is a histogram showing the result of the flow cytometry for confirming the expression of the chimeric antigen receptor on the surface of the NK111-EpCAM-CAR cell introduced by the truck, Figure 11c is a human ovarian cancer cell line RMG-1 (left) and KOC-2S (right) ) Is a graph showing the histogram showing the results of analyzing the expression patterns of EpCAM antigen (top) and the degree of cancer cell death during co-culture of the cancer cells with NK101, NK111, or NK111-EpCAM-CAR, and FIG. The culture supernatant of the co-culture sample was collected and the graph showing the result of ELISA analyzing the level of IFN-γ and granzyme B.
용어의 정의:Definition of Terms:
본 문서에서 사용되는 용어 "CAR 컨스트럭트"는 "키메라 항원 수용체(chimeric antigen receptor) 컨스트럭트"의 약어로, 통상적으로 항원 인식부위로 리간드 또는 scFv, sdAb와 같은 단일쇄 기반의 항체 유사체-세포막 통과 도메인-보조자극인자-세포내 신호전달 도메인으로 구성된 합성 단백질로서 T 세포 등 면역세포에 형질도입되어 암세포 특이적인 항원을 인식하여 CAR 컨스트럭트를 발현하는 면역세포의 이들 암세포에 대한 항암 활성을 향상시키는 것으로 잘 알려져 있다.As used herein, the term “CAR construct” is an abbreviation for “chimeric antigen receptor construct” and is typically a single chain-based antibody analogue such as a ligand or scFv, sdAb as an antigen recognition site. Anti-cancer activity against immune cells of immune cells expressing CAR constructs by transducing immune cells such as T cells and expressing cancer cell-specific antigens as a synthetic protein composed of a cell membrane transmembrane domain-co-stimulatory factor-intracellular signaling domain It is well known to improve.
본 문서에서 사용되는 용어 "scFv"는 "single chain variable fragment"의 약어로서 실제 항체의 단편은 아니며, 항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 약 25 a.a. 크기의 링커 펩타이드로 연결하여 제조한 일종의 융합단백질로서 고유의 항체 단편이 아님에도 불구하고 항원 결합능을 지닌 것으로 알려지고 있다(Glockshuber et al., Biochem. 29(6): 1362-1367, 1990).As used herein, the term "scFv" is an abbreviation for "single chain variable fragment" and is not a fragment of an actual antibody. The linker is about 25 aa in size for the heavy chain variable region (V H ) and the light chain variable region (V L ). It is a kind of fusion protein prepared by linking with peptides and is known to have antigen binding ability despite not being an inherent antibody fragment (Glockshuber et al ., Biochem . 29 (6): 1362-1367, 1990).
본 문서에서 사용되는 용어 "sdAb(single domain antibody)"는 나노바디(nanobody)라고 지칭되며, 항체의 단일 가변영역 단편으로 구성된 항체 단편이다. 주로 중쇄로부터 유래한 sdAb가 사용되나, 경쇄로부터 유래한 단일 가변영역 단편 역시 항원에 대하여 특이적 결합이 되는 것으로 보고되고 있다.The term "sdAb (single domain antibody)" as used herein is referred to as a nanobody and is an antibody fragment consisting of a single variable region fragment of an antibody. Although sdAbs mainly derived from heavy chains are used, single variable region fragments derived from light chains have also been reported to have specific binding to antigens.
본 문서에서 사용되는 "항체 유사체(antibody mimetic)"는 두 개의 중쇄 및 두 개의 경쇄가 이종사량체의 4차구조를 형성하여 기능을 발휘하는 통상의 전장 항체와 달리, 항원 결합능을 유지하는 최소단위를 포함하는 단편(예컨대, Fab, F(ab')2, Fab' 또는 중쇄 및 경쇄의 가변영역을 링커로 연결한 인위적 단편인 단일쇄 가변 단편(single-chain variable fragment, scFv), 경쇄가 없이 중쇄만으로 구성되는 낙타과 또는 연골어류 유래의 항체 단편(VHH, VNAR 등) 또는 nanobody, monobody, 가변 림프구 수용체(VLR) 등 비항체 유래의 단백질 스캐폴드로부터 제조되는 항체 유사단백질을 포함하는 개념이다.As used herein, "antibody mimetic" is the smallest unit that maintains antigen binding ability, unlike conventional full-length antibodies in which two heavy and two light chains function by forming a quaternary structure of heterotetramers. Fragments (eg, Fab, F (ab ') 2 , Fab' or single-chain variable fragment (scFv), which is an artificial fragment linking the variable regions of the heavy and light chains with a linker, without the light chain Concepts include antibody-like proteins made from camelaceae cartilage-derived antibody fragments (V H H, V NAR, etc.) consisting of heavy chains only, or protein scaffolds derived from non-antibodies such as nanobody, monobody, variable lymphocyte receptor (VLR) to be.
본 문서에서 사용되는 용어 "보조자극 도메인(costimulatory domain)"은 T/NK 활성화를 보조하는 면역관련 단백질인 보조자극 인자(costimulatory factor)의 막통과 도메인 및 세포질 도메인(cytoplasmic domain)을 의미한다. 이러한 보조자극 도메인은 CD28, ICOS(inducible costimulator), CTLA4(cytotoxic T lymphocyte associated protein 4), PD1(programmed cell death protein 1), BTLA(B and T lymphocyte associated protein), DR3(death receptor 3), 4-1BB, CD2, CD7, CD40, CD30, CD27, SLAM(signaling lymphocyte activation molecule), 2B4(CD244), NKp30, NKp44, NKp46, NKp80, NKG2D(natural-killer group 2, member D), DAP12(DNAX-activating protein 12), DAP10, DNAM-1, NTB-A, TIM1(T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3(lymphocyte activation gene 3), B7-1, B7-H1, GITR(glucocorticoid-induced TNFR family related protein), HVEM(herpesvirus entry mediator) 또는 OX40L[ligand for CD134(OX40), CD252]의 세포질 도메인 또는 이들 중 둘 이상의 연결체일 수 있다.As used herein, the term "costimulatory domain" refers to the transmembrane domain and cytoplasmic domain of costimulatory factor, an immune-related protein that aids T / NK activation. These costimulatory domains are CD28, inducible costimulator (ICOS), cytotoxic T lymphocyte associated protein 4 (CTLA4), programmed cell death protein 1 (PD1), B and T lymphocyte associated protein (BTLA), death receptor 3 (DR3), 4 -1BB, CD2, CD7, CD40, CD30, CD27, signaling lymphocyte activation molecule (SLAM), 2B4 (CD244), NKp30, NKp44, NKp46, NKp80, natural-killer group 2, member D), DAP12 (DNAX- activating protein 12), DAP10, DNAM-1, NTB-A, T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3 (lymphocyte activation gene 3), B7-1 , B7-H1, glucocorticoid-induced TNFR family related protein (GITR), herpesvirus entry mediator (HVEM) or cytoplasmic domain of OX40L [ligand for CD134 (OX40), CD252], or two or more of these.
본 문서에서 사용되는 용어 "세포내 신호전달 도메인"은 CAR 컨스트럭트에서 항원인식부위가 암항원과 특이적으로 결합하였을 때, 면역세포의 활성화를 유도하는 신호를 생성시키는 도메인으로 T 세포 수용체(TCR)의 CD3ξ 도메인 등이 알려져 있다. 상기 CD3ξ 도메인 외에 CD16, NKp30, NKp44, NKp46, NKp80, DAP10, DAP12 등을 사용하는 것도 가능하다.As used herein, the term "intracellular signaling domain" refers to a domain that generates signals that induce activation of immune cells when antigen recognition sites specifically bind to cancer antigens in CAR constructs. TCR) CD3ξ domain and the like are known. In addition to the CD3ξ domain, it is also possible to use CD16, NKp30, NKp44, NKp46, NKp80, DAP10, DAP12 and the like.
본 문서에서 사용되는 용어 "유전자 변형(genetically modified)"이라는 용어는 숙주세포, 또는 선행종(predecessors)/모종(parents) 중 하나로 도입된 본 발명의 일 실시예에 따른 폴리뉴클레오타이드 또는 벡터를 숙주세포가 자신의 게놈 외에 포함하는 것을 의미한다. 아울러, 본 발명의 일 실시예에 따른 폴리뉴클레오타이드 또는 벡터는 게놈 외부의 독립적 분자, 바람직하게는 복제할 수 있는 분자로서 유전적으로 변형된 숙주세포 내에 존재할 수 있거나, 또는 숙주 면역세포의 게놈으로 안정적으로 삽입될 수 있다.The term "genetically modified" as used herein refers to a host cell or host cell or polynucleotide or vector according to one embodiment of the present invention introduced into one of the predecessors / parents. Means to include in addition to their genome. In addition, the polynucleotide or vector according to an embodiment of the present invention may exist in a genetically modified host cell as an independent molecule, preferably a replicable molecule outside the genome, or stably into the genome of the host immune cell. Can be inserted.
본 문서에서 사용되는 용어 "세포자살 유전자(cell suicide gene)"는 세포독성을 유발하거나 또는 세포사멸 기전을 촉발시킴으로써 해당 유전자가 발현되는 세포가 사멸하도록 유도하는 유전자를 의미한다. 특히 유전자 발현 자체로는 세포사멸이 촉발되지 않으나 특정 전구약물(프로드러그, prodrug)을 처리시 세포자살 유전자에 의해 전구약물이 대사됨으로써 생성되는 대사산물이 세포독성 또는 세포사멸 기전을 촉발함으로써 세포를 사멸에 이르게 할 수 있다. 이러한 세포자살 유전자들에는 간시클로비르를 자살 유도신호로 사용하는 헤르페스 단순포진 바이러스 티미딘 인산화 유전자(HSV TK), 6-메톡시퓨린 아라비노뉴클레오사이드(6-methoxypurine arabinonucleoside)를 자살 유도신호로 사용하는 바리셀라 조스터 바이러스 티미딘 인산화효소(VZV TK), 5-플루오로시토신(5-FC)를 자살 유도신호로 사용하는 시토신 디아미네이즈 및 우라실 포스포리보실전이효소(UPRT), 이리노테칸(CPT-11)을 자살 유도신호로 사용하는 카르복실 에스터라제, 5(아지리딘-1-일)-2,4-디니트로벤자마이드(CB1954)를 자살 유도신호로 사용하는 니트로리덕테이즈, 4-[(2-클로로에틸)(2-메실록시에틸)아미노]벤조일-엘-글루탐산(CMDA)을 자살 유도신호로 사용하는 카르복시펩티데이즈 G2, 분자간 이량화 유도제(dimerizer)를 자살 유도신호로 사용하는 유도성 카스페이즈 9(iCas9)이 보고된 바 있다. As used herein, the term "cell suicide gene" refers to a gene that induces cytotoxicity or triggers apoptosis mechanisms to induce the death of cells in which the gene is expressed. In particular, gene expression itself does not trigger apoptosis, but metabolites produced by metabolizing prodrugs by apoptotic genes when treating certain prodrugs (prodrugs) trigger cell cytotoxicity or apoptosis mechanisms. It can lead to death. These apoptosis genes include the herpes herpes simplex virus thymidine phosphorylation gene (HSV TK) and 6-methoxypurine arabinonucleoside, which use gancyclovir as a suicide induction signal. Cytosine deminase and uracil phosphoribosyltransferase (UPRT), irinotecan (Varicela zoster virus thymidine kinase (VZV TK), 5-fluorocytosine (5-FC) used as a suicide induction signal Nitrodeductase using carboxyl esterase, 5 (aziridin-1-yl) -2,4-dinitrobenzamide (CB1954), using CPT-11) as a suicide induction signal Suicide induction signal using 4-[(2-chloroethyl) (2-mesyloxyethyl) amino] benzoyl-l-glutamic acid (CMDA) as a suicide induction signal, carboxypeptides G2, an intermolecular dimerization dimerizer Inductive casing Izu is a 9 (iCas9) are reported.
발명의 상세한 설명:Detailed description of the invention:
본 발명의 일 관점에 따르면, 하기 특성을 갖는 분리된 NK 세포주에 NK 세포 보조활성화 인자를 암호화하는 폴리뉴클레오타이드가 형질도입되어 상기 NK 세포 보조활성화 인자가 발현되는, 유전자 변형 NK 세포주가 제공된다: According to one aspect of the present invention, there is provided a genetically modified NK cell line in which a polynucleotide encoding an NK cell coactivator is transduced into an isolated NK cell line having the following characteristics such that the NK cell coactivator is expressed:
CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L 및 CD56은 양성; 및CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L and CD56 are positive; And
CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ 및 TCRγδ는 음성.CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ and TCRγδ are negative.
상기 유전자 변형 NK 세포주에 있어서, 상기 분리된 NK 세포주는 수탁번호 KCTC 13305BP로 기탁된 NK101 세포주일 수 있다.In the genetically modified NK cell line, the isolated NK cell line may be an NK101 cell line deposited with accession number KCTC 13305BP.
상기 유전자 변형 NK 세포주에 있어서, 상기 NK 세포 보조활성화 인자는 Ly49, NCR(natural cytotoxicity receptor), CD7, CD16 및 CD28로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있다.In the genetically modified NK cell line, the NK cell coactivator may be any one or more selected from the group consisting of Ly49, natural cytotoxicity receptor (NCR), CD7, CD16, and CD28.
상기 유전자 변형 NK 세포주에 있어서, 상기 NK 세포 보조활성화 인자는 CD7 및/또는 CD28일 수 있다.In the genetically modified NK cell line, the NK cell coactivator may be CD7 and / or CD28.
상기 유전자 변형 NK 세포주에 있어서, 적어도 하나 이상의 NK 세포 증식 인자를 암호화하는 폴리뉴클레오타이드가 추가로 형질도입될 수 있다.In the genetically modified NK cell line, polynucleotides encoding at least one or more NK cell proliferation factors may be further transduced.
상기 유전자 변형 NK 세포주에 있어서, 상기 NK 세포 증식 인자는 IL-2, IL-12, IL-15, IL-18 및 IL-21로 구성되는 군으로부터 선택되는 적어도 하나 이상의 사이토카인 또는 상기 사이토카인의 변이체일 수 있다.In the genetically modified NK cell line, the NK cell proliferation factor is at least one cytokine or cytokine selected from the group consisting of IL-2, IL-12, IL-15, IL-18 and IL-21. It may be a variant.
상기 유전자 변형 NK 세포주에 있어서, 상기 IL-15는 막결합 IL-15일 수 있다.In the genetically modified NK cell line, the IL-15 may be membrane-bound IL-15.
상기 유전자 변형 NK 세포주에 있어서, 세포자살 유전자가 추가로 형질도입될 수 있다.In the genetically modified NK cell line, apoptotic genes may be further transduced.
상기 유전자 변형 NK 세포주에 있어서, 상기 세포자살 유전자는 우라실 포스포리보실전이효소(UPRT) 유전자, 헤르페스 단순포진 바이러스 티미딘 인산화 유전자(HSV TK), 바리셀라 조스터 바이러스 티미딘 인산화효소(VZV TK) 유전자, 시토신 디아미네이즈 유전자, 카르복실 에스터레이즈 유전자, 니트로리덕테이즈 유전자, 카르복시펩티데이즈 G2 유전자, 또는 유도성 카스페이즈 9(iCas9)유전자일 수 있다.In the genetically modified NK cell line, the apoptosis gene is a uracil phosphoribosyltransferase (UPRT) gene, herpes simplex virus thymidine phosphorylation gene (HSV TK), varicella zoster virus thymidine kinase (VZV TK) Gene, cytosine deminase gene, carboxyl esterase gene, nitroreductase gene, carboxypeptide G2 gene, or inducible caspase 9 (iCas9) gene.
상기 유전자 변형 NK 세포주에 있어서, 세포질 도메인 결실 TGFβ 수용체를 암호화하는 폴리뉴클레오타이드가 추가로 형질도입될 수 있다.In such genetically modified NK cell lines, polynucleotides encoding cytoplasmic domain deleted TGFβ receptors may be further transduced.
상기 유전자 변형 NK 세포주에 있어서, 상기 세포질 도메인 결실 TGFβ 수용체는 세포질 도메인 결실 TGFβ 수용체II일 수 있다.In the genetically modified NK cell line, the cytoplasmic domain deleted TGFβ receptor may be cytoplasmic domain deleted TGFβ receptor II.
상기 유전자 변형 NK 세포주에 있어서, 암항원을 특이적으로 인식하는 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드가 추가로 형질도입될 수 있다.In the genetically modified NK cell line, a polynucleotide encoding a chimeric antigen receptor that specifically recognizes a cancer antigen may be further transduced.
상기 유전자 변형 NK 세포주에 있어서, 상기 암항원은 CD19, CD22, PSA(prostate specific antigen), CEA(carcinoembryonic antigen), CA-125, mucin 1, AFP(alphafetoprotein), ETA(epithelial tumor antigen), 티로시네이즈, CD52, PD-L1(programmed death-ligand 1), CTLA4(cytotoxic T-lymphocyte-associated protein 4), CD20, MAGE(melanoma-associated antigen), FAP(fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13Rα2 또는 EpCAM(epithelial cell adhesion molecule)일 수 있다.In the genetically modified NK cell line, the cancer antigen is CD19, CD22, prostate specific antigen (PSA), carcinoembryonic antigen (CEA), CA-125, mucin 1, alphafetoprotein (AFP), epipithelial tumor antigen (ETA), tyrosine Naese, CD52, PD-L1 (programmed death-ligand 1), CTLA4 (cytotoxic T-lymphocyte-associated protein 4), CD20, MAGE (melanoma-associated antigen), FAP (fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13Rα2 or an epithelial cell adhesion molecule (EpCAM).
상기 유전자 변형 NK 세포주에 있어서, 상기 키메라 항원 수용체는 암항원에 특이적으로 결합하는 리간드 또는 항체유사체-막통과 도메인-보조자극인자-세포내 신호전달 도메인을 포함하는 융합단백질일 수 있다.In the genetically modified NK cell line, the chimeric antigen receptor may be a fusion protein comprising a ligand or antibody analog-transmembrane domain-co-stimulatory factor-cellular signaling domain that specifically binds to cancer antigen.
상기 유전자 변형 NK 세포주에 있어서, 상기 항체유사체는 scFv, sdAb, 나노바디, VHH, VNAR, VLR, 또는 모노바디일 수 있다.In the genetically modified NK cell line, the antibody analog may be scFv, sdAb, nanobody, V H H, V NAR , VLR, or monobody.
상기 유전자 변형 NK 세포주에 있어서, 상기 보조자극인자는 CD28, ICOS(inducible costimulator), CTLA4(cytotoxic T lymphocyte associated protein 4), PD1(programmed cell death protein 1), BTLA(B and T lymphocyte associated protein), DR3(death receptor 3), 4-1BB, CD2, CD7, CD40, CD30, CD27, SLAM(signaling lymphocyte activation molecule), 2B4(CD244), NKp30, NKp44, NKp46, NKp80, NKG2D(natural-killer group 2, member D)/DAP12(DNAX-activating protein 12), DAP10, DNAM-1, NTB-A, TIM1(T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3(lymphocyte activation gene 3), B7-1, B7-H1, GITR(glucocorticoid-induced TNFR family related protein), HVEM(herpesvirus entry mediator) 또는 OX40L[ligand for CD134(OX40), CD252]의 세포질 도메인 또는 이들 중 둘 이상의 연결체일 수 있다.In the genetically modified NK cell line, the costimulatory factors are CD28, inducible costimulator (ICOS), cytotoxic T lymphocyte associated protein 4 (CTLA4), programmed cell death protein 1 (PD1), B and T lymphocyte associated protein (BTLA), Death receptor 3 (DR3), 4-1BB, CD2, CD7, CD40, CD30, CD27, signaling lymphocyte activation molecule (SLAM), 2B4 (CD244), NKp30, NKp44, NKp46, NKp80, NKG2D (natural-killer group 2, member D) / DAP12 (DNAX-activating protein 12), DAP10, DNAM-1, NTB-A, TIM1 (T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3 (lymphocyte activation gene 3), B7-1, B7-H1, glucocorticoid-induced TNFR family related protein (GITR), herpesvirus entry mediator (HVEM) or cytoplasmic domain of ligand for CD134 (OX40), CD252] or two or more of these It may be a linking body.
상기 유전자 변형 NK 세포주에 있어서, 상기 세포내 신호전달 도메인은 T 세포 수용체의 CD3ξ 도메인, CD16, NKp30, NKp44, NKp46, NKp80, DAP10, 또는 DAP12일 수 있다.In the genetically modified NK cell line, the intracellular signaling domain may be a CD3ξ domain, a CD16, NKp30, NKp44, NKp46, NKp80, DAP10, or DAP12 of a T cell receptor.
상기 유전자 변형 NK 세포주에 있어서, 필요에 따라 하나 또는 둘 이상의 유전자가 제거될 수 있다. 상기 유전자는 환자의 유전자형에 따라서 결정될 수 있는데, 환자에게 투여시 과도한 면역반응을 유도함으로써 부작용을 일으키거나 투여된 세포의 활성을 저해할 수 있는 유전자일 수 있다. 이러한 유전자의 제거에는 TALEN, 또는 CRISPR와 같은 게놈 편집 도구가 사용될 수 있다.In the genetically modified NK cell line, one or more genes may be removed as necessary. The gene may be determined according to the genotype of the patient, and may be a gene capable of causing side effects or inhibiting the activity of the administered cells by inducing an excessive immune response upon administration to the patient. Genome editing tools such as TALEN or CRISPR can be used to remove these genes.
본 발명의 다른 일 관점에 따르면, 상기 중 어느 하나의 유전자 변형 NK 세포주를 유효성분으로 포함하는 암 예방 및 치료용 약학적 조성물이 제공된다.According to another aspect of the invention, there is provided a pharmaceutical composition for preventing and treating cancer comprising any one of the above genetically modified NK cell line as an active ingredient.
본 발명의 다른 일 관점에 따르면, 상기 중 어느 하나의 유전자 변형 NK 세포주 및 자살유도제를 포함하는 암 치료용 키트가 제공된다.According to another aspect of the present invention, there is provided a cancer treatment kit comprising any one of the above genetically modified NK cell line and suicide inducing agent.
상기 암 치료용 키트에 있어서, 상기 자살유도제는 상기 세포자살 유전자가 HSV TK 또는 VZV TK인 경우에는 각각 간시클로비르(gancyclovir) 또는 6-메톡시퓨린 아라비노뉴클레오사이드(6-methoxypurine arabinonucleoside), 상기 세포자살 유전자가 우라실 포스포리보실 전이효소(UPRT) 또는 시토신 디아미네이즈인 경우 5-플루오로시토신(5-FC), 상기 세포자살 유전자가 카르복실 에스터라제인 경우 이리노테칸(CPT-11), 상기 세포자살 유전자가 니트로리덕테이즈인 경우에는 5(아지리딘-1-일)-2,4-디니트로벤자마이드(CB1954), 상기 세포자살 유전자가 카르복시펩티데이즈 G2인 경우에는 4-[(2-클로로에틸)(2-메실록시에틸)아미노]벤조일-엘-글루탐산(CMDA), 상기 세포자살 유전자가 iCas9일 경우 iCas9 이량화제(dimerizer)일 수 있다.In the cancer treatment kit, the suicide inducing agent is gancyclovir or 6-methoxypurine arabinonucleoside, if the apoptosis gene is HSV TK or VZV TK, respectively. 5-fluorocytosine (5-FC) when the apoptosis gene is uracil phosphoribosyl transferase (UPRT) or cytosine deminase, irinotecan (CPT-11) when the apoptosis gene is carboxyl esterase, 5 (aziridin-1-yl) -2,4-dinitrobenzamide (CB1954) when the apoptosis gene is nitroreductase, and 4- [when the apoptosis gene is carboxypeptide G2. (2-chloroethyl) (2-mesyloxyethyl) amino] benzoyl-l-glutamic acid (CMDA), iCas9 dimerizer when the apoptosis gene is iCas9.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 중 어느 하나의 유전자 변형 NK 세포주 및 선택적으로 자살유도제를 추가로 암에 걸린 개체에 투여하는 단계를 포함하는 상기 개체의 암 치료방법이 제공된다.According to another aspect of the invention, there is provided a method for treating cancer in a subject comprising administering to a subject with cancer a therapeutically effective amount of any one of the above genetically modified NK cell lines and optionally suicide inducing agent. Is provided.
본 발명의 다른 일 관점에 따르면, 분리된 NK 세포주에 NK 세포 보조활성화 인자, NK 세포 증식 인자, 세포질 도메인 결실 TGFβ 수용체를 각각 암호화하는 폴리뉴클레오타이드 및 세포자살 유전자가 형질도입된 유전자 변형 NK 세포주가 제공된다. According to another aspect of the present invention, there is provided a genetically modified NK cell line transduced with a polynucleotide and an apoptotic gene encoding the NK cell coactivator, NK cell proliferation factor, cytoplasmic domain deletion TGFβ receptor, respectively, to an isolated NK cell line do.
상기 유전자 변형 NK 세포주에 있어서, 상기 분리된 NK 세포주는 하기의 특성을 가질 수 있다:In the genetically modified NK cell line, the isolated NK cell line may have the following characteristics:
CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L, 및 CD56은 양성; 및CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L, and CD56 are positive; And
CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ 및 TCRγδ는 음성.CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ and TCRγδ are negative.
상기 유전자 변형 NK 세포주에 있어서, 상기 분리된 NK 세포주는 수탁번호 KCTC 13305BP로 기탁된 NK101 세포주일 수 있다.In the genetically modified NK cell line, the isolated NK cell line may be an NK101 cell line deposited with accession number KCTC 13305BP.
상기 유전자 변형 NK 세포주에 있어서, 상기 NK 세포 보조활성화 인자는 Ly49, NCR(natural cytotoxicity receptor), CD7, CD16 및 CD28로 구성되는 군으로부터 선택되는 일 수 있다. 바람직하게는, 상기 NK 세포 보조활성화 인자는 CD7 및/또는 CD28일 수 있다.In the genetically modified NK cell line, the NK cell coactivator may be selected from the group consisting of Ly49, natural cytotoxicity receptor (NCR), CD7, CD16, and CD28. Preferably, the NK cell coactivator may be CD7 and / or CD28.
상기 유전자 변형 NK 세포주에 있어서, 상기 NK 세포 증식 인자는 IL-2, IL-12, IL-15, IL-18 및 IL-21로 구성되는 군으로부터 선택되는 적어도 하나 이상의 사이토카인 또는 상기 사이토카인의 변이체일 수 있다.In the genetically modified NK cell line, the NK cell proliferation factor is at least one cytokine or cytokine selected from the group consisting of IL-2, IL-12, IL-15, IL-18 and IL-21. It may be a variant.
상기 유전자 변형 NK 세포주에 있어서, 상기 세포질 도메인 결실 TGFβ 수용체는 세포질 도메인 결실 TGFβ 수용체II일 수 있다.In the genetically modified NK cell line, the cytoplasmic domain deleted TGFβ receptor may be cytoplasmic domain deleted TGFβ receptor II.
상기 유전자 변형 NK 세포주에 있어서, 상기 세포자살 유전자는 우라실포스포리보실전이효소(UPRT) 유전자, 헤르페스 단순포진 바이러스 티미딘 인산화 유전자(HSV TK), 바리셀라 조스터 바이러스 티미딘 인산화효소(VZV TK) 유전자, 시토신 디아미네이즈 유전자, 카르복실 에스터레이즈 유전자, 니트로리덕테이즈 유전자, 카르복시펩티데이즈 G2 유전자, 또는 유도성 카스페이즈 9(iCas9)유전자일 수 있다.In the genetically modified NK cell line, the apoptosis gene is a uracilphosphoribosyltransferase (UPRT) gene, herpes simplex virus thymidine phosphorylation gene (HSV TK), varicella zoster virus thymidine kinase (VZV TK) Gene, cytosine deminase gene, carboxyl esterase gene, nitroreductase gene, carboxypeptide G2 gene, or inducible caspase 9 (iCas9) gene.
상기 유전자 변형 NK 세포주에 있어서, 필요에 따라 하나 또는 둘 이상의 유전자가 제거될 수 있다. 상기 유전자는 환자의 유전자형에 따라서 결정될 수 있는데, 환자에게 투여시 과도한 면역반응을 유도함으로써 부작용을 일으키거나 투여된 세포의 활성을 저해할 수 있는 유전자일 수 있다. 이러한 유전자의 제거에는 TALEN, 또는 CRISPR와 같은 게놈 편집 도구가 사용될 수 있다.In the genetically modified NK cell line, one or more genes may be removed as necessary. The gene may be determined according to the genotype of the patient, and may be a gene capable of causing side effects or inhibiting the activity of the administered cells by inducing an excessive immune response upon administration to the patient. Genome editing tools such as TALEN or CRISPR can be used to remove these genes.
상기 유전자 변형 NK 세포주는 암항원을 특이적으로 인식하는 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드가 추가로 형질도입된 것일 수 있다.The genetically modified NK cell line may be further transduced with a polynucleotide encoding a chimeric antigen receptor that specifically recognizes a cancer antigen.
이 때, 상기 암항원은 공지된 어떠한 암항원도 사용이 가능한데, 상기 암항원은 CD19, CD22, PSA(prostate specific antigen), CEA(carcinoembryonic antigen), CA-125, mucin 1, AFP(alphafetoprotein), ETA(epithelial tumor antigen), 티로시네이즈, CD52, PD-L1(programmed death-ligand 1), CTLA4(cytotoxic T-lymphocyte-associated protein 4), CD20, MAGE(melanoma-associated antigen), FAP(fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13Rα2 또는 EpCAM(epithelial cell adhesion molecule)일 수 있다.At this time, the cancer antigen can be used any known cancer antigen, the cancer antigen is CD19, CD22, PSA (prostate specific antigen), CEA (carcinoembryonic antigen), CA-125, mucin 1, AFP (alphafetoprotein), Epithelial tumor antigen (ETA), tyrosinase, CD52, programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), CD20, melanoma-associated antigen (MAGE), fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13Rα2, or epithelial cell adhesion molecule (EpCAM).
아울러, 상기 키메라 항원 수용체는 암항원에 특이적으로 결합하는 리간드 또는 항체유사체-막통과 도메인-보조자극인자-세포내 신호전달 도메인을 포함하는 융합단백질을 수 있고, 상기 항체유사체는 scFv, sdAb, 나노바디, VHH, VNAR, VLR, 또는 모노바디일 수 있으며, 상기 보조자극인자는 CD28, ICOS(inducible costimulator), CTLA4(cytotoxic T lymphocyte associated protein 4), PD1(programmed cell death protein 1), BTLA(B and T lymphocyte associated protein), DR3(death receptor 3), 4-1BB, CD2, CD7, CD40, CD30, CD27, SLAM(signaling lymphocyte activation molecule), 2B4(CD244), NKp30, NKp44, NKp46, NKp80, NKG2D(natural-killer group 2, member D)/DAP12(DNAX-activating protein 12), DAP10, DNAM-1, NTB-A, TIM1(T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3(lymphocyte activation gene 3), B7-1, B7-H1, GITR(glucocorticoid-induced TNFR family related protein), HVEM(herpesvirus entry mediator) 또는 OX40L[ligand for CD134(OX40), CD252]의 세포질 도메인 또는 이들 중 둘 이상의 연결체일 수 있고, 상기 세포내 신호전달 도메인은 T 세포 수용체의 CD3ξ 도메인, CD16, NKp30, NKp44, NKp46, NKp80, DAP10 또는 DAP12일 수 있다.In addition, the chimeric antigen receptor may be a fusion protein comprising a ligand or an antibody analog-transmembrane domain-co-stimulatory factor-cellular signaling domain that specifically binds to cancer antigens, wherein the antibody analog is scFv, sdAb, It may be a nanobody, V H H, V NAR , VLR, or monobody, the co-stimulatory factors are CD28, inducible costimulator (ICOS), cytotoxic T lymphocyte associated protein 4 (CTLA4), programmed cell death protein 1 (PD1) , B and T lymphocyte associated protein (BTLA), death receptor 3 (DR3), 4-1BB, CD2, CD7, CD40, CD30, CD27, signaling lymphocyte activation molecule (SLAM), 2B4 (CD244), NKp30, NKp44, NKp46 , NKp80, NKG2D (natural-killer group 2, member D) / DAP12 (DNAX-activating protein 12), DAP10, DNAM-1, NTB-A, TIM1 (T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, lymphocyte activation gene 3 (LAG3), B7-1, B7-H1, glucocorticoid-induced TNFR family related protein (GITR) , A herpesvirus entry mediator (HVEM) or a cytoplasmic domain of OX40L [ligand for CD134 (OX40), CD252] or two or more of these, wherein the intracellular signaling domain is the CD3ξ domain of the T cell receptor, CD16, NKp30, It may be NKp44, NKp46, NKp80, DAP10 or DAP12.
상기 유전자 변형 NK 세포주에 있어서, 상기 NK 세포 보조활성화 인자, NK 세포 증식 인자, 세포질 도메인 결실 TGFβ 수용체 및 세포자살 유전자는 개별적으로 발현되거나, 하나의 유전자 컨스트럭트 내에서 동시에 발현되거나, 둘 이상의 유전자 컨스트럭트로 나뉘어 발현될 수 있다. 예컨대, 상기 도입 유전자들 중 일부는 링커로 연결된 융합단백질의 형태로 발현되거나 단백질 분해효소 인식부위로 연결되어 세포내에서 발현되는 단백질 분해효소에 의해 자동적으로 절단되어 성숙된 단백질로 발현이 되거나, IRES 등으로 연결되어 하나의 mRNA로 발현된 후, 번역시 개별적인 단백질로 발현되는 것도 가능하다. 이들 유전자 컨스트럭트들은 하나 또는 그 이상의 프로모터에 작동 가능하게 연결되어 포유동물 세포 특히 NK 세포에서의 발현에 최적화된 발현벡터에 삽입되어 다양한 진핵세포 형질도입법으로 형질도입될 수 있다. 이러한 형질도입법에는 리포펙센, 인산칼슘 형질감염, 유전자총(gene gun), 전기천공법(electroporation) 등 다양한 방법이 사용될 수 있으며, 더욱 정교한 핵내 형질도입을 위해 TALEN, 또는 CRISPR와 같은 게놈 편집 도구가 사용될 수 있다.In the genetically modified NK cell line, the NK cell coactivator, NK cell proliferation factor, cytoplasmic domain deletion TGFβ receptor and apoptosis genes are expressed individually, simultaneously expressed in one gene construct, or two or more genes. Divided into constructs can be expressed. For example, some of the introduced genes are expressed in the form of a fusion protein linked by a linker or linked to a protease recognition site and automatically cleaved by a protease expressed in a cell to be expressed as a mature protein, or IRES. It is also possible to be expressed as a single mRNA linked to the back, and then expressed as individual proteins during translation. These gene constructs are operably linked to one or more promoters and can be inserted into expression vectors optimized for expression in mammalian cells, particularly NK cells, and transduced with a variety of eukaryotic transduction methods. Such transduction can be performed using a variety of methods, including lipopexen, calcium phosphate transfection, gene gun, electroporation, and genome editing tools such as TALEN or CRISPR for more sophisticated intranuclear transduction. Can be used.
본 문서에서 사용되는 "작동가능하게 연결된(operably linked to)"은 특정 폴리뉴클레오타이드가 그 기능을 발휘할 수 있게 다른 폴리뉴클레오타이드에 연결된 것을 의미한다. 즉, 특정 단백질을 암호화하는 폴리뉴클레오타이드가 프로모터에 작동가능하게 연결되었다는 것은 당해 프로모터의 작용에 의해 mRNA로 전사되고 당해 단백질로 번역까지 될 수 있게 연결되었다는 것을 의미하고, 특정 단백질을 암호화하는 폴리뉴클레오타이드가 다른 단백질을 암호화하는 폴리뉴클레오타이드에 작동 가능하게 연결되었다는 것은 당해 특정 단백질이 다른 단백질과 융합단백질의 형태로 발현될 수 있다.As used herein, "operably linked to" means that a particular polynucleotide is linked to another polynucleotide so that it can function. In other words, the operably linked polynucleotide encoding a particular protein means that the polynucleotide encoding the specific protein is linked to be transcribed into mRNA and translated into the protein by the action of the promoter. An operably linked polynucleotide encoding another protein may allow the particular protein to be expressed in the form of a fusion protein with the other protein.
상기 진핵세포 및 원핵세포에서 발현을 가능하게 하는 조절 인자들은 당업자에게 잘 알려져 있다. 상술한 바와 같이, 이들은 보통 전사개시를 담당하는 조절인자들 및, 선택적으로 전사물의 전사종결 및 안정화를 담당하는 폴리-A 신호를 포함한다. 추가적인 조절인자들은 전사조절인자 외에도 번역 증진인자 및/또는 천연-조합 또는 이종성 프로모터 영역을 포함할 수 있다. 예를 들어 포유류 숙주 세포에서 발현을 가능하게 하는 가능한 조절인자들은 CMV-HSV 티미딘 키나아제 프로모터, SV40, RSV(로우스 육종 바이러스) 프로모터, 인간 신장 요소 1α-프로모터, 글루코코르티코이드-유도성 MMTV-프로모터(몰로니 마우스 종양 바이러스), 메탈로티오네인-유도성 또는 테트라사이클린-유도성 프로모터 또는, CMV 증폭제 또는 SV40-증폭제와 같은 증폭제를 포함한다. 신-경 세포 내 발현을 위해, 신경미세섬유-프로모터(neurofilament-promoter), PGDF-프로모터, NSE-프로모터, PrP-프로모터 또는 thy-1-프로모터들이 사용될 수 있다는 것이 고려되고 있다. 상기 프로모터들은 당 분야에 알려져 있으며, 문헌(Charron, J. Biol. Chem. 1995, 270: 25739-25745)에 기술되어 있다. 원핵세포내 발현을 위해, lac-프로모터, tac-프로모터 또는 trp 프로모터를 포함하는 다수의 프로모터들이 개시되어 있다. 전사를 개시할 수 있는 인자들 외에, 상기 조절인자들은 본 발명의 일 실시예에 따른 폴리뉴클레오타이드의 하류(downstream)에 SV40-폴리-A 부위 또는 TK-폴리-A 부위와 같은 전사 종결 신호를 포함할 수도 있다. 본 문서에서, 적당한 발현 벡터들은 당 분야에 알려져 있으며, 그 예로는 오카야마-베르그(Okayama-Berg) cDNA 발현 벡터 pcDV1(Parmacia), pRc/CMV, pcDNA1, pcDNA3(In-vitrogene), pSPORT1(GIBCO BRL), pX(Pagano (1992) Science 255, 1144-1147), 효모 2-혼성(two-hybrid) 벡터, 가령 pEG202 및 dpJG4-5(Gyuris et al., Cell 75, 791-803, 1995) 또는 원핵 발현 벡터, 가령 람다 gt11 또는 pGEX(Amersham-Pharmacia)가 있다. 본 발명의 핵산 분자들 외에, 벡터는 분비 신호를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있다. 상기 분비신호들은 당업자에게 잘 알려져 있다. 그리고, 사용된 발현 시스템에 따라, 본 발명의 펩타이드를 세포 구획으로 이끌 수 있는 리더서열(leader sequence)이 본 발명의 일 실시예에 따른 폴리뉴클레오타이드의 코딩 서열에 조합되며, 바람직하게는 해독된 단백질 또는 이의 단백질을 세포질 주변 또는 세포외 매질로 직접 분비할 수 있는 리더 서열이다. 선택적으로, 이종 서열은 발현된 재조합 생성물의 안정화 또는 간단한 정제와 같은 목적하는 특성들을 부여하는 C-말단 또는 N-말단 태그(tag) 펩타이드를 포함하는 융합단백질(fusion protein)을 코딩할 수 있다. 이러한 태그로는 FLAG, GST(glutathione S transferase), HisX6 등이 존재하나, 이로 제한되는 것은 아니다. 본 발명의 일 실시예에 따른 벡터가 적당한 숙주세포 또는 비인간 숙주개체에 형질도입되면, 상기 숙주세포 또는 숙주개체는 뉴클레오티드 서열의 고수준 발현에 적당한 조건하에서 유지된다. Regulatory factors that allow expression in the eukaryotic and prokaryotic cells are well known to those skilled in the art. As mentioned above, these usually include regulators responsible for transcription initiation and, optionally, poly-A signals responsible for transcription termination and stabilization of the transcript. Additional regulators may include, in addition to transcriptional regulators, translation enhancers and / or naturally-combined or heterologous promoter regions. For example, possible regulators that allow expression in mammalian host cells include the CMV-HSV thymidine kinase promoter, SV40, RSV (Loose Sarcoma Virus) promoter, human kidney element 1α-promoter, glucocorticoid-induced MMTV-promoter (Molony mouse tumor virus), metallothionein-induced or tetracycline-induced promoters or amplification agents such as CMV amplifiers or SV40-amplifiers. For expression in neural cells, it is contemplated that neurofiber-promoter, PGDF-promoter, NSE-promoter, PrP-promoter or thy-1-promoter may be used. Such promoters are known in the art and described in Charron, J. Biol. Chem. 1995, 270: 25739-25745. For prokaryotic expression, a number of promoters have been disclosed, including lac-promoters, tac-promoters or trp promoters. In addition to factors capable of initiating transcription, these regulators include transcription termination signals, such as the SV40-poly-A site or the TK-poly-A site, downstream of the polynucleotide according to one embodiment of the invention. You may. In this document, suitable expression vectors are known in the art, for example, the Okayama-Berg cDNA expression vector pcDV1 (Parmacia), pRc / CMV, pcDNA1, pcDNA3 (In-vitrogene), pSPORT1 (GIBCO BRL). ), pX (Pagano (1992) Science 255, 1144-1147), yeast two-hybrid vectors such as pEG202 and dpJG4-5 (Gyuris et al ., Cell 75, 791-803, 1995) or prokaryotic Expression vectors such as lambda gt11 or pGEX (Amersham-Pharmacia). In addition to the nucleic acid molecules of the invention, the vector may further comprise a polynucleotide encoding a secretory signal. The secretion signals are well known to those skilled in the art. And, depending on the expression system used, a leader sequence capable of directing the peptide of the present invention to the cell compartment is combined with the coding sequence of the polynucleotide according to an embodiment of the present invention, and preferably the translated protein. Or a leader sequence capable of secreting its protein directly around the cytoplasm or into an extracellular medium. Optionally, the heterologous sequence can encode a fusion protein comprising a C-terminal or N-terminal tag peptide that confers desired properties such as stabilization or simple purification of the expressed recombinant product. Such tags include, but are not limited to, FLAG, GST (glutathione S transferase), HisX6, and the like. When the vector according to one embodiment of the present invention is transduced into a suitable host cell or non-human host object, the host cell or host object is maintained under conditions suitable for high level expression of the nucleotide sequence.
본 발명의 다른 일 관점에 따르면, 상기 유전자 변형 NK 세포주를 유효성분으로 포함하는 암치료용 및 암 예방용 약학적 조성물이 제공된다.According to another aspect of the invention, there is provided a pharmaceutical composition for cancer treatment and cancer prevention comprising the genetically modified NK cell line as an active ingredient.
상기 약학적 조성물에 있어서, 상기 암은 혈액암 또는 고형암일 수 있고, 상기 고형암은 간암, 폐암, 췌장암, 유방암, 난소암, 자궁내막암, 자궁경부암, 담낭암, 위암, 담도암, 대장암, 두경부암, 식도암, 갑상선암, 뇌종양, 악성 흑색종, 전립선암, 고환암, 설암, 림프종 또는 백혈병일 수 있으며, 상기 고형암은 전이성 암일 수 있다.In the pharmaceutical composition, the cancer may be hematological cancer or solid cancer, the solid cancer is liver cancer, lung cancer, pancreatic cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, gallbladder cancer, gastric cancer, biliary cancer, colon cancer, head Cervical cancer, esophageal cancer, thyroid cancer, brain tumor, malignant melanoma, prostate cancer, testicular cancer, tongue cancer, lymphoma or leukemia, the solid cancer may be metastatic cancer.
본 발명의 약학적 조성물은 상기 유전자 변형 NK 세포주와 함께 항암효과를 갖는 공지의 유효성분을 1종 이상 함유할 수 있다. 이 경우, 본 발명의 암 치료용 조성물은 상기 유전자 변형 NK 세포주와 공지의 유효성분이 약학적으로 허용가능한 담체와 함께 혼합되어 제형화된 약학적 조성물을 의미하며, 함께 제형화되지 않을 경우에는 별도로 포장되어 동시에 또는 시간차를 두고 순차적으로 투여될 수도 있다. 후자의 경우에는 조성물이라기 보다는 키트라고 할 수 있을 것이다.The pharmaceutical composition of the present invention may contain at least one known active ingredient having an anticancer effect together with the genetically modified NK cell line. In this case, the composition for treating cancer of the present invention means a pharmaceutical composition formulated by mixing the genetically modified NK cell line and a known active ingredient together with a pharmaceutically acceptable carrier, and if not formulated together, separately packaged. And may be administered simultaneously or sequentially. In the latter case, it may be referred to as a kit rather than a composition.
아울러, 상기 조성물은 약학적으로 허용 가능한 담체 외에 약학적으로 허용 가능한 부형제 또는 희석제를 추가적으로 포함할 수 있다.In addition, the composition may further include a pharmaceutically acceptable excipient or diluent in addition to the pharmaceutically acceptable carrier.
상기 약학적으로 허용 가능한 담체로는 예를 들면, 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 또한 본 발명에 따른 세포치료제는 그 투여방법이나 제형에 따라 필요한 경우, 현탁제, 용해보조제, 안정화제, 등장화제, 보존제, 흡착방지제, 계면활성화제, 희석제, 부형제, pH 조정제, 무통화제, 완충제, 산화방지제 등을 적절히 포함할 수 있다. 상기에 예시된 것들을 비롯하여 본 발명에 적합한 약학적으로 허용되는 담체 및 제제는 문헌[Remington's Pharmaceutical Sciences, 최신판]에 상세히 기재되어 있다. Such pharmaceutically acceptable carriers include, for example, carriers for parenteral administration such as water, suitable oils, saline, aqueous glucose and glycols, and the like, and may further include stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium hydrogen sulfite, sodium sulfite or ascorbic acid. Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. In addition, the cell therapy according to the present invention, if necessary according to the administration method or dosage form, suspensions, dissolution aids, stabilizers, isotonic agents, preservatives, adsorption agents, surfactants, diluents, excipients, pH adjusters, analgesics, buffers And antioxidants may be included as appropriate. Pharmaceutically acceptable carriers and formulations suitable for the present invention, including those exemplified above, are described in detail in Remington's Pharmaceutical Sciences, latest edition.
한편, 본 발명의 일 실시예에 따른 약학적 조성물의 투여량은 세포수 기준으로 107 내지 1011 cells일 수 있지만, 상기 투여량은 환자의 성별, 나이, 질병의 진행정도, 치료 목적에 따라 조절될 수 있다. 일반적으로, 이러한 양은 표적 세포, 예를 들어, 암항원 과발현 암 세포에서의 국소화를 수득하고, 상기 암세포를, 예를 들어, 포식작용 또는 용해에 의해 죽이는데 충분할 것이다.On the other hand, the dosage of the pharmaceutical composition according to an embodiment of the present invention may be 10 7 to 10 11 cells on the basis of the cell number, the dosage is depending on the sex, age, disease progression, treatment purpose of the patient Can be adjusted. In general, this amount will be sufficient to obtain localization in the target cell, eg, cancer antigen overexpressing cancer cell, and to kill the cancer cell, eg, by phagocytosis or lysis.
상기 세포치료제는 상기 담체 외에 약학적으로 허용가능한 담체, 희석제, 또는 부형제를 추가적으로 포함할 수 있다.The cell therapy agent may further include a pharmaceutically acceptable carrier, diluent, or excipient in addition to the carrier.
아울러 본 문서에서 사용되는 용어 "약학적으로 허용 가능한"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. In addition, as used herein, the term "pharmaceutically acceptable" refers to a composition that is physiologically acceptable and does not normally cause an allergic reaction, such as gastrointestinal disorders, dizziness, or the like when administered to a human.
또한, 본 발명의 일 실시예에 따른 세포 치료제는 포유동물에 투여 시, 활성 성분의 신속한 방출, 또는 지속 또는 지연된 방출이 가능하도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말 형태를 포함한다. In addition, cell therapeutic agents according to one embodiment of the present invention can be formulated using methods known in the art to allow for rapid release, or sustained or delayed release of the active ingredient when administered to a mammal. Formulations include powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powder forms.
본 발명의 일 실시예에 따른 약학적 조성물은 다양한 경로로 투여될 수 있으며, 예를 들면, 경구, 비경구, 예를 들면 좌제, 경피, 정맥, 복강, 근육내, 두개강내, 병변내, 비강, 척추관내로 투여될 수 있으며, 또한 서방형 또는 연속적 또는 반복적 방출을 위한 이식장치를 사용하여 투여될 수 있다. 투여횟수는 원하는 범위 내에서 하루에 1회, 또는 수회로 나누어 투여할 수 있으며, 투여 기간도 특별히 한정되지 않는다.Pharmaceutical compositions according to one embodiment of the invention can be administered by a variety of routes, for example, oral, parenteral, e.g. suppositories, transdermal, intravenous, abdominal, intramuscular, intracranial, intralesional, nasal It can be administered intrathecal, and can also be administered using a sustained release or implantable device for continuous or repeated release. The frequency of administration can be administered once a day or divided into several times within the desired range, the administration period is not particularly limited.
아울러 본 발명의 또 다른 일 관점에 따르면, 상기 유전자 변형 NK 세포주 및 자살유도제를 포함하는 암 치료용 키트가 제공된다.In addition, according to another aspect of the present invention, there is provided a kit for treating cancer comprising the genetically modified NK cell line and suicide inducing agent.
상기 암 치료용 키트는 상기 유전자 변형 NK 세포주와 자살유도제를 포함하되 이들 두 구성성분이 혼합된 형태로 제공되지 않고 별도로 포장되어 제공되며, 이들 두 구성성분은 같은 시점에 같거나 다른 경로로 투여될 수 있으나, 의사의 처방에 따라 일정한 간격을 두고 투여된다는 점에서 일반적인 약학적 조성물과 구분된다. 본 발명의 키트는 먼저 상기 유전자 변형 NK 세포주를 투여한 후, 적절한 시점, 예컨대 유전자 변형 NK 세포주 투여와 같은 시점, 투여로부터 1일 후, 2일 후, 3일 후, 4일 후, 5일 후, 6일 후, 또는 1주일 후, 10일 후, 2주 후, 15일 후, 20일 후, 3주 후, 25일 후, 4주 후, 또는 30일 후에 투여될 수 있고, 첫 번째 투여 이후 이틀, 사흘, 나흘, 닷새, 엿새, 일주일간의 간격으로 두 차례 이상 복수로 투여될 수도 있다. 아울러, 상기 키트는 각각의 구성성분의 투여 경로가 같을 수도 있고 다를 수도 있다. 예컨대, 상기 유전자 변형 NK 세포주를 정맥주사로 투여한 후, 거의 같은 시간대 또는 소정의 간격을 투고 상기 자살유도제는 경구 투여되거나 복강내 주사 또는 정맥 주사로 투여될 수 있다. 상기 자살유도제의 투여 경로는 자살유도제의 특성에 따라 적절하게 결정될 수 있다. 예컨대, 5-FC, 및 이리노케칸의 경우에는 복강내주사, 정맥주사 또는 경구투여 어느 것도 가능하다. 상기 유전자 변형 NK 세포주 및 자살유도제를 유효성분으로 포함하는 암 치료용 약학적 조성물에 포함되는 약학적으로 허용되는 담체는 상술한 바와 같다.The cancer treatment kit includes the genetically modified NK cell line and suicide inducer, but the two components are not provided in a mixed form, but are provided separately packaged, and these two components may be administered at the same time or through different routes. It can be, but is distinguished from the general pharmaceutical composition in that it is administered at regular intervals according to the doctor's prescription. The kit of the present invention first administers the genetically modified NK cell line, and then, at an appropriate time point, such as, for example, administration of the genetically modified NK cell line, 1 day, 2 days, 3 days, 4 days, or 5 days after administration. , After 6 days, or after 1 week, after 10 days, after 2 weeks, after 15 days, after 20 days, after 3 weeks, after 25 days, after 4 weeks, or after 30 days, the first dose It may then be administered in multiple doses two or more times at intervals of two days, three days, four days, five days, six days, or one week. In addition, the kit may be the same or different route of administration of each component. For example, after administering the genetically modified NK cell line by intravenous injection, the suicide-inducing agent may be administered orally, or intraperitoneally or intravenously, at about the same time interval or at predetermined intervals. The route of administration of the suicide inducing agent may be appropriately determined according to the characteristics of the suicide inducing agent. For example, in the case of 5-FC and iriokecan, either intraperitoneal injection, intravenous injection or oral administration is possible. Pharmaceutically acceptable carriers included in the pharmaceutical composition for cancer treatment comprising the genetically modified NK cell line and suicide inducer as active ingredients are as described above.
상기 자살유도제는 세포자살 유전자의 종류에 따라 달라지는데, 예컨대, 세포자살 유전자가 HSV TK 또는 VZV TK일 경우에는 각각 간시클로비르(gancyclovir) 또는 6-메톡시퓨린 아라비노뉴클레오사이드(6-methoxypurine arabinonucleoside)일 수 있으며, 우라실 포스포리보실 전이효소(UPRT) 또는 시토신 디아미네이즈의 경우 5-플루오로시토신(5-FC)일 수 있고, 카르복실 에스터라제의 경우 이리노테칸(CPT-11)일 수 있다. 아울러 니트로리덕테이즈의 경우에는 5(아지리딘-1-일)-2,4-디니트로벤자마이드(CB1954)일 수 있고, 카르복시펩티데이즈 G2의 경우에는 4-[(2-클로로에틸)(2-메실록시에틸)아미노]벤조일-엘-글루탐산(CMDA)일 수 있으며, iCas9일 경우 iCas9 이량화제(dimerizer)일 수 있고, 상기 iCas9 이량화제는 AP20187 또는 AP1903일 수 있다. The suicide inducing agent depends on the type of suicide gene. For example, when the suicide gene is HSV TK or VZV TK, gancyclovir or 6-methoxypurine arabinonucleoside, respectively. ), 5-fluorocytosine (5-FC) for uracil phosphoribosyl transferase (UPRT) or cytosine deminase, and irinotecan (CPT-11) for carboxyl esterase. have. In addition, nitroreductase may be 5 (aziridin-1-yl) -2,4-dinitrobenzamide (CB1954), and in the case of carboxypeptides G2, 4-[(2-chloroethyl) (2-mesyloxyethyl) amino] benzoyl-L-glutamic acid (CMDA), iCas9 may be an iCas9 dimer, and iCas9 dimer may be AP20187 or AP1903.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 유전자 변형 NK 세포주 또는 선택적으로 자살유도제를 추가로 암에 걸린 개체에 투여하는 단계를 포함하는 상기 암에 걸린 개체의 치료방법이 제공된다.According to another aspect of the present invention, there is provided a method for treating a subject with cancer comprising administering a therapeutically effective amount of said genetically modified NK cell line or optionally suicide inducing agent to the subject with cancer. .
본 문서에서 사용되는 "치료적으로 유효한 양(therapeutically effective amount)"은 암세포의 사멸 또는 적어도 암조직의 성장을 유의하게 억제하는 정도의 양을 의미한다.As used herein, "therapeutically effective amount" means an amount that significantly inhibits the death of cancer cells or at least the growth of cancer tissue.
본 발명의 일 실시예에 따른 암치료용 약학적 조성물 또는 암치료용 키트의 사용을 통해 치료 가능한 암은 간암, 폐암, 췌장암, 유방암, 난소암, 자궁내막암, 자궁경부암, 담낭암, 위암, 담도암, 대장암, 두경부암, 식도암, 갑상선암, 뇌종양, 악성 흑색종, 전립선암, 고환암, 설암, 림프종 또는 백혈병일 수 있다.Cancer that can be treated through the use of a pharmaceutical composition for treating cancer or a kit for cancer treatment according to an embodiment of the present invention is liver cancer, lung cancer, pancreatic cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, gallbladder cancer, gastric cancer, biliary tract Cancer, colorectal cancer, head and neck cancer, esophageal cancer, thyroid cancer, brain tumor, malignant melanoma, prostate cancer, testicular cancer, tongue cancer, lymphoma or leukemia.
본 발명의 다른 일 관점에 따르면 분리된 NK 세포주에 NK 세포 보조활성화 인자, 세포막 결합 IL-15, 및 TGFβ 수용체를 각각 암호화하는 폴리뉴클레오타이드 및 세포자살 유전자가 형질도입되고, 암항원 특이적 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드가 형질도입되어 상기 암항원 특이적 키메라 항원 수용체를 발현하는 유전자 변형 NK 세포주가 제공된다.According to another aspect of the present invention, the isolated NK cell line is transduced with polynucleotides and apoptosis genes encoding NK cell coactivator, cell membrane-bound IL-15, and TGFβ receptor, respectively, and is a cancer antigen specific chimeric antigen receptor. A polynucleotide encoding a gene is transduced to provide a genetically modified NK cell line expressing the cancer antigen specific chimeric antigen receptor.
상기 암항원은 CD19, CD22, PSA(prostate specific antigen), CEA(carcinoembryonic antigen), CA-125, mucin 1, AFP(alphafetoprotein), ETA(epithelial tumor antigen), 티로시네이즈, CD52, PD-L1(programmed death-ligand 1), CTLA4(cytotoxic T-lymphocyte-associated protein 4), CD20, MAGE(melanoma-associated antigen), FAP(fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13Rα2 또는 EpCAM(epithelial cell adhesion molecule)일 수 있다.The cancer antigen is CD19, CD22, prostate specific antigen (PSA), carcinoembryonic antigen (CEA), CA-125, mucin 1, alphafetoprotein (AFP), epipithelial tumor antigen (ETA), tyrosinase, CD52, PD-L1 ( programmed death-ligand 1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), CD20, melanoma-associated antigen (MAGE), fibroblast activation protein (FAP), fms like tyrosine kinase 3 (FLT3), IL13Rα2 or epipithelial (EpCAM) cell adhesion molecule).
이하, 본 발명을 첨부되는 도면을 이용하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
본 발명자들은 NK 림프암종 환자의 암조직으로부터 표 1에 기재된 특성을 갖는 새로운 NK 세포주를 분리하였으며, 이에 대한 다양한 특성을 조사한 결과, 도 1 내지 6에 나타난 바와 같이, IL-2 의존적 증식능을 나타내며, 암세포 사멸능과 면역조절능을 모두 갖는 다기능성 NK 세포주임을 확인할 수 있었다. 특히, 현재 임상시험이 진행중인 유일한 NK 세포주인 NK-92에 비해 증식능이 현저하게 높아서 경제적으로 생산가능한 세포임을 확인하여, 이를 'NK101' 세포주로 명명하고 이를 대한민국 전라북도 정읍시 입신길 181번지에 소재하고 있는 한국생명공학연구원 내 한국유전자은행(Korean Collection for Type Culture, KCTC)에 2017년 8월 7일자로 기탁하여, 2017년 8월 24일자로 KCTC 13305BP의 수탁번호를 부여받았다. 그러나, 상기 NK101 세포주는 유전자 발현 분석 결과, IL-2 수용체인 CD25는 고발현이고, CD56dimCD62L+의 표현형을 갖는 것으로 확인되었으나, NK 세포의 항암 활성에 직접적인 영향을 주는 NK 세포 보조활성화 인자인 CD7 및 CD28은 발현하지 않음을 확인함으로써, 항암 활성 자체는 종래에 구축된 NK 세포주 보다 높지 않을 것으로 예상하게 되었다. The present inventors have isolated a new NK cell line having the characteristics shown in Table 1 from cancer tissues of patients with NK lymphoma, and as a result of investigating various characteristics thereof, as shown in FIGS. It was confirmed that it is a multifunctional NK cell line having both cancer cell killing ability and immunomodulatory ability. In particular, the proliferative capacity is significantly higher than that of NK-92, the only NK cell line currently undergoing clinical trials, and it is identified as an economically viable cell.These cells are named 'NK101' and are located at 181, Sinpsin-gil, Jeongeup-si, Jeollabuk-do, Korea. It was deposited on August 7, 2017 by the Korean Collection for Type Culture (KCTC) in the Korea Research Institute of Bioscience and Biotechnology, and received an accession number of KCTC 13305BP on August 24, 2017. However, the gene expression analysis of the NK101 cell line revealed that the IL-2 receptor CD25 is highly expressed and has a phenotype of CD56 dim CD62L + , but is a NK cell coactivator that directly affects the anticancer activity of NK cells. By confirming that CD7 and CD28 do not express, anticancer activity itself was expected not to be higher than conventionally constructed NK cell lines.
이에, 본 발명자들은 본 발명의 일 실시예에 따른 NK101 세포의 항암활성을 강화하기 위해, NK101 세포에 기반한 유전자 변형 NK 세포주를 제조하고자 하였다. 도 7b는 상기 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 유전자 변형 NK 세포주 SL-K01의 제조에 사용된 유전자 컨스트럭트 CD7-CD28-CD::UPRT의 구조를 개략적으로 나타낸 개요도이고 및 도 9a는 본 발명의 일 실시예에 따른 유전자 변형 NK 세포주 NK111의 제조를 위해 사용된 유전자 컨스트럭트 mbIL-15-mTGFβIIΔcyto의 구조를 개략적으로 나타낸 개요도이다.Thus, the present inventors intended to prepare a genetically modified NK cell line based on NK101 cells in order to enhance the anticancer activity of NK101 cells according to an embodiment of the present invention. Figure 7b is a schematic diagram showing the structure of the gene construct CD7-CD28-CD :: UPRT used in the production of the genetically modified NK cell line SL-K01 according to an embodiment of the present invention to achieve the above object; 9A is a schematic diagram schematically showing the structure of the gene construct mbIL-15-mTGFβIIΔcyto used for the preparation of the genetically modified NK cell line NK111 according to one embodiment of the present invention.
본 발명에서는 앞서 언급한 요소를 보완하기 위하여, 본 발명자들에 의해 기확립된 NK101 세포(수탁번호 KCTC 13305BP)에 NK 세포의 보조활성화 수용체, 세포자살 유전자, 세포막 고정(membrane bound) 사이토카인, 돌연변이 TGFβ 수용체를 도입하여 해당 NK 세포의 항암효과 증진, 및 사이토카인 보충제(cytokine supplement) 비의존적으로 증식이 가능한 NK111 세포주를 구축하였다(도 9b 및 9c 참조). In the present invention, in order to complement the aforementioned elements, the NK101 cells (accession number KCTC 13305BP) previously established by the present inventors, coactivating receptors of NK cells, apoptosis genes, membrane bound cytokines, mutations The TGFβ receptor was introduced to construct an NK111 cell line capable of enhancing anticancer effects of the NK cells and proliferating independently of cytokine supplements (see FIGS. 9B and 9C).
도 7은 본 발명의 일 실시예에 따른 유전자 변형 NK 세포주(SL-K01) 및 상기 SL-K01의 모세포주인 NK101, 그리고 종래 구축된 NK 세포주인 KHYG-1 및 NK-92에서의 세포 표면 표지자의 발현양상을 유세포 분석으로 분석한 결과로서, 도 7a는 NK101, KHYG-1 및 NK-92에서 CD7 및 CD28의 발현여부를 분석한 유세포 분석 결과를 나타내는 히스토그램이고, 도 7c는 상기 도 7b에 도시된 유전자 컨스트럭트를 형질도입한 본 발명의 일 실시예에 따른 유전자 변형 세포주 SL-K01 세포에서의 CD7 및 CD28 발현을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이다. 상기 도 7에서 확인되는 바와 같이, 기존에 구축된 NK세포주 들 중 암세포 사멸능이 높다고 알려져 있는 KHYG-1 및 NK-92는 공통적으로 CD7을 발현하는 특징을 갖고, NK-92 세포는 CD7은 물론 CD28까지도 동시에 발현하는 특성을 가지고 있는 반면, NK101은 두 보조자극 인자가 전혀 발현되지 않음을 확인할 수 있었다. 이에, 본 발명자들은 NK101 세포에 CD7 및 CD28 도입을 통해 암세포 사멸능이 증진되는지의 여부를 평가하고자 하였다. FIG. 7 shows cell surface markers of a genetically modified NK cell line (SL-K01) and a parent cell line NK101 of the SL-K01, and conventionally constructed NK cell lines KHYG-1 and NK-92 according to an embodiment of the present invention. As a result of analyzing the expression pattern by flow cytometry, Figure 7a is a histogram showing the results of flow cytometry analysis of the expression of CD7 and CD28 in NK101, KHYG-1 and NK-92, Figure 7c is shown in Figure 7b It is a histogram showing the result of confirming the expression of CD7 and CD28 in the genetically modified cell line SL-K01 cells according to an embodiment of the present invention transduced by flow cytometry. As shown in FIG. 7, KHYG-1 and NK-92, which are known to have high cancer cell killing ability among conventionally constructed NK cell lines, have a characteristic of expressing CD7, and NK-92 cells have CD7 as well as CD28. While NK101 has the characteristic of expressing at the same time, it was confirmed that both co-stimulatory factors are not expressed at all. Therefore, the present inventors attempted to evaluate whether cancer cell killing ability is enhanced by introducing CD7 and CD28 into NK101 cells.
도 8은 본 발명의 일 실시예에 따른 유전자 변형 NK 세포주 SL-K01 및 상기 SL-K01의 모세포주인 NK101의 다양한 암세포에 대한 세포사멸능을 분석한 결과로서, 도 8a는 HDLM-2, IM-9, JEKO-1 및 K562 암세포를 NK101 또는 SL-K01 세포와 4:1 비율로 24시간 공배양한 후 암세포 사멸빈도를 유세포 분석을 통해 측정한 결과를 나타내는 그래프이고, 도 8b는 다양한 농도의 5-FC를 NK101 또는 SL-K01 세포에 48시간 처리한 뒤, 세포 성장률을 MTS 분석을 통하여 확인한 결과를 나타내는 그래프이며, 도 8c는 IM-9 세포주와 NK101 또는 SL-K01 세포를 1:1, 2:1, 또는 4:1 비율로 공배양 시, 5-FC 유무에 따른 IM-9 암세포 사멸 빈도를 유세포 분석을 통해 측정한 결과를 나타내는 그래프이다. 도 8a 내지 8c에서 확인되듯이, 본 발명의 일 실시예에 따른 유전자 변형 NK 세포주 SL-K01은 NK101 대비 다양한 암세포주에서 우수한 살상능을 보여, CD7, CD28 도입을 통해 NK101 세포의 살상능이 증진되었음을 확인할 수 있었다. 또한, 5-FC 처리를 통해 SL-K01 세포의 제거를 유도함으로써 안전성을 확보할 수 있을 뿐 아니라, 방관자 살상 효과까지 유도하여 주변의 암세포를 제거할 수 있음을 확인하였다. FIG. 8 is a result of analyzing apoptosis of various cancer cells of the genetically modified NK cell line SL-K01 and the parent cell line NK101 of the SL-K01 according to an embodiment of the present invention, and FIG. 8A illustrates HDLM-2 and IM-. 9, JEKO-1 and K562 cancer cells were cocultured with NK101 or SL-K01 cells at 4: 1 ratio for 24 hours, and then the cancer cell death frequency was measured by flow cytometry. FIG. 8B is a graph showing various concentrations of 5 -FC treated with NK101 or SL-K01 cells for 48 hours, the cell growth rate is a graph showing the results confirmed by the MTS analysis, Figure 8c is an IM-9 cell line and NK101 or SL-K01 cells 1: 1, 2 When co-cultured in the ratio of 1: 1 or 4: 1, the graph shows the result of measuring the flow rate of IM-9 cancer cells by flow cytometry with or without 5-FC. As shown in Figures 8a to 8c, the genetically modified NK cell line SL-K01 according to an embodiment of the present invention shows excellent killing ability in various cancer cell lines compared to NK101, the killing ability of NK101 cells was enhanced through the introduction of CD7, CD28 I could confirm it. In addition, it was confirmed that not only can secure safety by inducing the removal of SL-K01 cells through 5-FC treatment, but also induces bystander killing effect to remove surrounding cancer cells.
도 9는 본 발명의 또 다른 일 실시예에 따른 유전자 변형 NK 세포주인 NK111 세포주의 구축과정을 나타내는 것으로서, 도 9a는 SL-K01 세포의 추가적 암세포 사멸 효과 증진 및 면역억제인자 TGF-β에 대한 저항성 유도을 위해 도입된 유전자 컨스트럭트의 개요도이고, 도 9b는 SL-K01 및 상기 도 9a에 도시된 유전자 컨스트럭트가 도입된 SL-K01 세포('NK111'로 명명) 표면에서의 IL-15 발현을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이며, 도 9c는 SL-K01 및 NK111 세포에서의 TGFβRIIΔcyto 발현을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이다. 도 8에서 확인된 바와 같이, CD7/CD28 도입은 NK101 세포의 살상능 증진에 중간 정도의 효과를 나타냈다. 이에 본 발명자들은 SL-K01 세포의 암세포 사멸능을 극대화하기 위해, 대표적 NK 세포 보조활성화 인자인 막결합(membrane bound) IL-15(mbIL-15)을 SL-K01 세포에 형질도입하고자 하였고, 면역억제인자 TGF-β에 대한 저항성 유도을 위해 세포질 도메인(cytoplasmic domain)이 결실된 TGFβRIIΔcyto을 과발현시켜 미끼 수용체(decoy receptor)로 작용하도록 하였다. 그 결과, 도 9b 및 9c에서 확인되는 바와 같이, 모세포주인 SL-K01에서는 발현이 되지 않던 IL-15 및 TGFβRII가 본 발명의 일 실시예에 따른 NK111 세포주에서는 발현이 됨이 확인되었다.Figure 9 shows the construction of a genetically modified NK cell line NK111 cell line according to another embodiment of the present invention, Figure 9a is an additional cancer cell killing effect of SL-K01 cells and resistance to the immunosuppressive factor TGF-β 9A is a schematic diagram of a gene construct introduced for induction, and FIG. 9B shows IL-15 expression on the surface of SL-K01 and SL-K01 cells (named 'NK111') into which the gene construct shown in FIG. 9A is introduced. Is a histogram showing the results confirmed by flow cytometry, Figure 9c is a histogram showing the results confirmed by flow cytometry TGFβRIIΔcyto expression in SL-K01 and NK111 cells. As confirmed in FIG. 8, CD7 / CD28 introduction showed a moderate effect on the killing of NK101 cells. In order to maximize the cancer cell killing ability of SL-K01 cells, the present inventors tried to transduce SL-K01 cells with a membrane bound IL-15 (mbIL-15), a representative NK cell coactivator, To induce resistance to the inhibitor TGF-β overexpressed TGFβRIIΔcyto deleted from the cytoplasmic domain to act as a decoy receptor. As a result, as shown in Figures 9b and 9c, IL-15 and TGFβRII that was not expressed in the parent cell line SL-K01 was confirmed that the expression in the NK111 cell line according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 유전자 변형 NK 세포주인 NK111의 항암활성 및 안전성을 비교분석한 결과로서, 도 10a는 SL-K01 및 NK111 세포의 배양 시, IL-2 유무에 따른 세포수 증식수준(population doubling level)을 나타낸 그래프이고, 도 10b는 NK101, SL-K01 및 NK111 세포에서의 NKG2D 발현을 유세포 분석을 통해 확인한 결과를 나타내는 히스토그램이며, 도 10c는 IM-9 세포주와 SL-K01 또는 NK111 세포를 1:1, 2:1, 또는 4:1 비율로 공배양 시, 5-FC 유무에 따른 IM-9 암세포의 사멸빈도를 유세포 분석을 통해 측정한 결과를 나타내는 그래프이고, 도 10d는 OVCAR-3 또는 THP-1 세포주를 SL-K01 및 NK111 세포와 공배양시, 다양한 농도의 TGFβ1을 처리한 후, 암세포 사멸능에 미치는 영향을 나타낸 그래프이다. 도 10a에서 확인되듯이, 막결합 IL-15의 도입을 통해, 본 발명의 일 실시예에 따른 NK111는 IL-2 독립적으로 세포성장이 가능하게 되었으며, 이는 생산시 편의성을 높여준다. 또한, 도 10b에서 확인되는 바와 같이, IL-15 도입을 통해 NK 세포의 대표적 활성화 수용체인 NKG2D 발현이 상향조절됨으로써 암세포에 대한 살상능을 증진시킴을 확인할 수 있었다. 아울러, 도 10c에서 확인되는 바와 같이, 5-FC 처리에 의한 방관자 살상 효과(bystander killing effect)가 더해지면, 1:1 비율에서 암세포 사멸을 90% 정도로 유도할 수 있을 만큼 살상능이 증진되었다. 또한, 도 10d에서 확인되는 바와 같이, 종양미세환경에서 과다분비되는 면역억제인자인 TGFβ1에 대한 미끼 수용체인 TGFβRIIΔcyto 도입을 통해 TGFβ1에 대한 살상능 저하에도 영향을 받지 않게 되었는데, 이는 추후 생체내 활성 감소를 어느 정도 극복할 수 있음을 기대하게 하는 특성이다.10 is a result of comparing and analyzing the anticancer activity and safety of NK111, a genetically modified NK cell line according to an embodiment of the present invention, Figure 10a shows the number of cells according to the presence or absence of IL-2 in the culture of SL-K01 and NK111 cells 10B is a histogram showing the results of confirming NKG2D expression in NK101, SL-K01 and NK111 cells through flow cytometry, and FIG. 10C is an IM-9 cell line and SL-K01. Or when the NK111 cells are co-cultured at a ratio of 1: 1, 2: 1, or 4: 1, the death frequency of IM-9 cancer cells with or without 5-FC is measured by flow cytometry, and FIG. 10D. Is a graph showing the effect on cancer cell killing ability after co-culture of OVCAR-3 or THP-1 cell line with SL-K01 and NK111 cells after treatment with various concentrations of TGFβ1. As shown in Figure 10a, through the introduction of membrane-bound IL-15, NK111 according to an embodiment of the present invention is capable of cell growth independently of IL-2, which increases the convenience in production. In addition, as confirmed in FIG. 10B, it was confirmed that NKG2D expression, a representative activating receptor of NK cells, was upregulated through the introduction of IL-15, thereby enhancing killing ability against cancer cells. In addition, as can be seen in Figure 10c, bystander killing effect (bystander killing effect) by the 5-FC treatment, killing ability was increased enough to induce cancer cell death to about 90% at 1: 1 ratio. In addition, as shown in Figure 10d, through the introduction of TGFβRIIΔcyto, a bait receptor for TGFβ1, an over-secreted immunosuppressive factor in the tumor microenvironment, it was not affected by the killing ability of TGFβ1, which would later decrease in vivo activity. It is a characteristic that expects to overcome to some extent.
아울러, 본 발명자들은 본 발명의 일 실시예에 따른 NK111 세포가 항원-특이적 항암활성을 달성할 수 있는 암항원 특이적 키메라 항원 수용체(CAR)의 전달용 플랫폼으로 작용할 수 있는지 여부를 확인하기 위해, 암항원인 EpCAM을 표적으로 하는 CAR 컨스트럭트를 제조하여(도 11a), NK111 세포에 형질도입한 SL-K10 세포주를 제조하였는데, 상기 SL-K10 세포주는 EpCAM 특이적 CAR를 정상적으로 발현하였고(도 11b), EpCAM을 과발현하는 RMG-1 세포를 대상으로 시험관내 조건에서 댜양한 효과기:표적(E:T) 비율로 공배양시 암세포 사멸능을 분석한 결과 EpCAM을 발현하지 않는 대조군 암세포인 KOC-2S와 달리 항암 활성이 현저하게 증가되었을 뿐만 아니라(도 11c), 이러한 뛰어난 항암활성의 증가는 항암 염증성 사이토카인인 INF-γ 및 그랜자임 B의 발현증가에 기인하는 것임을 확인할 수 있었다(도 11d). 이러한 결과는, 본 발명의 일 실시예에 따른 NK111 세포가 혈액암은 물론 고형암의 치료에 사용될 수 있는 차세대 CAR 발현 세포치료제의 플랫폼으로 매우 효율적으로 사용될 수 있음을 시사하는 것이다.In addition, the inventors of the present invention to determine whether the NK111 cells according to an embodiment of the present invention can act as a platform for delivery of cancer antigen-specific chimeric antigen receptor (CAR) that can achieve antigen-specific anticancer activity By constructing a CAR construct targeting EpCAM, a cancer antigen (FIG. 11A), a SL-K10 cell line transduced with NK111 cells was prepared, and the SL-K10 cell line normally expressed an EpCAM specific CAR ( 11b), KOC, which is a control cancer cell that does not express EpCAM, was analyzed as a result of analyzing cancer cell killing ability when co-cultured at RGF-1 cells overexpressing EpCAM under in vitro conditions at various effector: target (E: T) ratios. Unlike -2S, not only the anticancer activity was significantly increased (FIG. 11C), but the superior anticancer activity was confirmed to be due to the increased expression of the anticancer inflammatory cytokines INF-γ and granzyme B. It could be done (FIG. 11D). These results suggest that NK111 cells according to an embodiment of the present invention can be used very efficiently as a platform for the next generation CAR-expressing cell therapy which can be used for the treatment of solid cancer as well as blood cancer.
이하, 실시예 및 실험예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예 및 실험예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예 및 실험예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the present invention is not limited to the Examples and Experimental Examples disclosed below, but can be implemented in various forms, and the following Examples and Experimental Examples to complete the disclosure of the present invention, the present invention It is provided to fully inform the person skilled in the art the scope of the invention.
실시예 1: 본 발명의 NK 세포주의 제조 과정Example 1 Preparation of NK Cell Lines of the Invention
NK 세포 유래 세포주를 제작하기 위하여 다음과 같은 과정을 거쳤다. 환자에서 유래한 림프절외(extranodal) NK 림프암종을 40 μm 스트레이너에 올려두고, 20% 우태아혈청(GE Healthcare, USA)와 1% 항생제(Gibco, USA)가 포함된 Cellgro® 줄기세포 성장배지(SCGM; CellGenix, Germany, 이하 'NK media'라 함) 10 mL을 첨가한 후 5 mL 주사기의 피스톤의 전단력을 이용하여 단일세포로 떼어낸 후 현탁하였다. 단일세포 현탁액 중 NK 세포를 NK 분리키트(Milltenyi Biotec, Germany)를 이용하여 분리한 후 1000 U/mL의 인간 재조합 IL-2(recombinant human IL-2; rhIL-2; Prometheus Laboratories Inc., USA)가 첨가된 NK media에서 3주간 배양하였다. IL-2가 포함된 NK media를 주 2회 첨가하였으며, 분열 세포주를 30계대까지 지속 배양하여 안정적인 세포주가 형성되었음을 확인하였다(도 1a). 상기 세포주는 CD3, CD20, CD16는 발현하지 않으면서 CD56을 발현하므로, 해당 세포의 기원이 NK 세포임을 확인하였다(도 1b). 해당 세포주는 배양 시 군집(spheroid)을 형성하는 특징이 있다는 것을 현미경 상에서 확인할 수 있었으며(도 1c), Wright-Giemsa 염색법을 이용한 형태학적 분석에서 NK101 세포가 큰 과립성 림프구(large granular lymphocyte)의 특성을 가짐을 확인하였다(도 1d). NK 세포 특성인 세포 사멸인자 퍼포린(Perforin, green) 및 그랜자임 B(Granzyme B, red)의 형광염색을 통해 NK101이 퍼포린과 그랜자임 B를 발현함을 확인하였다(도 1e). NK 세포에 민감하게 반응하는 MHCⅠ 음성 세포인 K562와 공배양을 수행하였다. 카르복시플루오레세인 디아세테이트(CFDA; Invitrogen, USA)로 표지한 K562 세포를 3x105 cells/mL 농도로 24-웰 플레이트(well-plate; Corning, USA)에 파종한 뒤 NK101 세포를 다양한 효과기 세포 대 표적 비율(E:T 비율 = 1:1, 2:1, 4:1, 10:1)로 1 mL 배지에 부유한 후 상기 암세포와 24시간 동안 함께 배양하였다. 배양 이후 모든 세포를 각 웰로부터 회수하여 원심 분리한 후, 세포 펠렛을 FACS 완충액으로 현탁시켰다. 다시 원심분리하여 형성된 세포 펠렛을 1 μL LIVE/DEAD® Fixable Near-IR Dead Stain Kit(Invitrogen, USA)를 넣은 FACS 완충액 100 μL에 현탁시켜, 4℃에서 20분간 반응하였다. FACS 완충액으로 2번 세척한 뒤, 1X Annexin V binding buffer 100 μL에 Annexin V APC 5 μL(Biolegend, USA)를 희석한 용액에 세포 펠렛을 현탁시켜, 실온에서 20분간 반응하였다. 세포의 사멸 여부는 유세포 분석법을 이용하여 생존 세포(annexin V-음성/LIVE/DEAD-음성), 초기 아폽토시스 세포(annexin V-양성/LIVE/DEAD-음성), 후기 아폽토시스 세포(annexin V-양성/LIVE/DEAD-양성), 괴사(necrotic) 세포(annexin V-음성/LIVE/DEAD-양성)으로 구분하였다. 도 1의 결과를 통하여 NK101은 지속적인 계대가 가능한 불멸화 세포이고, 배양 시 군집을 형성하며, 표현형 및 기능이 기존에 알려진 NK 세포와 일치하는 특성을 가짐을 알 수 있었다. 해당세포의 세포주화 및 NK 세포의 특성을 확인함으로써 해당 세포주를 'NK101'으로 명명하였으며, 이를 대한민국 전라북도 정읍시 입신길 181번지에 소재하고 있는 한국생명공학연구원 내 한국유전자은행(Korean Collection for Type Culture, KCTC)에 2017년 8월 7일자로 기탁하여, 2017년 8월 24일자로 KCTC 13305BP의 수탁번호를 부여받았다. 상기 기탁기관은 부다페스트 조약상 국제기탁기관이다.To prepare an NK cell-derived cell line, the following process was carried out. A patient-derived extranudal NK lymphoma is placed on a 40 μm strainer and Cellgro ® stem cell growth medium containing 20% fetal bovine serum (GE Healthcare, USA) and 1% antibiotic (Gibco, USA) SCGM (CellGenix, Germany, hereinafter referred to as 'NK media') was added to 10 mL and then separated into single cells using the shear force of the piston of a 5 mL syringe and suspended. NK cells in single cell suspensions were isolated using NK isolation kit (Milltenyi Biotec, Germany) and then 1000 U / mL of recombinant human IL-2 (rhIL-2; Prometheus Laboratories Inc., USA) Incubated for 3 weeks in the added NK media. NK media containing IL-2 was added twice a week, and it was confirmed that stable cell lines were formed by continuously culturing dividing cell lines up to 30 passages (FIG. 1A). Since the cell line expresses CD56 without expressing CD3, CD20, and CD16, it was confirmed that the origin of the cells is NK cells (FIG. 1B). The cell line was confirmed under a microscope to form a spheroid in culture (Fig. 1c), and the characteristics of large granular lymphocytes with NK101 cells in morphological analysis using Wright-Giemsa staining method. It was confirmed that it has (Fig. 1d). Fluorescent staining of cell death factors, Perforin (green) and Granzyme B (Granzyme B, red), NK cell characteristics, confirmed that NK101 expressed Perforin and Granzyme B (FIG. 1E). Coculture was performed with K562, a MHCI negative cell that responds sensitively to NK cells. K562 cells labeled with Carboxyfluorescein Diacetate (CFDA; Invitrogen, USA) were seeded in 24-well plates (Corning, USA) at a concentration of 3x10 5 cells / mL and NK101 cells were treated with various effector cells. It was suspended in 1 mL medium at a target ratio (E: T ratio = 1: 1, 2: 1, 4: 1, 10: 1), and then incubated with the cancer cells for 24 hours. After incubation all cells were recovered from each well and centrifuged, and the cell pellet was suspended in FACS buffer. By suspending the cell pellet formed by centrifuging again in 1 μL LIVE / DEAD ® Fixable Near -IR Dead Stain Kit FACS buffer, 100 μL insert the (Invitrogen, USA), was reacted at 4 20 minutes. After washing twice with FACS buffer, the cell pellet was suspended in a solution diluted with 5 μL of Annexin V APC (Biolegend, USA) in 100 μL of 1 × Annexin V binding buffer, and reacted at room temperature for 20 minutes. Cell death was determined by flow cytometry using viable cells (annexin V-negative / LIVE / DEAD-negative), early apoptotic cells (annexin V-positive / LIVE / DEAD-negative), late apoptotic cells (annexin V-positive / LIVE / DEAD-positive) and necrotic cells (annexin V-negative / LIVE / DEAD-positive). 1 shows that NK101 is an immortalized cell that can be passaged continuously, forms a colony in culture, and has a characteristic that the phenotype and function are consistent with previously known NK cells. The cell line was named 'NK101' by identifying the cell line and the characteristics of the NK cell. KCTC) was deposited on August 7, 2017, and received the accession number of KCTC 13305BP on August 24, 2017. The depositary body is an international depositary body under the Budapest Treaty.
실시예 2 : NK101의 세포 분열능 분석Example 2 Analysis of Cell Division Capacity of NK101
상기 실시예 1에서 제조된 NK101 세포주에 대한 배양 조건 확립 및 분열능 비교를 위하여, NK101 세포와 대조군 세포인 NK-92 세포에 20% 우태아 혈청이 포함된 SCGM 배양배지에 다양한 농도의 IL-2를 처리한 후 MTS 분석법을 통해 두 세포주의 세포생장을 비교하였다. 도 2a와 같이 NK101은 약 8pM의 IL-2 농도에서 생장이 시작되어 500 pM에서 생장이 정체되었으며(EC50=23.3 pM), NK-92는 30 pM 농도의 IL-2 존재 시 세포 생장이 확인되며 2000 pM 농도에서 생장이 정체되어(EC50=128.3 pM) 세포생장에 있어 NK101이 NK-92 대비 낮은 농도의 IL-2를 필요로 함을 알 수 있었다. 도 2b에서 확인한 IL-2 수용체 소단위체 발현을 유세포 분석으로 확인한 결과, NK101이 고친화 IL-2 수용체인 CD25를 NK-92 대비 높게 발현함을 확인하였다. 또한 NK101 및 NK-92의 동결 후 세포 생장률 및 생존율을 동일 배양조건에서 분석한 결과 NK101은 해동 후 2일(1 계대) 이후 세포생장이 회복되나, NK-92는 해동 후 10일(5 계대) 이후 일정한 세포생장에 도달함을 확인할 수 있었다(도 2c). 두 세포의 세포생장이 안정화된 후, 두 세포의 세포증식을 비교하였을 때 16일 계대 후 수득되는 NK101 세포의 총 세포주가 NK-92 세포의 수득 예상 세포수의 약 100배임을 확인할 수 있었다(도 2d). 이는, 본 발명의 NK101 세포의 생산성이 종래의 NK-92 세포에 비해 월등하여, 경제성의 측면에서 본 발명의 NK101 세포가 매우 유리함을 시사하는 것이다.In order to establish culture conditions and compare the sequencing ability of the NK101 cell line prepared in Example 1, IL-2 at various concentrations in SCGM culture medium containing 20% fetal bovine serum in NK101 cells and NK-92 cells as control cells After treatment, the cell growth of the two cell lines was compared by MTS analysis. As shown in FIG. 2A, NK101 started to grow at an IL-2 concentration of about 8 pM, and stagnated at 500 pM (EC 50 = 23.3 pM), and NK-92 confirmed cell growth in the presence of 30 pM IL-2. The growth was stagnant at the concentration of 2000 pM (EC 50 = 128.3 pM), indicating that NK101 requires a lower concentration of IL-2 than NK-92. As a result of confirming the expression of the IL-2 receptor subunit confirmed in FIG. 2B by flow cytometry, it was confirmed that NK101 expresses CD25, which is a high affinity IL-2 receptor, higher than that of NK-92. In addition, NK101 and NK-92 after freezing cell growth rate and survival rate were analyzed under the same culture conditions, NK101 recovered cell growth after 2 days (1 passage) after thawing, but NK-92 10 days after thawing (5 passages) Since it was confirmed that reached a certain cell growth (Fig. 2c). After cell growth of the two cells was stabilized, when comparing the cell proliferation of the two cells, it was confirmed that the total cell line of NK101 cells obtained after 16 days of passage was about 100 times the expected number of cells obtained from NK-92 cells (FIG. 2d). This suggests that the productivity of the NK101 cells of the present invention is superior to that of the conventional NK-92 cells, and that the NK101 cells of the present invention are very advantageous in terms of economy.
본 발명의 NK101 세포의 종합적인 특성은 하기 [표 1]로 정리하였다.The comprehensive characteristics of NK101 cells of the present invention are summarized in the following [Table 1].
본 발명의 NK101 세포의 주요 특징Main features of NK101 cells of the invention
항목Item NK101 세포NK101 cells
임상 데이터Clinical data
연령/성별Age / gender 56세 남성56 year old male
인종race 아시안Asian
진단Diagnosis 절외 NK/T 림프종(extranodal NK/T lymphoma)Extraranodal NK / T lymphoma
세포배양Cell culture
성장 양상Growth pattern 현탁상태에서 다중세포 응집체Multicellular Aggregates in Suspension
배가시간Doubling Time 18-32시간 18-32 hours
최대 세포농도Cell concentration 1.2x106 cells/㎖1.2x10 6 cells / ml
최소 세포농도Minimum cell concentration 0.5x105 cells/㎖0.5x10 5 cells / ml
사이토카인 의존성Cytokine dependence IL-2 의존성(500 IU/㎖)IL-2 dependency (500 IU / ml)
최적 분열Optimal cleavage 매 2-3일Every 2-3 days
면역학적 특성Immunological properties
T/NK 마커T / NK marker CD2+, CD3-, CD4-, CD7-, CD8-, CD16-, CD56+ CD2 +, CD3 -, CD4 - , CD7 -, CD8 -, CD16 -, CD56 +
B 세포 마커B cell marker CD10-, CD19-, CD20- CD10 -, CD19 -, CD20 -
골수단핵구성 마커Bone Supranuclear Markers CD13-, CD14-, CD33+ CD13 -, CD14 -, CD33 +
NK 세포 활성화 수용체NK cell activating receptor NKp46+, NKp30+, NKG2D+ NKp46 + , NKp30 + , NKG2D +
NK 세포 저해성 수용체NK cell inhibitory receptor KIR2DL1-, KIR2DL2-, ILT2- KIR2DL1 -, KIR2DL2 -, ILT2 -
자손/활성화 마커Offspring / activation markers CD34-, FAS+ CD34 -, FAS +
부착 마커Attachment marker CD11a+, CD18+, CD54+ CD11a + , CD18 + , CD54 +
기능적 특성Functional characteristics
NK 활성NK activity 호-염증성(pro-inflammatory) 사이토카인 분비능(면역활성능) 및 증식능Pro-inflammatory cytokine secretion (immune activity) and proliferation
사이토카인 생산Cytokine production IFN-γ, TNF-α, GM-CSF, IL-2 등 호-염증성 사이토카인 분비 및 IL-1 수용체 길항제 및 IL-10 등 항-염증성 사이토카인 미분비Secretion of anti-inflammatory cytokines such as IFN-γ, TNF-α, GM-CSF, IL-2, and secretion of anti-inflammatory cytokines such as IL-1 receptor antagonists and IL-10
사이토카인 수용체Cytokine receptors CD25+, CD122+, CD132+, CD127- CD25 +, CD122 +, CD132 + , CD127 -
케모카인 수용체Chemokine receptor CCR4+, CCR6+, CCR7+, CCR8+, CXCR3+, CXCR4+ CCR4 + , CCR6 + , CCR7 + , CCR8 + , CXCR3 + , CXCR4 +
실시예 3 : 표면 마커 분석 상기 실시예 1에서 제조된 본 발명의 NK101 세포주는 부유세포의 특성을 가지며, 해당 세포의 표면항원의 발현도를 유세포 분석으로 확인하였다. T/NK 세포 마커의 경우, 본 발명의 NK101 세포주는 NK 세포의 표면항원인 CD2, CD56을 발현하나 CD16은 발현하지 않으며, T 세포의 표면항원인 CD3, CD4, CD8, TCRαβ 및 TCRγδ과 B세포 표면항원인 CD20, 단핵구 표현항원 CD14를 발현하지 않는 NK 세포의 표현형을 가지고 있었다(도 3a). 또한, 본 발명의 NK101 세포주는 NK 세포의 활성화 수용체인 NKG2D, NKp30, NKp46, DNAM-1, 2B4를 발현하였고, 비활성화 수용체인 CD94, NKG2A는 발현하였으나, KIR2DL1/S1/S3/S5, KIR2DL2/DL3, 및 CD85j 등은 발현하지 않았다(도 3b). 또한 세포부착 분자인 CD2, CD11a, CD19, ICAM-1을 발현하며, CD7은 미발현하였다(도 3c). 추가적으로 본 발명의 NK101 세포주는 NK 세포의 세포독성 및 면역활성화에 관여하는 CD107a, 퍼포린, 그랜자임 B은 고발현되고, TRAIL 및 FASL은 낮은 수준이긴 하나 발현되며(도 3d), NK 세포의 사이토카인 수용체 중에서는 IL-2 고친화 수용체인 CD25, IL-2 수용체(CD122, CD132) 및 IL-15 수용체인 IL-15Ra를 발현함을 확인하였다(도 3e). NK 세포주의 이동성에 관련된 케모카인 수용체 중에서는 CCR4, CCR6, CCR7, CXCR3, 및 CXCR4를 발현하였으나, 그 외의 CCR 및 CXCR은 발현되지 않았다(도 3f). 결론적으로, 본 발명의 NK101 세포주는 활성화된 NK 세포의 표현형을 보이며, 특히 CD25가 고발현된다는 점에서 다른 NK 세포주와 구분되는데, CD25는 활성화된 NK 세포의 지표로 특히 분열능이 높은 NK 세포의 표지자로 알려 있어(Clausen, J. et al., Immunobiology, 207(2): 85-93, 2003), 본 발명의 NK101 세포주는 세포치료제의 대량생산에 매우 적합한 세포주임을 알 수 있다.본 발명의 NK101 세포의 다양한 세포표지자의 발현여부는 하기 [표 2]로 정리하였다. Example 3 Surface Marker Analysis The NK101 cell line of the present invention prepared in Example 1 had the characteristics of floating cells, and the expression level of the surface antigen of the cells was confirmed by flow cytometry. In the case of the T / NK cell marker, the NK101 cell line of the present invention expresses CD2 and CD56, which are surface antigens of NK cells, but does not express CD16, but CD3, CD4, CD8, TCRαβ and TCRγδ and B cells, which are surface antigens of T cells. It had a phenotype of NK cells not expressing the surface antigen CD20 and monocyte expressing antigen CD14 (FIG. 3A). In addition, the NK101 cell line of the present invention expressed NKG2D, NKp30, NKp46, DNAM-1, 2B4, which are activating receptors of NK cells, and expressed inactive receptors, CD94, NKG2A, but KIR2DL1 / S1 / S3 / S5, KIR2DL2 / DL3. , And CD85j and the like were not expressed (FIG. 3B). In addition, they express the cell adhesion molecules CD2, CD11a, CD19, ICAM-1, CD7 was not expressed (Fig. 3c). In addition, the NK101 cell line of the present invention is highly expressed CD107a, Perforin, Granzyme B, which is involved in the cytotoxicity and immune activation of NK cells, and TRAIL and FASL are expressed at a low level (Fig. 3d), cytokines of NK cells Among the caine receptors, it was confirmed that they express CD25, IL-2 receptors (CD122, CD132) and IL-15Ra, which are IL-2 high affinity receptors (FIG. 3E). Among chemokine receptors involved in the mobility of NK cell lines, CCR4, CCR6, CCR7, CXCR3, and CXCR4 were expressed, but other CCRs and CXCRs were not expressed (FIG. 3F). In conclusion, the NK101 cell line of the present invention exhibits the phenotype of activated NK cells, and is distinguished from other NK cell lines in that CD25 is highly expressed. CD25 is an indicator of activated NK cells and is a marker of NK cells with high division ability. (Clausen, J. et al ., Immunobiology , 207 (2): 85-93, 2003), it can be seen that the NK101 cell line of the present invention is a very suitable cell line for mass production of cell therapeutics. Expression of various cell markers of cells is summarized in Table 2 below.
본 발명의 NK101 세포의 마커 특성Marker Properties of NK101 Cells of the Invention
항원antigen 발현여부Expression 항원antigen 발현여부Expression
계통 마커Strain marker 기능성 마커Functional marker
CD1aCD1a -- CD95 (FAS)CD95 (FAS) ++++++
CD2CD2 ++++++ CD178 (FAS-L)CD178 (FAS-L) ++
CD3CD3 -- CD107aCD107a ++++++
CD4CD4 -- TRAIL (CD253)TRAIL (CD253) ++
CD5CD5 -- 퍼포린Perforin ++++++
CD8CD8 -- 그랜자임 BGranzyme B ++++++
CD10CD10 -- IFNγIFNγ ++++++
CD11aCD11a ++++++ 케모카인 수용체Chemokine receptor
CD11cCD11c -- CCR1CCR1 ++
CD13CD13 ++ CCR2CCR2 --
CD14CD14 ++ CCR3CCR3 --
CD16CD16 -- CCR4CCR4 ++++++
CD18CD18 ++++++ CCR5CCR5 ++
CD19CD19 -- CCR6CCR6 ++++++
CD23CD23 -- CCR7CCR7 ++++++
CD33CD33 ++++++ CCR8CCR8 ++++
CD45CD45 ++++++ CCR9CCR9 ++
CD56CD56 ++++++ CXCR1CXCR1 --
CD57CD57 -- CXCR2CXCR2 --
CD161CD161 ++++ CXCR3CXCR3 ++++++
활성화 수용체Activating receptor CXCR4CXCR4 ++++++
2B42B4 ++++++ CXCR5CXCR5 --
NKp30NKp30 ++++ CXCR6CXCR6 --
NKp46NKp46 ++++++ CXCR7CXCR7 --
NKG2DNKG2D ++++ 사이토카인 수용체Cytokine receptors
저해 수용체Inhibitory receptor CD25(IL-2Ra)CD25 (IL-2Ra) ++++++
CD85j(ILT2)CD85j (ILT2) -- CD122(IL-2Rb)CD122 (IL-2Rb) ++++
CD94CD94 ++++++ CD132(공통 γ 사슬)CD132 (common γ chain) ++++++
CD158(KIR2DL1/S1/S3/S5)CD158 (KIR2DL1 / S1 / S3 / S5) -- CD127(IL-7Ra)CD127 (IL-7Ra) --
CD158b(KIR2DL2/DL3)CD158b (KIR2DL2 / DL3) -- 기타 마커Guitar markers
CD159aCD159a ++++++ TCRαβTCRαβ --
부착분자Adhesion molecule TCRγδTCRγδ --
DNAM-1(CD226)DNAM-1 (CD226) ++++++
ICAM-1(CD54)ICAM-1 (CD54) ++++++
CD62LCD62L ++++
-, 음성; +, < 10% 양성; ++, 10-69% 양성; +++, 70-100% 양성(%는 세포 집단 내 양성 세포의 비율을 나타냄)-, voice; +, <10% positive; ++, 10-69% positive; +++, 70-100% positive (% represents percentage of positive cells in cell population)
실시예 4 : NK101의 CD56 및 D62L 발현양상 확인 NK101 세포의 특성을 분석하기 위하여 NK 세포의 표지마커인 CD56 및 CD62L의 발현양상을 NK-92와 초도배양 NK 세포와 비교하여 유세포 분석을 이용하여 확인하였다. 도 4a에서와 같이 NK101 세포는 NK-92 세포 대비 CD56 발현 정도가 낮은 CD56dim NK 세포로 확인되었다. 또한 도 4b의 등고선 그래프와 같이 NK101 세포는 CD62L 마커를 고발현하는데, 이는 NK-92 세포에서는 미발현되고, 일부 초도배양 NK 세포에서 한정적으로 발현되는 마커이다. 일반적인 초도배양 NK 세포에서는 CD56의 발현에 따라 CD56dim, CD56bright으로 구분할 수 있고 이는 각각 세포독성 또는 사이토카인 생산이 더 우세한 특성을 가진 2개의 군집으로 구성된다고 여겨진다. CD56bright NK 세포는 높은 세포 증식능, 사이토카인에 의한 활성화 시 IFN-γ를 분비, 낮은 암세포 사멸능을 보이며, CD56dim NK 세포는 CD56bright NK 세포와는 반대로 세포 증식능은 낮고, 표적세포의 인지에 의해서 IFN-γ를 분비하며, 높은 세포독성을 가지는 특성이 있다. 최근 검증된 CD56dimCD62L+ NK 세포는(Juelke, K et al,, Blood, 116(8): 1299-1307, 2010; Luetke-Eversolh, M et al., Front. Immunol., 4: 499, 2013) CD56bright, CD56dim NK 세포의 특성을 모두 가지고 있는 다기능성의 NK 세포로 보고된다. NK101은 사이토카인 자극에 의해 증식 및 IFN-γ를 분비할 수 있고(도 5a), 표적세포 인지 시에도 다양한 종류의 사이토카인을 분비함이 확인되었다(도 5b). 결론적으로 NK101은 CD56dimCD62L+ NK 세포의 표현형과 특성을 가지고 있으며, CD56dimCD62L+ 특성 마커를 발현하는 초도배양 NK 세포 혹은 체외 증식(ex vivo expanded) 초도배양 NK 세포가 보고된 바가 있다 하더라도 NK101은 불멸화된 NK 세포주로서 이들과는 차별되며, 이는 기존 알려진 NK 세포주 중에서도 찾아볼 수 없는 고유 특성이라고 할 수 있다. 실시예 5 : NK101의 시험관내 암세포 사멸능 및 세포독성 메커니즘 규명 Example 4 Identification of CD56 and D62L Expression of NK101 In order to analyze the characteristics of NK101 cells, expression of CD56 and CD62L, markers of NK cells, was identified by flow cytometry in comparison with NK-92 and primary cultured NK cells. It was. As shown in FIG. 4A, NK101 cells were identified as CD56 dim NK cells having a lower CD56 expression level than NK-92 cells. In addition, as shown in the contour graph of FIG. 4B, NK101 cells express high CD62L markers, which are unexpressed in NK-92 cells and are expressed in limited numbers in some cultured NK cells. In general cultured NK cells, CD56 dim and CD56 bright can be classified according to the expression of CD56, which is thought to be composed of two populations, each of which is more dominant in cytotoxicity or cytokine production. CD56 bright NK cells show high cell proliferation ability, secrete IFN-γ upon activation by cytokines, and show low cancer cell killing ability. CD56 dim NK cells have low cell proliferation ability, as opposed to CD56 bright NK cells, Secrete IFN-γ and have high cytotoxicity. Recently validated CD56 dim CD62L + NK cells (Juelke, K et al ,, Blood , 116 (8): 1299-1307, 2010; Luetke-Eversolh, M et al ., Front. Immunol ., 4: 499, 2013 ) CD56 bright , CD56 dim NK cells are reported as a multi-functional NK cells that have both characteristics. NK101 can secrete proliferation and IFN- [gamma] by cytokine stimulation (FIG. 5a), and it has been confirmed that it secretes various types of cytokines even upon recognition of target cells (FIG. 5b). In conclusion, NK101 has the phenotype and characteristics of CD56 dim CD62L + NK cells, and NK101 has been reported for either primary cultured NK cells or ex vivo expanded primary cultured NK cells expressing CD56 dim CD62L + characteristic markers. Is an immortalized NK cell line, which is distinguished from them, which can be said to be a unique characteristic not found among known NK cell lines. Example 5: In vitro cancer cell killing ability and cytotoxicity mechanism of NK101
상기 실시예 1에서 제조되어 표현형이 확인된 NK101 세포주의 암세포 사멸능을 확인하기 위하여 하기와 같은 실험을 수행하였다. 구체적으로, CFDA로 표지한 인간-유래 암세포주인 THP-1, KG-1, HL-60(급성골수성백혈병), HCT116(대장암), U373(뇌암), A2780(난소암), A549(폐 선암종), 및 SK-BR3(유방암) 세포를 각각 24-웰 플레이트에 3x105 cells/mL 농도로 1 mL 씩 파종하였다. 이후 NK101 세포 및 대조군을 다양한 효과기 세포 대 표적 세표 비율(E:T 비율=1:1, 2:1, 및 4:1)로 1 mL 배지에 부유한 후 상기 암세포와 24시간 동안 함께 배양하였다. 배양 이후 모든 세포를 수집한 뒤 각 웰로부터 세포를 회수하여 원심분리한 후, 세포 펠렛을 FACS 완충액으로 현탁시켰다. 다시 원심분리하여 형성된 세포 펠렛을 1 μL LIVE/DEAD® Fixable Near-IR Dead Stain Kit를 희석한 100 μL의 FACS 완충액에 현탁시켜, 4℃에서 20분간 반응하였다. FACS 완충액으로 2번 세척한 뒤, 1X Annexin V binding buffer 100 μL에 Annexin V APC 5 μL (Biolegend, USA)를 희석한 용액에 세포 펠렛을 현탁시켜, 실온에서 20분간 반응하였다. 세포의 사멸 여부는 유세포 분석법을 이용하여 생존 세포(annexin V-음성/LIVE/DEAD-음성), 초기 아폽토시스 세포(annexin V-양성/LIVE/DEAD-음성), 후기 아폽토시스 세포(annexin V-양성/LIVE/DEAD-양성), 괴사(necrotic) 세포(annexin V-음성/LIVE/DEAD-양성)으로 구분하였다. 도 6a에서 확인되는 바와 같이 NK101 세포 투여군의 경우 다양한 인간 암세포주에 대하여 세포 살상능을 보임을 확인할 수 있었다. NK101 세포의 세포 살상능의 주요 표지 인자를 확인하기 위하여 NK 세포에 고발현되는 CD25, CD62L, DNAM-1, CD54(ICAM-1)에 대한 중화항체를 처리한 후 THP-1(도 6b), K562(도 6c), Jurkat(도 6d)와 4:1의 효과기 세포 대 표적세포 비율로 공배양한 뒤 세포사멸을 분석하였다. 그 결과 THP-1에서는 DNAM-1 및 CD54, K562에서는 CD54, Jurkat에서는 CD25, CD62L, CD54 등의 중화항체 처리에 의해 NK101의 세포 사멸능이 감소함을 확인할 수 있었다. 또한 도 6e에서 THP-1과 NK101의 공배양 시 DNAM-1 및 CD54의 중화항체를 동시 처리할 경우 상승성으로(synergestic) 세포사멸능이 감소함을 확인할 수 있었다. 해당 결과를 토대로 NK101에 의한 세포살상능에 DNAM-1, CD25, CD62L 및 CD54 등의 표지인자가 주로 관여함을 알 수 있다.In order to confirm the cancer cell killing ability of the NK101 cell line prepared in Example 1 and confirmed phenotype, the following experiment was performed. Specifically, CFDA-labeled human-derived cancer cell lines THP-1, KG-1, HL-60 (acute myeloid leukemia), HCT116 (colon cancer), U373 (brain cancer), A2780 (ovarian cancer), A549 (lung adenocarcinoma) ), And SK-BR3 (breast cancer) cells were seeded in 1-well at 3x10 5 cells / mL concentration in 24-well plates, respectively. NK101 cells and controls were then suspended in 1 mL medium at various effector cell-to-target wash ratios (E: T ratio = 1: 1, 2: 1, and 4: 1) and then incubated with the cancer cells for 24 hours. After incubation all cells were collected and cells were harvested from each well, centrifuged and the cell pellet suspended in FACS buffer. By suspending the cell pellet formed by centrifuging again in 1 μL LIVE / DEAD ® Fixable FACS buffer, Near-IR Dead Stain 100 μL diluted Kit, was reacted at 4 20 minutes. After washing twice with FACS buffer, the cell pellet was suspended in a solution diluted with 5 μL of Annexin V APC (Biolegend, USA) in 100 μL of 1 × Annexin V binding buffer, and reacted at room temperature for 20 minutes. Cell death was determined by flow cytometry using viable cells (annexin V-negative / LIVE / DEAD-negative), early apoptotic cells (annexin V-positive / LIVE / DEAD-negative), late apoptotic cells (annexin V-positive / LIVE / DEAD-positive) and necrotic cells (annexin V-negative / LIVE / DEAD-positive). As shown in FIG. 6A, the NK101 cell-administered group showed cell killing ability against various human cancer cell lines. THP-1 (FIG. 6B) after treatment with neutralizing antibodies to CD25, CD62L, DNAM-1, and CD54 (ICAM-1), which are highly expressed in NK cells, to identify the major markers of cell killing ability of NK101 cells, Apoptosis was analyzed after co-culture with K562 (FIG. 6C), Jurkat (FIG. 6D) and an effector cell-to-target cell ratio of 4: 1. As a result, the cell killing ability of NK101 was reduced by treatment of neutralizing antibodies such as DNAM-1 and CD54 in KP, CD562 in K562 and CD25, CD62L and CD54 in Jurkat. In addition, in co-culture of THP-1 and NK101 in FIG. 6E, synergistically, apoptosis was reduced when the neutralizing antibodies of DNAM-1 and CD54 were simultaneously treated. Based on the results, it can be seen that markers such as DNAM-1, CD25, CD62L, and CD54 are mainly involved in apoptosis by NK101.
실시예 6: 기능강화 NK 세포주 제조Example 6: Preparation of enhanced NK cell line
KHYG-1 및 NK-92는 기존에 구축된 NK세포주 들 중, 암세포 사멸능이 높다고 알려져있고 이들은 공통적으로 CD7, CD28을 발현하는 특징을 갖는 반면, NK101은 두 보조자극인자의 발현이 전혀 되지 않음에 착안하여, 본 발명자들은 상기 NK101에 CD7, 및 CD28를 암호화하는 유전자를 형질도입할 경우 암세포 사멸능이 증진되는지의 여부를 평가하고자 하였다. KHYG-1 and NK-92 are known to have high cancer cell killing ability among the established NK cell lines, and they have the characteristic of expressing CD7 and CD28 in common, whereas NK101 does not express both co-stimulatory factors at all. With this in mind, the present inventors attempted to evaluate whether cancer cell killing ability is enhanced when the NK101 is transduced with genes encoding CD7 and CD28.
6-1: NK 세포 활성화 인자 및 세포자살 유전자 도입 컨스트럭트의 제조6-1: Preparation of NK Cell Activator and Apoptosis Gene Construct
본 발명자들은 기능강화 NK 세포주를 제작하기 위하여 상기 실시예 1에서 제조된 NK101 세포에 CD7(서열번호 15)를 암호화하는 핵산분자(서열번호 16) 및 CD28 면역세포 보조자극인자(서열번호 17)를 암호화하는 핵산분자(서열번호 18)가 2A 펩타이드(19)를 암호화하는 핵산분자(서열번호 20)로 연결되고, 추가적으로 CD::UPRT(서열번호 21)을 암호화하는 핵산분자(서열번호 22)가 IRES(서열번호 23)로 연결된 유전자 컨스트럭트를 제조하여 렌티바이러스 제조용 트랜스퍼 벡터 pWPT에 클로닝하여 pWPT-CD7-CD28-CD::UPRT를 제조하였다(도 7b).The present inventors prepared a nucleic acid molecule (SEQ ID NO: 16) and a CD28 immune cell co-stimulatory factor (SEQ ID NO: 17) encoding CD7 (SEQ ID NO: 15) to the NK101 cells prepared in Example 1 to produce a functionally enhanced NK cell line. The nucleic acid molecule encoding (SEQ ID NO: 18) is linked to the nucleic acid molecule encoding the 2A peptide (SEQ ID NO: 20), and the nucleic acid molecule encoding the CD :: UPRT (SEQ ID NO: 21) is added. Gene constructs linked with IRES (SEQ ID NO: 23) were prepared and cloned into the transfer vector pWPT for lentiviral production to prepare pWPT-CD7-CD28-CD :: UPRT (FIG. 7B).
6-2: 렌티바이러스 제조6-2: Lentivirus Production
렌티바이러스 생산을 위하여 48시간 또는 72시간 배양한 Lenti-X 세포에 상기 실시예 6-1에서 제조된 트랜스퍼 플라스미드 12 μg와 패키징 플라스미드 psPAX2 12 μg 및 외피 플라스미드 pMD2.G 2.4 μg을 리포펙타민(Lipofectamine; Invitrogen, USA)과 혼합하여 Lenti-X 293T 세포(Clontech, USA)에 형질도입하였다. 37℃에서 6시간 배양 후, 배지를 제거하고 신선한 성장배지를 첨가하였다. 세포를 추가로 48시간 배양 후, 배지 내에 생선된 렌티바이러스를 수거하여 5분간 원심분리(4℃, 4000 rpm)하고 상층액을 취한 후 0.45 μm 필터(Millipore, USA)를 이용하여 세포 찌꺼기들을 제거하였다. 렌티바이러스를 농축하기 위하여 여과된 렌티바이러스 상층액에 Lenti-X concentrator (Clontech, USA) 시약을 넣은 후 4℃에서 밤새 보관하였다. 최종단계로, 렌티바이러스-concentrator 혼합액을 4000 rpm에서 60분간 원심분리한 후 상층액을 제거하고 펠렛 형태로 회수된 렌티바이러스를 1~2 mL의 배양액으로 희석하고 사용 시까지 -80℃에 보관하였다.In the Lenti-X cells cultured for 48 hours or 72 hours for lentiviral production, 12 μg of the transfer plasmid prepared in Example 6-1, 12 μg of the packaging plasmid psPAX2 and 2.4 μg of the envelope plasmid pMD2.G were lipofectamine. Invitrogen, USA) and transduced Lenti-X 293T cells (Clontech, USA). After 6 hours of incubation at 37 ° C, the medium was removed and fresh growth medium was added. After 48 hours of incubation, the lentivirals collected in the medium were collected, centrifuged for 5 minutes (4 ° C., 4000 rpm), the supernatant was collected, and the cell debris was removed using a 0.45 μm filter (Millipore, USA). It was. To concentrate the lentiviral, Lenti-X concentrator (Clontech, USA) reagent was added to the filtered lentiviral supernatant and stored at 4 ° C. overnight. As a final step, the lentiviral-concentrator mixture was centrifuged at 4000 rpm for 60 minutes, the supernatant was removed, and the recovered lentivirus in pellet form was diluted with 1-2 mL of culture and stored at -80 ° C until use. .
6-3: NK 세포 활성화 인자 및 세포자살 유전자 도입 세포주 제작6-3: Production of NK Cell Activating Factor and Apoptotic Gene Line
상기 실시예 6-2에서 제조된 CD7-CD28-CD::UPRT 렌티바이러스를 프로타민 설페이트(Sigma, USA)를 이용하여 NK101 세포에 형질감염한 후 37℃에서 4시간 배양한다. 총 2번의 감염과정을 수행한 후, 감염 72시간 후 면역세포 공동자극인자인 CD7과 CD28의 발현을 유세포 분석으로 확인하고, 1주일 뒤 형광활성 세포분리기(Fluorescence activated cell sorter, BD FACSMelody, BD, USA)를 이용하여 도입유전자를 발현하는 NK101 세포만을 선택적으로 분리하였다. 분리 증식한 NK101-CD7-CD28-CD::UPRT 세포주에서 막표면 단백질인 CD7과 CD28의 발현은 유세포 분석으로 확인하였다(도 7c). 본 발명자들은 CD7-CD28-CD::UPRT를 발현하는 유전자 변형 NK101 세포주를 'SL-K01'으로 명명하였다.The CD7-CD28-CD :: UPRT lentivirus prepared in Example 6-2 was transfected into NK101 cells using protamine sulfate (Sigma, USA) and then incubated at 37 ° C for 4 hours. After two times of infection, 72 hours after infection, the expression of CD7 and CD28, the immune cell co-stimulatory factors, was confirmed by flow cytometry, and 1 week later, the fluorescence activated cell sorter (BD FACSMelody, BD, USA) was used to selectively isolate only NK101 cells expressing the transgene. Expression of the membrane surface proteins CD7 and CD28 in the isolated and propagated NK101-CD7-CD28-CD :: UPRT cell lines was confirmed by flow cytometry (FIG. 7C). We named the genetically modified NK101 cell line expressing CD7-CD28-CD :: UPRT as 'SL-K01'.
6-4: 역전사 중합효소 연쇄반응(RT-PCR)6-4: Reverse Transcription Polymerase Chain Reaction (RT-PCR)
세포 내 발현 단백질인 CD::UPRT는 RNA를 분리하여 역전사 중합효소 연쇄반응(RT-PCR)을 이용하여 발현을 확인하였다(도 7d). 전체 RNA는 RNA 추출 키트(iNtRON, South Korea)을 이용하여 분리하였다. 역전사 중합효소 연쇄반응은 QuantiTect Reverse Transcription Kit(QIAGEN, Germany)을 이용하여 cDNA를 합성한 후 합성된 cDNA를 Taq 폴리머라제와 프라이머 등과 혼합한 후 중횹효소연쇄반응(PCR)을 수행하였다. 증폭된 PCR 산물은 1% 아가로스 겔에서 전기영동하여 CD::UPRT 유전자 존재여부를 확인하였다. 그 결과 도 7d에서 확인되는 바와 같이, 형질도입된 CD::UPRT 유전자는 정상적으로 발현이 됨을 확인할 수 있었다.CD :: UPRT, an intracellular expression protein, isolated RNA and confirmed its expression using reverse transcriptase polymerase chain reaction (RT-PCR) (FIG. 7D). Total RNA was isolated using RNA extraction kit (iNtRON, South Korea). Reverse transcription polymerase chain reaction was carried out using a QuantiTect Reverse Transcription Kit (QIAGEN, Germany) to synthesize cDNA, and then mixed the synthesized cDNA with Taq polymerase and primers, and then subjected to heavy enzyme chain reaction (PCR). The amplified PCR product was electrophoresed on a 1% agarose gel to confirm the presence of the CD :: UPRT gene. As a result, as shown in Figure 7d, it was confirmed that the transduced CD :: UPRT gene is normally expressed.
실시예 7: NK 세포 공동활성 인자 및 세포자살 유전자에 의한 NK 세포 활성화 증가 확인Example 7: Confirmation of Increased NK Cell Activation by NK Cell Coactivator and Apoptosis Gene
7-1: CD7 및 CD28 도입에 의한 NK 세포 살상능 검증7-1: Verification of NK cell killing ability by introducing CD7 and CD28
상기 실시예 6에서 제조한 SL-K01 세포의 세포 살상능을 분석하기 위하여 HDLM-2(인간 호지킨 림프종, Hodgkin's lymphoma), IM9(인간 림프아세포종), Jeko-1(인간 외투세포 림프종) 및 K562(만성골수성백혈병)와 공배양을 수행하였다. Celltracker violet dye(CTV; Invitrogen, USA)로 표지한 타깃 종양 세포주를 3x105/mL의 농도로 준비한 후, 24-웰 플레이트에 1 mL씩 분주하였다. 타깃 종양 세포주에 대비하여 NK101 및 SL-K01 세포를 원하는 비율로 배양액에 현탁한 후 상기 타깃 종양 세포주가 들어있는 24-웰 플레이트에 1 mL씩 분주하여 37℃에서 24시간동안 공배양하였다. 이 결과, 모든 타깃 세포주에서 세포 살상능이 증가함을 확인할 수 있었다(도 8a).In order to analyze the cell killing ability of the SL-K01 cells prepared in Example 6, HDLM-2 (human Hodgkin's lymphoma), IM9 (human lymphoblastoma), Jeko-1 (human mantle cell lymphoma) and K562 (Chronic myeloid leukemia) and co-culture were performed. Target tumor cell lines labeled with Celltracker violet dye (CTV; Invitrogen, USA) were prepared at a concentration of 3 × 10 5 / mL, and then dispensed in 1 mL portions in 24-well plates. In contrast to the target tumor cell line, NK101 and SL-K01 cells were suspended in the culture medium at a desired ratio, and then 1 mL was dispensed into 24-well plates containing the target tumor cell line and co-cultured at 37 ° C. for 24 hours. As a result, it was confirmed that the cell killing ability increased in all target cell lines (Fig. 8a).
7-2: 세포자살 유전자 전구물질 투여에 따른 NK 세포 사멸 확인7-2: Confirmation of NK cell death following apoptotic gene precursor administration
상기 실시예 6에서 제조한 SL-K01 세포에 도입된 세포자살 유전자인 CD::UPRT의 효과를 분석하기 위하여, 20% FBS 조성의 SCGM 배지에 세포수가 2x104 cells/90 μL/well이 되도록 준비하여 96-웰 플레이트(Corning, USA)에 각각 분주하고, 농도별(각각 0, 0.1, 1, 10, 100, 1000 μg/mL)로 희석한 전구물질 5-Fluorocytosine(5-FC; Sigma, USA) 또는 양성대조군(1% Triton-X)을 웰에 10 μL씩 접종하여, 5% CO2, 37℃ 조건에서 48시간 동안 배양하였다. 이어서 MTS 용액(Promega, USA)을 96-웰 플레이트에 웰당 20 μL씩 넣어주고 5% CO2, 37℃ 배양기에서 4시간 동안 반응시킨 다음, SpectraMax 190 Microplate Reader(Molecular Device, USA)를 이용하여 490 nm에서 흡광도를 측정하였다. 그 결과 CD::UPRT를 발현하는 세포에서 5-FC 농도 의존적 세포 사멸을 확인할 수 있었다(도 8b). CTV로 표지한 IM9 세포에 SL-K01 세포와 100 μg/mL 5-FC를 함께 처리하여 48시간 배양 후 유세포 분석법으로 세포 사멸 효과를 확인하였다. 도 8c에 나타난 결과에서 확인된 바와 같이, 5-FC를 처리한 실험군에서 세포사멸이 더욱 증가하였다. 결론적으로, 전구물질을 투여하였을 때, 세포자살 유전자가 도입된 NK 세포뿐 아니라, 표적 암세포까지 사멸하는 방관자 효과(bystander effect)에 의해 치료 효과를 극대화시킬 수 있다.In order to analyze the effect of CD :: UPRT, which is an apoptosis gene introduced into SL-K01 cells prepared in Example 6, the cells were prepared in 20% FBS composition in SCGM medium with 2x10 4 cells / 90 μL / well Aliquots in 96-well plates (Corning, USA) and diluted to concentrations (0, 0.1, 1, 10, 100, 1000 μg / mL, respectively), 5-Fluorocytosine (5-FC; Sigma, USA). ) Or positive control group (1% Triton-X) was inoculated in 10 μL of the wells, and incubated for 48 hours at 5% CO 2 , 37 ° C. Subsequently, MTS solution (Promega, USA) was placed in a 96-well plate at 20 μL per well and reacted for 5 hours in a 5% CO 2 , 37 ° C. incubator, followed by 490 using a SpectraMax 190 Microplate Reader (Molecular Device, USA). Absorbance was measured at nm. As a result, it was confirmed that 5-FC concentration-dependent cell death in cells expressing CD :: UPRT (FIG. 8B). C9-labeled IM9 cells were treated with SL-K01 cells and 100 μg / mL 5-FC together for 48 hours, and then cell death was confirmed by flow cytometry. As confirmed by the results shown in FIG. 8C, apoptosis was further increased in the experimental group treated with 5-FC. In conclusion, when the precursor is administered, the therapeutic effect can be maximized by the bystander effect of killing not only NK cells into which apoptotic genes have been introduced, but also target cancer cells.
실시예 8: mbIL-15과 TGFβRIIΔcyto 도입Example 8: Introduction of mbIL-15 and TGFβRIIΔcyto
본 발명자들은 상기 실시예 6에서 제조된 SL-K01 세포의 세포 살상능을 더욱 증진시키기 위하여 막 결합 IL-15(mbIL-15, 서열번호 24)를 암호화하는 핵산분자(서열번호 25)와 TGFβRII의 세포질 도메인을 제거한 TGFβRIIΔcyto(서열번호 26)를 암호화하는 핵산분자(서열번호 27)가 2A 펩타이드(서열번호 19)를 암호화하는 핵산분자(서열번호 20)로 연결된 유전자 컨스트럭트를 제조하여 렌티바이러스 제조용 트랜스퍼 벡터 pWPT에 클로닝하여 pWPT-mbIL-15-TGFβRIIΔcyto를 제조하였다(도 9a). 실시예 6에서 명시한 것과 동일한 방법으로 mbIL-15-TGFβRII 렌티바이러스를 제조한 후 SL-K01 세포에 감염하였으며, 형광활성 세포분리기를 이용하여 도입유전자를 발현하는 SL-K01 세포만을 선택적으로 분리하였다. 분리증식한 SL-K01-mbIL-15-TGFβRII 세포주에서 막표면 단백질인 IL-15과 TGFβRII의 발현은 유세포 분석법으로 확인하였다(도 9b). mbIL-15-TGFβRII를 발현하는 SL-K01 세포주를 'NK111'으로 명명하였다.The present inventors of the nucleic acid molecule (SEQ ID NO: 25) and TGFβRII encoding the membrane-bound IL-15 (mbIL-15, SEQ ID NO: 24) to further enhance the cell killing capacity of the SL-K01 cells prepared in Example 6 Nucleic acid molecule (SEQ ID NO: 27) encoding TGFβRIIΔcyto (SEQ ID NO: 26) from which the cytoplasmic domain was removed was prepared by constructing a gene construct linked to a nucleic acid molecule (SEQ ID NO: 20) encoding a 2A peptide (SEQ ID NO: 19) for the production of lentiviral. PWPT-mbIL-15-TGFβRIIΔcyto was prepared by cloning into the transfer vector pWPT (FIG. 9A). MbIL-15-TGFβRII lentiviral was prepared in the same manner as described in Example 6, and then infected with SL-K01 cells, and only SL-K01 cells expressing the transgene were selectively isolated using a fluorescent activated cell separator. Expression of membrane surface proteins IL-15 and TGFβRII in the isolated SL-K01-mbIL-15-TGFβRII cell line was confirmed by flow cytometry (FIG. 9B). The SL-K01 cell line expressing mbIL-15-TGFβRII was named 'NK111'.
실시예 9: mbIL-15 도입에 의한 세포 분열능 확인 및 TGFβRIIΔcyto 도입에 따른 내인성 TGFβ에 의한 면역저항성 억제 확인Example 9 Confirmation of Cell Division Capability by Introducing mbIL-15 and Confirmation of Inhibition of Immune Resistance by Endogenous TGFβ by Introduction of TGFβRIIΔcyto
9-1: IL-2 의존성 증식 분석9-1: IL-2 Dependent Proliferation Assay
상기 실시예 8에서 제조된 NK111 세포의 IL-2 비의존적 NK 세포 분열능을 확인하기 위하여, SL-K01 세포 및 NK111 세포를 2x105 cells/mL 농도로 250 U/mL IL-2 유무 조건에서 48시간 주기로 배양한 후 세포를 회수하여 트립판 블루 염색법(Trypan Blue)으로 생존 세포 수를 측정하였다. 도 10a에서 확인할 수 있듯이, SL-K01 세포는 IL-2 결핍조건에서는 세포증식이 이루어지지 않으나, IL-2 처리 조건에서는 세포 성장을 확인할 수 있었다. mbIL-15을 도입한 NK111 세포는 IL-2 처리 조건에서 SL-K01과 유사하게 증식함을 관찰하였다. IL-2 결핍조건에서도 일정한 PDL을 유지하며 증식하는 것을 관찰하였다(도 10a). 해당 결과는 NK111 기반 세포주 치료제의 경우 배양보조제인 IL-2의 결핍 조건만으로도 높은 생산성을 가질 수 있음을 시사한다. 아울러, NK101, SL-K01, NK111 세포주에서 자연 살상 세포 활성화 수용체 중 하나인 CD314(NKG2D)의 발현이 유세포 분석에 의해 확인되었다(도 10b). In order to confirm the IL-2 independent NK cell division ability of the NK111 cells prepared in Example 8, the SL-K01 cells and NK111 cells were 48 × under 250 U / mL IL-2 at a concentration of 2 × 10 5 cells / mL. After culturing in a time cycle, the cells were collected and the number of viable cells was measured by trypan blue staining (Trypan Blue). As can be seen in Figure 10a, SL-K01 cells were not cell proliferation under IL-2 deficiency conditions, cell growth was confirmed in the IL-2 treatment conditions. It was observed that NK111 cells introduced with mbIL-15 proliferated similarly to SL-K01 under IL-2 treatment conditions. Proliferation was observed while maintaining a constant PDL even in an IL-2 deficient condition (FIG. 10A). The results suggest that NK111-based cell line therapeutics may have high productivity with only a deficiency condition of IL-2, a culture supplement. In addition, expression of CD314 (NKG2D), one of the natural killer cell activation receptors, was confirmed by flow cytometry in NK101, SL-K01, and NK111 cell lines (FIG. 10B).
9-2: 암세포 사멸능 분석9-2: Cancer Cell Killing Capacity Analysis
mbIL-15 도입에 따른 NK111 세포의 세포 사멸능 확인을 위하여 IM9(인간 림프아세포)와 공배양을 수행하였다. CTV로 표지한 IM9 세포에 SL-K01 세포 및 NK111 세포와 함께 5-FC를 처리하여 48시간 배양 후 유세포 분석법으로 세포 사멸 효과를 확인하였다. mbIL-15이 도입된 NK111 세포는 표적세포에 대한 암세포 사멸능이 증가하였으며, 5-FC를 처리한 실험군에서는 세포사멸이 현저히 증가하였다(도 10c).Coculture with IM9 (human lymphoblasts) was performed to confirm cell killing ability of NK111 cells following the introduction of mbIL-15. C9-labeled IM9 cells were treated with 5-FC together with SL-K01 cells and NK111 cells, and cultured for 48 hours, and cell death was confirmed by flow cytometry. NK111 cells into which mbIL-15 was introduced increased cancer cell killing ability against target cells, and apoptosis was significantly increased in the experimental group treated with 5-FC (FIG. 10C).
9-3: TGFβ1에 의한 세포사멸 저해 영향 분석9-3: Analysis of effect of inhibition of apoptosis by TGFβ1
아울러, 본 발명자들은 환자의 체내에 다량 존재하는 면역억제 인자로 잘 알려진 TGFβ1 면역억제 효과가 NK111 세포에 도입된 TGFβRIIΔcyto에 의하여 저해되는지의 여부를 확인하기 위하여 하기와 같은 실험을 수행하였다. CTV로 표지한 OVCAR-3(인간 난소암), THP-1(급성골수성백혈병) 세포와 효과기 세포인 SL-K01 및 NK111 세포를 3x105 cells/mL의 농도로 준비하여 24-웰 플레이트에 1 mL씩 분주한 뒤(E:T=1:1), 각각 0, 0.3, 1, 3, 및 10 μg/mL의 TGFβ1를 처리하여, 5% CO2, 37℃ 조건에서 24시간 동안 배양하였다. 그 결과, 도 10d에서 확인할 수 있듯이, SL-K01 세포는 TGFβ1의 농도가 높아짐에 따라 암세포 사멸능이 감소하였으나, NK111 세포의 경우 TGFβ1에 의한 활성 억제 효과가 없거나 미미한 수준으로 분석되었다.In addition, the present inventors performed the following experiments to determine whether the TGFβ1 immunosuppressive effect, which is well known as an immunosuppressive factor present in a large amount in the patient's body, is inhibited by TGFβRIIΔcyto introduced into NK111 cells. CTV-labeled OVCAR-3 (human ovarian cancer) cells and THP-1 (acute myeloid leukemia) cells and effector cells SL-K01 and NK111 cells were prepared at a concentration of 3x10 5 cells / mL and 1 mL in a 24-well plate. After each aliquot (E: T = 1: 1), 0, 0.3, 1, 3, and 10 μg / mL of TGFβ1 were treated and incubated at 5% CO 2 , 37 ° C. for 24 hours. As a result, as can be seen in Figure 10d, SL-K01 cells decreased the cancer cell killing ability as the concentration of TGFβ1 increased, but the NK111 cells were analyzed to have no or insignificant activity inhibitory effect by TGFβ1.
상술한 바와 같이, 본 발명의 일 실시예에 따른 SL-K01 세포는 모세포주인 NK101의 주된 특징은 그대로 유지하면서도 모세포주인 NK101과 비교하여 암세포사멸능이 현저히 증가하였고, 상기 SL-K01의 성능을 더 강화시킨 NK111 세포는 암세포 살상능이 SL-K01 세포에 비해 현저하게 증가하였을 뿐만 아니라, TGFβ로 인한 세포살상능의 저해를 회피할 수 있어서 체내 투여시 매우 효율적인 암 치료제로 사용이 가능할 것으로 기대가 된다.As described above, SL-K01 cells according to an embodiment of the present invention significantly increased the cancer cell killing ability compared to the parental cell line NK101 while maintaining the main characteristics of the parental cell line NK101, and further enhanced the performance of the SL-K01 In addition, the NK111 cells have increased cancer cell killing ability significantly compared to SL-K01 cells, and can avoid the inhibition of TGFβ-induced cell killing ability, and thus, it is expected that the NK111 cells can be used as a very effective cancer treatment agent when administered in vivo.
실시예 10: EpCAM 표적 키메라 항원 수용체 도입 NK 세포주 제조Example 10 Preparation of EpCAM Targeted Chimeric Antigen Receptor NK Cell Lines
본 발명자들은 상기 실시예 8에서 제조된 NK111에 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드를 형질도입할 경우 항원 특이적인 암세포 사멸능이 증진되는지를 조사하였다. 이를 위해 구체적으로 본 발명자들은 EpCAM 표적화 키메라항원 수용체 유전자 컨스트럭트를 제조한 후 이를 NK111에 형질도입하여 NK111-EpCAM-CAR 세포를 제조하고 그 기능을 평가하였다.The present inventors investigated whether antigen-specific cancer cell killing ability is enhanced when NK111 prepared in Example 8 is transduced with a polynucleotide encoding a chimeric antigen receptor. To this end, the present inventors specifically prepared an EpCAM targeting chimeric antigen receptor gene construct and transduced it into NK111 to prepare NK111-EpCAM-CAR cells and evaluated their function.
10-1: anti-EpCAM scFv-CAR 유전자 컨스트럭트의 제조10-1: Preparation of anti-EpCAM scFv-CAR Gene Construct
본 발명자들은 종양표적 NK 세포주를 제작하기 위하여 상기 실시예 8에서 제조된 NK111 세포에 EpCAM을 표적화하는 scFv와 변형 인간 면역글로불린(modified human IgG) Fc 도메인, CD28 막통과 도메인, DAP10 세포내 활성화 도메인, DAP12 세포내 활성화 도메인, 및 CD3z로 구성된 anti-EpCAM scFv-CAR 단백질(서열번호 14)를 암호화하는 폴리뉴클레오타이드(서열번호 15)를 포함하는 유전자 컨스트럭트를 제조하여 렌티바이러스 제조용 트랜스퍼 벡터 pWPT에 클로닝함으로써 pWPT-EpCAM scFv-CAR를 제조하였다(도 11a).The present inventors used scFv and modified human immunoglobulin (Fc) domain, CD28 transmembrane domain, DAP10 intracellular activation domain, scFv targeting EpCAM to NK111 cells prepared in Example 8 to produce tumor target NK cell lines. Gene constructs comprising a DAP12 intracellular activation domain and a polynucleotide encoding the anti-EpCAM scFv-CAR protein (SEQ ID NO: 14) consisting of CD3z (SEQ ID NO: 15) were cloned into the transfer vector pWPT for lentiviral preparation. PWPT-EpCAM scFv-CAR was prepared (FIG. 11A).
10-2: 렌티바이러스 제조10-2: Lentivirus Preparation
이어, 본 발명자들은 렌티바이러스 생산을 위하여 48시간 또는 72시간 배양한 Lenti-X 세포에 상기 실시예 10-1에서 제조된 트랜스퍼 벡터 pWPT-EpCAM scFv-CAR 12 μg와 패키징 플라스미드 psPAX2 12 μg 및 외피 플라스미드 pMD2.G 2.4 μg을 리포펙타민(Lipofectamine Invitrogen, USA)과 혼합하여 Lenti-X 293T 세포(Clontech, USA)에 형질도입하였다. 37℃에서 6시간 배양 후, 배지를 제거하고 신선한 성장배지를 첨가하였다. 세포를 추가로 48시간 배양 후, 배지 내에 생성된 렌티바이러스를 수거하여 5분간 원심분리(4℃, 4000 rpm)하고 상층액을 취한 후 0.45 μm 필터(Millipore, USA)를 이용하여 세포 찌꺼기들을 제거하였다. 렌티바이러스를 농축하기 위하여 여과된 렌티바이러스 상층액에 Lenti-X concentrator (Clontech, USA) 시약을 넣은 후 4℃에서 밤새 보관하였다. 최종단계로, 렌티바이러스-concentrator 혼합액을 4000 rpm에서 60분간 원심분리한 후 상층액을 제거하고 펠렛 형태로 회수된 렌티바이러스를 1~2 mL의 배양액으로 희석하고 사용 시까지 -80℃에 보관하였다.Then, the inventors of the present invention, Lenti-X cells cultured for 48 hours or 72 hours for lentiviral production, 12 μg of the transfer vector pWPT-EpCAM scFv-CAR prepared in Example 10-1 and 12 μg of the packaging plasmid psPAX2 and the outer skin plasmid. 2.4 μg of pMD2.G was mixed with Lipofectamine Invitrogen, USA to transduce Lenti-X 293T cells (Clontech, USA). After 6 hours of incubation at 37 ° C., the medium was removed and fresh growth medium was added. After 48 hours of incubation, the lentiviral produced in the medium was collected, centrifuged for 5 minutes (4 ° C., 4000 rpm), the supernatant was collected, and the cell debris was removed using a 0.45 μm filter (Millipore, USA). It was. To concentrate the lentiviral, Lenti-X concentrator (Clontech, USA) reagent was added to the filtered lentiviral supernatant and stored at 4 ° C. overnight. As a final step, the lentiviral-concentrator mixture was centrifuged at 4000 rpm for 60 minutes, the supernatant was removed, and the recovered lentivirus in pellet form was diluted with 1-2 mL of culture and stored at -80 ° C until use. .
10-3: NK111-EpCAM-CAR 세포주 제작10-3: NK111-EpCAM-CAR Cell Line Construction
본 발명자들은 상기 실시예 10-2에서 제조된 anti-EpCAM scFv-CAR 렌티바이러스를 프로타민 설페이트(Sigma, USA)를 이용하여 NK111 세포에 감염시킨 후 37℃에서 4시간 배양하였다. 총 2번의 감염과정을 수행한 후, 감염 72시간 후 키메라 항원 수용체 발현을 유세포 분석으로 확인하고, 1주일 뒤 형광활성 세포분리기(Fluorescence activated cell sorter, BD FACSMelody, BD, USA)를 이용하여 도입유전자를 발현하는 NK111 세포만을 선택적으로 분리하였다. 분리 증식한 NK111-EpCAM-CAR세포주에서 EpCAM-CAR의 발현도를 유세포 분석으로 확인하였다(도 11b). The inventors of the anti-EpCAM scFv-CAR lentivirus prepared in Example 10-2 was infected with NK111 cells using protamine sulfate (Sigma, USA) and incubated for 4 hours at 37 ℃. After performing a total of two infection processes, the expression of the chimeric antigen receptor was confirmed by flow cytometry 72 hours after infection, and one week later, the transgene was introduced using a fluorescence activated cell sorter (BD FACSMelody, BD, USA). Only NK111 cells expressing T cells were selectively isolated. Expression of EpCAM-CAR in the isolated and propagated NK111-EpCAM-CAR cell line was confirmed by flow cytometry (FIG. 11B).
10-4 : 암세포주 공배양 및 암세포 사멸 활성 물질 분석10-4: Analysis of cancer cell co-culture and cancer cell death active substance
본 발명자들은 상기 실시예 10-3에서 제조된 NK111-EpCAM-CAR 세포주의 표적 특이적 암세포 사멸능을 검증하기 위하여, NK111 및 NK111-EpCAM-CAR 세포주를 이용하여 하기와 같은 실험을 수행하였다. 구체적으로, CTV(celltracker violet dye)로 표지한 인간 유래 난소암 세포주 중 EpCAM 양성 RMG-1 세포 및 EpCAM 음성인 KOC-2S를 24-웰 배양접시에 3x105 cells/ml 농도로 1 ml씩 파종하였다. 이후 NK111 및 NK111-EpCAM-CAR 세포주를 다양한 효과기 세포 대 표적 세표 비율(E:T 비율=1:1, 2:1, 4:1)로 1 ml 배지에 부유한 후 상기 암세포와 24시간 동안 함께 배양하였다. 배양 이후 모든 세포를 모은 뒤 각 웰로부터 세포를 회수하여 원심분리한 후, 세포 펠렛를 FACS 완충액으로 현탁시켰다. 다시 원심분리하여 형성된 세포 펠렛을 1 ㎕ LIVE/DEAD® Fixable Near-IR Dead Stain Kit(Life Technologies)를 희석한 100 ㎕의 FACS 완충액에 현탁시켜, 4℃에서 20분간 반응하였다. FACS 완충액으로 2번 세척한 뒤, 1X Annexin V binding buffer 100 ㎕에 Annexin V APC 5㎕(Biolegend, USA)를 희석한 용액에 세포 펠렛을 현탁시켜, 실온에서 20분간 반응하였다. 세포의 사멸 여부는 유세포 분석법을 이용하여 생존 세포(annexin V-음성/LIVE/DEAD-음성), 초기 아폽토시스 세포(annexin V-양성/LIVE/DEAD-음성), 후기 아폽토시스 세포(annexin V-양성/LIVE/DEAD-양성), 괴사(necrotic) 세포(annexin V-음성/LIVE/DEAD-양성)으로 구분하였다. 이 결과, 도 11c에서 확인되듯이, NK111-EpCAM-CAR 세포는 EpCAM 발현 세포인 RMG-1에서 대조군인 NK111에 비해 현저히 높은 세포살상능을 보이는 반면, EpCAM 음성 세포주에 대해서는 동등한 세포 살상능을 보임을 확인하였다. 또한 상기 실험에서 수득한 공배양 상층액을 이용하여 ELISA 실험을 수행한 결과, EpCAM 고발현 RMG-1 세포와 공배양시 EpCAM-CAR를 발현하는 NK111에서 인터페론 감마 및 그랜자임 B 등 암세포 살상과 관여된 활성물질의 분비가 높음을 확인하였다. 상술한 실험을 통하여 본 발명의 일 실시예에 따른 NK111이 키메라항원 수용체를 통한 항원 특이적 암세포 살상능 증진에 적합한 세포 플랫폼임을 확인할 수 있다.The present inventors performed the following experiment using NK111 and NK111-EpCAM-CAR cell lines to verify target specific cancer cell killing ability of the NK111-EpCAM-CAR cell line prepared in Example 10-3. Specifically, EpCAM-positive RMG-1 cells and EpCAM-negative KOC-2S in human-derived ovarian cancer cell lines labeled with CTV (celltracker violet dye) were seeded 1 ml at a concentration of 3x10 5 cells / ml in a 24-well culture dish. . The NK111 and NK111-EpCAM-CAR cell lines were then suspended in 1 ml medium at various effector cell-to-target wash ratios (E: T ratio = 1: 1, 2: 1, 4: 1) and then with the cancer cells for 24 hours. Incubated. After incubation all cells were collected and cells were harvested from each well, centrifuged and the cell pellet suspended in FACS buffer. By suspending the cell pellet formed by centrifuging again in FACS buffer of 100 ㎕ diluted 1 ㎕ LIVE / DEAD ® Fixable Near -IR Dead Stain Kit (Life Technologies), was reacted at 4 20 minutes. After washing twice with FACS buffer, the cell pellet was suspended in a solution diluted with 5 μl Annexin V APC (Biolegend, USA) in 100 μl of 1 × Annexin V binding buffer, and reacted at room temperature for 20 minutes. Cell death was determined by flow cytometry using viable cells (annexin V-negative / LIVE / DEAD-negative), early apoptotic cells (annexin V-positive / LIVE / DEAD-negative), late apoptotic cells (annexin V-positive / LIVE / DEAD-positive) and necrotic cells (annexin V-negative / LIVE / DEAD-positive). As a result, as shown in FIG. 11C, NK111-EpCAM-CAR cells showed significantly higher cell killing ability than ENK-expressing cells RMG-1, compared to the control group NK111, whereas ENKC cell lines showed equivalent cell killing ability. It was confirmed. In addition, ELISA experiments were carried out using the coculture supernatant obtained in the above experiments. As a result, co-culture with EpCAM-expressing RMG-1 cells and NK111 expressing EpCAM-CAR when co-cultured with cancer cell killing such as interferon gamma and granzyme B It was confirmed that the secretion of the active substance was high. Through the above experiments, it can be confirmed that NK111 according to one embodiment of the present invention is a cell platform suitable for enhancing antigen-specific cancer cell killing ability through the chimeric antigen receptor.
하기에 본 발명의 조성물을 위한 제제예를 예시한다.Examples of preparations for the compositions of the present invention are illustrated below.
제제예 1: 주사제의 제조Formulation Example 1 Preparation of Injection
유전자 재조합 NK111 세포 1x108 내지 5x1012 cellsRecombinant NK111 cells 1x10 8 to 5x10 12 cells
pH 조절제 적량pH adjuster
안정화제 적량Stabilizer
주사용 멸균 증류수 100% 까지Up to 100% sterile distilled water for injection
통상의 주사제의 제조방법에 따라 1 앰플 당(2 ㎖) 상기의 성분 함량으로 제조하였다.According to the conventional method for preparing an injection, the amount of the above ingredient was prepared per ampoule (2 ml).
본 발명은 상술한 실시예 및 실험예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the above-described examples and experimental examples, these are merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명의 일 실시예에 따른 유전자 변형 NK 세포주는 암치료를 위한 의약의 생산에 사용될 수 있다.Genetically modified NK cell line according to an embodiment of the present invention can be used in the production of a medicament for the treatment of cancer.
Figure PCTKR2019003427-appb-I000001
Figure PCTKR2019003427-appb-I000001

Claims (40)

  1. 하기 특성을 갖는 분리된 NK 세포주에 NK 세포 보조활성화 인자를 암호화하는 폴리뉴클레오타이드가 형질도입되어 상기 NK 세포 보조활성화 인자가 발현되는, 유전자 변형 NK 세포주: A genetically modified NK cell line wherein the isolated NK cell line is transduced with a polynucleotide encoding a NK cell coactivator so that the NK cell coactivator is expressed:
    CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L 및 CD56은 양성; 및CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L and CD56 are positive; And
    CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ 및 TCRγδ는 음성.CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ and TCRγδ are negative.
  2. 제1항에 있어서,The method of claim 1,
    상기 NK 세포 보조활성화 인자는 Ly49, NCR(natural cytotoxicity receptor), CD7, CD16 및 CD28로 구성되는 군으로부터 선택되는 어느 하나 이상인, 유전자 변형 NK 세포주.The NK cell co-activating factor is any one or more selected from the group consisting of Ly49, natural cytotoxicity receptor (NCR), CD7, CD16 and CD28, genetically modified NK cell line.
  3. 제2항에 있어서, The method of claim 2,
    상기 NK 세포 보조활성화 인자는 CD7 및/또는 CD28인, 유전자 변형 NK 세포주.Wherein said NK cell coactivator is CD7 and / or CD28.
  4. 제1항에 있어서,The method of claim 1,
    적어도 하나 이상의 NK 세포 증식 인자를 암호화하는 폴리뉴클레오타이드가 추가로 형질도입되어 상기 NK 세포 증식 인자가 발현되는, 유전자 변형 NK 세포주.A genetically modified NK cell line, wherein the polynucleotide encoding at least one or more NK cell proliferation factors is further transduced to express the NK cell proliferation factor.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 NK 세포 증식 인자는 IL-2, IL-12, IL-15, IL-18 및 IL-21로 구성되는 군으로부터 선택되는 적어도 하나 이상의 사이토카인 또는 상기 사이토카인의 변이체인, 유전자 변형 NK 세포주. Wherein said NK cell proliferation factor is at least one cytokine selected from the group consisting of IL-2, IL-12, IL-15, IL-18 and IL-21 or a variant of said cytokine, genetically modified NK cell line.
  6. 제5항에 있어서,The method of claim 5,
    상기 IL-15는 막결합 IL-15인, 유전자 변형 NK 세포주.Wherein said IL-15 is membrane-bound IL-15.
  7. 제1항에 있어서, The method of claim 1,
    세포자살 유전자가 추가로 형질도입된, 유전자 변형 NK 세포주.Genetically modified NK cell line, further transduced with apoptotic genes.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 세포자살 유전자는 우라실 포스포리보실전이효소(UPRT) 유전자, 헤르페스 단순포진 바이러스 티미딘 인산화 유전자(HSV TK), 바리셀라 조스터 바이러스 티미딘 인산화효소(VZV TK) 유전자, 시토신 디아미네이즈 유전자, 카르복실 에스터레이즈 유전자, 니트로리덕테이즈 유전자, 카르복시펩티데이즈 G2 유전자, 또는 유도성 카스페이즈 9(iCas9)유전자인, 유전자 변형 NK 세포주.The apoptosis genes include uracil phosphoribosyltransferase (UPRT) gene, herpes herpes simplex virus thymidine phosphorylation gene (HSV TK), varicella zoster virus thymidine kinase (VZV TK) gene, cytosine deminase gene, The transgenic NK cell line, which is a carboxyl esterase gene, nitroreductase gene, carboxypeptides G2 gene, or inducible caspase 9 (iCas9) gene.
  9. 제1항에 있어서, The method of claim 1,
    세포질 도메인 결실 TGFβ 수용체를 암호화하는 폴리뉴클레오타이드가 추가로 형질도입되어 상기 세포질 도메인 결실 TGFβ 수용체가 발현되는, 유전자 변형 NK 세포주.A genetically modified NK cell line, wherein the polynucleotide encoding the cytoplasmic domain deleted TGFβ receptor is further transduced to express the cytoplasmic domain deleted TGFβ receptor.
  10. 제9항에 있어서,The method of claim 9,
    상기 세포질 도메인 결실 TGFβ 수용체는 세포질 도메인 결실 TGFβ 수용체II인, 유전자 변형 NK 세포주.Wherein said cytoplasmic domain deleted TGFβ receptor is cytoplasmic domain deleted TGFβ receptor II.
  11. 제1항에 있어서,The method of claim 1,
    암항원을 특이적으로 인식하는 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드가 추가로 형질도입되어 상기 키메라 항원 수용체가 발현되는, 유전자 변형 NK 세포주.A genetically modified NK cell line in which a polynucleotide encoding a chimeric antigen receptor that specifically recognizes a cancer antigen is further transduced to express the chimeric antigen receptor.
  12. 제11항에 있어서, The method of claim 11,
    상기 암항원은 CD19, CD22, PSA(prostate specific antigen), CEA(carcinoembryonic antigen), CA-125, mucin 1, AFP(alphafetoprotein), ETA(epithelial tumor antigen), 티로시네이즈, CD52, PD-L1(programmed death-ligand 1), CTLA4(cytotoxic T-lymphocyte-associated protein 4), CD20, MAGE(melanoma-associated antigen), FAP(fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13Rα2 또는 EpCAM(epithelial cell adhesion molecule)인, 유전자 변형 NK 세포주.The cancer antigen is CD19, CD22, prostate specific antigen (PSA), carcinoembryonic antigen (CEA), CA-125, mucin 1, alphafetoprotein (AFP), epipithelial tumor antigen (ETA), tyrosinase, CD52, PD-L1 ( programmed death-ligand 1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), CD20, melanoma-associated antigen (MAGE), fibroblast activation protein (FAP), fms like tyrosine kinase 3 (FLT3), IL13Rα2 or epipithelial (EpCAM) cell adhesion molecule).
  13. 제11항에 있어서, The method of claim 11,
    상기 키메라 항원 수용체는 암항원에 특이적으로 결합하는 리간드 또는 항체유사체-막통과 도메인-보조자극인자-세포내 신호전달 도메인을 포함하는 융합단백질인, 유전자 변형 NK 세포주.The chimeric antigen receptor is a genetically modified NK cell line, which is a fusion protein comprising a ligand or antibody analog-transmembrane domain-co-stimulatory factor-cellular signaling domain that specifically binds to a cancer antigen.
  14. 제13항에 있어서,The method of claim 13,
    상기 항체유사체는 scFv, sdAb, 나노바디, VHH, VNAR, VLR, 또는 모노바디인, 유전자 변형 NK 세포주.The antibody analog is scFv, sdAb, nanobody, V H H, V NAR , VLR, or monobody, genetically modified NK cell line.
  15. 제13항에 있어서,The method of claim 13,
    상기 보조자극인자는 CD28, ICOS(inducible costimulator), CTLA4(cytotoxic T lymphocyte associated protein 4), PD1(programmed cell death protein 1), BTLA(B and T lymphocyte associated protein), DR3(death receptor 3), 4-1BB, CD2, CD7, CD40, CD30, CD27, SLAM(signaling lymphocyte activation molecule), 2B4(CD244), NKp30, NKp44, NKp46, NKp80, NKG2D(natural-killer group 2, member D), DAP12(DNAX-activating protein 12), DAP10, DNAM-1, NTB-A, TIM1(T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3(lymphocyte activation gene 3), B7-1, B7-H1, GITR(glucocorticoid-induced TNFR family related protein), HVEM(herpesvirus entry mediator) 또는 OX40L[ligand for CD134(OX40), CD252]의 세포질 도메인 또는 이들 중 둘 이상의 연결체인, 유전자 변형 NK 세포주.The co-stimulatory factors are CD28, inducible costimulator (ICOS), cytotoxic T lymphocyte associated protein 4 (CTLA4), programmed cell death protein 1 (PD1), B and T lymphocyte associated protein (BTLA), death receptor 3 (DR3), 4 -1BB, CD2, CD7, CD40, CD30, CD27, signaling lymphocyte activation molecule (SLAM), 2B4 (CD244), NKp30, NKp44, NKp46, NKp80, natural-killer group 2, member D), DAP12 (DNAX- activating protein 12), DAP10, DNAM-1, NTB-A, T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3 (lymphocyte activation gene 3), B7-1 , B7-H1, glucocorticoid-induced TNFR family related protein (GITR), herpesvirus entry mediator (HVEM) or cytoplasmic domain of ligand for CD134 (OX40), CD252] or a combination of two or more thereof.
  16. 제11항에 있어서,The method of claim 11,
    상기 세포내 신호전달 도메인은 T 세포 수용체의 CD3ξ 도메인, CD16, NKp30, NKp44, NKp46, NKp80, DAP10, 또는 DAP12인, 유전자 변형 NK 세포주.Wherein said intracellular signaling domain is a CD3ξ domain of a T cell receptor, CD16, NKp30, NKp44, NKp46, NKp80, DAP10, or DAP12.
  17. 제1항 내지 제16항 중 어느 한 항의 유전자 변형 NK 세포주를 유효성분으로 포함하는 암 치료용 및 암 예방용 약학적 조성물.A pharmaceutical composition for treating cancer and preventing cancer comprising the genetically modified NK cell line of any one of claims 1 to 16 as an active ingredient.
  18. 제7항 또는 제8항의 유전자 변형 NK 세포주 및 자살유도제를 포함하는 암 치료용 키트.A cancer treatment kit comprising the genetically modified NK cell line of claim 7 or 8 and a suicide inducing agent.
  19. 제18항에 있어서,The method of claim 18,
    상기 자살유도제는 상기 세포자살 유전자가 HSV TK 또는 VZV TK인 경우에는 각각 간시클로비르(gancyclovir) 또는 6-메톡시퓨린 아라비노뉴클레오사이드(6-methoxypurine arabinonucleoside), 상기 세포자살 유전자가 우라실 포스포리보실 전이효소(UPRT) 또는 시토신 디아미네이즈인 경우 5-플루오로시토신(5-FC), 상기 세포자살 유전자가 카르복실 에스터라제인 경우 이리노테칸(CPT-11), 상기 세포자살 유전자가 니트로리덕테이즈인 경우에는 5(아지리딘-1-일)-2,4-디니트로벤자마이드(CB1954), 상기 세포자살 유전자가 카르복시펩티데이즈 G2인 경우에는 4-[(2-클로로에틸)(2-메실록시에틸)아미노]벤조일-엘-글루탐산(CMDA), 상기 세포자살 유전자가 iCas9일 경우 iCas9 이량화제(dimerizer)인, 암 치료용 키트.The suicide inducing agent is gancyclovir or 6-methoxypurine arabinonucleoside when the suicide gene is HSV TK or VZV TK, respectively, and the suicide gene is uracil phosphorus. 5-fluorocytosine (5-FC) in case of transferase (UPRT) or cytosine deminase, irinotecan (CPT-11) in case the apoptosis gene is carboxyl esterase, and the apoptosis gene is nitroriducte 5 (aziridin-1-yl) -2,4-dinitrobenzamide (CB1954) for izudose and 4-[(2-chloroethyl) (2 if the apoptotic gene is carboxypeptides G2. -Mesyloxyethyl) amino] benzoyl-L-glutamic acid (CMDA), iCas9 dimerizer when the apoptosis gene is iCas9, cancer treatment kit.
  20. 치료적으로 유효한 양의 제1항 내지 제16항 중 어느 한 항의 유전자 변형 NK 세포주 및 선택적으로 자살유도제를 추가로 암에 걸린 개체에 투여하는 단계를 포함하는 상기 개체의 암 치료방법.A method of treating cancer in a subject, comprising administering a therapeutically effective amount of the genetically modified NK cell line of any one of claims 1 to 16 and optionally a suicide inducing agent to the subject having cancer.
  21. 분리된 NK 세포주에 NK 세포 보조활성화 인자, NK 세포 증식 인자 및 TGFβ 수용체를 각각 암호화하는 폴리뉴클레오타이드 및 세포자살 유전자가 형질도입된 유전자 변형 NK 세포주.A genetically modified NK cell line transduced with polynucleotides and apoptosis genes encoding NK cell coactivator, NK cell proliferation factor and TGFβ receptor, respectively, in an isolated NK cell line.
  22. 제21항에 있어서, The method of claim 21,
    상기 분리된 NK 세포주는 하기의 특성을 갖는, 유전자 변형 NK 세포주:The isolated NK cell line has the following characteristics, genetically modified NK cell line:
    CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L, 및 CD56은 양성; 및CD2, CD11a, CD25, CD45, CD54, DNAM-1, CD62L, and CD56 are positive; And
    CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ 및 TCRγδ는 음성.CD1a, CD3, CD4, CD8, CD14, CD20, CD23, CD34, TCRαβ and TCRγδ are negative.
  23. 제21항에 있어서,The method of claim 21,
    상기 NK 세포 보조활성화 인자는 Ly49, NCR(natural cytotoxicity receptor), CD7, CD16 및 CD28로 구성되는 군으로부터 선택되는, 어느 하나 이상인, 유전자 변형 NK 세포주.The NK cell coactivator is Ly49, natural cytotoxicity receptor (NCR), CD7, CD16 and CD28 selected from the group consisting of any one, genetically modified NK cell line.
  24. 제23항에 있어서, The method of claim 23, wherein
    상기 NK 세포 보조활성화 인자는 CD7 및/또는 CD28인, 유전자 변형 NK 세포주.Wherein said NK cell coactivator is CD7 and / or CD28.
  25. 제21항에 있어서, The method of claim 21,
    상기 NK 세포 증식 인자는 IL-2, IL-12, IL-15, IL-18 및 IL-21로 구성되는 군으로부터 선택되는 적어도 하나 이상의 사이토카인 또는 상기 사이토카인의 변이체인, 유전자 변형 NK 세포주. Wherein said NK cell proliferation factor is at least one cytokine selected from the group consisting of IL-2, IL-12, IL-15, IL-18 and IL-21 or a variant of said cytokine, genetically modified NK cell line.
  26. 제21항에 있어서,The method of claim 21,
    상기 NK 세포 보조활성화 인자, NK 세포 증식 인자, TGFβ 수용체 및 세포자살 유전자는 개별적으로 발현되거나, 하나의 유전자 컨스트럭트 내에서 동시에 발현되거나, 둘 이상의 유전자 컨스트럭트로 나뉘어 발현되는, 유전자 변형 NK 세포주.The NK cell coactivator, NK cell proliferation factor, TGFβ receptor and apoptosis genes are expressed individually, simultaneously expressed in one gene construct, or divided into two or more gene constructs. .
  27. 제21항에 있어서,The method of claim 21,
    상기 TGFβ 수용체는 세포질 도메인 결실 TGFβ 수용체II인, 유전자 변형 NK 세포주.Wherein said TGFβ receptor is cytoplasmic domain deleted TGFβ receptor II.
  28. 제21항에 있어서,The method of claim 21,
    상기 세포자살 유전자는 우라실 포스포리보실전이효소(UPRT) 유전자, 헤르페스 단순포진 바이러스 티미딘 인산화 유전자(HSV TK), 바리셀라 조스터 바이러스 티미딘 인산화효소(VZV TK) 유전자, 시토신 디아미네이즈 유전자, 카르복실 에스터레이즈 유전자, 니트로리덕테이즈 유전자, 카르복시펩티데이즈 G2 유전자, 또는 유도성 카스페이즈 9(iCas9)유전자인, 유전자 변형 NK 세포주.The apoptosis genes include uracil phosphoribosyltransferase (UPRT) gene, herpes herpes simplex virus thymidine phosphorylation gene (HSV TK), varicella zoster virus thymidine kinase (VZV TK) gene, cytosine deminase gene, The transgenic NK cell line, which is a carboxyl esterase gene, nitroreductase gene, carboxypeptides G2 gene, or inducible caspase 9 (iCas9) gene.
  29. 제21항에 있어서,The method of claim 21,
    암항원을 특이적으로 인식하는 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드가 추가로 형질도입된, 유전자 변형 NK 세포주.A genetically modified NK cell line, further transduced with a polynucleotide encoding a chimeric antigen receptor that specifically recognizes a cancer antigen.
  30. 제29항에 있어서, The method of claim 29,
    상기 암항원은 CD19, CD22, PSA(prostate specific antigen), CEA(carcinoembryonic antigen), CA-125, mucin 1, AFP(alphafetoprotein), ETA(epithelial tumor antigen), 티로시네이즈, CD52, PD-L1(programmed death-ligand 1), CTLA4(cytotoxic T-lymphocyte-associated protein 4), CD20, MAGE(melanoma-associated antigen), FAP(fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13Rα2 또는 EpCAM(epithelial cell adhesion molecule)인, 유전자 변형 NK 세포주.The cancer antigen is CD19, CD22, prostate specific antigen (PSA), carcinoembryonic antigen (CEA), CA-125, mucin 1, alphafetoprotein (AFP), epipithelial tumor antigen (ETA), tyrosinase, CD52, PD-L1 ( programmed death-ligand 1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), CD20, melanoma-associated antigen (MAGE), fibroblast activation protein (FAP), fms like tyrosine kinase 3 (FLT3), IL13Rα2 or epipithelial (EpCAM) cell adhesion molecule).
  31. 제29항에 있어서, The method of claim 29,
    상기 키메라 항원 수용체는 암항원에 특이적으로 결합하는 리간드 또는 항체유사체-막통과 도메인-보조자극인자-세포내 신호전달 도메인을 포함하는 융합단백질인, 유전자 변형 NK 세포주.The chimeric antigen receptor is a genetically modified NK cell line, which is a fusion protein comprising a ligand or antibody analog-transmembrane domain-co-stimulatory factor-cellular signaling domain that specifically binds to a cancer antigen.
  32. 제31항에 있어서,The method of claim 31, wherein
    상기 항체유사체는 scFv, sdAb, 나노바디, VHH, VNAR, VLR, 또는 모노바디인, 유전자 변형 NK 세포주.The antibody analog is scFv, sdAb, nanobody, VHH, VNAR, VLR, or monobody, genetically modified NK cell line.
  33. 제31항에 있어서,The method of claim 31, wherein
    상기 보조자극인자는 CD28, ICOS(inducible costimulator), CTLA4(cytotoxic T lymphocyte associated protein 4), PD1(programmed cell death protein 1), BTLA(B and T lymphocyte associated protein), DR3(death receptor 3), 4-1BB, CD2, CD7, CD40, CD30, CD27, SLAM(signaling lymphocyte activation molecule), 2B4(CD244), NKp30, NKp44, NKp46, NKp80, NKG2D(natural-killer group 2, member D), DAP12(DNAX-activating protein 12), DAP10, DNAM-1, NTB-A, TIM1(T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3(lymphocyte activation gene 3), B7-1, B7-H1, GITR(glucocorticoid-induced TNFR family related protein), HVEM(herpesvirus entry mediator) 또는 OX40L[ligand for CD134(OX40), CD252]의 세포질 도메인 또는 이들 중 둘 이상의 연결체인, 유전자 변형 NK 세포주.The co-stimulatory factors are CD28, inducible costimulator (ICOS), cytotoxic T lymphocyte associated protein 4 (CTLA4), programmed cell death protein 1 (PD1), B and T lymphocyte associated protein (BTLA), death receptor 3 (DR3), 4 -1BB, CD2, CD7, CD40, CD30, CD27, signaling lymphocyte activation molecule (SLAM), 2B4 (CD244), NKp30, NKp44, NKp46, NKp80, natural-killer group 2, member D), DAP12 (DNAX- activating protein 12), DAP10, DNAM-1, NTB-A, T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3 (lymphocyte activation gene 3), B7-1 , B7-H1, glucocorticoid-induced TNFR family related protein (GITR), herpesvirus entry mediator (HVEM) or cytoplasmic domain of ligand for CD134 (OX40), CD252] or a combination of two or more thereof.
  34. 제31항에 있어서,The method of claim 31, wherein
    상기 세포내 신호전달 도메인은 T 세포 수용체의 CD3ξ 도메인, CD16, NKp30, NKp44, NKp46, NKp80, DAP10, 또는 DAP12인, 유전자 변형 NK 세포주.Wherein said intracellular signaling domain is a CD3ξ domain of a T cell receptor, CD16, NKp30, NKp44, NKp46, NKp80, DAP10, or DAP12.
  35. 제21항 내지 제34항 중 어느 한 항의 유전자 변형 NK 세포주를 유효성분으로 포함하는 암 치료 및 예방용 약학적 조성물.35. A pharmaceutical composition for the treatment and prevention of cancer comprising the genetically modified NK cell line of any one of claims 21 to 34 as an active ingredient.
  36. 제21항 내지 제34항 중 어느 한 항의 상기 유전자 변형 NK 세포주 및 자살유도제를 포함하는 암 치료용 키트.35. A kit for treating cancer, comprising the genetically modified NK cell line of claim 21 and a suicide inducing agent.
  37. 제36항에 있어서,The method of claim 36,
    상기 자살유도제는 상기 세포자살 유전자가 HSV TK 또는 VZV TK인 경우에는 각각 간시클로비르(gancyclovir) 또는 6-메톡시퓨린 아라비노뉴클레오사이드(6-methoxypurine arabinonucleoside), 상기 세포자살 유전자가 우라실 포스포리보실 전이효소(UPRT) 또는 시토신 디아미네이즈인 경우 5-플루오로시토신(5-FC), 상기 세포자살 유전자가 카르복실 에스터라제인 경우 이리노테칸(CPT-11), 상기 세포자살 유전자가 니트로리덕테이즈인 경우에는 5(아지리딘-1-일)-2,4-디니트로벤자마이드(CB1954), 상기 세포자살 유전자가 카르복시펩티데이즈 G2인 경우에는 4-[(2-클로로에틸)(2-메실록시에틸)아미노]벤조일-엘-글루탐산(CMDA), 상기 세포자살 유전자가 iCas9일 경우 iCas9 이량화제(dimerizer)인, 암 치료용 키트.The suicide inducing agent is gancyclovir or 6-methoxypurine arabinonucleoside when the suicide gene is HSV TK or VZV TK, respectively, and the suicide gene is uracil phosphorus. 5-fluorocytosine (5-FC) in case of transferase (UPRT) or cytosine deminase, irinotecan (CPT-11) in case the apoptosis gene is carboxyl esterase, and the apoptosis gene is nitroriducte 5 (aziridin-1-yl) -2,4-dinitrobenzamide (CB1954) for izudose and 4-[(2-chloroethyl) (2 if the apoptotic gene is carboxypeptides G2. -Mesyloxyethyl) amino] benzoyl-L-glutamic acid (CMDA), iCas9 dimerizer when the apoptosis gene is iCas9, cancer treatment kit.
  38. 치료적으로 유효한 양의 제21항 내지 제34항 중 어느 한 항의 유전자 변형 NK 세포주 및 선택적으로 자살유도제를 추가로 암에 걸린 개체에 투여하는 단계를 포함하는 상기 개체의 암 치료방법.34. A method of treating cancer in a subject, comprising administering to the subject suffering from cancer a therapeutically effective amount of the genetically modified NK cell line of any one of claims 21 to 34 and optionally suicide.
  39. 분리된 NK 세포주에 NK 세포 보조활성화 인자, 세포막 결합 IL-15, 및 TGFβ 수용체를 각각 암호화하는 폴리뉴클레오타이드 및 세포자살 유전자가 형질도입되고, 암항원 특이적 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드가 형질도입되어 상기 암항원 특이적 키메라 항원 수용체를 발현하는 유전자 변형 NK 세포주. The isolated NK cell line is transduced with polynucleotides and apoptosis genes encoding NK cell coactivator, membrane-bound IL-15, and TGFβ receptor, respectively, and transduced with polynucleotides encoding cancer antigen specific chimeric antigen receptor. Transgenic NK cell line expressing said cancer antigen specific chimeric antigen receptor.
  40. 제39항에 있어서,The method of claim 39,
    상기 암항원은 CD19, CD22, PSA(prostate specific antigen), CEA(carcinoembryonic antigen), CA-125, mucin 1, AFP(alphafetoprotein), ETA(epithelial tumor antigen), 티로시네이즈, CD52, PD-L1(programmed death-ligand 1), CTLA4(cytotoxic T-lymphocyte-associated protein 4), CD20, MAGE(melanoma-associated antigen), FAP(fibroblast activation protein), FLT3 (fms like tyrosine kinase 3), IL13Rα2 또는 EpCAM(epithelial cell adhesion molecule)인, 유전자 변형 NK 세포주.The cancer antigen is CD19, CD22, prostate specific antigen (PSA), carcinoembryonic antigen (CEA), CA-125, mucin 1, alphafetoprotein (AFP), epipithelial tumor antigen (ETA), tyrosinase, CD52, PD-L1 ( programmed death-ligand 1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), CD20, melanoma-associated antigen (MAGE), fibroblast activation protein (FAP), fms like tyrosine kinase 3 (FLT3), IL13Rα2 or epipithelial (EpCAM) cell adhesion molecule).
PCT/KR2019/003427 2018-03-23 2019-03-25 Novel genetically modified natural killer cell line and use thereof WO2019182422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180034079 2018-03-23
KR10-2018-0034079 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182422A1 true WO2019182422A1 (en) 2019-09-26

Family

ID=67986327

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2019/003427 WO2019182422A1 (en) 2018-03-23 2019-03-25 Novel genetically modified natural killer cell line and use thereof
PCT/KR2019/003432 WO2019182425A1 (en) 2018-03-23 2019-03-25 Genetically modified nk cell line having novel chimeric antigen receptor-encoding gene transduced therein, and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003432 WO2019182425A1 (en) 2018-03-23 2019-03-25 Genetically modified nk cell line having novel chimeric antigen receptor-encoding gene transduced therein, and use thereof

Country Status (2)

Country Link
KR (2) KR102226917B1 (en)
WO (2) WO2019182422A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150760A3 (en) * 2020-01-21 2021-09-23 Washington University Compositions and methods for inhibiting or screening for cd8 and methods and assays for detecting cd8 in cells
WO2022126084A1 (en) * 2020-12-09 2022-06-16 Affyimmune Therapeutics, Inc. Dual chimeric antigen receptor targeting epcam and icam-1

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517943B1 (en) 2019-09-10 2023-04-04 에이치엘만도 주식회사 Steering Column for Vehicle
GB201913697D0 (en) 2019-09-23 2019-11-06 King S College London DAP10/DAP12 fusion polypeptides
KR102559355B1 (en) * 2020-01-31 2023-07-25 주식회사 제넥신 Fusion protein comprising anti-tumor-associated antigen antibody, anti-pd-l1 antibody and il-2 and uses thereof
EP4240830A1 (en) * 2020-11-03 2023-09-13 Hangzhou Qihan Biotechnology Co., Ltd. Systems and methods for enhanced immunotherapies
KR102578480B1 (en) * 2021-04-12 2023-09-14 메디젠 테라퓨틱스, 인코포레이티드 A method of activating and proliferating exhausted CD8 T cells, CD8 T cells with enhanced activity prepared by the same, and use thereof
WO2023078287A1 (en) * 2021-11-03 2023-05-11 Hangzhou Qihan Biotechnology Co., Ltd. Systems and methods for enhanced immunotherapies
WO2023180511A1 (en) * 2022-03-25 2023-09-28 F. Hoffmann-La Roche Ag Improved chimeric receptors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020068044A1 (en) * 1997-04-30 2002-06-06 Hans Klingemann Natural killer cell lines and methods of use
KR20180008862A (en) * 2015-06-10 2018-01-24 난트케이웨스트, 인크. Modified NK-92 cells to treat cancer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016073755A2 (en) * 2014-11-05 2016-05-12 Board Of Regents, The University Of Texas System Gene modified immune effector cells and engineered cells for expansion of immune effector cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020068044A1 (en) * 1997-04-30 2002-06-06 Hans Klingemann Natural killer cell lines and methods of use
KR20180008862A (en) * 2015-06-10 2018-01-24 난트케이웨스트, 인크. Modified NK-92 cells to treat cancer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BURGA, RACHEL A.: "Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells", CYTOTHERAPY, vol. 18, 2016, pages 1410 - 1421, XP055637768 *
POLI, AURELIE, IMMUNOLOGY, vol. 126, 2009, pages 458 - 465 *
SAHM, CHRISTIANE: "Expression of IL -15 in NK cells results in rapid enrichment and selective cytotoxicity of gene -modified effectors that carry a tumor-specific antigen receptor", CANCER IMMUNOLOGY IMMUNOTHERAPY, vol. 61, 2012, pages 1451 - 1461, XP035103279, doi:10.1007/s00262-012-1212-x *
TSUCHIYAMA, JUNJIRO: "Characterization of a novel human natural killer- cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection", BLOOD, vol. 92, no. 4, 1998, pages 1374 - 1383, XP055499557 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150760A3 (en) * 2020-01-21 2021-09-23 Washington University Compositions and methods for inhibiting or screening for cd8 and methods and assays for detecting cd8 in cells
WO2022126084A1 (en) * 2020-12-09 2022-06-16 Affyimmune Therapeutics, Inc. Dual chimeric antigen receptor targeting epcam and icam-1

Also Published As

Publication number Publication date
WO2019182425A1 (en) 2019-09-26
KR102226917B1 (en) 2021-03-11
KR20190111844A (en) 2019-10-02
KR20190111843A (en) 2019-10-02
KR102226918B1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019182422A1 (en) Novel genetically modified natural killer cell line and use thereof
JP7008350B2 (en) CAR expression vector and CAR expression T cells
US20200407458A1 (en) Anti cd30 chimeric antigen receptor and its use
EP3680338A1 (en) Genetically engineered t cell and application thereof
WO2021054789A1 (en) Genetically modified nk cell line transduced with gene encoding novel chimeric antigen receptor and use thereof
WO2018056736A1 (en) Novel natural killer cell line and use thereof
EP3854871A1 (en) Method for gene editing of cell on the basis of crispr/cas system
WO2020101361A1 (en) Method for culturing cord blood-derived natural killer cells using transformed t-cells
EP3394105B1 (en) Chimeric antigen receptor with cytokine receptor activating or blocking domain
TW201923073A (en) Modified K562 cell
EP2420509B1 (en) Novel marker genes for regulatory t cells from human blood
WO2017003153A1 (en) Method for producing natural killer cells from cord blood monocytes or cells derived therefrom
US20210238255A1 (en) Chimeric hla accessory receptor
JP2023524873A (en) Method
WO2023090780A1 (en) Natural killer cell-specific chimeric antigen receptor and use thereof
US20240002465A1 (en) Mr1 restricted t cell receptors for cancer immunotherapy
KR20240023426A (en) Method for producing antigen-specific T cells
JP2024502170A (en) Improved adoptive cell transfer therapy for cancer
WESSELINOVA T cells-do they know who they are?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771948

Country of ref document: EP

Kind code of ref document: A1