TW201923073A - Modified K562 cell - Google Patents

Modified K562 cell Download PDF

Info

Publication number
TW201923073A
TW201923073A TW107141263A TW107141263A TW201923073A TW 201923073 A TW201923073 A TW 201923073A TW 107141263 A TW107141263 A TW 107141263A TW 107141263 A TW107141263 A TW 107141263A TW 201923073 A TW201923073 A TW 201923073A
Authority
TW
Taiwan
Prior art keywords
cells
cell
modified
cancer
immune
Prior art date
Application number
TW107141263A
Other languages
Chinese (zh)
Inventor
望 舒
查實俊
李振東
陳坎
Original Assignee
新加坡商泰莎治療私人有限公司
新加坡國立大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商泰莎治療私人有限公司, 新加坡國立大學 filed Critical 新加坡商泰莎治療私人有限公司
Publication of TW201923073A publication Critical patent/TW201923073A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0694Cells of blood, e.g. leukemia cells, myeloma cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2086IL-13 to IL-16
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • A61K39/464412CD19 or B4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/48Blood cells, e.g. leukemia or lymphoma
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2302Interleukin-2 (IL-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2307Interleukin-7 (IL-7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2315Interleukin-15 (IL-15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/30Coculture with; Conditioned medium produced by tumour cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/99Coculture with; Conditioned medium produced by genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Abstract

Modified K562 cells having reduced expression of MHC class I as compared to wildtype K562 cells are disclosed. Also disclosed are articles and methods for producing such modified K562 cells, and methods using such modified K562 cells.

Description

經修飾之K562細胞Modified K562 cells

發明領域
本發明係關於細胞生物學、基因工程以及醫學治療及預防方法領域。
FIELD OF THE INVENTION The present invention relates to the fields of cell biology, genetic engineering, and medical treatment and prevention methods.

發明背景
基於細胞之過繼性癌症免疫療法使用自體或同種異體免疫細胞來治療惡性腫瘤。已研究用抗原特異性T細胞受體(TCR)或嵌合抗原受體(CAR)工程改造之細胞毒性T淋巴球,且已在多種癌症中顯示出有前景的治療效果(1-3)。已在飼養細胞存在或不存在之情況下研究許多方法用於活體外T細胞擴增(4-7)。用Fc受體、CD32或CD64、共刺激分子、CD40配體、B7-2 (CD86)或4-1BB配體(CD137L)及膜結合之介白素工程改造之動態飼養細胞已顯示出顯著促進細胞毒性T淋巴球之增殖及成熟(8-11)。飼養細胞亦可經由基因修飾用作人工抗原呈現細胞(aAPC),以表現刺激抗原特異性T細胞之分子(12)。K562細胞已作為aAPC用於許多研究,以促進細胞毒性T淋巴球(13-15)及CAR-T細胞(16-21)之擴增。
BACKGROUND OF THE INVENTION Cell-based adoptive cancer immunotherapy uses autologous or allogeneic immune cells to treat malignancies. Cytotoxic T lymphocytes engineered with antigen-specific T cell receptor (TCR) or chimeric antigen receptor (CAR) have been studied and have shown promising therapeutic effects in a variety of cancers (1-3). Many methods have been studied for T cell expansion in vitro in the presence or absence of feeder cells (4-7). Dynamic feeder cells engineered with Fc receptors, CD32 or CD64, costimulatory molecules, CD40 ligands, B7-2 (CD86) or 4-1BB ligands (CD137L) and membrane-bound interleukins have shown significant improvement Proliferation and maturation of cytotoxic T lymphocytes (8-11). Feeder cells can also be genetically modified for use as artificial antigen-presenting cells (aAPC) to express molecules that stimulate antigen-specific T cells (12). K562 cells have been used as aAPC in many studies to promote the expansion of cytotoxic T lymphocytes (13-15) and CAR-T cells (16-21).

K562細胞株為來源於母細胞危象患者之人類骨髓性白血病細胞株(22)。此細胞株係與具有近三倍體核型之紅血球母細胞相當的群落形成單位-紅血球系細胞的混合物(22, 23)。K562細胞作為飼養細胞優於其他細胞類型,因為其在無血清培養基中培養及繁殖,適合於轉染且易於修飾以用作人工抗原呈現細胞。K562細胞亦表現如ICAM (CD54)及LFA-3 (CD58)之分子,經由該等分子K562細胞可與T細胞相互作用(8,9)。經工程改造以表現共刺激分子及腫瘤相關抗原後,基於K562細胞之aAPC可支持抗原非依賴性及抗原依賴性T細胞擴增以及特異性CAR-T細胞之擴增。K562 cell line is a human myeloid leukemia cell line derived from a patient with blast crisis (22). This cell line is a mixture of erythrocytes, a community-forming unit equivalent to erythrocytes with nearly triploid karyotypes (22, 23). K562 cells are superior to other cell types as feeder cells because they are cultured and propagated in serum-free media, are suitable for transfection, and are easily modified for use as artificial antigen-presenting cells. K562 cells also exhibit molecules such as ICAM (CD54) and LFA-3 (CD58), through which K562 cells can interact with T cells (8, 9). After being engineered to express costimulatory molecules and tumor-associated antigens, a562C-based AAPCs can support antigen-independent and antigen-dependent T cell expansion and specific CAR-T cell expansion.

已廣泛報導K562細胞缺乏主要組織相容複合體(MHC)分子之表現(24, 25),其支持在活體外擴增T細胞之方法中使用K562細胞作為飼養細胞。然而,最新的一項研究表明K562細胞可在與免疫細胞共培養期間上調MHC I類分子表現,作者亦偵測到能夠識別及殺傷自HLA I類錯配供體擴增之免疫細胞群中之K562飼養細胞的同種異體反應性細胞毒性T細胞的存在(26)。The lack of expression of major histocompatibility complex (MHC) molecules in K562 cells has been widely reported (24, 25), which supports the use of K562 cells as feeder cells in a method of expanding T cells in vitro. However, a recent study showed that K562 cells can up-regulate MHC class I expression during co-culture with immune cells, and the authors have also detected and killed one of the immune cell populations expanded from HLA class I mismatched donors. Presence of Allo-Reactive Cytotoxic T Cells in K562 Feeder Cells (26).

發明概要
本發明係關於經修飾之K562細胞、其產生方法、用於產生經修飾之K562細胞的製品及K562細胞之用途。特別地,與使用野生型K562細胞產生/擴增之免疫細胞群相比,經修飾之K562細胞可用於產生/擴增顯示降低的同種異體反應性的免疫細胞群。此係經由經修飾之K562細胞抑制MHC I類表現來實現。
SUMMARY OF THE INVENTION The present invention relates to a modified K562 cell, a method for producing the same, a preparation for producing a modified K562 cell, and the use of the K562 cell. In particular, modified K562 cells can be used to generate / expand a population of immune cells that exhibit reduced allogeneic reactivity compared to immune cell populations generated / expanded using wild-type K562 cells. This is achieved through the inhibition of MHC class I expression by modified K562 cells.

在一個態樣中,本發明提供與野生型K562細胞相比MHC I類表現降低的經修飾之K562細胞。在一些實施例中,經修飾之K562細胞包含相對於野生型K562細胞對編碼MHC I類多肽之基因的修飾。In one aspect, the invention provides modified K562 cells with reduced MHC class I performance compared to wild-type K562 cells. In some embodiments, the modified K562 cells comprise a modification of a gene encoding a MHC class I polypeptide relative to a wild-type K562 cell.

在一些實施例中,修飾降低或阻止由編碼MHC I類多肽之基因編碼之多肽的表現。在一些實施例中,編碼MHC I類多肽之基因係B 2MIn some embodiments, the modification reduces or prevents the performance of a polypeptide encoded by a gene encoding a MHC class I polypeptide. In some embodiments, the gene encoding a MHC class I polypeptide is B 2 M.

在一些實施例中,經修飾之K562細胞包含增加一或多種能夠增加免疫細胞活化或增殖之因子之表現的修飾。在一些實施例中,經修飾之K562細胞包含編碼一或多種能夠增加免疫細胞活化/增殖之因子的核酸。在一些實施例中,一或多種能夠增加免疫細胞活化/增殖之因子係選自:共刺激分子、細胞介素或抗原。在一些實施例中,共刺激分子係選自CD40L、CD86、CD137L、CD80或CD83。在一些實施例中,細胞介素係選自IL-21、IL-15、膜結合之IL-21及膜結合之IL-15。In some embodiments, the modified K562 cells comprise modifications that increase the performance of one or more factors that increase the activation or proliferation of immune cells. In some embodiments, the modified K562 cells comprise a nucleic acid encoding one or more factors capable of increasing the activation / proliferation of immune cells. In some embodiments, one or more factors capable of increasing immune cell activation / proliferation are selected from the group consisting of a costimulatory molecule, cytokine, or antigen. In some embodiments, the costimulatory molecule is selected from the group consisting of CD40L, CD86, CD137L, CD80, or CD83. In some embodiments, the interleukin is selected from the group consisting of IL-21, IL-15, membrane-bound IL-21, and membrane-bound IL-15.

在一些實施例中,經修飾之K562細胞包含增加一或多種Fc受體之表現的修飾。In some embodiments, the modified K562 cells comprise modifications that increase the performance of one or more Fc receptors.

在另一態樣中,本發明提供經修飾之K562細胞,其包含修飾以降低或阻止由B 2M 編碼之多肽的表現。In another aspect, the invention provides a modified K562 cell comprising a modification to reduce or prevent the performance of a polypeptide encoded by B 2 M.

在一些實施例中,經修飾之K562細胞包含增加以下各項中之一或多者之表現的修飾:CD64、CD86、CD137L及膜結合之IL-21。在一些實施例中,經修飾之K562細胞包含增加抗原表現之修飾。在一些實施例中,經修飾之K562細胞包含增加CD19表現之修飾。In some embodiments, the modified K562 cells comprise modifications that increase the performance of one or more of the following: CD64, CD86, CD137L, and membrane-bound IL-21. In some embodiments, the modified K562 cells comprise modifications that increase antigenic performance. In some embodiments, the modified K562 cells comprise a modification that increases CD19 performance.

在另一態樣中,本發明提供一種用於產生經修飾之K562細胞的方法,該細胞與野生型K562細胞相比MHC I類之表現降低,該方法包含修飾K562細胞以降低或阻止MHC I類之表現。In another aspect, the present invention provides a method for generating modified K562 cells that has reduced MHC class I performance compared to wild-type K562 cells, the method comprising modifying K562 cells to reduce or prevent MHC I Class performance.

在一些實施例中,修飾降低或阻止由編碼MHC I類多肽之基因編碼之多肽的表現。在一些實施例中,編碼MHC I類多肽之基因係B 2MIn some embodiments, the modification reduces or prevents the performance of a polypeptide encoded by a gene encoding a MHC class I polypeptide. In some embodiments, the gene encoding a MHC class I polypeptide is B 2 M.

在一些實施例中,該方法包含修飾K562細胞以增加一或多種能夠增加免疫細胞活化或增殖之因子的表現。在一些實施例中,該方法包含向K562細胞中引入編碼一或多種能夠增加免疫細胞活化/增殖之因子的核酸。在一些實施例中,一或多種能夠增加免疫細胞活化/增殖之因子係選自:共刺激分子、細胞介素或抗原。在一些實施例中,共刺激分子係選自CD40L、CD86、CD137L、CD80或CD83。在一些實施例中,細胞介素係選自IL-21、IL-15、膜結合之IL-21及膜結合之IL-15。In some embodiments, the method comprises modifying K562 cells to increase the performance of one or more factors capable of increasing the activation or proliferation of immune cells. In some embodiments, the method comprises introducing into a K562 cell a nucleic acid encoding one or more factors capable of increasing immune cell activation / proliferation. In some embodiments, one or more factors capable of increasing immune cell activation / proliferation are selected from the group consisting of a costimulatory molecule, cytokine, or antigen. In some embodiments, the costimulatory molecule is selected from the group consisting of CD40L, CD86, CD137L, CD80, or CD83. In some embodiments, the interleukin is selected from the group consisting of IL-21, IL-15, membrane-bound IL-21, and membrane-bound IL-15.

在一些實施例中,該方法包含向K562細胞中引入編碼一或多種Fc受體之核酸。In some embodiments, the method comprises introducing into a K562 cell a nucleic acid encoding one or more Fc receptors.

在一些實施例中,該方法包含修飾K562細胞以增加抗原表現。In some embodiments, the method comprises modifying K562 cells to increase antigen performance.

在另一態樣中,本發明提供一種藉由根據本發明之方法獲得或可獲得的經修飾之K562細胞。In another aspect, the invention provides a modified K562 cell obtained or obtainable by a method according to the invention.

在另一態樣中,本發明提供一種用於產生或擴增免疫細胞群之方法,其包含使免疫細胞活體外、活體內或離體與根據本發明之經修飾之K562細胞接觸。In another aspect, the invention provides a method for generating or expanding an immune cell population comprising contacting immune cells in vitro, in vivo or ex vivo with a modified K562 cell according to the invention.

在一些實施例中,該方法係用於產生或擴增抗原特異性免疫細胞群之方法,其中該方法包含在包含或表現抗原之根據本發明之經修飾之K562細胞存在下培養免疫細胞。在一些實施例中,抗原特異性免疫細胞為經CAR修飾之免疫細胞,且其中經修飾之K562細胞包含或表現CAR特異性抗原。In some embodiments, the method is a method for generating or expanding an antigen-specific immune cell population, wherein the method comprises culturing immune cells in the presence of a modified K562 cell according to the invention comprising or expressing an antigen. In some embodiments, the antigen-specific immune cells are CAR-modified immune cells, and wherein the modified K562 cells comprise or express a CAR-specific antigen.

在另一態樣中,本發明提供藉由根據本發明之方法產生或擴增的免疫細胞群。In another aspect, the invention provides a population of immune cells produced or expanded by a method according to the invention.

在另一態樣中,本發明提供根據本發明之免疫細胞群,其係提供用於疾病或病況之醫學治療或預防方法中。In another aspect, the invention provides an immune cell population according to the invention, which is provided in a method of medical treatment or prevention of a disease or condition.

在另一態樣中,本發明提供根據本發明之免疫細胞群在製造用於疾病或病況之醫學治療或預防方法中之藥物中的用途。In another aspect, the invention provides the use of an immune cell population according to the invention in the manufacture of a medicament for use in a method of medical treatment or prevention of a disease or condition.

在另一態樣中,本發明提供一種治療或預防個體之疾病或病況的方法,其包含向個體投與根據本發明之免疫細胞群。In another aspect, the invention provides a method of treating or preventing a disease or condition in an individual, comprising administering to the individual an immune cell population according to the invention.

在另一態樣中,本發明提供一種治療或預防個體之疾病或病況的方法,其包含:
(a)自個體分離免疫細胞;
(b)藉由在根據本發明之經修飾之K562細胞存在下培養在步驟(a)分離之免疫細胞來產生或擴增免疫細胞群;及
(c)向個體投與在步驟(b)產生或擴增之免疫細胞群。
In another aspect, the invention provides a method of treating or preventing a disease or condition in an individual, comprising:
(a) isolating immune cells from the individual;
(b) generating or expanding an immune cell population by culturing the immune cells isolated in step (a) in the presence of the modified K562 cells according to the present invention; and
(c) administering to the individual the population of immune cells produced or expanded in step (b).

在一些實施例中,疾病或病況為T細胞功能障礙病症、癌症或感染性疾病。在一些實施例中,癌症選自由以下組成之群:結腸癌(colon cancer)、結腸惡性腫瘤(colon carcinoma)、結腸直腸癌、鼻咽癌、子宮頸癌、口咽癌、胃癌、肝細胞癌、頭頸癌、頭頸部鱗狀細胞癌(HNSCC)、口腔癌、喉癌、前列腺癌、肺癌、小細胞肺癌、非小細胞肺癌、膀胱癌、尿道上皮癌、黑素瘤、晚期黑素瘤、腎細胞癌、卵巢癌或間皮瘤。In some embodiments, the disease or condition is a T cell dysfunction disorder, cancer or infectious disease. In some embodiments, the cancer is selected from the group consisting of colon cancer, colon cancer, colorectal cancer, nasopharyngeal cancer, cervical cancer, oropharyngeal cancer, gastric cancer, hepatocellular carcinoma , Head and neck cancer, head and neck squamous cell carcinoma (HNSCC), oral cancer, laryngeal cancer, prostate cancer, lung cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, urethral epithelial cancer, melanoma, advanced melanoma, Renal cell carcinoma, ovarian cancer, or mesothelioma.

在另一態樣中,本發明提供編碼靶向B 2M 之位點特異性核酸酶(SSN)系統的核酸或複數個核酸。In another aspect, the invention provides a nucleic acid or a plurality of nucleic acids encoding a site-specific nuclease (SSN) system that targets B 2 M.

在一些實施例中,核酸或複數個核酸編碼CRISPR/Cas9系統。在一些實施例中,核酸或複數個核酸編碼靶向B 2M 外顯子之CRISPR RNA (crRNA)。在一些實施例中,核酸或複數個核酸編碼靶向B2M之外顯子1之crRNA及/或靶向外顯子2之crRNA。In some embodiments, the nucleic acid or nucleic acids encode a CRISPR / Cas9 system. In some embodiments, the nucleic acid or nucleic acids encode a CRISPR RNA (crRNA) that targets B 2 M exons. In some embodiments, the nucleic acid or nucleic acids encode a crRNA that targets B2M exon 1 and / or a crRNA that targets exon 2.

在另一態樣中,本發明提供編碼根據本發明之核酸或複數個核酸的載體或複數個載體。In another aspect, the invention provides a vector or a plurality of vectors encoding a nucleic acid or a plurality of nucleic acids according to the invention.

在另一態樣中,本發明提供一種用於產生經修飾之細胞的方法,該經修飾之細胞與可比較的未經修飾之細胞相比MHC I類之表現降低,該方法包含向細胞中引入修飾用之如本發明之核酸、複數個核酸、載體或複數個載體。在一些實施例中,經修飾之細胞為經修飾之K562細胞。In another aspect, the invention provides a method for producing a modified cell that has a reduced MHC class I performance compared to a comparable unmodified cell, the method comprising A modification is introduced with a nucleic acid, a plurality of nucleic acids, a vector, or a plurality of vectors as in the present invention. In some embodiments, the modified cells are modified K562 cells.

描述
本發明係關於一種經修飾之K562細胞,其可用於產生/擴增免疫細胞群以例如在過繼細胞轉移中使用之方法,其中產生/擴增之群體包含較少的特異性針對MHC I類之免疫細胞。
K562細胞
Description The present invention is directed to a modified K562 cell that can be used to generate / expand a population of immune cells for use in methods such as adoptive cell transfer, wherein the generated / expanded population contains less specificity for MHC class I Immune cells.
K562 cells

K562細胞株係一種人類骨髓性白血病細胞株,其來源於患有晚期急性發作之慢性骨髓性白血病之53歲女性的胸膜滲出液,且描述於Klein等人, International Journal of Cancer (1976) 18, 421中。K562細胞可自各種商業及非商業來源獲得,例如美國菌種保藏中心(American Type Culture Collection,ATCC)及Sigma (Sigma目錄號89121407)。K562細胞株係藉由不涉及破壞人類胚胎之方法獲得。K562 cell line is a human myeloid leukemia cell line derived from the pleural exudate of a 53-year-old woman with chronic acute myelogenous leukemia and described in Klein et al., International Journal of Cancer (1976) 18, 421. K562 cells are available from various commercial and non-commercial sources, such as the American Type Culture Collection (ATCC) and Sigma (Sigma catalog number 89121407). K562 cell lines were obtained by methods that did not involve the destruction of human embryos.

在根據本發明之各個態樣的一些實施例中,K562細胞(在本文中亦稱為「野生型」或「WT」K562細胞或「未修飾之」K562細胞)係以ATCC寄存編號CCL-243寄存之細胞株的細胞。在一些實施例中,K562細胞係人類骨髓性白血病細胞,其包含以下DNA譜:STR-PCR資料:釉原蛋白:X;CSF1PO: 9,10;D13S317: 8;D16S539: 11,12;D5S818: 11,12;D7S820: 9,11;THO1: 9.3;TPOX: 8,9;vWA: 16。在一些實施例中,K562細胞為人類骨髓性白血病細胞,其包含以ATCC寄存編號CCL-243寄存之細胞株細胞的基因組。In some embodiments according to various aspects of the invention, K562 cells (also referred to herein as "wild-type" or "WT" K562 cells or "unmodified" K562 cells) are deposited with ATCC accession number CCL-243 Deposited cells of cells. In some embodiments, the K562 cell line is a human myeloid leukemia cell, which comprises the following DNA profile: STR-PCR data: enamel protein: X; CSF1PO: 9,10; D13S317: 8; D16S539: 11,12; D5S818: 11,12; D7S820: 9,11; THO1: 9.3; TPOX: 8,9; vWA: 16. In some embodiments, K562 cells are human myeloid leukemia cells, which comprise the genome of a cell line cell deposited under ATCC accession number CCL-243.

本發明之態樣係關於經修飾之K562細胞。在本文中,「經修飾之」K562細胞係指以某種方式改變之K562細胞,使得經修飾之K562細胞不同於野生型K562細胞。該改變可改變K562細胞之一或多種結構及/或功能特性。
MHC I類之表現降低
The aspect of the present invention relates to modified K562 cells. As used herein, a "modified" K562 cell is a K562 cell that has been altered in such a way that the modified K562 cell is different from a wild-type K562 cell. This change can alter one or more of the structural and / or functional characteristics of K562 cells.
Reduced performance of MHC Class I

在一些實施例中,與野生型K562細胞相比,根據本發明之經修飾之K562細胞的MHC I類之表現降低。表現可指基因表現及/或蛋白質表現。In some embodiments, the performance of MHC class I of the modified K562 cells according to the invention is reduced compared to wild-type K562 cells. Performance may refer to gene performance and / or protein performance.

MHC I類分子為α鏈及β2-微球蛋白(B2M)之異二聚體。α-鏈具有命名為α1、α2及α3之三個域。α1及α2域一起形成由MHC I類分子呈現之肽結合的溝,以形成肽-MHC複合物。MHC I類α-鏈為多態的,且不同的α-鏈能夠結合且呈現不同的肽。在人類中,MHC I類α-鏈由人類白血球抗原(HLA)基因編碼。B2M為MHC I類分子之細胞表面表現所必需的;其缺陷可破壞MHC I類複合物之功能結構且降低MHC I類分子之表面表現(27, 28)。由於人類基因組中之B2M基因極其守恆,因此B2M之破壞可產生缺乏MHC I類分子表現之低免疫原性細胞。MHC class I molecules are heterodimers of alpha chains and beta2-microglobulin (B2M). The α-chain has three domains named α1, α2, and α3. The α1 and α2 domains together form a peptide-binding groove presented by MHC class I molecules to form a peptide-MHC complex. MHC class I α-chains are polymorphic, and different α-chains are capable of binding and presenting different peptides. In humans, MHC class I alpha-chains are encoded by the human leukocyte antigen (HLA) gene. B2M is necessary for the cell surface appearance of MHC class I molecules; its defects can destroy the functional structure of MHC class I complexes and reduce the surface performance of MHC class I molecules (27, 28). Because the B2M gene in the human genome is extremely conserved, the destruction of B2M can result in low immunogenic cells that lack the performance of MHC class I molecules.

MHC I類表現降低可指MHC I類分子之一或多種多肽的表現降低。在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的β2微球蛋白(B2M)多肽的表現降低。在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的MHC I類α鏈多肽的表現降低。在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的MHC I類複合物的表現降低。Reduced MHC Class I performance may refer to reduced performance of one or more polypeptides of the MHC Class I molecule. In some embodiments, the performance of β2 microglobulin (B2M) polypeptide in modified K562 cells is reduced compared to wild-type K562 cells. In some embodiments, the performance of MHC class I alpha chain polypeptides of modified K562 cells is reduced compared to wild-type K562 cells. In some embodiments, the performance of MHC class I complexes of modified K562 cells is reduced compared to wild-type K562 cells.

細胞對多肽或多肽複合物之表現可根據技術人員熟知的各種方法藉由分析來確定。此類方法包括使用特異性針對感興趣的多肽/多肽複合物的抗原結合分子(例如抗體或適體)進行分析,例如西方墨點法、免疫組織化學、免疫細胞化學、流動式細胞測量術或ELISA。The expression of a polypeptide or a polypeptide complex by a cell can be determined by analysis according to various methods well known to the skilled person. Such methods include analysis using antigen-binding molecules (such as antibodies or aptamers) specific for the polypeptide / polypeptide complex of interest, such as Western blotting, immunohistochemistry, immunocytochemistry, flow cytometry, or ELISA.

在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的MHC I類複合物的一或多種多肽的表面表現降低,例如B2M、MHC I類α鏈多肽及/或MHC I類複合物之表面表現降低。表面表現係指在細胞表面(亦即在細胞膜中或細胞膜處)可偵測之相關多肽/多肽複合物的表現。當多肽/多肽複合物在細胞表面表現時,可例如在完整細胞上使用特異性針對細胞之細胞外多肽/多肽複合物區的抗原結合分子分析給定多肽或多肽複合物之表面表現。In some embodiments, compared to wild-type K562 cells, the surface performance of one or more polypeptides of the MHC class I complex of modified K562 cells is reduced, such as B2M, MHC class I alpha chain polypeptides, and / or MHC class I The surface appearance of the composite is reduced. Surface expression refers to the expression of related polypeptide / polypeptide complexes that can be detected on the cell surface (ie, in or at the cell membrane). When the polypeptide / polypeptide complex is expressed on the cell surface, the surface expression of a given polypeptide or polypeptide complex can be analyzed, for example, on intact cells using antigen-binding molecules specific to the extracellular polypeptide / polypeptide complex region of the cell.

在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的MHC I類分子的一或多種多肽的基因表現降低。可確定細胞之基因表現,例如定量編碼一或多種多肽之mRNA,例如藉由定量即時PCR(qRT-PCR)或藉由基於報導子之方法。舉例而言,可藉由偵測編碼B2M多肽(例如野生型B2M多肽)之核酸水準降低及/或編碼MHC I類α鏈多肽之核酸水準降低來確定MHC I類分子之一或多種多肽的基因表現降低。In some embodiments, the gene expression of one or more polypeptides of the MHC class I molecule of the modified K562 cells is reduced compared to wild-type K562 cells. The genetic expression of a cell can be determined, such as quantitatively encoding mRNAs of one or more polypeptides, such as by quantitative real-time PCR (qRT-PCR) or by reporter-based methods. For example, a gene for one or more polypeptides of a MHC class I molecule can be identified by detecting a decrease in the level of a nucleic acid encoding a B2M polypeptide (e.g., a wild-type B2M polypeptide) and / or a decrease in the level of a nucleic acid encoding a MHC class I alpha chain polypeptide. Reduced performance.

如本文所用,「MHC I類多肽」係指MHC I類分子之組成多肽(亦即MHC I類α鏈多肽及B2M多肽之多肽複合物)。As used herein, "MHC class I polypeptide" refers to a constituent polypeptide of a MHC class I molecule (ie, a polypeptide complex of a MHC class I alpha chain polypeptide and a B2M polypeptide).

在一些實施例中,細胞對MHC I類之表現係在某些環境條件下,例如響應於用能夠上調MHC I類之基因表現或蛋白質表現之藥劑處理細胞來進行分析。在一些實施例中,本發明之經修飾之K562細胞在用IFNγ刺激後,與野生型K562細胞響應於類似刺激之基因/蛋白質表現水準相比,顯示MHC I類分子之一或多種多肽(例如B2M或MHC I類α鏈)的基因表現或蛋白質表現降低。在一些實施例中,經修飾之K562細胞在用K562細胞與免疫細胞(例如PBMC或T細胞)之共培養物的細胞培養物清液層刺激後,與野生型K562細胞響應於類似刺激之基因/蛋白質表現水準相比,顯示MHC I類分子之一或多種多肽(例如B2M或MHC I類α鏈)的基因表現或蛋白質表現降低。In some embodiments, the cell's MHC class I performance is analyzed under certain environmental conditions, such as in response to treating the cell with an agent capable of up-regulating MHC class I gene or protein expression. In some embodiments, the modified K562 cells of the invention, upon stimulation with IFNγ, show one or more polypeptides of MHC class I molecules compared to the level of gene / protein performance of wild-type K562 cells in response to similar stimuli (e.g., B2M or MHC class I alpha chain) decreased gene expression or protein expression. In some embodiments, the modified K562 cells respond to stimuli-like genes with wild-type K562 cells after stimulation with a cell culture supernatant of a co-culture of K562 cells and immune cells (eg, PBMC or T cells). Compared to the level of protein expression, it shows a decrease in gene expression or protein expression of one or more polypeptides of MHC class I molecules (eg, B2M or MHC class I alpha chain).

相對於野生型K562細胞之表現水準,給定因子之基因表現或蛋白質表現的水準「降低」可藉由量測經修飾之K562細胞中因子的表現水準及量測野生型K562細胞中因子的表現水準,且藉由比較該等值以確定經修飾之K562細胞的表現水準是否相對於野生型K562細胞的表現水準降低來確定。在一些實施例中,降低的表現水準可為小於野生型K562細胞在相同條件下之表現水平1倍,例如小於0.99倍、0.98倍、0.97倍、0.96倍、0.95倍、0.94倍、0.93倍、0.92倍、0.91倍、0.9倍、0.8倍、0.7倍、0.6倍、0.5倍、0.4倍、0.3倍、0.2倍或小於0.1倍的表現水準。Relative to the performance level of wild-type K562 cells, the level of gene expression or protein expression of a given factor can be "reduced" by measuring the performance level of factors in modified K562 cells and measuring the performance of factors in wild-type K562 cells Level, and by comparing these values to determine if the performance level of the modified K562 cells is reduced relative to the performance level of wild-type K562 cells. In some embodiments, the reduced performance level may be less than 1 times the performance level of wild-type K562 cells under the same conditions, such as less than 0.99 times, 0.98 times, 0.97 times, 0.96 times, 0.95 times, 0.94 times, 0.93 times, 0.92 times, 0.91 times, 0.9 times, 0.8 times, 0.7 times, 0.6 times, 0.5 times, 0.4 times, 0.3 times, 0.2 times or less than 0.1 times.

在一些實施例中,根據本發明之經修飾之K562細胞基本上不具有MHC I類、B2M或MHC I類α鏈之基因/蛋白質表現。在一些實施例中,經修飾之K562細胞具有不可偵測之MHC I類、B2M或MHC I類α鏈的基因/蛋白質表現水準(例如藉由用於檢測基因及/或蛋白質表現之標準方法所測定)。In some embodiments, the modified K562 cells according to the invention have substantially no MHC class I, B2M or MHC class I alpha chain gene / protein expression. In some embodiments, the modified K562 cells have undetectable levels of gene / protein performance of MHC class I, B2M, or MHC class I alpha chains (e.g., by standard methods for detecting gene and / or protein performance Determination).

在一些實施例中,經修飾之K562細胞基本上不顯示MHC I類之表面表現,例如藉由使用能夠結合MHC I類之抗體的流動式細胞測量術分析所測定。在一些實施例中,經修飾之K562細胞基本上不顯示B2M之表面表現,例如藉由使用能夠結合B2M之抗體的流動式細胞測量術分析所測定。在此類分析中,相關抗體對經修飾之K562細胞的染色水準可能與相同同型之適當陰性對照抗體對細胞的染色水準沒有顯著不同。In some embodiments, the modified K562 cells do not substantially show surface manifestations of MHC class I, for example, as determined by flow cytometry analysis using antibodies capable of binding to MHC class I. In some embodiments, the modified K562 cells do not substantially show surface appearance of B2M, for example, as determined by flow cytometry analysis using antibodies capable of binding to B2M. In this type of analysis, the staining level of the modified antibody to K562 cells by the relevant antibody may not be significantly different from the staining level of the appropriate isotype control antibody of the same type.

在一些實施例中,經修飾之K562細胞可稱為MHC I類陰性或MHC I類基因剔除K562細胞。在一些實施例中,經修飾之K562細胞可稱為B2M陰性或B2M基因剔除K562細胞。In some embodiments, the modified K562 cells may be referred to as MHC class I negative or MHC class I knockout K562 cells. In some embodiments, the modified K562 cells may be referred to as B2M negative or B2M gene knockout K562 cells.

本發明之經修飾之K562細胞可例如由於用降低MHC I類分子之一或多種多肽(例如B2M多肽或MHC I類α鏈多肽)之基因及/或蛋白質表現的藥劑處理而具有降低的MHC I類表現。能夠阻止或降低MHC I類分子之一或多種多肽之表現的藥劑可例如經由抑制編碼B2M多肽或MHC I類α鏈多肽之基因的轉錄,抑制編碼B2M多肽或MHC I類α鏈多肽之RNA的轉錄後加工,降低編碼B2M多肽或MHC I類α鏈多肽之RNA的穩定性,抑制編碼B2M多肽或MHC I類α鏈多肽之RNA的轉譯,促進編碼B2M多肽或MHC I類α鏈多肽之RNA的降解,抑制B2M多肽或MHC I類α鏈多肽之轉譯後加工,抑制B2M多肽及MHC I類α鏈多肽之締合,抑制MHC I類多肽複合物之形成,降低B2M多肽、MHC I類α鏈多肽或MHC I類多肽複合物之穩定性,或促進B2M多肽、MHC I類α鏈多肽或MHC I類多肽複合物之降解來阻止或降低MHC I類分子之一或多種多肽的表現。在一些實施例中,該藥劑可經由RNA干擾(RNAi)抑制MHC I類之基因表現或蛋白質表現。在一些實施例中,該藥劑可為或可編碼靶向編碼B2M或MHC I類α鏈之核酸的shRNA或siRNA。The modified K562 cells of the invention may have reduced MHC I, for example, as a result of treatment with an agent that reduces gene and / or protein performance of one or more polypeptides of the MHC class I molecule (e.g., B2M polypeptide or MHC class I alpha chain polypeptide). Class performance. Agents capable of preventing or reducing the expression of one or more polypeptides of the MHC class I molecule can inhibit, for example, the RNA encoding the B2M polypeptide or the MHC class I alpha chain polypeptide by inhibiting the transcription of the gene encoding the B2M polypeptide or the MHC class I alpha chain polypeptide. Post-transcriptional processing reduces the stability of RNA encoding B2M polypeptide or MHC class I alpha chain polypeptide, inhibits translation of RNA encoding B2M polypeptide or MHC class I alpha chain polypeptide, and promotes RNA encoding B2M polypeptide or MHC class I alpha chain polypeptide Degradation of B2M polypeptides or MHC class I alpha chain polypeptides, post-translational processing, inhibition of the association of B2M polypeptides and MHC class I alpha chain polypeptides, inhibition of the formation of MHC class I peptide complexes, and reduction of B2M peptides and MHC class I alphas Stability of chain polypeptides or MHC class I polypeptide complexes, or promote degradation of B2M polypeptides, MHC class I alpha chain polypeptides or MHC class I polypeptide complexes to prevent or reduce the performance of one or more polypeptides of MHC class I molecules. In some embodiments, the agent can inhibit gene expression or protein expression of MHC class I via RNA interference (RNAi). In some embodiments, the agent may be or may encode a shRNA or siRNA that targets a nucleic acid encoding a B2M or MHC class I alpha chain.

在一些較佳實施例中,本發明之經修飾之K562細胞包含對編碼MHC I類多肽之核酸的修飾。與野生型K562細胞相比,該修飾使細胞之MHC I類分子之一或多種多肽(例如B2M或MHC I類α鏈)的基因及/或蛋白質表現水準降低。In some preferred embodiments, the modified K562 cells of the invention comprise modifications to a nucleic acid encoding a MHC class I polypeptide. Compared to wild-type K562 cells, the modification reduces the level of genes and / or proteins of one or more polypeptides of the cell's MHC class I molecules (eg, B2M or MHC class I alpha chains).

在一些實施例中,經修飾之K562細胞包含對編碼MHC I類多肽之基因的修飾。在一些實施例中,經修飾之K562細胞包含相對於野生型K562細胞對編碼B2M多肽之基因的修飾。在一些實施例中,經修飾之K562細胞包含相對於野生型K562細胞對編碼MHC I類α鏈之基因的修飾。In some embodiments, the modified K562 cells comprise modifications to a gene encoding a MHC class I polypeptide. In some embodiments, the modified K562 cells comprise a modification of a gene encoding a B2M polypeptide relative to a wild-type K562 cell. In some embodiments, the modified K562 cells comprise modifications to genes encoding MHC class I alpha chains relative to wild-type K562 cells.

編碼人類B2M之基因的核苷酸序列(NCBI參考序列:NG_012920.1)展示於SEQ ID NO:1中。自NG_012920.1轉錄之mRNA序列展示於SEQ ID NO:2中(NCBI參考序列:XM_005254549.3),且其蛋白質編碼序列展示於SEQ ID NO:3中。The nucleotide sequence of the gene encoding human B2M (NCBI reference sequence: NG_012920.1) is shown in SEQ ID NO: 1. The mRNA sequence transcribed from NG_012920.1 is shown in SEQ ID NO: 2 (NCBI reference sequence: XM_005254549.3), and its protein coding sequence is shown in SEQ ID NO: 3.

在一些實施例中,經修飾之K562細胞包含非野生型B 2M 等位基因。亦即,在一些實施例中,經修飾之K562細胞包含B 2M 等位基因,其包含相對於野生型K562細胞所具有之B 2M 等位基因的修飾。In some embodiments, the modified K562 cells comprise a non-wild-type B 2 M allele. That is, in some embodiments, the modified K562 cells comprise a B 2 M allele, which includes modifications relative to the B 2 M alleles possessed by wild-type K562 cells.

K562細胞基因組含有B 2M 基因之三個等位基因(45)。出於此原因,產生B2M基因剔除K562細胞具有挑戰性,因為K562細胞必須以一定的方式進行修飾以使得B2M 之所有三個拷貝均被破壞。The K562 cell genome contains three alleles of the B 2 M gene (45). For this reason, generating B2M gene knockout K562 cells is challenging because K562 cells must be modified in such a way that all three copies of B2M are destroyed.

在一些實施例中,經修飾之K562細胞包含多於一種非野生型B2M 等位基因。在一些實施例中,經修飾之K562細胞包含對各B2M 等位基因之修飾。在一些實施例中,經修飾之K562細胞缺乏野生型K562細胞所具有之B2M 等位基因。In some embodiments, the modified K562 cells comprise more than one non-wild-type B2M allele. In some embodiments, the modified K562 cells comprise modifications to each B2M allele. In some embodiments, the modified K562 cells lack the B2M alleles possessed by wild-type K562 cells.

人類B2M多肽經轉譯為具有SEQ ID NO:4中所示之胺基酸序列的119個胺基酸的多肽(UniProt: P61769-1, v1)。在加工移除20個胺基酸信號肽後,成熟的B2M具有SEQ ID NO:5中所示之胺基酸序列。The human B2M polypeptide was translated into a 119 amino acid polypeptide having the amino acid sequence shown in SEQ ID NO: 4 (UniProt: P61769-1, v1). After processing to remove 20 amino acid signal peptides, mature B2M has the amino acid sequence shown in SEQ ID NO: 5.

在一些實施例中,對B2M 等位基因之修飾包含編碼B2M多肽之核酸序列中的插入、取代或缺失。在一些實施例中,該修飾降低或阻止自經修飾之核酸序列表現根據SEQ ID NO:4或SEQ ID NO:5之多肽。在一些實施例中,經修飾之K562細胞包含B2M 等位基因,其不編碼根據SEQ ID NO:4或SEQ ID NO:5之胺基酸序列。在一些實施例中,經修飾之K562細胞缺乏編碼根據SEQ ID NO:4或SEQ ID NO:5之多肽的核酸。In some embodiments, the modification to the B2M allele comprises an insertion, substitution, or deletion in a nucleic acid sequence encoding a B2M polypeptide. In some embodiments, the modification reduces or prevents performance of a polypeptide according to SEQ ID NO: 4 or SEQ ID NO: 5 from a modified nucleic acid sequence. In some embodiments, the modified K562 cells comprise a B2M allele, which does not encode an amino acid sequence according to SEQ ID NO: 4 or SEQ ID NO: 5. In some embodiments, the modified K562 cells lack a nucleic acid encoding a polypeptide according to SEQ ID NO: 4 or SEQ ID NO: 5.

在一些實施例中,修飾在自非野生型B2M 等位基因轉錄的序列中引入過早終止密碼子。在一些實施例中,非野生型B2M 等位基因編碼截短的及/或非功能性B2M多肽。在一些實施例中,非野生型B2M 等位基因編碼錯誤摺疊及/或降解的B2M多肽。在一些實施例中,非野生型B2M 等位基因編碼不能參與功能性MHC I類多肽複合物之B2M多肽。在一些實施例中,非野生型B2M 等位基因編碼不能與MHC I類α鏈締合之B2M多肽。In some embodiments, the modification introduces a premature stop codon in a sequence transcribed from a non-wild-type B2M allele. In some embodiments, the non-wild-type B2M allele encodes a truncated and / or non-functional B2M polypeptide. In some embodiments, the non-wild-type B2M allele encodes a misfolded and / or degraded B2M polypeptide. In some embodiments, the non-wild-type B2M allele encodes a B2M polypeptide that is unable to participate in a functional MHC class I polypeptide complex. In some embodiments, the non-wild-type B2M allele encodes a B2M polypeptide that cannot associate with a MHC class I alpha chain.

在一些實施例中,非野生型B2M 等位基因包含對編碼B2M 之外顯子之核酸的修飾。在一些實施例中,非野生型B2M 等位基因包含對編碼B2M 之外顯子1之核酸序列的修飾。在一些實施例中,非野生型B2M 等位基因包含對編碼B2M 之外顯子2之核酸序列的修飾。In some embodiments, the non-wild-type B2M allele comprises a modification to a nucleic acid encoding an exon of B2M . In some embodiments, the non-wild-type B2M allele comprises a modification to a nucleic acid sequence encoding exon 1 of B2M . In some embodiments, the non-wild-type B2M allele comprises a modification to a nucleic acid sequence encoding exon 2 of B2M .

在一些實施例中,非野生型B2M 等位基因包含對編碼B2M 之外顯子1之核酸序列的插入、缺失或取代。在一些實施例中,非野生型B2M 等位基因包含對編碼B2M 之外顯子2之核酸序列的插入、缺失或取代。In some embodiments, the non-wild-type B2M allele comprises an insertion, deletion, or substitution of a nucleic acid sequence encoding exon 1 of B2M . In some embodiments, the non-wild-type B2M allele comprises an insertion, deletion, or substitution of a nucleic acid sequence encoding exon 2 of B2M .

在一些實施例中,非野生型B2M 等位基因包含在對應於SEQ ID NO:1之70及71的位置之間的核苷酸(例如胸苷(T))的插入。在一些實施例中,非野生型B2M 等位基因包含對應於SEQ ID NO:1之51至69之位置的缺失。In some embodiments, the non-wild-type B2M allele comprises an insertion of a nucleotide (eg, thymidine (T)) between positions corresponding to 70 and 71 of SEQ ID NO: 1. In some embodiments, the non-wild-type B2M allele comprises a deletion corresponding to positions 51 to 69 of SEQ ID NO: 1.

在一些實施例中,非野生型B2M 等位基因包含編碼標記(例如可偵測標記及/或可選標記)的核酸序列。在一些實施例中,標記為螢光蛋白、酶或酶受質。在一些實施例中,非野生型B2M 等位基因包含編碼抗生素抗性之核酸序列(例如編碼新黴素抗性基因neo 之核酸序列)。In some embodiments, the non-wild-type B2M allele comprises a nucleic acid sequence encoding a marker (eg, a detectable marker and / or a selectable marker). In some embodiments, the label is a fluorescent protein, an enzyme, or an enzyme substrate. In some embodiments, the non-wild-type B2M allele comprises a nucleic acid sequence encoding an antibiotic resistance (eg, a nucleic acid sequence encoding a neomycin resistance gene neo ).

技術人員能夠確定給定細胞是否包含野生型B2M 等位基因或非野生型B2M 等位基因,且亦能夠藉由技術人員熟知的方法確定B2M 等位基因之核苷酸序列,包括藉由經典鏈終止方法定序或藉由例如由Metzker, M.L., Nat Rev Genet 2010年1月;11(1): 31-46 (以引用之方式併入本文中)審查之下一代定序(NGS)。
能夠增加免疫細胞活化/增殖之因子及/或Fc受體的表現增加
The skilled person can determine whether a given cell contains a wild-type B2M allele or a non-wild-type B2M allele, and can also determine the nucleotide sequence of the B2M allele by methods well known to the skilled person, including by the classical Termination method sequencing or by Next Generation Sequencing (NGS) reviewed by, for example, Metzker, ML, Nat Rev Genet January 2010; 11 (1): 31-46 (incorporated by reference herein).
Increased expression of factors and / or Fc receptors that can increase immune cell activation / proliferation

在一些實施例中,與野生型K562細胞相比,根據本發明之經修飾之K562細胞之一或多種能夠增加免疫細胞活化/增殖之因子的表現增加。在一些實施例中,與野生型K562細胞相比,根據本發明之經修飾之K562細胞的一或多種Fc受體之表現增加。In some embodiments, the performance of one or more of the modified K562 cells according to the present invention capable of increasing immune cell activation / proliferation is increased compared to wild-type K562 cells. In some embodiments, the performance of one or more Fc receptors of the modified K562 cells according to the invention is increased compared to wild-type K562 cells.

表現可為基因及/或蛋白質表現。基因表現可藉由熟習此項技術者已知之各種手段量測,例如藉由利用定量即時PCR (qRT-PCR)或藉由基於報導子之方法量測mRNA之水準。蛋白質表現可藉由此項技術中熟知之各種方法量測,例如藉由基於抗體之方法,例如藉由西方墨點法、免疫組織化學、免疫細胞化學、流動式細胞測量術、ELISA、ELISPOT或基於報導子之方法。The performance may be a genetic and / or protein performance. Gene performance can be measured by various means known to those skilled in the art, such as by using quantitative real-time PCR (qRT-PCR) or by reporter-based methods to measure mRNA levels. Protein performance can be measured by various methods well known in the art, such as by antibody-based methods, such as by Western blotting, immunohistochemistry, immunocytochemistry, flow cytometry, ELISA, ELISPOT, or Reporter-based approach.

相對於野生型K562細胞之表現水準,給定因子之基因表現或蛋白質表現的水準增加可藉由量測經修飾之K562細胞中因子的表現水準及量測野生型K562細胞中因子的表現水準,且藉由比較該等值以確定經修飾之K562細胞的表現水準是否相對於野生型K562細胞的表現水準增加來確定。在一些實施例中,增加的表現水準可為大於野生型K562細胞在相同條件下之表現水準1倍,例如大於1.01倍、1.02倍、1.03倍、1.04倍、1.05倍、1.06倍、1.07倍、1.08倍、1.09倍、1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2.0倍、2.5倍、3.0倍、3.5倍、4.0倍、4.5倍、5倍、6倍、7倍、8倍、9倍、10倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或大於100倍的表現水準。Relative to the performance level of wild-type K562 cells, the level of gene expression or protein expression of a given factor can be increased by measuring the level of factor performance in modified K562 cells and measuring the level of factor performance in wild-type K562 cells. And by comparing these values to determine whether the performance level of the modified K562 cells increased relative to the performance level of wild-type K562 cells. In some embodiments, the increased performance level may be 1 times greater than that of wild-type K562 cells under the same conditions, such as greater than 1.01 times, 1.02 times, 1.03 times, 1.04 times, 1.05 times, 1.06 times, 1.07 times, 1.08 times, 1.09 times, 1.1 times, 1.2 times, 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.5 times, 3.0 times, 3.5 times, 4.0 times, 4.5 times , 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times or more than 100 times.

能夠增加免疫細胞活化之因子可藉由使免疫細胞或免疫細胞群與該因子接觸,且隨後分析免疫細胞之一或多種免疫細胞活化標記來鑑定。能夠增加免疫細胞活化之因子可藉由在用相關因子處理後(與適當的對照條件相比),偵測一或多種免疫細胞活化標記之表現水準的增加及/或表現一或多種免疫細胞活化標記之細胞比例的增加來鑑定。T細胞活化之標記包括例如CD69及CD45R0。NK細胞活化之標記包括例如CD69、CD107a及KLRG1。Factors capable of increasing immune cell activation can be identified by contacting immune cells or a population of immune cells with the factor and subsequently analyzing one or more immune cell activation markers of the immune cells. Factors that increase immune cell activation can be detected by increasing the level of performance of one or more immune cell activation markers and / or manifesting one or more immune cell activations after treatment with related factors (compared to appropriate control conditions) An increase in the proportion of labeled cells was identified. T-cell activation markers include, for example, CD69 and CD45R0. Markers for NK cell activation include, for example, CD69, CD107a, and KLRG1.

類似地,能夠增加免疫細胞增殖之因子可藉由使免疫細胞或免疫細胞群與該因子接觸,且隨後分析免疫細胞增殖來鑑定。能夠增加免疫細胞增殖之因子可藉由在用相關因子處理後(與適當對照條件相比),偵測免疫細胞增殖水準之增加來鑑定。細胞增殖水準可藉由經一段時間分析細胞分裂來測定。細胞分裂可例如藉由活體外分析3H-胸苷之併入或藉由CFSE稀釋分析來分析,如Fulcher及Wong, Immunol Cell Biol (1999) 77(6): 559-564中所述,其以全文引用之方式併入本文中。Similarly, a factor capable of increasing immune cell proliferation can be identified by contacting an immune cell or a population of immune cells with the factor and subsequently analyzing the immune cell proliferation. Factors that increase immune cell proliferation can be identified by detecting increased levels of immune cell proliferation after treatment with related factors (compared to appropriate control conditions). Cell proliferation levels can be determined by analyzing cell division over time. Cell division can be analyzed, for example, by in vitro analysis of 3H-thymidine incorporation or by CFSE dilution analysis, as described in Fulcher and Wong, Immunol Cell Biol (1999) 77 (6): 559-564, which The entire citation is incorporated herein.

在一些實施例中,能夠增加免疫細胞活化/增殖之因子係選自共刺激分子、細胞介素或抗原。In some embodiments, the factor capable of increasing the activation / proliferation of immune cells is selected from the group consisting of a co-stimulatory molecule, a cytokine, or an antigen.

K562細胞通常經工程改造以增加共刺激分子之表現;參見例如Suhoski等人, Mol Ther (2007) 15(5): 981-988,Turtle及Riddell Cancer J. (2010) 16(4): 374-381,以及Butler及Hirano, Immunol Rev. (2014) Jan; 257(1): 10,其均以全文引用之方式併入本文中。共刺激分子表現增加之K562細胞促進表現共刺激分子配體之免疫細胞的活化及增殖。K562 cells are usually engineered to increase the performance of costimulatory molecules; see, for example, Suhoski et al., Mol Ther (2007) 15 (5): 981-988, Turtle and Riddell Cancer J. (2010) 16 (4): 374- 381, and Butler and Hirano, Immunol Rev. (2014) Jan; 257 (1): 10, all of which are incorporated herein by reference in their entirety. K562 cells with increased costimulatory molecules promote the activation and proliferation of immune cells that display costimulatory ligands.

在一些實施例中,與野生型K562細胞相比,根據本發明之經修飾之K562細胞的以下共刺激分子中之一或多者的表現增加:CD70、CD40、LFA3、ICAM1、CD80、CD86、CD137L、OX40L、ICOSL、LIGHT、LTb及GITRL。在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的以下共刺激分子中之一或多者的表現增加:CD40L、CD70、CD80、CD83、CD86、ICOSL、GITRL、CD137L及OX40L。在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的以下共刺激分子中之一或多者的表現增加:CD40L、CD86及CD137L。In some embodiments, the performance of one or more of the following costimulatory molecules of modified K562 cells according to the present invention is increased compared to wild-type K562 cells: CD70, CD40, LFA3, ICAM1, CD80, CD86, CD137L, OX40L, ICOSL, LIGHT, LTb and GITRL. In some embodiments, the performance of one or more of the following costimulatory molecules of modified K562 cells is increased compared to wild-type K562 cells: CD40L, CD70, CD80, CD83, CD86, ICOSL, GITRL, CD137L, and OX40L. In some embodiments, the performance of one or more of the following costimulatory molecules of modified K562 cells is increased compared to wild-type K562 cells: CD40L, CD86, and CD137L.

K562細胞亦經工程改造以增加能夠刺激免疫細胞活化/增殖之其他分子的表現,諸如細胞介素。舉例而言,Wang等人, Clin Exp Immunol. (2013) 172(1):104-12 (以全文引用之方式併入本文中)描述經工程改造以在細胞表面上表現膜結合之IL-21 (mbIL-21) (亦對CD137L之細胞表面表現進行修飾)的K562細胞擴增PBMC群內之NK細胞的用途,且Denman等人, PLoS One (2012) 7(1):e30264描述經工程改造以表現膜結合之膜結合之IL-15 (mbIL-15)的K562細胞擴增NK細胞的用途。K562 cells are also engineered to increase the performance of other molecules that can stimulate the activation / proliferation of immune cells, such as cytokines. For example, Wang et al., Clin Exp Immunol. (2013) 172 (1): 104-12 (incorporated herein by reference in its entirety) describe IL-21 that has been engineered to exhibit membrane binding on the cell surface (mbIL-21) The use of K562 cells (which also modify the cell surface appearance of CD137L) to expand NK cells in the PBMC population, and Denman et al., PLoS One (2012) 7 (1): e30264, described as engineered Use of K562 cells expressing membrane-bound membrane-bound IL-15 (mbIL-15) to expand NK cells.

在一些實施例中,與野生型K562細胞相比,根據本發明之經修飾之K562細胞的以下分子中之一或多者的表現增加:IL-21、膜結合之IL-21、IL-15及膜結合之IL-15。在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的膜結合之IL-21及/或膜結合之IL-15的表現增加。In some embodiments, compared to wild-type K562 cells, the performance of one or more of the following molecules of modified K562 cells according to the invention is increased: IL-21, membrane-bound IL-21, IL-15 And membrane-bound IL-15. In some embodiments, the performance of membrane-bound IL-21 and / or membrane-bound IL-15 of modified K562 cells is increased compared to wild-type K562 cells.

在一些實施例中,與野生型K562細胞相比,根據本發明之經修飾之K562細胞的一或多種抗原之表現增加。如本文所用,「抗原」係指能夠活化表現特異性針對抗原之受體之免疫細胞的分子。In some embodiments, the performance of one or more antigens of the modified K562 cells according to the invention is increased compared to wild-type K562 cells. As used herein, "antigen" refers to a molecule capable of activating an immune cell that exhibits a receptor specifically directed against an antigen.

在一些實施例中,抗原為癌細胞抗原。癌細胞抗原為由癌細胞表現或過度表現之抗原。癌細胞抗原可為任何肽/多肽、糖蛋白、脂蛋白、聚糖、糖脂、脂質或其片段。癌細胞抗原可由癌細胞異常表現(例如癌細胞抗原可以異常定位表現),或可由癌細胞以異常結構表現。在一些實施例中,抗原係在癌細胞之細胞表面表現(亦即癌細胞抗原為癌細胞表面抗原)。在一些實施例中,癌細胞抗原係其表現與癌症之發展、進展或症狀嚴重程度相關的抗原。癌症相關抗原可能與癌症之病因或病理相關,或可能由於癌症而異常表現。在一些實施例中,癌細胞抗原係其表現例如與可比的非癌細胞(例如來源於相同組織/細胞類型之非癌細胞)之表現水準相比由癌細胞上調(例如在RNA及/或蛋白質水準下)的抗原。在一些實施例中,癌症相關抗原可能優先由癌細胞表現,且不由可比的非癌細胞(例如來源於相同組織/細胞類型之非癌細胞)表現。在一些實施例中,癌症相關抗原可為突變致癌基因或突變腫瘤抑制基因之產物。在一些實施例中,癌症相關抗原可為過度表現細胞蛋白質、藉由致癌病毒產生之癌症抗原、癌胚抗原或細胞表面糖脂或糖蛋白的產物。In some embodiments, the antigen is a cancer cell antigen. Cancer cell antigens are antigens expressed or overexpressed by cancer cells. The cancer cell antigen can be any peptide / polypeptide, glycoprotein, lipoprotein, glycan, glycolipid, lipid, or a fragment thereof. Cancer cell antigens can be expressed abnormally by cancer cells (for example, cancer cell antigens can be expressed abnormally), or they can be expressed by cancer cells with abnormal structures. In some embodiments, the antigen is expressed on the cell surface of a cancer cell (ie, the cancer cell antigen is a cancer cell surface antigen). In some embodiments, the cancer cell antigen is an antigen whose performance correlates with the development, progression, or severity of symptoms of the cancer. Cancer-associated antigens may be related to the etiology or pathology of cancer, or they may behave abnormally due to cancer. In some embodiments, the cancer cell antigen line is, for example, upregulated by cancer cells (e.g., in RNA and / or protein) compared to the performance level of comparable non-cancer cells (e.g., non-cancer cells derived from the same tissue / cell type) Substandard). In some embodiments, cancer-associated antigens may be preferentially expressed by cancer cells and not by comparable non-cancer cells (eg, non-cancer cells derived from the same tissue / cell type). In some embodiments, the cancer-associated antigen may be a product of a mutant oncogene or a mutant tumor suppressor gene. In some embodiments, the cancer-associated antigen may be an overexpressing cellular protein, a cancer antigen produced by an oncovirus, a carcinoembryonic antigen, or a cell surface glycolipid or glycoprotein product.

在一些實施例中,抗原為CD19。CD19之疾病關聯例如Wang等人, Exp Hematol Oncol. (2012) 1:36中所綜述。CD19表現在大多數B細胞腫瘤上高度守恆,且在大多數急性淋巴母細胞白血病(ALL)、慢性淋巴細胞白血病(CLL)及B細胞淋巴瘤中表現(Cooper等人 Blood Cells Mol Dis. (2004) 33(1):83-9)。大多數B細胞惡性腫瘤在正常至高水準下表現CD19 (80%之ALL、88%之B細胞淋巴瘤及100%之B細胞白血病)。在骨髓惡性腫瘤之病例中,包括在2%之AML病例中亦觀察到CD19。In some embodiments, the antigen is CD19. CD19 disease associations are reviewed, for example, in Wang et al., Exp Hematol Oncol. (2012) 1:36. CD19 is highly conserved on most B-cell tumors and is present in most acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and B-cell lymphoma (Cooper et al. Blood Cells Mol Dis. (2004) ) 33 (1): 83-9). Most B-cell malignancies show CD19 at normal to high levels (80% of ALL, 88% of B-cell lymphoma, and 100% of B-cell leukemia). CD19 was also observed in cases of bone marrow malignancies, including 2% of AML cases.

在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞的一或多種Fc受體之表現增加。飼養細胞及人工抗原呈現細胞通常經工程改造以增加Fc受體諸如CD64、CD32及CD16之表現,改良例如促效劑抗CD3抗體(例如純系OKT3)及/或促效劑抗CD28抗體之呈現,從而活化表現CD3之免疫細胞 - 參見例如Turtle及Riddell Cancer J. (2010) 16(4): 374-381,其以引用之方式併入本文中。表現增加水準之Fc受體的細胞特別適用於使用促效劑抗CD3及/或抗CD28抗體產生/擴增免疫細胞群之方法,以用於抗原非依賴性T細胞活化。In some embodiments, the performance of one or more Fc receptors of the modified K562 cells is increased compared to wild-type K562 cells. Feeder cells and artificial antigen-presenting cells are usually engineered to increase the expression of Fc receptors such as CD64, CD32, and CD16, and to improve the presentation of, for example, agonist anti-CD3 antibodies (such as pure OKT3) and / or agonist anti-CD28 antibodies, Thus activating immune cells expressing CD3-see, for example, Turtle and Riddell Cancer J. (2010) 16 (4): 374-381, which is incorporated herein by reference. Cells expressing increased levels of Fc receptors are particularly suitable for use in methods of generating / expanding immune cell populations using agonist anti-CD3 and / or anti-CD28 antibodies for antigen-independent T cell activation.

因此,在一些實施例中,與野生型K562細胞相比,根據本發明之經修飾之K562細胞的一或多種Fc受體之表現增加。在一些實施例中,Fc受體為Fcγ之受體。在一些實施例中,Fc受體係選自CD64、CD32及CD16。Thus, in some embodiments, the performance of one or more Fc receptors of the modified K562 cells according to the invention is increased compared to wild-type K562 cells. In some embodiments, the Fc receptor is a receptor for Fcy. In some embodiments, the Fc receptor is selected from the group consisting of CD64, CD32, and CD16.

在一些實施例中,與野生型K562細胞相比,根據本發明之經修飾之K562細胞的以下因子中之一或多者的表現增加:CD19、CD40L、CD86、CD137L、mbIL-21及CD64。In some embodiments, compared to wild-type K562 cells, modified K562 cells according to the present invention have increased performance of one or more of the following factors: CD19, CD40L, CD86, CD137L, mbIL-21, and CD64.

與野生型K562細胞相比,根據本發明之經修飾之K562細胞由於已經工程改造以增加一或多種因子之表現,故可增加一或多種能夠增加免疫細胞活化/增殖之因子的表現及/或增加一或多種Fc受體之表現。Compared with wild-type K562 cells, the modified K562 cells according to the present invention can be engineered to increase the performance of one or more factors, and therefore can increase the performance of one or more factors capable of increasing the activation / proliferation of immune cells and / or Increase the performance of one or more Fc receptors.

在一些實施例中,經修飾之K562細胞包含編碼一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的外源核酸。如本文所用,「外源」核酸係指對野生型K562細胞為非內源之核酸;亦即不包含於野生型K562細胞基因組中之核酸。In some embodiments, the modified K562 cells comprise an exogenous nucleic acid encoding one or more factors capable of increasing the activation / proliferation of immune cells and / or one or more Fc receptors. As used herein, "exogenous" nucleic acid refers to a nucleic acid that is not endogenous to wild-type K562 cells; that is, a nucleic acid that is not included in the genome of wild-type K562 cells.

在一些實施例中,經修飾之K562細胞由於已例如藉由轉染、電穿孔或轉導將核酸引入細胞或其前體中而包含編碼一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的外源核酸。In some embodiments, the modified K562 cells contain one or more factors that encode to increase the activation / proliferation of immune cells and / Or exogenous nucleic acid of one or more Fc receptors.

在一些實施例中,經修飾之K562細胞穩定表現編碼一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的外源核酸。在一些實施例中,外源核酸可整合至經修飾之K562細胞的基因組中。In some embodiments, the modified K562 cells stably express an exogenous nucleic acid encoding one or more factors capable of increasing the activation / proliferation of immune cells and / or one or more Fc receptors. In some embodiments, the exogenous nucleic acid can be integrated into the genome of a modified K562 cell.

在一些實施例中,外源核酸可在特定基因座處整合至經修飾之K562細胞的基因組中。在一些實施例中,外源核酸可在基因組安全港(GSH)處整合至經修飾之K562細胞的基因組中。GSH為支持外源核酸穩定整合及表現之位點,同時使與宿主細胞基因組之不需要的相互作用的風險降至最低(參見例如Sadelain等人, Nat Rev Cancer. (2011) 12(1):51-8)。In some embodiments, the exogenous nucleic acid can be integrated into the genome of the modified K562 cells at a particular locus. In some embodiments, the exogenous nucleic acid can be integrated into the genome of a modified K562 cell at a genomic safe harbor (GSH). GSH is a site that supports the stable integration and expression of exogenous nucleic acids, while minimizing the risk of unwanted interactions with the host cell genome (see, eg, Sadelain et al., Nat Rev Cancer. (2011) 12 (1): 51-8).

已鑑定數種用於在人類細胞中穩定整合外源核酸之安全GSH,包括AAVS1 ,亦即AAV病毒在染色體19上整合之天然存在之位點;CCR5 基因,亦即趨化因子受體基因,亦稱為HIV-1共同受體;及小鼠Rosa26基因座之人類直系同源物(參見例如Papapetrou及Schambach Mol Ther. (2016) 24(4): 678-684)。在一些實施例中,外源核酸整合在AAVS1 處。Several safe GSHs have been identified for the stable integration of foreign nucleic acids in human cells, including AAVS1 , the naturally occurring site of AAV virus integration on chromosome 19; the CCR5 gene, which is the chemokine receptor gene, Also known as the HIV-1 co-receptor; and human orthologs of the mouse Rosa26 locus (see, eg, Papapetrou and Schambach Mol Ther. (2016) 24 (4): 678-684). In some embodiments, the exogenous nucleic acid is integrated at AAVS1 .

在一些實施例中,根據本發明之經修飾之K562細胞可經處理以抑制/阻止細胞增殖(亦即細胞可「不活化」)。不活化細胞可缺乏進行細胞分裂之能力(且可因此缺乏增殖能力)。在一些實施例中,K562細胞可藉由用絲裂黴素C或環孢素A處理或暴露於電離輻射(例如γ輻照、X射線或UV光)而不活化。適用於此類處理/暴露之條件為技術人員已知的,且可例如參考Roy等人, J Hematother Stem Cell Res (2001) 10(6):873-80來確定。In some embodiments, the modified K562 cells according to the invention may be treated to inhibit / prevent cell proliferation (ie, the cells may be "inactive"). Inactivated cells may lack the ability to undergo cell division (and may therefore lack the ability to proliferate). In some embodiments, K562 cells can be inactivated by treatment with mitomycin C or cyclosporine A or exposure to ionizing radiation (eg, gamma radiation, X-rays, or UV light). Conditions suitable for such treatment / exposure are known to the skilled person and can be determined, for example, with reference to Roy et al., J Hematother Stem Cell Res (2001) 10 (6): 873-80.

在一些實施例中,根據本發明之經修飾之K562細胞或經修飾之K562細胞群係以經分離之形式或基本上純化之形式提供。經修飾之K562細胞可例如自一或多種其他細胞類型(例如野生型K562細胞)分離/純化。In some embodiments, a modified K562 cell or a modified K562 cell line according to the invention is provided in an isolated form or a substantially purified form. Modified K562 cells can be isolated / purified, for example, from one or more other cell types, such as wild-type K562 cells.

在具體實施例中,本發明之經修飾之K562細胞可包含以下表型中之一者(例如藉由流動式細胞測量術使用特異性針對相關因子之抗體確定):MHC I類陰性/B2M陰性;MHC I類陰性/B2M陰性、CD40L陽性、CD86陽性、CD137L陽性及mbIL-2陽性;MHC I類陰性/B2M陰性、CD40L陽性、CD86陽性、CD137L陽性、mbIL-2陽性及CD64陽性;MHC I類陰性/B2M陰性、CD40L陽性、CD86陽性、CD137L陽性、mbIL-2陽性及CD19陽性;MHC I類陰性/B2M陰性、CD40L陽性、CD86陽性、CD137L陽性、mbIL-2陽性、CD64陽性及CD19陽性。
經修飾之K562細胞的功能特性
In specific embodiments, the modified K562 cells of the invention may include one of the following phenotypes (e.g., as determined by flow cytometry using antibodies specific for related factors): MHC class I negative / B2M negative ; MHC class I / B2M negative, CD40L positive, CD86 positive, CD137L positive, and mbIL-2 positive; MHC class I negative / B2M negative, CD40L positive, CD86 positive, CD137L positive, mbIL-2 positive, and CD64 positive; MHC I Class Negative / B2M negative, CD40L positive, CD86 positive, CD137L positive, mbIL-2 positive, and CD19 positive; MHC Class I negative / B2M negative, CD40L positive, CD86 positive, CD137L positive, mbIL-2 positive, CD64 positive, and CD19 positive .
Functional characteristics of modified K562 cells

本發明之經修飾之K562細胞可藉由參考一或多種功能特性來表徵。The modified K562 cells of the invention can be characterized by reference to one or more functional properties.

在一些實施例中,根據本發明之經修飾之K562細胞具有以下特性中之一或多者:
在用上調野生型K562細胞之B2M/MHC I類表面表現的藥劑刺激後,與野生型K562細胞相比,B2M及/或MHC I類之表面表現降低;
與野生型K562細胞相比,由NK細胞之溶解增加;
與使用野生型K562細胞擴增之T細胞相比,擴增對表現HLA-C*03或HLA-C*05之細胞顯示降低的細胞毒性的T細胞;
與使用野生型K562細胞擴增之T細胞相比,擴增較少特異性針對表現HLA-C*03或HLA-C*05之細胞的T細胞;
In some embodiments, the modified K562 cells according to the present invention have one or more of the following characteristics:
Compared with wild-type K562 cells, the surface expression of B2M and / or MHC class I is reduced after stimulation with an agent that up-regulates the B2M / MHC class I surface expression of wild-type K562 cells;
Compared with wild-type K562 cells, the lysis by NK cells is increased;
Expansion of T cells showing reduced cytotoxicity to cells expressing HLA-C * 03 or HLA-C * 05 compared to T cells expanded using wild-type K562 cells;
Compared with T cells expanded using wild-type K562 cells, the expansion is less specific for T cells expressing HLA-C * 03 or HLA-C * 05 cells;

在一些實施例中,在用上調野生型K562細胞之B2M/MHC I類表面表現的藥劑刺激後,與野生型K562細胞相比,經修飾之K562細胞的B2M及/或MHC I類的表面表現降低。在一些實施例中,該藥劑為IFNγ。在一些實施例中,該藥劑為T細胞及野生型K562細胞之共培養物清液層。可例如藉由流動式細胞測量術使用特異性針對B2M/MHC I類之抗體活體外測定B2M/MHC I類之表面表現。在一些實施例中,如本揭露內容之實例中所述,在用上調B2M/MHC I類之表面表現的藥劑刺激後,與野生型K562細胞相比,可分析經修飾之K562細胞的B2M及/或MHC I類的表面表現。在一些實施例中,在可比分析中,在用上調野生型K562細胞之B2M/MHC I類表面表現的藥劑刺激後,與野生型K562細胞相比,經修飾之K562細胞顯示小於1倍,例如小於0.99倍、0.98倍、0.97倍、0.96倍、0.95倍、0.94倍、0.93倍、0.92倍、0.91倍、0.9倍、0.8倍、0.7倍、0.6倍、0.5倍、0.4倍、0.3倍、0.2倍或小於0.1倍的B2M及/或MHC I類的表面表現水準。In some embodiments, after stimulation with an agent that up-regulates the B2M / MHC class I surface expression of wild-type K562 cells, compared to wild-type K562 cells, the B2M and / or MHC class I surface expression of modified K562 cells reduce. In some embodiments, the agent is IFNγ. In some embodiments, the agent is a co-culture supernatant layer of T cells and wild-type K562 cells. The surface performance of B2M / MHC class I can be determined in vitro, for example, by flow cytometry using antibodies specific for B2M / MHC class I. In some embodiments, as described in the examples of this disclosure, after stimulation with an agent that up-regulates the surface performance of B2M / MHC Class I, compared to wild-type K562 cells, the B2M and And / or MHC Class I surface appearance. In some embodiments, in a comparable analysis, modified K562 cells show less than 1-fold compared to wild-type K562 cells after stimulation with an agent that up-regulates the B2M / MHC Class I surface expression of wild-type K562 cells, eg, Less than 0.99 times, 0.98 times, 0.97 times, 0.96 times, 0.95 times, 0.94 times, 0.93 times, 0.92 times, 0.91 times, 0.9 times, 0.8 times, 0.7 times, 0.6 times, 0.5 times, 0.4 times, 0.3 times, 0.2 B2M and / or MHC Class I surface performance at or below 0.1 times.

在一些實施例中,與野生型K562細胞相比,經修飾之K562細胞更易於由NK細胞溶解。可例如使用NK細胞細胞毒性分析活體外確定對由NK細胞溶解的敏感性。細胞毒性分析為技術人員已知的,例如在Zaritskaya等人, Expert Rev Vaccines (2011), 9(6):601-616中回顧,其以全文引用之方式併入本文中。在一些實施例中,如本揭露內容之實例中所述,由NK細胞溶解係使用DELFIA EuTDA細胞毒性分析來分析。在一些實施例中,在可比分析中,由NK細胞對經修飾之K562細胞所顯示之細胞毒性水準(例如確定為細胞溶解水準)大於1倍,例如大於1.01倍、1.02倍、1.03倍、1.04倍、1.05倍、1.06倍、1.07倍、1.08倍、1.09倍、1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2.0倍、2.5倍、3.0倍、3.5倍、4.0倍、4.5倍、5倍、6倍、7倍、8倍、9倍或大於10倍由NK細胞對野生型K562細胞所顯示之細胞毒性水準(例如確定為細胞溶解百分比)。In some embodiments, modified K562 cells are easier to lyse by NK cells than wild-type K562 cells. Sensitivity to lysis by NK cells can be determined in vitro using, for example, NK cell cytotoxicity assays. Cytotoxicity analysis is known to the skilled person and is reviewed, for example, in Zaritskaya et al., Expert Rev Vaccines (2011), 9 (6): 601-616, which is incorporated herein by reference in its entirety. In some embodiments, as described in the examples of this disclosure, analysis is performed by NK cell lysing lines using a DELFIA EuTDA cytotoxicity assay. In some embodiments, the level of cytotoxicity (e.g., determined to be a level of cytolysis) exhibited by NK cells to modified K562 cells is greater than 1-fold, such as greater than 1.01-fold, 1.02-fold, 1.03-fold, 1.04 Times, 1.05 times, 1.06 times, 1.07 times, 1.08 times, 1.09 times, 1.1 times, 1.2 times, 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.5 times, 3.0-fold, 3.5-fold, 4.0-fold, 4.5-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or more than 10-fold cytotoxicity levels (e.g., cytolytic) percentage).

應瞭解,與使用野生型K562細胞產生/擴增之免疫細胞群相比,本發明之經修飾之K562細胞可用於產生/擴增同種異體反應性降低之免疫細胞群。特別地,本發明之經修飾之K562細胞可用於產生/擴增特異性針對表現HLA-C*03或HLA-C*05之細胞的細胞數量減少的免疫細胞群。It should be understood that the modified K562 cells of the present invention can be used to generate / expand an immune cell population with reduced allogeneic reactivity compared to an immune cell population generated / expanded using wild-type K562 cells. In particular, the modified K562 cells of the present invention can be used to generate / expand an immune cell population that specifically targets a reduced number of cells expressing HLA-C * 03 or HLA-C * 05 cells.

在一些實施例中,與使用野生型K562細胞擴增之T細胞相比,經修飾之K562細胞擴增對表現HLA-C*03或HLA-C*05之細胞顯示降低的細胞毒性的T細胞。擴增之T細胞群對表現HLA-C*03或HLA-C*05之細胞的細胞毒性可例如使用細胞毒性分析,例如Zaritskaya等人, Expert Rev Vaccines (2011), 9(6):601-616中所述之分析進行活體外分析。在一些實施例中,T細胞對表現HLA-C*03或HLA-C*05之細胞的細胞毒性係使用如本揭露內容之實例中所述之DELFIA EuTDA細胞毒性分析來分析。在一些實施例中,在可比分析中,在經修飾之K562細胞存在下藉由培養擴增之T細胞所顯示之對表現HLA-C*03或HLA-C*05之細胞的細胞毒性水準小於1倍,例如小於0.99倍、0.98倍、0.97倍、0.96倍、0.95倍、0.94倍、0.93倍、0.92倍、0.91倍、0.9倍、0.8倍、0.7倍、0.6倍、0.5倍、0.4倍、0.3倍、0.2倍或小於0.1倍在野生型K562細胞存在下藉由培養擴增之T細胞所顯示之細胞毒性水準。In some embodiments, the modified K562 cells expand T cells that exhibit reduced cytotoxicity to cells expressing HLA-C * 03 or HLA-C * 05 compared to T cells expanded using wild-type K562 cells . The cytotoxicity of the expanded T cell population to cells expressing HLA-C * 03 or HLA-C * 05 can be analyzed, for example, using a cytotoxicity assay, such as Zaritskaya et al., Expert Rev Vaccines (2011), 9 (6): 601- The analysis described in 616 was performed in vitro. In some embodiments, the cytotoxicity of T cells to cells expressing HLA-C * 03 or HLA-C * 05 is analyzed using a DELFIA EuTDA cytotoxicity assay as described in the examples of this disclosure. In some embodiments, in comparable analysis, the level of cytotoxicity exhibited by cultured expanded T cells in the presence of modified K562 cells to cells expressing HLA-C * 03 or HLA-C * 05 is less than 1 times, such as less than 0.99 times, 0.98 times, 0.97 times, 0.96 times, 0.95 times, 0.94 times, 0.93 times, 0.92 times, 0.91 times, 0.9 times, 0.8 times, 0.7 times, 0.6 times, 0.5 times, 0.4 times, 0.3 times, 0.2 times, or less than 0.1 times the level of cytotoxicity exhibited by cultured expanded T cells in the presence of wild-type K562 cells.

在一些實施例中,與使用野生型K562細胞擴增之T細胞相比,經修飾之K562細胞擴增較少特異性針對表現HLA-C*03或HLA-C*05之細胞(亦即對其具有反應性,例如對其顯示細胞毒性)的T細胞。在一些實施例中,在可比分析中,經修飾之K562細胞擴增少於1倍,例如少於0.99倍、0.98倍、0.97倍、0.96倍、0.95倍、0.94倍、0.93倍、0.92倍、0.91倍、0.9倍、0.8倍、0.7倍、0.6倍、0.5倍、0.4倍、0.3倍、0.2倍或少於0.1倍由野生型K562細胞擴增之特異性針對表現HLA-C*03或HLA-C*05之細胞的T細胞數。
用於產生經修飾之K562細胞的方法
In some embodiments, compared to T cells expanded using wild-type K562 cells, modified K562 cell expansion is less specific to cells expressing HLA-C * 03 or HLA-C * 05 (i.e., to It is reactive, for example, T cells which show cytotoxicity). In some embodiments, in a comparable analysis, the modified K562 cells expand less than 1-fold, such as less than 0.99-fold, 0.98-fold, 0.97-fold, 0.96-fold, 0.95-fold, 0.94-fold, 0.93-fold, 0.92-fold, 0.91 times, 0.9 times, 0.8 times, 0.7 times, 0.6 times, 0.5 times, 0.4 times, 0.3 times, 0.2 times, or less than 0.1 times The specificity of expansion by wild-type K562 cells is directed against the expression of HLA-C * 03 or HLA -T cells of C * 05 cells.
Method for generating modified K562 cells

本發明亦提供用於產生根據本發明之經修飾之K562細胞的方法。The invention also provides a method for generating a modified K562 cell according to the invention.

在一些實施例中,該方法包含修飾K562細胞(例如野生型K562細胞)以降低或阻止MHC I類之表現。在一些實施例中,該方法包含修飾K562細胞以降低或阻止MHC I類在細胞表面之表現。在一些實施例中,該方法包含修飾K562細胞以降低或阻止B2M及/或MHC I類α鏈多肽之表現。In some embodiments, the method comprises modifying K562 cells (eg, wild-type K562 cells) to reduce or prevent the performance of MHC class I. In some embodiments, the method comprises modifying K562 cells to reduce or prevent MHC class I performance on the cell surface. In some embodiments, the method comprises modifying K562 cells to reduce or prevent the performance of B2M and / or MHC class I alpha chain polypeptides.

在一些實施例中,該方法包含修飾K562細胞以降低或阻止由編碼MHC I類多肽之基因編碼之多肽的表現。在一些實施例中,該方法包含修飾K562細胞以降低或阻止由B2M編碼之多肽的表現。在一些實施例中,該方法包含修飾K562細胞以降低或阻止由編碼MHC I類α鏈多肽之基因(例如HLA 基因)編碼之多肽的表現。In some embodiments, the method comprises modifying K562 cells to reduce or prevent the performance of a polypeptide encoded by a gene encoding a MHC class I polypeptide. In some embodiments, the method comprises modifying K562 cells to reduce or prevent the performance of a polypeptide encoded by B2M. In some embodiments, the method comprises modifying K562 cells to reduce or prevent the performance of a polypeptide encoded by a gene (eg, an HLA gene) encoding a MHC class I alpha chain polypeptide.

在一些實施例中,修飾包含用能夠降低MHC I類分子之一或多種多肽(例如B2M多肽或MHC I類α鏈多肽)之基因及/或蛋白質表現的藥劑處理K562細胞。在一些實施例中,該藥劑可能能夠抑制編碼B2M多肽或MHC I類α鏈多肽之基因的轉錄,抑制編碼B2M多肽或MHC I類α鏈多肽之RNA的轉錄後加工,降低編碼B2M多肽或MHC I類α鏈多肽之RNA的穩定性,抑制編碼B2M多肽或MHC I類α鏈多肽之RNA的轉譯,促進編碼B2M多肽或MHC I類α鏈多肽之RNA的降解,抑制B2M多肽或MHC I類α鏈多肽之轉譯後加工,抑制B2M多肽及MHC I類α鏈多肽之締合,抑制MHC I類多肽複合物之形成,降低B2M多肽、MHC I類α鏈多肽或MHC I類多肽複合物之穩定性,或促進B2M多肽、MHC I類α鏈多肽或MHC I類多肽複合物之降解。在一些實施例中,該藥劑可經由RNA干擾(RNAi)抑制MHC I類之基因表現或蛋白質表現。在一些實施例中,該藥劑可為或可編碼靶向編碼B2M或MHC I類α鏈之核酸的shRNA或siRNA。In some embodiments, the modification comprises treating K562 cells with an agent capable of reducing gene and / or protein performance of one or more polypeptides of the MHC class I molecule (eg, a B2M polypeptide or an MHC class I alpha chain polypeptide). In some embodiments, the agent may be capable of inhibiting the transcription of genes encoding B2M polypeptides or MHC class I alpha chain polypeptides, inhibiting post-transcriptional processing of RNA encoding B2M polypeptides or MHC class I alpha chain polypeptides, and reducing B2M polypeptide or MHC encoding Stability of RNA of type I α chain polypeptide, inhibiting translation of RNA encoding B2M polypeptide or MHC type I α chain polypeptide, promoting degradation of RNA encoding B2M polypeptide or MHC type I α chain polypeptide, and inhibiting B2M polypeptide or MHC type I Post-translational processing of α-chain polypeptides, inhibits the association of B2M polypeptides and MHC class I α-chain polypeptides, inhibits the formation of MHC class I polypeptide complexes, and reduces B2M polypeptides, MHC class I α-chain polypeptides, or MHC class I polypeptide complexes Stability, or promote degradation of B2M polypeptides, MHC class I alpha chain polypeptides or MHC class I polypeptide complexes. In some embodiments, the agent can inhibit gene expression or protein expression of MHC class I via RNA interference (RNAi). In some embodiments, the agent may be or may encode a shRNA or siRNA that targets a nucleic acid encoding a B2M or MHC class I alpha chain.

在一些實施例中,該方法包含修飾編碼MHC I類多肽之核酸。與野生型K562細胞相比,該修飾使細胞之MHC I類分子之一或多種多肽(例如B2M多肽或MHC I類α鏈多肽)的基因及/或蛋白質表現水準降低。In some embodiments, the method comprises modifying a nucleic acid encoding a MHC class I polypeptide. Compared with wild-type K562 cells, the modification reduces the level of genes and / or proteins of one or more polypeptides of the cell's MHC class I molecules (eg, B2M polypeptide or MHC class I alpha chain polypeptide).

在一些實施例中,該方法包含修飾編碼MHC I類多肽之基因。在一些實施例中,該方法包含修飾編碼B2M多肽之基因。在一些實施例中,該方法包含修飾編碼MHC I類α鏈之基因。In some embodiments, the method comprises modifying a gene encoding a MHC class I polypeptide. In some embodiments, the method comprises modifying a gene encoding a B2M polypeptide. In some embodiments, the method comprises modifying a gene encoding a MHC class I alpha chain.

在一些實施例中,該方法包含修飾B2M 基因之一或多個等位基因。在一些實施例中,該方法包含修飾各B2M 等位基因。In some embodiments, the method comprises modifying one or more alleles of a B2M gene. In some embodiments, the method comprises modifying each B2M allele.

在一些實施例中,該方法包含向編碼B2M多肽之核酸序列中引入插入、取代或缺失。In some embodiments, the method comprises introducing an insertion, substitution, or deletion into a nucleic acid sequence encoding a B2M polypeptide.

在一些實施例中,該方法包含引入修飾,其降低或阻止自經修飾之核酸序列表現根據SEQ ID NO:4或SEQ ID NO:5之多肽。在一些實施例中,該方法包含修飾K562細胞以包含B2M 等位基因,其不編碼根據SEQ ID NO:4或SEQ ID NO:5之胺基酸序列。在一些實施例中,該方法包含修飾K562細胞以缺失編碼根據SEQ ID NO:4或SEQ ID NO:5之多肽的核酸。In some embodiments, the method comprises introducing a modification that reduces or prevents performance of a polypeptide according to SEQ ID NO: 4 or SEQ ID NO: 5 from a modified nucleic acid sequence. In some embodiments, the method comprises modifying K562 cells to include a B2M allele that does not encode an amino acid sequence according to SEQ ID NO: 4 or SEQ ID NO: 5. In some embodiments, the method comprises modifying K562 cells to delete a nucleic acid encoding a polypeptide according to SEQ ID NO: 4 or SEQ ID NO: 5.

在一些實施例中,該方法包含修飾B2M 等位基因以在自B2M 等位基因轉錄之序列中引入過早終止密碼子。在一些實施例中,該方法包含修飾B2M 等位基因以編碼截短的及/或非功能性B2M多肽。在一些實施例中,該方法包含修飾B2M 等位基因以編碼錯誤摺疊及/或降解的B2M多肽。在一些實施例中,該方法包含修飾B2M 等位基因以編碼不能參與功能性MHC I類多肽複合物之B2M多肽。在一些中,該方法包含修飾B2M 等位基因以編碼不能與MHC I類α鏈締合之B2M多肽。In some embodiments, the method comprises modifying the B2M allele to introduce a premature stop codon in a sequence transcribed from the B2M allele. In some embodiments, the method comprises modifying a B2M allele to encode a truncated and / or non-functional B2M polypeptide. In some embodiments, the method comprises modifying a B2M allele to encode a misfolded and / or degraded B2M polypeptide. In some embodiments, the method comprises modifying a B2M allele to encode a B2M polypeptide that is unable to participate in a functional MHC class I polypeptide complex. In some, the method comprises modifying the B2M allele to encode a B2M polypeptide that is unable to associate with a MHC class I alpha chain.

在一些實施例中,該方法包含修飾編碼B2M 之外顯子的核酸。在一些實施例中,該方法包含修飾編碼B2M 之外顯子1的核酸序列。在一些實施例中,該方法包含修飾編碼B2M 之外顯子2的核酸序列。In some embodiments, the method comprises modifying a nucleic acid encoding a B2M exon. In some embodiments, the method comprises modifying a nucleic acid sequence encoding exon 1 of B2M . In some embodiments, the method comprises modifying a nucleic acid sequence encoding B2M exon 2.

在一些實施例中,該方法包含向編碼B2M 之外顯子1的核酸序列中引入插入、缺失或取代。在一些實施例中,該方法包含向編碼B2M 之外顯子2的核酸序列中引入插入、缺失或取代。In some embodiments, the method comprises introducing an insertion, deletion, or substitution into a nucleic acid sequence encoding B2M exon 1. In some embodiments, the method comprises introducing an insertion, deletion, or substitution into a nucleic acid sequence encoding B2M exon 2.

在一些實施例中,該方法包含在對應於SEQ ID NO:1之70及71的位置之間插入核苷酸(例如胸苷(T))。在一些實施例中,方法缺失對應於SEQ ID NO:1之51至69的位置。In some embodiments, the method includes inserting a nucleotide (eg, thymidine (T)) between positions corresponding to 70 and 71 of SEQ ID NO: 1. In some embodiments, the method deletions correspond to positions 51 to 69 of SEQ ID NO: 1.

在一些實施例中,該方法包含將編碼標記(例如可偵測標記及/或可選標記)之核酸序列插入編碼B2M多肽之核酸序列中。在一些實施例中,標記為螢光蛋白、酶或酶受質。在一些實施例中,該方法包含將編碼抗生素抗性之核酸序列(例如編碼新黴素抗性基因neo 之核酸序列)插入編碼B2M多肽之核酸序列中。In some embodiments, the method includes inserting a nucleic acid sequence encoding a marker (eg, a detectable marker and / or a selectable marker) into a nucleic acid sequence encoding a B2M polypeptide. In some embodiments, the label is a fluorescent protein, an enzyme, or an enzyme substrate. In some embodiments, the method comprises inserting a nucleic acid sequence encoding an antibiotic resistance (eg, a nucleic acid sequence encoding a neomycin resistance gene neo ) into a nucleic acid sequence encoding a B2M polypeptide.

根據本發明之方法修飾編碼MHC I類多肽(例如B2M多肽或MHC I類α鏈多肽)之核酸可以技術人員已知的多種方式實現,包括藉由同源重組修飾靶核酸及使用位點特異性核酸酶(SSN)進行靶核酸編輯。先前研究已使用腺相關病毒(AAV)載體介導之傳統基因靶向或使用轉錄激活因子樣效應核酸酶(TALEN)對人類胚胎幹細胞進行B2M破壞(29, 30)。Modification of a nucleic acid encoding an MHC class I polypeptide (such as a B2M polypeptide or an MHC class I alpha chain polypeptide) according to the method of the present invention can be accomplished in a variety of ways known to the skilled person, including modification of the target nucleic acid by homologous recombination and use of site specificity Nuclease (SSN) performs target nucleic acid editing. Previous studies have used conventional gene targeting mediated by adeno-associated virus (AAV) vectors or B2M destruction of human embryonic stem cells using transcriptional activator-like effector nucleases (TALEN) (29, 30).

在一些實施例中,該等方法採用藉由同源重組靶向,其例如在Mortensen Curr Protoc Neurosci. (2007) Chapter 4:Unit 4.29及Vasquez等人, PNAS 2001, 98(15): 8403-8410中綜述,該兩篇文獻均以全文引用之方式併入本文中。藉由同源重組靶向涉及經由同源序列引導之交換事件交換核酸序列。In some embodiments, the methods employ targeting by homologous recombination, such as in Mortensen Curr Protoc Neurosci. (2007) Chapter 4: Unit 4.29 and Vasquez et al., PNAS 2001, 98 (15): 8403-8410 In the review, the two documents are incorporated herein by reference in their entirety. Targeting by homologous recombination involves the exchange of nucleic acid sequences through an exchange event directed by a homologous sequence.

在一些實施例中,該等方法採用使用SSN之靶核酸編輯。使用SSN之基因編輯例如在Eid及Mahfouz, Exp Mol Med. 2016 Oct; 48(10): e265中綜述,其以全文引用之方式併入本文中。能夠產生位點特異性雙股斷裂(DSB)之酶可經工程改造以將DSB引入感興趣的靶核酸序列。DSB可藉由易錯的非同源末端連接(NHEJ)修復,其中斷裂之兩個末端重新連接,通常插入或缺失核苷酸。或者,DSB可藉由高度同源定向修復(HDR)來修復,其中提供末端與斷裂位點同源之DNA模板且將其在DSB之位點處引入。In some embodiments, the methods employ target nucleic acid editing using SSN. Gene editing using SSN is reviewed, for example, in Eid and Mahfouz, Exp Mol Med. 2016 Oct; 48 (10): e265, which is incorporated herein by reference in its entirety. Enzymes capable of generating site-specific double-strand breaks (DSBs) can be engineered to introduce DSBs into a target nucleic acid sequence of interest. DSB can be repaired by error-prone non-homologous end joining (NHEJ), in which the two ends of the break are reconnected, usually with nucleotides inserted or deleted. Alternatively, DSB can be repaired by highly homologous directed repair (HDR), in which a DNA template whose ends are homologous to the break site is provided and introduced at the DSB site.

能夠經工程改造以產生靶核酸序列特異性DSB之SSN包括鋅指核酸酶(ZFN)、轉錄激活因子樣效應核酸酶(TALEN)及成簇的規律間隔的回文重複序列/CRISPR相關9 (CRISPR/Cas9)系統。SSNs that can be engineered to produce target-specific nucleic acid sequence-specific DSBs include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALEN), and clustered regularly spaced palindromic repeats / CRISPR-related 9 (CRISPR / Cas9) system.

ZFN系統例如在Umov等人, Nat Rev Genet. (2010) 11(9):636-46中綜述,其以全文引用之方式併入本文中。ZFN包含可程式化鋅指DNA結合域及DNA切割域(例如Fok I核酸內切酶域)。DNA結合域可藉由篩選能夠結合靶核酸序列之鋅指陣列來鑑定。The ZFN system is reviewed, for example, in Umov et al., Nat Rev Genet. (2010) 11 (9): 636-46, which is incorporated herein by reference in its entirety. ZFNs include a programmable zinc finger DNA binding domain and a DNA cleavage domain (eg, the Fok I endonuclease domain). DNA binding domains can be identified by screening zinc finger arrays capable of binding to a target nucleic acid sequence.

TALEN系統例如在Mahfouz等人, Plant Biotechnol J. (2014) 12(8):1006-14中綜述,其以全文引用之方式併入本文中。TALEN包含可程式化DNA結合TALE域及DNA切割域(例如Fok I核酸內切酶域)。TALE包含由33-39個胺基酸之重複序列組成的重複域,除各重複序列之位置12及13處的兩個殘基為重複可變二殘基(RVD)以外,該等胺基酸為相同的。各RVD根據以下關係確定重複序列與靶DNA序列中之核苷酸的結合:「HD」結合C,「NI」結合A,「NG」結合T且「NN」或「NK」結合G (Moscou及Bogdanove, Science (2009) 326(5959):1501.)。The TALEN system is reviewed, for example, in Mahfouz et al., Plant Biotechnol J. (2014) 12 (8): 1006-14, which is incorporated herein by reference in its entirety. TALEN contains a programmable DNA-binding TALE domain and a DNA cleavage domain (such as the Fok I endonuclease domain). TALE contains a repeating domain consisting of 33-39 amino acid repeats, except that the two residues at positions 12 and 13 of each repeat are repeatable variable two residues (RVD). For the same. Each RVD determines the binding of repeats to nucleotides in the target DNA sequence based on the following relationships: "HD" binds to C, "NI" binds to A, "NG" binds to T, and "NN" or "NK" binds to G (Moscou and Bogdanove, Science (2009) 326 (5959): 1501.).

CRISPR/Cas9及相關系統,例如CRISPR/Cpf1、CRISPR/C2c1、CRISPR/C2c2及CRISPR/C2c3例如在Nakade等人, Bioengineered (2017) 8(3):265-273中綜述,其以全文引用之方式併入本文中。此等系統包含核酸內切酶(例如Cas9、Cpf1等)及單引導RNA (sgRNA)分子。sgRNA可經工程改造以將核酸內切酶活性靶向感興趣的核酸序列。CRISPR / Cas9 and related systems, such as CRISPR / Cpf1, CRISPR / C2c1, CRISPR / C2c2, and CRISPR / C2c3 are reviewed, for example, in Nakade et al., Bioengineered (2017) 8 (3): 265-273, which is incorporated by reference in its entirety Incorporated herein. These systems include endonucleases (such as Cas9, Cpf1, etc.) and single guide RNA (sgRNA) molecules. sgRNA can be engineered to target endonuclease activity to a nucleic acid sequence of interest.

在一些具體實施例中,根據本發明之方法修飾編碼MHC I類多肽(例如B2M多肽或MHC I類α鏈多肽)之核酸包含使用CRISPR/Cas9系統進行修飾。In some embodiments, modifying a nucleic acid encoding a MHC class I polypeptide (eg, a B2M polypeptide or a MHC class I alpha chain polypeptide) according to the methods of the present invention comprises modification using a CRISPR / Cas9 system.

在一些實施例中,該等方法包含向K562細胞中引入編碼以下之核酸或複數個核酸:靶向編碼MHC I類多肽之核酸(例如編碼B2M多肽或MHC I類α鏈多肽之核酸)的CRISPR RNA (crRNA)及Cas9核酸內切酶。在一些實施例中,crRNA靶向編碼B2M多肽之核酸。在一些實施例中,crRNA靶向B2M 。在一些實施例中,crRNA靶向B2M 之外顯子。在一些實施例中,crRNA靶向B2M 之外顯子1。在一些實施例中,crRNA靶向B2M 之外顯子2。核酸或複數個核酸可包含於一或多個載體中。In some embodiments, the methods include introducing into a K562 cell a nucleic acid or plurality of nucleic acids that target a nucleic acid encoding a MHC class I polypeptide (e.g., a nucleic acid encoding a B2M polypeptide or a MHC class I alpha chain polypeptide). RNA (crRNA) and Cas9 endonucleases. In some embodiments, the crRNA targets a nucleic acid encoding a B2M polypeptide. In some embodiments, the crRNA targets B2M . In some embodiments, the crRNA targets B2M exons. In some embodiments, crRNA targets B2M exon 1. In some embodiments, the crRNA targets B2M exon 2. The nucleic acid or plurality of nucleic acids may be contained in one or more vectors.

核酸/載體可藉由任何適合之手段,例如藉由轉化、轉染、電穿孔或轉導引入K562細胞中。在一些實施例中,該等方法包含藉由電穿孔將核酸/載體引入K562細胞中,如Delgado-Cañedo等人, Cytotechnology. (2006) 51(3):141-8 (以全文引用之方式併入本文中)中所述或如本揭露內容之實例1中所述。在一些實施例中,該等方法包含藉由轉導將核酸/載體引入K562細胞中,如本揭露內容之實例1中所述。Nucleic acids / vectors can be introduced into K562 cells by any suitable means, such as by transformation, transfection, electroporation, or transduction. In some embodiments, the methods include introducing the nucleic acid / vector into K562 cells by electroporation, such as Delgado-Cañedo et al., Cytotechnology. (2006) 51 (3): 141-8 (incorporated by reference in its entirety and (Incorporated herein) or as described in Example 1 of this disclosure. In some embodiments, the methods include introducing a nucleic acid / vector into K562 cells by transduction, as described in Example 1 of the present disclosure.

在一些實施例中,本發明之方法包含修飾K562細胞以增加一或多種能夠增加免疫細胞活化/增殖之因子(例如共刺激分子、細胞介素或抗原)的表現。在一些實施例中,該等方法包含修飾K562細胞以增加一或多種Fc受體之表現。In some embodiments, the methods of the invention comprise modifying K562 cells to increase the performance of one or more factors (such as costimulatory molecules, cytokines, or antigens) capable of increasing immune cell activation / proliferation. In some embodiments, the methods comprise modifying K562 cells to increase the performance of one or more Fc receptors.

在一些實施例中,本發明之方法包含修飾K562細胞以增加以下各項中之一或多者的表現:CD70、CD40、LFA3、ICAM1、CD80、CD86、CD137L、OX40L、ICOSL、LIGHT、LTb及GITRL。在一些實施例中,該等方法包含修飾K562細胞以增加以下各項中之一或多者的表現:CD40L、CD70、CD80、CD83、CD86、ICOSL、GITRL、CD137L及OX40L。在一些實施例中,該等方法包含修飾K562細胞以增加以下各項中之一或多者的表現:CD40L、CD86及CD137L。在一些實施例中,該等方法包含修飾K562細胞以增加CD86及/或CD137L的表現。In some embodiments, the methods of the invention comprise modifying K562 cells to increase performance of one or more of: CD70, CD40, LFA3, ICAM1, CD80, CD86, CD137L, OX40L, ICOSL, LIGHT, LTb, and GITRL. In some embodiments, the methods comprise modifying K562 cells to increase performance of one or more of: CD40L, CD70, CD80, CD83, CD86, ICOSL, GITRL, CD137L, and OX40L. In some embodiments, the methods comprise modifying K562 cells to increase performance of one or more of the following: CD40L, CD86, and CD137L. In some embodiments, the methods comprise modifying K562 cells to increase the performance of CD86 and / or CD137L.

在一些實施例中,本發明之方法包含修飾K562細胞以增加以下各項中之一或多者的表現:IL-21、膜結合之IL-21、IL-15及膜結合之IL-15。在一些實施例中,該等方法包含修飾K562細胞以增加膜結合之IL-21及/或膜結合之IL-15的表現。In some embodiments, the methods of the invention comprise modifying K562 cells to increase the performance of one or more of: IL-21, membrane-bound IL-21, IL-15, and membrane-bound IL-15. In some embodiments, the methods comprise modifying K562 cells to increase the performance of membrane-bound IL-21 and / or membrane-bound IL-15.

在一些實施例中,本發明之方法包含修飾K562細胞以增加一或多種抗原之表現。在一些實施例中,該等方法包含修飾K562細胞以增加感興趣的免疫細胞的表現,該免疫細胞包含特異性受體(例如TCR或CAR)。在一些實施例中,該等方法包含修飾K562細胞以增加癌細胞抗原之表現,例如本文所述之癌細胞抗原。在一些實施例中,該等方法包含修飾K562細胞以增加CD19之表現。In some embodiments, the methods of the invention comprise modifying K562 cells to increase the performance of one or more antigens. In some embodiments, the methods comprise modifying K562 cells to increase the performance of immune cells of interest, the immune cells comprising a specific receptor (eg, TCR or CAR). In some embodiments, the methods include modifying K562 cells to increase the performance of cancer cell antigens, such as the cancer cell antigens described herein. In some embodiments, the methods comprise modifying K562 cells to increase the performance of CD19.

在一些實施例中,本發明之方法包含修飾K562細胞以增加一或多種Fc受體之表現。在一些實施例中,該等方法包含修飾K562細胞以增加Fcγ受體之表現。在一些實施例中,該等方法包含修飾K562細胞以增加選自CD64、CD32及CD16之Fc受體的表現。In some embodiments, the methods of the invention comprise modifying K562 cells to increase the performance of one or more Fc receptors. In some embodiments, the methods comprise modifying K562 cells to increase the performance of the Fcy receptor. In some embodiments, the methods comprise modifying K562 cells to increase the performance of an Fc receptor selected from the group consisting of CD64, CD32, and CD16.

在一些實施例中,本發明之方法包含修飾K562細胞以增加以下各項中之一或多者的表現:CD19、CD40L、CD86、CD137L、mbIL-21及CD64。In some embodiments, the methods of the invention comprise modifying K562 cells to increase performance of one or more of the following: CD19, CD40L, CD86, CD137L, mbIL-21, and CD64.

在一些實施例中,修飾K562細胞以增加一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的表現包含將一或多種編碼一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的核酸引入K562細胞中。In some embodiments, modifying K562 cells to increase the performance of one or more factors capable of increasing the activation / proliferation of immune cells and / or the performance of one or more Fc receptors comprises encoding one or more encodings capable of increasing the activation / proliferation of immune cells. Factors and / or nucleic acids of one or more Fc receptors are introduced into K562 cells.

在一些實施例中,修飾K562細胞以增加一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的表現包含將一或多種編碼相關蛋白質之核酸或載體引入細胞中。核酸/載體可藉由任何適合之手段,例如藉由轉化、轉染、電穿孔或轉導引入K562細胞中。In some embodiments, modifying K562 cells to increase performance of one or more factors capable of increasing immune cell activation / proliferation and / or one or more Fc receptors comprises introducing one or more nucleic acids or vectors encoding related proteins into the cell. Nucleic acids / vectors can be introduced into K562 cells by any suitable means, such as by transformation, transfection, electroporation, or transduction.

在一些實施例中,一或多種編碼一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的核酸整合至K562細胞之基因組中。在一些實施例中,一或多種編碼一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的核酸在基因組安全港(GSH),例如本文所述之GSH處整合至K562細胞之基因組中。在一些實施例中,GSH為AAVS1 。在一些實施例中,方法包含將編碼一或多種靶向AAVS1 之SSN的核酸引入K562細胞中。在一些實施例中,方法包含將編碼靶向AAVS1 之ZFN的核酸引入K562細胞中。In some embodiments, one or more nucleic acids encoding one or more factors capable of increasing the activation / proliferation of immune cells and / or one or more Fc receptors are integrated into the genome of K562 cells. In some embodiments, one or more nucleic acids encoding one or more factors capable of increasing the activation / proliferation of immune cells and / or one or more Fc receptors are integrated at a genomic safe harbor (GSH), such as the GSH described herein, In the genome of K562 cells. In some embodiments, GSH is AAVS1 . In some embodiments, the method comprises introducing into a K562 cell a nucleic acid encoding one or more SSNs that target AAVS1 . In some embodiments, the method comprises introducing into a K562 cell a nucleic acid encoding a ZFN targeted to AAVS1 .

在一些實施例中,一或多種編碼一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的核酸/載體另外包含與AAVS1 之序列同源的序列,以便例如在用靶向AAVS1 之SSN (例如靶向AAVS1 之ZFN)切割AAVS1 後進行編碼一或多種能夠增加免疫細胞活化/增殖之因子及/或一或多種Fc受體的核酸的位點特異性整合。In some embodiments, one or more nucleic acids / vectors encoding one or more factors capable of increasing the activation / proliferation of immune cells and / or one or more Fc receptors further comprise sequences homologous to the sequence of AAVS1 , for example, for use AAVS1- targeting SSN (eg, AAVS1- targeting ZFN) cuts AAVS1 and performs site-specific integration of nucleic acids encoding one or more factors capable of increasing immune cell activation / proliferation and / or one or more Fc receptors.

包含所需修飾之經修飾之K562細胞可例如自單一細胞純系培養/擴增。此類方法可包含在對應於可選標記之選擇劑存在下培養,以便將感興趣的核酸成功引入細胞中。The modified K562 cells containing the desired modification can be cultured / expanded, for example, from a single cell pure line. Such methods may include culturing in the presence of a selection agent corresponding to a selectable marker in order to successfully introduce a nucleic acid of interest into a cell.

在一些實施例中,該等方法包含處理經修飾之K562細胞以抑制/阻止細胞增殖(亦即「不活化」經修飾之K562細胞)。在一些實施例中,該等方法包含用絲裂黴素C或環孢素A處理細胞,或將細胞暴露於電離輻射(例如γ輻照、X射線或UV光)。In some embodiments, the methods include treating the modified K562 cells to inhibit / prevent cell proliferation (ie, "inactivate" the modified K562 cells). In some embodiments, the methods include treating the cells with mitomycin C or cyclosporine A, or exposing the cells to ionizing radiation (eg, gamma radiation, X-rays, or UV light).

在一些實施例中,該等方法包含將經修飾之K562細胞或經修飾之K562細胞群例如與一或多種其他細胞類型(例如野生型K562細胞)分離。
核酸/載體
In some embodiments, the methods include isolating a modified K562 cell or a population of modified K562 cells, for example, from one or more other cell types (eg, wild-type K562 cells).
Nucleic acid / vector

本發明亦提供用於產生根據本發明之經修飾之K562細胞的核酸或複數個核酸。核酸編碼靶向B2M 之位點特異性核酸酶(SSN)系統。在一些實施例中,SSN系統為ZFN系統、TALEN系統、CRISPR/Cas9系統、CRISPR/Cpf1系統、CRISPR/C2c1系統、CRISPR/C2c2系統或CRISPR/C2c3系統。The invention also provides a nucleic acid or a plurality of nucleic acids for generating a modified K562 cell according to the invention. The nucleic acid encodes a site-specific nuclease (SSN) system that targets B2M . In some embodiments, the SSN system is a ZFN system, a TALEN system, a CRISPR / Cas9 system, a CRISPR / Cpf1 system, a CRISPR / C2c1 system, a CRISPR / C2c2 system, or a CRISPR / C2c3 system.

在一些實施例中,核酸編碼CRISPR/Cas9系統。在一些實施例中,核酸編碼靶向B2M 之外顯子的CRISPR RNA (crRNA)。在一些實施例中,核酸編碼靶向B2M 之外顯子1的crRNA。在一些實施例中,核酸編碼靶向B2M 之外顯子2的crRNA。在一些實施例中,核酸編碼靶向B2M 之外顯子1及外顯子2的crRNA。CRISPR/Cas9系統亦包含用於將crRNA加工成其成熟形式的反式激活crRNA (tracrRNA)。因此,在一些實施例中,核酸編碼crRNA之tracrRNA。In some embodiments, the nucleic acid encodes a CRISPR / Cas9 system. In some embodiments, the nucleic acid encodes a CRISPR RNA (crRNA) that targets B2M exons. In some embodiments, the nucleic acid encodes a crRNA that targets B2M exon 1. In some embodiments, the nucleic acid encodes a crRNA that targets B2M exon 2. In some embodiments, the nucleic acid encodes a crRNA that targets B2M exon 1 and exon 2. The CRISPR / Cas9 system also contains trans-activated crRNA (tracrRNA) for processing crRNA into its mature form. Thus, in some embodiments, the nucleic acid encodes a tracrRNA of crRNA.

在一些實施例中,靶向B2M 之外顯子1的crRNA包含SEQ ID NO:26之核酸或由SEQ ID NO:26之核酸組成。在一些實施例中,靶向B2M 之外顯子2的crRNA包含SEQ ID NO:27之核酸或由SEQ ID NO:27之核酸組成。SEQ ID NO:26及27之位置21至42提供來源於質體pX260之主鏈序列(Addgene #42229;pX260-U6-DR-BB-DR-Cbh-NLS-hSpCas9-NLS-H1-shorttracr-PGK-puro)。In some embodiments, the crRNA targeted to B2M exon 1 comprises or consists of the nucleic acid of SEQ ID NO: 26. In some embodiments, the crRNA targeted to B2M exon 2 comprises or consists of the nucleic acid of SEQ ID NO: 27. Positions 21 to 42 of SEQ ID NOs: 26 and 27 provide the backbone sequence derived from plastid pX260 (Addgene # 42229; pX260-U6-DR-BB-DR-Cbh-NLS-hSpCas9-NLS-H1-shorttracr-PGK -puro).

在一些實施例中,tracrRNA包含SEQ ID NO:28之核酸或由SEQ ID NO:28之核酸組成。SEQ ID NO:28來源於質體pX260 (Addgene #42229;pX260-U6-DR-BB-DR-Cbh-NLS-hSpCas9-NLS-H1-shorttracr-PGK-puro)。In some embodiments, the tracrRNA comprises or consists of the nucleic acid of SEQ ID NO: 28. SEQ ID NO: 28 is derived from plastid pX260 (Addgene # 42229; pX260-U6-DR-BB-DR-Cbh-NLS-hSpCas9-NLS-H1-shorttracr-PGK-puro).

核酸可提供於一或多個載體中。本發明亦提供包含根據本發明之核酸或複數個核酸的載體或複數個載體。如本文所用之「載體」係用作將外源核酸轉移至細胞中之運載工具的核酸分子。載體可為用於在細胞中表現核酸之載體。此類載體可包括可操作地連接於編碼待表現序列之核苷酸序列的啟動子序列。載體亦可包括終止密碼子及表現強化子。Nucleic acids can be provided in one or more vectors. The invention also provides a vector or a plurality of vectors comprising a nucleic acid or a plurality of nucleic acids according to the invention. As used herein, a "vector" is a nucleic acid molecule that is used as a vehicle for transferring exogenous nucleic acid into a cell. The vector may be a vector for expressing a nucleic acid in a cell. Such vectors may include a promoter sequence operably linked to a nucleotide sequence encoding a sequence to be expressed. The vector may also include a stop codon and a performance enhancer.

在一些實施例中,編碼crRNA之核酸可操作地連接於泛素6 (U6)啟動子。在一些實施例中,編碼Cas9之核酸可操作地連接於雞β-肌動蛋白啟動子(CBh)啟動子。在一些實施例中,編碼tracRNA之核酸可操作地連接於H1啟動子。In some embodiments, a crRNA-encoding nucleic acid is operably linked to a ubiquitin 6 (U6) promoter. In some embodiments, a nucleic acid encoding Cas9 is operably linked to a chicken β-actin promoter (CBh) promoter. In some embodiments, a tracRNA-encoding nucleic acid is operably linked to the H1 promoter.

可使用任何適合之載體,包括例如Cong等人, Science 339, 819中所描述之含有CRISPR/Cas9系統的pX260質體及Zeng等人, Stem Cells (2007) 25, 1055中所描述之pFastBac質體。來源於昆蟲苜蓿銀紋夜蛾(Autographa californica )多核型多角體病毒(AcMNPV)之桿狀病毒載體先前已用於高效轉導人類多能幹細胞及其他細胞株(37-40)。據報導,此載體能夠攜帶多個大的DNA卡匣,具有低細胞毒性且由於其為非整合的而非常安全。Any suitable vector can be used, including, for example, the pX260 plastid containing the CRISPR / Cas9 system described in Cong et al., Science 339, 819 and the pFastBac plastid described in Zeng et al., Stem Cells (2007) 25, 1055 . Multiple nuclear polyhedrosis virus (the AcMNPV) derived from the insect Autographa californica (Autographa californica) Baculovirus vectors have previously been used to efficiently transduce human pluripotent stem cells and other cell lines (37-40). This vector is reported to be capable of carrying multiple large DNA cassettes, has low cytotoxicity and is very safe because it is non-integrated.

其他適合之載體包括質體、二元載體、DNA載體、mRNA載體、病毒載體(例如γ反轉錄病毒載體(例如鼠類白血病病毒(MLV)源性載體)、慢病毒載體、腺病毒載體、腺相關病毒載體、痘瘡病毒載體及疱疹病毒載體)、基於轉位子之載體及人工染色體(例如酵母人工染色體),如Maus等人, Annu Rev Immunol (2014) 32:189-225或Morgan及Boyerinas, Biomedicines 2016 4, 9中所述,該等文獻均以全文引用之方式併入本文中。
使用經修飾之K562細胞的方法
Other suitable vectors include plastids, binary vectors, DNA vectors, mRNA vectors, viral vectors (e.g. gamma retrovirus vectors (e.g. murine leukemia virus (MLV) derived vectors), lentiviral vectors, adenoviral vectors, adenoviruses, Related viral vectors, acne virus vectors and herpes virus vectors), transposon-based vectors and artificial chromosomes (such as yeast artificial chromosomes), such as Maus et al., Annu Rev Immunol (2014) 32: 189-225 or Morgan and Boyerinas, Biomedicines As mentioned in 2016 4, 9, these documents are incorporated herein by reference in their entirety.
Method for using modified K562 cells

本發明之經修飾之K562細胞可用於產生/擴增免疫細胞群之方法。特別地,與使用野生型K562細胞產生/擴增之免疫細胞群相比,經修飾之K562細胞可用於產生/擴增同種異體反應性降低之免疫細胞群。在一些實施例中,經修飾之K562細胞可用於產生/擴增對由野生型K562細胞表現之HLA分子(例如HLA-C*03及/或HLA-C*05)之反應性降低的免疫細胞群。The modified K562 cells of the present invention can be used in a method for generating / expanding an immune cell population. In particular, the modified K562 cells can be used to generate / expand an allogeneic immune cell population compared to an immune cell population generated / expanded using wild-type K562 cells. In some embodiments, modified K562 cells can be used to generate / expand immune cells with reduced reactivity to HLA molecules (e.g., HLA-C * 03 and / or HLA-C * 05) expressed by wild-type K562 cells group.

因此,本發明提供一種用於產生/擴增免疫細胞群之方法,該方法包含使免疫細胞與根據本發明之經修飾之K562細胞接觸。Therefore, the present invention provides a method for generating / expanding a population of immune cells, the method comprising contacting the immune cells with the modified K562 cells according to the present invention.

免疫細胞可活體外、離體或活體內與經修飾之K562細胞接觸。在一些實施例中,該等方法包含活體外或離體培養免疫細胞。在一些實施例中,該等方法包含將免疫細胞群與根據本發明之經修飾之K562細胞共培養。Immune cells can be contacted with modified K562 cells in vitro, ex vivo or in vivo. In some embodiments, the methods comprise culturing immune cells in vitro or ex vivo. In some embodiments, the methods comprise co-culturing a population of immune cells with a modified K562 cell according to the invention.

根據本發明之方法的細胞培養係使用適合之細胞培養基且在適用於活體外培養免疫細胞之環境條件(例如溫度、pH、濕度、大氣條件、攪拌等)下進行,其為熟習細胞培養技術者所熟知的。The cell culture system according to the method of the present invention uses a suitable cell culture medium and is performed under environmental conditions (such as temperature, pH, humidity, atmospheric conditions, stirring, etc.) suitable for culturing immune cells in vitro. It is a person skilled in cell culture techniques Well known.

方便地,細胞培養物可保持在37℃下含有5% CO2 之潮濕氛圍中。培養可在適合培養物體積之任何容器中,例如在細胞培養盤之孔、細胞培養瓶、生物反應器等中進行。可由技術人員容易地確定,細胞培養物可以任何適合之密度建立及/或維持。舉例而言,培養物可以~0.5 × 106 至~5 × 106 個細胞/毫升培養物(例如~1 × 106 個細胞/毫升)之初始密度建立。細胞可在任何適合之細胞培養容器中培養。在一些實施例中,細胞在生物反應器中培養。在一些實施例中,細胞在Somerville及Dudley, Oncoimmunology (2012) 1(8):1435-1437中所述之生物反應器中培養,該文獻以全文引用之方式併入本文中。在一些實施例中,細胞在GRex細胞培養容器,例如GRex燒瓶或GRex 100生物反應器中培養。Conveniently, the cell culture can be maintained in a humid atmosphere containing 5% CO 2 at 37 ° C. The culture can be performed in any container suitable for the volume of the culture, for example, in a well of a cell culture plate, a cell culture flask, a bioreactor, or the like. It can be easily determined by the skilled person that the cell culture can be established and / or maintained at any suitable density. For example, the culture may be ~ 0.5 × 10 6 to ~ 5 × 10 6 cells / ml in culture (e.g., ~ 1 × 10 6 cells / ml) to establish initial density. Cells can be cultured in any suitable cell culture vessel. In some embodiments, the cells are cultured in a bioreactor. In some embodiments, the cells are cultured in a bioreactor as described in Somerville and Dudley, Oncoimmunology (2012) 1 (8): 1435-1437, which is incorporated herein by reference in its entirety. In some embodiments, the cells are cultured in a GRex cell culture vessel, such as a GRex flask or a GRex 100 bioreactor.

可參考本揭露內容之實例1確定經修飾之K562細胞與免疫細胞共培養的適合條件。在用於產生/擴增免疫細胞群之方法中使用經修飾之K562細胞的適合條件(例如細胞培養之時期、經修飾之K562細胞與免疫細胞之比率、培養基等)亦可由技術人員例如參考本發明實例容易地確定。Reference can be made to Example 1 of this disclosure to determine suitable conditions for co-culture of modified K562 cells and immune cells. Suitable conditions for using modified K562 cells in a method for generating / expanding an immune cell population (e.g., period of cell culture, ratio of modified K562 cells to immune cells, culture medium, etc.) can also be referred by the skilled person, e.g., this reference The invention examples are easily determined.

在一些實施例中,經修飾之K562細胞用作飼養細胞以支持例如產生/擴增免疫細胞之培養物中免疫細胞群之細胞的生長及/或存活。在一些實施例中,經修飾之K562細胞用作增加正在產生/擴增之免疫細胞群之活化/增殖的因子。In some embodiments, the modified K562 cells are used as feeder cells to support, for example, the growth and / or survival of cells of an immune cell population in a culture that produces / expands immune cells. In some embodiments, the modified K562 cells are used as a factor to increase the activation / proliferation of the immune cell population being generated / expanded.

在一些實施例中,根據本發明產生/擴增之免疫細胞群係在免疫細胞群,例如外周血液單核細胞(PBMC)群或外周血淋巴細胞(PBL)群產生/擴增。待產生/擴增之免疫細胞可以低頻率存在於免疫細胞(例如PBMC或PBL)之起始群體內,且根據本發明之免疫細胞之起始群體的培養較佳使得待產生/擴增之免疫細胞的數量增加,及/或導致在培養結束時細胞群體中此類細胞之比例增加。In some embodiments, the immune cell population generated / expanded according to the present invention is generated / expanded in an immune cell population, such as a peripheral blood mononuclear cell (PBMC) population or a peripheral blood lymphocyte (PBL) population. The immune cells to be generated / expanded may be present in the initial population of immune cells (such as PBMC or PBL) at a low frequency, and the initial population of the immune cells according to the present invention is preferably cultured such that The increase in the number of cells and / or results in an increase in the proportion of such cells in the cell population at the end of the culture.

舉例而言,在該方法用於產生/擴增T細胞群之情況下,可自PBMC群內產生/擴增T細胞群,且該等方法可增加T細胞之數量及/或導致在培養結束時細胞群體中T細胞之比例增加。For example, where the method is used to generate / expand a T cell population, the T cell population can be generated / expanded from the PBMC population, and these methods can increase the number of T cells and / or cause the The proportion of T cells in the cell population increased.

根據本發明之方法產生/擴增免疫細胞群之免疫細胞(例如PBMC、PBL)可為新鮮獲得的,或可自先前已獲得且冷凍的免疫細胞樣品解凍。Immune cells (eg, PBMC, PBL) that generate / expand an immune cell population according to the method of the present invention can be freshly obtained or can be thawed from previously obtained and frozen immune cell samples.

在本文所揭示之方法的實施例中,免疫細胞群之產生/擴增可涉及培養PBMC群。在一些實施例中,免疫細胞群可自T細胞群(例如異質型及/或特異性之T細胞群)內產生/擴增,該T細胞群可自血液樣品或PBMC群獲得。In embodiments of the methods disclosed herein, the generation / amplification of an immune cell population may involve culturing a PBMC population. In some embodiments, the population of immune cells can be generated / expanded from a population of T cells (eg, a heterogeneous and / or specific T cell population), which can be obtained from a blood sample or a PBMC population.

根據本發明方法產生/擴增之免疫細胞群可為任何所需的免疫細胞群。在一些實施例中,根據本發明方法擴增/產生之免疫細胞群係以下細胞類型中之一者的群體:嗜中性球、嗜酸性球、嗜鹼性球、樹突狀細胞、淋巴細胞、單核球、T細胞、B細胞、NK細胞、NKT細胞、先天性淋巴樣細胞(ILC)、抗原特異性免疫細胞(亦即表現特異性針對抗原之受體的細胞;例如抗原特異性T細胞及/或抗原特異性NK細胞)、表現TCR之細胞、表現CAR之細胞(例如CAR-T細胞及/或CAR-NK細胞)、CD4+ T細胞、CD8+ T細胞(例如CD8+細胞毒性T細胞)。The population of immune cells produced / expanded according to the method of the invention can be any desired population of immune cells. In some embodiments, the immune cell population expanded / produced according to the method of the invention is a population of one of the following cell types: neutrophils, eosinophils, basophils, dendritic cells, lymphocytes , Monocytes, T cells, B cells, NK cells, NKT cells, congenital lymphoid cells (ILC), antigen-specific immune cells (i.e., cells that display receptors specific for the antigen; for example, antigen-specific T Cells and / or antigen-specific NK cells), cells expressing TCR, cells expressing CAR (e.g. CAR-T cells and / or CAR-NK cells), CD4 + T cells, CD8 + T cells (e.g. CD8 + cytotoxic T cells) .

在一些實施例中,根據本發明方法擴增/產生之免疫細胞群係T細胞(例如CD4+ T細胞、CD8+ T細胞、CD8+細胞毒性T細胞或抗原特異性T細胞)群。在一些實施例中,根據本發明方法擴增/產生之免疫細胞群係NK細胞(例如抗原特異性NK細胞)群。In some embodiments, a population of immune cell population T cells (eg, CD4 + T cells, CD8 + T cells, CD8 + cytotoxic T cells, or antigen-specific T cells) expanded / produced according to the methods of the invention. In some embodiments, a population of immune cell lineage NK cells (eg, antigen-specific NK cells) expanded / produced according to the methods of the invention.

在一些實施例中,該方法用於以抗原非依賴性方式產生/擴增免疫細胞(例如T細胞、NK細胞)。在一些實施例中,T細胞可以抗原非依賴性方式活化,例如經由CD3刺激,任選地與經由CD28刺激組合。在一些實施例中,T細胞可藉由用促效劑抗CD3抗體(例如純系OKT3)處理,任選地與用促效劑抗CD28抗體處理組合刺激而活化。在採用抗CD3及/或抗CD28進行T細胞之抗原非依賴性活化的實施例中,經修飾之K562細胞可經修飾以增加一或多種Fc受體(例如一或多種Fcγ受體,例如CD64、CD32及/或CD16中之一或多者)的表現。Fc受體促進抗體之呈現且因此促進T細胞活化。In some embodiments, the method is used to generate / expand immune cells (eg, T cells, NK cells) in an antigen-independent manner. In some embodiments, T cells can be activated in an antigen-independent manner, such as via CD3 stimulation, optionally in combination with stimulation via CD28. In some embodiments, T cells can be activated by treatment with a agonist anti-CD3 antibody (eg, pure OKT3), optionally in combination with stimulation with a agonist anti-CD28 antibody. In embodiments where anti-CD3 and / or anti-CD28 are used for antigen-independent activation of T cells, modified K562 cells can be modified to increase one or more Fc receptors (e.g., one or more Fcγ receptors, such as CD64 , CD32 and / or CD16). The Fc receptor promotes the presentation of antibodies and therefore T cell activation.

在一些實施例中,該等方法包含在經修飾以增加一或多種Fc受體(例如一或多種Fcγ受體,例如CD64、CD32及/或CD16中之一或多者)之表現的經修飾之K562細胞存在下,且在促效劑抗CD3抗體(例如純系OKT3)存在下,任選地在促效劑抗CD28抗體存在下培養免疫細胞(例如PBMC或PBL)群。In some embodiments, the methods comprise a modification that is modified to increase the performance of one or more Fc receptors (eg, one or more Fcγ receptors, such as one or more of CD64, CD32, and / or CD16) A population of immune cells (such as PBMC or PBL) is cultured in the presence of K562 cells and in the presence of a agonist anti-CD3 antibody (eg, pure OKT3), optionally in the presence of a agonist anti-CD28 antibody.

在一些實施例中,根據該等方法擴增/產生之免疫細胞群係表現特異性針對抗原之受體的細胞(例如表現TCR之細胞或表現CAR之細胞)群。在一些實施例中,抗原或其片段與表現特異性針對該抗原之受體的免疫細胞的結合導致表現特異性針對該抗原之受體的免疫細胞中之一或多種基於免疫受體酪胺酸之活化基元(ITAM)的磷酸化。在一些實施例中,ITAM係CD3多肽之ITAM。In some embodiments, the immune cell population expanded / produced in accordance with these methods exhibits a population of cells (eg, cells expressing TCR or cells expressing CAR) that are specific for receptors against the antigen. In some embodiments, the binding of an antigen or a fragment thereof to an immune cell that exhibits a receptor specific to the antigen results in one or more immune receptor tyrosine-based immune cells that exhibit a receptor specific to the antigen. Phosphorylation of its activation motif (ITAM). In some embodiments, ITAM is an ITAM of a CD3 polypeptide.

在一些實施例中,根據該等方法擴增/產生之免疫細胞群係表現TCR之T細胞群或表現CAR之T細胞群。In some embodiments, the immune cell population expanded / produced according to the methods is a T cell population expressing TCR or a T cell population expressing CAR.

在一些實施例中,特異性針對抗原之受體係嵌合抗原受體(CAR)。CAR係提供抗原結合及T細胞活化功能之重組受體。CAR結構及工程改造例如在Dotti等人, Immunol Rev (2014) 257(1)中綜述,其以全文引用之方式併入本文中。CAR包含與細胞膜錨定區及信號傳導區連接之抗原結合區。任選的鉸鏈區可提供抗原結合區與細胞膜錨定區之間的分離,且可充當可撓性連接子。CAR之信號傳導區允許T細胞活化。CAR信號傳導區可包含CD3-ζ之胞內域的胺基酸序列,其提供基於免疫受體酪胺酸之活化基元(ITAM)用於表現CAR之細胞的磷酸化及活化。包含其他含ITAM之蛋白質諸如FcγRI之序列的信號傳導區亦已用於CAR (Haynes等人, 2001 J Immunol 166(1):182-187)。CAR之信號傳導區亦可包含衍生自共刺激分子之信號傳導區的共刺激序列,以促進與靶蛋白結合後表現CAR之T細胞的活化。適合之共刺激分子包括CD28、OX40、4-1BB、ICOS及CD27。In some embodiments, the receptor chimeric antigen receptor (CAR) is specific for an antigen. CAR is a recombinant receptor that provides antigen-binding and T-cell activation functions. CAR structure and engineering modifications are reviewed, for example, in Dotti et al., Immunol Rev (2014) 257 (1), which is incorporated herein by reference in its entirety. The CAR comprises an antigen-binding region connected to the cell membrane anchoring region and the signaling region. The optional hinge region can provide separation between the antigen-binding region and the cell membrane anchoring region and can serve as a flexible linker. The signaling region of CAR allows T cell activation. The CAR signaling region may comprise an amino acid sequence of the intracellular domain of CD3-zeta, which provides an immunoreceptor tyrosine-based activation motif (ITAM) for phosphorylation and activation of cells expressing CAR. Signaling regions containing sequences of other ITAM-containing proteins such as FcyRI have also been used in CAR (Haynes et al., 2001 J Immunol 166 (1): 182-187). The signal transduction region of the CAR may also include a costimulation sequence derived from the signal transduction region of the costimulatory molecule to promote the activation of T cells that exhibit CAR after binding to the target protein. Suitable costimulatory molecules include CD28, OX40, 4-1BB, ICOS, and CD27.

在一些實施例中,特異性針對抗原之受體為包含CD19結合域之CAR。In some embodiments, the antigen-specific receptor is a CAR comprising a CD19 binding domain.

在一些實施例中,特異性針對抗原之受體為T細胞受體(TCR)。TCR為通常包含α-鏈及β-鏈之雜二聚體抗原結合分子。在自然界中,α-鏈及β-鏈在T細胞(αβ T細胞)之細胞表面表現為具有不變CD3多肽之複合物。包含γ及δ鏈之替代性TCR在T細胞亞群(γδ T細胞)上表現。In some embodiments, the antigen-specific receptor is a T cell receptor (TCR). TCR is a heterodimer antigen-binding molecule that typically contains alpha- and beta-chains. In nature, α-chains and β-chains appear as complexes with unchanged CD3 polypeptides on the cell surface of T cells (αβ T cells). Alternative TCRs containing γ and δ chains are expressed on T cell subsets (γδ T cells).

在一些實施例中,經修飾之K562細胞可在用於免疫細胞之抗原依賴性擴增的方法中用作抗原呈現細胞(APC)。經修飾之K562細胞可作為呈現抗原之APC用於產生/擴增特異性針對抗原之免疫細胞。經修飾之K562細胞可包含或表現抗原。In some embodiments, the modified K562 cells can be used as antigen-presenting cells (APC) in a method for antigen-dependent expansion of immune cells. The modified K562 cells can be used as antigen-presenting APCs to generate / expand immune cells specific to the antigen. The modified K562 cells may contain or express antigens.

在經修飾之K562細胞用於產生/擴增表現特異性針對抗原之受體的免疫細胞的方法中的實施例中,經修飾之K562細胞可經修飾以增加K562細胞之受體特異性抗原的表現。舉例而言,在經修飾之K562細胞用於產生/擴增表現特異性針對癌細胞抗原之受體的免疫細胞的方法中時,經修飾之K562細胞可經修飾以增加K562細胞之癌細胞抗原的表現。In an embodiment of the method of modifying K562 cells for use in generating / expanding immune cells expressing receptors specific for an antigen, the modified K562 cells may be modified to increase the receptor-specific antigen of K562 cells. which performed. For example, in a method in which modified K562 cells are used to generate / expand immune cells that express receptors specific for cancer cell antigens, modified K562 cells can be modified to increase cancer cell antigens of K562 cells Performance.

作為說明,本揭露內容之實例描述在經修飾以表現CD19之K562細胞存在下藉由培養擴增表現包含CD19結合域之CAR的T細胞群。By way of illustration, an example of this disclosure describes the expansion of a T cell population expressing a CAR comprising a CD19 binding domain by culture in the presence of K562 cells modified to express CD19.

在一些實施例中,該等方法包含在經修飾以增加抗原表現之經修飾之K562細胞存在下培養免疫細胞(例如PBMC或PBL)群。在一些實施例中,該等方法包含在經修飾以增加抗原表現之經修飾之K562細胞存在下,培養經修飾以表現特異性針對抗原(例如CAR)之受體的免疫細胞(例如T細胞)群。In some embodiments, the methods comprise culturing a population of immune cells (eg, PBMC or PBL) in the presence of modified K562 cells modified to increase antigen performance. In some embodiments, the methods comprise culturing immune cells (e.g., T cells) modified to express a receptor specific for an antigen (e.g., CAR) in the presence of modified K562 cells that are modified to increase antigenic performance group.

在一些實施例中,經修飾之K562細胞可用作人工共刺激因子,例如向待產生/擴增之免疫細胞提供共刺激信號。在一些實施例中,該等方法包含在經修飾以增加一或多種能夠增加免疫細胞活化/增殖之因子表現的經修飾之K562細胞存在下,培養免疫細胞(例如PBMC或PBL)群。
在經修飾之K562細胞存在下藉由培養產生/擴增之免疫細胞群的用途
In some embodiments, the modified K562 cells can be used as artificial costimulatory factors, such as providing a costimulatory signal to immune cells to be produced / expanded. In some embodiments, the methods comprise culturing a population of immune cells (eg, PBMC or PBL) in the presence of modified K562 cells modified to increase the performance of one or more factors capable of increasing immune cell activation / proliferation.
Use of an immune cell population generated / expanded by culture in the presence of modified K562 cells

在根據本發明之經修飾之K562細胞存在下藉由培養擴增之免疫細胞群可用於例如疾病/病況之療法或預防中。該疾病/病況可為任何疾病/病況,其將自根據本文所述之方法產生/擴增之免疫細胞數量的增加而獲得治療或預防益處。在一些實施例中,該疾病/病況為T細胞功能障礙病症、感染性疾病或癌症。The population of immune cells expanded by culture in the presence of modified K562 cells according to the present invention can be used, for example, in the treatment or prevention of diseases / conditions. The disease / condition may be any disease / condition that will obtain a therapeutic or preventive benefit from an increase in the number of immune cells produced / expanded according to the methods described herein. In some embodiments, the disease / condition is a T cell dysfunction disorder, an infectious disease, or cancer.

T細胞功能障礙病症可為正常T細胞功能受損導致個體對致病性抗原之免疫反應下調的疾病/病況,該等致病性抗原例如由受外源性媒介物諸如微生物、細菌及病毒感染產生,或由宿主在一些疾病狀態中,諸如在一些形式之癌症中(例如以腫瘤相關抗原形式)產生。T細胞功能障礙病症可包含T細胞耗竭或T細胞因應性缺失。T細胞耗竭包含CD8+ T細胞無法響應於抗原刺激增殖或發揮T細胞效應功能諸如細胞毒性及細胞介素(例如IFNγ)分泌的狀態。耗竭性T細胞之特徵亦可在於一或多種T細胞耗竭標記之持續表現,例如PD-1、CTLA-4、LAG-3、TIM-3。T細胞功能障礙病症可顯現為感染或不能產生針對感染之有效免疫反應。感染可為慢性的、持續的、潛伏的或緩慢的,且可為細菌、病毒、真菌或寄生蟲感染之結果。因此,可向患有細菌、病毒或真菌感染之患者提供治療。細菌感染之實例包括幽門螺旋桿菌(Helicobacter pylori)感染。病毒感染之實例包括HIV、B型肝炎或C型肝炎感染。T細胞功能障礙病症可能與癌症相關,諸如腫瘤免疫逃逸。許多人類腫瘤表現由T細胞識別且能夠誘導免疫反應的腫瘤相關抗原。T cell dysfunction disorders can be diseases / conditions in which normal T cell dysfunction results in an individual's immune response to pathogenic antigens being down-regulated, such as being infected by exogenous media such as microorganisms, bacteria, and viruses Produced, or produced by the host in some disease states, such as in some forms of cancer (eg, in the form of tumor-associated antigens). T cell dysfunction disorders may include T cell depletion or T cell responsive loss. T cell depletion includes states where CD8 + T cells are unable to proliferate in response to antigen stimulation or exert T cell effector functions such as cytotoxicity and secretion of cytokines (eg, IFNγ). Depleting T cells can also be characterized by the persistent manifestation of one or more T cell depletion markers, such as PD-1, CTLA-4, LAG-3, TIM-3. T cell dysfunction disorders can manifest as infections or fail to produce an effective immune response against the infection. Infection can be chronic, persistent, latent or slow, and can be the result of a bacterial, viral, fungal or parasitic infection. Thus, treatment can be provided to patients with bacterial, viral or fungal infections. Examples of bacterial infections include Helicobacter pylori infection. Examples of viral infections include HIV, hepatitis B or hepatitis C infection. T cell dysfunction disorders may be associated with cancer, such as tumor immune escape. Many human tumors display tumor-associated antigens recognized by T cells and capable of inducing an immune response.

感染性疾病可為例如細菌、病毒、真菌或寄生蟲感染。在一些實施例中,可能特別期望治療慢性/持續性感染,例如其中此類感染與T細胞功能障礙或T細胞耗竭相關。眾所周知,T細胞耗竭為許多慢性感染(包括病毒、細菌及寄生蟲)期間以及癌症中出現的T細胞功能障礙的狀態(Wherry Nature Immunology 第12卷, 第6期, 第492-499頁, 2011年6月)。可治療之細菌感染的實例包括芽孢桿菌屬(Bacillus spp.)、百日咳博德特氏菌(Bordetella pertussis)、梭菌屬(Clostridium spp.)、棒狀桿菌屬(Corynebacterium spp.)、霍亂弧菌(Vibrio chloerae)、葡萄球菌屬(Staphylococcus spp.)、鏈球菌屬(Streptococcus spp.)、埃希氏菌屬(Escherichia)、克雷伯氏菌屬(Klebsiella)、變形桿菌屬(Proteus)、耶爾森菌屬(Yersinia)、歐文氏菌屬(Erwina)、沙門氏菌屬(Salmonella)、李氏菌屬(Listeria sp)、幽門螺旋桿菌、分枝桿菌屬(mycobacteria) (例如結核分枝桿菌(Mycobacterium tuberculosis))及綠膿桿菌(Pseudomonas aeruginosa)感染。舉例而言,細菌感染可為敗血症或肺結核。可治療之病毒感染的實例包括流感病毒、麻疹病毒、B型肝炎病毒(HBV)、C型肝炎病毒(HCV)、人類免疫缺陷病毒(HIV)、淋巴球性脈絡叢腦膜炎病毒(LCMV)、單純疱疹病毒及人類乳頭狀瘤病毒(HPV)感染。可治療之真菌感染的實例包括交鏈孢屬(Alternaria sp)、麴菌屬(Aspergillus sp)、假絲酵母屬(Candida sp)及組織漿菌屬(Histoplasma sp)。真菌感染可為真菌性敗血症或組織漿菌病。可治療之寄生蟲感染的實例包括瘧原蟲屬(Plasmodium species)(例如惡性瘧原蟲(Plasmodium falciparum)、約氏瘧原蟲(Plasmodium yoeli)、卵形瘧原蟲(Plasmodium ovale)、間日瘧原蟲(Plasmodium vivax)或夏氏瘧原蟲(Plasmodium chabaudi))。寄生蟲感染可為諸如瘧疾、利什曼體病(leishmaniasis)及弓蟲病之疾病。The infectious disease may be, for example, a bacterial, viral, fungal or parasitic infection. In some embodiments, it may be particularly desirable to treat chronic / persistent infections, such as where such infections are associated with T cell dysfunction or T cell depletion. It is well known that T cell depletion is a state of T cell dysfunction that occurs during many chronic infections (including viruses, bacteria, and parasites) and in cancer (Wherry Nature Immunology Vol. 12, No. 6, pp. 492-499, 2011 June). Examples of treatable bacterial infections include Bacillus spp., Bordetella pertussis, Clostridium spp., Corynebacterium spp., Vibrio cholerae (Vibrio chloerae), Staphylococcus spp., Streptococcus spp., Escherichia, Klebsiella, Proteus, Yale Yersinia, Erwina, Salmonella, Listeria sp, Helicobacter pylori, mycobacteria (e.g. Mycobacterium tuberculosis) tuberculosis)) and Pseudomonas aeruginosa infection. For example, a bacterial infection can be sepsis or tuberculosis. Examples of treatable viral infections include influenza virus, measles virus, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), lymphocytic choroid plexus meningitis virus (LCMV), Herpes simplex virus and human papilloma virus (HPV) infection. Examples of treatable fungal infections include Alternaria sp, Aspergillus sp, Candida sp, and Histoplasma sp. Fungal infections can be fungal septicemia or histoplasmosis. Examples of treatable parasitic infections include Plasmodium species (e.g. Plasmodium falciparum, Plasmodium yoeli, Plasmodium ovale, Plasmodium ovale, Plasmodium vivax or Plasmodium chabaudi). Parasitic infections can be diseases such as malaria, leishmaniasis, and toxoplasmosis.

在具體實施例中,待治療/預防之疾病/病況為癌症。癌症可為任何不需要的細胞增殖(或任何本身藉由不需要的細胞增殖表現出的疾病)、贅瘤或腫瘤或不需要的細胞增殖、贅瘤或腫瘤的風險或傾向性增加。癌症可為良性或惡性的且可為原發性或繼發性(轉移性)的。贅瘤或腫瘤可為細胞之任何異常生長或增殖且可位於任何組織中。組織之實例包括腎上腺、腎上腺髓質、肛門、闌尾、膀胱、血液、骨骼、骨髓、腦、乳房、盲腸、中樞神經系統(包括或不包括腦)小腦、子宮頸、結腸、十二指腸、子宮內膜、上皮細胞(例如腎上皮細胞)、膽囊、食道、膠細胞、心臟、迴腸、空腸、腎、淚腺、喉、肝、肺、淋巴、淋巴結、淋巴母細胞、上頜骨、縱隔、腸系膜、子宮肌層、鼻咽、腸網膜、口腔、卵巢、胰臟、腮腺、周邊神經系統、腹膜、胸膜、前列腺、唾液腺、乙狀結腸、皮膚、小腸、軟組織、脾、胃、睪丸、胸腺、甲狀腺、舌、扁桃體、氣管、子宮、外陰、白血球。在一些實施例中,待治療之癌症可為選自由以下組成之群之組織的癌症:結腸、直腸、鼻咽、子宮頸、口咽、胃、肝、頭頸部、口腔、食道、唇、口腔、舌、扁桃體、鼻、喉、唾液腺、鼻竇、咽、喉、前列腺、肺、膀胱、皮膚、腎、卵巢或間皮。In a specific embodiment, the disease / condition to be treated / prevented is cancer. Cancer can be any unwanted cell proliferation (or any disease manifested by unwanted cell proliferation itself), neoplasm or tumor or unwanted cell proliferation, increased risk or propensity for neoplasm or tumor. Cancer can be benign or malignant and can be primary or secondary (metastatic). A neoplasm or tumor can be any abnormal growth or proliferation of cells and can be located in any tissue. Examples of tissue include adrenal gland, adrenal medulla, anus, appendix, bladder, blood, bone, bone marrow, brain, breast, cecum, central nervous system (including or not including brain) cerebellum, cervix, colon, duodenum, endometrium , Epithelial cells (e.g. renal epithelial cells), gallbladder, esophagus, glia, heart, ileum, jejunum, kidney, lacrimal gland, larynx, liver, lung, lymph, lymph node, lymphoblast, maxilla, mediastinum, mesentery, uterine muscle Layer, nasopharynx, intestinal omentum, oral cavity, ovary, pancreas, parotid gland, peripheral nervous system, peritoneum, pleura, prostate, salivary glands, sigmoid colon, skin, small intestine, soft tissue, spleen, stomach, testes, thymus, thyroid, tongue, tonsils , Trachea, uterus, vulva, white blood cells. In some embodiments, the cancer to be treated may be a cancer selected from the group consisting of: colon, rectum, nasopharynx, cervix, oropharynx, stomach, liver, head and neck, oral cavity, esophagus, lips, oral cavity , Tongue, tonsils, nose, throat, salivary glands, sinuses, pharynx, larynx, prostate, lung, bladder, skin, kidney, ovaries or mesothelium.

待治療之腫瘤可為神經或非神經系統腫瘤。神經系統腫瘤可起源於中樞或周邊神經系統,例如神經膠質瘤、神經管胚細胞瘤、腦膜瘤、神經纖維瘤、室管膜瘤、神經鞘瘤、神經纖維肉瘤、星形細胞瘤及少突神經膠質瘤。非神經系統癌症/腫瘤可起源於任何其他非神經組織,實例包括黑素瘤、間皮瘤、淋巴瘤、骨髓瘤、白血病、非霍奇金氏淋巴瘤(Non-Hodgkin's lymphoma,NHL)、霍奇金氏淋巴瘤、慢性骨髓性白血病(CML)、急性骨髓白血病(AML)、骨髓發育不良症候群(MDS)、皮膚T細胞淋巴瘤(CTCL)、慢性淋巴細胞白血病(CLL)、肝癌、表皮樣癌、前列腺癌、乳腺癌、肺癌、結腸癌、卵巢癌、胰臟癌、胸腺癌、NSCLC、血液癌及肉瘤。The tumor to be treated may be a tumor of the nervous or non-nervous system. Nervous system tumors can originate from the central or peripheral nervous system, such as gliomas, neuroblastomas, meningiomas, neurofibromas, ependymal tumors, schwannomas, neurofibrosarcomas, astrocytomas, and oligodendrocytes Glioma. Non-neurological cancers / tumours can originate from any other non-neurological tissue, examples include melanoma, mesothelioma, lymphoma, myeloma, leukemia, Non-Hodgkin's lymphoma (NHL), Howe Chicking's lymphoma, chronic myelogenous leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), skin T-cell lymphoma (CTCL), chronic lymphocytic leukemia (CLL), liver cancer, epidermoid Cancer, prostate cancer, breast cancer, lung cancer, colon cancer, ovarian cancer, pancreatic cancer, thymic cancer, NSCLC, blood cancer and sarcoma.

在一些實施例中,癌症選自由以下組成之群:結腸癌、結腸惡性腫瘤、結腸直腸癌、鼻咽癌、子宮頸癌、口咽癌、胃癌、肝細胞癌、頭頸癌、頭頸部鱗狀細胞癌(HNSCC)、口腔癌、喉癌、前列腺癌、肺癌、小細胞肺癌、非小細胞肺癌、膀胱癌、尿道上皮癌、黑素瘤、晚期黑素瘤、腎細胞癌、卵巢癌或間皮瘤。In some embodiments, the cancer is selected from the group consisting of: colon cancer, colon cancer, colorectal cancer, nasopharyngeal cancer, cervical cancer, oropharyngeal cancer, gastric cancer, hepatocellular carcinoma, head and neck cancer, head and neck squamous Cell carcinoma (HNSCC), oral cancer, laryngeal cancer, prostate cancer, lung cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, urinary tract epithelial cancer, melanoma, advanced melanoma, renal cell carcinoma, ovarian cancer or interstitial cancer Dermatoma.

在一些實施例中,待治療/預防之癌症為病毒相關癌症,例如EBV相關癌症或HPV相關癌症。「EBV相關」及「HPV相關」癌症可為由相應病毒感染引起或加劇之癌症、感染為風險因素之癌症及/或感染與發病、發展、進展、嚴重程度或轉移正相關之癌症。可用藉由本揭露內容之方法產生之細胞治療的EBV相關癌症包括鼻咽癌(NPC)及胃癌(GC)。可用藉由本揭露內容之方法產生之細胞治療的HPV相關醫學病況包括至少生殖器區發育不良、子宮頸上皮內瘤形成、外陰上皮內瘤形成、陰莖上皮內瘤形成、肛門上皮內瘤形成、子宮頸癌、肛門癌、外陰癌、陰道癌、陰莖癌、生殖器癌、口腔乳頭狀瘤、口咽癌。在一些實施例中,根據本揭露內容之各個態樣待治療之癌症為鼻咽癌(NPC;例如埃-巴二氏病毒(Epstein-Barr Virus,EBV)陽性NPC)、子宮頸癌(CC;例如人類乳頭狀瘤病毒(HPV)陽性CC)、口咽癌(OPC;例如HPV陽性OPC)、胃癌(GC;例如EBV陽性GC)、肝細胞癌(HCC;例如B型肝炎病毒(HBV)陽性HCC)、肺癌(例如非小細胞肺癌(NSCLC))及頭頸癌(例如源自唇、口、鼻、鼻竇、咽或喉之組織的癌症,例如頭頸部鱗狀細胞癌(HNSCC))中之一或多者。In some embodiments, the cancer to be treated / prevented is a virus-related cancer, such as an EBV-related cancer or an HPV-related cancer. "EBV-related" and "HPV-related" cancers can be cancers caused or exacerbated by corresponding viral infections, cancers where infection is a risk factor, and / or cancers that are positively related to the onset, development, progression, severity, or metastasis of the infection. EBV-related cancers that can be treated with cells generated by the methods of this disclosure include nasopharyngeal cancer (NPC) and gastric cancer (GC). HPV-related medical conditions that can be treated with cells produced by the methods disclosed in this disclosure include at least genital hypoplasia, cervical intraepithelial neoplasia, vulvar intraepithelial neoplasia, penile intraepithelial neoplasia, anal intraepithelial neoplasia, cervical Cancer, anal cancer, vulvar cancer, vaginal cancer, penile cancer, genital cancer, oral papilloma, oropharyngeal cancer. In some embodiments, the cancers to be treated according to various aspects of the present disclosure are nasopharyngeal carcinoma (NPC; for example, Epstein-Barr Virus (EBV) positive NPC), cervical cancer (CC; For example, human papillomavirus (HPV) -positive CC), oropharyngeal cancer (OPC; for example, HPV-positive OPC), gastric cancer (GC; for example, EBV-positive GC), hepatocellular carcinoma (HCC; for example, hepatitis B virus (HBV) -positive HCC), lung cancer (e.g., non-small cell lung cancer (NSCLC)), and head and neck cancer (e.g., cancer derived from tissues of the lips, mouth, nose, sinuses, pharynx or throat, such as head and neck squamous cell carcinoma (HNSCC)) One or more.

根據本文所述之方法產生/擴增的免疫細胞群亦可用於包含過繼細胞轉移(ACT)之方法。特別地,經修飾之K562細胞可用於產生/擴增免疫細胞群,其可隨後向個體投與以治療/預防疾病/病況。A population of immune cells generated / expanded according to the methods described herein can also be used in methods that include adoptive cell transfer (ACT). In particular, modified K562 cells can be used to generate / expand a population of immune cells, which can then be administered to an individual to treat / prevent a disease / condition.

本發明提供一種治療或預防方法,其包含過繼轉移根據本發明方法產生(亦即產生或擴增)之免疫細胞(例如T細胞、效應T細胞、抗原特異性T細胞、NK細胞)。過繼細胞轉移一般係指自個體獲得免疫細胞之方法,通常藉由抽取血液樣品且自其中分離免疫細胞。免疫細胞隨後通常以某種方式處理或改變,任選地擴增,且隨後投與相同個體或不同個體。治療通常旨在為個體提供具有某些所需特徵之免疫細胞群,或增加具有此類特徵之免疫細胞在該個體中之頻率。The present invention provides a method of treatment or prevention, which comprises adoptively transferring immune cells (eg, T cells, effector T cells, antigen-specific T cells, NK cells) produced (ie, produced or expanded) according to the methods of the present invention. Adoptive cell transfer generally refers to a method of obtaining immune cells from an individual, usually by taking a blood sample and isolating the immune cells therefrom. Immune cells are then usually processed or altered in some way, optionally expanded, and then administered to the same individual or to different individuals. Treatment is generally aimed at providing an individual with a population of immune cells with certain desired characteristics, or increasing the frequency of immune cells with such characteristics in the individual.

過繼轉移之細胞可為例如T細胞、抗原特異性T細胞(例如病毒特異性T細胞)、抗原特異性CD4 T細胞、抗原特異性CD8 T細胞、效應記憶CD4 T細胞、效應記憶CD8T細胞、中央記憶CD4 T細胞、中央記憶CD8 T細胞、細胞毒性CD8+ T細胞(亦即CTL)NK細胞或抗原特異性NK細胞。Adoptively transferred cells can be, for example, T cells, antigen-specific T cells (e.g., virus-specific T cells), antigen-specific CD4 T cells, antigen-specific CD8 T cells, effector memory CD4 T cells, effector memory CD8 T cells, central Memory CD4 T cells, central memory CD8 T cells, cytotoxic CD8 + T cells (ie, CTL) NK cells or antigen-specific NK cells.

在一些情況下,免疫細胞來源於引入其之患者(自體細胞療法)。亦即,細胞可自患者獲得,根據本文所述之方法產生且隨後返回至同一患者。In some cases, the immune cells are derived from the patient to whom they were introduced (autologous cell therapy). That is, cells can be obtained from a patient, generated according to the methods described herein, and then returned to the same patient.

本文所揭示之方法亦可用於同種異體細胞療法,其中將自不同個體獲得之細胞引入患者體內。藉由包含在本發明之經修飾之K562細胞存在下培養之方法產生/擴增的免疫細胞群特別適用於同種異體過繼細胞療法,因為其與藉由包含在野生型K562細胞存在下培養之方法產生/擴增的方法免疫細胞相比顯示降低的同種異體反應性。The methods disclosed herein can also be used in allogeneic cell therapy, in which cells obtained from different individuals are introduced into a patient. Immune cell populations generated / expanded by a method comprising culturing in the presence of the modified K562 cells of the present invention are particularly suitable for allogeneic adoptive cell therapy because it is similar to the method by culturing in the presence of wild-type K562 cells The method of generation / amplification showed reduced allogeneic reactivity compared to immune cells.

過繼性T細胞轉移描述於例如Chia WK等人, Molecular Therapy (2014), 22(1): 132-139,Kalos及2013年6月, Immunity 39(1): 49-60及Cobbold等人, (2005) J. Exp. Med. 202: 379-386中,其以全文引用之方式併入本文中。Adoptive T cell transfer is described in, for example, Chia WK et al., Molecular Therapy (2014), 22 (1): 132-139, Kalos and June 2013, Immunity 39 (1): 49-60 and Cobbold et al., ( 2005) J. Exp. Med. 202: 379-386, which is incorporated herein by reference in its entirety.

在本發明中,進行過繼轉移之目的在於在個體體內引入免疫細胞或增加免疫細胞頻率。In the present invention, the purpose of adoptive transfer is to introduce immune cells or increase the frequency of immune cells in an individual.

因此,本發明提供一種治療或預防個體之疾病或病況的方法,其包含:
(a)藉由在根據本發明之經修飾之K562細胞存在下培養免疫細胞(例如PBMC或PBL)群來產生或擴增免疫細胞群;及
(b)向個體投與在步驟(a)產生或擴增之免疫細胞群。
Accordingly, the present invention provides a method for treating or preventing a disease or condition in an individual, comprising:
(a) generating or expanding a population of immune cells by culturing a population of immune cells (such as PBMC or PBL) in the presence of modified K562 cells according to the present invention; and
(b) administering to the individual the population of immune cells produced or expanded in step (a).

本發明亦提供一種治療或預防個體之疾病或病況的方法,其包含:
(a)自個體分離免疫細胞(例如PBMC或PBL);
(b)藉由在根據本發明之經修飾之K562細胞存在下培養免疫細胞(例如PBMC)來產生或擴增免疫細胞群,及;
(c)向個體投與產生/擴增之免疫細胞群。
The invention also provides a method for treating or preventing a disease or condition in an individual, comprising:
(a) isolating immune cells (e.g., PBMC or PBL) from an individual;
(b) generating or expanding a population of immune cells by culturing immune cells (such as PBMCs) in the presence of modified K562 cells according to the present invention, and;
(c) administering a population of immune cells produced / expanded to the individual.

在一些實施例中,在步驟(a)分離免疫細胞(例如PBMC或PBL)之個體係在步驟(c)投與產生/擴增之免疫細胞群的個體(亦即,過繼轉移係自體細胞的)。在一些實施例中,步驟(a)之免疫細胞(例如PBMC或PBL)的個體係與在步驟(c)投與產生/擴增之免疫細胞群之個體不同的個體(亦即,過繼轉移係同種異體細胞的)。In some embodiments, a system in which immune cells (e.g., PBMC or PBL) are isolated in step (a) is administered to an individual that produces / expands an immune cell population (i.e., adoptive transfer line autologous cells) in step (c) of). In some embodiments, the system of immune cells (e.g., PBMC or PBL) in step (a) is different from the individual (i.e., adoptive transfer lineage) in which the immune cell population generated / expanded in step (c) is administered Allogeneic).

在一些實施例中,該方法可包含以下步驟中之一或多者:自個體採集血液樣品;自血液樣品分離PBMC或PBL;在根據本發明之經修飾之K562細胞存在下藉由培養產生或擴增免疫細胞群;收集產生或擴增之免疫細胞群;將產生或擴增之免疫細胞群與佐劑、稀釋劑或載劑混合;向個體投與產生或擴增之免疫細胞群或組合物。In some embodiments, the method may include one or more of the following steps: collecting a blood sample from the individual; isolating PBMC or PBL from the blood sample; producing by culture in the presence of modified K562 cells according to the invention or Expansion of the immune cell population; collection of the generated or expanded immune cell population; mixing of the generated or expanded immune cell population with an adjuvant, diluent or carrier; administration of the generated or expanded immune cell population or combination to an individual Thing.

技術人員能夠確定用於根據本發明方法產生或擴增之免疫細胞的過繼轉移的適當試劑及程序,例如參考Chia WK等人, Molecular Therapy (2014), 22(1): 132-139, Kalos及2013年6月, Immunity 39(1): 49-60及Cobbold等人, (2005) J. Exp. Med. 202: 379-386。
序列一致性
The skilled person can determine appropriate reagents and procedures for adoptive transfer of immune cells generated or expanded according to the method of the present invention, for example, refer to Chia WK et al., Molecular Therapy (2014), 22 (1): 132-139, Kalos and June 2013, Immunity 39 (1): 49-60 and Cobbold et al. (2005) J. Exp. Med. 202: 379-386.
Sequence identity

如本文所用,「序列一致性」係指在比對序列且必要時引入空隙以實現序列之間的最大序列一致性百分比後,主題序列中與參考序列中之核苷酸/胺基酸殘基一致的核苷酸/胺基酸殘基的百分比。用於確定兩個或更多個胺基酸或核酸序列之間的序列一致性百分比的目的之成對及多個序列比對可以熟習此項技術者已知的各種方式實現,例如使用公開可獲得之電腦軟體,諸如ClustalOmega (Söding, J. 2005, Bioinformatics 21, 951-960)、T-coffee (Notredame等人 2000, J. Mol. Biol. (2000) 302, 205-217)、Kalign (Lassmann及Sonnhammer 2005, BMC Bioinformatics, 6(298))及MAFFT (Katoh及Standley 2013, Molecular Biology and Evolution, 30(4) 772-780軟體。當使用此類軟體時,較佳使用例如空隙罰分及延伸罰分之預設參數。
序列
SEQ ID NO: 描述 序列 1 人類B2M基因序列(NCBI參考序列:NG_012920.1) AATATAAGTGGAGGCGTCGCGCTGGCGGGCATTCCTGAAGCTGACAGCATTCGGGCCGAGATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCAGCGTGAGTCTCTCCTACCCTCCCGCTCTGGTCCTTCCTCTCCCGCTCTGCACCCTCTGTGGCCCTCGCTGTGCTCTCTCGCTCCGTGACTTCCCTTCTCCAAGTTCTCCTTGGTGGCCCGCCGTGGGGCTAGTCCAGGGCTGGATCTCGGGGAAGCGGCGGGGTGGCCTGGGAGTGGGGAAGGGGGTGCGCACCCGGGACGCGCGCTACTTGCCCCTTTCGGCGGGGAGCAGGGGAGACCTTTGGCCTACGGCGACGGGAGGGTCGGGACAAAGTTTAGGGCGTCGATAAGCGTCAGAGCGCCGAGGTTGGGGGAGGGTTTCTCTTCCGCTCTTTCGCGGGGCCTCTGGCTCCCCCAGCGCAGCTGGAGTGGGGGACGGGTAGGCTCGTCCCAAAGGCGCGGCGCTGAGGTTTGTGAACGCGTGGAGGGGCGCTTGGGGTCTGGGGGAGGCGTCGCCCGGGTAAGCCTGTCTGCTGCGGCTCTGCTTCCCTTAGACTGGAGAGCTGTGGACTTCGTCTAGGCGCCCGCTAAGTTCGCATGTCCTAGCACCTCTGGGTCTATGTGGGGCCACACCGTGGGGAGGAAACAGCACGCGACGTTTGTAGAATGCTTGGCTGTGATACAAAGCGGTTTCGAATAATTAACTTATTTGTTCCCATCACATGTCACTTTTAAAAAATTATAAGAACTACCCGTTATTGACATCTTTCTGTGTGCCAAGGACTTTATGTGCTTTGCGTCATTTAATTTTGAAAACAGTTATCTTCCGCCATAGATAACTACTATGGTTATCTTCTGCCTCTCACAGATGAAGAAACTAAGGCACCGAGATTTTAAGAAACTTAATTACACAGGGGATAAATGGCAGCAATCGAGATTGAAGTCAAGCCTAACCAGGGCTTTTGCGGGAGCGCATGCCTTTTGGCTGTAATTCGTGCATTTTTTTTTAAGAAAAACGCCTGCCTTCTGCGTGAGATTCTCCAGAGCAAACTGGGCGGCATGGGCCCTGTGGTCTTTTCGTACAGAGGGCTTCCTCTTTGGCTCTTTGCCTGGTTGTTTCCAAGATGTACTGTGCCTCTTACTTTCGGTTTTGAAAACATGAGGGGGTTGGGCGTGGTAGCTTACGCCTGTAATCCCAGCACTTAGGGAGGCCGAGGCGGGAGGATGGCTTGAGGTCCGTAGTTGAGACCAGCCTGGCCAACATGGTGAAGCCTGGTCTCTACAAAAAATAATAACAAAAATTAGCCGGGTGTGGTGGCTCGTGCCTGTGGTCCCAGCTGCTCCGGTGGCTGAGGCGGGAGGATCTCTTGAGCTTAGGCTTTTGAGCTATCATGGCGCCAGTGCACTCCAGCGTGGGCAACAGAGCGAGACCCTGTCTCTCAAAAAAGAAAAAAAAAAAAAAAGAAAGAGAAAAGAAAAGAAAGAAAGAAGTGAAGGTTTGTCAGTCAGGGGAGCTGTAAAACCATTAATAAAGATAATCCAAGATGGTTACCAAGACTGTTGAGGACGCCAGAGATCTTGAGCACTTTCTAAGTACCTGGCAATACACTAAGCGCGCTCACCTTTTCCTCTGGCAAAACATGATCGAAAGCAGAATGTTTTGATCATGAGAAAATTGCATTTAATTTGAATACAATTTATTTACAACATAAAGGATAATGTATATATCACCACCATTACTGGTATTTGCTGGTTATGTTAGATGTCATTTTAAAAAATAACAATCTGATATTTAAAAAAAAATCTTATTTTGAAAATTTCCAAAGTAATACATGCCATGCATAGACCATTTCTGGAAGATACCACAAGAAACATGTAATGATGATTGCCTCTGAAGGTCTATTTTCCTCCTCTGACCTGTGTGTGGGTTTTGTTTTTGTTTTACTGTGGGCATAAATTAATTTTTCAGTTAAGTTTTGGAAGCTTAAATAACTCTCCAAAAGTCATAAAGCCAGTAACTGGTTGAGCCCAAATTCAAACCCAGCCTGTCTGATACTTGTCCTCTTCTTAGAAAAGATTACAGTGATGCTCTCACAAAATCTTGCCGCCTTCCCTCAAACAGAGAGTTCCAGGCAGGATGAATCTGTGCTCTGATCCCTGAGGCATTTAATATGTTCTTATTATTAGAAGCTCAGATGCAAAGAGCTCTCTTAGCTTTTAATGTTATGAAAAAAATCAGGTCTTCATTAGATTCCCCAATCCACCTCTTGATGGGGCTAGTAGCCTTTCCTTAATGATAGGGTGTTTCTAGAGAGATATATCTGGTCAAGGTGGCCTGGTACTCCTCCTTCTCCCCACAGCCTCCCAGACAAGGAGGAGTAGCTGCCTTTTAGTGATCATGTACCCTGAATATAAGTGTATTTAAAAGAATTTTATACACATATATTTAGTGTCAATCTGTATATTTAGTAGCACTAACACTTCTCTTCATTTTCAATGAAAAATATAGAGTTTATAATATTTTCTTCCCACTTCCCCATGGATGGTCTAGTCATGCCTCTCATTTTGGAAAGTACTGTTTCTGAAACATTAGGCAATATATTCCCAACCTGGCTAGTTTACAGCAATCACCTGTGGATGCTAATTAAAACGCAAATCCCACTGTCACATGCATTACTCCATTTGATCATAATGGAAAGTATGTTCTGTCCCATTTGCCATAGTCCTCACCTATCCCTGTTGTATTTTATCGGGTCCAACTCAACCATTTAAGGTATTTGCCAGCTCTTGTATGCATTTAGGTTTTGTTTCTTTGTTTTTTAGCTCATGAAATTAGGTACAAAGTCAGAGAGGGGTCTGGCATATAAAACCTCAGCAGAAATAAAGAGGTTTTGTTGTTTGGTAAGAACATACCTTGGGTTGGTTGGGCACGGTGGCTCGTGCCTGTAATCCCAACACTTTGGGAGGCCAAGGCAGGCTGATCACTTGAAGTTGGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAATCCCGTCTCTACTGAAAATACAAAAATTAACCAGGCATGGTGGTGTGTGCCTGTAGTCCCAGGAATCACTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCTGAGATCTCACCACTGCACACTGCACTCCAGCCTGGGCAATGGAATGAGATTCCATCCCAAAAAATAAAAAAATAAAAAAATAAAGAACATACCTTGGGTTGATCCACTTAGGAACCTCAGATAATAACATCTGCCACGTATAGAGCAATTGCTATGTCCCAGGCACTCTACTAGACACTTCATACAGTTTAGAAAATCAGATGGGTGTAGATCAAGGCAGGAGCAGGAACCAAAAAGAAAGGCATAAACATAAGAAAAAAAATGGAAGGGGTGGAAACAGAGTACAATAACATGAGTAATTTGATGGGGGCTATTATGAACTGAGAAATGAACTTTGAAAAGTATCTTGGGGCCAAATCATGTAGACTCTTGAGTGATGTGTTAAGGAATGCTATGAGTGCTGAGAGGGCATCAGAAGTCCTTGAGAGCCTCCAGAGAAAGGCTCTTAAAAATGCAGCGCAATCTCCAGTGACAGAAGATACTGCTAGAAATCTGCTAGAAAAAAAACAAAAAAGGCATGTATAGAGGAATTATGAGGGAAAGATACCAAGTCACGGTTTATTCTTCAAAATGGAGGTGGCTTGTTGGGAAGGTGGAAGCTCATTTGGCCAGAGTGGAAATGGAATTGGGAGAAATCGATGACCAAATGTAAACACTTGGTGCCTGATATAGCTTGACACCAAGTTAGCCCCAAGTGAAATACCCTGGCAATATTAATGTGTCTTTTCCCGATATTCCTCAGGTACTCCAAAGATTCAGGTTTACTCACGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGGTTTCATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGAGTATGCCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGGTAAGTCTTACATTCTTTTGTAAGCTGCTGAAAGTTGTGTATGAGTAGTCATATCATAAAGCTGCTTTGATATAAAAAAGGTCTATGGCCATACTACCCTGAATGAGTCCCATCCCATCTGATATAAACAATCTGCATATTGGGATTGTCAGGGAATGTTCTTAAAGATCAGATTAGTGGCACCTGCTGAGATACTGATGCACAGCATGGTTTCTGAACCAGTAGTTTCCCTGCAGTTGAGCAGGGAGCAGCAGCAGCACTTGCACAAATACATATACACTCTTAACACTTCTTACCTACTGGCTTCCTCTAGCTTTTGTGGCAGCTTCAGGTATATTTAGCACTGAACGAACATCTCAAGAAGGTATAGGCCTTTGTTTGTAAGTCCTGCTGTCCTAGCATCCTATAATCCTGGACTTCTCCAGTACTTTCTGGCTGGATTGGTATCTGAGGCTAGTAGGAAGGGCTTGTTCCTGCTGGGTAGCTCTAAACAATGTATTCATGGGTAGGAACAGCAGCCTATTCTGCCAGCCTTATTTCTAACCATTTTAGACATTTGTTAGTACATGGTATTTTAAAAGTAAAACTTAATGTCTTCCTTTTTTTTCTCCACTGTCTTTTTCATAGATCGAGACATGTAAGCAGCATCATGGAGGTAAGTTTTTGACCTTGAGAAAATGTTTTTGTTTCACTGTCCTGAGGACTATTTATAGACAGCTCTAACATGATAACCCTCACTATGTGGAGAACATTGACAGAGTAACATTTTAGCAGGGAAAGAAGAATCCTACAGGGTCATGTTCCCTTCTCCTGTGGAGTGGCATGAAGAAGGTGTATGGCCCCAGGTATGGCCATATTACTGACCCTCTACAGAGAGGGCAAAGGAACTGCCAGTATGGTATTGCAGGATAAAGGCAGGTGGTTACCCACATTACCTGCAAGGCTTTGATCTTTCTTCTGCCATTTCCACATTGGACATCTCTGCTGAGGAGAGAAAATGAACCACTCTTTTCCTTTGTATAATGTTGTTTTATTCTTCAGACAGAAGAGAGGAGTTATACAGCTCTGCAGACATCCCATTCCTGTATGGGGACTGTGTTTGCCTCTTAGAGGTTCCCAGGCCACTAGAGGAGATAAAGGGAAACAGATTGTTATAACTTGATATAATGATACTATAATAGATGTAACTACAAGGAGCTCCAGAAGCAAGAGAGAGGGAGGAACTTGGACTTCTCTGCATCTTTAGTTGGAGTCCAAAGGCTTTTCAATGAAATTCTACTGCCCAGGGTACATTGATGCTGAAACCCCATTCAAATCTCCTGTTATATTCTAGAACAGGGAATTGATTTGGGAGAGCATCAGGAAGGTGGATGATCTGCCCAGTCACACTGTTAGTAAATTGTAGAGCCAGGACCTGAACTCTAATATAGTCATGTGTTACTTAATGACGGGGACATGTTCTGAGAAATGCTTACACAAACCTAGGTGTTGTAGCCTACTACACGCATAGGCTACATGGTATAGCCTATTGCTCCTAGACTACAAACCTGTACAGCCTGTTACTGTACTGAATACTGTGGGCAGTTGTAACACAATGGTAAGTATTTGTGTATCTAAACATAGAAGTTGCAGTAAAAATATGCTATTTTAATCTTATGAGACCACTGTCATATATACAGTCCATCATTGACCAAAACATCATATCAGCATTTTTTCTTCTAAGATTTTGGGAGCACCAAAGGGATACACTAACAGGATATACTCTTTATAATGGGTTTGGAGAACTGTCTGCAGCTACTTCTTTTAAAAAGGTGATCTACACAGTAGAAATTAGACAAGTTTGGTAATGAGATCTGCAATCCAAATAAAATAAATTCATTGCTAACCTTTTTCTTTTCTTTTCAGGTTTGAAGATGCCGCATTTGGATTGGATGAATTCCAAATTCTGCTTGCTTGCTTTTTAATATTGATATGCTTATACACTTACACTTTATGCACAAAATGTAGGGTTATAATAATGTTAACATGGACATGATCTTCTTTATAATTCTACTTTGAGTGCTGTCTCCATGTTTGATGTATCTGAGCAGGTTGCTCCACAGGTAGCTCTAGGAGGGCTGGCAACTTAGAGGTGGGGAGCAGAGAATTCTCTTATCCAACATCAACATCTTGGTCAGATTTGAACTCTTCAATCTCTTGCACTCAAAGCTTGTTAAGATAGTTAAGCGTGCATAAGTTAACTTCCAATTTACATACTCTGCTTAGAATTTGGGGGAAAATTTAGAAATATAATTGACAGGATTATTGGAAATTTGTTATAATGAATGAAACATTTTGTCATATAAGATTCATATTTACTTCTTATACATTTGATAAAGTAAGGCATGGTTGTGGTTAATCTGGTTTATTTTTGTTCCACAAGTTAAATAAATCATAAAACTTGATGTGTTATCTCTTA 2 人類B2M mRNA (NCBI參考序列:NM_004048.2) AATATAAGTGGAGGCGTCGCGCTGGCGGGCATTCCTGAAGCTGACAGCATTCGGGCCGAGATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTTACTCACGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGGTTTCATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGAGTATGCCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGATCGAGACATGTAAGCAGCATCATGGAGGTTTGAAGATGCCGCATTTGGATTGGATGAATTCCAAATTCTGCTTGCTTGCTTTTTAATATTGATATGCTTATACACTTACACTTTATGCACAAAATGTAGGGTTATAATAATGTTAACATGGACATGATCTTCTTTATAATTCTACTTTGAGTGCTGTCTCCATGTTTGATGTATCTGAGCAGGTTGCTCCACAGGTAGCTCTAGGAGGGCTGGCAACTTAGAGGTGGGGAGCAGAGAATTCTCTTATCCAACATCAACATCTTGGTCAGATTTGAACTCTTCAATCTCTTGCACTCAAAGCTTGTTAAGATAGTTAAGCGTGCATAAGTTAACTTCCAATTTACATACTCTGCTTAGAATTTGGGGGAAAATTTAGAAATATAATTGACAGGATTATTGGAAATTTGTTATAATGAATGAAACATTTTGTCATATAAGATTCATATTTACTTCTTATACATTTGATAAAGTAAGGCATGGTTGTGGTTAATCTGGTTTATTTTTGTTCCACAAGTTAAATAAATCATAAAACTTGATGTGTTATCTCTTA 3 人類B2M蛋白編碼序列 ATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTTACTCACGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGGTTTCATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGAGTATGCCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGATCGAGACATGTAA 4 人類B2M (UniProt: P61769-1, v1) MSRSVALAVLALLSLSGLEAIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM 5 成熟人類B2M (UniProt: P61769-1, v1之殘基21-199) IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM 6 正向B2M EX1靶標 AAACggccgagatgtctcgctccgGT 7 反向B2M EX1靶標 TAAAACcggagcgagacatctcggcc 8 正向B2M EX2靶標 AAACgaagttgacttactgaagaaGT 9 反向B2M EX2靶標 TAAAACttcttcagtaagtcaacttc 10 正向B2M EX1 WT TCTCGAATGAAAAATGCAGGTCCG 11 反向B2M EX1 WT TGACGCTTATCGACGCCCTAAACTT 12 正向B2M EX1 HDR GACTCCACCACCACGAAATGGC 13 反向B2M EX1 HDR CCCCATCAAGCTGATCCGGA 14 正向B2M EX2 WT GCTTGACACCAAGTTAGCCC 15 反向B2M EX2 WT TGGATGGGACTCATTCAGGGT 16 正向AAVS1 WT CACTCGCTGGGTTCCCTTTTCCT 17 反向AAVS1 WT GGCTGGCTACTGGCCTTATCTCACA 18 正向AAVS1 CD64 HDR CTTTGGCAGCCTGTGCTGACCCAT 19 反向AAVS1 CD64 HDR TCGAGGTCTGAGTGGCTGTGCCAT 20 正向AAVS1 EpCAM HDR CTTTGGCAGCCTGTGCTGACCCAT 21 反向AAVS1 EpCAM HDR AAGAGCCCGCTCTCATCGCAGTCA 22 正向HLA-C*03分型 CACAGACTGACCGAGTGAG 23 反向HLA-C*03分型 AGCGTCTCCTTCCCATTCTT 24 正向HLA-C*05分型 CCGAGTGAACCTGCGGAAA 25 反向HLA-C*05分型 CGCGCGCTGCAGCGTCTT 26 靶向B2M EX1之crRNA ggccgagatgtctcgctccggttttagagctatgctgttttg 27 靶向B2M EX2之crRNA gaagttgacttactgaagaagttttagagctatgctgttttg 28 tracrRNA ggaaccattcaaaacagcatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcttttt ***
As used herein, "sequence identity" refers to nucleotide / amino acid residues in a subject sequence and a reference sequence after aligning the sequences and introducing gaps as necessary to achieve the maximum percent sequence identity between the sequences. Consistent percentage of nucleotide / amino acid residues. Pairings and multiple sequence alignments for the purpose of determining the percent sequence identity between two or more amino acid or nucleic acid sequences can be accomplished in a variety of ways known to those skilled in the art, such as using publicly available Obtained computer software such as Clustal Omega (Söding, J. 2005, Bioinformatics 21, 951-960), T-coffee (Notredame et al. 2000, J. Mol. Biol. (2000) 302, 205-217), Kalign (Lassmann And Sonnhammer 2005, BMC Bioinformatics, 6 (298)) and MAFFT (Katoh and Standley 2013, Molecular Biology and Evolution, 30 (4) 772-780 software. When using such software, it is preferred to use, for example, gap penalties and extensions Default parameters for penalties.
sequence
SEQ ID NO: description sequence 1 Human B2M gene sequence (NCBI reference sequence: NG_012920.1) 2 Human B2M mRNA (NCBI reference sequence: NM_004048.2) 3 Human B2M protein coding sequence ATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTTACTCACGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGGTTTCATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGAGTATGCCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGATCGAGACATGTAA 4 Human B2M (UniProt: P61769-1, v1) MSRSVALAVLALLSLSGLEAIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM 5 Mature human B2M (UniProt: P61769-1, residues 21-199 of v1) IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM 6 Forward B2M EX1 target AAACggccgagatgtctcgctccgGT 7 Reverse B2M EX1 target TAAAACcggagcgagacatctcggcc 8 Forward B2M EX2 target AAACgaagttgacttactgaagaaGT 9 Reverse B2M EX2 target TAAAACttcttcagtaagtcaacttc 10 Forward B2M EX1 WT TCTCGAATGAAAAATGCAGGTCCG 11 Reverse B2M EX1 WT TGACGCTTATCGACGCCCTAAACTT 12 Forward B2M EX1 HDR GACTCCACCACCACGAAATGGC 13 Reverse B2M EX1 HDR CCCCATCAAGCTGATCCGGA 14 Forward B2M EX2 WT GCTTGACACCAAGTTAGCCC 15 Reverse B2M EX2 WT TGGATGGGACTCATTCAGGGT 16 Forward AAVS1 WT CACTCGCTGGGTTCCCTTTTCCT 17 Reverse AAVS1 WT GGCTGGCTACTGGCCTTATCTCACA 18 AAVS1 CD64 HDR CTTTGGCAGCCTGTGCTGACCCAT 19 Reverse AAVS1 CD64 HDR TCGAGGTCTGAGTGGCTGTGCCAT 20 Forward AAVS1 EpCAM HDR CTTTGGCAGCCTGTGCTGACCCAT twenty one Reverse AAVS1 EpCAM HDR AAGAGCCCGCTCTCATCGCAGTCA twenty two HLA-C * 03 type CACAGACTGACCGAGTGAG twenty three Reverse HLA-C * 03 typing AGCGTCTCCTTCCCATTCTT twenty four Forward HLA-C * 05 typing CCGAGTGAACCTGCGGAAA 25 Reverse HLA-C * 05 typing CGCGCGCTGCAGCGTCTT 26 CrRNA targeting B2M EX1 ggccgagatgtctcgctccggttttagagctatgctgttttg 27 CrRNA targeting B2M EX2 gaagttgacttactgaagaagttttagagctatgctgttttg 28 tracrRNA ggaaccattcaaaacagcatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcttttt ***

本發明包括所述態樣及較佳特徵之組合,當此組合明顯不允許或明確避免時除外。The invention includes combinations of such aspects and preferred features, except where such combinations are clearly not allowed or explicitly avoided.

本文所用之各部分標題僅出於組織目的而不應解釋為限制所述主題。The section headings used herein are for organizational purposes only and should not be construed as limiting the subject matter described.

現將參考隨附圖式藉助於實例說明本發明之態樣及實施例。其他態樣及實施例對於熟習此項技術者將為顯而易見的。本文中所提及之所有文獻均以引用之方式併入本文中。Aspects and embodiments of the present invention will now be described by way of example with reference to the accompanying drawings. Other aspects and embodiments will be apparent to those skilled in the art. All documents mentioned herein are incorporated herein by reference.

在整個本說明書,包括隨後之申請專利範圍中,除非上下文另有規定,否則「包含(comprise)」一詞及變化形式(諸如「包含(comprises/comprising)」)應理解為暗示包括所述整數或步驟或整數或步驟之群但不排除任何其他整數或步驟或步驟或整數或步驟之群。Throughout this specification, including the scope of subsequent patent applications, the word "comprise" and variations (such as "comprises / comprising") shall be understood to imply the inclusion of the integers, unless the context requires otherwise Or steps or integers or groups of steps but does not exclude any other integers or steps or steps or groups of integers or steps.

必須指出,除非上下文另外明確指示,否則如本說明書及隨附申請專利範圍中所使用,單數形式「一(a/an)」及「該」包括複數個指示物。範圍可在本文中表示為「約」一個特定值及/或至「約」另一個特定值。當表述此類範圍時,另一個實施例包括自一個特定值及/或至另一個特定值。類似地,當值藉由使用先行詞「約」表示為近似值時,應理解特定值形成另一個實施例。It must be noted that, unless the context clearly indicates otherwise, as used in this specification and the scope of the accompanying patent application, the singular forms "a (an / an)" and "the" include plural referents. Ranges may be expressed herein as "about" one particular value and / or to "about" another particular value. When such a range is expressed, another embodiment includes from one particular value and / or to another particular value. Similarly, when values are expressed as approximations by using the antecedent "about", it should be understood that a particular value forms another embodiment.

在本文中揭示核酸序列之情況下,亦明確考慮其反向互補序列。Where a nucleic acid sequence is disclosed herein, its reverse complement is also explicitly considered.

本文所述之方法可較佳活體外進行。術語「活體外」意欲涵蓋使用培養物中之細胞的實驗,而術語「活體內」意欲涵蓋使用完整多細胞生物體之實驗。The methods described herein can preferably be performed in vitro. The term "in vitro" is intended to cover experiments using cells in culture, and the term "in vivo" is intended to cover experiments using whole multicellular organisms.

實例
在以下實例中,本發明人描述使用基於CRISPR/Cas9之系統基因剔除K562細胞中之B2M基因,從而產生MHC I類分子缺陷型K562細胞。本發明人證明,即使在用野生型K562細胞/T細胞共培養物清液層或干擾素-γ刺激後,B2M基因剔除K562細胞仍不在細胞表面表現MHC I類分子。本發明人表明,B2M/MHC I類分子缺陷型K562細胞可用作產生aAPC之『骨架』細胞,其能夠支持穩固的抗原非依賴性T細胞活體外擴增以及抗原特異性抗CD19 CAR-T細胞活體外擴增。重要的是,與用未基因剔除B2M基因之可比K562細胞擴增的T細胞相比,證實用B2M基因剔除K562細胞aAPC擴增之T細胞顯示減弱的同種異體反應性。
實例1: 材料及方法 1.1 細胞培養
Examples <br/> In the following examples, the present inventors describe the use of a CRISPR / Cas9-based system gene to knock out B2M genes in K562 cells to generate MHC class I molecular-deficient K562 cells. The inventors have demonstrated that even after stimulation with a wild-type K562 cell / T cell co-culture supernatant or interferon-γ, B562M knockout K562 cells still do not express MHC class I molecules on the cell surface. The present inventors have shown that B2M / MHC class I molecularly deficient K562 cells can be used as a "skeleton" cells that produce aAPC, which can support the in vitro expansion of robust antigen-independent T cells and antigen-specific anti-CD19 CAR-T Cells are expanded in vitro. Importantly, it was confirmed that T cells expanded with B2M gene knockout of K562 cells aAPC showed reduced allogeneic reactivity compared with T cells expanded with comparable K562 cells without B2M gene knockout.
Example 1: Materials and Methods 1.1 Cell Culture

人類骨髓性白血病細胞株K562細胞(ATCC, Manassas, VA, USA)在具有10%胎牛血清(FBS,Hyclone™ GE Healthcare, Little Chalfont, UK)之伊斯科夫氏改良杜爾貝科氏培養基(Iscove's Modified Dulbecco's Medium,IMDM,Lonza, Basel, Switzerland)中培養。當用作aAPC共培養飼養細胞時,K562細胞係藉由100Gy (10,000拉德) γ-輻照不活化或用20 μg/mL絲裂黴素C (Roche Diagnostics, Basel, Switzerland)處理一小時,且隨後用磷酸鹽緩衝鹽水(PBS,Lonza)洗滌三次並轉移至共培養培養基中。為誘導B2M及人類白血球抗原(HLA),K562細胞用500 IU/mL IFN-γ (PeproTech, Rocky Hill, NJ, USA)或自K562及T細胞共培養物(1:1比率持續48小時)收集之清液層處理48小時。Human Myeloid Leukemia Cell Line K562 Cells (ATCC, Manassas, VA, USA) in Iskov's Modified Dulbecco's Medium with 10% Fetal Bovine Serum (FBS, Hyclone ™ GE Healthcare, Little Chalfont, UK) (Iscove's Modified Dulbecco's Medium, IMDM, Lonza, Basel, Switzerland). When used as aAPC co-culture feeder cells, the K562 cell line was inactivated by 100Gy (10,000 Rads) gamma-irradiation or treated with 20 μg / mL mitomycin C (Roche Diagnostics, Basel, Switzerland) for one hour, And then washed three times with phosphate buffered saline (PBS, Lonza) and transferred to co-culture medium. To induce B2M and human leukocyte antigen (HLA), K562 cells were collected with 500 IU / mL IFN-γ (PeproTech, Rocky Hill, NJ, USA) or from K562 and T cell co-cultures (1: 1 ratio for 48 hours) The supernatant layer was treated for 48 hours.

藉由密度梯度離心,用Ficoll®-Paque PREMIUM 1.084 (GE Healthcare)自健康供體之膚色血球層分離新鮮外周血液單核細胞(PBMC)。PBMC與Dynabeads® Human T-Activator CD3/CD28 (Gibco, Thermo Fisher Scientific, Waltham, MA, USA)在具有5%人類AB血清(Valley Biomedical, Winchester, VA, USA)之AIM V®培養基(Invitrogen, Thermo Fisher Scientific)中共培養以進行T細胞活化。收集初級活化的CD3+ T細胞且在第7天耗盡微珠。對於活體外抗原非依賴性T細胞擴增,將T細胞及基於B2M基因剔除K562之aAPC以1:50之比率在具有5%人類AB血清及300 IU/mL IL-2 (PeproTech)之AIM V®培養基中共培養。在第一週添加抗CD3 (OKT-3)抗體(60 ng/mL,eBioscience, San Diego, CA, USA)且在共培養期間相應地更換或補充新鮮培養基。對於活體外抗原依賴性T細胞擴增,經活化之T細胞用編碼抗CD19 CAR之慢病毒載體轉導且在具有5%人類AB血清、300 IU/mL IL-2、5 ng/mL IL-7 (PeproTech)及5 ng/mL IL-15 (PeproTech)之AIM V®培養基中,每週以1:1之比率用表現CD19之aAPC刺激。使用CD8+ T細胞分離套組(Miltenyi Biotec, Bergisch Gladbach, Germany)藉由磁珠分離CD8+ T細胞。根據製造商之說明書進行磁分選。Fresh peripheral blood mononuclear cells (PBMCs) were isolated from the skin color hematopoietic layer of healthy donors by Ficoll®-Paque PREMIUM 1.084 (GE Healthcare) by density gradient centrifugation. PBMC and Dynabeads® Human T-Activator CD3 / CD28 (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) in AIM V® medium (Invitrogen, Thermo) with 5% human AB serum (Valley Biomedical, Winchester, VA, USA) (Fisher Scientific) for T cell activation. Primary activated CD3 + T cells were collected and the beads were depleted on day 7. For in vitro antigen-independent T cell expansion, T cells and aAPC based on B2M gene knockout K562 were used at a ratio of 1:50 in AIM V with 5% human AB serum and 300 IU / mL IL-2 (PeproTech) ® co-culture. Anti-CD3 (OKT-3) antibodies (60 ng / mL, eBioscience, San Diego, CA, USA) were added during the first week and the fresh medium was changed or supplemented accordingly during the co-culture. For in vitro antigen-dependent T cell expansion, activated T cells were transduced with a lentiviral vector encoding an anti-CD19 CAR and in 5% human AB serum, 300 IU / mL IL-2, 5 ng / mL IL- 7 (PeproTech) and 5 ng / mL IL-15 (PeproTech) in AIM V® medium were stimulated with aAPC expressing CD19 every week at a ratio of 1: 1. CD8 + T cell isolation kits (Miltenyi Biotec, Bergisch Gladbach, Germany) were used to isolate CD8 + T cells by magnetic beads. Magnetic sorting was performed according to the manufacturer's instructions.

靶標腫瘤細胞株MCF-7 (ATCC)及FaDu (ATCC)在具有10% FBS之杜爾貝科氏改良伊格爾培養基(Dulbecco's Modified Eagle Medium,DMEM,Lonza)中培養。MDA-MB-435 (ATCC)細胞在具有10% FBS及10 μg/ml牛胰島素(Sigma-Aldrich, St. Louis, MO, USA)之DMEM中培養。SKOV-3 (ATCC)細胞在具有10% FBS之麥考伊氏(McCoy's) 5A (改良)培養基(Gibco)中培養。Daudi (ATCC)、Raji (ATCC)及A549 (ATCC)細胞在具有10% FBS之RPMI 1640培養基(Lonza)中培養。因此,每隔一天繼代細胞。
1.2 質體及桿狀病毒載體構築
The target tumor cell lines MCF-7 (ATCC) and FaDu (ATCC) were cultured in Dulbecco's Modified Eagle Medium (DMEM, Lonza) with 10% FBS. MDA-MB-435 (ATCC) cells were cultured in DMEM with 10% FBS and 10 μg / ml bovine insulin (Sigma-Aldrich, St. Louis, MO, USA). SKOV-3 (ATCC) cells were cultured in McCoy's 5A (modified) medium (Gibco) with 10% FBS. Daudi (ATCC), Raji (ATCC) and A549 (ATCC) cells were cultured in RPMI 1640 medium (Lonza) with 10% FBS. Therefore, cells are passaged every other day.
1.2 Construction of plastids and baculovirus vectors

含有CRISPR/Cas9系統之pX260質體(Addgene, Cambridge, MA, USA)描述於Cong等人, Science 339, 819 (32); Addgene #42229; pX260-U6-DR-BB-DR-Cbh-NLS-hSpCas9-NLS-H1-shorttracr-PGK-puro中。使用ZiFiT Targeter在線軟體(41)設計且選擇靶向B2M基因外顯子1 (EX1)及外顯子2 (EX2) (表1,實例1.8)之crRNA序列且選殖至pX260中。構築用於B2M EX1同源-直接整合之供體質體,其含有驅動EGFP基因表現之EF1α (真核轉譯延長因子1α)啟動子及驅動Neo基因(新黴素抗性基因)表現之PGK (小鼠磷酸甘油酸激酶1)啟動子,側接來自B2M EX1基因座之同源DNA序列(染色體15:核苷酸44,710,501-44,711,401及核苷酸44,711,615-44,712,485,GRCh38.p2初級組裝)。構築用於B2M EX1-EX2同源-直接整合之供體質體,其含有與B2M EX1同源-直接整合相同的卡匣,側接來自B2M EX1-EX2基因座之同源DNA序列(染色體15:核苷酸44,710,501-44,711,401及核苷酸44,715,553-44,716,188,GRCh38.p2初級組裝)。含有ZFN之載體描述於Tay等人, Journal of gene medicine 15, 384 (37)中。構築用於AAVS1位點同源-直接整合之供體質體,其含有側接來自AAVS1基因座之同源DNA序列(染色體19:核苷酸55,116,611-55,115,767及核苷酸55,115,765-55,114,929,GRCh38.p2初級組裝)的共刺激分子表現卡匣。CD64 (FcγRI,GenBank寄存編號BC032634)、CD86 (B7-2,GenBank寄存編號NM_175862)、4-1BBL (CD137L,GenBank寄存編號NM_003811)及膜結合之IL-21 (mbIL21,GenBank寄存編號NM_021803.3)之編碼序列自人類PBMC cDNA文庫進行PCR擴增,且選殖至作為表現卡匣之pFastBac™1 (Invitrogen)載體中。將在細胞巨大病毒(CMV)啟動子控制下之CD64-2A-CD137L-2A-CD86表現卡匣次選殖至一個供體質體中,且將在CMV啟動子控制下之EpCAM-2A-mbIL21表現卡匣次選殖至另一個供體質體中。用CMV啟動子構築用於CD19表現之供體質體,以驅動CD19-IRES-Puro (嘌呤黴素抗性基因)表現卡匣之表現。用CMV啟動子構築用於抗CD19 CAR表現之質體,以驅動scFv (抗CD19)-CD8TM (CD8跨膜域)-CD28-CD3ζ表現卡匣之表現。將抗CD19 CAR表現卡匣次選殖至用於慢病毒產生之慢病毒載體中。PX260 plastid (Addgene, Cambridge, MA, USA) containing the CRISPR / Cas9 system is described in Cong et al., Science 339, 819 (32); Addgene # 42229; pX260-U6-DR-BB-DR-Cbh-NLS- hSpCas9-NLS-H1-shorttracr-PGK-puro. The ZiFiT Targeter online software (41) was used to design and select a crRNA sequence targeting B2M gene exon 1 (EX1) and exon 2 (EX2) (Table 1, Example 1.8) and was cloned into pX260. Construction of a B2M EX1 homologous-direct integration donor plastid containing an EF1α (eukaryotic translation elongation factor 1α) promoter driving the expression of the EGFP gene and a PGK (small Murine phosphoglycerate kinase 1) promoter flanked by homologous DNA sequences from B2M EX1 locus (chromosome 15: nucleotides 44,710,501-44,711,401 and nucleotides 44,711,615-44,712,485, GRCh38.p2 primary assembly). Construct a donor plastid for B2M EX1-EX2 homology-direct integration, which contains the same cassette as B2M EX1 homology-direct integration, flanked by a homologous DNA sequence from the B2M EX1-EX2 locus (chromosome 15: Nucleotides 44,710,501-44,711,401 and Nucleotides 44,715,553-44,716,188, GRCh38.p2 primary assembly). ZFN-containing vectors are described in Tay et al., Journal of gene medicine 15, 384 (37). Construction of a homologous-direct integration donor plastid for AAVS1 locus, which contains a homologous DNA sequence flanking the AAVS1 locus (chromosome 19: nucleotides 55,116,611-55,115,767 and nucleotides 55,115,765-55,114,929, GRCh38.p2 (Primary assembly) costimulator performance cassette. CD64 (FcγRI, GenBank deposit number BC032634), CD86 (B7-2, GenBank deposit number NM_175862), 4-1BBL (CD137L, GenBank deposit number NM_003811) and membrane-bound IL-21 (mbIL21, GenBank deposit number NM_021803.3) The coding sequence was PCR amplified from human PBMC cDNA library and cloned into pFastBac ™ 1 (Invitrogen) vector as a performance cassette. The CD64-2A-CD137L-2A-CD86 expression cassette under the control of the Cytomegalovirus (CMV) promoter was sub-selected into a donor plastid, and the EpCAM-2A-mbIL21 expression under the control of the CMV promoter The cassette is sub-selected into another donor plastid. Donor plastids for CD19 expression were constructed using the CMV promoter to drive the expression of the CD19-IRES-Puro (puromycin resistance gene) expression cassette. The CMV promoter was used to construct plastids for anti-CD19 CAR expression to drive scFv (anti-CD19) -CD8TM (CD8 transmembrane domain) -CD28-CD3ζ expression cassette performance. The anti-CD19 CAR expression cassette was sub-selected into a lentiviral vector for lentivirus production.

對於桿狀病毒載體構築,先前描述pFastBac™1 (Invitrogen)質體(39)。將靶向EX1及EX2之crRNA、具有Cas9之tracRNA及用於B2M EX1-EX2同源-直接整合之供體分別次選殖至三個pFastBac™1質體中。根據Bac-to-Bac®桿狀病毒表現系統(Invitrogen)之方案產生三個重組穿梭載體。昆蟲Sf9細胞(ATCC)在Sf-900™ II SFM (Gibco)培養基中培養,且根據方案藉由Cellfectin® II試劑(Invitrogen)用彼等重組穿梭載體轉染。自昆蟲Sf9細胞產生、繁殖及收集三種重組桿狀病毒(BV)載體BV-crRNA-EX1、BV-crRNA-EX2-Cas9-tracRNA及BV-供體-EX1-EX2。
1.3 產生B2M基因剔除K562純系
For baculovirus vector construction, pFastBac ™ 1 (Invitrogen) plastids were previously described (39). The crRNAs targeting EX1 and EX2, the tracRNA with Cas9, and the homologous-direct integration donors for B2M EX1-EX2 were cloned into three pFastBac ™ 1 plastids, respectively. Three recombinant shuttle vectors were generated according to the protocol of the Bac-to-Bac® Baculovirus Expression System (Invitrogen). Insect Sf9 cells (ATCC) were cultured in Sf-900 ™ II SFM (Gibco) medium and transfected with their recombinant shuttle vector by Cellfectin® II reagent (Invitrogen) according to the protocol. Three recombinant baculovirus (BV) vectors, BV-crRNA-EX1, BV-crRNA-EX2-Cas9-tracRNA, and BV-donor-EX1-EX2, were generated, propagated, and collected from insect Sf9 cells.
1.3 Generating B2M gene knockout K562 pure lines

為藉由電穿孔產生B2M基因剔除細胞,5×106 個K562細胞用pX260-B2M-EX1及供體載體在Opti-MEM® I還原血清培養基(Gibco)中以每一載體2 μg DNA經由電穿孔器(Nepa Gene, Chiba, Japan)進行電穿孔。隨後將細胞轉移至培養基中。電穿孔後4天,在單細胞接種之前,藉由在500 μg/mL Geneticin® (G418硫酸鹽,Gibco)存在下培養2週來選擇細胞。為藉由桿狀病毒轉導產生B2M基因剔除純系,在12孔盤之每個孔中塗覆5 × 106 個K562細胞,且在Opti-MEM®中以每個細胞500 Pfu各BV之感染倍率(MOI)轉導BV隔夜。隨後將細胞轉移至培養基中。在轉導後兩週,藉由在500 μg/mL Geneticin®存在下培養選擇細胞。在選擇後兩週,用BD FACSAria™ I流式細胞儀(BD Biosciences, Franklin Lakes, NJ, USA)進行螢光活化細胞分選(FACS)以用於單細胞接種。對EGFP陽性細胞進行閘控且以每孔一個細胞接種於96孔盤中。隨後培養且擴增單細胞純系。一旦達到80-90%匯合,將96孔盤中之K562單細胞純系複製用於基因分型及繼代培養。將一個盤用於基因組DNA提取,隨後藉由PCR進行基因分型。對於隨後的定序,將PCR產物純化且次選殖至pGEM®-T Easy Vector Systems (Promega, Fitchburg, WI, USA)中。收集單株載體用於定序。隨後擴增鑑定之純系用於進一步研究。
1.4 產生基於K562細胞之aAPC
To generate B2M knockout cells by electroporation, 5 × 10 6 K562 cells were treated with pX260-B2M-EX1 and donor vectors in Opti-MEM® I reducing serum medium (Gibco) with 2 μg DNA per vector via electroporation. A perforator (Nepa Gene, Chiba, Japan) was used for electroporation. The cells are then transferred to the culture medium. Four days after electroporation, cells were selected by culturing in the presence of 500 μg / mL Geneticin® (G418 sulfate, Gibco) for 2 weeks before single cell seeding. In order to generate B2M gene knockout pure lines by baculovirus transduction, each well of a 12-well plate was coated with 5 × 10 6 K562 cells, and the infection rate was 500 Pfu per BV in each cell in Opti-MEM® (MOI) Transduced BV overnight. The cells are then transferred to the culture medium. Two weeks after transduction, cells were selected by culturing in the presence of 500 μg / mL Geneticin®. Two weeks after selection, fluorescence-activated cell sorting (FACS) was performed with a BD FACSAria ™ I flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) for single cell seeding. EGFP-positive cells were gated and seeded in 96-well plates with one cell per well. Single cell pure lines were subsequently cultured and expanded. Once 80-90% confluence was reached, the K562 single cell pure line in a 96-well plate was replicated for genotyping and subculture. One disk was used for genomic DNA extraction, followed by genotyping by PCR. For subsequent sequencing, the PCR products were purified and sub-selected into pGEM®-T Easy Vector Systems (Promega, Fitchburg, WI, USA). Individual vectors were collected for sequencing. The pure lines identified by subsequent amplification were used for further studies.
1.4 Generate aAPC based on K562 cells

為產生用於T細胞擴增方法之基於K562之aAPC,WT K562細胞或B2M基因剔除純系EX1EX2#5 K562細胞用ZFN及供體質體電穿孔,且藉由在1 µg/ml嘌呤黴素(Gibco)存在下培養進行選擇。細胞隨後用抗CD64 APC (Miltenyi Biotec, Bergisch Gladbach, Germany)抗體染色,且以每孔一個細胞接種於具有培養基之96孔盤中,藉由FACS來分選APC陽性群體。進行單細胞選殖且選擇CD64、CD86、4-1BBL及mbIL21表現最高之兩個純系,亦即來自WT K562細胞之K562A及來自EX1EX2#5之K562B。為擴增抗CD19 CAR表現T細胞,將CD19基因經由轉染引入K562B細胞中。在嘌呤黴素選擇兩週後,使用抗CD19 APC (eBioscience)抗體對細胞進行染色,且對APC陽性細胞進行閘控並以每孔一個細胞接種於具有培養基之96孔盤中。選擇具有高且穩定的CD19表現之單細胞純系且擴增用於進一步分析。
1.6 細胞毒性分析
To generate K562-based aAPCs for T cell expansion methods, WT K562 cells or B2M gene knockout pure line EX1EX2 # 5 K562 cells were electroporated with ZFN and donor plastids, and purified at 1 µg / ml puromycin (Gibco ). Cells were then stained with anti-CD64 APC (Miltenyi Biotec, Bergisch Gladbach, Germany) antibodies, and one cell per well was seeded in a 96-well plate with culture medium, and APC-positive populations were sorted by FACS. Single-cell colonies were performed and two pure lines with the highest performance of CD64, CD86, 4-1BBL, and mbIL21 were selected, namely K562A from WT K562 cells and K562B from EX1EX2 # 5. To expand anti-CD19 CAR-expressing T cells, the CD19 gene was introduced into K562B cells via transfection. After two weeks of puromycin selection, cells were stained with anti-CD19 APC (eBioscience) antibodies, and APC-positive cells were gated and seeded in 96-well plates with culture medium per cell. Single cell pure lines with high and stable CD19 performance were selected and expanded for further analysis.
1.6 Cytotoxicity analysis

用DELFIA® EuTDA細胞毒性試劑(PerkinElmer, Waltham, MA, USA)在標準的2小時銪釋放分析中分析細胞毒性。根據製造商之說明書進行分析。靶細胞首先在37℃下用BATDA試劑標記5至15分鐘,且隨後用PBS洗滌三次。將效應細胞及經標記之靶細胞以不同的效應子與靶標(E:T)比在具有5%人類AB血清之AIM V®培養基中一式三份地混合。將混合細胞在37℃下在潮濕的培育箱中培育2小時。自發及最大釋放係藉由分別在沒有效應細胞及具有溶解緩衝液之情況下培育靶細胞來確定。在培育後,將清液層轉移至與銪溶液混合且使用VICTOR™時差式螢光計(PerkinElmer)進行分析。特異性溶解百分比計算如下:%溶解= [(實驗釋放 - 自發釋放) / (最大釋放 - 自發釋放)] × 100。
1.7 統計分析
Cytotoxicity was analyzed using a DELFIA® EuTDA cytotoxic reagent (PerkinElmer, Waltham, MA, USA) in a standard 2-hour tritium release assay. The analysis was performed according to the manufacturer's instructions. Target cells were first labeled with BATDA reagent for 5 to 15 minutes at 37 ° C, and then washed three times with PBS. Effector cells and labeled target cells were mixed in triplicate with different effector to target (E: T) ratios in AIM V® medium with 5% human AB serum. The mixed cells were incubated in a humidified incubator at 37 ° C for 2 hours. Spontaneous and maximum release were determined by culturing target cells in the absence of effector cells and with lysis buffer, respectively. After incubation, the supernatant layer was transferred to a solution mixed with rhenium and analyzed using a VICTOR ™ time-lapse fluorescence meter (PerkinElmer). The specific dissolution percentage is calculated as follows:% dissolution = [(experimental release-spontaneous release) / (maximum release-spontaneous release)] × 100.
1.7 Statistical analysis

如上所述收集資料且使用Prism版本7軟體(GraphPad)進行分析。資料以平均值(± SD)表示且藉由雙向方差分析、圖基氏多重比較檢驗(Tukey's multiple comparisons test)及獨立樣本學生t檢驗進行分析。代表性直方圖及圖形係基於平均值自獨立重複中選擇的。
1.8 寡核苷酸及引子 1
1.9 抗體表2
1.5 西方墨點法、流動式細胞測量術分析及細胞內染色
Data were collected as described above and analyzed using Prism version 7 software (GraphPad). Data are expressed as mean (SD) and analyzed by two-way analysis of variance, Tukey's multiple comparisons test, and Student's t-test of independent samples. Representative histograms and graphs were selected from independent replicates based on the mean.
1.8 Oligonucleotides and primers Table 1 :
1.9 Antibody Table 2 :
1.5 Western blot method, flow cytometry analysis and intracellular staining

對於西方墨點分析,藉由用放射免疫沈澱分析(RIPA)緩衝液(Nacalai Tesque, Kyoto, Japan)溶解細胞提取樣品蛋白質,在還原條件下在SDS-PAGE凝膠中分析且隨後電轉染於硝化纖維素膜(Bio-Rad Laboratories, Hercules, CA, USA)上。使用兔抗B2M抗體純系EP2978Y (1:5000稀釋,Abcam, Cambridge, UK)及小鼠抗β-肌動蛋白抗體純系GT5512 (1:1000稀釋,Abcam)作為初級抗體。使用山羊抗兔IgG-HRP (1:5000稀釋,Santa Cruz Biotechnology, Santa Cruz, CA, USA)及山羊抗小鼠IgG-HRP (1:2000稀釋,Santa Cruz Biotechnology)作為二級抗體。使用MYECL™成像儀(Thermo Fisher Scientific)對膜進行顯影且觀測化學發光。For Western blot analysis, sample proteins were extracted by lysing cells with radioimmunoprecipitation analysis (RIPA) buffer (Nacalai Tesque, Kyoto, Japan), analyzed in SDS-PAGE gel under reducing conditions, and then electrotransfected on Nitrocellulose membrane (Bio-Rad Laboratories, Hercules, CA, USA). Rabbit anti-B2M antibody pure line EP2978Y (1: 5000 dilution, Abcam, Cambridge, UK) and mouse anti-β-actin antibody pure line GT5512 (1: 1000 dilution, Abcam) were used as primary antibodies. Goat anti-rabbit IgG-HRP (1: 5000 dilution, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and goat anti-mouse IgG-HRP (1: 2000 dilution, Santa Cruz Biotechnology) were used as secondary antibodies. The membrane was developed and observed for chemiluminescence using a MYECL ™ imager (Thermo Fisher Scientific).

對於流動式細胞測量術分析,細胞在autoMACS®運行緩衝液(Miltenyi Biotec)中用抗體染色,且藉由BD Accuri™ C6流式細胞儀(BD Biosciences)進行分析。使用CFlow® Sampler軟體(BD Biosciences)分析資料。使用BD™ LSR II流式細胞儀(BD Biosciences)分析多色染色,且使用FlowJo軟體(TreeStar, Ashland, OR, USA)分析資料。對於抗F(ab')2 染色,T細胞首先用生物素結合之AffiniPure F(ab')2 片段(山羊抗小鼠IgG,F(ab')2 片段特異性,Jackson ImmunoResearch Laboratories, West Grove, PA, USA)染色1小時且隨後用Streptevdin APC (BD Biosciences)再染色。對於細胞內染色,K562細胞首先用0.01%多聚甲醛(PFA,Thermo Fisher Scientific)固定且用0.5% Tween-20 (Bio-Rad Laboratories)滲透,且隨後藉由流動式細胞測量術分析。
實例2:T細胞共培養條件培養基中之因子可誘導K562細胞上B2M及MHC I類分子之表現
For flow cytometry analysis, cells were stained with antibodies in autoMACS® running buffer (Miltenyi Biotec) and analyzed by BD Accuri ™ C6 flow cytometer (BD Biosciences). Data were analyzed using CFlow® Sampler software (BD Biosciences). Multicolor staining was analyzed using a BD ™ LSR II flow cytometer (BD Biosciences), and data were analyzed using FlowJo software (TreeStar, Ashland, OR, USA). For anti-F (ab ') 2 staining, T cells were first treated with biotin-conjugated AffiniPure F (ab') 2 fragment (goat anti-mouse IgG, F (ab ') 2 fragment specificity, Jackson ImmunoResearch Laboratories, West Grove, PA, USA) for 1 hour and then restained with Streptevdin APC (BD Biosciences). For intracellular staining, K562 cells were first fixed with 0.01% paraformaldehyde (PFA, Thermo Fisher Scientific) and penetrated with 0.5% Tween-20 (Bio-Rad Laboratories), and then analyzed by flow cytometry.
Example 2: Factors in T-cell co-culture conditioned medium can induce the expression of B2M and MHC class I molecules on K562 cells

本發明人首先研究由T細胞及K562細胞之共培養物產生之可溶性因子是否能夠刺激野生型K562細胞上MHC I類分子之上調。The present inventors first investigated whether soluble factors produced by co-cultures of T cells and K562 cells could stimulate upregulation of MHC class I molecules on wild-type K562 cells.

將野生型K562細胞與人類初級T細胞共培養48小時,收集所得細胞培養物清液層且用於刺激另一細胞培養盤中培養之K562細胞。在另一種情況下,用IFNγ刺激K562細胞,而在另一種情況下,K562細胞未受刺激。Wild-type K562 cells were co-cultured with human primary T cells for 48 hours, and the resulting cell culture supernatant was collected and used to stimulate K562 cells cultured in another cell culture plate. In another case, K562 cells were stimulated with IFNγ, while in another case, K562 cells were unstimulated.

為了模擬不活化K562細胞用作免疫細胞擴增培養物之aAPC飼養細胞的情形,藉由用絲裂黴素C處理或藉由γ輻照使K562細胞不活化。在另一種情況下,K562細胞未不活化。In order to simulate the situation where inactivated K562 cells were used as aAPC feeder cells for immune cell expansion culture, K562 cells were deactivated by treatment with mitomycin C or by gamma irradiation. In another case, K562 cells were not inactive.

藉由流動式細胞測量術分析MHC I類分子之表現。與非不活化K562細胞上之表現水準相比,在絲裂黴素C處理或γ輻照後觀察到K562細胞上B2M及HLA-A, B, C之表現水準適度增加(圖1A及1B)。在使用自K562/T細胞共培養物收集之清液層的刺激下,表現水準達到細胞的高達90%,且水準與用IFN-γ處理誘導之水準相當(圖1A及B)。非不活化及不活化K562細胞顯示類似的上調水準,表明抑制K562細胞增殖不會破壞B2M及MHC I類分子上調之潛在機制。亦分析MHC II類分子HLA-DR之表現,但其在任何條件下均未偵測到(圖2B),與先前的研究一致(43, 44)。
實例3:B2M基因剔除K562細胞顯示MHC I類陰性表型
The performance of MHC class I molecules was analyzed by flow cytometry. Compared with the performance levels on non-activated K562 cells, a moderate increase in B2M and HLA-A, B, C performance levels was observed on K562 cells after mitomycin C treatment or gamma irradiation (Figures 1A and 1B) . Stimulated with a supernatant layer collected from a K562 / T cell co-culture, the performance level reached as high as 90% of the cells, and the level was comparable to that induced by treatment with IFN-γ (Figure 1A and B). Non-inactivated and non-activated K562 cells show similar up-regulation levels, suggesting that inhibition of K562 cell proliferation will not disrupt the underlying mechanisms of B2M and MHC class I molecular upregulation. The performance of MLA class II molecule HLA-DR was also analyzed, but it was not detected under any conditions (Figure 2B), consistent with previous studies (43, 44).
Example 3: B2M knockout K562 cells show MHC class I negative phenotype

本發明人設計兩種不同的成簇的規律間隔的短回文重複序列(CRISPR)/Cas9系統來基因剔除B2M 基因以產生MHC I類表現缺陷型K562細胞。The present inventors designed two different clustered regularly spaced short palindromic repeat (CRISPR) / Cas9 systems to genetically knock out B2M genes to generate MHC class I performance-deficient K562 cells.

對於第一個系統,K562細胞用靶向B2M 基因之外顯子1 (EX1)的CRISPR/Cas9構築體及包含EGFP及同源序列側接之新黴素抗性基因的供體卡匣共電穿孔,以整合供體卡匣序列而非EX1 (圖3A)。For the first system, K562 cells were co-charged with a CRISPR / Cas9 construct targeting B2M gene exon 1 (EX1) and a donor cassette containing EGFP and a neomycin resistance gene flanked by homologous sequences Perforate to integrate the donor cassette sequence instead of EX1 (Figure 3A).

由於K562細胞含有B2M 基因之三個等位基因(45),因此在單一K562細胞中同時基因剔除所有等位基因具有挑戰性。為解決該問題,本發明人進一步設計靶向B2M EX1及外顯子2 (EX2)之第二CRISPR/Cas9系統,其目的在於實現B2M 基因之完全破壞(圖3B)。在K562細胞中具有優異轉導效率之桿狀病毒載體用於遞送第二CRISPR/Cas9系統。Because K562 cells contain three alleles of the B2M gene (45), it is challenging to genotype all alleles simultaneously in a single K562 cell. To solve this problem, the inventors further designed a second CRISPR / Cas9 system targeting B2M EX1 and exon 2 (EX2), the purpose of which is to achieve complete destruction of the B2M gene (Figure 3B). A baculovirus vector with excellent transduction efficiency in K562 cells was used to deliver the second CRISPR / Cas9 system.

隨後藉由在遺傳黴素(geneticin)存在下培養2週,選擇用EX1靶向系統電穿孔之K562細胞及用EX1EX2靶向系統轉導之K562細胞,以富集穩定的EGFP陽性細胞。隨後基於藉由FACS之EGFP陽性細胞分選將單細胞接種於96孔盤的各個孔中。收集單細胞純系 - 78個來自電穿孔細胞且60個來自經轉導之細胞,且進行PCR基因分型以選擇攜帶選擇標記之B2M 位點特異性整合的純系(圖4A)。自各方法收集十個代表性陽性純系且擴增用於進一步分析。為偵測B2M表現之缺陷,用IFN-γ刺激單細胞純系48小時且隨後藉由流動式細胞測量術分析。在來源於EX1系統電穿孔K562細胞之一個純系(EX1#7)及來源於EX1EX2系統轉導之K562細胞之四個純系(EX1EX2#2、#5、#6、#7)中觀察到缺陷型B2M表現(圖3C及3D)。藉由西方墨點分析在五個純系中亦確認B2M基因剔除(圖4D)。經由DNA定序,在五個B2M缺陷型純系中偵測到選擇標記進入一個等位基因之B2M位點特異性整合及B2M 基因之其他兩個等位基因中之突變或早期終止密碼子(圖4B及4C)。Subsequently, by culturing for 2 weeks in the presence of geneticin, K562 cells electroporated with EX1 targeting system and K562 cells transduced with EX1EX2 targeting system were selected to enrich stable EGFP-positive cells. Single cells were then seeded into individual wells of a 96-well plate based on EGFP-positive cell sorting by FACS. Single cell pure lines were collected-78 from electroporated cells and 60 from transduced cells, and PCR genotyping was performed to select pure lines carrying B2M site-specific integration of selectable markers (Figure 4A). Ten representative positive pure lines were collected from each method and amplified for further analysis. To detect defects in B2M expression, single cell pure lines were stimulated with IFN-γ for 48 hours and subsequently analyzed by flow cytometry. Defective types were observed in one pure line (EX1 # 7) derived from EX1 electroporated K562 cells and four pure lines (EX1EX2 # 2, # 5, # 6, # 7) derived from EX1EX2 system transduced K562 cells. B2M performance (Figures 3C and 3D). B2M gene knockout was also confirmed in five pure lines by Western blot analysis (Figure 4D). Through DNA sequencing, the B2M site-specific integration of selectable markers into one allele and mutations or early termination codons in the other two alleles of the B2M gene were detected in five B2M-deficient pure lines. 4B and 4C).

在五個B2M基因剔除(B2MKO) K562純系中進一步檢查MHC I類分子表現。藉由用絲裂黴素C處理或γ輻照使K562細胞不活化,或藉由用IFN-γ或自K562/T細胞共培養物收集之細胞培養物清液層處理來刺激非不活化K562細胞。與在野生型K562細胞中觀察到B2M及HLA-A, B, C分子表現之上調相反,藉由流動式細胞測量術幾乎偵測不到B2MKO K562細胞中此等分子之表現(圖5A、5B及4E)。MHC class I performance was further examined in five B2M knockout (B2MKO) K562 pure lines. K562 cells were deactivated by treatment with mitomycin C or gamma irradiation, or non-inactivated K562 were stimulated by treatment with IFN-γ or cell culture supernatant collected from K562 / T cell co-culture cell. In contrast to the up-regulation of B2M and HLA-A, B, and C molecules observed in wild-type K562 cells, the performance of these molecules in B2MKO K562 cells was almost undetectable by flow cytometry (Figures 5A, 5B And 4E).

由於無MHC I類表現之細胞對由NK細胞溶解非常敏感(46),因此本發明人使用EX1EX2#5純系進行基於NK細胞介導之溶解的功能分析以進一步表徵MHC I類缺陷。WT及B2MKO K562細胞用IFN-γ刺激且隨後以不同的效應(E):靶(T)細胞比率與人類初級NK細胞共培養。如所預期,與WT K562細胞之溶解相比,B2MKO K562細胞之NK特異性溶解百分比高得多(圖5C)。此等發現證實B2MKO K562細胞顯示出MHC I類缺陷表型。
實例4:與基於B2M基因剔除K562細胞之aAPC共培養的T細胞顯示減弱的同種異體反應性
Since cells without MHC class I expression are very sensitive to NK cell lysis (46), the inventors used EX1EX2 # 5 pure line to perform functional analysis based on NK cell-mediated lysis to further characterize MHC class I defects. WT and B2MKO K562 cells were stimulated with IFN-γ and subsequently co-cultured with human primary NK cells with different effect (E): target (T) cell ratios. As expected, the percentage of NK-specific lysis of B2MKO K562 cells was much higher compared to lysis of WT K562 cells (Figure 5C). These findings confirm that B2MKO K562 cells exhibit an MHC class I defective phenotype.
Example 4: T cells co-cultured with aAPC based on B2M knockout K562 cells show reduced allogeneic reactivity

K562 B2MKO純系EX1EX2#5用於產生aAPC。編碼Fc受體CD64、必需共刺激分子CD86及CD137L及膜結合之IL-21 (mbIL21)之基因藉由ZFN介導之AAVS 1位點特異性整合穩定引入EX1EX2#5細胞中(圖6A)。K562 B2MKO pure line EX1EX2 # 5 is used to generate aAPC. Genes encoding Fc receptor CD64, necessary co-stimulatory molecules CD86 and CD137L, and membrane-bound IL-21 (mbIL21) were stably introduced into EX1EX2 # 5 cells via ZFN-mediated AAVS 1 site-specific integration (Figure 6A).

經修飾之細胞進行單細胞選殖,選擇具有四種分子之高表現水準的純系且命名為「K562B」(圖6B及6C)。檢查且確認K562B中MHC I類表型缺陷及骨髓性譜系標記的表現(圖6D及6E)。The modified cells were subjected to single-cell colony selection, and pure lines with high performance levels of four molecules were selected and named "K562B" (Figures 6B and 6C). The performance of MHC class I phenotypic defects and myeloid lineage markers in K562B was examined and confirmed (Figures 6D and 6E).

野生型K562細胞(亦即未B2M基因剔除)亦經修飾以表現CD64、CD86、CD137L及mbIL21。此細胞株命名為「K562A」(圖6B),且在以下實驗中用作表現MHC I之對照aAPC。Wild-type K562 cells (ie, not B2M knockout) were also modified to express CD64, CD86, CD137L, and mbIL21. This cell line was named "K562A" (Figure 6B) and was used as a control aAPC expressing MHC I in the following experiments.

為評定T細胞之同種異體反應性,PBMC首先用不活化K562A細胞引發,且隨後藉由磁性微珠之陰性選擇分離CD8+ T細胞。收集之CD8+ T細胞隨後藉由用K562A或K562B細胞刺激來擴增,一週一次,持續四週(圖7A)。To assess the allogeneic reactivity of T cells, PBMCs were first primed with inactivated K562A cells, and then CD8 + T cells were isolated by negative selection of magnetic beads. The collected CD8 + T cells were then expanded by stimulation with K562A or K562B cells, once a week for four weeks (Figure 7A).

用K562A刺激之CD8+ T細胞顯示出比使用K562B之對應物高得多的擴增倍數(圖8C)。藉由流動式細胞測量術進行表型分型以評定擴增之T細胞。活化之效應記憶CD8+ T細胞在K562A刺激及K562B刺激之T細胞群均佔優勢,具有CD86及HLA-DR之高水準表現(圖8D)。CD8 + T cells stimulated with K562A showed a much higher expansion factor than the counterpart using K562B (Figure 8C). Phenotyping was performed by flow cytometry to assess expanded T cells. Activated effect memory CD8 + T cells are dominant in both K562A stimulated and K562B stimulated T cell populations, with high-level performance of CD86 and HLA-DR (Figure 8D).

隨後藉由在用IFN-γ刺激靶細胞以上調MHC I類表現後,將藉由擴增產生之CD8+ T細胞與K562A或K562B細胞混合來進行細胞毒性分析(圖7B至7D)。在PBMC引發後立即分離(亦即不藉由在K562A或K562B細胞存在下培養擴增)之CD8+ T細胞能夠有效殺死IFN-γ刺激之野生型K562細胞(圖7B,左上圖,三角形)。在用K562A細胞擴增CD8+ T細胞後,觀察到針對IFN-γ刺激之WT K562細胞的細胞毒性增加(圖7B,左上圖,菱形)。相反,與PBMC引發後立即分離之CD8+ T細胞所顯示的細胞毒性相比,用K562B細胞擴增之CD8+ T細胞針對WT K562細胞之細胞毒性沒有顯著增加(圖7B,左上圖,正方形)。Cytotoxicity analysis was subsequently performed by mixing CD8 + T cells produced by expansion with K562A or K562B cells after stimulation of target cells with IFN-γ to up-regulate MHC class I performance (Figures 7B to 7D). CD8 + T cells isolated immediately after PBMC priming (i.e., without culture and expansion in the presence of K562A or K562B cells) can effectively kill IFN-γ stimulated wild-type K562 cells (Figure 7B, upper left, triangle) . After CD8 + T cells were expanded with K562A cells, increased cytotoxicity was observed against IFN-γ stimulated WT K562 cells (Figure 7B, top left panel, diamond). In contrast, the cytotoxicity of CD8 + T cells expanded with K562B cells against WT K562 cells did not increase significantly compared to the cytotoxicity shown by CD8 + T cells isolated immediately after PBMC priming (Figure 7B, top left, square) .

由於K562細胞僅可在其編碼之MHC I類分子(A*11,31;B*18,40;C*03,05)當中上調HLA-C分子的表現(26),因此本發明人研究所擴增之T細胞針對表現由K562表現之HLA-C等位基因(HLA-C*03或HLA-C*05)之腫瘤細胞或不表現HLA-C等位基因HLA-C*03或HLA-C*05之腫瘤細胞的同種異體反應性(圖8A及圖8B)。Since K562 cells can only up-regulate the expression of HLA-C molecules among the MHC class I molecules they encode (A * 11,31; B * 18,40; C * 03,05) (26), the inventors have studied The expanded T cells target tumor cells expressing the HLA-C allele (HLA-C * 03 or HLA-C * 05) expressed by K562 or not expressing the HLA-C allele HLA-C * 03 or HLA- Allogeneic reactivity of C * 05 tumor cells (Figures 8A and 8B).

與藉由在K562B存在下培養擴增之CD8+ T細胞相比,藉由在K562A細胞存在下培養擴增之CD8+ T細胞針對表現由K562細胞表現之HLA-C等位基因之腫瘤細胞所顯示出的細胞毒性高得多(圖7B至7D)。無論T細胞是否藉由在K562A或K562B細胞存在下培養擴增,當不表現由K562細胞表現之HLA-C等位基因的腫瘤細胞用作靶細胞時,未觀察到細胞毒性(圖7B至7D)。With the culture of CD8 + T cell expansion in the presence as compared K562B, by CD8 + T cells cultured in the presence of cells amplified for expression K562A K562 cells by tumor expression of HLA-C allele of cells The cytotoxicity shown was much higher (Figures 7B to 7D). Regardless of whether T cells were expanded by culture in the presence of K562A or K562B cells, cytotoxicity was not observed when tumor cells that did not express the HLA-C allele expressed by K562 cells were used as target cells (Figures 7B to 7D ).

此等結果表明,雖然在野生型K562細胞用作飼養細胞或人工APC時,同種異體反應性細胞毒性T淋巴細胞(CTL)可擴增且可能富集,但B2MKO K562細胞不刺激同種異體反應性CTL。藉由在B2M基因剔除K562細胞存在下培養擴增之T細胞將包含較少的同種異體反應性T細胞及較大比例具有所需特異性的T細胞。
實例5:B2M基因剔除不影響K562細胞用作抗原非依賴性及抗原依賴性T細胞擴增之aAPC的能力
These results indicate that although wild-type K562 cells are used as feeder cells or artificial APC, allo-reactive cytotoxic T lymphocytes (CTLs) can expand and may be enriched, but B2MKO K562 cells do not stimulate allo-reactivity CTL. T cells expanded by culturing in the presence of B2M knockout K562 cells will contain fewer allo-reactive T cells and a larger proportion of T cells with the desired specificity.
Example 5: B2M gene knockout does not affect the ability of K562 cells to be used as aAPC for antigen-independent and antigen-dependent T cell expansion

K562細胞通常用作活體外大規模擴增αβ-T細胞之飼養細胞。為了評估基於B2MKO K562之aAPC充當APC用於以抗原非依賴性方式擴增T細胞之方法的能力,首先藉由用CD3/CD28抗體包覆之微型Dynabeads處理一週而使PBMC活化,且隨後收集T細胞並在不活化之K562B或K562A細胞存在下以1:50之比率在抗CD3抗體OKT-3存在下培養2週(圖9A)。將此方法應用於來自三個供體之PBMC的代表性研究中,在14天培養結束時實現1000至2000倍之總細胞擴增(圖9B至9D)。用K562B及K562A細胞實現之擴增倍數在不同供體之間係相當的。本發明人隨後在擴增14天後分析擴增之免疫細胞群的組成(圖9E至9H)。K562 cells are commonly used as feeder cells for large-scale expansion of αβ-T cells in vitro. To evaluate the ability of aAPC based on B2MKO K562 to serve as a method for APCs to expand T cells in an antigen-independent manner, PBMCs were first activated by treatment with micro-Dynabeads coated with CD3 / CD28 antibodies for one week, and then T Cells were cultured in the presence of non-activated K562B or K562A cells at a ratio of 1:50 in the presence of anti-CD3 antibody OKT-3 for 2 weeks (Figure 9A). Applying this method to a representative study of PBMCs from three donors, 1000-2000-fold total cell expansion was achieved at the end of the 14-day culture (Figures 9B to 9D). K562B and K562A cells achieved comparable expansion folds among different donors. The inventors then analyzed the composition of the expanded immune cell population after 14 days of expansion (Figures 9E to 9H).

CD8+ αβ-T細胞群佔主要部分(60%至75%),其次為CD4+ αβ-T細胞群(20%至40%)。CD3- CD56+ NK細胞藉由Dynabead刺激自3%擴增至13%,但在14天T細胞/K562細胞共培養期間觀察到NK細胞比例降低至3%至5%。γδ-T細胞群沒有明顯的擴增(1.5%至3%)。在擴增之CD8+ αβ-T細胞中,超過90%為效應記憶T細胞(CCR7- CD45RA- )且小於3%表現T細胞耗竭標記PD-1 (亦即PD1+ CD8+ )。用K562B及K562A細胞獲得之結果在不同供體之間為相當的。The CD8 + αβ-T cell population accounts for the major part (60% to 75%), followed by the CD4 + αβ-T cell population (20% to 40%). CD3 - CD56 + NK cells expanded from 3% to 13% by Dynabead stimulation, but a decrease in the proportion of NK cells to 3% to 5% was observed during the 14-day T cell / K562 cell co-culture. There was no significant expansion of the γδ-T cell population (1.5% to 3%). In CD8 + αβ-T cell proliferation of, more than 90% of effector memory T cells (CCR7 - CD45RA -) showed less than 3%, and T-cell depletion marker PDl (i.e., PD1 + CD8 +). The results obtained with K562B and K562A cells were comparable among different donors.

結果表明,B2M基因剔除K562細胞能夠用作aAPC用於T細胞之抗原非依賴性擴增。The results showed that the B2M knockout K562 cells could be used as aAPC for antigen-independent expansion of T cells.

為了研究基於B2MKO K562之aAPC用於擴增抗原依賴性T細胞之用途,將CD19抗原引入K562B細胞中且建立表現CD19之單細胞純系K562B+CD19(圖10A)。來自兩個不同供體之人類初級T細胞亦用編碼抗CD19 CAR之慢病毒載體轉導以產生穩定的抗CD19-CAR-T細胞(圖10A)。In order to study the use of aAPC based on B2MKO K562 for the expansion of antigen-dependent T cells, CD19 antigen was introduced into K562B cells and a single cell pure line K562B + CD19 expressing CD19 was established (Figure 10A). Human primary T cells from two different donors were also transduced with a lentiviral vector encoding an anti-CD19 CAR to generate stable anti-CD19-CAR-T cells (Figure 10A).

抗CD19 CAR-T細胞在不活化K562B+CD19細胞或K562B細胞存在下以1:1之比率培養,且每週再刺激以進行T細胞擴增(圖10B)。當CAR-T細胞與K562B+CD19細胞而非K562B細胞共培養時,T細胞穩固擴增(圖10C及10D)。Anti-CD19 CAR-T cells were cultured in the ratio of 1: 1 in the absence of activated K562B + CD19 cells or K562B cells, and restimulated weekly for T cell expansion (Figure 10B). When CAR-T cells were co-cultured with K562B + CD19 cells but not K562B cells, the T cells expanded steadily (Figures 10C and 10D).

當用K562B+CD19細胞刺激CAR-T細胞時,抗CD19 CAR之穩定表現自第4天9%之T細胞增加至第25天93%之擴增T細胞,表明在擴增後CAR-T細胞之顯著富集(圖10E及10F)。當用K562B細胞刺激T細胞時,抗CD19 CAR陽性T細胞在第25天自原始9%略微降低至6%(圖10E及10F)。When K562B + CD19 cells were used to stimulate CAR-T cells, the stable performance of anti-CD19 CAR increased from 9% of T cells on day 4 to 93% of expanded T cells on day 25, indicating that CAR-T cells after expansion Significant enrichment (Figures 10E and 10F). When T cells were stimulated with K562B cells, anti-CD19 CAR-positive T cells decreased slightly from the original 9% to 6% on day 25 (Figures 10E and 10F).

藉由與K562B+CD19細胞共培養而擴增之CAR-T細胞經表型分型,且主要發現係CD8+ 效應記憶T細胞(CCR7- CD45RA- ) (圖10G)。By coculture with K562B CD19 + amplified by the CAR-T cell phenotyping, and found mainly based CD8 + effector memory T cells (CCR7 - CD45RA -) (FIG. 10G).

為評估擴增之CAR-T細胞的細胞毒性,使用DELFIA細胞毒性套組進行活體外細胞毒性分析。用K562B+CD19細胞擴增之抗CD19-CAR-T細胞觀察到CD19陽性腫瘤靶細胞之劑量依賴型細胞溶解,但此等T細胞未顯示針對CD19陰性腫瘤細胞之細胞毒性(圖10H及10I,圓圈),證明CD19抗原特異性腫瘤細胞殺傷係由擴增之CAR-T細胞介導。To evaluate the cytotoxicity of the expanded CAR-T cells, an in vitro cytotoxicity analysis was performed using the DELFIA cytotoxicity kit. Dose-dependent cytolysis of CD19-positive tumor target cells was observed with anti-CD19-CAR-T cells expanded with K562B + CD19 cells, but these T cells did not show cytotoxicity against CD19-negative tumor cells (Figures 10H and 10I, (Circled), demonstrating that the CD19 antigen-specific tumor cell killer line is mediated by expanded CAR-T cells.

結果表明,K562細胞中之B2M基因剔除能夠用作aAPC以擴增抗原特異性T細胞。
實例6:結論
The results show that B2M gene knockout in K562 cells can be used as aAPC to expand antigen-specific T cells.
Example 6: Conclusion

K562白血病細胞株由於其無MHC I類表現之特性而廣泛用於構築aAPC用於活體外免疫細胞擴增。然而,最新的一項研究報導,其MHC I類分子,至少HLA-C可在與PBMC共培養期間上調用於NK細胞擴增(26)。K562 leukemia cell line is widely used to construct aAPC for in vitro immune cell expansion due to its characteristics without MHC class I expression. However, a recent study reported that its MHC class I molecules, at least HLA-C, can be invoked on NK cell expansion during co-culture with PBMC (26).

在本研究中,本發明人證實在K562/T細胞共培養條件下K562細胞上B2M及MHC I類分子之上調。基於K562之aAPC上之上調的MHC I類分子可為MHC錯配供體之同種異體抗原,活化且觸發同種異體反應性T細胞之特異性擴增。In this study, the inventors confirmed that B2M and MHC class I molecules are up-regulated on K562 cells under K562 / T cell co-culture conditions. K562-based aAPC up-regulated MHC class I molecules can be alloantigens of MHC mismatch donors, activating and triggering specific expansion of allo-reactive T cells.

為解決此問題,本發明人用桿狀病毒CRISPR/Cas9系統破壞K562中之B2M基因。選擇且表徵總共五個單細胞衍生之B2M基因剔除K562純系,且證實即使在用IFN-γ或T細胞/K562共培養物清液層刺激後仍不表現MHC I類表現。To solve this problem, the inventors used the baculovirus CRISPR / Cas9 system to destroy the B2M gene in K562. A total of five single-cell-derived B2M gene knockout K562 pure lines were selected and characterized, and it was confirmed that MHC class I performance was not exhibited even after stimulation with IFN-γ or T cell / K562 co-culture supernatant.

基於K562之aAPC係藉由利用ZFN介導之AAVS1 位點特異性整合引入必需共刺激分子而由B2M基因剔除純系中之一者產生。與此基於B2M基因剔除K562之aAPC共培養的T細胞顯示減弱的針對K562細胞及表現由K562表現之HLA-C等位基因的靶細胞之同種異體反應性。基於B2MKO K562之aAPC亦顯示支持穩固的抗原非依賴性T細胞擴增及抗原特異性抗CD19 CAR-T細胞擴增。K562-based aAPCs were generated from one of the B2M gene knockout pure lines by introducing the necessary costimulatory molecules using ZFN-mediated AAVS1 site-specific integration. AAPC co-cultured T cells based on the B2M knockout K562 showed reduced allogeneic reactivity against K562 cells and target cells expressing the HLA-C allele expressed by K562. AAPC based on B2MKO K562 has also been shown to support robust antigen-independent T cell expansion and antigen-specific anti-CD19 CAR-T cell expansion.

首先報導K562細胞缺乏MHC I類分子表現且僅攜有痕量內源性B2M表現(22, 47, 48)。基於此等特性及作為飼養細胞之其他有利特性,K562細胞廣泛用作活體外免疫細胞擴增之飼養細胞。First, K562 cells were reported to lack MHC class I molecular manifestations and only carry trace levels of endogenous B2M manifestations (22, 47, 48). Based on these characteristics and other advantageous characteristics as feeder cells, K562 cells are widely used as feeder cells for in vitro expansion of immune cells.

許多研究主張K562細胞係HLA陰性。然而,降低之B2M表現與B2M 基因附近之t(15;18)染色體易位相關聯(45),但細胞株仍攜有野生型人類B2M 等位基因,此意味著其可在某些條件下表現或上調B2M。Many studies claim that K562 cell lines are HLA-negative. However, reduced B2M expression is associated with t (15; 18) chromosomal translocation near the B2M gene (45), but the cell line still carries the wild-type human B2M allele, which means it can perform under certain conditions Or raise B2M.

先前的研究表明IFN-γ可上調K562細胞上之MHC I類分子表現,主要係HLA-C (42, 48, 49)。Lapteva等人亦報導與NK細胞共培養之K562上MHC I類分子之上調(26)。本發明人亦觀察到與T細胞共培養之K562細胞上B2M及MHC I類分子的上調。此類上調可由諸如IFN-γ之細胞介素誘導,該等細胞介素係在共培養環境中由T細胞或其他免疫細胞分泌。本發明人亦表明,藉由用絲裂黴素C處理或γ-輻照而不活化之K562仍可響應於此刺激而上調B2M及MHC I類表現(與增殖抑制無關)。Previous studies have shown that IFN-γ can up-regulate the expression of MHC class I molecules on K562 cells, mainly HLA-C (42, 48, 49). Lapteva et al. Also reported that MHC class I molecules are upregulated on K562 co-cultured with NK cells (26). The inventors have also observed that B2M and MHC class I molecules are up-regulated on K562 cells co-cultured with T cells. Such up-regulation can be induced by cytokines such as IFN-γ, which are secreted by T cells or other immune cells in a co-culture environment. The inventors have also shown that K562, which is not activated by treatment with mitomycin C or gamma-irradiation, can still up-regulate B2M and MHC class I performance in response to this stimulus (not related to proliferation inhibition).

亦發現絲裂黴素C處理及γ-輻照誘導K562細胞上B2M及MHC I類之表現適度上調,與先前研究之結果一致(50, 51)。此可為絲裂黴素C處理或γ-輻照後K562細胞內積聚之DNA及細胞質蛋白質損傷的結果。細胞內損傷可觸發MHC複合物之上調,從而將異常肽呈現給循環免疫細胞。It was also found that mitomycin C treatment and γ-irradiation induced moderate up-regulation of B2M and MHC class I performance on K562 cells, consistent with the results of previous studies (50, 51). This may be the result of DNA and cytoplasmic protein damage accumulated in K562 cells after mitomycin C treatment or γ-irradiation. Intracellular damage can trigger up-regulation of MHC complexes, thereby presenting abnormal peptides to circulating immune cells.

由於K562細胞可在共培養條件下上調MHC I類分子表現,因此基於K562之aAPC可在T細胞擴增期間誘導同種特異性T細胞之擴增(特異性針對由K562細胞表現之MHC I類分子)。T細胞針對K562之同種異體反應可以直接或間接方式發生(52)。作為直接同種異體識別,同種異體反應性T細胞可在其TCR直接識別K562細胞上之同種異體肽-MHC複合物時活化。作為間接同種異體識別,PBMC內之樹突狀細胞及其他單核球將首先攝取K562細胞同種異體抗原,且隨後幫助呈現K562同種異體抗原以活化T細胞。由於在T細胞擴增情境中基於K562之aAPC上同種異體抗原及共刺激分子的共存,同種異體反應性T細胞將隨後高度擴增。Lapteva等人偵測到在K562/PBMC共培養後由基於K562之aAPC觸發及擴增的同種異體反應性CD8+ T細胞,甚至證實其針對K562之HLA-C*05的同種異體反應(26)。HLA-C之同種異體識別在MHC分子錯配中較少見,但其仍頻繁發生(53)。Since K562 cells can up-regulate MHC class I expression under co-culture conditions, aAPC based on K562 can induce the expansion of the same specific T cells during T cell expansion (specifically targeting MHC class I molecules expressed by K562 cells ). Allogeneic responses of T cells to K562 can occur directly or indirectly (52). As a direct allogeneic recognition, allo-reactive T cells can be activated when their TCR directly recognizes the allo-peptide-MHC complex on K562 cells. As indirect allogeneic recognition, dendritic cells and other monocytes in PBMC will first take up K562 cell alloantigens, and then help present K562 alloantigens to activate T cells. Due to the coexistence of alloantigens and costimulatory molecules on K562-based aAPCs in a T cell expansion scenario, alloactive T cells will subsequently be highly expanded. Lapteva et al. Detected allogenic reactive CD8 + T cells triggered and expanded by K562-based aAPC after K562 / PBMC co-culture, and even confirmed its allogeneic response to K562 HLA-C * 05 (26) . HLA-C allogeneic recognition is rare in MHC molecular mismatches, but it still occurs frequently (53).

本發明人亦在來自至少三個供體之K562/PBMC共培養後偵測到針對K562之HLA-C的此類同種異體反應性,該等供體之HLA-C與K562 HLA-C不匹配(圖8A及圖8B)。本發明人分別用野生型(K562A)及基於B2MKO (K562B) K562之aAPC擴增同種異體反應性T細胞群。其研究表明,基於B2M基因剔除K562之aAPC可在擴增期間減弱同種異體反應性。本發明人觀察到用基於野生型K562之aAPC而非B2M基因剔除aAPC擴增同種異體反應性T細胞較佳。擴增之同種異體反應性T細胞係終末分化的且活化的效應記憶T細胞具有高表現的CD8、CD86及HLA-DR。擴增之T細胞的細胞毒性至少受限於K562之HLA-C等位基因HLA-C*03及HLA-C*05。發現同種異體反應性T細胞不靶向表現例如HLA-C*07、HLA-C*12或HLA-C*16之細胞株。同種異體反應性T細胞可顯示出對HLA-C*02或C*04之一些交叉反應性,因為其對MDA-MB-468 (HLA-C*02,*04)表現出適度溶胞效應(資料未展示)。因此,B2M基因剔除對於K562細胞產生具有最小免疫原性之aAPC為必需的且確保T細胞擴增的特異性。The inventors also detected such allogeneic reactivity against K562 HLA-C after K562 / PBMC co-culture from at least three donors whose HLA-C did not match K562 HLA-C (Figures 8A and 8B). The present inventors used wild type (K562A) and a2PC based on B2MKO (K562B) K562 to expand alloactive T cell populations. Its research showed that aAPC based on the B2M gene knockout of K562 can reduce allogeneic reactivity during amplification. The inventors have observed that it is better to use aAPC based on wild-type K562 instead of B2M gene knockout aAPC to expand allo-reactive T cells. The expanded allo-reactive T cell lines are terminally differentiated and activated effector memory T cells with high-performing CD8, CD86, and HLA-DR. The cytotoxicity of the expanded T cells is at least limited by the HLA-C alleles HLA-C * 03 and HLA-C * 05 of K562. It was found that allo-reactive T cells do not target cell lines exhibiting, for example, HLA-C * 07, HLA-C * 12, or HLA-C * 16. Allo-reactive T cells may show some cross-reactivity to HLA-C * 02 or C * 04 because they exhibit a moderate lytic effect on MDA-MB-468 (HLA-C * 02, * 04) ( Information not shown). Therefore, B2M gene knockout is necessary for K562 cells to produce aAPC with minimal immunogenicity and to ensure the specificity of T cell expansion.

已研究許多方法來降低特定細胞的免疫原性。HLA破壞為一種直接的方法且其係在T細胞、人類胚胎幹細胞(hESC) (54)及造血幹細胞(55)上實現。然而,由於MHC I類分子中之高水準多態性,此策略並非通用的。B2M基因剔除為一種替代選擇,因為此微球蛋白係守恆的且對於MHC I類分子之形成必不可少。在B2M基因剔除後,在hESC中已實現MHC I類分子及B2M表現之降低,且在彼等B2M基因剔除細胞上未報導異常(29, 30)。Many methods have been studied to reduce the immunogenicity of specific cells. HLA destruction is a direct method and it is performed on T cells, human embryonic stem cells (hESC) (54), and hematopoietic stem cells (55). However, due to the high level of polymorphisms in MHC class I molecules, this strategy is not universal. B2M gene knockout is an alternative because this microglobulin is conserved and essential for the formation of MHC class I molecules. After B2M knockout, reductions in MHC class I molecules and B2M performance have been achieved in hESC, and no abnormalities have been reported on their B2M knockout cells (29, 30).

在本發明實例中,本發明人在單細胞水準下產生B2M基因剔除K562細胞。除破壞B2M 基因之位點特異性整合以外,亦藉由CRISPR/Cas9將缺失及插入引入B2M EX1編碼序列中,其將導致閱讀框架移位及新閱讀框架中之早期終止密碼子。因此,B2M及MHC I類之表現在B2M基因剔除K562純系中完全耗盡。據報導,K562細胞株具有人類染色體15之兩個正常拷貝及t(15;18)染色體易位(45),其表明在K562細胞中有B2M 基因之三個拷貝。在基因剔除單細胞純系中之每一者中,除選擇標記之整合以外,至多偵測到兩種類型之B2M 突變等位基因。此發現與K562細胞中存在B2M 基因之三個拷貝一致,且所有三個拷貝在B2M缺陷型純系中被破壞。另外,與野生型K562細胞相比,B2M基因剔除純系培養多於六十代而無異常,表明B2M基因剔除係產生穩定的低免疫原性細胞之安全有效的方式。由於缺乏針對NK細胞之抑制性配體,B2M基因剔除可使得細胞對NK細胞溶解更敏感(46),但此並非在T細胞擴增方法中用作飼養細胞之重要考慮因素,因為視需要可添加新的aAPC。另外,NK細胞將更易於由B2M基因剔除K562細胞活化,此意味著基於B2M基因剔除K562之aAPC可能有益於NK細胞擴增。In the examples of the present invention, the inventors produced B2M gene knockout K562 cells at a single cell level. In addition to disrupting the site-specific integration of the B2M gene, deletions and insertions are also introduced into the B2M EX1 coding sequence by CRISPR / Cas9, which will cause reading frame shifts and early termination codons in new reading frames. Therefore, the performance of B2M and MHC class I was completely exhausted in the B2M knockout K562 pure line. K562 cell lines have been reported to have two normal copies of human chromosome 15 and t (15; 18) chromosome translocation (45), which indicates that there are three copies of the B2M gene in K562 cells. In each of the knockout single-cell pure lines, in addition to the integration of selectable markers, at most two types of B2M mutant alleles were detected. This finding is consistent with the presence of three copies of the B2M gene in K562 cells, and all three copies were destroyed in B2M-deficient pure lines. In addition, compared with wild-type K562 cells, B2M knockout pure lines were cultured for more than sixty generations without abnormality, indicating that the B2M knockout lines are a safe and effective way to produce stable, low immunogenic cells. Due to the lack of inhibitory ligands against NK cells, B2M gene knockout can make cells more sensitive to NK cell lysis (46), but this is not an important consideration for feeder cells in T cell expansion methods, because Add a new aAPC. In addition, NK cells will be more easily activated by B2M gene knockout K562 cells, which means that aAPC based on B2M gene knockout K562 may be beneficial to NK cell expansion.

在本發明實例中,使用兩種不同的策略基因剔除K562中之B2M 基因。一種策略使用CRSIPR/Cas9系統,其靶向藉由電穿孔直接引入K562細胞中之B2M EX1,且另一種策略使用CRSIPR/Cas9系統同時靶向B2M EX1及EX2,其藉由桿狀病毒轉導引入K562中。僅在EX1區域內在經破壞之B2M 等位基因中觀察到突變(圖4B),其表明EX1靶標之破壞功效高於EX2靶標。一致地,Mandal等人亦報導此EX1靶序列具有高效力(34)。CRISPR/切口酶系統(56, 57)、CRISPR/Cpf1 (58)或與其他DNA結合域(59)或FokI核酸酶(60, 61)融合可用於減少隨機基因組損傷且有助於精確的基因剔除。In the example of the present invention, two different strategies were used to gene knock out the B2M gene in K562. One strategy uses the CRSIPR / Cas9 system, which targets B2M EX1 introduced directly into K562 cells by electroporation, and the other uses the CRSIPR / Cas9 system to simultaneously target B2M EX1 and EX2, which are introduced by baculovirus transduction K562. Mutations were observed in the disrupted B2M allele only in the EX1 region (Figure 4B), which indicates that the disruptive efficacy of the EX1 target is higher than that of the EX2 target. Consistently, Mandal et al. Also reported that this EX1 target sequence is highly potent (34). CRISPR / nickase systems (56, 57), CRISPR / Cpf1 (58), or fusions with other DNA-binding domains (59) or FokI nucleases (60, 61) can be used to reduce random genome damage and facilitate precise gene knockout .

對於基因組修飾,已鑑定一些安全基因港且用於外源基因表現。已研究AAVS 1基因座,且在先前研究中證明穩定的AAVS 1位點特異性整合(36-38)。在本發明實例中,AAVS 1位點用於整合之共刺激分子的穩定表現,且此精確工程改造不干擾K562細胞之正常功能。另外,儘管一些標記之表現變化,但證實譜系特異性標記CD71及CD235a在基因組修飾後在基於B2M基因剔除K562之aAPC上高度表現(圖6D)。據報導,K562細胞株為群落形成紅血球系祖細胞及紅血球母細胞之混合物(23),基於B2M基因剔除K562之aAPC由於兩輪單細胞選擇可能來源於K562細胞株之更成熟的紅血球母細胞。此單細胞選擇可有助於一些細胞標記表現模式之變化且將其光譜縮小至一定水準。For genomic modification, some safe gene ports have been identified and used for foreign gene expression. The AAVS 1 locus has been studied, and stable AAVS 1 site-specific integration has been demonstrated in previous studies (36-38). In the example of the present invention, the AAVS 1 site is used for the stable performance of integrated costimulatory molecules, and this precise engineering does not interfere with the normal function of K562 cells. In addition, despite changes in the performance of some markers, it was confirmed that lineage-specific markers CD71 and CD235a were highly expressed on aAPC based on B2M gene knockout K562 after genomic modification (Figure 6D). It is reported that the K562 cell line is a mixture of colony-forming red blood cell progenitor cells and red blood cell mother cells (23). The aAPC of K562 was eliminated based on the B2M gene. Due to two rounds of single-cell selection, more mature red blood cell cells may be derived from K562 cell lines. This single cell selection can help change the expression pattern of some cell markers and reduce their spectrum to a certain level.

K562細胞已廣泛用作活體外T細胞擴增之aAPC(8-11)。在本發明實例中,本發明人證明基於B2MKO K562之aAPC可與基於野生型K562之aAPC一般以抗原非依賴性或依賴性方式支持穩固的T細胞擴增。根據本文所述之方法,在抗原非依賴性情境中,可在三週內自PBMC活體外擴增數千倍的T細胞。擴增之T細胞係藉由基於B2M基因剔除K562之aAPC上的抗CD3抗體OKT-3及共刺激分子活化。CD64作為Fc受體有助於OKT-3之結合以活化T細胞。CD86及CD137L為T細胞上CD28及4-1BB (CD137)之配體,有助於作為二級信號活化且有助於維持T細胞之功能及存活。亦將膜結合之IL-21引入基於K562之aAPC中以支持T細胞,尤其CD8+ T細胞之增殖及擴增(17)。另外,當將CD19抗原引入基於B2MKO K562之aAPC中時,aAPC可用於有效富集及擴增抗CD19 CAR-T細胞,且擴增之CAR-T細胞顯示強效的抗原特異性細胞毒性。
參考文獻:
K562 cells have been widely used as aAPCs for T cell expansion in vitro (8-11). In the examples of the present invention, the present inventors have demonstrated that a2PCs based on B2MKO K562 and aAPCs based on wild type K562 can generally support robust T cell expansion in an antigen-independent or dependent manner. According to the methods described herein, in an antigen-independent context, T cells can be expanded thousands of times from PBMCs in vitro within three weeks. The expanded T cell line was activated by anti-CD3 antibody OKT-3 and costimulatory molecules on aAPC based on B2M gene knockout K562. CD64 as an Fc receptor facilitates the binding of OKT-3 to activate T cells. CD86 and CD137L are ligands of CD28 and 4-1BB (CD137) on T cells, which help to activate as secondary signals and help maintain the function and survival of T cells. Membrane-bound IL-21 was also introduced into K562-based aAPC to support the proliferation and expansion of T cells, especially CD8 + T cells (17). In addition, when CD19 antigen is introduced into aAPC based on B2MKO K562, aAPC can be used to efficiently enrich and expand anti-CD19 CAR-T cells, and the expanded CAR-T cells show potent antigen-specific cytotoxicity.
references:

1. D. M. Barrett, S. A. Grupp, C. H. June, Chimeric Antigen Receptor- and TCR-Modified T Cells Enter Main Street and Wall Street.Journal of immunology 195 , 755 (Aug 1, 2015).1. DM Barrett, SA Grupp, CH June, Chimeric Antigen Receptor- and TCR-Modified T Cells Enter Main Street and Wall Street. Journal of immunology 195 , 755 (Aug 1, 2015).

2. M. V. Maus, S. A. Grupp, D. L. Porter, C. H. June, Antibody-modified T cells: CARs take the front seat for hematologic malignancies.Blood 123 , 2625 (Apr 24, 2014).2. MV Maus, SA Grupp, DL Porter, CH June, Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123 , 2625 (Apr 24, 2014).

3. M. H. Kershaw, J. A. Westwood, C. Y. Slaney, P. K. Darcy, Clinical application of genetically modified T cells in cancer therapy.Clinical & translational immunology 3 , e16 (May, 2014).3. MH Kershaw, JA Westwood, CY Slaney, PK Darcy, Clinical application of genetically modified T cells in cancer therapy. Clinical & translational immunology 3 , e16 (May, 2014).

4. C. M. Pauloset al. , Adoptive immunotherapy: good habits instilled at youth have long-term benefits.Immunologic research 42 , 182 (2008).4. CM Paulos et al. , Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunologic research 42 , 182 (2008).

5. J. V. Kim, J. B. Latouche, I. Riviere, M. Sadelain, The ABCs of artificial antigen presentation.Nature biotechnology 22 , 403 (Apr, 2004).5. JV Kim, JB Latouche, I. Riviere, M. Sadelain, The ABCs of artificial antigen presentation. Nature biotechnology 22 , 403 (Apr, 2004).

6. M. Wolfl, P. D. Greenberg, Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells.Nature protocols 9 , 950 (Apr, 2014).6. M. Wolfl, PD Greenberg, Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8 + T cells. Nature protocols 9 , 950 (Apr, 2014).

7. C. J. Turtle, S. R. Riddell, Artificial antigen-presenting cells for use in adoptive immunotherapy.Cancer journal 16 , 374 (Jul-Aug, 2010).7. CJ Turtle, SR Riddell, Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer journal 16 , 374 (Jul-Aug, 2010).

8. M. V. Mauset al. , Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB.Nature biotechnology 20 , 143 (Feb, 2002).8. MV Maus et al. , Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nature biotechnology 20 , 143 (Feb, 2002).

9. M. O. Butleret al. , Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell.Clinical cancer research : an official journal of the American Association for Cancer Research 13 , 1857 (Mar 15, 2007).9. MO Butler et al. , Long-lived antitumor CD8 + lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clinical cancer research: an official journal of the American Association for Cancer Research 13 , 1857 (Mar 15, 2007).

10. M. M. Suhoskiet al. , Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules.Molecular therapy : the journal of the American Society of Gene Therapy 15 , 981 (May, 2007).10. MM Suhoski et al. , Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Molecular therapy: the journal of the American Society of Gene Therapy 15 , 981 (May, 2007).

11. W. Gonget al. , Establishment and characterization of a cell based artificial antigen-presenting cell for expansion and activation of CD8+ T cells ex vivo.Cellular & molecular immunology 5 , 47 (Feb, 2008).11. W. Gong et al. , Establishment and characterization of a cell based artificial antigen-presenting cell for expansion and activation of CD8 + T cells ex vivo. Cellular & molecular immunology 5 , 47 (Feb, 2008).

12. M. O. Butler, N. Hirano, Human cell-based artificial antigen-presenting cells for cancer immunotherapy.Immunol Rev 257 , 191 (Jan, 2014).12. MO Butler, N. Hirano, Human cell-based artificial antigen-presenting cells for cancer immunotherapy. Immunol Rev 257 , 191 (Jan, 2014).

13. M. C. Ngoet al. , Complementation of antigen-presenting cells to generate T lymphocytes with broad target specificity.J Immunother 37 , 193 (May, 2014).13. MC Ngo et al. , Complementation of antigen-presenting cells to generate T lymphocytes with broad target specificity. J Immunother 37 , 193 (May, 2014).

14. K. Tanimotoet al . , Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells.Cytotherapy 16 , 135 (Jan, 2014).14. K. Tanimoto et al . , Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells. Cytotherapy 16 , 135 (Jan, 2014).

15. J. Yuanet al. ,In vitro expansion of Ag-specific T cells by HLA-A*0201-transfected K562 cells for immune monitoring.Cytotherapy 8 , 498 (2006).15. J. Yuan et al. , In vitro expansion of Ag-specific T cells by HLA-A * 0201-transfected K562 cells for immune monitoring. Cytotherapy 8 , 498 (2006).

16. T. Numbenjaponet al. , Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8+ T cells.Experimental hematology 35 , 1083 (Jul, 2007).16. T. Numbenjapon et al. , Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8 + T cells. Experimental hematology 35 , 1083 (Jul, 2007).

17. H. Singhet al. , Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies.Cancer research 71 , 3516 (May 15, 2011).17. H. Singh et al. , Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer research 71 , 3516 (May 15, 2011).

18. H. Singhet al. , Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system.Cancer research 68 , 2961 (Apr 15, 2008).18. H. Singh et al. , Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer research 68 , 2961 (Apr 15, 2008).

19. D. Rushworthet al. , Universal artificial antigen presenting cells to selectively propagate T cells expressing chimeric antigen receptor independent of specificity.J Immunother 37 , 204 (May, 2014).19. D. Rushworth et al. , Universal artificial antigen presenting cells to polar propagate T cells expressing chimeric antigen receptor independent of specificity. J Immunother 37 , 204 (May, 2014).

20. I. Caruanaet al. , K562-Derived Whole-Cell Vaccine Enhances Antitumor Responses of CAR-Redirected Virus-Specific Cytotoxic T Lymphocytes In Vivo.Clinical cancer research : an official journal of the American Association for Cancer Research 21 , 2952 (Jul 1, 2015).20. I. Caruana et al. , K562-Derived Whole-Cell Vaccine Enhances Antitumor Responses of CAR-Redirected Virus-Specific Cytotoxic T Lymphocytes In Vivo. Clinical cancer research: an official journal of the American Association for Cancer Research 21 , 2952 ( Jul 1, 2015).

21. Z. L. Chang, P. A. Silver, Y. Y. Chen, Identification and selective expansion of functionally superior T cells expressing chimeric antigen receptors.Journal of translational medicine 13 , 161 (2015).21. ZL Chang, PA Silver, YY Chen, Identification and selective expansion of functionally superior T cells expressing chimeric antigen receptors. Journal of translational medicine 13 , 161 (2015).

22. E. Kleinet al. , Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia.International journal of cancer. Journal international du cancer 18 , 421 (Oct 15, 1976).22. E. Klein et al. , Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. International journal of cancer. Journal international du cancer 18 , 421 (Oct 15, 1976).

23. T. Inoue, A. Swain, Y. Nakanishi, D. Sugiyama, Multicolor Analysis of Cell Surface Marker of Human Leukemia Cell Lines Using Flow Cytometry.Anticancer Research 34 , 4539 (Aug, 2014).23. T. Inoue, A. Swain, Y. Nakanishi, D. Sugiyama, Multicolor Analysis of Cell Surface Marker of Human Leukemia Cell Lines Using Flow Cytometry. Anticancer Research 34 , 4539 (Aug, 2014).

24. S. I. Drewet al. , Group-specific human granulocyte antigens on a chronic myelogenous leukemia cell line with a Philadelphia chromosome marker.Blood 49 , 715 (May, 1977).24. SI Drew et al. , Group-specific human granulocyte antigens on a chronic myelogenous leukemia cell line with a Philadelphia chromosome marker. Blood 49 , 715 (May, 1977).

25. E. J. Benz, Jr.et al. , Embryonic-fetal erythroid characteristics of a human leukemic cell line.Proceedings of the National Academy of Sciences of the United States of America 77 , 3509 (Jun, 1980).25. EJ Benz, Jr. et al. , Embryonic-fetal erythroid characteristics of a human leukemic cell line. Proceedings of the National Academy of Sciences of the United States of America 77 , 3509 (Jun, 1980).

26. N. Laptevaet al. , Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications.Cytotherapy 14 , 1131 (Oct, 2012).26. N. Lapteva et al. , Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy 14 , 1131 (Oct, 2012).

27. M. Zijlstraet al. , Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells.Nature 344 , 742 (Apr 19, 1990).27. M. Zijlstra et al. , Beta 2-microglobulin deficient mice lack CD4-8 + cytolytic T cells. Nature 344 , 742 (Apr 19, 1990).

28. B. H. Koller, P. Marrack, J. W. Kappler, O. Smithies, Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells.Science 248 , 1227 (Jun 8, 1990).28. BH Koller, P. Marrack, JW Kappler, O. Smithies, Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8 + T cells. Science 248 , 1227 (Jun 8, 1990).

29. L. Rioloboset al. , HLA engineering of human pluripotent stem cells.Molecular therapy : the journal of the American Society of Gene Therapy 21 , 1232 (Jun, 2013).29. L. Riolobos et al. , HLA engineering of human pluripotent stem cells. Molecular therapy: the journal of the American Society of Gene Therapy 21 , 1232 (Jun, 2013).

30. P. Luet al. , Generating hypoimmunogenic human embryonic stem cells by the disruption of beta 2-microglobulin.Stem cell reviews 9 , 806 (Dec, 2013).30. P. Lu et al. , Generating hypoimmunogenic human embryonic stem cells by the disruption of beta 2-microglobulin. Stem cell reviews 9 , 806 (Dec, 2013).

31. F. D. Urnov, E. J. Rebar, M. C. Holmes, H. S. Zhang, P. D. Gregory, Genome editing with engineered zinc finger nucleases.Nature reviews. Genetics 11 , 636 (Sep, 2010).31. FD Urnov, EJ Rebar, MC Holmes, HS Zhang, PD Gregory, Genome editing with engineered zinc finger nucleases. Nature reviews. Genetics 11 , 636 (Sep, 2010).

32. L. Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819 (Feb 15, 2013).32. L. Cong et al., Multiplex genome engineering using CRISPR / Cas systems. Science 339, 819 (Feb 15, 2013).

33. P. Maliet al. , RNA-guided human genome engineering via Cas9.Science 339 , 823 (Feb 15, 2013).33. P. Mali et al. , RNA-guided human genome engineering via Cas9. Science 339 , 823 (Feb 15, 2013).

34. P. K. Mandalet al. , Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9.Cell stem cell 15 , 643 (Nov 6, 2014).34. PK Mandal et al. , Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR / Cas9. Cell stem cell 15 , 643 (Nov 6, 2014).

35. H. J. Kim, H. J. Lee, H. Kim, S. W. Cho, J. S. Kim, Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly.Genome research 19 , 1279 (Jul, 2009).35. HJ Kim, HJ Lee, H. Kim, SW Cho, JS Kim, Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome research 19 , 1279 (Jul, 2009).

36. R. C. DeKelveret al. , Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome.Genome research 20 , 1133 (Aug, 2010).36. RC DeKelver et al. , Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome research 20 , 1133 (Aug, 2010).

37. F. C. Tayet al. , Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells.The journal of gene medicine 15 , 384 (Oct, 2013).37. FC Tay et al. , Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells. The journal of gene medicine 15 , 384 (Oct, 2013).

38. H. Zhuet al. , Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells.Nucleic acids research 41 , e180 (Oct, 2013).38. H. Zhu et al. , Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre / LoxP cassette exchange in human-induced pluripotent stem cells. Nucleic acids research 41 , e180 (Oct, 2013).

39. J. Zeng, J. Du, Y. Zhao, N. Palanisamy, S. Wang, Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells.Stem Cells 25 , 1055 (Apr, 2007).39. J. Zeng, J. Du, Y. Zhao, N. Palanisamy, S. Wang, Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells 25 , 1055 (Apr, 2007).

40. K. J. Airenneet al. , Baculovirus: an insect-derived vector for diverse gene transfer applications.Molecular therapy : the journal of the American Society of Gene Therapy 21 , 739 (Apr, 2013).40. KJ Airenne et al. , Baculovirus: an insect-derived vector for diverse gene transfer applications. Molecular therapy: the journal of the American Society of Gene Therapy 21 , 739 (Apr, 2013).

41. J. D. Sanderet al. , ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool.Nucleic acids research 38 , W462 (Jul, 2010).41. JD Sander et al. , ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic acids research 38 , W462 (Jul, 2010).

42. J. Sutherlandet al. , Induction of the expression of HLA class I antigens on K562 by interferons and sodium butyrate.Human immunology 12 , 65 (Feb, 1985).42. J. Sutherland et al. , Induction of the expression of HLA class I antigens on K562 by interferons and sodium butyrate. Human immunology 12 , 65 (Feb, 1985).

43. P. Kriefet al. , Modulation of expression of class II histocompatibility antigens by secretion of a cellular inhibitor in K562 leukemic cells.Eur J Immunol 17 , 1021 (Jul, 1987).43. P. Krief et al. , Modulation of expression of class II histocompatibility antigens by secretion of a cellular inhibitor in K562 leukemic cells. Eur J Immunol 17 , 1021 (Jul, 1987).

44. A. Liuet al. , Regulation of the expression of MHC class I and II by class II transactivator (CIITA) in hematopoietic cells.Hematol Oncol 17 , 149 (Dec, 1999).44. A. Liu et al. , Regulation of the expression of MHC class I and II by class II transactivator (CIITA) in hematopoietic cells. Hematol Oncol 17 , 149 (Dec, 1999).

45. J. Zeuthen, U. Friedrich, A. Rosén, E. Klein, Structural abnormalities in chromosome 15 in cell lines with reduced expression of beta-2 microglobulin.Immunogenetics 4 , 567 (1977).45. J. Zeuthen, U. Friedrich, A. Rosén, E. Klein, Structural abnormalities in chromosome 15 in cell lines with reduced expression of beta-2 microglobulin. Immunogenetics 4 , 567 (1977).

46. M. G. Morvan, L. L. Lanier, NK cells and cancer: you can teach innate cells new tricks.Nature reviews. Cancer 16 , 7 (Jan, 2016).46. MG Morvan, LL Lanier, NK cells and cancer: you can teach innate cells new tricks. Nature reviews. Cancer 16 , 7 (Jan, 2016).

47. A. Ziegleret al. , K562 cells express human major histocompatibility antigens.Immunogenetics 13 , 359 (1981).47. A. Ziegler et al. , K562 cells express human major histocompatibility antigens. Immunogenetics 13 , 359 (1981).

48. D. R. Johnson, Differential expression of human major histocompatibility class I loci: HLA-A, -B, and -C.Human immunology 61 , 389 (Apr, 2000).48. DR Johnson, Differential expression of human major histocompatibility class I loci: HLA-A, -B, and -C. Human immunology 61 , 389 (Apr, 2000).

49. S. Boegel, M. Lower, T. Bukur, U. Sahin, J. C. Castle, A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.Oncoimmunology 3 , e954893 (2014).49. S. Boegel, M. Lower, T. Bukur, U. Sahin, JC Castle, A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncoimmunology 3 , e954893 (2014).

50. K. Malinowski, C. Pullis, A. P. Raisbeck, F. T. Rapaport, Modulation of human lymphocyte marker expression by gamma irradiation and mitomycin C.Cellular immunology 143 , 368 (Sep, 1992).50. K. Malinowski, C. Pullis, AP Raisbeck, FT Rapaport, Modulation of human lymphocyte marker expression by gamma irradiation and mitomycin C. Cellular immunology 143 , 368 (Sep, 1992).

51. D. J. Hanlon, C. L. Berger, R. L. Edelson, Photoactivated 8-methoxypsoralen treatment causes a peptide-dependent increase in antigen display by transformed lymphocytes.International journal of cancer. Journal international du cancer 78 , 70 (Sep 25, 1998).51. DJ Hanlon, CL Berger, RL Edelson, Photoactivated 8-methoxypsoralen treatment causes a peptide-dependent increase in antigen display by transformed lymphocytes. International journal of cancer. Journal international du cancer 78 , 70 (Sep 25, 1998).

52. D. B. Kazansky, MHC restriction and allogeneic immune responses.Journal of immunotoxicology 5 , 369 (Oct, 2008).52. DB Kazansky, MHC restriction and allogeneic immune responses. Journal of immunotoxicology 5 , 369 (Oct, 2008).

53. F. Bettens, S. Buhler, J. M. Tiercy, Allorecognition of HLA-C Mismatches by CD8+ T Cells in Hematopoietic Stem Cell Transplantation Is a Complex Interplay between Mismatched Peptide-Binding Region Residues, HLA-C Expression, and HLA-DPB1 Disparities.Frontiers in immunology 7 , 584 (2016).53. F. Bettens, S. Buhler, JM Tiercy, Allorecognition of HLA-C Mismatches by CD8 + T Cells in Hematopoietic Stem Cell Transplantation Is a Complex Interplay between Mismatched Peptide-Binding Region Residues, HLA-C Expression, and HLA-DPB1 Disparities Frontiers in immunology 7 , 584 (2016).

54. H. Torikaiet al. , Toward eliminating HLA class I expression to generate universal cells from allogeneic donors.Blood 122 , 1341 (Aug 22, 2013).54. H. Torikai et al. , Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122 , 1341 (Aug 22, 2013).

55. H. Torikaiet al. , Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application.Scientific reports 6 , 21757 (2016).55. H. Torikai et al. , Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application. Scientific reports 6 , 21757 (2016).

56. F. A. Ranet al. , Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.Cell 154 , 1380 (Sep 12, 2013).56. FA Ran et al. , Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154 , 1380 (Sep 12, 2013).

57. B. Shenet al. , Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects.Nature methods 11 , 399 (Apr, 2014).57. B. Shen et al. , Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature methods 11 , 399 (Apr, 2014).

58. B. Zetscheet al. , Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.Cell 163 , 759 (Oct 22, 2015).58. B. Zetsche et al. , Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 , 759 (Oct 22, 2015).

59. M. F. Bolukbasiet al. , DNA-binding-domain fusions enhance the targeting range and precision of Cas9.Nature methods 12 , 1150 (Dec, 2015).59. MF Bolukbasi et al. , DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nature methods 12 , 1150 (Dec, 2015).

60. J. P. Guilinger, D. B. Thompson, D. R. Liu, Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.Nature biotechnology 32 , 577 (Jun, 2014).60. JP Guilinger, DB Thompson, DR Liu, Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature biotechnology 32 , 577 (Jun, 2014).

61. S. Q. Tsaiet al. , Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing.Nature biotechnology 32 , 569 (Jun, 2014).61. SQ Tsai et al. , Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature biotechnology 32 , 569 (Jun, 2014).

現將參考隨附圖式論述說明本發明之原理的實施例及實驗。Examples and experiments illustrating the principles of the invention will now be discussed with reference to the accompanying drawings.

圖1A 及1B. 顯示在用IFN-γ或自T細胞/K562細胞共培養物收集之細胞培養物清液層刺激後K562細胞上B2M及MHC I類分子之表現的圖形及條形圖。(1A )表面B2M及HLA-A,B,C表現之代表性流動式細胞測量術直方圖。非不活化、絲裂黴素C處理或γ-輻照之K562細胞用IFN-γ (500 IU/ml,淺灰色)或自T細胞/K562細胞共培養物(1:1比率持續48小時,黑線)收集之清液層刺激48小時。包括未刺激之K562細胞作為對照(灰色)。(1B )顯示三次獨立實驗之平均值±SD的條形圖。用IFN-γ或由三個單獨供體產生之培養物清液層進行刺激。***:p < 0.001。 FIGS. 1A and 1B. Graphs and bar graphs showing the performance of B2M and MHC class I molecules on K562 cells after stimulation with IFN-γ or a cell culture supernatant collected from a T cell / K562 cell co-culture. ( 1A ) Representative flow cytometry histogram of surface B2M and HLA-A, B, C performance. Non-activated, mitomycin C-treated or γ-irradiated K562 cells were treated with IFN-γ (500 IU / ml, light gray) or from T cell / K562 cell co-cultures (1: 1 ratio for 48 hours, (Black line) The collected supernatant layer was stimulated for 48 hours. Unstimulated K562 cells were included as controls (grey). ( 1B ) Bar graph showing the mean ± SD of three independent experiments. Stimulation was performed with IFN-γ or culture supernatants produced from three separate donors. ***: p <0.001.

圖2A 及2B. 顯示同型對照及MHC II類分子在K562細胞上之表現的圖形。(2A ) K562細胞上表面標記之同型對照的流動式細胞測量術直方圖。(2B )關於HLA-DR表現之代表性流動式細胞測量術直方圖。K562細胞用IFN-γ (500 IU/ml)或T細胞/K562細胞共培養物(1:1比率持續48小時)清液層刺激48小時。包括未刺激之K562細胞作為對照。根據同型對照閘控陽性表現百分比。 Figures 2A and 2B. Graphs showing the performance of isotype controls and MHC class II molecules on K562 cells. ( 2A ) Flow cytometry histogram of an isotype control labeled on the surface of K562 cells. ( 2B ) Representative flow cytometry histogram of HLA-DR performance. K562 cells were stimulated with IFN-γ (500 IU / ml) or T cell / K562 cell co-cultures (1: 1 ratio for 48 hours) for 48 hours. Unstimulated K562 cells were included as controls. Percent gated positive performance based on isotype controls.

圖3A 至3D. 與使用CRISPR/Cas9技術在K562細胞中產生B2M基因剔除相關之示意圖及條形圖。(3A )靶向B2M外顯子1 (EX1)之CRISPR/Cas9系統的示意圖。該系統用於K562細胞中基於電穿孔之基因修飾。(3B )靶向B2M EX1及外顯子2 (EX2)之桿狀病毒CRISPR/Cas9系統的示意圖。對於基因修飾,用桿狀病毒系統轉導K562細胞。箭頭顯示用於基因分型之PCR引子的結合位點。(3C )及(3D )顯示B2M基因剔除後K562單細胞純系之B2M表現的條形圖。測試之K562單細胞純系用500 IU/mL IFN-γ刺激,隨後藉由流動式細胞測量術分析以偵測B2M表現。 Figures 3A to 3D. Schematic and bar graphs related to the generation of B2M gene knockouts in K562 cells using CRISPR / Cas9 technology. ( 3A ) Schematic of the CRISPR / Cas9 system targeting B2M exon 1 (EX1). The system is used for electroporation-based genetic modification in K562 cells. (3 B) a schematic B2M EX1 and exon 2 (EX2) baculovirus CRISPR / Cas9 targeting system. For genetic modification, K562 cells were transduced with the baculovirus system. Arrows show the binding sites of PCR primers for genotyping. ( 3C ) and ( 3D ) are bar graphs showing the B2M performance of K562 single cell pure lines after B2M gene knockout. The K562 single-cell pure lines tested were stimulated with 500 IU / mL IFN-γ and subsequently analyzed by flow cytometry to detect B2M performance.

圖4A 至4E. 與B2M基因剔除K562純系之表徵相關的影像、示意圖及圖形。(4A )藉由PCR對B2M基因剔除單細胞純系進行基因分型。兩個純系來自電穿孔轉染之K562細胞,五個純系來自桿狀病毒轉導之K562細胞。包括野生型K562作為對照。上圖顯示B2M位點中整合之選擇標記的特異性擴增。(+)為B2M位點特異性整合之陽性對照。下圖顯示野生型B2M EX1等位基因之特異性擴增。(4B )來自五個B2M基因剔除單細胞純系之EX1及EX2中靶向區之定序結果的示意圖。B2M基因之三個等位基因與野生型比對。CRISPR/Cas9靶標以淺灰色顯示。B2M之起始密碼子為深灰色「ATG」。缺失由虛線顯示,且插入的「T」核苷酸加下劃線。(4C )來自突變型B2M等位基因之代表性Sanger定序跡線。用野生型B2M序列顯示之電泳圖顯示缺失及插入之位點。(4D )關於B2M基因剔除單細胞純系中之B2M表現的西方墨點。包括野生型K562作為對照且偵測β-肌動蛋白用於管家表現。(4E )B2M基因剔除K562單細胞純系上表面B2M及HLA-A,B,C表現的代表性流動式細胞測量術直方圖。在分析之前,用IFN-γ或T細胞/K562細胞共培養物清液層刺激B2M基因剔除單細胞純系。根據同型對照閘控陽性表現百分比。 Figures 4A to 4E. Images, diagrams and graphics related to the characterization of B2M gene knockout K562 pure lines. ( 4A ) Genotyping of B2M knockout single cell pure lines by PCR. Two pure lines were from K562 cells transfected with electroporation, and five pure lines were from K562 cells transduced with baculovirus. As a control, wild-type K562 was included. The figure above shows the specific amplification of the selectable marker integrated in the B2M site. (+) Positive control for B2M site-specific integration. The figure below shows the specific amplification of the wild-type B2M EX1 allele. ( 4B ) Schematic representation of the sequencing results of the targeting regions in EX1 and EX2 from five B2M knockout single cell pure lines. The three alleles of the B2M gene are aligned with the wild type. CRISPR / Cas9 targets are shown in light gray. The start codon for B2M is dark gray "ATG". Deletions are shown by dashed lines and the inserted "T" nucleotides are underlined. ( 4C ) Representative Sanger sequencing traces from mutant B2M alleles. The electropherogram displayed with the wild-type B2M sequence shows the sites of deletions and insertions. ( 4D ) Western blots on B2M expression in B2M gene knockout single cell pure lines. Wild-type K562 was included as a control and β-actin was detected for housekeeping performance. ( 4E ) Representative flow cytometry histogram of B2M gene knockout K562 single cell pure line upper surface B2M and HLA-A, B, C performance. Prior to analysis, B2M gene knockout single cell pure lines were stimulated with IFN-γ or T cell / K562 cell co-culture supernatants. Percent gated positive performance based on isotype controls.

圖5A 至5C. 顯示B2M基因剔除K562細胞之MHC I類表現及功能之分析結果的條形圖及圖形。在用IFN-γ或T細胞/K562細胞共培養物清液層刺激後,檢查B2M (5A )及MHC I類分子(5B )在野生型(WT) K562及B2M基因剔除K562單細胞純系上之表面表現。條形圖顯示三次獨立實驗之平均值±SD。(5C )顯示B2M基因剔除K562細胞上表面MHC I類表現降低導致對由NK細胞溶解之易感性增加的圖形,如藉由使用DELFIA EuTDA細胞毒性分析(2小時Eu-配體釋放)使用K562 B2MKO純系EX1EX2#5作為靶細胞之分析所測定。用來自三個不同供體之NK細胞進行三次獨立的分析。顯示在不同效應(E):靶(T)細胞比率下K562細胞之溶解百分比(一式三份樣品之平均值±SD)。*:p < 0.05;***:p < 0.001。 Figures 5A to 5C. Bar graphs and graphs showing the analysis results of MHC class I performance and function of B2M knockout K562 cells. After stimulation with IFN-γ or T cell / K562 cell co-culture supernatants, B2M ( 5A ) and MHC class I molecules ( 5B ) were examined on wild-type (WT) K562 and B2M gene knockout K562 single cell pure lines Surface performance. The bar graph shows the mean ± SD of three independent experiments. ( 5C ) Figure showing B2M knockout K562 cells with reduced MHC class I expression on the upper surface leading to increased susceptibility to NK cell lysis, such as by using DELFIA EuTDA cytotoxicity analysis (2-hour Eu-ligand release) using K562 B2MKO Pure line EX1EX2 # 5 was determined by analysis of target cells. Three independent analyses were performed with NK cells from three different donors. The percentage of lysis of K562 cells at different effect (E): target (T) cell ratios (mean ± SD of triplicate samples) is shown. *: P <0.05; ***: p <0.001.

圖6A 至6E. 與基於B2M基因剔除K562之aAPC的產生相關的示意圖及圖形。(6A )靶向AAVS1位點用於整合共刺激分子之經電穿孔之ZFN構築體的示意圖。箭頭表示用於基因分型之PCR引子的結合位點。(6B )共刺激分子在K562A及K562B細胞上之表現。aAPC用抗體染色且藉由流動式細胞測量術分析進行分析。顯示代表性FACS圖且相對於同型對照閘控陽性表現百分比。(6C )藉由PCR對K562B進行AAVS1位點基因分型。包括未修飾之B2M基因剔除K562純系EX1EX2#5作為對照。左圖顯示在AAVS1位點處整合之供體卡匣的特異性擴增。右圖顯示野生型AAVS1等位基因之特異性擴增。(6D6E ) K562B細胞表現紅血球及骨髓特異性細胞標記之表徵。包括野生型K562細胞作為對照。細胞用抗體染色且用流動式細胞測量術分析進行分析。代表性圖顯示於6E 中。藉由相對於同型對照閘控來確定陽性細胞百分比。條形圖顯示三次獨立實驗之平均值±SD。 6A to 6E. Schematic diagrams and graphs related to the generation of aAPC based on B2M gene knockout K562. ( 6A ) Schematic of an electroporated ZFN construct targeting the AAVS1 site for integration of a co-stimulatory molecule. Arrows indicate the binding sites of PCR primers for genotyping. ( 6B ) Performance of costimulatory molecules on K562A and K562B cells. aAPC was stained with antibodies and analyzed by flow cytometry analysis. A representative FACS plot is shown and the percentage of gated positive performance relative to the isotype control. ( 6C ) AAVS1 locus genotyping was performed on K562B by PCR. Includes unmodified B2M gene knockout K562 pure line EX1EX2 # 5 as a control. The left panel shows the specific amplification of the donor cassette integrated at the AAVS1 site. The right panel shows the specific amplification of the wild-type AAVS1 allele. ( 6D and 6E ) K562B cells are characterized by red blood cell and bone marrow-specific cell markers. As a control, wild-type K562 cells were included. Cells were stained with antibodies and analyzed by flow cytometry analysis. A representative figure is shown in 6E . The percentage of positive cells was determined by gating relative to the isotype control. The bar graph shows the mean ± SD of three independent experiments.

圖7A 至7D. 與用基於B2M基因剔除K562細胞之aAPC擴增之T細胞的同種異體反應性分析相關的示意圖及圖形。(7A )活體外T細胞擴增方案之示意圖。在用於細胞毒性分析之前,每七天用K562A (基於WT K562之aAPC)或K562B (基於B2M基因剔除K562之aAPC)刺激T細胞,持續兩週。(7B7D )在K562A或K562B細胞存在下擴增之CD8+ T細胞針對野生型K562細胞、表現由K562細胞表現之指定HLA-C等位基因(HLA-C*03或HLA-C*05)的靶細胞或不表現HLA-C等位基因HLA-C*03或HLA-C*05之靶細胞的同種異體反應性。使用來自三個不同供體之T細胞進行三次獨立分析(分別為7B7C7D )。顯示在不同E:T比下靶細胞之溶解百分比(一式三份樣品之平均值±SD)。*:p <0.05;***:p < 0.001。 7A to 7D. Schematic diagrams and graphs related to allogeneic reactivity analysis of T cells expanded with aAPC based on B2M gene knockout K562 cells. ( 7A ) Schematic of an in vitro T cell expansion protocol. T cells were stimulated with K562A (aAPC based on WT K562) or K562B (aAPC based on B2M gene knockout) every seven days before being used for cytotoxicity analysis for two weeks. ( 7B to 7D ) CD8 + T cells expanded in the presence of K562A or K562B cells against wild-type K562 cells and express the designated HLA-C allele (HLA-C * 03 or HLA-C * 05) expressed by K562 cells Target cells or target cells that do not exhibit HLA-C alleles HLA-C * 03 or HLA-C * 05 allogeneic reactivity. Three independent analyses were performed using T cells from three different donors ( 7B , 7C, and 7D , respectively). Shows the percentage of target cell lysis at different E: T ratios (mean ± SD of triplicate samples). *: P &lt;0.05; ***: p &lt; 0.001.

圖8A 至8D. 與用基於B2M基因剔除K562細胞之aAPC擴增之T細胞的同種異體反應性分析相關的影像及圖形。(8A8B ) K562細胞、用作靶標之腫瘤細胞株及用作效應子之PBMC的HLA-C基因分型。PBMC根據其是否顯示同種異體反應性進行分組。(8A ) HLA-C*03等位基因之特異性擴增。(8B ) HLA-C*05等位基因之特異性擴增。(8C )與指定K562細胞共培養之來自三個不同同種異體反應性供體之T細胞的倍數生長。用絲裂黴素C使K562細胞不活化,且將1:1之T細胞/K562細胞比率用於共培養物。(8D )藉由流動式細胞測量術對擴增之細胞進行免疫表型分型。顯示三個同種異體反應性供體之代表性FACS圖,且藉由相對於同型對照閘控來確定陽性細胞百分比。 8A to 8D. Images and graphs related to allogeneic reactivity analysis of T cells expanded with aAPC based on B2M gene knockout K562 cells. ( 8A and 8B ) HLA-C genotyping of K562 cells, tumor cell lines used as targets, and PBMCs used as effectors. PBMCs are grouped according to whether they show allo-reactivity. ( 8A ) Specific amplification of the HLA-C * 03 allele. ( 8B ) Specific amplification of the HLA-C * 05 allele. ( 8C ) Multiple growth of T cells from three different allo-reactive donors co-cultured with the designated K562 cells. K562 cells were deactivated with mitomycin C, and a T cell / K562 cell ratio of 1: 1 was used for co-cultures. ( 8D ) Immunophenotyping of expanded cells by flow cytometry. Representative FACS plots of three alloactive donors are shown, and the percentage of positive cells is determined by gating relative to the isotype control.

圖9A 至9H. 顯示使用基於B2M基因剔除K562之aAPC之抗原非依賴性T細胞擴增的示意圖、圖形條形圖及表格。(9A )活體外抗原非依賴性T細胞擴增方案之示意圖。在收穫前,以1:50之T細胞/K562細胞比率用K562A或K562B刺激T細胞兩週。包括OCT-3以促進T細胞擴增。(9B9D )與WT K562及B2M k/o K562細胞共培養之T細胞的倍數生長。用絲裂黴素C使K562細胞不活化。使用1:50之T細胞/K562細胞比率且包括OCT-3以促進T細胞擴增。使用來自三個不同供體之T細胞進行三次獨立分析(分別為9B9C9D )。(9E9H )藉由流動式細胞測量術對擴增之細胞進行免疫表型分型。(9E9F )顯示在9B 中所示之實驗中擴增之主要細胞類型及CD8+ T細胞亞群之百分比的條形圖。(9G9H )顯示分別在9G9H 中所示之實驗中擴增之主要細胞類型及CD8+ T細胞亞群之百分比的表格。 9A to 9H. Schematic diagrams, bar graphs, and tables showing the expansion of antigen-independent T cells using aAPC based on B2M gene knockout K562. ( 9A ) Schematic of in vitro antigen-independent T cell expansion protocol. Prior to harvest, T cells were stimulated with K562A or K562B at a T cell / K562 cell ratio of 1:50 for two weeks. OCT-3 is included to promote T cell expansion. ( 9B to 9D ) T-fold growth of T cells co-cultured with WT K562 and B2M k / o K562 cells. K562 cells were deactivated with mitomycin C. A T cell / K562 cell ratio of 1:50 was used and OCT-3 was included to facilitate T cell expansion. Three independent analyses were performed using T cells from three different donors ( 9B , 9C, and 9D , respectively). ( 9E to 9H ) Immunophenotyping of expanded cells by flow cytometry. ( 9E and 9F ) Bar graphs showing the percentage of major cell types and CD8 + T cell subpopulations expanded in the experiments shown in 9B . ( 9G and 9H ) A table showing the percentage of major cell types and CD8 + T cell subsets expanded in the experiments shown in 9G and 9H , respectively.

圖10A 至10I. 與使用表現CD19抗原之基於B2M基因剔除K562之aAPC擴增抗CD19 CAR T細胞相關的圖形及示意圖。(10A )基於B2MKO K562之aAPC及表現抗CD19 CAR之T細胞之CD19及CAR表現的分析。細胞用抗體染色且藉由流動式細胞測量術分析。顯示代表性FACS圖且藉由相對於同型對照閘控來確定陽性表現。(10B )抗CD19 CAR T細胞之活體外擴增方案的示意圖。在收穫前,每7天以1:1之T細胞/K562細胞比率用K562B+CD19或K562B刺激T細胞,持續四週。(10C10D )與K562細胞共培養之來源於兩個不同供體之抗CD19-CAR-T細胞的倍數生長。用絲裂黴素C使K562細胞不活化,且將1:1之T細胞/K562細胞比率用於共培養物。(10E10F )顯示在來源於兩個不同供體之抗CD19-CAR-T細胞與K562B或K562B+CD19細胞共培養指定天數後,抗CD19 CAR陽性T細胞數量之散佈圖。收集細胞且用抗小鼠IgG Fab及抗人類CD3抗體染色,並藉由流動式細胞測量術分析。(10G )藉由流動式細胞測量術對擴增之細胞進行免疫表型分型。顯示代表圖。(10H10I ) CD19陽性腫瘤細胞株(Daudi及Raji)或CD19陰性細胞株(MCF-7)之活體外細胞溶解的分析結果,其中抗CD19 CAR表現T細胞來源於兩個不同供體,如藉由DELFIA EuTDA細胞毒性分析(2小時Eu-配體釋放)所測定。對來自單獨供體之PBMC進行三次以上獨立實驗(一式三份樣品之平均值±SD)。*:p < 0.05。 10A to 10I. Patterns and schematic diagrams related to the expansion of anti-CD19 CAR T cells using aAPC based on B2M gene knockout K562 expressing CD19 antigen. ( 10A ) Analysis of CD19 and CAR expression based on aAPC of B2MKO K562 and T cells expressing anti-CD19 CAR. Cells were stained with antibodies and analyzed by flow cytometry. A representative FACS plot is shown and positive performance is determined by gating relative to an isotype control. ( 10B ) Schematic of an in vitro expansion protocol for anti-CD19 CAR T cells. Prior to harvest, T cells were stimulated with K562B + CD19 or K562B at a T cell / K562 cell ratio of 1: 1 every 7 days for four weeks. ( 10C and 10D ) Multiple growth of anti-CD19-CAR-T cells derived from two different donors co-cultured with K562 cells. K562 cells were deactivated with mitomycin C, and a T cell / K562 cell ratio of 1: 1 was used for co-cultures. ( 10E and 10F ) shows a scatter plot of the number of anti-CD19 CAR-positive T cells after co-culture of anti-CD19-CAR-T cells from two different donors with K562B or K562B + CD19 cells for a specified number of days. Cells were collected and stained with anti-mouse IgG Fab and anti-human CD3 antibodies, and analyzed by flow cytometry. ( 10G ) Immunophenotyping of expanded cells by flow cytometry. The representative graph is displayed. ( 10H and 10I ) Analysis of in vitro cytolysis of CD19-positive tumor cell lines (Daudi and Raji) or CD19-negative cell line (MCF-7), in which anti-CD19 CAR-expressing T cells were derived from two different donors, such as Determined by DELFIA EuTDA cytotoxicity analysis (2-hour Eu-ligand release). Three or more independent experiments were performed on PBMCs from individual donors (mean ± SD of triplicate samples). *: P <0.05.

 序列表

<110> 1.新加坡商泰莎治療私人有限公司
2.新加坡國立大學


<120> 經修飾之K562細胞

<150> US 62/588661
<151> 2017-11-20

<160> 36

<170> PatentIn version 3.5

<210> 1
<211> 6673
<212> DNA
<213> 智人B2M基因序列(NCBI參考序列:NG_012920.1)

<400> 1
aatataagtg gaggcgtcgc gctggcgggc attcctgaag ctgacagcat tcgggccgag 60

atgtctcgct ccgtggcctt agctgtgctc gcgctactct ctctttctgg cctggaggct 120

atccagcgtg agtctctcct accctcccgc tctggtcctt cctctcccgc tctgcaccct 180

ctgtggccct cgctgtgctc tctcgctccg tgacttccct tctccaagtt ctccttggtg 240

gcccgccgtg gggctagtcc agggctggat ctcggggaag cggcggggtg gcctgggagt 300

ggggaagggg gtgcgcaccc gggacgcgcg ctacttgccc ctttcggcgg ggagcagggg 360

agacctttgg cctacggcga cgggagggtc gggacaaagt ttagggcgtc gataagcgtc 420

agagcgccga ggttggggga gggtttctct tccgctcttt cgcggggcct ctggctcccc 480

cagcgcagct ggagtggggg acgggtaggc tcgtcccaaa ggcgcggcgc tgaggtttgt 540

gaacgcgtgg aggggcgctt ggggtctggg ggaggcgtcg cccgggtaag cctgtctgct 600

gcggctctgc ttcccttaga ctggagagct gtggacttcg tctaggcgcc cgctaagttc 660

gcatgtccta gcacctctgg gtctatgtgg ggccacaccg tggggaggaa acagcacgcg 720

acgtttgtag aatgcttggc tgtgatacaa agcggtttcg aataattaac ttatttgttc 780

ccatcacatg tcacttttaa aaaattataa gaactacccg ttattgacat ctttctgtgt 840

gccaaggact ttatgtgctt tgcgtcattt aattttgaaa acagttatct tccgccatag 900

ataactacta tggttatctt ctgcctctca cagatgaaga aactaaggca ccgagatttt 960

aagaaactta attacacagg ggataaatgg cagcaatcga gattgaagtc aagcctaacc 1020

agggcttttg cgggagcgca tgccttttgg ctgtaattcg tgcatttttt tttaagaaaa 1080

acgcctgcct tctgcgtgag attctccaga gcaaactggg cggcatgggc cctgtggtct 1140

tttcgtacag agggcttcct ctttggctct ttgcctggtt gtttccaaga tgtactgtgc 1200

ctcttacttt cggttttgaa aacatgaggg ggttgggcgt ggtagcttac gcctgtaatc 1260

ccagcactta gggaggccga ggcgggagga tggcttgagg tccgtagttg agaccagcct 1320

ggccaacatg gtgaagcctg gtctctacaa aaaataataa caaaaattag ccgggtgtgg 1380

tggctcgtgc ctgtggtccc agctgctccg gtggctgagg cgggaggatc tcttgagctt 1440

aggcttttga gctatcatgg cgccagtgca ctccagcgtg ggcaacagag cgagaccctg 1500

tctctcaaaa aagaaaaaaa aaaaaaaaga aagagaaaag aaaagaaaga aagaagtgaa 1560

ggtttgtcag tcaggggagc tgtaaaacca ttaataaaga taatccaaga tggttaccaa 1620

gactgttgag gacgccagag atcttgagca ctttctaagt acctggcaat acactaagcg 1680

cgctcacctt ttcctctggc aaaacatgat cgaaagcaga atgttttgat catgagaaaa 1740

ttgcatttaa tttgaataca atttatttac aacataaagg ataatgtata tatcaccacc 1800

attactggta tttgctggtt atgttagatg tcattttaaa aaataacaat ctgatattta 1860

aaaaaaaatc ttattttgaa aatttccaaa gtaatacatg ccatgcatag accatttctg 1920

gaagatacca caagaaacat gtaatgatga ttgcctctga aggtctattt tcctcctctg 1980

acctgtgtgt gggttttgtt tttgttttac tgtgggcata aattaatttt tcagttaagt 2040

tttggaagct taaataactc tccaaaagtc ataaagccag taactggttg agcccaaatt 2100

caaacccagc ctgtctgata cttgtcctct tcttagaaaa gattacagtg atgctctcac 2160

aaaatcttgc cgccttccct caaacagaga gttccaggca ggatgaatct gtgctctgat 2220

ccctgaggca tttaatatgt tcttattatt agaagctcag atgcaaagag ctctcttagc 2280

ttttaatgtt atgaaaaaaa tcaggtcttc attagattcc ccaatccacc tcttgatggg 2340

gctagtagcc tttccttaat gatagggtgt ttctagagag atatatctgg tcaaggtggc 2400

ctggtactcc tccttctccc cacagcctcc cagacaagga ggagtagctg ccttttagtg 2460

atcatgtacc ctgaatataa gtgtatttaa aagaatttta tacacatata tttagtgtca 2520

atctgtatat ttagtagcac taacacttct cttcattttc aatgaaaaat atagagttta 2580

taatattttc ttcccacttc cccatggatg gtctagtcat gcctctcatt ttggaaagta 2640

ctgtttctga aacattaggc aatatattcc caacctggct agtttacagc aatcacctgt 2700

ggatgctaat taaaacgcaa atcccactgt cacatgcatt actccatttg atcataatgg 2760

aaagtatgtt ctgtcccatt tgccatagtc ctcacctatc cctgttgtat tttatcgggt 2820

ccaactcaac catttaaggt atttgccagc tcttgtatgc atttaggttt tgtttctttg 2880

ttttttagct catgaaatta ggtacaaagt cagagagggg tctggcatat aaaacctcag 2940

cagaaataaa gaggttttgt tgtttggtaa gaacatacct tgggttggtt gggcacggtg 3000

gctcgtgcct gtaatcccaa cactttggga ggccaaggca ggctgatcac ttgaagttgg 3060

gagttcaaga ccagcctggc caacatggtg aaatcccgtc tctactgaaa atacaaaaat 3120

taaccaggca tggtggtgtg tgcctgtagt cccaggaatc acttgaaccc aggaggcgga 3180

ggttgcagtg agctgagatc tcaccactgc acactgcact ccagcctggg caatggaatg 3240

agattccatc ccaaaaaata aaaaaataaa aaaataaaga acataccttg ggttgatcca 3300

cttaggaacc tcagataata acatctgcca cgtatagagc aattgctatg tcccaggcac 3360

tctactagac acttcataca gtttagaaaa tcagatgggt gtagatcaag gcaggagcag 3420

gaaccaaaaa gaaaggcata aacataagaa aaaaaatgga aggggtggaa acagagtaca 3480

ataacatgag taatttgatg ggggctatta tgaactgaga aatgaacttt gaaaagtatc 3540

ttggggccaa atcatgtaga ctcttgagtg atgtgttaag gaatgctatg agtgctgaga 3600

gggcatcaga agtccttgag agcctccaga gaaaggctct taaaaatgca gcgcaatctc 3660

cagtgacaga agatactgct agaaatctgc tagaaaaaaa acaaaaaagg catgtataga 3720

ggaattatga gggaaagata ccaagtcacg gtttattctt caaaatggag gtggcttgtt 3780

gggaaggtgg aagctcattt ggccagagtg gaaatggaat tgggagaaat cgatgaccaa 3840

atgtaaacac ttggtgcctg atatagcttg acaccaagtt agccccaagt gaaataccct 3900

ggcaatatta atgtgtcttt tcccgatatt cctcaggtac tccaaagatt caggtttact 3960

cacgtcatcc agcagagaat ggaaagtcaa atttcctgaa ttgctatgtg tctgggtttc 4020

atccatccga cattgaagtt gacttactga agaatggaga gagaattgaa aaagtggagc 4080

attcagactt gtctttcagc aaggactggt ctttctatct cttgtactac actgaattca 4140

cccccactga aaaagatgag tatgcctgcc gtgtgaacca tgtgactttg tcacagccca 4200

agatagttaa gtggggtaag tcttacattc ttttgtaagc tgctgaaagt tgtgtatgag 4260

tagtcatatc ataaagctgc tttgatataa aaaaggtcta tggccatact accctgaatg 4320

agtcccatcc catctgatat aaacaatctg catattggga ttgtcaggga atgttcttaa 4380

agatcagatt agtggcacct gctgagatac tgatgcacag catggtttct gaaccagtag 4440

tttccctgca gttgagcagg gagcagcagc agcacttgca caaatacata tacactctta 4500

acacttctta cctactggct tcctctagct tttgtggcag cttcaggtat atttagcact 4560

gaacgaacat ctcaagaagg tataggcctt tgtttgtaag tcctgctgtc ctagcatcct 4620

ataatcctgg acttctccag tactttctgg ctggattggt atctgaggct agtaggaagg 4680

gcttgttcct gctgggtagc tctaaacaat gtattcatgg gtaggaacag cagcctattc 4740

tgccagcctt atttctaacc attttagaca tttgttagta catggtattt taaaagtaaa 4800

acttaatgtc ttcctttttt ttctccactg tctttttcat agatcgagac atgtaagcag 4860

catcatggag gtaagttttt gaccttgaga aaatgttttt gtttcactgt cctgaggact 4920

atttatagac agctctaaca tgataaccct cactatgtgg agaacattga cagagtaaca 4980

ttttagcagg gaaagaagaa tcctacaggg tcatgttccc ttctcctgtg gagtggcatg 5040

aagaaggtgt atggccccag gtatggccat attactgacc ctctacagag agggcaaagg 5100

aactgccagt atggtattgc aggataaagg caggtggtta cccacattac ctgcaaggct 5160

ttgatctttc ttctgccatt tccacattgg acatctctgc tgaggagaga aaatgaacca 5220

ctcttttcct ttgtataatg ttgttttatt cttcagacag aagagaggag ttatacagct 5280

ctgcagacat cccattcctg tatggggact gtgtttgcct cttagaggtt cccaggccac 5340

tagaggagat aaagggaaac agattgttat aacttgatat aatgatacta taatagatgt 5400

aactacaagg agctccagaa gcaagagaga gggaggaact tggacttctc tgcatcttta 5460

gttggagtcc aaaggctttt caatgaaatt ctactgccca gggtacattg atgctgaaac 5520

cccattcaaa tctcctgtta tattctagaa cagggaattg atttgggaga gcatcaggaa 5580

ggtggatgat ctgcccagtc acactgttag taaattgtag agccaggacc tgaactctaa 5640

tatagtcatg tgttacttaa tgacggggac atgttctgag aaatgcttac acaaacctag 5700

gtgttgtagc ctactacacg cataggctac atggtatagc ctattgctcc tagactacaa 5760

acctgtacag cctgttactg tactgaatac tgtgggcagt tgtaacacaa tggtaagtat 5820

ttgtgtatct aaacatagaa gttgcagtaa aaatatgcta ttttaatctt atgagaccac 5880

tgtcatatat acagtccatc attgaccaaa acatcatatc agcatttttt cttctaagat 5940

tttgggagca ccaaagggat acactaacag gatatactct ttataatggg tttggagaac 6000

tgtctgcagc tacttctttt aaaaaggtga tctacacagt agaaattaga caagtttggt 6060

aatgagatct gcaatccaaa taaaataaat tcattgctaa cctttttctt ttcttttcag 6120

gtttgaagat gccgcatttg gattggatga attccaaatt ctgcttgctt gctttttaat 6180

attgatatgc ttatacactt acactttatg cacaaaatgt agggttataa taatgttaac 6240

atggacatga tcttctttat aattctactt tgagtgctgt ctccatgttt gatgtatctg 6300

agcaggttgc tccacaggta gctctaggag ggctggcaac ttagaggtgg ggagcagaga 6360

attctcttat ccaacatcaa catcttggtc agatttgaac tcttcaatct cttgcactca 6420

aagcttgtta agatagttaa gcgtgcataa gttaacttcc aatttacata ctctgcttag 6480

aatttggggg aaaatttaga aatataattg acaggattat tggaaatttg ttataatgaa 6540

tgaaacattt tgtcatataa gattcatatt tacttcttat acatttgata aagtaaggca 6600

tggttgtggt taatctggtt tatttttgtt ccacaagtta aataaatcat aaaacttgat 6660

gtgttatctc tta 6673


<210> 2
<211> 987
<212> DNA
<213> 智人B2M mRNA (NCBI參考序列:NM_004048.2)

<400> 2
aatataagtg gaggcgtcgc gctggcgggc attcctgaag ctgacagcat tcgggccgag 60

atgtctcgct ccgtggcctt agctgtgctc gcgctactct ctctttctgg cctggaggct 120

atccagcgta ctccaaagat tcaggtttac tcacgtcatc cagcagagaa tggaaagtca 180

aatttcctga attgctatgt gtctgggttt catccatccg acattgaagt tgacttactg 240

aagaatggag agagaattga aaaagtggag cattcagact tgtctttcag caaggactgg 300

tctttctatc tcttgtacta cactgaattc acccccactg aaaaagatga gtatgcctgc 360

cgtgtgaacc atgtgacttt gtcacagccc aagatagtta agtgggatcg agacatgtaa 420

gcagcatcat ggaggtttga agatgccgca tttggattgg atgaattcca aattctgctt 480

gcttgctttt taatattgat atgcttatac acttacactt tatgcacaaa atgtagggtt 540

ataataatgt taacatggac atgatcttct ttataattct actttgagtg ctgtctccat 600

gtttgatgta tctgagcagg ttgctccaca ggtagctcta ggagggctgg caacttagag 660

gtggggagca gagaattctc ttatccaaca tcaacatctt ggtcagattt gaactcttca 720

atctcttgca ctcaaagctt gttaagatag ttaagcgtgc ataagttaac ttccaattta 780

catactctgc ttagaatttg ggggaaaatt tagaaatata attgacagga ttattggaaa 840

tttgttataa tgaatgaaac attttgtcat ataagattca tatttacttc ttatacattt 900

gataaagtaa ggcatggttg tggttaatct ggtttatttt tgttccacaa gttaaataaa 960

tcataaaact tgatgtgtta tctctta 987


<210> 3
<211> 360
<212> DNA
<213> 智人B2M蛋白編碼序列

<400> 3
atgtctcgct ccgtggcctt agctgtgctc gcgctactct ctctttctgg cctggaggct 60

atccagcgta ctccaaagat tcaggtttac tcacgtcatc cagcagagaa tggaaagtca 120

aatttcctga attgctatgt gtctgggttt catccatccg acattgaagt tgacttactg 180

aagaatggag agagaattga aaaagtggag cattcagact tgtctttcag caaggactgg 240

tctttctatc tcttgtacta cactgaattc acccccactg aaaaagatga gtatgcctgc 300

cgtgtgaacc atgtgacttt gtcacagccc aagatagtta agtgggatcg agacatgtaa 360


<210> 4
<211> 119
<212> PRT
<213> 智人B2M (UniProt: P61769-1, v1)

<400> 4

Met Ser Arg Ser Val Ala Leu Ala Val Leu Ala Leu Leu Ser Leu Ser
1 5 10 15


Gly Leu Glu Ala Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg
20 25 30


His Pro Ala Glu Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser
35 40 45


Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu
50 55 60


Arg Ile Glu Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp
65 70 75 80


Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp
85 90 95


Glu Tyr Ala Cys Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile
100 105 110


Val Lys Trp Asp Arg Asp Met
115


<210> 5
<211> 99
<212> PRT
<213> 智人成熟B2M (UniProt: P61769-1, v1之殘基21-199)

<400> 5

Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg His Pro Ala Glu
1 5 10 15


Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser Gly Phe His Pro
20 25 30


Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu Arg Ile Glu Lys
35 40 45


Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp Ser Phe Tyr Leu
50 55 60


Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp Glu Tyr Ala Cys
65 70 75 80


Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile Val Lys Trp Asp
85 90 95


Arg Asp Met



<210> 6
<211> 26
<212> DNA
<213> 人工序列

<220>
<223> 正向B2M EX1靶標

<400> 6
aaacggccga gatgtctcgc tccggt 26


<210> 7
<211> 26
<212> DNA
<213> 人工序列

<220>
<223> 反向B2M EX1靶標

<400> 7
taaaaccgga gcgagacatc tcggcc 26


<210> 8
<211> 26
<212> DNA
<213> 人工序列

<220>
<223> 正向B2M EX2靶標

<400> 8
aaacgaagtt gacttactga agaagt 26


<210> 9
<211> 26
<212> DNA
<213> 人工序列

<220>
<223> 反向B2M EX2靶標

<400> 9
taaaacttct tcagtaagtc aacttc 26


<210> 10
<211> 24
<212> DNA
<213> 人工序列

<220>
<223> 正向B2M EX1 WT

<400> 10
tctcgaatga aaaatgcagg tccg 24


<210> 11
<211> 25
<212> DNA
<213> 人工序列

<220>
<223> 反向B2M EX1 WT

<400> 11
tgacgcttat cgacgcccta aactt 25


<210> 12
<211> 22
<212> DNA
<213> 人工序列

<220>
<223> 正向B2M EX1 HDR

<400> 12
gactccacca ccacgaaatg gc 22


<210> 13
<211> 20
<212> DNA
<213> 人工序列

<220>
<223> 反向B2M EX1 HDR

<400> 13
ccccatcaag ctgatccgga 20


<210> 14
<211> 20
<212> DNA
<213> 人工序列

<220>
<223> 正向B2M EX2 WT

<400> 14
gcttgacacc aagttagccc 20


<210> 15
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 反向B2M EX2 WT

<400> 15
tggatgggac tcattcaggg t 21


<210> 16
<211> 23
<212> DNA
<213> 人工序列

<220>
<223> 正向AAVS1 WT

<400> 16
cactcgctgg gttccctttt cct 23


<210> 17
<211> 25
<212> DNA
<213> 人工序列

<220>
<223> 反向AAVS1 WT

<400> 17
ggctggctac tggccttatc tcaca 25


<210> 18
<211> 24
<212> DNA
<213> 人工序列

<220>
<223> 正向AAVS1 CD64 HDR

<400> 18
ctttggcagc ctgtgctgac ccat 24


<210> 19
<211> 24
<212> DNA
<213> 人工序列

<220>
<223> 反向AAVS1 CD64 HDR

<400> 19
tcgaggtctg agtggctgtg ccat 24


<210> 20
<211> 24
<212> DNA
<213> 人工序列

<220>
<223> 正向AAVS1 EpCAM HDR

<400> 20
ctttggcagc ctgtgctgac ccat 24


<210> 21
<211> 24
<212> DNA
<213> 人工序列

<220>
<223> 反向AAVS1 EpCAM HDR

<400> 21
aagagcccgc tctcatcgca gtca 24


<210> 22
<211> 19
<212> DNA
<213> 人工序列

<220>
<223> 正向HLA-C*03分型

<400> 22
cacagactga ccgagtgag 19


<210> 23
<211> 20
<212> DNA
<213> 人工序列

<220>
<223> 反向HLA-C*03分型

<400> 23
agcgtctcct tcccattctt 20


<210> 24
<211> 19
<212> DNA
<213> 人工序列

<220>
<223> 正向HLA-C*05分型

<400> 24
ccgagtgaac ctgcggaaa 19


<210> 25
<211> 18
<212> DNA
<213> 人工序列

<220>
<223> 反向HLA-C*05分型

<400> 25
cgcgcgctgc agcgtctt 18


<210> 26
<211> 42
<212> DNA
<213> 人工序列

<220>
<223> 靶向B2M EX1之crRNA

<400> 26
ggccgagatg tctcgctccg gttttagagc tatgctgttt tg 42


<210> 27
<211> 42
<212> DNA
<213> 人工序列

<220>
<223> 靶向B2M EX2之crRNA

<400> 27
gaagttgact tactgaagaa gttttagagc tatgctgttt tg 42


<210> 28
<211> 84
<212> DNA
<213> 人工序列

<220>
<223> tracrRNA

<400> 28
ggaaccattc aaaacagcat agcaagttaa aataaggcta gtccgttatc aacttgaaaa 60

agtggcaccg agtcggtgct tttt 84


<210> 29
<211> 46
<212> DNA
<213> 人工序列

<220>
<223> EX1 WT等位基因

<400> 29
tgacagcatt cgggccgaga tgtctcgctc cgtggcctta gctgtg 46


<210> 30
<211> 47
<212> DNA
<213> 人工序列

<220>
<223> B2M-EX1-G#7等位基因2

<400> 30
tgacagcatt cgggccgaga tgtctcgctt ccgtggcctt agctgtg 47


<210> 31
<211> 44
<212> DNA
<213> 人工序列

<220>
<223> B2M-EX1-G#7等位基因3

<400> 31
tgacagcatt cgggccgaga tgtctcgccg tggccttagc tgtg 44


<210> 32
<211> 27
<212> DNA
<213> 人工序列

<220>
<223> B2M-EX1EX2-G#5/6/7等位基因2

<400> 32
tgacagcatt ccgtggcctt agctgtg 27


<210> 33
<211> 47
<212> DNA
<213> 人工序列

<220>
<223> B2M-EX1EX2-G#2/5/6/7等位基因3

<400> 33
tgacagcatt cgggccgaga tgtctcgctt ccgtggcctt agctgtg 47


<210> 34
<211> 43
<212> DNA
<213> 人工序列

<220>
<223> EX2 WT等位基因

<400> 34
catccgacat tgaagttgac ttactgaaga atggagagag aat 43


<210> 35
<211> 43
<212> DNA
<213> 人工序列

<220>
<223> B2M-EX1EX2-G#2/5/6/7 WT等位基因2

<400> 35
catccgacat tgaagttgac ttactgaaga atggagagag aat 43


<210> 36
<211> 43
<212> DNA
<213> 人工序列

<220>
<223> B2M-EX1EX2-G#2/5/6/7 WT等位基因3

<400> 36
catccgacat tgaagttgac ttactgaaga atggagagag aat 43



Sequence Listing

<110> 1. Singapore Commercial Tessa Therapy Pte Ltd
2.National University of Singapore


<120> Modified K562 cells

<150> US 62/588661
<151> 2017-11-20

<160> 36

<170> PatentIn version 3.5

<210> 1
<211> 6673
<212> DNA
<213> Homo sapiens B2M gene sequence (NCBI reference sequence: NG_012920.1)

<400> 1
aatataagtg gaggcgtcgc gctggcgggc attcctgaag ctgacagcat tcgggccgag 60

atgtctcgct ccgtggcctt agctgtgctc gcgctactct ctctttctgg cctggaggct 120

atccagcgtg agtctctcct accctcccgc tctggtcctt cctctcccgc tctgcaccct 180

ctgtggccct cgctgtgctc tctcgctccg tgacttccct tctccaagtt ctccttggtg 240

gcccgccgtg gggctagtcc agggctggat ctcggggaag cggcggggtg gcctgggagt 300

ggggaagggg gtgcgcaccc gggacgcgcg ctacttgccc ctttcggcgg ggagcagggg 360

agacctttgg cctacggcga cgggagggtc gggacaaagt ttagggcgtc gataagcgtc 420

agagcgccga ggttggggga gggtttctct tccgctcttt cgcggggcct ctggctcccc 480

cagcgcagct ggagtggggg acgggtaggc tcgtcccaaa ggcgcggcgc tgaggtttgt 540

gaacgcgtgg aggggcgctt ggggtctggg ggaggcgtcg cccgggtaag cctgtctgct 600

gcggctctgc ttcccttaga ctggagagct gtggacttcg tctaggcgcc cgctaagttc 660

gcatgtccta gcacctctgg gtctatgtgg ggccacaccg tggggaggaa acagcacgcg 720

acgtttgtag aatgcttggc tgtgatacaa agcggtttcg aataattaac ttatttgttc 780

ccatcacatg tcacttttaa aaaattataa gaactacccg ttattgacat ctttctgtgt 840

gccaaggact ttatgtgctt tgcgtcattt aattttgaaa acagttatct tccgccatag 900

ataactacta tggttatctt ctgcctctca cagatgaaga aactaaggca ccgagatttt 960

aagaaactta attacacagg ggataaatgg cagcaatcga gattgaagtc aagcctaacc 1020

agggcttttg cgggagcgca tgccttttgg ctgtaattcg tgcatttttt tttaagaaaa 1080

acgcctgcct tctgcgtgag attctccaga gcaaactggg cggcatgggc cctgtggtct 1140

tttcgtacag agggcttcct ctttggctct ttgcctggtt gtttccaaga tgtactgtgc 1200

ctcttacttt cggttttgaa aacatgaggg ggttgggcgt ggtagcttac gcctgtaatc 1260

ccagcactta gggaggccga ggcgggagga tggcttgagg tccgtagttg agaccagcct 1320

ggccaacatg gtgaagcctg gtctctacaa aaaataataa caaaaattag ccgggtgtgg 1380

tggctcgtgc ctgtggtccc agctgctccg gtggctgagg cgggaggatc tcttgagctt 1440

aggcttttga gctatcatgg cgccagtgca ctccagcgtg ggcaacagag cgagaccctg 1500

tctctcaaaa aagaaaaaaa aaaaaaaaga aagagaaaag aaaagaaaga aagaagtgaa 1560

ggtttgtcag tcaggggagc tgtaaaacca ttaataaaga taatccaaga tggttaccaa 1620

gactgttgag gacgccagag atcttgagca ctttctaagt acctggcaat acactaagcg 1680

cgctcacctt ttcctctggc aaaacatgat cgaaagcaga atgttttgat catgagaaaa 1740

ttgcatttaa tttgaataca atttatttac aacataaagg ataatgtata tatcaccacc 1800

attactggta tttgctggtt atgttagatg tcattttaaa aaataacaat ctgatattta 1860

aaaaaaaatc ttattttgaa aatttccaaa gtaatacatg ccatgcatag accatttctg 1920

gaagatacca caagaaacat gtaatgatga ttgcctctga aggtctattt tcctcctctg 1980

acctgtgtgt gggttttgtt tttgttttac tgtgggcata aattaatttt tcagttaagt 2040

tttggaagct taaataactc tccaaaagtc ataaagccag taactggttg agcccaaatt 2100

caaacccagc ctgtctgata cttgtcctct tcttagaaaa gattacagtg atgctctcac 2160

aaaatcttgc cgccttccct caaacagaga gttccaggca ggatgaatct gtgctctgat 2220

ccctgaggca tttaatatgt tcttattatt agaagctcag atgcaaagag ctctcttagc 2280

ttttaatgtt atgaaaaaaa tcaggtcttc attagattcc ccaatccacc tcttgatggg 2340

gctagtagcc tttccttaat gatagggtgt ttctagagag atatatctgg tcaaggtggc 2400

ctggtactcc tccttctccc cacagcctcc cagacaagga ggagtagctg ccttttagtg 2460

atcatgtacc ctgaatataa gtgtatttaa aagaatttta tacacatata tttagtgtca 2520

atctgtatat ttagtagcac taacacttct cttcattttc aatgaaaaat atagagttta 2580

taatattttc ttcccacttc cccatggatg gtctagtcat gcctctcatt ttggaaagta 2640

ctgtttctga aacattaggc aatatattcc caacctggct agtttacagc aatcacctgt 2700

ggatgctaat taaaacgcaa atcccactgt cacatgcatt actccatttg atcataatgg 2760

aaagtatgtt ctgtcccatt tgccatagtc ctcacctatc cctgttgtat tttatcgggt 2820

ccaactcaac catttaaggt atttgccagc tcttgtatgc atttaggttt tgtttctttg 2880

ttttttagct catgaaatta ggtacaaagt cagagagggg tctggcatat aaaacctcag 2940

cagaaataaa gaggttttgt tgtttggtaa gaacatacct tgggttggtt gggcacggtg 3000

gctcgtgcct gtaatcccaa cactttggga ggccaaggca ggctgatcac ttgaagttgg 3060

gagttcaaga ccagcctggc caacatggtg aaatcccgtc tctactgaaa atacaaaaat 3120

taaccaggca tggtggtgtg tgcctgtagt cccaggaatc acttgaaccc aggaggcgga 3180

ggttgcagtg agctgagatc tcaccactgc acactgcact ccagcctggg caatggaatg 3240

agattccatc ccaaaaaata aaaaaataaa aaaataaaga acataccttg ggttgatcca 3300

cttaggaacc tcagataata acatctgcca cgtatagagc aattgctatg tcccaggcac 3360

tctactagac acttcataca gtttagaaaa tcagatgggt gtagatcaag gcaggagcag 3420

gaaccaaaaa gaaaggcata aacataagaa aaaaaatgga aggggtggaa acagagtaca 3480

ataacatgag taatttgatg ggggctatta tgaactgaga aatgaacttt gaaaagtatc 3540

ttggggccaa atcatgtaga ctcttgagtg atgtgttaag gaatgctatg agtgctgaga 3600

gggcatcaga agtccttgag agcctccaga gaaaggctct taaaaatgca gcgcaatctc 3660

cagtgacaga agatactgct agaaatctgc tagaaaaaaa acaaaaaagg catgtataga 3720

ggaattatga gggaaagata ccaagtcacg gtttattctt caaaatggag gtggcttgtt 3780

gggaaggtgg aagctcattt ggccagagtg gaaatggaat tgggagaaat cgatgaccaa 3840

atgtaaacac ttggtgcctg atatagcttg acaccaagtt agccccaagt gaaataccct 3900

ggcaatatta atgtgtcttt tcccgatatt cctcaggtac tccaaagatt caggtttact 3960

cacgtcatcc agcagagaat ggaaagtcaa atttcctgaa ttgctatgtg tctgggtttc 4020

atccatccga cattgaagtt gacttactga agaatggaga gagaattgaa aaagtggagc 4080

attcagactt gtctttcagc aaggactggt ctttctatct cttgtactac actgaattca 4140

cccccactga aaaagatgag tatgcctgcc gtgtgaacca tgtgactttg tcacagccca 4200

agatagttaa gtggggtaag tcttacattc ttttgtaagc tgctgaaagt tgtgtatgag 4260

tagtcatatc ataaagctgc tttgatataa aaaaggtcta tggccatact accctgaatg 4320

agtcccatcc catctgatat aaacaatctg catattggga ttgtcaggga atgttcttaa 4380

agatcagatt agtggcacct gctgagatac tgatgcacag catggtttct gaaccagtag 4440

tttccctgca gttgagcagg gagcagcagc agcacttgca caaatacata tacactctta 4500

acacttctta cctactggct tcctctagct tttgtggcag cttcaggtat atttagcact 4560

gaacgaacat ctcaagaagg tataggcctt tgtttgtaag tcctgctgtc ctagcatcct 4620

ataatcctgg acttctccag tactttctgg ctggattggt atctgaggct agtaggaagg 4680

gcttgttcct gctgggtagc tctaaacaat gtattcatgg gtaggaacag cagcctattc 4740

tgccagcctt atttctaacc attttagaca tttgttagta catggtattt taaaagtaaa 4800

acttaatgtc ttcctttttt ttctccactg tctttttcat agatcgagac atgtaagcag 4860

catcatggag gtaagttttt gaccttgaga aaatgttttt gtttcactgt cctgaggact 4920

atttatagac agctctaaca tgataaccct cactatgtgg agaacattga cagagtaaca 4980

ttttagcagg gaaagaagaa tcctacaggg tcatgttccc ttctcctgtg gagtggcatg 5040

aagaaggtgt atggccccag gtatggccat attactgacc ctctacagag agggcaaagg 5100

aactgccagt atggtattgc aggataaagg caggtggtta cccacattac ctgcaaggct 5160

ttgatctttc ttctgccatt tccacattgg acatctctgc tgaggagaga aaatgaacca 5220

ctcttttcct ttgtataatg ttgttttatt cttcagacag aagagaggag ttatacagct 5280

ctgcagacat cccattcctg tatggggact gtgtttgcct cttagaggtt cccaggccac 5340

tagaggagat aaagggaaac agattgttat aacttgatat aatgatacta taatagatgt 5400

aactacaagg agctccagaa gcaagagaga gggaggaact tggacttctc tgcatcttta 5460

gttggagtcc aaaggctttt caatgaaatt ctactgccca gggtacattg atgctgaaac 5520

cccattcaaa tctcctgtta tattctagaa cagggaattg atttgggaga gcatcaggaa 5580

ggtggatgat ctgcccagtc acactgttag taaattgtag agccaggacc tgaactctaa 5640

tatagtcatg tgttacttaa tgacggggac atgttctgag aaatgcttac acaaacctag 5700

gtgttgtagc ctactacacg cataggctac atggtatagc ctattgctcc tagactacaa 5760

acctgtacag cctgttactg tactgaatac tgtgggcagt tgtaacacaa tggtaagtat 5820

ttgtgtatct aaacatagaa gttgcagtaa aaatatgcta ttttaatctt atgagaccac 5880

tgtcatatat acagtccatc attgaccaaa acatcatatc agcatttttt cttctaagat 5940

tttgggagca ccaaagggat acactaacag gatatactct ttataatggg tttggagaac 6000

tgtctgcagc tacttctttt aaaaaggtga tctacacagt agaaattaga caagtttggt 6060

aatgagatct gcaatccaaa taaaataaat tcattgctaa cctttttctt ttcttttcag 6120

gtttgaagat gccgcatttg gattggatga attccaaatt ctgcttgctt gctttttaat 6180

attgatatgc ttatacactt acactttatg cacaaaatgt agggttataa taatgttaac 6240

atggacatga tcttctttat aattctactt tgagtgctgt ctccatgttt gatgtatctg 6300

agcaggttgc tccacaggta gctctaggag ggctggcaac ttagaggtgg ggagcagaga 6360

attctcttat ccaacatcaa catcttggtc agatttgaac tcttcaatct cttgcactca 6420

aagcttgtta agatagttaa gcgtgcataa gttaacttcc aatttacata ctctgcttag 6480

aatttggggg aaaatttaga aatataattg acaggattat tggaaatttg ttataatgaa 6540

tgaaacattt tgtcatataa gattcatatt tacttcttat acatttgata aagtaaggca 6600

tggttgtggt taatctggtt tatttttgtt ccacaagtta aataaatcat aaaacttgat 6660

gtgttatctc tta 6673


<210> 2
<211> 987
<212> DNA
<213> Homo sapiens B2M mRNA (NCBI reference sequence: NM_004048.2)

<400> 2
aatataagtg gaggcgtcgc gctggcgggc attcctgaag ctgacagcat tcgggccgag 60

atgtctcgct ccgtggcctt agctgtgctc gcgctactct ctctttctgg cctggaggct 120

atccagcgta ctccaaagat tcaggtttac tcacgtcatc cagcagagaa tggaaagtca 180

aatttcctga attgctatgt gtctgggttt catccatccg acattgaagt tgacttactg 240

aagaatggag agagaattga aaaagtggag cattcagact tgtctttcag caaggactgg 300

tctttctatc tcttgtacta cactgaattc acccccactg aaaaagatga gtatgcctgc 360

cgtgtgaacc atgtgacttt gtcacagccc aagatagtta agtgggatcg agacatgtaa 420

gcagcatcat ggaggtttga agatgccgca tttggattgg atgaattcca aattctgctt 480

gcttgctttt taatattgat atgcttatac acttacactt tatgcacaaa atgtagggtt 540

ataataatgt taacatggac atgatcttct ttataattct actttgagtg ctgtctccat 600

gtttgatgta tctgagcagg ttgctccaca ggtagctcta ggagggctgg caacttagag 660

gtggggagca gagaattctc ttatccaaca tcaacatctt ggtcagattt gaactcttca 720

atctcttgca ctcaaagctt gttaagatag ttaagcgtgc ataagttaac ttccaattta 780

catactctgc ttagaatttg ggggaaaatt tagaaatata attgacagga ttattggaaa 840

tttgttataa tgaatgaaac attttgtcat ataagattca tatttacttc ttatacattt 900

gataaagtaa ggcatggttg tggttaatct ggtttatttt tgttccacaa gttaaataaa 960

tcataaaact tgatgtgtta tctctta 987


<210> 3
<211> 360
<212> DNA
<213> Homo sapiens B2M protein coding sequence

<400> 3
atgtctcgct ccgtggcctt agctgtgctc gcgctactct ctctttctgg cctggaggct 60

atccagcgta ctccaaagat tcaggtttac tcacgtcatc cagcagagaa tggaaagtca 120

aatttcctga attgctatgt gtctgggttt catccatccg acattgaagt tgacttactg 180

aagaatggag agagaattga aaaagtggag cattcagact tgtctttcag caaggactgg 240

tctttctatc tcttgtacta cactgaattc acccccactg aaaaagatga gtatgcctgc 300

cgtgtgaacc atgtgacttt gtcacagccc aagatagtta agtgggatcg agacatgtaa 360


<210> 4
<211> 119
<212> PRT
<213> Homo sapiens B2M (UniProt: P61769-1, v1)

<400> 4

Met Ser Arg Ser Val Ala Leu Ala Val Leu Ala Leu Leu Ser Leu Ser
1 5 10 15


Gly Leu Glu Ala Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg
20 25 30


His Pro Ala Glu Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser
35 40 45


Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu
50 55 60


Arg Ile Glu Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp
65 70 75 80


Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp
85 90 95


Glu Tyr Ala Cys Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile
100 105 110


Val Lys Trp Asp Arg Asp Met
115


<210> 5
<211> 99
<212> PRT
<213> Homo sapiens mature B2M (UniProt: P61769-1, residues 21-199 of v1)

<400> 5

Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg His Pro Ala Glu
1 5 10 15


Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser Gly Phe His Pro
20 25 30


Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu Arg Ile Glu Lys
35 40 45


Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp Ser Phe Tyr Leu
50 55 60


Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp Glu Tyr Ala Cys
65 70 75 80


Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile Val Lys Trp Asp
85 90 95


Arg Asp Met



<210> 6
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Forward B2M EX1 Target

<400> 6
aaacggccga gatgtctcgc tccggt 26


<210> 7
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse B2M EX1 Target

<400> 7
taaaaccgga gcgagacatc tcggcc 26


<210> 8
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Forward B2M EX2 Target

<400> 8
aaacgaagtt gacttactga agaagt 26


<210> 9
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse B2M EX2 Target

<400> 9
taaaacttct tcagtaagtc aacttc 26


<210> 10
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Forward B2M EX1 WT

<400> 10
tctcgaatga aaaatgcagg tccg 24


<210> 11
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse B2M EX1 WT

<400> 11
tgacgcttat cgacgcccta aactt 25


<210> 12
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Forward B2M EX1 HDR

<400> 12
gactccacca ccacgaaatg gc 22


<210> 13
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse B2M EX1 HDR

<400> 13
ccccatcaag ctgatccgga 20


<210> 14
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward B2M EX2 WT

<400> 14
gcttgacacc aagttagccc 20


<210> 15
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse B2M EX2 WT

<400> 15
tggatgggac tcattcaggg t 21


<210> 16
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Forward AAVS1 WT

<400> 16
cactcgctgg gttccctttt cct 23


<210> 17
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse AAVS1 WT

<400> 17
ggctggctac tggccttatc tcaca 25


<210> 18
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Forward AAVS1 CD64 HDR

<400> 18
ctttggcagc ctgtgctgac ccat 24


<210> 19
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse AAVS1 CD64 HDR

<400> 19
tcgaggtctg agtggctgtg ccat 24


<210> 20
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Forward AAVS1 EpCAM HDR

<400> 20
ctttggcagc ctgtgctgac ccat 24


<210> 21
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Inverse AAVS1 EpCAM HDR

<400> 21
aagagcccgc tctcatcgca gtca 24


<210> 22
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Forward HLA-C * 03 typing

<400> 22
cacagactga ccgagtgag 19


<210> 23
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse HLA-C * 03 typing

<400> 23
agcgtctcct tcccattctt 20


<210> 24
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Forward HLA-C * 05 classification

<400> 24
ccgagtgaac ctgcggaaa 19


<210> 25
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse HLA-C * 05 typing

<400> 25
cgcgcgctgc agcgtctt 18


<210> 26
<211> 42
<212> DNA
<213> Artificial sequence

<220>
<223> crRNA targeting B2M EX1

<400> 26
ggccgagatg tctcgctccg gttttagagc tatgctgttt tg 42


<210> 27
<211> 42
<212> DNA
<213> Artificial sequence

<220>
<223> crRNA targeting B2M EX2

<400> 27
gaagttgact tactgaagaa gttttagagc tatgctgttt tg 42


<210> 28
<211> 84
<212> DNA
<213> Artificial sequence

<220>
<223> tracrRNA

<400> 28
ggaaccattc aaaacagcat agcaagttaa aataaggcta gtccgttatc aacttgaaaa 60

agtggcaccg agtcggtgct tttt 84


<210> 29
<211> 46
<212> DNA
<213> Artificial sequence

<220>
<223> EX1 WT allele

<400> 29
tgacagcatt cgggccgaga tgtctcgctc cgtggcctta gctgtg 46


<210> 30
<211> 47
<212> DNA
<213> Artificial sequence

<220>
<223> B2M-EX1-G # 7 allele 2

<400> 30
tgacagcatt cgggccgaga tgtctcgctt ccgtggcctt agctgtg 47


<210> 31
<211> 44
<212> DNA
<213> Artificial sequence

<220>
<223> B2M-EX1-G # 7 allele 3

<400> 31
tgacagcatt cgggccgaga tgtctcgccg tggccttagc tgtg 44


<210> 32
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> B2M-EX1EX2-G # 5/6/7 allele 2

<400> 32
tgacagcatt ccgtggcctt agctgtg 27


<210> 33
<211> 47
<212> DNA
<213> Artificial sequence

<220>
<223> B2M-EX1EX2-G # 2/5/6/7 allele 3

<400> 33
tgacagcatt cgggccgaga tgtctcgctt ccgtggcctt agctgtg 47


<210> 34
<211> 43
<212> DNA
<213> Artificial sequence

<220>
<223> EX2 WT allele

<400> 34
catccgacat tgaagttgac ttactgaaga atggagagag aat 43


<210> 35
<211> 43
<212> DNA
<213> Artificial sequence

<220>
<223> B2M-EX1EX2-G # 2/5/6/7 WT allele 2

<400> 35
catccgacat tgaagttgac ttactgaaga atggagagag aat 43


<210> 36
<211> 43
<212> DNA
<213> Artificial sequence

<220>
<223> B2M-EX1EX2-G # 2/5/6/7 WT allele 3

<400> 36
catccgacat tgaagttgac ttactgaaga atggagagag aat 43



Claims (42)

一種經修飾之K562細胞,其與一野生型K562細胞相比具有降低的MHC I類表現。A modified K562 cell that has reduced MHC class I performance compared to a wild-type K562 cell. 如請求項1之經修飾之K562細胞,其包含相對於一野生型K562細胞對一編碼一MHC I類多肽之基因的修飾。The modified K562 cell of claim 1, comprising a modification of a gene encoding a MHC class I polypeptide relative to a wild-type K562 cell. 如請求項2之經修飾之K562細胞,其中該修飾降低或阻止由該編碼一MHC I類多肽之基因所編碼之一多肽的表現。The modified K562 cell of claim 2, wherein the modification reduces or prevents the performance of a polypeptide encoded by the gene encoding a MHC class I polypeptide. 如請求項2或請求項3之經修飾之K562細胞,其中該編碼一MHC I類多肽之基因係B2MFor example, the modified K562 cell of claim 2 or claim 3, wherein the gene encoding a MHC class I polypeptide is B2M . 如請求項1至4中任一項之經修飾之K562細胞,其另外包含修飾以增加一或多種能夠增加免疫細胞活化或增殖之因子的表現。The modified K562 cell of any one of claims 1 to 4, further comprising a modification to increase the performance of one or more factors capable of increasing the activation or proliferation of immune cells. 如請求項5之經修飾之K562細胞,其包含編碼該一或多種能夠增加免疫細胞活化/增殖之因子的核酸。The modified K562 cell of claim 5, comprising a nucleic acid encoding the one or more factors capable of increasing the activation / proliferation of immune cells. 如請求項5或請求項6之經修飾之K562細胞,其中該一或多種能夠增加免疫細胞活化/增殖之因子係選自:一共刺激分子、一細胞介素或一抗原。For example, the modified K562 cells of claim 5 or claim 6, wherein the one or more factors capable of increasing the activation / proliferation of immune cells are selected from the group consisting of a costimulatory molecule, a cytokine, or an antigen. 如請求項7之經修飾之K562細胞,其中該共刺激分子係選自CD40L、CD86、CD137L、CD80或CD83。The modified K562 cell of claim 7, wherein the costimulatory molecule is selected from the group consisting of CD40L, CD86, CD137L, CD80, or CD83. 如請求項7或請求項8之經修飾之K562細胞,其中該細胞介素係選自IL-21、IL-15、膜結合之IL-21及膜結合之IL-15。The modified K562 cell according to claim 7 or claim 8, wherein the interleukin is selected from the group consisting of IL-21, IL-15, membrane-bound IL-21 and membrane-bound IL-15. 如請求項1至9中任一項之經修飾之K562細胞,其另外包含修飾以增加一或多種Fc受體之表現。The modified K562 cell of any one of claims 1 to 9, further comprising a modification to increase the performance of one or more Fc receptors. 一種經修飾之K562細胞,其包含修飾以降低或阻止由B2M 編碼之一多肽的表現。A modified K562 cell comprising a modification to reduce or prevent the performance of a polypeptide encoded by B2M . 如請求項11之經修飾之K562細胞,其另外包含修飾以增加以下各項中之一或多者的表現:CD64、CD86、CD137L及膜結合之IL-21。The modified K562 cells of claim 11, further comprising modifications to increase the performance of one or more of the following: CD64, CD86, CD137L, and membrane-bound IL-21. 如請求項11或請求項12之經修飾之K562細胞,其另外包含修飾以增加一抗原之表現。The modified K562 cells as claimed in claim 11 or claim 12, further comprising modifications to increase the expression of an antigen. 如請求項11至13中任一項之經修飾之K562細胞,其中該經修飾之K562細胞包含修飾以增加CD19之表現。The modified K562 cell of any one of claims 11 to 13, wherein the modified K562 cell comprises a modification to increase the performance of CD19. 一種用於產生與一野生型K562細胞相比具有降低之MHC I類表現之一經修飾之K562細胞的方法,其包含修飾一K562細胞以降低或阻止MHC I類之表現。A method for generating a modified K562 cell with reduced MHC class I performance compared to a wild-type K562 cell, comprising modifying a K562 cell to reduce or prevent MHC class I performance. 如請求項15之方法,其中該修飾降低或阻止由一編碼一MHC I類多肽之基因所編碼之一多肽的表現。The method of claim 15, wherein the modification reduces or prevents the performance of a polypeptide encoded by a gene encoding a MHC class I polypeptide. 如請求項15或16之方法,其中該編碼一MHC I類多肽之基因係B2MThe method of claim 15 or 16, wherein the gene encoding a MHC class I polypeptide is B2M . 如請求項15至17中任一項之方法,其另外包含修飾該K562細胞以增加一或多種能夠增加免疫細胞活化或增殖之因子的表現。The method of any one of claims 15 to 17, further comprising modifying the K562 cells to increase the performance of one or more factors capable of increasing the activation or proliferation of immune cells. 如請求項18之方法,其包含向該K562細胞中引入編碼該一或多種能夠增加免疫細胞活化/增殖之因子的核酸。The method of claim 18, comprising introducing into the K562 cells a nucleic acid encoding the one or more factors capable of increasing the activation / proliferation of immune cells. 如請求項18或請求項19之方法,其中該一或多種能夠增加免疫細胞活化/增殖之因子係選自:一共刺激分子、一細胞介素或一抗原。The method according to claim 18 or claim 19, wherein the one or more factors capable of increasing the activation / proliferation of immune cells are selected from the group consisting of a costimulatory molecule, a cytokine, or an antigen. 如請求項20之方法,其中該共刺激分子係選自CD40L、CD86、CD137L、CD80或CD83。The method of claim 20, wherein the costimulatory molecule is selected from the group consisting of CD40L, CD86, CD137L, CD80, or CD83. 如請求項20或請求項21之方法,其中該細胞介素係選自IL-21、IL-15、膜結合之IL-21及膜結合之IL-15。The method of claim 20 or claim 21, wherein the interleukin is selected from the group consisting of IL-21, IL-15, membrane-bound IL-21, and membrane-bound IL-15. 如請求項20至22中任一項之方法,其包含向該K562細胞中引入編碼一或多種Fc受體之核酸。The method of any one of claims 20 to 22, comprising introducing into the K562 cells a nucleic acid encoding one or more Fc receptors. 如請求項20至23中任一項之方法,其另外包含修飾該K562細胞以增加一抗原之表現。The method of any one of claims 20 to 23, further comprising modifying the K562 cells to increase the expression of an antigen. 一種經修飾之K562細胞,其係藉由如請求項15至24中任一項之方法來獲得或可獲得。A modified K562 cell obtained or obtained by a method according to any one of claims 15 to 24. 一種用於產生或擴增免疫細胞群之方法,其包含使免疫細胞在活體外、活體內或離體與一如請求項1至14或請求項25中任一項之經修飾之K562細胞接觸。A method for generating or expanding a population of immune cells, comprising contacting immune cells in vitro, in vivo, or ex vivo with modified K562 cells as in any one of claims 1 to 14 or 25 . 如請求項26之方法,其為用於產生或擴增抗原特異性免疫細胞群之方法,其中該方法包含在一包含或表現該抗原之如請求項1至14或請求項25中任一項之經修飾之K562細胞的存在下培養免疫細胞。The method of claim 26, which is a method for generating or expanding an antigen-specific immune cell population, wherein the method comprises a method of any one of claims 1 to 14 or 25 comprising or expressing the antigen. Immune cells are cultured in the presence of modified K562 cells. 如請求項27之方法,其中該抗原特異性免疫細胞為經CAR修飾之免疫細胞,且其中該經修飾之K562細胞包含或表現該CAR特異性之抗原。The method of claim 27, wherein the antigen-specific immune cell is a CAR-modified immune cell, and wherein the modified K562 cell comprises or expresses the CAR-specific antigen. 一種免疫細胞群,其係藉由如請求項26至28中任一項之方法產生或擴增。An immune cell population produced or expanded by a method according to any one of claims 26 to 28. 如請求項29之免疫細胞群,其係用於一疾病或病況之醫學治療或預防的一方法中。The immune cell population of claim 29, which is used in a method of medical treatment or prevention of a disease or condition. 一種如請求項29之免疫細胞群於製造藥物的用途,該藥物係用於一疾病或病況之醫學治療或預防的一方法中。An immune cell population as claimed in claim 29 for use in the manufacture of a medicament for use in a method of medical treatment or prevention of a disease or condition. 一種治療或預防個體之疾病或病況的方法,其包含向一個體投與一如請求項29之免疫細胞群。A method of treating or preventing a disease or condition in an individual, comprising administering to a subject an immune cell population as claimed in claim 29. 一種治療或預防一個體之一疾病或病況的方法,其包含: (a)自一個體分離免疫細胞; (b)藉由在如請求項1至14或請求項25中任一項之經修飾之K562細胞存在下培養在步驟(a)分離之該等免疫細胞來產生或擴增一免疫細胞群;及 (c)向一個體投與在步驟(b)產生或擴增之該免疫細胞群。A method of treating or preventing a disease or condition in a subject, comprising: (a) isolating immune cells from a body; (b) generating or expanding an immune cell population by culturing the immune cells isolated in step (a) in the presence of modified K562 cells as in any of claims 1 to 14 or claim 25; and (c) administering to a body the population of immune cells produced or expanded in step (b). 如請求項30之供使用之免疫細胞群,如請求項31之用途或如請求項32或請求項33中任一項之方法,其中該疾病或病況為一T細胞功能異常病症、一癌症或一感染性疾病。Immune cell population for use as in claim 30, as in claim 31 or as in a method as in any of claim 32 or claim 33, wherein the disease or condition is a T cell dysfunction disorder, a cancer or An infectious disease. 如請求項34之方法,其中該癌症選自由以下組成之群:結腸癌(colon cancer)、結腸惡性腫瘤(colon carcinoma)、結腸直腸癌、鼻咽癌、子宮頸癌、口咽癌、胃癌、肝細胞癌、頭頸癌、頭頸部鱗狀細胞癌(HNSCC)、口腔癌、喉癌、前列腺癌、肺癌、小細胞肺癌、非小細胞肺癌、膀胱癌、尿道上皮癌、黑素瘤、晚期黑素瘤、腎細胞癌、卵巢癌或間皮瘤。The method of claim 34, wherein the cancer is selected from the group consisting of colon cancer, colon cancer, colorectal cancer, nasopharyngeal cancer, cervical cancer, oropharyngeal cancer, gastric cancer, Hepatocellular carcinoma, head and neck cancer, head and neck squamous cell carcinoma (HNSCC), oral cancer, laryngeal cancer, prostate cancer, lung cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, urethral epithelial cancer, melanoma, advanced melanoma Tumor, renal cell carcinoma, ovarian cancer, or mesothelioma. 一種核酸或複數個核酸,其編碼一靶向B2M 之位點特異性核酸酶(SSN)系統。A nucleic acid or a plurality of nucleic acids encoding a site-specific nuclease (SSN) system targeting B2M . 如請求項36之核酸或複數個核酸,其中該核酸或複數個核酸編碼一CRISPR/Cas9系統。The nucleic acid or nucleic acids of claim 36, wherein the nucleic acid or nucleic acids encode a CRISPR / Cas9 system. 如請求項37之核酸或複數個核酸,其中該核酸或複數個核酸編碼一靶向B2M 之一外顯子的CRISPR RNA (crRNA)。The nucleic acid or nucleic acids of claim 37, wherein the nucleic acid or nucleic acids encode a CRISPR RNA (crRNA) that targets one of the exons of B2M . 如請求項37或請求項38之核酸或複數個核酸,其中該核酸或複數個核酸編碼一靶向B2M 之外顯子1之crRNA及/或一靶向B2M 之外顯子2之crRNA。For example, the nucleic acid or multiple nucleic acids of claim 37 or claim 38, wherein the nucleic acid or multiple nucleic acids encode a crRNA targeting B2M exon 1 and / or a crRNA targeting B2M exon 2. 一種載體或複數個載體,其編碼如請求項36至39中任一項之核酸或複數個核酸。A vector or a plurality of vectors encoding a nucleic acid or a plurality of nucleic acids as claimed in any one of claims 36 to 39. 一種用於產生與一可比較的未經修飾之細胞相比具有降低之MHC I類表現之一經修飾之細胞的方法,其包含向一細胞中引入修飾用之如請求項36至39中任一項之核酸或複數個核酸或如請求項40之載體或複數個載體。A method for producing a modified cell having reduced MHC Class I performance compared to a comparable unmodified cell, comprising introducing a modification into a cell for use in any of claims 36 to 39 A nucleic acid of the item or a plurality of nucleic acids or a vector or a plurality of vectors as claimed in the item 40. 如請求項41之方法,其中該經修飾之細胞為一經修飾之K562細胞。The method of claim 41, wherein the modified cell is a modified K562 cell.
TW107141263A 2017-11-20 2018-11-20 Modified K562 cell TW201923073A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762588661P 2017-11-20 2017-11-20
US62/588,661 2017-11-20

Publications (1)

Publication Number Publication Date
TW201923073A true TW201923073A (en) 2019-06-16

Family

ID=64564831

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141263A TW201923073A (en) 2017-11-20 2018-11-20 Modified K562 cell

Country Status (2)

Country Link
TW (1) TW201923073A (en)
WO (1) WO2019097083A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4045648A4 (en) * 2019-10-15 2023-11-22 The Regents of The University of California Transplanted cell protection via fc sequestration
CN112608901B (en) * 2020-12-21 2023-11-21 广东昭泰细胞生物科技有限公司 Artificial antigen presenting cell, preparation method and application thereof
MX2023008162A (en) * 2021-01-19 2023-07-24 Obsidian Therapeutics Inc Compositions and methods for expansion of t cells and tumor infiltrating lymphocytes.
CN116254230A (en) * 2022-09-14 2023-06-13 卡瑞济(北京)生命科技有限公司 Method for preparing and amplifying universal humanized anti-CD 19CAR-NK cells and uses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102199A1 (en) * 2007-02-20 2008-08-28 Cellectis Meganuclease variants cleaving a dna target sequence from the beta-2-microglobulin gene and uses thereof
KR102228828B1 (en) * 2014-03-11 2021-03-16 셀렉티스 Method for generating t-cells compatible for allogenic transplantation
WO2016073955A2 (en) * 2014-11-06 2016-05-12 President And Fellows Of Harvard College Cells lacking b2m surface expression and methods for allogeneic administration of such cells
ES2901000T3 (en) * 2015-12-23 2022-03-21 Prec Biosciences Inc Engineered meganucleases with recognition sequences found in the human beta-2 microglobulin gene

Also Published As

Publication number Publication date
WO2019097083A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
AU2017250769A1 (en) Transgenic T cell and chimeric antigen receptor T cell compositions and related methods
BR112020007710A2 (en) methods to produce cells that express chimeric antigen receptor
BR112021003305A2 (en) methods for producing cells that express chimeric antigen receptor
WO2021108661A2 (en) Chimeric antigen receptors and uses thereof
JP2019533676A (en) Immunotherapy methods and compositions comprising tryptophan metabolic pathway modulators
CN117305250A (en) Engineered natural killer cells and uses thereof
Ptáčková et al. A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21
WO2020057666A1 (en) T-cell expressing chimeric receptor
EP3844265A2 (en) Methods of making chimeric antigen receptor-expressing cells
TW201923073A (en) Modified K562 cell
KR20190111843A (en) A novel genetically modified natural killer cell line and use thereof
KR20190126332A (en) MR1 Limited T Cell Receptor for Cancer Immunotherapy
CN113677353A (en) Amplification of modified cells and uses thereof
WO2021173985A2 (en) Methods of making chimeric antigen receptor-expressing cells
JP2022533092A (en) Compositions and Methods of Acetylcholine Receptor Chimeric Autoantibody Receptor Cells
CN117355327A (en) CAR NKT expressing SHRNA embedded in artificial microRNAs for down-regulating MHC class I and class II expression
US20230248825A1 (en) T-cells expressing immune cell engagers in allogenic settings
CN110819596A (en) Modified cells with enhanced migratory capacity
WO2022103789A1 (en) A method for treating disease using foxp3+cd4+ t cells
WO2019209631A1 (en) Chimeric hla accessory receptor
Zha et al. Beta-2 microglobulin knockout K562 cell-based artificial antigen presenting cells for ex vivo expansion of T lymphocytes
US20240141295A1 (en) Novel cell lines, methods of producing natural killer cells and uses thereof
US20240002465A1 (en) Mr1 restricted t cell receptors for cancer immunotherapy
WO2024073583A1 (en) Anti-ror1 chimeric antigen receptors (cars), car-nk cells and related methods
WO2022047419A1 (en) Novel cell lines, methods of producing natural killer cells and uses thereof