WO2019182134A1 - Base station and transmission method - Google Patents

Base station and transmission method Download PDF

Info

Publication number
WO2019182134A1
WO2019182134A1 PCT/JP2019/012178 JP2019012178W WO2019182134A1 WO 2019182134 A1 WO2019182134 A1 WO 2019182134A1 JP 2019012178 W JP2019012178 W JP 2019012178W WO 2019182134 A1 WO2019182134 A1 WO 2019182134A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmission
user terminal
antenna element
channel
Prior art date
Application number
PCT/JP2019/012178
Other languages
French (fr)
Japanese (ja)
Inventor
達樹 奥山
聡 須山
奥村 幸彦
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2020507947A priority Critical patent/JP7261223B2/en
Priority to CN201980021579.0A priority patent/CN111903065B/en
Publication of WO2019182134A1 publication Critical patent/WO2019182134A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • This disclosure relates to a base station and a transmission method.
  • LTE Long Term Evolution
  • Non-patent Document 1 a successor system of LTE is also being studied for the purpose of further widening the bandwidth and speeding up from LTE.
  • LTE successors include LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is a system called.
  • a large number of antenna elements for example, 100 elements or more are used in a high frequency band (for example, 4 GHz or more) in order to further increase the speed of signal transmission and reduce interference.
  • massive MIMO Multiple Input Multiple Output
  • Massive MIMO a wireless communication system using an ultra-high-density distributed antenna system including a plurality of transmission points (TP) each having one or more antenna elements and a signal processing device is being studied.
  • TP transmission points
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • an object of one embodiment of the present disclosure is to provide a base station and a transmission method that can appropriately select a channel used for signal transmission.
  • a base station includes a plurality of channel estimations obtained for each channel between a transmission circuit that transmits a radio signal, a plurality of antenna elements included in a plurality of transmission points, and a user terminal A control circuit that controls transmission of the radio signal based on a channel estimation value selected according to a first selection criterion and a second selection criterion from among the values.
  • a channel used for signal transmission can be appropriately selected.
  • FIG. 1 shows a configuration example of a radio communication system according to the present embodiment.
  • a radio communication system 1 shown in FIG. 1 is, for example, an ultra-high density distributed antenna system, and includes a base station (also referred to as a radio base station or gNB) 100 including a plurality of transmission points 10a to 10i and a signal processing device 20. And at least one user terminal (sometimes referred to as a radio terminal or UE (User Equipment)) 200.
  • a base station also referred to as a radio base station or gNB
  • UE User Equipment
  • reference numerals are used such as “transmission points 10a to 10i”, “user terminal 200a”, and “user terminal 200b”, and the same types of elements are not distinguished.
  • a common number among the reference symbols may be used such as “transmission point 10” and “user terminal 200”.
  • Each of the transmission points 10a to 10i has one or more antenna elements.
  • Each of the transmission points 10a to 10i is connected to the signal processing device 20. Further, as shown in FIG. 1, the cells formed by the transmission points 10a to 10i, for example, overlap each other.
  • the base station 100 performs wireless communication with the user terminals 200a and 200b under the transmission points 10a to 10i (for example, in a cell). For example, the base station 100 selects at least one transmission point 10 from the transmission points 10 a to 10 i according to the movement of the user terminal 200, and the selected transmission point 10 transmits a signal to the user terminal 200. To do.
  • the signal processing device 20 performs signal processing of a signal transmitted to the user terminal 200.
  • the signal processed signal is output to at least one of the transmission points 10a to 10i and wirelessly transmitted to the user terminal 200. Further, the signal processing device 20 receives the signals from the user terminals 200 received by the transmission points 10a to 10i from the transmission points 10a to 10i, respectively.
  • the wireless communication system 1 shown in FIG. 1 there are a plurality of transmission points 10 (a plurality of antenna elements) and a plurality of user terminals 200.
  • the signal processing device 20 selects a channel to be used for signal transmission from a plurality of channels between the plurality of antenna elements and the plurality of user terminals 200.
  • two user terminals 200 are shown, but the number of user terminals 200 is not limited to this.
  • one user terminal 200 may exist under the transmission points 10a to 10i, and three or more user terminals 200 may exist.
  • the user terminal 200 may not exist under any of the transmission points 10a to 10i.
  • the number of transmission points 10 included in the base station 100 is not limited to nine transmission points 10a to 10i, but may be other numbers. Further, the number of antenna elements included in each transmission point 10 may be the same or different.
  • the transmission point may be referred to as “overhanging station” or “RRH (Remote Radio Radio Head)”.
  • RRH Remote Radio Radio Head
  • BBU Baseband processing Unit
  • FIG. 2 is a block diagram illustrating a configuration example of the base station 100.
  • FIG. 2 shows a configuration related to downlink data transmission, and a configuration related to uplink data reception is omitted.
  • the base station 100 shown in FIG. 2 includes n (an integer greater than or equal to 1) transmission points 10 and a signal processing device 20.
  • n an integer greater than or equal to 1
  • the signal processing device 20 includes an encoding unit 101, a modulation unit 102, a channel estimation unit 103, a selection unit 104, and a transmission control unit 105.
  • the transmission points 10-1 to 10-n are A wireless transmission unit 106, an antenna 107, and a wireless reception unit 108 are included.
  • the base station 100 when performing OFDM (Orthogonal Frequency Division Multiplexing) transmission, the base station 100 generates an OFDM signal (for example, IFFT (Inverse Fast Fourier Transform) processing unit, CP (Cyclic Prefix)). (Additional part) etc. are omitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • the encoding unit 101 encodes input transmission data, and outputs the encoded transmission data to the modulation unit 102.
  • Modulation section 102 modulates the transmission data input from encoding section 101 and outputs the modulated transmission data to transmission control section 105.
  • the channel estimation unit 103 receives a reference signal (channel estimation reference signal) transmitted from each user terminal 200 and received by the antenna 107 (antenna element) of the transmission point 10 of the base station 100.
  • the channel estimation unit 103 estimates a channel between each user terminal 200 and the antenna element of each transmission point 10 using the reference signal, and outputs a channel estimation result to the selection unit 104 and the transmission control unit 105.
  • the wireless communication system 1 uses a TDD (Time Division Division Duplex) transmission method. For this reason, the channel estimation unit 103 can estimate the downlink channel between the transmission point 10 and the user terminal 200 using the reference signal (that is, the uplink signal) transmitted from the user terminal 200.
  • TDD Time Division Division Duplex
  • the selection unit 104 selects a channel to be used for signal transmission based on a channel estimation result input from the channel estimation unit 103 between the user terminal 200 and the transmission point 10 (antenna element). .
  • the selection unit 104 selects the user terminal 200 that is a signal transmission target.
  • the selection unit 104 selects an antenna element used for signal transmission.
  • the selection unit 104 outputs selection information indicating the selected channel to the transmission control unit 105. Details of a method for selecting a channel used for signal transmission in the selection unit 104 will be described later.
  • the transmission control unit 105 Based on the selection information input from the selection unit 104, the transmission control unit 105 indicates the transmission data input from the modulation unit 102 (for example, transmission data addressed to the selected user terminal 200) in the selection information. Transmission control for transmitting using the antenna element.
  • the transmission control unit 105 outputs transmission data and transmission control information (for example, including selection information) to the transmission point 10 including the selected antenna element.
  • the transmission control unit 105 may perform beam forming or precoding on transmission data using a plurality of antenna elements.
  • the transmission control unit 105 may generate a beamforming weight or a precoding matrix using the channel estimation result input from the channel estimation unit 103.
  • the transmission control part 105 may perform transmission power control with respect to the transmission data of the user terminal 200 using a channel estimation result.
  • the antenna 107 has one or more antenna elements.
  • the radio transmission unit 106 at each transmission point 10 performs radio transmission processing such as D / A conversion, frequency conversion, amplification, etc. on the transmission data (baseband signal) input from the transmission control unit 105 and transmits the radio signal. Generate.
  • the wireless transmission unit 106 transmits the generated wireless signal via the antenna element (antenna 107) indicated by the transmission control information input from the transmission control unit 105.
  • the radio reception unit 108 at each transmission point 10 performs radio reception processing such as A / D conversion and frequency conversion on the radio signal received from the user terminal 200 via the antenna 107 (antenna element).
  • Radio reception section 108 outputs a reference signal included in the reception signal after the radio reception processing to channel estimation section 103.
  • FIG. 3 is a block diagram illustrating a configuration example of the user terminal 200.
  • FIG. 3 shows a configuration related to downlink data reception, and a configuration related to uplink data transmission is omitted.
  • the user terminal 200 illustrated in FIG. 3 includes a wireless transmission unit 201, an antenna 202, a wireless reception unit 203, a demodulation unit 204, and a decoding unit 205.
  • the wireless transmission unit 201 performs wireless transmission processing such as D / A conversion, frequency conversion, and amplification on the input reference signal, generates a wireless signal, and transmits the generated wireless signal via the antenna 202. .
  • the antenna 202 has one or more antenna elements.
  • the radio reception unit 203 performs radio reception processing such as A / D conversion and frequency conversion on the radio signal received from the base station 100 via the antenna 202, and demodulates the received signal after the radio reception processing. Output to.
  • the demodulation unit 204 demodulates the reception signal input from the wireless reception unit 203 and outputs the demodulated signal to the decoding unit 205.
  • the decoding unit 205 decodes the signal input from the demodulation unit 204 and outputs received data.
  • the wireless communication system 1 includes four transmission points 10 (TP # 1, TP # 2, TP # 3, and TP # 4) and four user terminals 200. (UE # 1, UE # 2, UE # 3, UE # 4).
  • Each transmission point 10 shown in FIG. 4 has four antenna elements. That is, in FIG. 4, the radio communication system 1 includes 16 antenna elements.
  • TP # 1 has antenna elements # 1 to # 4
  • TP # 2 has antenna elements # 5 to # 8
  • TP # 3 has antenna elements # 9 to # 12.
  • TP # 4 includes antenna elements # 13 to # 16.
  • the base station 100 transmits a signal from channel estimation values obtained for a plurality of channels between the 16 antenna elements # 1 to # 16 and the four user terminals 200 (UE # 1 to UE # 4). Select the channel used for transmission. In the following, for example, the base station 100 selects the antenna element used for signal transmission and the user terminal 200 for signal transmission.
  • FIG. 5 is a flowchart showing an example of signal (for example, data) transmission processing in the base station 100.
  • FIG. 6 illustrates an example of the selection process of the antenna element and the user terminal 200 in the base station 100 (for example, the selection unit 104).
  • the base station 100 receives the reference signal transmitted from each user terminal 200 at the antenna elements of the plurality of transmission points 10 (ST11). For example, in FIG. 4, reference signals transmitted from UE # 1 to UE # 4 are received by antenna elements # 1 to # 16, respectively.
  • the base station 100 estimates a downlink channel between each user terminal 200 and each antenna element using the reference signal received in ST11, and obtains a channel matrix representing the estimated channel.
  • the base station 100 performs transmission control on the antenna element selected in ST13 and the user terminal 200 selected in ST14 (ST15). For example, the base station 100 uses antenna elements # 1, # 4, # 12, and # 16 for transmission data addressed to UE # 3 and UE # 4 using the channel matrix of 2 rows ⁇ 4 columns shown in FIG. The used precoding matrix may be generated.
  • base station 100 performs signal transmission to UE # 3 and UE # 4 selected in ST14 using antenna elements # 1, # 4, # 12, and # 16 selected in ST13 according to the transmission control in ST15. (ST16).
  • base station 100 obtains channel estimation values (for example, a channel matrix of 4 rows ⁇ 16 columns in FIG. 6) between antenna elements # 1 to # 16 and UEs # 1 to # 4.
  • the antenna elements (antenna elements # 1, # 4, # 12, and # 16 in FIG. 6) used for transmitting the radio signal are determined from among the plurality of antenna elements # 1 to # 6.
  • the base station 100 selects one of the channel estimation values included in the 4 ⁇ 16 channel matrix corresponding to the determined antenna elements # 1, # 4, # 12, and # 16. Select the channel estimate for the part. Then, base station 100 uses the selected partial channel estimation values (channel matrix of 4 rows ⁇ 4 columns in FIG. 6) to transmit radio signals from UE # 1 to UE # 4.
  • User terminal 200 (UE # 3 and # 4 in FIG. 6) is determined.
  • the base station 100 extracts a column vector corresponding to the selected antenna element from the channel matrix of 4 rows ⁇ 16 columns used for selection of the antenna element, and uses it for selection of the user terminal 200.
  • a 4 ⁇ 4 channel matrix is generated.
  • the base station 100 performs the selection process of the user terminal 200 by degenerating the channel matrix of 4 rows ⁇ 16 columns used for selecting the antenna elements into a channel matrix of 4 rows ⁇ 4 columns.
  • the base station 100 can execute the selection process of the user terminal 200 without using the channel estimation value regarding the antenna element that has not been selected, so that the calculation amount of the selection process of the user terminal 200 can be reduced. In other words, the base station 100 can reduce the amount of calculation for selecting a channel used for transmitting a radio signal.
  • FIG. 7 is a flowchart showing an example of antenna element selection processing (processing of ST13 in FIG. 5) in the base station 100.
  • Column vectors h 1 to h 16 correspond to the channels of antenna elements # 1 to # 16, respectively.
  • parameters used in selection criteria for selecting an antenna element used for transmitting a radio signal are not limited to received power and eigenvalues.
  • the parameter used in the selection criterion for selecting the antenna element used for transmitting the radio signal may be a parameter related to the communication quality between the antenna element and the UE, for example.
  • the antenna element #y (k + 1) is a candidate antenna element to be added to the already selected antenna element #y (k).
  • the base station 100 may determine the magnitude of the gain by comparing eigenvalues, correlation values, chordal distances, or the like calculated using the combination of the column vectors h. Note that the gain-related parameters are not limited to eigenvalues, correlation values, and chordal distances.
  • base station 100 increments variable k (ST135). By incrementing variable k, base station 100 adds antenna element #y (k + 1) to the combination of antenna elements used for signal transmission.
  • base station 100 may end the antenna element selection process (not shown). Alternatively, if a predetermined number of antenna elements are selected after ST135, base station 100 may end the antenna element selection process (not shown).
  • the base station 100 ends the antenna element selection process.
  • the base station 100 determines a combination of k antenna elements as antenna elements used for signal transmission by the antenna element selection processing shown in FIG.
  • FIG. 7 a specific example of the antenna element selection process shown in FIG. 7 will be described.
  • a process of selecting antenna elements # 1, # 4, # 12, and # 16 as antenna elements used for signal transmission will be described as shown in FIG.
  • base station 100 adds antenna element # 4 (column vector h 4 ) out of antenna elements # 1 to # 3 and # 5 to # 16 other than antenna element # 4 (column vector h 4 ).
  • a candidate for the antenna element #y (2) (column vector h y (2) ) is selected.
  • the base station 100 calculates eigenvalues between the column vector h 4 and the column vectors h of the antenna elements # 1 to # 3 and # 5 to # 16, and the antenna element #y () having the maximum eigenvalue. 2) Select antenna element # 1 (column vector h 1 ) as (column vector h y (2) ).
  • the eigenvalues obtained by adding a column vector h 1 column vector h 4 is determined to be larger than the eigenvalue of column vector h 4.
  • base station 100 determines that antenna elements # 2, # 3, # 5 to # 16 other than antenna elements # 1 and # 4 (column vectors h 1 and h 4 ) are included. Then, a candidate for antenna element #y (3) (column vector h y (3) ) to be added to h 1 h 4 is selected. For example, the base station 100 calculates an eigenvalue between h 1 h 4 and each column vector h of the antenna elements # 2, # 3, # 5 to # 16, and the antenna element #y () having the largest eigenvalue. 3) Select antenna element # 12 (column vector h 12 ) as (column vector h y (3) ).
  • the eigenvalues obtained by adding a column vector h 12 to h 1 h 4 is determined to be larger than the eigenvalue of the column vectors h 1 h 4.
  • base station 100 determines antenna elements # 2, # 3, # 5 to # 11, # 13 to # 13 other than antenna elements # 1, # 4, and # 12.
  • Antenna element #y (4) is selected from # 16.
  • the base station 100 uses the antenna element # 16 (column vector h y (4) ) as the antenna element #y (4) (column vector h y (4) ) having the largest eigenvalue when the column vector h is added to h 1 h 4 h 12. Select the column vector h 16 ).
  • the eigenvalues obtained by adding a column vector h 16 to h 1 h 4 h 12 is determined to be larger than the eigenvalue of the column vectors h 1 h 4 h 12.
  • the antenna element #y selected in ST133 (5) (column vector h y (5)), be added to h 1 h 4 h 12 h 16 h 1 h
  • ST134: NO the base station 100 uses the already selected antenna elements # 1, # 4, # 12, and # 16 corresponding to the column vectors h 1 , h 4 , h 12 , and h 16 for signal transmission. It is determined as a combination of antenna elements.
  • selecting a channel estimation value according to a selection criterion for selecting an antenna element used for radio signal transmission includes the following. Specifically, base station 100 has a matrix element (for example, a column vector) corresponding to an antenna element in a channel matrix having a channel estimation value obtained for each channel between the antenna element and user terminal 200 as a matrix element. ) To calculate the gain. In addition, the base station 100 determines whether or not the gain calculated by changing the combination of matrix elements (for example, column vectors) corresponding to the antenna elements increases. Then, base station 100 determines an antenna element corresponding to a combination of matrix elements that increase the gain as an antenna element used for transmitting a radio signal.
  • a matrix element for example, a column vector
  • the base station 100 can determine the combination of antenna elements having the maximum gain among the combinations of antenna elements # 1 to # 16 by the process shown in FIG.
  • the base station 100 sequentially selects antenna elements having a maximum gain (for example, eigenvalue) from a plurality of antenna elements one by one, and performs signal processing. Determine the combination of antenna elements used for transmission.
  • a maximum gain for example, eigenvalue
  • the base station 100 each time an antenna element used for signal transmission is selected one by one (every time the value of k in FIG. 7 increases), an antenna element to be determined whether or not it should be newly added The number of (antenna elements to be selected in ST133) decreases.
  • the base station 100 does not have to calculate gains for all combinations of column vectors, so the amount of calculation in the antenna element selection process can be reduced. Further, since base station 100 does not have to calculate gains for all combinations of column vectors, it is possible to shorten the time for antenna element selection processing.
  • FIG. 9 is a flowchart showing an example of the selection process of the user terminal 200 in the base station 100 (the process of ST14 in FIG. 5).
  • the base station 100 uses the channel matrix (for example, the middle stage channel matrix shown in FIG. 6) including the column vector corresponding to the antenna element selected by the antenna element selection process shown in FIG. Reference) is used.
  • the channel matrix for example, the middle stage channel matrix shown in FIG. 6
  • the column vector corresponding to the antenna element selected by the antenna element selection process shown in FIG. Reference is used.
  • a row vector also referred to as a sub-matrix
  • the parameters used in the selection criteria for selecting a target UE to transmit a radio signal are not limited to received power, eigenvalues, and proportional fairness.
  • the parameter used in the selection criteria for selecting the target UE for transmitting the radio signal may be a parameter related to the communication quality between the antenna element and the UE, for example.
  • the base station 100 determines a transmission rate based on an eigenvalue calculated using a channel matrix, and does not apply precoding at the time of signal transmission.
  • the transmission rate may be determined based on the channel estimation value (or other parameter other than the eigenvalue) included in the channel matrix.
  • base station 100 may select a preset user terminal 200 (a fixed UE or a separately selected UE). Alternatively, the base station 100 may preferentially select the user terminal 200 that has not been selected in the past signal transmission.
  • UE # x (l + 1) is a candidate for the user terminal 200 to be added to the already selected UE # x (l).
  • base station 100 increments variable l (ST145). By incrementing the variable l, the base station 100 adds UE # x (l + 1) to the combination of user terminals 200 that are signal transmission targets.
  • base station 100 ends the selection process of user terminal 200.
  • the base station 100 determines a combination of l user terminals 200 as the user terminals 200 to be signal-transmitted by the selection process of the user terminals 200 shown in FIG.
  • the base station 100 uses the channel matrix shown in FIG.
  • the base station 100 selects a candidate for the user terminal 200 to be added to the UE # 3 from the UEs # 1, # 2, and # 4 other than the UE # 3. For example, the base station 100 calculates eigenvalues of the submatrix including the row vector of UE # 3 and the row vectors of UE # 1, # 2, and # 4, and sets UE # x (2) having the largest eigenvalue as , UE # 4 is selected.
  • base station 100 determines UE # 3 and # 4 that have already been selected as a combination of user terminals 200 that are signal transmission targets.
  • selecting a channel estimation value according to a selection criterion for selecting a user terminal to which a radio signal is to be transmitted includes the following. Specifically, base station 100 corresponds to user terminal 200 in a channel matrix (in other words, a degenerated channel matrix) having a part of channel estimation values selected according to a selection criterion related to antenna elements as matrix elements. A transmission rate is calculated by changing a combination of matrix elements (for example, row vectors). In addition, the base station 100 determines whether or not the transmission rate calculated by changing the combination of matrix elements (for example, row vectors) corresponding to the user terminal 200 increases. Then, the base station 100 determines the user terminal 200 corresponding to the combination of matrix elements whose transmission rate increases as a target for transmitting a radio signal.
  • a channel matrix in other words, a degenerated channel matrix
  • the base station 100 can determine the combination of the user terminals 200 having the maximum transmission rate among the combinations of the UEs # 1 to # 4 by the process shown in FIG.
  • the base station 100 sequentially selects the user terminals 200 having the maximum transmission rate (for example, eigenvalue) from the plurality of user terminals 200 one by one.
  • the combination of the user terminals 200 that are signal transmission targets is determined.
  • each time one user terminal 200 to be signal-transmitted is selected (each time the value of l increases in FIG. 9), the user terminal 200 (target to determine whether or not to add a new one) ( The number of user terminals 200) to be selected in ST143 decreases.
  • the base station 100 does not have to calculate the transmission rate for all combinations of the user terminals 200 (row vectors), so that the calculation amount in the selection process of the user terminals 200 can be reduced. Moreover, since the base station 100 does not have to calculate the transmission rate for all combinations of user terminals 200 (row vectors), it is possible to shorten the time for selection processing of the user terminals 200.
  • the operation example of the base station 100 has been specifically described above.
  • the base station 100 obtains a plurality of channel estimation values for each channel between the plurality of antenna elements included in the plurality of transmission points 10 and the user terminal 200. Then, base station 100 selects some channel estimation values according to a selection criterion for selecting a channel estimation value corresponding to an antenna element used for transmitting a radio signal from among a plurality of channel estimation values. Further, the base station 100 selects a part of the channel estimation values from the selected part of the channel estimation values according to a selection criterion for selecting the user terminal 200 to which the radio signal is to be transmitted. Then, base station 100 controls transmission of a radio signal based on a channel estimation value selected according to a selection criterion for selecting a user terminal.
  • This process allows the base station 100 to select the user terminal 200 using a part of channel estimation values corresponding to the already selected antenna elements when selecting the user terminal 200 to which the radio signal is to be transmitted.
  • the base station 100 can select a user terminal to which a radio signal is to be transmitted using a channel matrix obtained by degenerating a channel matrix having a plurality of channel estimation values as matrix elements. Therefore, the base station 100 can reduce the amount of calculation in the selection process of the user terminal 200 that is the signal transmission target.
  • the base station 100 sequentially selects antenna elements having the maximum gain one antenna element at a time. Similarly, the base station 100 sequentially selects the user terminals 200 having the maximum transmission rate one by one. Through these processes, the base station 100 can reduce the amount of calculation in each of the antenna element selection and the user terminal 200 selection, and can appropriately select the antenna element and the user terminal 200.
  • the base station 100 may select an antenna element after selecting the user terminal 200.
  • the base station 100 uses the channel estimation values obtained for a plurality of channels between all antenna elements and all user terminals 200 as shown in FIG. Is selected (for example, the process of FIG. 9).
  • the base station 100 may select the antenna element used for transmission of a radio signal using the partial channel estimation value corresponding to the selected user terminal 200 (for example, the process of FIG. 7).
  • the base station 100 when selecting an antenna element, can select an antenna element by using a channel matrix (in other words, a degenerated channel matrix) including a channel estimation value related to the user terminal 200 that has already been selected. Therefore, the base station 100 can reduce the amount of calculation in the selection process of the antenna element used for signal transmission.
  • a channel matrix in other words, a degenerated channel matrix
  • the base station 100 uses a part of channel estimation values selected from a plurality of channel estimation values between the antenna element and the user terminal 200 to use a channel (for example, an antenna element or a user) for signal transmission.
  • a channel for example, an antenna element or a user
  • the terminal 200 may be selected.
  • the base station 100 can preferentially select an antenna element having a high power value, for example. Further, when the user terminal 200 is selected before the antenna element, the base station 100 can preferentially select the user terminal 200 to which data transmission is to be assigned, for example.
  • the base station 100 may group a plurality of antenna elements included in the plurality of transmission points 10 into a plurality of groups, and select the antenna elements for each group.
  • each group may be a unit of the transmission point 10. This processing can further reduce the amount of calculation of the antenna element selection processing in the base station 100.
  • the base station 100 may group a plurality of user terminals 200 into a plurality of groups and select the user terminal 200 for each group unit. By this process, the calculation amount of the selection process of the user terminal 200 in the base station 100 can be further reduced.
  • the base station 100 selects one user terminal 200 (UE #x (1) in FIG. 9).
  • the selection process of the user terminal 200 is not limited to this.
  • the base station 100 may select a plurality of user terminals 200.
  • the base station 100 includes the user terminal 200 to be prioritized as a signal transmission target, and the above-described embodiment.
  • the user terminal 200 may be selected based on the transmission rate obtained in the same manner. With this process, when there is a user terminal 200 that needs to perform signal transmission with priority, the user terminal 200 can be added to a signal transmission target regardless of the transmission rate.
  • antenna elements that can obtain further gain with respect to already selected antenna elements are sequentially added one antenna element at a time.
  • the antenna element selection method is not limited to this processing.
  • the base station 100 may sequentially add two or more predetermined number of antenna elements in order to obtain further gain.
  • the base station 100 determines a combination of the user terminals 200
  • the user terminals 200 that can obtain a higher transmission rate with respect to the user terminals 200 that have already been selected are sequentially ordered by two or more predetermined numbers of user terminals 200. May be added.
  • This process can further reduce the calculation amount of the selection process of the antenna element or the user terminal 200.
  • each user terminal 200 may include at least one antenna element.
  • the base station 100 may use a channel matrix between a plurality of antenna elements included in the plurality of transmission points 10 and a plurality of antenna elements included in each of at least one user terminal 200.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of the base station 100 and the user terminal 200 according to an embodiment of the present disclosure.
  • the base station 100 and the user terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station 100 and the user terminal 200 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the base station 100 and the user terminal 200 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described encoding unit 101, modulation unit 102, channel estimation unit 103, selection unit 104, transmission control unit 105, demodulation unit 204, decoding unit 205, and the like may be realized by the processor 1001.
  • the above table may be stored in the memory 1002.
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the functional blocks constituting the base station 100 and the user terminal 200 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks are similarly realized. May be.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the above-described wireless transmission units 106 and 201, antennas 107 and 202, wireless reception units 108 and 203, and the like may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the base station 100 and the user terminal 200 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). Hardware may be configured, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand)
  • Bluetooth Registered trademark
  • a system using another appropriate system and / or a next generation system extended based on the system may be applied.
  • the specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • Information, signal Information, signals, etc. described herein may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • radio resource may be indicated by an index.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
  • a user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
  • the correction RS may be referred to as TRS (Tracking ⁇ RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS.
  • the demodulation RS and the correction RS may be called differently corresponding to each. Further, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the radio frame may be composed of one or a plurality of frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, etc.
  • a subframe may further be composed of one or more slots in the time domain.
  • the slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
  • the minimum time unit of scheduling may be called TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • the resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included.
  • One TTI and one subframe may each be composed of one or a plurality of resource units.
  • the resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband.
  • the resource unit may be composed of one or a plurality of REs.
  • 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block
  • the number of carriers can be variously changed.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • One embodiment of the present disclosure is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station comprising: a transmission circuit that sends wireless signals; and a control circuit that controls the transmission of the wireless signals on the basis of a channel estimation value selected in accordance with first and second selection criteria, from among a plurality of channel estimation values obtained for each channel between a user terminal and a plurality of antenna elements included in a plurality of transmission points.

Description

基地局及び送信方法Base station and transmission method
 本開示は、基地局及び送信方法に関する。 This disclosure relates to a base station and a transmission method.
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれるシステムがある。 In the UMTS (Universal Mobile Telecommunication System) network, Long Term Evolution (LTE: Long Term Evolution) has been specified for the purpose of further high data rate and low delay (Non-patent Document 1). In addition, a successor system of LTE is also being studied for the purpose of further widening the bandwidth and speeding up from LTE. LTE successors include LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is a system called.
 将来の無線通信システム(例えば、5G)では、信号伝送の更なる高速化及び干渉低減を図るために、高周波数帯(例えば、4GHz以上)において多数のアンテナ素子(例えば、100素子以上)を用いる大規模(Massive)MIMO(Multiple Input Multiple Output)を用いることが検討されている。また、Massive MIMOにおいて、各々が1以上のアンテナ素子を備えた複数の送信点(TP:Transmission Point)と、信号処理装置とを備えた超高密度分散アンテナシステムによる無線通信システムが検討されている(例えば、非特許文献1)。 In future wireless communication systems (for example, 5G), a large number of antenna elements (for example, 100 elements or more) are used in a high frequency band (for example, 4 GHz or more) in order to further increase the speed of signal transmission and reduce interference. The use of massive MIMO (Multiple Input Multiple Output) is being studied. In Massive MIMO, a wireless communication system using an ultra-high-density distributed antenna system including a plurality of transmission points (TP) each having one or more antenna elements and a signal processing device is being studied. (For example, Non-Patent Document 1).
 しかしながら、超高密度分散アンテナシステムのように、複数の送信点と複数のユーザ端末(UE:User Equipment)とが存在する環境において、信号伝送に使用するチャネルを選択する方法については十分に検討されていない。 However, in an environment where there are a plurality of transmission points and a plurality of user terminals (UE: UsermentEquipment) as in an ultra-high density distributed antenna system, a method for selecting a channel to be used for signal transmission has been sufficiently studied. Not.
 そこで、本開示の一態様は、信号伝送に使用するチャネルを適切に選択できる基地局及び送信方法を提供することを目的の1つとする。 Therefore, an object of one embodiment of the present disclosure is to provide a base station and a transmission method that can appropriately select a channel used for signal transmission.
 本開示の一態様に係る基地局は、無線信号を送信する送信回路と、複数の送信点に含まれる複数のアンテナ素子と、ユーザ端末と、の間の各々のチャネルについて得られる複数のチャネル推定値の中から、第1の選択基準と第2の選択基準とに従って選択されたチャネル推定値に基づいて、前記無線信号の送信を制御する制御回路と、を備える。 A base station according to an aspect of the present disclosure includes a plurality of channel estimations obtained for each channel between a transmission circuit that transmits a radio signal, a plurality of antenna elements included in a plurality of transmission points, and a user terminal A control circuit that controls transmission of the radio signal based on a channel estimation value selected according to a first selection criterion and a second selection criterion from among the values.
 本開示によれば、信号伝送に使用するチャネルを適切に選択できる。 According to the present disclosure, a channel used for signal transmission can be appropriately selected.
無線通信システムの構成例を示す図である。It is a figure which shows the structural example of a radio | wireless communications system. 基地局の構成例を示すブロック図である。It is a block diagram which shows the structural example of a base station. ユーザ端末の構成例を示すブロック図である。It is a block diagram which shows the structural example of a user terminal. 無線通信システムにおける送信点及びユーザ端末の一例を示す図である。It is a figure which shows an example of the transmission point in a radio | wireless communications system, and a user terminal. 基地局の動作例を示すフローチャートである。It is a flowchart which shows the operation example of a base station. アンテナ素子及びユーザ端末の選択処理の一例を示す図である。It is a figure which shows an example of the selection process of an antenna element and a user terminal. アンテナ素子の選択処理の一例を示すフローチャートである。It is a flowchart which shows an example of the selection process of an antenna element. アンテナ素子毎の列ベクトルの一例を示す図である。It is a figure which shows an example of the column vector for every antenna element. ユーザ端末の選択処理の一例を示すフローチャートである。It is a flowchart which shows an example of the selection process of a user terminal. ユーザ端末の選択処理の一例を示す図である。It is a figure which shows an example of the selection process of a user terminal. 基地局及びユーザ端末のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of a base station and a user terminal.
 以下、本開示の実施の形態を、図面を参照して説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 [無線通信システムの構成]
 図1は、本実施の形態に係る無線通信システムの構成例を示す。図1に示す無線通信システム1は、例えば、超高密度分散アンテナシステムであり、複数の送信点10a~10i及び信号処理装置20を含む基地局(無線基地局又はgNBと呼ぶこともある)100と、少なくとも1つのユーザ端末(無線端末又はUE(User Equipment)と呼ぶこともある)200を、を備える。
[Configuration of wireless communication system]
FIG. 1 shows a configuration example of a radio communication system according to the present embodiment. A radio communication system 1 shown in FIG. 1 is, for example, an ultra-high density distributed antenna system, and includes a base station (also referred to as a radio base station or gNB) 100 including a plurality of transmission points 10a to 10i and a signal processing device 20. And at least one user terminal (sometimes referred to as a radio terminal or UE (User Equipment)) 200.
 なお、同種の要素を区別して説明する場合には、「送信点10a~10i」及び「ユーザ端末200a」、「ユーザ端末200b」のように参照符号を使用し、同種の要素を区別しないで説明する場合には、「送信点10」及び「ユーザ端末200」のように参照符号のうちの共通番号を使用することがある。 When the same type of elements are described separately, reference numerals are used such as “transmission points 10a to 10i”, “user terminal 200a”, and “user terminal 200b”, and the same types of elements are not distinguished. In this case, a common number among the reference symbols may be used such as “transmission point 10” and “user terminal 200”.
 送信点10a~10iの各々は、1以上のアンテナ素子を有する。また、送信点10a~10iの各々は、信号処理装置20と接続されている。また、図1に示すように、送信点10a~10iがそれぞれ形成するセルは、例えば、互いにオーバーラップしている。 Each of the transmission points 10a to 10i has one or more antenna elements. Each of the transmission points 10a to 10i is connected to the signal processing device 20. Further, as shown in FIG. 1, the cells formed by the transmission points 10a to 10i, for example, overlap each other.
 例えば、図1において、基地局100は、送信点10a~10iの配下(例えば、セル内)のユーザ端末200a,200bと無線通信を行う。例えば、基地局100は、ユーザ端末200の移動に応じて、送信点10a~10iの中から少なくとも1つの送信点10を選択し、選択された送信点10がユーザ端末200に対して信号を伝送する。 For example, in FIG. 1, the base station 100 performs wireless communication with the user terminals 200a and 200b under the transmission points 10a to 10i (for example, in a cell). For example, the base station 100 selects at least one transmission point 10 from the transmission points 10 a to 10 i according to the movement of the user terminal 200, and the selected transmission point 10 transmits a signal to the user terminal 200. To do.
 信号処理装置20は、ユーザ端末200に送信する信号の信号処理を行う。信号処理された信号は、送信点10a~10iの少なくとも1つに出力され、ユーザ端末200に無線送信される。また、信号処理装置20は、送信点10a~10iが受信したユーザ端末200からの信号を、送信点10a~10iからそれぞれ受信する。 The signal processing device 20 performs signal processing of a signal transmitted to the user terminal 200. The signal processed signal is output to at least one of the transmission points 10a to 10i and wirelessly transmitted to the user terminal 200. Further, the signal processing device 20 receives the signals from the user terminals 200 received by the transmission points 10a to 10i from the transmission points 10a to 10i, respectively.
 上述したように、図1に示す無線通信システム1では、複数の送信点10(複数のアンテナ素子)と、複数のユーザ端末200とが存在する。信号処理装置20は、複数のアンテナ素子と複数のユーザ端末200との間の複数のチャネルの中から、信号伝送に使用するチャネルを選択する。 As described above, in the wireless communication system 1 shown in FIG. 1, there are a plurality of transmission points 10 (a plurality of antenna elements) and a plurality of user terminals 200. The signal processing device 20 selects a channel to be used for signal transmission from a plurality of channels between the plurality of antenna elements and the plurality of user terminals 200.
 ここで、Massive MIMOのように多数のアンテナ素子を備える場合、信号処理装置20において信号伝送に使用するチャネルを選択する際に、アンテナ素子とユーザ端末200との取り得る全ての組み合わせについて演算するのでは、膨大な計算量が見込まれる。 Here, when a large number of antenna elements are provided, such as Massive MIMO, when selecting a channel to be used for signal transmission in the signal processing device 20, calculation is performed for all possible combinations of the antenna elements and the user terminal 200. Then, enormous amount of calculation is expected.
 そこで、本開示の一態様では、基地局100が、信号伝送に使用するチャネルを選択する際の計算量を低減する方法について説明する。 Therefore, in one aspect of the present disclosure, a method for reducing the amount of calculation when the base station 100 selects a channel to be used for signal transmission will be described.
 なお、図1では、2台のユーザ端末200を示しているが、ユーザ端末200の数はこれに限らない。例えば、送信点10a~10iの配下には、1台のユーザ端末200が存在してもよく、3台以上のユーザ端末200が存在してもよい。または、送信点10a~10iの何れかの配下には、ユーザ端末200が存在しない場合もある。 In FIG. 1, two user terminals 200 are shown, but the number of user terminals 200 is not limited to this. For example, one user terminal 200 may exist under the transmission points 10a to 10i, and three or more user terminals 200 may exist. Alternatively, the user terminal 200 may not exist under any of the transmission points 10a to 10i.
 また、基地局100が有する送信点10の数は、送信点10a~10iの9個に限らず、他の個数でもよい。また、各送信点10が有するアンテナ素子数は同一でもよく、異なる数でもよい。 Further, the number of transmission points 10 included in the base station 100 is not limited to nine transmission points 10a to 10i, but may be other numbers. Further, the number of antenna elements included in each transmission point 10 may be the same or different.
 また、送信点は、「張出局」又は「RRH(Remote Radio Head)」と呼ばれることもある。また、信号処理装置は、「BBU(Baseband processing Unit)」と呼ばれることもある。 Also, the transmission point may be referred to as “overhanging station” or “RRH (Remote Radio Radio Head)”. In addition, the signal processing apparatus may be called “BBU (Baseband processing Unit)”.
 [基地局の構成]
 図2は、基地局100の構成例を示すブロック図である。なお、図2では、ダウンリンクのデータ送信に関する構成を示し、アップリンクのデータ受信に関する構成を省略する。
[Base station configuration]
FIG. 2 is a block diagram illustrating a configuration example of the base station 100. FIG. 2 shows a configuration related to downlink data transmission, and a configuration related to uplink data reception is omitted.
 図2に示す基地局100は、n(1以上の整数)個の送信点10と、信号処理装置20とを備える。例えば、図1に示す送信点10a~10iは、図2におけるn=9の送信点10-1~10-9に対応する。 The base station 100 shown in FIG. 2 includes n (an integer greater than or equal to 1) transmission points 10 and a signal processing device 20. For example, the transmission points 10a to 10i shown in FIG. 1 correspond to the transmission points 10-1 to 10-9 of n = 9 in FIG.
 信号処理装置20は、符号化部101と、変調部102と、チャネル推定部103と、選択部104と、送信制御部105と、を有し、各送信点10-1~10-nは、無線送信部106と、アンテナ107と、無線受信部108とを有する。 The signal processing device 20 includes an encoding unit 101, a modulation unit 102, a channel estimation unit 103, a selection unit 104, and a transmission control unit 105. The transmission points 10-1 to 10-n are A wireless transmission unit 106, an antenna 107, and a wireless reception unit 108 are included.
 なお、図2では、例えば、OFDM(Orthogonal Frequency Division Multiplexing)伝送を行う場合、基地局100がOFDM信号を生成するための構成(例えば、IFFT(Inverse Fast Fourier Transform)処理部、CP(Cyclic Prefix)付加部)等の記載を省略している。 In FIG. 2, for example, when performing OFDM (Orthogonal Frequency Division Multiplexing) transmission, the base station 100 generates an OFDM signal (for example, IFFT (Inverse Fast Fourier Transform) processing unit, CP (Cyclic Prefix)). (Additional part) etc. are omitted.
 符号化部101は、入力される送信データを符号化し、符号化後の送信データを変調部102に出力する。 The encoding unit 101 encodes input transmission data, and outputs the encoded transmission data to the modulation unit 102.
 変調部102は、符号化部101から入力される送信データを変調し、変調後の送信データを送信制御部105に出力する。 Modulation section 102 modulates the transmission data input from encoding section 101 and outputs the modulated transmission data to transmission control section 105.
 チャネル推定部103には、各ユーザ端末200から送信され、基地局100が有する送信点10のアンテナ107(アンテナ素子)において受信された参照信号(チャネル推定用参照信号)が入力される。 The channel estimation unit 103 receives a reference signal (channel estimation reference signal) transmitted from each user terminal 200 and received by the antenna 107 (antenna element) of the transmission point 10 of the base station 100.
 チャネル推定部103は、参照信号を用いて、各ユーザ端末200と各送信点10のアンテナ素子との間のチャネルを推定し、チャネル推定結果を選択部104および送信制御部105に出力する。なお、本実施の形態では、無線通信システム1がTDD(Time Division Duplex)伝送方式を用いる。このため、チャネル推定部103は、ユーザ端末200から送信される参照信号(つまり、アップリンク信号)を用いて、送信点10とユーザ端末200との間のダウンリンクのチャネルを推定できる。 The channel estimation unit 103 estimates a channel between each user terminal 200 and the antenna element of each transmission point 10 using the reference signal, and outputs a channel estimation result to the selection unit 104 and the transmission control unit 105. In the present embodiment, the wireless communication system 1 uses a TDD (Time Division Division Duplex) transmission method. For this reason, the channel estimation unit 103 can estimate the downlink channel between the transmission point 10 and the user terminal 200 using the reference signal (that is, the uplink signal) transmitted from the user terminal 200.
 選択部104(例えば、スケジューラ)は、チャネル推定部103から入力される、ユーザ端末200と送信点10(アンテナ素子)との間のチャネル推定結果に基づいて、信号伝送に使用するチャネルを選択する。例えば、選択部104は、信号伝送対象のユーザ端末200を選択する。また、選択部104は、信号伝送に使用されるアンテナ素子を選択する。選択部104は、選択したチャネルを示す選択情報を送信制御部105に出力する。なお、選択部104にける信号伝送に使用するチャネルの選択方法の詳細については後述する。 The selection unit 104 (for example, a scheduler) selects a channel to be used for signal transmission based on a channel estimation result input from the channel estimation unit 103 between the user terminal 200 and the transmission point 10 (antenna element). . For example, the selection unit 104 selects the user terminal 200 that is a signal transmission target. The selection unit 104 selects an antenna element used for signal transmission. The selection unit 104 outputs selection information indicating the selected channel to the transmission control unit 105. Details of a method for selecting a channel used for signal transmission in the selection unit 104 will be described later.
 送信制御部105は、選択部104から入力される選択情報に基づいて、変調部102から入力される送信データ(例えば、選択されたユーザ端末200宛ての送信データ)に対して、選択情報に示されるアンテナ素子を用いて送信するための送信制御を行う。送信制御部105は、送信データ及び送信制御情報(例えば、選択情報を含む)を、選択されたアンテナ素子を含む送信点10に出力する。 Based on the selection information input from the selection unit 104, the transmission control unit 105 indicates the transmission data input from the modulation unit 102 (for example, transmission data addressed to the selected user terminal 200) in the selection information. Transmission control for transmitting using the antenna element. The transmission control unit 105 outputs transmission data and transmission control information (for example, including selection information) to the transmission point 10 including the selected antenna element.
 例えば、送信制御部105は、送信データに対して複数のアンテナ素子を用いてビームフォーミング又はプリコーディングを行ってもよい。この場合、送信制御部105は、チャネル推定部103から入力されるチャネル推定結果を用いて、ビームフォーミングウェイト又はプリコーディング行列を生成してもよい。または、送信制御部105は、チャネル推定結果を用いて、ユーザ端末200の送信データに対して送信電力制御を行ってもよい。 For example, the transmission control unit 105 may perform beam forming or precoding on transmission data using a plurality of antenna elements. In this case, the transmission control unit 105 may generate a beamforming weight or a precoding matrix using the channel estimation result input from the channel estimation unit 103. Or the transmission control part 105 may perform transmission power control with respect to the transmission data of the user terminal 200 using a channel estimation result.
 各送信点10-1~10-nにおいて、アンテナ107は、1以上のアンテナ素子を有する。 At each of the transmission points 10-1 to 10-n, the antenna 107 has one or more antenna elements.
 各送信点10の無線送信部106は、送信制御部105から入力される送信データ(ベースバンド信号)に対して、D/A変換、周波数変換、増幅等の無線送信処理を行い、無線信号を生成する。無線送信部106は、生成した無線信号を、送信制御部105から入力される送信制御情報に示されるアンテナ素子(アンテナ107)を介して送信する。 The radio transmission unit 106 at each transmission point 10 performs radio transmission processing such as D / A conversion, frequency conversion, amplification, etc. on the transmission data (baseband signal) input from the transmission control unit 105 and transmits the radio signal. Generate. The wireless transmission unit 106 transmits the generated wireless signal via the antenna element (antenna 107) indicated by the transmission control information input from the transmission control unit 105.
 各送信点10の無線受信部108は、アンテナ107(アンテナ素子)を介して、ユーザ端末200から受信した無線信号に対して、A/D変換、周波数変換等の無線受信処理を行う。無線受信部108は、無線受信処理後の受信信号に含まれる参照信号を、チャネル推定部103に出力する。 The radio reception unit 108 at each transmission point 10 performs radio reception processing such as A / D conversion and frequency conversion on the radio signal received from the user terminal 200 via the antenna 107 (antenna element). Radio reception section 108 outputs a reference signal included in the reception signal after the radio reception processing to channel estimation section 103.
 [ユーザ端末の構成]
 図3は、ユーザ端末200の構成例を示すブロック図である。なお、図3では、ダウンリンクのデータ受信に関する構成を示し、アップリンクのデータ送信に関する構成を省略する。
[User terminal configuration]
FIG. 3 is a block diagram illustrating a configuration example of the user terminal 200. FIG. 3 shows a configuration related to downlink data reception, and a configuration related to uplink data transmission is omitted.
 図3に示すユーザ端末200は、無線送信部201と、アンテナ202と、無線受信部203と、復調部204と、復号部205と、を有する。 The user terminal 200 illustrated in FIG. 3 includes a wireless transmission unit 201, an antenna 202, a wireless reception unit 203, a demodulation unit 204, and a decoding unit 205.
 なお、図3では、ユーザ端末200におけるOFDM信号を受信するための構成(例えば、CP除去部、FFT処理部)等の記載を省略している。 In FIG. 3, description of a configuration for receiving an OFDM signal in the user terminal 200 (for example, a CP removal unit, an FFT processing unit) is omitted.
 無線送信部201は、入力される参照信号に対して、D/A変換、周波数変換、増幅等の無線送信処理を行い、無線信号を生成し、生成した無線信号をアンテナ202を介して送信する。 The wireless transmission unit 201 performs wireless transmission processing such as D / A conversion, frequency conversion, and amplification on the input reference signal, generates a wireless signal, and transmits the generated wireless signal via the antenna 202. .
 アンテナ202は、1以上のアンテナ素子を有する。 The antenna 202 has one or more antenna elements.
 無線受信部203は、アンテナ202を介して、基地局100から受信した無線信号に対して、A/D変換、周波数変換等の無線受信処理を行い、無線受信処理後の受信信号を復調部204に出力する。 The radio reception unit 203 performs radio reception processing such as A / D conversion and frequency conversion on the radio signal received from the base station 100 via the antenna 202, and demodulates the received signal after the radio reception processing. Output to.
 復調部204は、無線受信部203から入力される受信信号を復調して、復調後の信号を復号部205に出力する。 The demodulation unit 204 demodulates the reception signal input from the wireless reception unit 203 and outputs the demodulated signal to the decoding unit 205.
 復号部205は、復調部204から入力される信号を復号し、受信データを出力する。 The decoding unit 205 decodes the signal input from the demodulation unit 204 and outputs received data.
 [基地局の動作]
 次に、上述した基地局100の動作例について具体的に説明する。
[Base station operation]
Next, an operation example of the base station 100 described above will be specifically described.
 以下の説明では、無線通信システム1は、図4に示すように、4個の送信点10(TP#1、TP#2、TP#3、TP#4)、及び、4個のユーザ端末200(UE#1、UE#2、UE#3、UE#4)を含む。 In the following description, as illustrated in FIG. 4, the wireless communication system 1 includes four transmission points 10 (TP # 1, TP # 2, TP # 3, and TP # 4) and four user terminals 200. (UE # 1, UE # 2, UE # 3, UE # 4).
 また、図4に示す各送信点10は、4個のアンテナ素子をそれぞれ有する。すなわち、図4では、無線通信システム1には16個のアンテナ素子が含まれる。以下では、一例として、TP#1がアンテナ素子#1~#4を有し、TP#2がアンテナ素子#5~#8を有し、TP#3がアンテナ素子#9~#12を有し、TP#4がアンテナ素子#13~#16を有する。 Each transmission point 10 shown in FIG. 4 has four antenna elements. That is, in FIG. 4, the radio communication system 1 includes 16 antenna elements. In the following, as an example, TP # 1 has antenna elements # 1 to # 4, TP # 2 has antenna elements # 5 to # 8, and TP # 3 has antenna elements # 9 to # 12. , TP # 4 includes antenna elements # 13 to # 16.
 基地局100は、16個のアンテナ素子#1~#16と、4個のユーザ端末200(UE#1~UE#4)との間の複数のチャネルについて得られるチャネル推定値の中から、信号伝送に使用されるチャネルを選択する。以下では、例えば、基地局100は、信号伝送に使用されるアンテナ素子及び信号伝送対象のユーザ端末200を選択する。 The base station 100 transmits a signal from channel estimation values obtained for a plurality of channels between the 16 antenna elements # 1 to # 16 and the four user terminals 200 (UE # 1 to UE # 4). Select the channel used for transmission. In the following, for example, the base station 100 selects the antenna element used for signal transmission and the user terminal 200 for signal transmission.
 図5は、基地局100における信号(例えば、データ)伝送処理の一例を示すフローチャートである。また、図6は、基地局100(例えば、選択部104)におけるアンテナ素子及びユーザ端末200の選択処理の一例を示す。 FIG. 5 is a flowchart showing an example of signal (for example, data) transmission processing in the base station 100. FIG. 6 illustrates an example of the selection process of the antenna element and the user terminal 200 in the base station 100 (for example, the selection unit 104).
 基地局100は、各ユーザ端末200から送信された参照信号を、複数の送信点10のアンテナ素子において受信する(ST11)。例えば、図4において、UE#1~UE#4から送信された参照信号は、アンテナ素子#1~#16でそれぞれ受信される。 The base station 100 receives the reference signal transmitted from each user terminal 200 at the antenna elements of the plurality of transmission points 10 (ST11). For example, in FIG. 4, reference signals transmitted from UE # 1 to UE # 4 are received by antenna elements # 1 to # 16, respectively.
 基地局100は、図5に示すように、ST11において受信した参照信号を用いて、各ユーザ端末200と各アンテナ素子との間のダウンリンクのチャネルを推定し、推定したチャネルを表すチャネル行列を生成する(ST12)。例えば、基地局100は、図6に示すように、UE#xと、アンテナ素子#yとの間のチャネル推定値h(x,y)(ただし、x=1、2、3又は4、y=1~16の何れか)を要素とする4行×16列のチャネル行列を生成する。 As illustrated in FIG. 5, the base station 100 estimates a downlink channel between each user terminal 200 and each antenna element using the reference signal received in ST11, and obtains a channel matrix representing the estimated channel. Generate (ST12). For example, as illustrated in FIG. 6, the base station 100 determines a channel estimation value h (x, y) between the UE #x and the antenna element #y (where x = 1, 2, 3, or 4, y = Any one of 1 to 16), a 4 × 16 channel matrix is generated.
 基地局100は、図5に示すように、ST12において生成したチャネル行列を用いて、信号伝送に使用されるアンテナ素子を選択する(ST13)。例えば、図6では、基地局100は、アンテナ素子#1、#4、#12、#16を選択する。また、基地局100は、ST12において生成したチャネル行列に含まれる要素のうち、選択したアンテナ素子に関する要素を含むチャネル行列を生成する。例えば、図6に示すように、基地局100は、UE#xと、ST13において選択したアンテナ素子#y’との間のチャネル推定値h(x,y’)(ただし、x=1、2、3又は4、y’=1、4、12又は16)を要素とする4行×4列のチャネル行列を生成する。なお、ST13におけるアンテナ素子の選択方法の詳細については後述する。 As shown in FIG. 5, the base station 100 selects an antenna element used for signal transmission using the channel matrix generated in ST12 (ST13). For example, in FIG. 6, the base station 100 selects antenna elements # 1, # 4, # 12, and # 16. Also, base station 100 generates a channel matrix including elements related to the selected antenna element among the elements included in the channel matrix generated in ST12. For example, as illustrated in FIG. 6, the base station 100 determines the channel estimation value h (x, y ′) between the UE #x and the antenna element #y ′ selected in ST13 (where x = 1, 2). 3 or 4, y ′ = 1, 4, 12 or 16), and a 4 × 4 channel matrix is generated. Details of the antenna element selection method in ST13 will be described later.
 基地局100は、図5に示すように、ST12において生成したチャネル行列を用いて、信号伝送対象のユーザ端末200を選択する(ST14)。例えば、図6では、基地局100は、UE#3、UE#4を選択する。また、基地局100は、ST12において生成したチャネル行列に含まれる要素のうち、選択したユーザ端末200に関する要素を含むチャネル行列を生成する。例えば、図6に示すように、基地局100は、ST14において選択したUE#x’と、ST13において選択したアンテナ素子#y’との間のチャネル推定値h(x’,y’)(ただし、x’=3又は4、y’=1、4、12又は16)を要素とする2行×4列のチャネル行列を生成する。なお、ST14におけるアンテナ素子の選択方法の詳細については後述する。 As shown in FIG. 5, the base station 100 uses the channel matrix generated in ST12 to select a user terminal 200 that is a signal transmission target (ST14). For example, in FIG. 6, the base station 100 selects UE # 3 and UE # 4. Moreover, the base station 100 generates a channel matrix including elements related to the selected user terminal 200 among elements included in the channel matrix generated in ST12. For example, as illustrated in FIG. 6, the base station 100 determines a channel estimation value h (x ′, y ′) between the UE #x ′ selected in ST14 and the antenna element #y ′ selected in ST13 (however, , X ′ = 3 or 4, y ′ = 1, 4, 12 or 16), a 2 × 4 channel matrix is generated. Details of the antenna element selection method in ST14 will be described later.
 基地局100は、図5に示すように、ST13において選択したアンテナ素子と、ST14において選択したユーザ端末200とに対して送信制御を行う(ST15)。例えば、基地局100は、図6に示す2行×4列のチャネル行列を用いて、UE#3及びUE#4宛ての送信データに対する、アンテナ素子#1、#4、#12及び#16を用いたプリコーディング行列を生成してよい。 As shown in FIG. 5, the base station 100 performs transmission control on the antenna element selected in ST13 and the user terminal 200 selected in ST14 (ST15). For example, the base station 100 uses antenna elements # 1, # 4, # 12, and # 16 for transmission data addressed to UE # 3 and UE # 4 using the channel matrix of 2 rows × 4 columns shown in FIG. The used precoding matrix may be generated.
 そして、基地局100は、ST15における送信制御に従って、ST13において選択したアンテナ素子#1、#4、#12及び#16を用いて、ST14において選択したUE#3及びUE#4に対する信号伝送を行う(ST16)。 Then, base station 100 performs signal transmission to UE # 3 and UE # 4 selected in ST14 using antenna elements # 1, # 4, # 12, and # 16 selected in ST13 according to the transmission control in ST15. (ST16).
 図6に示すように、基地局100は、アンテナ素子#1~#16とUE#1~#4との間のチャネル推定値(例えば、図6では、4行×16列のチャネル行列)を用いて、複数のアンテナ素子#1~#6の中から、無線信号の送信に使用されるアンテナ素子(図6では、アンテナ素子#1,#4,#12及び#16)を決定する。また、図6に示すように、基地局100は、4行×16列のチャネル行列に含まれるチャネル推定値のうち、決定したアンテナ素子#1,#4,#12及び#16に対応する一部のチャネル推定値を選択する。そして、基地局100は、選択した一部のチャネル推定値(図6では、4行×4列のチャネル行列)を用いて、UE#1~UE#4の中から、無線信号を送信する対象のユーザ端末200(図6では、UE#3及び#4)を決定する。 As shown in FIG. 6, base station 100 obtains channel estimation values (for example, a channel matrix of 4 rows × 16 columns in FIG. 6) between antenna elements # 1 to # 16 and UEs # 1 to # 4. The antenna elements (antenna elements # 1, # 4, # 12, and # 16 in FIG. 6) used for transmitting the radio signal are determined from among the plurality of antenna elements # 1 to # 6. In addition, as shown in FIG. 6, the base station 100 selects one of the channel estimation values included in the 4 × 16 channel matrix corresponding to the determined antenna elements # 1, # 4, # 12, and # 16. Select the channel estimate for the part. Then, base station 100 uses the selected partial channel estimation values (channel matrix of 4 rows × 4 columns in FIG. 6) to transmit radio signals from UE # 1 to UE # 4. User terminal 200 (UE # 3 and # 4 in FIG. 6) is determined.
 例えば、図6では、基地局100は、アンテナ素子の選択に使用された4行×16列のチャネル行列から、選択されたアンテナ素子に対応する列ベクトルを抜き出して、ユーザ端末200の選択に使用する4行×4列のチャネル行列を生成する。換言すると、基地局100は、アンテナ素子の選択に使用された4行×16列のチャネル行列を、4行×4列のチャネル行列に縮退して、ユーザ端末200の選択処理を実行する。 For example, in FIG. 6, the base station 100 extracts a column vector corresponding to the selected antenna element from the channel matrix of 4 rows × 16 columns used for selection of the antenna element, and uses it for selection of the user terminal 200. A 4 × 4 channel matrix is generated. In other words, the base station 100 performs the selection process of the user terminal 200 by degenerating the channel matrix of 4 rows × 16 columns used for selecting the antenna elements into a channel matrix of 4 rows × 4 columns.
 この処理により、基地局100は、選択されなかったアンテナ素子に関するチャネル推定値を使用せずに、ユーザ端末200の選択処理を実行できるので、ユーザ端末200の選択処理の計算量を低減できる。換言すると、基地局100は、無線信号の送信に使用するチャネルの選択処理の計算量を低減できる。 By this process, the base station 100 can execute the selection process of the user terminal 200 without using the channel estimation value regarding the antenna element that has not been selected, so that the calculation amount of the selection process of the user terminal 200 can be reduced. In other words, the base station 100 can reduce the amount of calculation for selecting a channel used for transmitting a radio signal.
 [アンテナ素子の選択方法]
 次に、図5に示すST13におけるアンテナ素子の選択方法の詳細について説明する。
[Selection method of antenna element]
Next, details of the antenna element selection method in ST13 shown in FIG. 5 will be described.
 図7は、基地局100におけるアンテナ素子の選択処理(図5のST13の処理)の一例を示すフローチャートである。 FIG. 7 is a flowchart showing an example of antenna element selection processing (processing of ST13 in FIG. 5) in the base station 100.
 なお、基地局100は、図7に示す処理を行う際、図8に示すように、図5のST12の処理において得られたチャネル行列の列方向のチャネル推定値[h(1,y),h(2,y),h(3,y),h(4,y)](ただし、y=1~16の何れか)を含む列ベクトルh~h16を算出する。列ベクトルh~h16は、アンテナ素子#1~#16のチャネルにそれぞれ対応する。 When the base station 100 performs the process shown in FIG. 7, as shown in FIG. 8, the channel direction channel estimated value [h (1, y), column vectors h 1 to h 16 including h (2, y), h (3, y), h (4, y)] (where y = 1 to 16) are calculated. Column vectors h 1 to h 16 correspond to the channels of antenna elements # 1 to # 16, respectively.
 図7において、基地局100は、変数kを初期化(k=1)する(ST131)。 In FIG. 7, the base station 100 initializes a variable k (k = 1) (ST131).
 基地局100は、複数のアンテナ素子の中から、アンテナ素子#y(1)(列ベクトルhy(1))(つまり、k=1)を選択する(ST132)。例えば、基地局100は、伝搬環境が最も良好なアンテナ素子を選択してもよい。具体的には、基地局100は、アンテナ素子に対応する列ベクトルhを用いて受信電力又は固有値を算出し、算出した値が最も大きいアンテナ素子(列ベクトルh)を選択してもよい。または、基地局100は、例えば、複数のアンテナ素子にそれぞれ対応する列ベクトルhの中から、所定の受信品質を満たす所定の閾値以上の固有値を有するアンテナ素子(列ベクトルh)を選択してもよい。なお、無線信号の送信に用いるアンテナ素子を選択するための選択基準において使用するパラメータは、受信電力及び固有値に限定されない。無線信号の送信に用いるアンテナ素子を選択するための選択基準において使用されるパラメータは、例えば、アンテナ素子とUEとの間の通信品質に関するパラメータであればよい。 Base station 100 selects antenna element #y (1) (column vector h y (1) ) (that is, k = 1) from the plurality of antenna elements (ST132). For example, the base station 100 may select an antenna element with the best propagation environment. Specifically, the base station 100 may calculate the received power or eigenvalue using the column vector h corresponding to the antenna element, and may select the antenna element (column vector h) having the largest calculated value. Alternatively, for example, the base station 100 may select an antenna element (column vector h) having an eigenvalue equal to or higher than a predetermined threshold that satisfies a predetermined reception quality from among column vectors h corresponding to a plurality of antenna elements. Good. Note that parameters used in selection criteria for selecting an antenna element used for transmitting a radio signal are not limited to received power and eigenvalues. The parameter used in the selection criterion for selecting the antenna element used for transmitting the radio signal may be a parameter related to the communication quality between the antenna element and the UE, for example.
 基地局100は、複数のアンテナ素子の中から、ST132又は過去のST133の処理において選択したアンテナ素子#y(i)(列ベクトルhy(i))(ただし、i=1~k)以外のアンテナ素子#y(k+1)(列ベクトルhy(k+1))を選択する(ST133)。アンテナ素子#y(k+1)は、既に選択されたアンテナ素子#y(k)に追加するアンテナ素子の候補である。 The base station 100, except for the antenna element #y (i) (column vector h y (i) ) (where i = 1 to k) selected in the processing of ST132 or the past ST133 among a plurality of antenna elements Antenna element #y (k + 1) (column vector h y (k + 1) ) is selected (ST133). The antenna element #y (k + 1) is a candidate antenna element to be added to the already selected antenna element #y (k).
 具体的には、ST133において、基地局100は、列ベクトルhy(i)(ただし、i=1~k)の組み合わせに追加した際に最も利得が得られる列ベクトルhy(k+1)を選択する。例えば、基地局100は、列ベクトルhの組み合わせを用いて算出される固有値、相関値、又はコーダルディスタンス等を比較して、利得の大小を判断してもよい。なお、利得に関するパラメータは、固有値、相関値及びコーダルディスタンスに限定されない。 Specifically, in ST133, base station 100 selects column vector h y (k + 1) that provides the maximum gain when added to a combination of column vectors h y (i) (where i = 1 to k). To do. For example, the base station 100 may determine the magnitude of the gain by comparing eigenvalues, correlation values, chordal distances, or the like calculated using the combination of the column vectors h. Note that the gain-related parameters are not limited to eigenvalues, correlation values, and chordal distances.
 基地局100は、アンテナ素子#y(i)(列ベクトルhy(i))(ただし、i=1~k)の組み合わせに、ST133において選択したアンテナ素子#y(k+1)(列ベクトルhy(k+1))を追加することにより、アンテナ素子#y(i)(ただし、i=1~k)の組み合わせよりも更なる利得が得られるか否かを判断する(ST134)。 Base station 100 combines antenna element #y (k + 1) (column vector h y ) selected in ST133 with a combination of antenna element #y (i) (column vector h y (i) ) (where i = 1 to k). By adding (k + 1) ), it is determined whether or not a further gain can be obtained than the combination of antenna elements #y (i) (where i = 1 to k) (ST134).
 ST134においてアンテナ素子#y(k+1)の追加により更なる利得が得られると判断する場合(ST134:YES)、基地局100は、変数kをインクリメントする(ST135)。変数kのインクリメントにより、基地局100は、アンテナ素子#y(k+1)を、信号伝送に使用されるアンテナ素子の組み合わせに追加する。 When determining that further gain can be obtained by adding antenna element #y (k + 1) in ST134 (ST134: YES), base station 100 increments variable k (ST135). By incrementing variable k, base station 100 adds antenna element #y (k + 1) to the combination of antenna elements used for signal transmission.
 なお、ST135の処理の後に全てのアンテナ素子が選択されている場合、基地局100は、アンテナ素子の選択処理を終了してもよい(図示せず)。または、基地局100は、ST135の処理の後に、所定数のアンテナ素子が選択されている場合、アンテナ素子の選択処理を終了してもよい(図示せず)。 If all antenna elements have been selected after the process of ST135, base station 100 may end the antenna element selection process (not shown). Alternatively, if a predetermined number of antenna elements are selected after ST135, base station 100 may end the antenna element selection process (not shown).
 また、ST135の処理後、基地局100は、ST133の処理に戻り、ST132及び過去のST133の処理において選択したアンテナ素子#y(i)(列ベクトルhy(i))(ただし、i=1~k)以外のアンテナ素子の中から(k+1)個目のアンテナ素子を新たに選択する。 Further, after the process of ST135, the base station 100 returns to the process of ST133, and antenna element #y (i) (column vector h y (i) ) selected in ST132 and the previous process of ST133 (where i = 1) (K + 1) -th antenna element is newly selected from the antenna elements other than .about.k).
 一方、ST134においてアンテナ素子#y(k+1)の追加により更なる利得が得られないと判断した場合(ST134:NO)、基地局100は、アンテナ素子の選択処理を終了する。 On the other hand, if it is determined in ST134 that further gain cannot be obtained by adding the antenna element #y (k + 1) (ST134: NO), the base station 100 ends the antenna element selection process.
 このように、図7に示すアンテナ素子の選択処理により、基地局100は、信号伝送に使用されるアンテナ素子として、k個のアンテナ素子の組み合わせを決定する。 Thus, the base station 100 determines a combination of k antenna elements as antenna elements used for signal transmission by the antenna element selection processing shown in FIG.
 ここで、図7に示すアンテナ素子の選択処理の具体例について説明する。以下では、一例として、図6に示すように、信号伝送に使用されるアンテナ素子として、アンテナ素子#1,#4,#12,#16が選択される過程について説明する。 Here, a specific example of the antenna element selection process shown in FIG. 7 will be described. Hereinafter, as an example, a process of selecting antenna elements # 1, # 4, # 12, and # 16 as antenna elements used for signal transmission will be described as shown in FIG.
 図7のk=1のとき、ST132において、基地局100は、アンテナ素子#1~#16に対応する列ベクトルh~h16の中から、最大の固有値を有するアンテナ素子#4(列ベクトルh)を選択する(つまり、y(1)=4)。 When k = 1 in FIG. 7, in ST132, base station 100 determines antenna element # 4 (column vector having the largest eigenvalue from column vectors h 1 to h 16 corresponding to antenna elements # 1 to # 16. h 4 ) is selected (ie, y (1) = 4).
 ST133において、基地局100は、アンテナ素子#4(列ベクトルh)以外のアンテナ素子#1~#3、#5~#16の中から、アンテナ素子#4(列ベクトルh)に追加するアンテナ素子#y(2)(列ベクトルhy(2))の候補を選択する。例えば、基地局100は、列ベクトルhと、アンテナ素子#1~#3、#5~#16の各列ベクトルhとの間の固有値を計算し、最大の固有値を有するアンテナ素子#y(2)(列ベクトルhy(2))として、アンテナ素子#1(列ベクトルh)を選択する。 In ST133, base station 100 adds antenna element # 4 (column vector h 4 ) out of antenna elements # 1 to # 3 and # 5 to # 16 other than antenna element # 4 (column vector h 4 ). A candidate for the antenna element #y (2) (column vector h y (2) ) is selected. For example, the base station 100 calculates eigenvalues between the column vector h 4 and the column vectors h of the antenna elements # 1 to # 3 and # 5 to # 16, and the antenna element #y () having the maximum eigenvalue. 2) Select antenna element # 1 (column vector h 1 ) as (column vector h y (2) ).
 この際、ST134において、列ベクトルhに列ベクトルhを追加して得られる固有値が、列ベクトルhの固有値より大きいと判断される。この処理により、アンテナ素子#1は、信号伝送に使用されるアンテナ素子として新たに追加される(つまり、y(2)=1)。 In this case, in ST134, the eigenvalues obtained by adding a column vector h 1 column vector h 4 is determined to be larger than the eigenvalue of column vector h 4. Through this process, antenna element # 1 is newly added as an antenna element used for signal transmission (that is, y (2) = 1).
 図7のk=2のとき、ST133において、基地局100は、アンテナ素子#1,#4(列ベクトルh,h)以外のアンテナ素子#2、#3、#5~#16の中から、hに追加するアンテナ素子#y(3)(列ベクトルhy(3))の候補を選択する。例えば、基地局100は、hと、アンテナ素子#2、#3、#5~#16の各列ベクトルhとの間の固有値を計算し、最大の固有値を有するアンテナ素子#y(3)(列ベクトルhy(3))として、アンテナ素子#12(列ベクトルh12)を選択する。 When k = 2 in FIG. 7, in ST133, base station 100 determines that antenna elements # 2, # 3, # 5 to # 16 other than antenna elements # 1 and # 4 (column vectors h 1 and h 4 ) are included. Then, a candidate for antenna element #y (3) (column vector h y (3) ) to be added to h 1 h 4 is selected. For example, the base station 100 calculates an eigenvalue between h 1 h 4 and each column vector h of the antenna elements # 2, # 3, # 5 to # 16, and the antenna element #y () having the largest eigenvalue. 3) Select antenna element # 12 (column vector h 12 ) as (column vector h y (3) ).
 この際、ST134において、hに列ベクトルh12を追加して得られる固有値が、列ベクトルhの固有値より大きいと判断される。この処理により、アンテナ素子#12が、信号伝送に使用されるアンテナ素子として新たに追加される(つまり、y(3)=12)。 In this case, in ST134, the eigenvalues obtained by adding a column vector h 12 to h 1 h 4 is determined to be larger than the eigenvalue of the column vectors h 1 h 4. By this processing, antenna element # 12 is newly added as an antenna element used for signal transmission (that is, y (3) = 12).
 同様にして、図7のk=3のとき、ST133において、基地局100は、アンテナ素子#1,#4,#12以外のアンテナ素子#2、#3、#5~#11、#13~#16の中から、アンテナ素子#y(4)を選択する。例えば、基地局100は、h12に列ベクトルhを追加した際に最大の固有値を有するアンテナ素子#y(4)(列ベクトルhy(4))として、アンテナ素子#16(列ベクトルh16)を選択する。 Similarly, when k = 3 in FIG. 7, in ST133, base station 100 determines antenna elements # 2, # 3, # 5 to # 11, # 13 to # 13 other than antenna elements # 1, # 4, and # 12. Antenna element #y (4) is selected from # 16. For example, the base station 100 uses the antenna element # 16 (column vector h y (4) ) as the antenna element #y (4) (column vector h y (4) ) having the largest eigenvalue when the column vector h is added to h 1 h 4 h 12. Select the column vector h 16 ).
 この際、ST134において、h12に列ベクトルh16を追加して得られる固有値が、列ベクトルh12の固有値より大きいと判断される。この処理により、アンテナ素子#16が、信号伝送に使用されるアンテナ素子として新たに追加される(つまり、y(4)=16)。 In this case, in ST134, the eigenvalues obtained by adding a column vector h 16 to h 1 h 4 h 12 is determined to be larger than the eigenvalue of the column vectors h 1 h 4 h 12. By this processing, antenna element # 16 is newly added as an antenna element used for signal transmission (that is, y (4) = 16).
 そして、図7のk=4のとき、ST133において選択されたアンテナ素子#y(5)(列ベクトルhy(5))を、h1216に追加してもh1216の固有値より大きくなるアンテナ素子の組み合わせが得られないと判断される(ST134:NO)。この場合、基地局100は、既に選択している、列ベクトルh,h,h12,h16に対応するアンテナ素子#1,#4,#12,#16を、信号伝送に使用するアンテナ素子の組み合わせとして決定する。 Then, when k = 4 in FIG. 7, the antenna element #y selected in ST133 (5) (column vector h y (5)), be added to h 1 h 4 h 12 h 16 h 1 h It is determined that a combination of antenna elements that is larger than the eigenvalue of 4 h 12 h 16 cannot be obtained (ST134: NO). In this case, the base station 100 uses the already selected antenna elements # 1, # 4, # 12, and # 16 corresponding to the column vectors h 1 , h 4 , h 12 , and h 16 for signal transmission. It is determined as a combination of antenna elements.
 基地局100において、無線信号の送信に用いるアンテナ素子を選択するための選択基準に従ってチャネル推定値を選択することは、以下のことを含む。具体的には、基地局100は、アンテナ素子とユーザ端末200との間の各々のチャネルについて得られるチャネル推定値を行列要素とするチャネル行列において、アンテナ素子に対応した行列要素(例えば、列ベクトル)の組み合わせを変更して利得を計算する。また、基地局100は、アンテナ素子に対応した行列要素(例えば、列ベクトル)の組み合わせを変更して計算される利得が増加するか否かを判断する。そして、基地局100は、利得が増加する行列要素の組み合わせに対応するアンテナ素子を、無線信号の送信に用いるアンテナ素子に決定する。 In the base station 100, selecting a channel estimation value according to a selection criterion for selecting an antenna element used for radio signal transmission includes the following. Specifically, base station 100 has a matrix element (for example, a column vector) corresponding to an antenna element in a channel matrix having a channel estimation value obtained for each channel between the antenna element and user terminal 200 as a matrix element. ) To calculate the gain. In addition, the base station 100 determines whether or not the gain calculated by changing the combination of matrix elements (for example, column vectors) corresponding to the antenna elements increases. Then, base station 100 determines an antenna element corresponding to a combination of matrix elements that increase the gain as an antenna element used for transmitting a radio signal.
 例えば、基地局100は、図7に示す処理により、アンテナ素子#1~#16の組み合わせのうち、利得が最大となるアンテナ素子の組み合わせを決定できる。 For example, the base station 100 can determine the combination of antenna elements having the maximum gain among the combinations of antenna elements # 1 to # 16 by the process shown in FIG.
 また、上述したように、アンテナ素子の選択処理では、基地局100は、複数のアンテナ素子の中から、利得(例えば、固有値)が最大になるアンテナ素子を1アンテナ素子ずつ順に選択して、信号伝送に使用されるアンテナ素子の組み合わせを決定する。基地局100では、信号伝送に使用されるアンテナ素子が1アンテナ素子ずつ選択される毎に(図7においてkの値が増える毎に)、新たに追加すべきか否かを判断する対象のアンテナ素子(ST133の選択対象のアンテナ素子)の数が減少する。 Further, as described above, in the antenna element selection process, the base station 100 sequentially selects antenna elements having a maximum gain (for example, eigenvalue) from a plurality of antenna elements one by one, and performs signal processing. Determine the combination of antenna elements used for transmission. In the base station 100, each time an antenna element used for signal transmission is selected one by one (every time the value of k in FIG. 7 increases), an antenna element to be determined whether or not it should be newly added The number of (antenna elements to be selected in ST133) decreases.
 この処理により、基地局100は、全ての列ベクトルの組み合わせに対して利得を計算しなくてよいので、アンテナ素子の選択処理における計算量を低減できる。また、基地局100は、全ての列ベクトルの組み合わせに対して利得を計算しなくてよいので、アンテナ素子の選択処理の時間を短縮できる。 By this process, the base station 100 does not have to calculate gains for all combinations of column vectors, so the amount of calculation in the antenna element selection process can be reduced. Further, since base station 100 does not have to calculate gains for all combinations of column vectors, it is possible to shorten the time for antenna element selection processing.
 [ユーザ端末の選択方法]
 次に、図5に示すST14におけるユーザ端末200の選択方法の詳細について説明する。
[User terminal selection method]
Next, details of the selection method of user terminal 200 in ST14 shown in FIG. 5 will be described.
 図9は、基地局100におけるユーザ端末200の選択処理(図5のST14の処理)の一例を示すフローチャートである。 FIG. 9 is a flowchart showing an example of the selection process of the user terminal 200 in the base station 100 (the process of ST14 in FIG. 5).
 なお、基地局100は、図9に示す処理では、図7に示すアンテナ素子の選択処理によって選択されたアンテナ素子に対応する列ベクトルを含むチャネル行列(例えば、図6に示す中段のチャネル行列を参照)を用いる。 In the process shown in FIG. 9, the base station 100 uses the channel matrix (for example, the middle stage channel matrix shown in FIG. 6) including the column vector corresponding to the antenna element selected by the antenna element selection process shown in FIG. Reference) is used.
 図9において、基地局100は、変数lを初期化(l=1)する(ST141)。 In FIG. 9, base station 100 initializes variable l (l = 1) (ST141).
 基地局100は、複数のユーザ端末200(図4では、UE#1~UE#4)の中から、UE#x(1)(つまり、l=1)を選択する(ST142)。例えば、基地局100は、チャネル行列のうち、各UEに対応する行ベクトル(サブマトリックスと呼ぶこともある)を用いて受信電力、固有値、又は、プロポーショナルフェアネス(Proportional Fairness)を算出し、算出した値が最も大きいUEを選択してもよい。または、基地局100は、例えば、複数のユーザ端末200にそれぞれ対応する行ベクトルの中から、所定の受信品質を満たす所定の閾値以上の上記値を有するユーザ端末200を選択してもよい。 The base station 100 selects UE # x (1) (that is, l = 1) from the plurality of user terminals 200 (UE # 1 to UE # 4 in FIG. 4) (ST142). For example, the base station 100 calculates the received power, eigenvalue, or proportional fairness (Proportional Fairness) using a row vector (also referred to as a sub-matrix) corresponding to each UE in the channel matrix. The UE with the largest value may be selected. Or base station 100 may select user terminal 200 which has the above-mentioned value more than a predetermined threshold which satisfies predetermined reception quality from a row vector corresponding to each of a plurality of user terminals 200, for example.
 なお、無線信号を送信する対象のUEを選択するための選択基準において使用されるパラメータは、受信電力、固有値及びプロポーショナルフェアネスに限定されない。無線信号を送信する対象のUEを選択するための選択基準において使用されるパラメータは、例えば、アンテナ素子とUEとの間の通信品質に関するパラメータであればよい。 Note that the parameters used in the selection criteria for selecting a target UE to transmit a radio signal are not limited to received power, eigenvalues, and proportional fairness. The parameter used in the selection criteria for selecting the target UE for transmitting the radio signal may be a parameter related to the communication quality between the antenna element and the UE, for example.
 また、例えば、基地局100は、信号伝送の際にプリコーディングを適用する場合、チャネル行列を用いて算出される固有値に基づいて伝送レートを判断し、信号伝送の際にプリコーディングを適用しない場合、チャネル行列に含まれるチャネル推定値(又は固有値以外の他のパラメータ)に基づいて伝送レートを判断してもよい。 For example, when applying precoding at the time of signal transmission, the base station 100 determines a transmission rate based on an eigenvalue calculated using a channel matrix, and does not apply precoding at the time of signal transmission. The transmission rate may be determined based on the channel estimation value (or other parameter other than the eigenvalue) included in the channel matrix.
 または、ST142において、基地局100は、予め設定されたユーザ端末200(固定のUE又は別途選択されているUE)を選択してもよい。または、基地局100は、過去の信号伝送において選択されなかったユーザ端末200を優先的に選択してもよい。 Alternatively, in ST142, base station 100 may select a preset user terminal 200 (a fixed UE or a separately selected UE). Alternatively, the base station 100 may preferentially select the user terminal 200 that has not been selected in the past signal transmission.
 基地局100は、複数のユーザ端末200の中から、ST142又は過去のST143の処理において選択したUE#x(j)(ただし、j=1~l)以外のUE#x(l+1)を選択する(ST143)。UE#x(l+1)は、既に選択されたUE#x(l)に追加するユーザ端末200の候補である。 Base station 100 selects UE #x (l + 1) other than UE #x (j) (j = 1 to l) selected in ST142 or the process of previous ST143 from among a plurality of user terminals 200. (ST143). UE # x (l + 1) is a candidate for the user terminal 200 to be added to the already selected UE # x (l).
 具体的には、ST143において、基地局100は、UE#x(j)(ただし、j=1~l)の組み合わせに追加した際に最も高い伝送レートが得られるUE#x(l+1)を選択する。例えば、基地局100は、チャネル行列において、UE#x(j)に対応する行ベクトルと、UE#x(l+1)に対応する行ベクトルとの組み合わせを用いて算出される固有値等を比較して、得られる伝送レートの大小を判断してもよい。 Specifically, in ST143, base station 100 selects UE # x (l + 1) that provides the highest transmission rate when added to the combination of UE # x (j) (where j = 1 to 1). To do. For example, the base station 100 compares eigenvalues and the like calculated using a combination of a row vector corresponding to UE # x (j) and a row vector corresponding to UE # x (l + 1) in the channel matrix. The magnitude of the obtained transmission rate may be determined.
 基地局100は、UE#x(j)(ただし、j=1~l)の組み合わせに、ST143において選択したUE#x(l+1)を追加することにより、UE#x(j)(ただし、j=1~l)の組み合わせよりも更なる伝送レートが得られるか否かを判断する(ST144)。 The base station 100 adds UE # x (l + 1) selected in ST143 to the combination of UE # x (j) (where j = 1 to 1), thereby adding UE # x (j) (where j = 1 to l), it is determined whether or not a further transmission rate can be obtained (ST144).
 ST144においてUE#(l+1)の追加により更なる伝送レートが得られると判断する場合(ST144:YES)、基地局100は、変数lをインクリメントする(ST145)。変数lのインクリメントにより、基地局100は、UE#x(l+1)を、信号伝送対象のユーザ端末200の組み合わせに追加する。 When determining that a further transmission rate can be obtained by adding UE # (l + 1) in ST144 (ST144: YES), base station 100 increments variable l (ST145). By incrementing the variable l, the base station 100 adds UE # x (l + 1) to the combination of user terminals 200 that are signal transmission targets.
 また、ST145の処理後、基地局100は、ST143の処理に戻り、ST142及び過去のST143の処理において選択したUE#x(j)(ただし、j=1~l)以外のUEの中から(l+1)個目のUEを新たに選択する。 In addition, after the processing of ST145, the base station 100 returns to the processing of ST143, and from among UEs other than UE # x (j) (where j = 1 to 1) selected in ST142 and the past processing of ST143 ( l + 1) A new UE is selected.
 一方、ST144においてUE#(l+1)の追加により更なる伝送レートが得られないと判断した場合(ST144:NO)、基地局100は、ユーザ端末200の選択処理を終了する。 On the other hand, when it is determined in ST144 that a further transmission rate cannot be obtained due to the addition of UE # (l + 1) (ST144: NO), base station 100 ends the selection process of user terminal 200.
 このように、図9に示すユーザ端末200の選択処理により、基地局100は、信号伝送の対象のユーザ端末200として、l個のユーザ端末200の組み合わせを決定する。 As described above, the base station 100 determines a combination of l user terminals 200 as the user terminals 200 to be signal-transmitted by the selection process of the user terminals 200 shown in FIG.
 ここで、図9に示すユーザ端末200の選択処理の具体例について説明する。 Here, a specific example of the selection process of the user terminal 200 shown in FIG. 9 will be described.
 以下では、一例として、図6に示すように、信号伝送対象のユーザ端末200として、UE#3,#4が選択される過程について説明する。また、基地局100では、ユーザ端末200の選択の前に、図6に示すように、アンテナ素子#1,#4,#12及び#16が選択されたとする。例えば、基地局100は、図10に示すチャネル行列を使用する。 Hereinafter, as an example, a process in which UEs # 3 and # 4 are selected as user terminals 200 to be signal-transmitted as illustrated in FIG. 6 will be described. Further, in the base station 100, it is assumed that the antenna elements # 1, # 4, # 12, and # 16 are selected before the user terminal 200 is selected, as shown in FIG. For example, the base station 100 uses the channel matrix shown in FIG.
 図9のl=1のとき、ST142において、基地局100は、例えば、UE#1~UE#4に対応する行ベクトル(サブマトリックス)の中から、最も大きい固有値を有するUE#3を選択する(つまり、x(1)=3)。 When 1 = 1 in FIG. 9, in ST142, base station 100 selects UE # 3 having the largest eigenvalue from row vectors (sub-matrices) corresponding to UE # 1 to UE # 4, for example. (That is, x (1) = 3).
 ST143において、基地局100は、UE#3以外のUE#1,#2,#4の中から、UE#3に追加するユーザ端末200の候補を選択する。例えば、基地局100は、UE#3の行ベクトルと、UE#1,#2,#4の各行ベクトルとを含むサブマトリックスの固有値を計算し、最大の固有値を有するUE#x(2)として、UE#4を選択する。 In ST143, the base station 100 selects a candidate for the user terminal 200 to be added to the UE # 3 from the UEs # 1, # 2, and # 4 other than the UE # 3. For example, the base station 100 calculates eigenvalues of the submatrix including the row vector of UE # 3 and the row vectors of UE # 1, # 2, and # 4, and sets UE # x (2) having the largest eigenvalue as , UE # 4 is selected.
 この際、ST144において、UE#3にUE#4を追加して得られるサブマトリックスの固有値が、UE#3の行ベクトルの固有値より大きいと判断される。この処理により、UE#4は、信号伝送対象のユーザ端末200として新たに追加される(つまり、x(2)=4)。 At this time, in ST144, it is determined that the eigenvalue of the sub-matrix obtained by adding UE # 4 to UE # 3 is larger than the eigenvalue of the row vector of UE # 3. Through this process, UE # 4 is newly added as a user terminal 200 that is a signal transmission target (ie, x (2) = 4).
 そして、図9のl=2のとき、ST143において選択されたUE#(3)を、UE#3、#4に追加しても、UE#3、#4のサブマトリックスの固有値より大きくなるユーザ端末200の組み合わせが得られないと判断される(ST144:NO)。この場合、基地局100は、既に選択している、UE#3,#4を、信号伝送対象のユーザ端末200の組み合わせとして決定する。 Then, when l = 2 in FIG. 9, even if the UE # (3) selected in ST143 is added to UE # 3 and # 4, the user becomes larger than the eigenvalues of the submatrices of UE # 3 and # 4 It is determined that a combination of terminals 200 cannot be obtained (ST144: NO). In this case, base station 100 determines UE # 3 and # 4 that have already been selected as a combination of user terminals 200 that are signal transmission targets.
 基地局100において、無線信号を送信する対象のユーザ端末を選択するための選択基準に従ってチャネル推定値を選択することは、以下のことを含む。具体的には、基地局100は、アンテナ素子に関する選択基準に従って選択された一部のチャネル推定値を行列要素とするチャネル行列(換言すると、縮退されたチャネル行列)において、ユーザ端末200に対応した行列要素(例えば、行ベクトル)の組み合わせを変更して伝送レートを計算する。また、基地局100は、ユーザ端末200に対応した行列要素(例えば、行ベクトル)の組み合わせを変更して計算される伝送レートが増加するか否かを判断する。そして、基地局100は、伝送レートが増加する行列要素の組み合わせに対応するユーザ端末200を、無線信号を送信する対象に決定する。 In the base station 100, selecting a channel estimation value according to a selection criterion for selecting a user terminal to which a radio signal is to be transmitted includes the following. Specifically, base station 100 corresponds to user terminal 200 in a channel matrix (in other words, a degenerated channel matrix) having a part of channel estimation values selected according to a selection criterion related to antenna elements as matrix elements. A transmission rate is calculated by changing a combination of matrix elements (for example, row vectors). In addition, the base station 100 determines whether or not the transmission rate calculated by changing the combination of matrix elements (for example, row vectors) corresponding to the user terminal 200 increases. Then, the base station 100 determines the user terminal 200 corresponding to the combination of matrix elements whose transmission rate increases as a target for transmitting a radio signal.
 例えば、基地局100は、図9に示す処理により、UE#1~#4の組み合わせのうち、伝送レートが最大となるユーザ端末200の組み合わせを決定できる。 For example, the base station 100 can determine the combination of the user terminals 200 having the maximum transmission rate among the combinations of the UEs # 1 to # 4 by the process shown in FIG.
 また、上述したように、ユーザ端末200の選択処理では、基地局100は、複数のユーザ端末200の中から、伝送レート(例えば、固有値)が最大になるユーザ端末200を1つずつ順に選択して、信号伝送対象のユーザ端末200の組み合わせを決定する。基地局100では、信号伝送対象のユーザ端末200が1つずつ選択される毎に(図9においてlの値が増える毎に)、新たに追加すべきか否かを判断する対象のユーザ端末200(ST143の選択対象のユーザ端末200)の数が減少する。 Further, as described above, in the selection process of the user terminal 200, the base station 100 sequentially selects the user terminals 200 having the maximum transmission rate (for example, eigenvalue) from the plurality of user terminals 200 one by one. Thus, the combination of the user terminals 200 that are signal transmission targets is determined. In the base station 100, each time one user terminal 200 to be signal-transmitted is selected (each time the value of l increases in FIG. 9), the user terminal 200 (target to determine whether or not to add a new one) ( The number of user terminals 200) to be selected in ST143 decreases.
 この処理により、基地局100は、全てのユーザ端末200(行ベクトル)の組み合わせに対して伝送レートを計算しなくてよいので、ユーザ端末200の選択処理における計算量を低減できる。また、基地局100は、全てのユーザ端末200(行ベクトル)の組み合わせに対して伝送レートを計算しなくてよいので、ユーザ端末200の選択処理の時間を短縮できる。 By this process, the base station 100 does not have to calculate the transmission rate for all combinations of the user terminals 200 (row vectors), so that the calculation amount in the selection process of the user terminals 200 can be reduced. Moreover, since the base station 100 does not have to calculate the transmission rate for all combinations of user terminals 200 (row vectors), it is possible to shorten the time for selection processing of the user terminals 200.
 以上、基地局100の動作例について具体的に説明した。 The operation example of the base station 100 has been specifically described above.
 以上説明したように、基地局100は、複数の送信点10に含まれる複数のアンテナ素子と、ユーザ端末200との間の各々のチャネルについての複数のチャネル推定値を得る。そして、基地局100は、複数のチャネル推定値の中から、無線信号の送信に用いるアンテナ素子に対応するチャネル推定値を選択するための選択基準に従って一部のチャネル推定値を選択する。さらに、基地局100し、選択した一部のチャネル推定値の中から、無線信号を送信する対象のユーザ端末200を選択するための選択基準に従って更に一部のチャネル推定値を選択する。そして、基地局100は、ユーザ端末を選択するための選択基準に従って選択したチャネル推定値に基づいて、無線信号の送信を制御する。 As described above, the base station 100 obtains a plurality of channel estimation values for each channel between the plurality of antenna elements included in the plurality of transmission points 10 and the user terminal 200. Then, base station 100 selects some channel estimation values according to a selection criterion for selecting a channel estimation value corresponding to an antenna element used for transmitting a radio signal from among a plurality of channel estimation values. Further, the base station 100 selects a part of the channel estimation values from the selected part of the channel estimation values according to a selection criterion for selecting the user terminal 200 to which the radio signal is to be transmitted. Then, base station 100 controls transmission of a radio signal based on a channel estimation value selected according to a selection criterion for selecting a user terminal.
 この処理により、基地局100は、無線信号を送信する対象のユーザ端末200を選択する際、既に選択されたアンテナ素子に対応する一部のチャネル推定値を用いてユーザ端末200を選択できる。換言すると、基地局100は、複数のチャネル推定値を行列要素とするチャネル行列を縮退させたチャネル行列を用いて、無線信号を送信する対象のユーザ端末を選択できる。よって、基地局100では、信号伝送対象のユーザ端末200の選択処理における計算量を低減できる。 This process allows the base station 100 to select the user terminal 200 using a part of channel estimation values corresponding to the already selected antenna elements when selecting the user terminal 200 to which the radio signal is to be transmitted. In other words, the base station 100 can select a user terminal to which a radio signal is to be transmitted using a channel matrix obtained by degenerating a channel matrix having a plurality of channel estimation values as matrix elements. Therefore, the base station 100 can reduce the amount of calculation in the selection process of the user terminal 200 that is the signal transmission target.
 また、基地局100は、利得が最大になるアンテナ素子を1アンテナ素子ずつ順に選択する。同様に、基地局100は、伝送レートが最大になるユーザ端末200を1つずつ順に選択する。これらの処理により、基地局100は、アンテナ素子選択及びユーザ端末200の選択の各々における計算量を低減し、かつ、アンテナ素子及びユーザ端末200を適切に選択できる。 In addition, the base station 100 sequentially selects antenna elements having the maximum gain one antenna element at a time. Similarly, the base station 100 sequentially selects the user terminals 200 having the maximum transmission rate one by one. Through these processes, the base station 100 can reduce the amount of calculation in each of the antenna element selection and the user terminal 200 selection, and can appropriately select the antenna element and the user terminal 200.
 (他の実施の形態)
 (1)上記実施の形態では、図5又は図6に示すように、アンテナ素子の選択後にユーザ端末200の選択が行われる場合について説明した。しかし、基地局100は、ユーザ端末200の選択後にアンテナ素子の選択を行ってもよい。例えば、基地局100は、図6に示すような全てのアンテナ素子と全てのユーザ端末200との間の複数のチャネルについて得られるチャネル推定値を用いて、無線信号を送信する対象のユーザ端末200を選択する(例えば、図9の処理)。そして、基地局100は、選択したユーザ端末200に対応する一部のチャネル推定値を用いて、無線信号の送信に使用するアンテナ素子を選択してもよい(例えば、図7の処理)。
(Other embodiments)
(1) In the above embodiment, as shown in FIG. 5 or FIG. 6, the case where the user terminal 200 is selected after the antenna element is selected has been described. However, the base station 100 may select an antenna element after selecting the user terminal 200. For example, the base station 100 uses the channel estimation values obtained for a plurality of channels between all antenna elements and all user terminals 200 as shown in FIG. Is selected (for example, the process of FIG. 9). And the base station 100 may select the antenna element used for transmission of a radio signal using the partial channel estimation value corresponding to the selected user terminal 200 (for example, the process of FIG. 7).
 この場合、基地局100は、アンテナ素子の選択の際、既に選択されたユーザ端末200に関するチャネル推定値を含むチャネル行列(換言すると、縮退させたチャネル行列)を用いてアンテナ素子を選択できる。よって、基地局100では、信号伝送に使用されるアンテナ素子の選択処理における計算量を低減できる。 In this case, when selecting an antenna element, the base station 100 can select an antenna element by using a channel matrix (in other words, a degenerated channel matrix) including a channel estimation value related to the user terminal 200 that has already been selected. Therefore, the base station 100 can reduce the amount of calculation in the selection process of the antenna element used for signal transmission.
 基地局100は、アンテナ素子とユーザ端末200との間の複数のチャネル推定値の中から選択される一部のチャネル推定値を用いて、信号伝送に使用されるチャネル(例えば、アンテナ素子又はユーザ端末200)を選択すればよい。 The base station 100 uses a part of channel estimation values selected from a plurality of channel estimation values between the antenna element and the user terminal 200 to use a channel (for example, an antenna element or a user) for signal transmission. The terminal 200) may be selected.
 アンテナ素子をユーザ端末200よりも先に選択する場合、基地局100は、例えば、電力値が高いアンテナ素子を優先的に選択できる。また、ユーザ端末200をアンテナ素子よりも先に選択する場合、基地局100は、例えば、データ伝送を割り当てたいユーザ端末200を優先的に選択できる。 When selecting an antenna element prior to the user terminal 200, the base station 100 can preferentially select an antenna element having a high power value, for example. Further, when the user terminal 200 is selected before the antenna element, the base station 100 can preferentially select the user terminal 200 to which data transmission is to be assigned, for example.
 (2)上記実施の形態では、アンテナ素子単位(チャネル行列の列ベクトル単位)の選択について説明した。しかし、アンテナ素子の選択処理は、これに限定されない。例えば、基地局100は、複数の送信点10に含まれる複数のアンテナ素子を複数のグループにグループ化し、各グループの単位毎に、アンテナ素子を選択してもよい。例えば、各グループは送信点10の単位でもよい。この処理により、基地局100におけるアンテナ素子の選択処理の演算量をさらに低減できる。 (2) In the above embodiment, selection of antenna element units (channel vector column vector units) has been described. However, the antenna element selection process is not limited to this. For example, the base station 100 may group a plurality of antenna elements included in the plurality of transmission points 10 into a plurality of groups, and select the antenna elements for each group. For example, each group may be a unit of the transmission point 10. This processing can further reduce the amount of calculation of the antenna element selection processing in the base station 100.
 同様に、基地局100は、複数のユーザ端末200を複数のグループにグループ化し、各グループの単位毎に、ユーザ端末200を選択してもよい。この処理により、基地局100におけるユーザ端末200の選択処理の演算量をさらに低減できる。 Similarly, the base station 100 may group a plurality of user terminals 200 into a plurality of groups and select the user terminal 200 for each group unit. By this process, the calculation amount of the selection process of the user terminal 200 in the base station 100 can be further reduced.
 (3)上記実施の形態では、ユーザ端末200の選択処理において、図9に示すように、基地局100が、1つのユーザ端末200(図9のUE#x(1))を選択する場合について説明した。しかし、ユーザ端末200の選択処理は、これに限定されない。例えば、基地局100は、複数のユーザ端末200を選択してもよい。例えば、複数のユーザ端末200のうち、優先的に信号伝送を行うユーザ端末200が存在する場合、基地局100は、優先するユーザ端末200を信号伝送対象に含めた上で、上記実施の形態と同様にして得られる伝送レートに基づいてユーザ端末200の選択を行ってもよい。この処理により、優先的に信号伝送を行う必要があるユーザ端末200が存在する場合に、伝送レートに依らず、当該ユーザ端末200を信号伝送対象に追加できる。 (3) In the above embodiment, in the selection process of the user terminal 200, as shown in FIG. 9, the base station 100 selects one user terminal 200 (UE #x (1) in FIG. 9). explained. However, the selection process of the user terminal 200 is not limited to this. For example, the base station 100 may select a plurality of user terminals 200. For example, when there is a user terminal 200 that preferentially performs signal transmission among a plurality of user terminals 200, the base station 100 includes the user terminal 200 to be prioritized as a signal transmission target, and the above-described embodiment. The user terminal 200 may be selected based on the transmission rate obtained in the same manner. With this process, when there is a user terminal 200 that needs to perform signal transmission with priority, the user terminal 200 can be added to a signal transmission target regardless of the transmission rate.
 (4)また、上記実施の形態では、基地局100がアンテナ素子の組み合わせを決定する際、既に選択したアンテナ素子に対して更なる利得が得られるアンテナ素子を1アンテナ素子ずつ順に追加する場合について説明した。しかし、アンテナ素子の選択方法は、この処理に限定されない。例えば、基地局100は、更なる利得が得られるアンテナ素子を、2以上の所定数のアンテナ素子ずつ順に追加してもよい。 (4) Further, in the above embodiment, when base station 100 determines a combination of antenna elements, antenna elements that can obtain further gain with respect to already selected antenna elements are sequentially added one antenna element at a time. explained. However, the antenna element selection method is not limited to this processing. For example, the base station 100 may sequentially add two or more predetermined number of antenna elements in order to obtain further gain.
 同様に、基地局100は、ユーザ端末200の組み合わせを決定する際、既に選択したユーザ端末200に対して更に高い伝送レートが得られるユーザ端末200を、2以上の所定数のユーザ端末200ずつ順に追加してもよい。 Similarly, when the base station 100 determines a combination of the user terminals 200, the user terminals 200 that can obtain a higher transmission rate with respect to the user terminals 200 that have already been selected are sequentially ordered by two or more predetermined numbers of user terminals 200. May be added.
 この処理により、アンテナ素子又はユーザ端末200の選択処理の計算量をより低減できる。 This process can further reduce the calculation amount of the selection process of the antenna element or the user terminal 200.
 (5)また、上記実施の形態では、複数の送信点10に含まれる複数のアンテナ素子と、無線通信システム1に含まれる少なくとも1つのユーザ端末200との間のチャネルを示すチャネル行列を用いる場合について説明した。しかし、本開示では、各ユーザ端末200は、少なくとも1つのアンテナ素子を備えてもよい。この場合、基地局100は、複数の送信点10に含まれる複数のアンテナ素子と、少なくとも1つのユーザ端末200の各々に含まれる複数のアンテナ素子との間のチャネル行列を用いてもよい。 (5) In the above embodiment, a channel matrix indicating a channel between a plurality of antenna elements included in the plurality of transmission points 10 and at least one user terminal 200 included in the wireless communication system 1 is used. Explained. However, in the present disclosure, each user terminal 200 may include at least one antenna element. In this case, the base station 100 may use a channel matrix between a plurality of antenna elements included in the plurality of transmission points 10 and a plurality of antenna elements included in each of at least one user terminal 200.
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
(Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
 例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本開示の一実施の形態に係る基地局100およびユーザ端末200のハードウェア構成の一例を示す図である。上述の基地局100及びユーザ端末200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram illustrating an example of a hardware configuration of the base station 100 and the user terminal 200 according to an embodiment of the present disclosure. The base station 100 and the user terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局100及びユーザ端末200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the base station 100 and the user terminal 200 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or in another manner. Note that the processor 1001 may be implemented by one or more chips.
 基地局100及びユーザ端末200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the base station 100 and the user terminal 200 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の符号化部101、変調部102、チャネル推定部103、選択部104、送信制御部105、復調部204、復号部205などは、プロセッサ1001で実現されてもよい。また、上記のテーブルは、メモリ1002に記憶されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the above-described encoding unit 101, modulation unit 102, channel estimation unit 103, selection unit 104, transmission control unit 105, demodulation unit 204, decoding unit 205, and the like may be realized by the processor 1001. In addition, the above table may be stored in the memory 1002.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局100及びユーザ端末200を構成する少なくとも一部の機能ブロックは、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, at least a part of the functional blocks constituting the base station 100 and the user terminal 200 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks are similarly realized. May be. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の無線送信部106,201、アンテナ107,202、無線受信部108,203などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the above-described wireless transmission units 106 and 201, antennas 107 and 202, wireless reception units 108 and 203, and the like may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、基地局100及びユーザ端末200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 The base station 100 and the user terminal 200 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). Hardware may be configured, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
(Information notification, signaling)
The notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof. The RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
(Adaptive system)
Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (Registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system may be applied.
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(Processing procedure etc.)
As long as there is no contradiction, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
(Operation of base station)
The specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases. In a network composed of one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway). In the above, the case where there is one network node other than the base station is illustrated, but a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
(I / O direction)
Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
(Handling of input / output information, etc.)
Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
(Judgment method)
The determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
(software)
Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Further, software, instructions, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave. When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
(Information, signal)
Information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。 Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal. The signal may be a message. Further, the component carrier (CC) may be called a carrier frequency, a cell, or the like.
 (「システム」、「ネットワーク」)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
("System", "Network")
As used herein, the terms “system” and “network” are used interchangeably.
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
(Parameter, channel name)
In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for the above parameters are not limited in any way. Further, mathematical formulas and the like that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg, PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements (eg, TPC, etc.) can be identified by any suitable name, these various channels and information The various names assigned to the elements are not limiting in any way.
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
(base station)
A base station (radio base station) can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services. The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein. A base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
(Terminal)
A user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
(Meaning and interpretation of terms)
As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 The terms “connected”, “coupled”, or any variation thereof, means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements. The coupling or connection between the elements may be physical, logical, or a combination thereof. As used herein, the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples By using electromagnetic energy, such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、補正用RSは、TRS(Tracking RS)、PC-RS(Phase Compensation RS)、PTRS(Phase Tracking RS)、Additional RSと呼ばれてもよい。また、復調用RS及び補正用RSは、それぞれに対応する別の呼び方であってもよい。また、復調用RS及び補正用RSは同じ名称(例えば復調RS)で規定されてもよい。 The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard. Further, the correction RS may be referred to as TRS (Tracking 、 RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS. Further, the demodulation RS and the correction RS may be called differently corresponding to each. Further, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。 The “unit” in the configuration of each device described above may be replaced with “means”, “circuit”, “device”, and the like.
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as “including”, “comprising” and variations thereof are used in the specification or claims, these terms are inclusive, as are the terms “comprising”. Is intended. Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。 The radio frame may be composed of one or a plurality of frames in the time domain. One or more frames in the time domain may be referred to as subframes, time units, etc. A subframe may further be composed of one or more slots in the time domain. The slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
 無線フレーム、サブフレーム、スロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。 The radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each.
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。 For example, in the LTE system, the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station. The minimum time unit of scheduling may be called TTI (Transmission Time Interval).
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot may be called a TTI.
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。 The resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. In the time domain of the resource unit, one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included. One TTI and one subframe may each be composed of one or a plurality of resource units. The resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband. Further, the resource unit may be composed of one or a plurality of REs. For example, 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。 The structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block The number of carriers can be variously changed.
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 Throughout this disclosure, if articles are added by translation, for example, a, an, and the in English, these articles must be clearly not otherwise indicated by context, Including multiple things.
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
(Aspect variations, etc.)
Each aspect / embodiment described in this specification may be used independently, may be used in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is obvious for those skilled in the art that the present disclosure is not limited to the embodiments described in the present specification. The present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the present disclosure determined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present disclosure.
 本特許出願は2018年3月23日に出願した日本国特許出願第2018-056839号の全内容を本願に援用する。 This patent application incorporates the entire contents of Japanese Patent Application No. 2018-056839 filed on Mar. 23, 2018.
 本開示の一態様は、移動通信システムに有用である。 One embodiment of the present disclosure is useful for a mobile communication system.
 1 無線通信システム
 10a~10i,10-1~10-n 送信点
 20 信号処理装置
 100 基地局
 101 符号化部
 102 変調部
 103 チャネル推定部
 104 選択部
 105 送信制御部
 106,201 無線送信部
 107,202 アンテナ
 108,203 無線受信部
 200 ユーザ端末
 204 復調部
 205 復号部
DESCRIPTION OF SYMBOLS 1 Radio | wireless communications system 10a-10i, 10-1-10-n Transmission point 20 Signal processing apparatus 100 Base station 101 Encoding part 102 Modulation part 103 Channel estimation part 104 Selection part 105 Transmission control part 106,201 Wireless transmission part 107, 202 Antennas 108 and 203 Wireless receiver 200 User terminal 204 Demodulator 205 Decoder

Claims (6)

  1.  無線信号を送信する送信回路と、
     複数の送信点に含まれる複数のアンテナ素子と、ユーザ端末と、の間の各々のチャネルについて得られる複数のチャネル推定値の中から、第1の選択基準と第2の選択基準とに従って選択されたチャネル推定値に基づいて、前記無線信号の送信を制御する制御回路と、
     を備えた、基地局。
    A transmission circuit for transmitting a radio signal;
    A plurality of channel estimation values obtained for each channel between a plurality of antenna elements included in a plurality of transmission points and a user terminal are selected according to a first selection criterion and a second selection criterion. A control circuit for controlling transmission of the radio signal based on the estimated channel value;
    With a base station.
  2.  前記第1の選択基準は、前記無線信号の送信に用いるアンテナ素子に対応するチャネル推定値を選択するための基準であり、
     前記第2の選択基準は、前記無線信号を送信する対象のユーザ端末に対応するチャネル推定値を選択するための基準である、
     請求項1に記載の基地局。
    The first selection criterion is a criterion for selecting a channel estimation value corresponding to an antenna element used for transmission of the radio signal,
    The second selection criterion is a criterion for selecting a channel estimation value corresponding to a user terminal to which the radio signal is transmitted.
    The base station according to claim 1.
  3.  前記第1の選択基準は、前記無線信号を送信する対象のユーザ端末に対応するチャネル推定値を選択するための基準であり、
     前記第2の選択基準は、前記無線信号の送信に用いるアンテナ素子に対応するチャネル推定値を選択するための基準である、
     請求項1に記載の基地局。
    The first selection criterion is a criterion for selecting a channel estimation value corresponding to a user terminal to which the radio signal is transmitted,
    The second selection criterion is a criterion for selecting a channel estimation value corresponding to an antenna element used for transmission of the radio signal.
    The base station according to claim 1.
  4.  前記第2の選択基準に従ってチャネル推定値を選択することは、
     前記第1の選択基準に従って前記複数のチャネル推定値の中から選択された一部のチャネル推定値を行列要素とするチャネル行列において、前記ユーザ端末に対応する行列要素の組み合わせを変更して計算される伝送レートが増加するか否かを判断し、
     前記伝送レートが増加する前記行列要素の組み合わせに対応するユーザ端末を前記無線信号を送信する対象に決定することを含む、
     請求項2に記載の基地局。
    Selecting a channel estimate according to the second selection criterion comprises:
    Calculated by changing a combination of matrix elements corresponding to the user terminal in a channel matrix having matrix estimation elements selected from the plurality of channel estimation values according to the first selection criterion. To determine whether the transmission rate increases,
    Determining a user terminal corresponding to a combination of the matrix elements for increasing the transmission rate as a target for transmitting the radio signal,
    The base station according to claim 2.
  5.  前記第2の選択基準に従ってチャネル推定値を選択することは、
     前記第1の選択基準に従って前記複数のチャネル推定値の中から選択された一部のチャネル推定値を行列要素とするチャネル行列において、前記アンテナ素子に対応する行列要素の組み合わせを変更して計算される利得が増加するか否かを判断し、
     前記利得が増加する前記行列要素の組み合わせに対応するアンテナ素子を前記無線信号の送信に用いるアンテナ素子に決定することを含む、
     請求項3に記載の基地局。
    Selecting a channel estimate according to the second selection criterion comprises:
    Calculated by changing a combination of matrix elements corresponding to the antenna elements in a channel matrix having matrix estimation elements selected from the plurality of channel estimation values according to the first selection criterion. Determine whether the gain will increase,
    Determining an antenna element corresponding to the combination of the matrix elements that increase the gain to be an antenna element used for transmitting the radio signal,
    The base station according to claim 3.
  6.  基地局による無線信号の送信方法であって、
     複数の送信点に含まれる複数のアンテナ素子と、ユーザ端末と、の間の各々のチャネルについて得られる複数のチャネル推定値の中から、第1の選択基準と第2の選択基準とに従って選択されたチャネル推定値に基づいて、前記無線信号の送信を制御する、
     送信方法。
    A method of transmitting a radio signal by a base station,
    A plurality of channel estimation values obtained for each channel between a plurality of antenna elements included in a plurality of transmission points and a user terminal are selected according to a first selection criterion and a second selection criterion. Controlling transmission of the radio signal based on the estimated channel value;
    Transmission method.
PCT/JP2019/012178 2018-03-23 2019-03-22 Base station and transmission method WO2019182134A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020507947A JP7261223B2 (en) 2018-03-23 2019-03-22 Base station and transmission method
CN201980021579.0A CN111903065B (en) 2018-03-23 2019-03-22 Base station and transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-056839 2018-03-23
JP2018056839 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182134A1 true WO2019182134A1 (en) 2019-09-26

Family

ID=67987853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012178 WO2019182134A1 (en) 2018-03-23 2019-03-22 Base station and transmission method

Country Status (3)

Country Link
JP (1) JP7261223B2 (en)
CN (1) CN111903065B (en)
WO (1) WO2019182134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135708A1 (en) * 2022-01-13 2023-07-20 日本電気株式会社 Control device, control method, and recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251915A (en) * 2007-08-20 2013-12-12 Rearden Llc System and method for distributed input-distributed output wireless communications
JP2016127604A (en) * 2014-12-30 2016-07-11 株式会社Nttドコモ Method and apparatus for user/base-station signaling and association achieving load balancing across wireless multi-band heterogeneous networks
WO2017122176A1 (en) * 2016-01-13 2017-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Practical hybrid precoding scheme for multi-user massive mimo systems
US20170257155A1 (en) * 2015-01-16 2017-09-07 RF DSP Inc. Beamforming in a mu-mimo wireless communication system with relays

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755565B1 (en) * 1996-11-07 1999-01-08 France Telecom TRANSMISSION METHOD BY A BASE STATION EQUIPPED WITH A MULTI-SENSOR ANTENNA TO A MOBILE
EP2161783A1 (en) * 2008-09-04 2010-03-10 Alcatel Lucent Method for multi-antenna signal processing at an antenna element arrangement, corresponding transceiver and corresponding antenna element arrangement
JP5149257B2 (en) * 2009-10-02 2013-02-20 シャープ株式会社 Wireless communication system, communication apparatus, and wireless communication method
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
US8625713B2 (en) * 2011-09-19 2014-01-07 Alcatel Lucent Method for beamforming transmissions from a network element having a plurality of antennas, and the network element
CN103905104B (en) * 2012-12-28 2017-12-19 中兴通讯股份有限公司 It is a kind of according to the multi-antenna sending method and terminal of detection reference signal and base station
JP5510576B2 (en) 2013-03-07 2014-06-04 富士通株式会社 Pilot control method
US9923736B2 (en) * 2014-09-25 2018-03-20 Lg Electronics Inc. Method for performing channel estimation, and apparatus therefor
JP6412796B2 (en) 2014-12-26 2018-10-24 西日本旅客鉄道株式会社 DC voltage power failure checker and DC voltage power failure check method
WO2017169111A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Base station, terminal device, and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251915A (en) * 2007-08-20 2013-12-12 Rearden Llc System and method for distributed input-distributed output wireless communications
JP2016127604A (en) * 2014-12-30 2016-07-11 株式会社Nttドコモ Method and apparatus for user/base-station signaling and association achieving load balancing across wireless multi-band heterogeneous networks
US20170257155A1 (en) * 2015-01-16 2017-09-07 RF DSP Inc. Beamforming in a mu-mimo wireless communication system with relays
WO2017122176A1 (en) * 2016-01-13 2017-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Practical hybrid precoding scheme for multi-user massive mimo systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135708A1 (en) * 2022-01-13 2023-07-20 日本電気株式会社 Control device, control method, and recording medium

Also Published As

Publication number Publication date
JPWO2019182134A1 (en) 2021-04-08
CN111903065B (en) 2023-12-05
CN111903065A (en) 2020-11-06
JP7261223B2 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
JP7005190B2 (en) Signal processing equipment, radio equipment, fronthaul multiplexers, beam control methods, and signal synthesis methods
WO2018229958A1 (en) User terminal and wireless communication method
WO2018168670A1 (en) User terminal and positioning method
WO2018151288A1 (en) Wireless base station, and wireless communication method
US10742279B2 (en) User terminal and wireless communication method
WO2018143275A1 (en) User terminal and wireless communication method
WO2018168630A1 (en) Wireless base station
WO2019182134A1 (en) Base station and transmission method
JP6967358B2 (en) Wireless base station and transmission power control method
JP7109883B2 (en) Radio base station and radio communication method
WO2018025928A1 (en) User terminal and wireless communication method
JP2019176270A (en) Base station and communication control method by base station
US11736956B2 (en) Base station
US10985810B2 (en) User terminal, wireless base station, and wireless communication method
WO2018159242A1 (en) Wireless terminal, transmission power control method, and wireless base station
JP7390283B2 (en) Base station and transmission method by base station
WO2019163113A1 (en) User equipment and radio communication method
WO2019182135A1 (en) Base station and transmission method
JPWO2018142747A1 (en) User terminal and wireless communication method
JP2022040211A (en) Signal processing device, radio device, fronthaul multiplexer, beam control method and signal synthesis method
WO2019159341A1 (en) Wireless transmission device
WO2018173176A1 (en) User terminal, radio base station, and radio communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771725

Country of ref document: EP

Kind code of ref document: A1