WO2019163113A1 - User equipment and radio communication method - Google Patents

User equipment and radio communication method Download PDF

Info

Publication number
WO2019163113A1
WO2019163113A1 PCT/JP2018/006831 JP2018006831W WO2019163113A1 WO 2019163113 A1 WO2019163113 A1 WO 2019163113A1 JP 2018006831 W JP2018006831 W JP 2018006831W WO 2019163113 A1 WO2019163113 A1 WO 2019163113A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
signal
terminal
base station
ofdm
Prior art date
Application number
PCT/JP2018/006831
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 岡村
和晃 武田
大樹 武田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/006831 priority Critical patent/WO2019163113A1/en
Publication of WO2019163113A1 publication Critical patent/WO2019163113A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 a successor system of LTE is also being studied for the purpose of further widening the bandwidth and speeding up from LTE.
  • LTE successors include LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is what is called.
  • the waveform of the uplink (direction from user terminal to base station, UL) signal (waveform), CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing), and DFT (Discrete Fourier)
  • DFT-S-OFDM DFT Spread OFDM
  • the user terminal determines whether the radio base station uses CP-OFDM or DFT-S-OFDM for the uplink signal waveform using RRC (Radio Resource Control) signal link or RMSI (Remaining Minimum System Information). It is also being considered to instruct.
  • RRC Radio Resource Control
  • RMSI Remaining Minimum System Information
  • One embodiment of the present invention provides a new configuration that can flexibly switch the waveform of an uplink signal in a future wireless communication system.
  • a user terminal is a user terminal that transmits an uplink signal to which one of the first and second waveforms is applied to a radio base station, which is instructed by the radio base station.
  • a control unit that selects a waveform to be applied to the uplink signal according to the allocation of resources for the uplink signal, and a transmission unit that transmits the uplink signal to which the selected waveform is applied to the radio base station And.
  • FIG. 3 is a block diagram illustrating a configuration example of a transmitter included in a user terminal according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a configuration example of a receiver included in the radio base station according to Embodiment 1.
  • FIG. 6 is a diagram for explaining an example of a signal waveform selection method applied to uplink in the user terminal according to Embodiment 1.
  • FIG. It is a figure explaining an example of the selection method of the signal waveform applied to UL in the user terminal which concerns on Embodiment 1.
  • FIG. 1 It is a figure explaining the method 1 in which a user terminal selects the signal waveform of UL in the case of UL resource allocation type "0" which concerns on Embodiment 1.
  • FIG. 2 It is a figure explaining the method 2 by which a user terminal selects the UL signal waveform in the case of UL resource allocation type "0" which concerns on Embodiment 1.
  • FIG. 2 It is a figure explaining the method 2 by which a user terminal selects the UL signal waveform in the case of UL resource allocation type "0” which concerns on Embodiment 1.
  • FIG. It is a figure explaining the method for a terminal to select the UL signal waveform according to UL resource allocation type which concerns on Embodiment 2.
  • FIG. 1 It is a figure explaining the method 1 in which a user terminal selects the signal waveform of UL in the case of UL resource allocation type "0" which concerns on Embodiment 1.
  • FIG. It is a figure explaining the method 2 by which a user terminal selects the
  • FIG. 10 is a diagram illustrating an example of an MCS (Modulation and Coding Scheme) index table for DFT-S-OFDM and an MCS index table for CP-OFDM according to the third embodiment. It is a figure which shows an example of the hardware constitutions of the user terminal and radio
  • MCS Modulation and Coding Scheme
  • CP-OFDM may be referred to as a first waveform
  • DFT-S-OFDM may be referred to as a second waveform
  • the radio communication system according to Embodiment 1 includes at least a user terminal (hereinafter referred to as “terminal”) 10 illustrated in FIG. 1 and a radio base station (hereinafter referred to as “base station”) 20 illustrated in FIG.
  • the terminal 10 is connected to the base station 20.
  • the base station 20 transmits a DL (Down Link) signal to the terminal 10.
  • the DL signal includes, for example, a DL data signal (for example, PDSCH (Physical Downlink Shared Channel)) and a DL control signal (for example, PDCCH (Physical Downlink Control Channel) for demodulating and decoding the DL data signal). It is.
  • the terminal 10 transmits a UL (Up Link) signal to the base station 20.
  • the UL signal includes, for example, an UL data signal (eg, PUSCH (Physical Uplink Shared Channel)) and an UL control signal (e.g., PUCCH (Physical Uplink Control Channel)) for demodulating and decoding the UL data signal. It is.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • FIG. 1 is a block diagram illustrating a configuration example of a transmitter included in terminal 10 according to Embodiment 1.
  • 1 includes a control unit 101, a preprocessing unit 102, a mapping unit 103, an IFFT unit 104, a post-processing unit 105, a transmission unit 106, and an antenna 107.
  • the control unit 101 selects a waveform according to the resource (subcarrier) in the frequency domain allocated for the uplink signal of the own terminal 10, and performs pre-processing unit 102, mapping unit 103, and post-processing unit In step 105, the selected waveform is designated.
  • the selected waveform is, for example, CP-OFDM or DTF-S-OFDM. Allocation of uplink signal resources for each terminal 10 may be instructed by the base station 20. Details of the waveform selection method in the control unit 101 will be described later.
  • the preprocessing unit 102 performs preprocessing on the input data (modulation symbol sequence) according to the signal waveform instructed from the control unit 101, and outputs the preprocessed signal to the mapping unit 103. For example, when CP-OFDM is instructed, the preprocessing unit 102 generates a frequency domain signal by performing serial-parallel conversion on the data, and outputs the obtained frequency domain signal to the mapping unit 103. For example, when DFT-S-OFDM is instructed, the preprocessing unit 102 performs time-parallel signal conversion on the data to generate a time domain signal, further performs discrete Fourier transform, and maps the obtained frequency domain signal to the mapping unit 103. Output to.
  • the mapping unit 103 maps the frequency domain signal output from the preprocessing unit 102 to the resource (subcarrier, symbol) corresponding to the waveform instructed from the control unit 101. Further, mapping section 103 maps 0 to subcarriers other than the subcarrier to which the frequency domain signal is mapped. Then, mapping section 103 outputs the frequency domain signal after mapping to IFFT (Inverse Fast Fourier Transform) section 104.
  • IFFT Inverse Fast Fourier Transform
  • the IFFT unit 104 performs inverse fast Fourier transform on the frequency domain signal output from the mapping unit 103, and outputs the obtained time domain signal to the post-processing unit 105.
  • the post-processing unit 105 performs post-processing on the time domain signal output from the IFFT unit 104 according to the waveform instructed from the control unit 101, and outputs the post-processed signal to the transmission unit 106.
  • the post-processing unit 105 inserts a CP into the time domain signal output from the IFFT unit 104, performs parallel-serial conversion, and outputs the result to the transmission unit 106.
  • the transmission unit 106 performs RF (Radio-Frequency) processing such as D / A (Digital-to-Analog) conversion, up-conversion, and amplification on the time domain signal (UL signal) output from the post-processing unit 105. Then, a radio signal is transmitted to the base station 20 via the antenna 107.
  • RF Radio-Frequency
  • FIG. 2 is a block diagram illustrating a configuration example of a receiver included in the base station 20 according to the first embodiment. 2 includes a control unit 201, an antenna 202, a reception unit 203, a preprocessing unit 204, an FFT (Fast Fourier Transform) unit 205, a signal detection unit 206, a post processing unit 207, and the like. Have.
  • the control unit 201 selects a waveform according to the resource (subcarrier) in the frequency domain allocated for the uplink signal of the terminal 10, and sends the waveform to the preprocessing unit 204, the signal detection unit 206, and the postprocessing unit 207. Indicate the selected waveform.
  • the base station 20 may instruct each terminal 10 to allocate resources for uplink signals.
  • the receiving unit 203 performs RF processing such as amplification, down-conversion, and A / D (Analog-to-Digital) conversion on the radio signal received by the antenna 202, and a baseband time domain signal (UL signal). Is output to the preprocessing unit 204.
  • RF processing such as amplification, down-conversion, and A / D (Analog-to-Digital) conversion on the radio signal received by the antenna 202, and a baseband time domain signal (UL signal).
  • the preprocessing unit 204 performs preprocessing on the time domain signal output from the reception unit 203 according to the waveform instructed from the control unit 201, and outputs the preprocessed signal to the FFT unit 205.
  • the preprocessing unit 204 performs serial-parallel conversion on the time domain signal output from the reception unit 203, removes the added CP, and outputs the CP to the FFT unit 205.
  • the FFT unit 205 performs fast Fourier transform on the time domain signal output from the preprocessing unit 204, and outputs the obtained frequency domain signal to the signal detection unit 206.
  • the signal detection unit 206 performs equalization processing corresponding to the waveform instructed by the control unit 201 on the signal output from the FFT unit 205, and outputs the equalized signal to the post-processing unit 207.
  • the post-processing unit 207 performs post-processing on the frequency domain signal output from the signal detection unit 206 according to the waveform instructed from the control unit 201, and obtains output data (modulation symbol string). For example, when CP-OFDM is instructed, the post-processing unit 207 performs parallel-serial conversion on the frequency domain signal output from the signal detection unit 206 to obtain output data. Further, when DFT-S-OFDM is instructed, the post-processing unit 207 performs inverse discrete Fourier transform on the frequency domain signal output from the signal detection unit 206, and performs parallel processing on the obtained time domain signal. Perform serial conversion to obtain output data.
  • 3A and 3B are diagrams illustrating an example of a waveform selection method applied to the UL in the terminal 10.
  • the terminal 10 selects a waveform to be applied to the UL signal according to the number of RBs (Resource Blocks) in the frequency domain (hereinafter referred to as “RB allocation number”) allocated to the terminal 10 itself. For example, the terminal 10 (control unit 101) selects CP-OFDM when the number of RB allocations is equal to or greater than the threshold X RB (X RB is an integer equal to or greater than 2), and DFT when the number of RB allocations is less than the threshold X RB. -Select S-OFDM.
  • the terminal 10 can dynamically switch the waveform applied to the UL signal according to the number of allocated RBs.
  • the base station 20 can instruct the terminal 10 as to the waveform to be applied to the UL signal by changing the number of RBs allocated to the UL signal of the terminal 10.
  • CP-OFDM is associated with the number of RB allocations above the threshold and DFT-S-OFDM is associated with the number of RB allocations below the threshold is, for example, for the following reason.
  • DFT-S-OFDM with a low PAPR (Peak-to-Average Power Ratio) to the UL signal.
  • PAPR Peak-to-Average Power Ratio
  • CP-OFDM to the UL signal because high throughput is obtained and RB allocation may be discontinuous.
  • the base station 20 measures the channel quality, and assigns the number of RBs less than the threshold value XRB to the UL signal such as the terminal 10 having a low channel quality (for example, a terminal located at the end of the cell).
  • the terminal 10 selects DFT-S-OFDM as a waveform applied to the UL signal. Thereby, the PAPR in the terminal 10 is reduced.
  • the base station 20 measures channel quality
  • terminal 10 e.g., terminal located at the center of the cell
  • channel quality is high assign RB number equal to or larger than the threshold value X RB to the UL signal or the like.
  • the terminal 10 selects CP-OFDM as a waveform applied to the UL signal. Thereby, the throughput of UL increases.
  • the parameter indicating channel quality include RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), path loss (propagation loss), SINR (Signal Noise Interference Ratio), and the like.
  • the threshold X RB is to the RRC signaling or RMSI like upper layer may be notified to the terminal 10, it may be predetermined by the specification. Further, in the present embodiment, the frequency bandwidth allocated to the terminal 10 or the CORESET frequency bandwidth may be used instead of the number of RB allocations.
  • the RBG Resource Block Group
  • the RBG includes a plurality of RBs.
  • the terminal 10 has a case where the resource allocated to the UL signal is indicated by the RB and a case where the resource is indicated by the RBG. Whether to be designated by RB or RBG is set by the UL resource allocation type. For example, when the UL resource allocation type “0” is set, it is instructed by the RBG, and when the UL resource allocation type “1” is set, it is instructed by the RB. The UL resource allocation type may be instructed from the base station 20 to the terminal 10.
  • the UL resource allocation type “0” may be referred to as a second type, and the UL resource allocation type “1” may be referred to as a first type.
  • the terminal 10 may select a waveform to be applied to the UL signal by the method described above with reference to FIG.
  • the terminal 10 may select a waveform to be applied to the UL signal by either the following method 1 or method 2.
  • 4A and 4B are diagrams illustrating a method 1 for selecting a waveform to be applied to the UL signal by the terminal 10 in the case of the UL resource allocation type “0”.
  • 4A and 4B are examples in which 1 RBG is composed of 3 RBs.
  • the terminal 10 selects a waveform to be applied to the UL signal according to the number of RBGs assigned to the terminal 10 in the frequency domain (hereinafter referred to as “RBG allocation number”). For example, the terminal 10 (control unit 101) selects CP-OFDM when the RBG allocation number is equal to or greater than a threshold X RBG (X RBG is an integer equal to or greater than 2), and DFT when the RBG allocation number is less than the threshold X RBG. -Select S-OFDM.
  • the terminal 10 selects CP-OFDM.
  • the terminal 10 selects DFT-S-OFDM.
  • the terminal 10 can dynamically switch the waveform applied to the UL signal according to the number of RBG allocations.
  • the base station 20 can instruct the terminal 10 about a waveform to be applied to the UL signal by changing the number of RBGs allocated to the UL signal of the terminal 10.
  • the terminal 10 when the base station 20 assigns the number of RBGs less than the threshold X RBG to the UL signal of the terminal 10 located at the end of the cell, the terminal 10 applies DFT-S-OFDM to the UL signal. Thereby, the PAPR in the terminal 10 is reduced.
  • the terminal 10 selects CP-OFDM as the UL signal. This increases the throughput of the UL signal.
  • the threshold value X RBG may be notified by higher layer RRC signaling or RMSI, or may be determined in advance by specifications.
  • FIGS. 5A and 5B are diagrams illustrating a method 2 for selecting a waveform to be applied to the UL signal by the terminal 10 in the case of the UL resource allocation type “0”.
  • the terminal 10 selects a waveform to be applied to the UL signal according to whether a plurality of RBGs assigned to the terminal 10 are continuous or discontinuous. For example, the terminal 10 (control unit 101) selects DFT-S-OFDM when the RBGs allocated to the terminal 10 are continuous, and the RBGs allocated to the terminal 10 are discontinuous. Select CP-OFDM. Note that the terminal 10 may determine that the number of assigned RBGs is one as continuous.
  • RBG1 and RBG4 are assigned discontinuously. In this case, the terminal 10 selects CP-OFDM.
  • RBG1 and RBG2 are continuously assigned. In this case, the terminal 10 selects DFT-S-OFDM.
  • the terminal 10 can dynamically switch the waveform applied to the UL signal according to whether the plurality of RBGs assigned to the terminal 10 are continuous or discontinuous.
  • the base station 20 instructs the terminal 10 on a waveform to be applied to the UL signal depending on whether the RBG is assigned continuously or discontinuously to the UL signal of the terminal 10. be able to.
  • 5A and 5B have described whether the RBG assignment is continuous or discontinuous, the present embodiment can also be applied to whether the RB assignment is continuous or discontinuous.
  • FIG. 3A, FIG. 3B, FIG. 4A, and FIG. 4B have described the case where there is one threshold value, this embodiment can also be applied to cases where there are two or more threshold values.
  • a threshold value Y RB (> X RB ) is provided, and when the RB allocation number is Y RB or more, the terminal 10 (control unit 101) A waveform different from S-OFDM may be selected.
  • threshold value Y RBG (> X RBG ) is provided, and when the number of RBG allocations is equal to or greater than Y RBG , terminal 10 (control unit 101) A waveform different from DFT-S-OFDM may be selected.
  • the control unit 101 of the user terminal 10 selects a waveform to be applied to the UL signal according to resource allocation in the frequency domain for the UL signal. For example, the control unit 101 selects CP-OFDM when the RB allocation number or the RBG allocation number for the UL signal is equal to or greater than the threshold, and selects DFT-S-OFDM when it is less than the threshold. Alternatively, the control unit 101 selects CP-OFDM when the RB or RBG assignment to the UL is discontinuous, and selects DFT-S-OFDM when it is continuous.
  • the terminal 10 can dynamically switch the waveform applied to the UL signal according to the allocation of the resource for the UL signal.
  • Embodiment 2 In Embodiment 2, an example will be described in which the control unit 101 of the user terminal 10 selects a waveform to be applied to the UL signal in accordance with the setting of the UL resource allocation type.
  • 6A and 6B are diagrams illustrating a method for selecting a waveform to be applied to the UL signal by the terminal 10 according to the UL resource allocation type.
  • the terminal 10 selects a waveform to be applied to the UL signal according to the UL resource allocation type set in the terminal 10 itself. For example, the terminal 10 selects CP-OFDM when the UL resource allocation type “0” is set, and selects DFT-S-OFDM when the UL resource allocation type “1” is set.
  • the terminal 10 can select a waveform to be applied to the UL signal according to whether the set UL resource allocation type is “0” or “1”.
  • CP-OFDM may be associated with UL resource allocation type “0”, and the minimum value X min may be determined for the number of RBs constituting the RBG. For example, as shown in FIG. 6A, when the minimum value X min is 5, the RBG is composed of 5 or more RBs (6 RBs in FIG. 6A).
  • each RBG assigned to the terminal 10 is expressed by 1 bit.
  • the RBG assignment instruction information shown in FIG. 4A is expressed by 17 bits of RBG0 to RBG16.
  • the RBG assignment instruction information shown in FIG. 6A can be expressed by 9 bits of RBG0 to RBG8. That is, the data amount (number of bits) of the RBG allocation instruction information can be reduced by setting the minimum value Xmin to a large value.
  • DFT-S-OFDM may be associated with UL resource allocation type “1”, and the maximum value X max may be determined for the number of RB allocations.
  • the maximum value X max may correspond to the maximum value (for example, the threshold value X RB in FIG. 3B) of the number of RB allocations when DFT-S-OFDM is selected as described with reference to FIG. 3B.
  • the RB allocation instruction information is represented by an RB number at the beginning of allocation and the number of consecutive RB allocations.
  • the maximum number of RB allocations is “51”, and the maximum number of RB allocation instruction information is 11 bits.
  • CP-OFDM is associated with UL resource allocation type “0”
  • DFT-S-OFDM is associated with UL resource allocation type “1”.
  • the control unit 101 of the terminal 10 selects CP-OFDM when the UL resource allocation type is “0”, and selects DFT-S-OFDM when the UL resource allocation type is “1”.
  • the terminal 10 can switch the waveform applied to the UL signal according to the instruction of the UL resource allocation type.
  • FIG. 7 is a diagram showing an example of an MCS index table for DFT-S-OFDM and an MCS index table for CP-OFDM.
  • the MCS index table for DFT-S-OFDM and the MCS index table for CP-OFDM each have 16 MCS index numbers from 0 to 15. That is, each MCS index table has a smaller number of MCS indexes than an MCS index table having 32 MCS index numbers from 0 to 31.
  • the terminal 10 when the terminal 10 (control unit 101) selects the waveform to be applied to the UL signal, the terminal 10 (control unit 101) sets the MCS index number from the MCS index table corresponding to the selected waveform. select. Thereby, the data amount (bit number) of the MCS index number can be reduced.
  • the MCS index numbers are expressed by 5 bits.
  • the MCS index number can be expressed by 4 bits. Therefore, the number of bits expressing the MCS index number can be reduced by 1 bit.
  • the terminal 10 since the waveform applied to the UL signal is known in the base station 20, the terminal 10 notifies the base station 20 of the waveform applied to the UL signal. do not have to.
  • the control unit 101 of the user terminal 10 selects an MCS index number from the MCS index table associated with the waveform applied to the UL signal.
  • the number of MCS indexes in the MCS index table associated with each waveform is smaller than the number of MCS indexes in the MCS index table for all waveforms. Thereby, the data amount of the MCS index number can be reduced.
  • any of the items described as DFT-S-OFDM in this proposal may have a Comb configuration.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the radio base station 20 and the user terminal 10 may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of the radio base station 20 and the user terminal 10 according to the embodiment of the present invention.
  • the wireless base station 20 and the user terminal 10 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 20 and the user terminal 10 may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 20 and the user terminal 10 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including a peripheral device interface, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the control units 101 and 201, the preprocessing units 102 and 204, the mapping unit 103, the IFFT unit 104, the post-processing units 105 and 207, the FFT unit 205, the signal detection unit 206, and the like may be realized by the processor 1001. Good.
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 101 of the user terminal 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission unit 106, the antennas 107 and 202, the reception unit 203, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 20 and the user terminal 10 include a microprocessor, a digital signal processor (DSP), an application specific specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • Information, signal Information, signals, etc. described herein may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • radio resource may be indicated by an index.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “gNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), gNodeB (gNB) access point, femtocell, small cell, and the like.
  • a user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
  • RS Reference Signal
  • the DMRS may be another corresponding name, for example, a demodulation RS or DM-RS.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the radio frame may be composed of one or a plurality of frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, etc.
  • a subframe may further be composed of one or more slots in the time domain.
  • the slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal. Radio frames, subframes, slots, minislots, and symbols may be called differently corresponding to each.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
  • the minimum time unit of scheduling may be called TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • one minislot may be called a TTI
  • the resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. In the time domain of the resource unit, it may include one or a plurality of symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource units.
  • the resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband. Further, the resource unit may be composed of one or a plurality of REs.
  • 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of minislots included in the subframe, the symbols and resource blocks included in the slots, The number and the number of subcarriers included in the resource block can be variously changed.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • One embodiment of the present invention is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A control unit (101) of the user equipment (10) selects a first waveform (CP-OFDM) when the number of allocated resources in the frequency domain for an uplink signal is larger than or equal to a predetermined threshold value, or selects a second waveform (DFT-S-OFDM) when the number is smaller than the predetermined threshold value, and a transmission unit (106) transmits an uplink signal to which the waveform selected by the control unit (101) is applied. Because of this configuration, the waveform of the uplink signal can be flexibly switched.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本発明は、次世代移動通信システムにおけるユーザ端末および無線通信方法に関する。 The present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれるものがある。 In the UMTS (Universal Mobile Telecommunication System) network, Long Term Evolution (LTE: Long Term Evolution) has been specified for the purpose of further high data rate and low delay (Non-patent Document 1). In addition, a successor system of LTE is also being studied for the purpose of further widening the bandwidth and speeding up from LTE. LTE successors include LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is what is called.
 将来の無線通信システムでは、上りリンク(ユーザ端末から基地局への方向、UL:uplink)信号の波形(waveform)に、CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)、及び、DFT(Discrete Fourier Transform)に基づく拡散によって信号波形生成を実現するDFT-S-OFDM(DFT Spread OFDM)等を利用することも検討されている。 In future wireless communication systems, the waveform of the uplink (direction from user terminal to base station, UL) signal (waveform), CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing), and DFT (Discrete Fourier) The use of DFT-S-OFDM (DFT Spread OFDM) or the like that realizes signal waveform generation by spreading based on (Transform) has also been studied.
 また、無線基地局が、RRC(Radio Resource Control)シグナリンク又はRMSI(Remaining Minimum System Information)を用いて、上りリンクの信号波形にCP-OFDM又はDFT-S-OFDMの何れを用いるかをユーザ端末に指示することも検討されている。 Further, the user terminal determines whether the radio base station uses CP-OFDM or DFT-S-OFDM for the uplink signal waveform using RRC (Radio Resource Control) signal link or RMSI (Remaining Minimum System Information). It is also being considered to instruct.
 しかし、RRCシグナリング又はRMSIを用いて上りリンク信号の波形をユーザ端末に指示する場合、柔軟に波形を切り換えることが難しい。 However, it is difficult to flexibly switch the waveform when the user equipment terminal is instructed to waveform the uplink signal using RRC signaling or RMSI.
 本発明の一態様は、将来の無線通信システムの上りリンク信号の波形を柔軟に切り換えることができる新たな構成を提供する。 One embodiment of the present invention provides a new configuration that can flexibly switch the waveform of an uplink signal in a future wireless communication system.
 本発明の一態様に係るユーザ端末は、第1又は第2の波形のうち何れかを適用した上りリンク信号を無線基地局に送信するユーザ端末であって、前記無線基地局から指示された、上りリンク信号用のリソースの割当に応じて、前記上りリンク信号に適用する波形を選択する制御部と、前記選択された波形を適用した前記上りリンク信号を、前記無線基地局に送信する送信部と、を具備する。 A user terminal according to an aspect of the present invention is a user terminal that transmits an uplink signal to which one of the first and second waveforms is applied to a radio base station, which is instructed by the radio base station. A control unit that selects a waveform to be applied to the uplink signal according to the allocation of resources for the uplink signal, and a transmission unit that transmits the uplink signal to which the selected waveform is applied to the radio base station And.
 本発明の一態様によれば、将来の無線通信システムの上りリンク信号の波形を柔軟に切り換えることができる新たな構成を提供できる。 According to one aspect of the present invention, it is possible to provide a new configuration that can flexibly switch the waveform of an uplink signal in a future wireless communication system.
実施の形態1に係るユーザ端末が備える送信機の構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a transmitter included in a user terminal according to Embodiment 1. FIG. 実施の形態1に係る無線基地局が備える受信機の構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a receiver included in the radio base station according to Embodiment 1. FIG. 実施の形態1に係るユーザ端末おける上りリンクに適用する信号波形の選択方法の一例を説明する図である。6 is a diagram for explaining an example of a signal waveform selection method applied to uplink in the user terminal according to Embodiment 1. FIG. 実施の形態1に係るユーザ端末おけるULに適用する信号波形の選択方法の一例を説明する図である。It is a figure explaining an example of the selection method of the signal waveform applied to UL in the user terminal which concerns on Embodiment 1. FIG. 実施の形態1に係るULリソース割当タイプ「0」の場合にユーザ端末がULの信号波形を選択する方法1について説明する図である。It is a figure explaining the method 1 in which a user terminal selects the signal waveform of UL in the case of UL resource allocation type "0" which concerns on Embodiment 1. FIG. 実施の形態1に係るULリソース割当タイプ「0」の場合にユーザ端末がULの信号波形を選択する方法1について説明する図である。It is a figure explaining the method 1 in which a user terminal selects the signal waveform of UL in the case of UL resource allocation type "0" which concerns on Embodiment 1. FIG. 実施の形態1に係るULリソース割当タイプ「0」の場合にユーザ端末がULの信号波形を選択する方法2について説明する図である。It is a figure explaining the method 2 by which a user terminal selects the UL signal waveform in the case of UL resource allocation type "0" which concerns on Embodiment 1. FIG. 実施の形態1に係るULリソース割当タイプ「0」の場合にユーザ端末がULの信号波形を選択する方法2について説明する図である。It is a figure explaining the method 2 by which a user terminal selects the UL signal waveform in the case of UL resource allocation type "0" which concerns on Embodiment 1. FIG. 実施の形態2に係るULリソース割当タイプに応じて端末がULの信号波形を選択する方法を説明する図である。It is a figure explaining the method for a terminal to select the UL signal waveform according to UL resource allocation type which concerns on Embodiment 2. FIG. 実施の形態2に係るULリソース割当タイプに応じて端末がULの信号波形を選択する方法を説明する図である。It is a figure explaining the method for a terminal to select the UL signal waveform according to UL resource allocation type which concerns on Embodiment 2. FIG. 実施の形態3に係るDFT-S-OFDM用のMCS(Modulation and Coding Scheme)インデックステーブルとCP-OFDM用のMCSインデックステーブルとの一例を示す図である。FIG. 10 is a diagram illustrating an example of an MCS (Modulation and Coding Scheme) index table for DFT-S-OFDM and an MCS index table for CP-OFDM according to the third embodiment. 本発明の一実施の形態に係るユーザ端末及び無線基地局のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the user terminal and radio | wireless base station which concern on one embodiment of this invention.
 以下、本発明の実施の形態を、図面を参照して説明する。なお、以下の各実施の形態では、CP-OFDM又はDFT-S-OFDMの何れかの波形を選択する(切り換える)場合について説明する。なお、CP-OFDMを第1の波形、DFT-S-OFDMを第2の波形と呼んでも良い。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the following embodiments, a case will be described in which one of the waveforms of CP-OFDM or DFT-S-OFDM is selected (switched). Note that CP-OFDM may be referred to as a first waveform, and DFT-S-OFDM may be referred to as a second waveform.
 (実施の形態1)
 実施の形態1に係る無線通信システムは、少なくとも、図1に示すユーザ端末(以下「端末」という)10、及び、図2に示す無線基地局(以下「基地局」という)20を備える。端末10は、基地局20に接続している。
(Embodiment 1)
The radio communication system according to Embodiment 1 includes at least a user terminal (hereinafter referred to as “terminal”) 10 illustrated in FIG. 1 and a radio base station (hereinafter referred to as “base station”) 20 illustrated in FIG. The terminal 10 is connected to the base station 20.
 基地局20は、端末10に対して、DL(Down Link)信号を送信する。DL信号には、例えば、DLデータ信号(例えば、PDSCH(Physical Downlink Shared Channel))と、DLデータ信号を復調および復号するためのDL制御信号(例えば、PDCCH(Physical Downlink Control Channel))とが含まれている。 The base station 20 transmits a DL (Down Link) signal to the terminal 10. The DL signal includes, for example, a DL data signal (for example, PDSCH (Physical Downlink Shared Channel)) and a DL control signal (for example, PDCCH (Physical Downlink Control Channel) for demodulating and decoding the DL data signal). It is.
 端末10は、基地局20に対して、UL(Up Link)信号を送信する。UL信号には、例えば、ULデータ信号(例えば、PUSCH(Physical Uplink Shared Channel))と、ULデータ信号を復調及び復号するためのUL制御信号(例えば、PUCCH(Physical Uplink Control Channel))とが含まれている。 The terminal 10 transmits a UL (Up Link) signal to the base station 20. The UL signal includes, for example, an UL data signal (eg, PUSCH (Physical Uplink Shared Channel)) and an UL control signal (e.g., PUCCH (Physical Uplink Control Channel)) for demodulating and decoding the UL data signal. It is.
 <ユーザ端末>
 図1は、実施の形態1に係る端末10が備える送信機の構成例を示すブロック図である。図1に示す端末10は、制御部101と、前処理部102と、マッピング部103と、IFFT部104と、後処理部105と、送信部106と、アンテナ107と、を有する。
<User terminal>
FIG. 1 is a block diagram illustrating a configuration example of a transmitter included in terminal 10 according to Embodiment 1. 1 includes a control unit 101, a preprocessing unit 102, a mapping unit 103, an IFFT unit 104, a post-processing unit 105, a transmission unit 106, and an antenna 107.
 制御部101は、自端末10の上りリンク信号用に割り当てられた、周波数領域におけるリソース(サブキャリア)に応じて、波形(waveform)を選択し、前処理部102、マッピング部103および後処理部105に、その選択した波形を指示する。選択される波形は、例えば、CP-OFDM又はDTF-S-OFDMである。各端末10に対する上りリンク信号用のリソースの割当は、基地局20から指示されてよい。なお、制御部101における波形の選択方法の詳細については、後述する。 The control unit 101 selects a waveform according to the resource (subcarrier) in the frequency domain allocated for the uplink signal of the own terminal 10, and performs pre-processing unit 102, mapping unit 103, and post-processing unit In step 105, the selected waveform is designated. The selected waveform is, for example, CP-OFDM or DTF-S-OFDM. Allocation of uplink signal resources for each terminal 10 may be instructed by the base station 20. Details of the waveform selection method in the control unit 101 will be described later.
 前処理部102は、制御部101から指示された信号波形に応じて、入力データ(変調シンボル列)に対して前処理を行い、マッピング部103に前処理後の信号を出力する。例えば、CP-OFDMを指示された場合、前処理部102は、データを直並列変換して周波数領域信号を生成し、得られた周波数領域信号をマッピング部103に出力する。例えば、DFT-S-OFDMを指示された場合、前処理部102は、データを直並列変換して時間領域信号を生成し、さらに離散フーリエ変換を行い、得られた周波数領域信号をマッピング部103に出力する。 The preprocessing unit 102 performs preprocessing on the input data (modulation symbol sequence) according to the signal waveform instructed from the control unit 101, and outputs the preprocessed signal to the mapping unit 103. For example, when CP-OFDM is instructed, the preprocessing unit 102 generates a frequency domain signal by performing serial-parallel conversion on the data, and outputs the obtained frequency domain signal to the mapping unit 103. For example, when DFT-S-OFDM is instructed, the preprocessing unit 102 performs time-parallel signal conversion on the data to generate a time domain signal, further performs discrete Fourier transform, and maps the obtained frequency domain signal to the mapping unit 103. Output to.
 マッピング部103は、制御部101から指示された波形に対応するリソース(サブキャリア、シンボル)に、前処理部102から出力された周波数領域信号をマッピングする。また、マッピング部103は、周波数領域信号がマッピングされたサブキャリア以外のサブキャリアには0をマッピングする。そして、マッピング部103は、マッピング後の周波数領域信号をIFFT(Inverse Fast Fourier Transform)部104に出力する。 The mapping unit 103 maps the frequency domain signal output from the preprocessing unit 102 to the resource (subcarrier, symbol) corresponding to the waveform instructed from the control unit 101. Further, mapping section 103 maps 0 to subcarriers other than the subcarrier to which the frequency domain signal is mapped. Then, mapping section 103 outputs the frequency domain signal after mapping to IFFT (Inverse Fast Fourier Transform) section 104.
 IFFT部104は、マッピング部103から出力された周波数領域信号に対し、逆高速フーリエ変換を行い、得られた時間領域信号を後処理部105に出力する。 The IFFT unit 104 performs inverse fast Fourier transform on the frequency domain signal output from the mapping unit 103, and outputs the obtained time domain signal to the post-processing unit 105.
 後処理部105は、制御部101から指示された波形に応じて、IFFT部104から出力された時間領域信号に対して後処理を行い、送信部106に後処理後の信号を出力する。例えば、後処理部105は、IFFT部104から出力された時間領域信号にCPを挿入し、並直列変換し、送信部106に出力する。 The post-processing unit 105 performs post-processing on the time domain signal output from the IFFT unit 104 according to the waveform instructed from the control unit 101, and outputs the post-processed signal to the transmission unit 106. For example, the post-processing unit 105 inserts a CP into the time domain signal output from the IFFT unit 104, performs parallel-serial conversion, and outputs the result to the transmission unit 106.
 送信部106は、後処理部105から出力される時間領域信号(UL信号)に対して、D/A(Digital-to-Analog)変換、アップコンバート、増幅等のRF(Radio Frequency)処理を行い、アンテナ107を介して基地局20に無線信号を送信する。 The transmission unit 106 performs RF (Radio-Frequency) processing such as D / A (Digital-to-Analog) conversion, up-conversion, and amplification on the time domain signal (UL signal) output from the post-processing unit 105. Then, a radio signal is transmitted to the base station 20 via the antenna 107.
 <無線基地局>
 図2は、実施の形態1に係る基地局20が備える受信機の構成例を示すブロック図である。図2に示す基地局20は、制御部201と、アンテナ202と、受信部203と、前処理部204と、FFT(Fast Fourier Transform)部205と、信号検出部206と、後処理部207と、を有する。
<Wireless base station>
FIG. 2 is a block diagram illustrating a configuration example of a receiver included in the base station 20 according to the first embodiment. 2 includes a control unit 201, an antenna 202, a reception unit 203, a preprocessing unit 204, an FFT (Fast Fourier Transform) unit 205, a signal detection unit 206, a post processing unit 207, and the like. Have.
 制御部201は、端末10の上りリンク信号用に割り当てた、周波数領域におけるリソース(サブキャリア)に応じて、波形を選択し、前処理部204、信号検出部206および後処理部207に、その選択した波形を指示する。なお、基地局20は、各端末10に対して、上りリンク信号用のリソースの割当を指示してよい。 The control unit 201 selects a waveform according to the resource (subcarrier) in the frequency domain allocated for the uplink signal of the terminal 10, and sends the waveform to the preprocessing unit 204, the signal detection unit 206, and the postprocessing unit 207. Indicate the selected waveform. Note that the base station 20 may instruct each terminal 10 to allocate resources for uplink signals.
 受信部203は、アンテナ202において受信された無線信号に対して、増幅、ダウンコンバート、A/D(Analog-to-Digital)変換等のRF処理を行い、ベースバンドの時間領域信号(UL信号)を前処理部204に出力する。 The receiving unit 203 performs RF processing such as amplification, down-conversion, and A / D (Analog-to-Digital) conversion on the radio signal received by the antenna 202, and a baseband time domain signal (UL signal). Is output to the preprocessing unit 204.
 前処理部204は、制御部201から指示された波形に応じて、受信部203から出力された時間領域信号に対して前処理を行い、FFT部205に前処理後の信号を出力する。前処理部204は、受信部203から出力された時間領域信号を直並列変換し、付加されたCPを除去し、FFT部205に出力する。 The preprocessing unit 204 performs preprocessing on the time domain signal output from the reception unit 203 according to the waveform instructed from the control unit 201, and outputs the preprocessed signal to the FFT unit 205. The preprocessing unit 204 performs serial-parallel conversion on the time domain signal output from the reception unit 203, removes the added CP, and outputs the CP to the FFT unit 205.
 FFT部205は、前処理部204から出力された時間領域信号に対し、高速フーリエ変換を行い、得られた周波数領域信号を信号検出部206に出力する。 The FFT unit 205 performs fast Fourier transform on the time domain signal output from the preprocessing unit 204, and outputs the obtained frequency domain signal to the signal detection unit 206.
 信号検出部206は、FFT部205から出力された信号に対して、制御部201から指示された波形に対応した等化処理を行い、等化処理後の信号を後処理部207に出力する。 The signal detection unit 206 performs equalization processing corresponding to the waveform instructed by the control unit 201 on the signal output from the FFT unit 205, and outputs the equalized signal to the post-processing unit 207.
 後処理部207は、制御部201から指示された波形に応じて、信号検出部206から出力された周波数領域信号に対して後処理を行い、出力データ(変調シンボル列)を得る。例えば、CP-OFDMを指示された場合、後処理部207は、信号検出部206から出力された周波数領域信号に対して並直列変換を行い、出力データを得る。また、DFT-S-OFDMを指示された場合、後処理部207は、信号検出部206から出力された周波数領域信号に対して逆離散フーリエ変換を行い、得られた時間領域信号に対して並直列変換を行い、出力データを得る。 The post-processing unit 207 performs post-processing on the frequency domain signal output from the signal detection unit 206 according to the waveform instructed from the control unit 201, and obtains output data (modulation symbol string). For example, when CP-OFDM is instructed, the post-processing unit 207 performs parallel-serial conversion on the frequency domain signal output from the signal detection unit 206 to obtain output data. Further, when DFT-S-OFDM is instructed, the post-processing unit 207 performs inverse discrete Fourier transform on the frequency domain signal output from the signal detection unit 206, and performs parallel processing on the obtained time domain signal. Perform serial conversion to obtain output data.
<信号波形の選択>
 図3A及び図3Bは、端末10おけるULに適用する波形の選択方法の一例を説明する図である。
<Selecting the signal waveform>
3A and 3B are diagrams illustrating an example of a waveform selection method applied to the UL in the terminal 10.
 端末10(制御部101)は、自端末10に割り当てられた、周波数領域におけるRB(Resource Block)数(以下「RB割当数」という)に応じて、UL信号に適用する波形を選択する。例えば、端末10(制御部101)は、RB割当数が閾値XRB(XRBは2以上の整数)以上の場合、CP-OFDMを選択し、RB割当数が閾値XRB未満の場合、DFT-S-OFDMを選択する。 The terminal 10 (control unit 101) selects a waveform to be applied to the UL signal according to the number of RBs (Resource Blocks) in the frequency domain (hereinafter referred to as “RB allocation number”) allocated to the terminal 10 itself. For example, the terminal 10 (control unit 101) selects CP-OFDM when the number of RB allocations is equal to or greater than the threshold X RB (X RB is an integer equal to or greater than 2), and DFT when the number of RB allocations is less than the threshold X RB. -Select S-OFDM.
 図3A及び図3Bは、閾値XRB=7の場合の例である。図3Aに示すように、RB割当数が7の場合、RB割当数「7」≧閾値XRB「7」であるため、端末10はCP-OFDMを選択する。図3Bに示すように、RB割当数が6の場合、RB割当数「6」<閾値XRB「7」であるため、端末10はDFT-S-OFDMを選択する。 3A and 3B are examples when the threshold value X RB = 7. As illustrated in FIG. 3A, when the number of RB allocations is 7, since the number of RB allocations “7” ≧ the threshold value X RB “7”, the terminal 10 selects CP-OFDM. As illustrated in FIG. 3B, when the number of RB allocations is 6, since the number of RB allocations “6” <threshold X RB “7”, the terminal 10 selects DFT-S-OFDM.
 これにより、端末10は、RB割当数に応じて、UL信号に適用する波形を動的(ダイナミック)に切り換えることができる。別言すると、基地局20は、端末10のUL信号に割り当てるRB割当数を変えることにより、当該端末10に対して、UL信号に適用する波形を指示することができる。 Thereby, the terminal 10 can dynamically switch the waveform applied to the UL signal according to the number of allocated RBs. In other words, the base station 20 can instruct the terminal 10 as to the waveform to be applied to the UL signal by changing the number of RBs allocated to the UL signal of the terminal 10.
 閾値以上のRB割当数に対してCP-OFDMを対応付け、閾値未満のRB割当数に対してDFT-S-OFDMを対応付けているのは、例えば次の理由による。チャネル品質が低い場合、端末10のUL信号に割り当てられるRB割当数は少なく、端末10における送信パワーは大きくなる傾向にある。この場合、UL信号には、PAPR(Peak-to-Average Power Ratio)の低いDFT-S-OFDMの適用が好ましい。一方、チャネル品質が高い場合、端末10のUL信号に割り当てられるRB割当数は多く、端末10における送信パワーは小さくなる傾向にある。この場合、UL信号には、高いスループットが得られ、RBの割当が不連続でも良いCP-OFDMの適用が好ましい。 The reason why CP-OFDM is associated with the number of RB allocations above the threshold and DFT-S-OFDM is associated with the number of RB allocations below the threshold is, for example, for the following reason. When the channel quality is low, the number of RB allocations allocated to the UL signal of the terminal 10 is small, and the transmission power in the terminal 10 tends to increase. In this case, it is preferable to apply DFT-S-OFDM with a low PAPR (Peak-to-Average Power Ratio) to the UL signal. On the other hand, when the channel quality is high, the RB allocation number allocated to the UL signal of the terminal 10 is large, and the transmission power in the terminal 10 tends to be small. In this case, it is preferable to apply CP-OFDM to the UL signal because high throughput is obtained and RB allocation may be discontinuous.
 例えば、基地局20は、チャネル品質を測定し、チャネル品質が低い端末10(例えばセルの端に位置する端末)等のUL信号には閾値XRB未満のRB数を割り当てる。この場合、端末10は、UL信号に適用する波形にDFT-S-OFDMを選択する。これにより、端末10におけるPAPRが低減する。 For example, the base station 20 measures the channel quality, and assigns the number of RBs less than the threshold value XRB to the UL signal such as the terminal 10 having a low channel quality (for example, a terminal located at the end of the cell). In this case, the terminal 10 selects DFT-S-OFDM as a waveform applied to the UL signal. Thereby, the PAPR in the terminal 10 is reduced.
 また、基地局20は、チャネル品質を測定し、チャネル品質が高い端末10(例えば、セルの中心に位置する端末)等のUL信号に閾値XRB以上のRB数を割り当てる。この場合、端末10は、UL信号に適用する波形にCP-OFDMを選択する。これにより、ULのスループットが高まる。なお、チャネル品質を示すパラメータとしては、例えば、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、パスロス(伝搬損失)、又はSINR(Signal Noise Interference Ratio)等が挙げられる。 The base station 20 measures channel quality, terminal 10 (e.g., terminal located at the center of the cell) channel quality is high assign RB number equal to or larger than the threshold value X RB to the UL signal or the like. In this case, the terminal 10 selects CP-OFDM as a waveform applied to the UL signal. Thereby, the throughput of UL increases. Examples of the parameter indicating channel quality include RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), path loss (propagation loss), SINR (Signal Noise Interference Ratio), and the like.
 なお、閾値XRBは、上位レイヤのRRCシグナリング又はRMSI等によって端末10に通知されても良いし、仕様によって予め定められてもよい。また、本実施の形態は、RB割当数に代えて、端末10に割り当てられた周波数帯域幅、又は、CORESETの周波数帯域幅などを用いることもできる。 The threshold X RB is to the RRC signaling or RMSI like upper layer may be notified to the terminal 10, it may be predetermined by the specification. Further, in the present embodiment, the frequency bandwidth allocated to the terminal 10 or the CORESET frequency bandwidth may be used instead of the number of RB allocations.
 次に、RBを割り当てる代わりに、RBG(Resource Block group)を割り当てる場合について説明する。RBGは、図4A、図4B、図5A及び図5Bに示すように、複数のRBから構成される。 Next, a case where RBG (Resource Block Group) is allocated instead of RB allocation will be described. As shown in FIGS. 4A, 4B, 5A, and 5B, the RBG includes a plurality of RBs.
 端末10は、UL信号に割り当てるリソースが、RBによって指示される場合と、RBGによって指示される場合とがある。RB又はRBGの何れによって指示されるかは、ULリソース割当タイプによって設定される。例えば、ULリソース割当タイプ「0」が設定された場合、RBGによって指示され、ULリソース割当タイプ「1」が設定された場合、RBによって指示される。なお、ULリソース割当タイプは、基地局20から端末10に指示されてよい。また、ULリソース割当タイプ「0」を第2のタイプ、ULリソース割当タイプ「1」を第1のタイプと呼んでも良い。 The terminal 10 has a case where the resource allocated to the UL signal is indicated by the RB and a case where the resource is indicated by the RBG. Whether to be designated by RB or RBG is set by the UL resource allocation type. For example, when the UL resource allocation type “0” is set, it is instructed by the RBG, and when the UL resource allocation type “1” is set, it is instructed by the RB. The UL resource allocation type may be instructed from the base station 20 to the terminal 10. The UL resource allocation type “0” may be referred to as a second type, and the UL resource allocation type “1” may be referred to as a first type.
 ULリソース割当タイプ「1」が設定された場合、端末10は、図3を参照して説明した上記の方法により、UL信号に適用する波形を選択してよい。ULリソース割当タイプ「0」が設定された場合、端末10は、次の方法1又は方法2の何れかにより、UL信号に適用する波形を選択してよい。 When the UL resource allocation type “1” is set, the terminal 10 may select a waveform to be applied to the UL signal by the method described above with reference to FIG. When the UL resource allocation type “0” is set, the terminal 10 may select a waveform to be applied to the UL signal by either the following method 1 or method 2.
<方法1>
 図4A及び図4Bは、ULリソース割当タイプ「0」の場合に、端末10がUL信号に適用する波形を選択する方法1について説明する図である。なお、図4A及び図4Bは、1RBGが3RBから構成されている例である。
<Method 1>
4A and 4B are diagrams illustrating a method 1 for selecting a waveform to be applied to the UL signal by the terminal 10 in the case of the UL resource allocation type “0”. 4A and 4B are examples in which 1 RBG is composed of 3 RBs.
 方法1では、端末10(制御部101)は、自端末10に割り当てられた、周波数領域におけるRBG数(以下「RBG割当数」という)に応じて、UL信号に適用する波形を選択する。例えば、端末10(制御部101)は、RBG割当数が閾値XRBG(XRBGは2以上の整数)以上の場合、CP-OFDMを選択し、RBG割当数が閾値XRBG未満の場合、DFT-S-OFDMを選択する。 In Method 1, the terminal 10 (control unit 101) selects a waveform to be applied to the UL signal according to the number of RBGs assigned to the terminal 10 in the frequency domain (hereinafter referred to as “RBG allocation number”). For example, the terminal 10 (control unit 101) selects CP-OFDM when the RBG allocation number is equal to or greater than a threshold X RBG (X RBG is an integer equal to or greater than 2), and DFT when the RBG allocation number is less than the threshold X RBG. -Select S-OFDM.
 図4A及び図4Bは、閾値XRBG=3の例である。図4Aに示すように、RBG割当数が3の場合、RBG割当数「3」≧閾値XRBG「3」であるため、端末10はCP-OFDMを選択する。図4Bに示すように、RBG割当数が2の場合、RBG割当数「2」<閾値XRBG「3」であるため、端末10はDFT-S-OFDMを選択する。 4A and 4B are examples of the threshold value X RBG = 3. As shown in FIG. 4A, when the RBG allocation number is 3, since the RBG allocation number “3” ≧ the threshold value X RBG “3”, the terminal 10 selects CP-OFDM. As illustrated in FIG. 4B, when the RBG allocation number is 2, since the RBG allocation number “2” <threshold X RBG “3”, the terminal 10 selects DFT-S-OFDM.
 これにより、端末10は、RBG割当数に応じて、UL信号に適用する波形を動的(ダイナミック)に切り換えることができる。別言すると、基地局20は、端末10のUL信号に割り当てるRBG割当数を変えることにより、当該端末10に対して、UL信号に適用する波形を指示することができる。 Thereby, the terminal 10 can dynamically switch the waveform applied to the UL signal according to the number of RBG allocations. In other words, the base station 20 can instruct the terminal 10 about a waveform to be applied to the UL signal by changing the number of RBGs allocated to the UL signal of the terminal 10.
 例えば、基地局20が、セルの端に位置する端末10のUL信号に閾値XRBG未満のRBG数を割り当てることにより、端末10は、UL信号にDFT-S-OFDMを適用する。これにより、端末10におけるPAPRが低減する。また、基地局20が、セルの中心に位置する端末10のUL信号に閾値XRBG以上のRBG数を割り当てることにより、端末10は、UL信号にCP-OFDMを選択する。これにより、UL信号のスループットが高まる。 For example, when the base station 20 assigns the number of RBGs less than the threshold X RBG to the UL signal of the terminal 10 located at the end of the cell, the terminal 10 applies DFT-S-OFDM to the UL signal. Thereby, the PAPR in the terminal 10 is reduced. In addition, when the base station 20 assigns the number of RBGs equal to or greater than the threshold X RBG to the UL signal of the terminal 10 located at the center of the cell, the terminal 10 selects CP-OFDM as the UL signal. This increases the throughput of the UL signal.
 なお、閾値XRBGは、上位レイヤのRRCシグナリング又はRMSI等によって通知されても良いし、仕様によって予め定められてもよい。 The threshold value X RBG may be notified by higher layer RRC signaling or RMSI, or may be determined in advance by specifications.
<方法2>
 図5A及び図5Bは、ULリソース割当タイプ「0」の場合に、端末10がUL信号に適用する波形を選択する方法2について説明する図である。
<Method 2>
FIGS. 5A and 5B are diagrams illustrating a method 2 for selecting a waveform to be applied to the UL signal by the terminal 10 in the case of the UL resource allocation type “0”.
 方法2では、端末10(制御部101)は、自端末10に割り当てられた複数のRBGが、連続か不連続かに応じて、UL信号に適用する波形を選択する。例えば、端末10(制御部101)は、自端末10に割り当てられたRBGが連続している場合、DFT-S-OFDMを選択し、自端末10に割り当てられたRBGが不連続である場合、CP-OFDMを選択する。なお、端末10は、割り当てられたRBGが1つの場合を連続と判断してよい。 In Method 2, the terminal 10 (control unit 101) selects a waveform to be applied to the UL signal according to whether a plurality of RBGs assigned to the terminal 10 are continuous or discontinuous. For example, the terminal 10 (control unit 101) selects DFT-S-OFDM when the RBGs allocated to the terminal 10 are continuous, and the RBGs allocated to the terminal 10 are discontinuous. Select CP-OFDM. Note that the terminal 10 may determine that the number of assigned RBGs is one as continuous.
 図5Aの場合、RBG1とRBG4とが不連続に割り当てられている。この場合、端末10は、CP-OFDMを選択する。図5Bの場合、RBG1とRBG2とが連続して割り当てられている。この場合、端末10は、DFT-S-OFDMを選択する。 In the case of FIG. 5A, RBG1 and RBG4 are assigned discontinuously. In this case, the terminal 10 selects CP-OFDM. In the case of FIG. 5B, RBG1 and RBG2 are continuously assigned. In this case, the terminal 10 selects DFT-S-OFDM.
 これにより、端末10は、自端末10に割り当てられた複数のRBGが連続か不連続かに応じて、UL信号に適用する波形を動的(ダイナミック)に切り換えることができる。別言すると、基地局20は、端末10のUL信号に対してRBGを、連続して割り当てるか、それとも不連続に割り当てるかにより、当該端末10に対して、UL信号に適用する波形を指示することができる。 Thereby, the terminal 10 can dynamically switch the waveform applied to the UL signal according to whether the plurality of RBGs assigned to the terminal 10 are continuous or discontinuous. In other words, the base station 20 instructs the terminal 10 on a waveform to be applied to the UL signal depending on whether the RBG is assigned continuously or discontinuously to the UL signal of the terminal 10. be able to.
 なお、図5A及び図5Bでは、RBGの割当が連続か不連続かについて説明したが、本実施の形態は、RBの割当が連続か不連続かについても適用できる。 5A and 5B have described whether the RBG assignment is continuous or discontinuous, the present embodiment can also be applied to whether the RB assignment is continuous or discontinuous.
 また、図3A、図3B、図4A及び図4Bでは、閾値が1つの場合について説明したが、本実施の形態は、閾値が2つ以上の場合にも適用できる。例えば、図3A及び図3Bにおいて閾値XRBに加えて、閾値YRB(>XRB)を設け、RB割当数がYRB以上の場合、端末10(制御部101)は、CP-OFDM及びDFT-S-OFDMとは異なる波形を選択してもよい。同様に、図4A及び図4Bにおいて閾値XRBGに加えて、閾値YRBG(>XRBG)を設け、RBG割当数がYRBG以上の場合、端末10(制御部101)は、CP-OFDM及びDFT-S-OFDMとは異なる波形を選択してもよい。 3A, FIG. 3B, FIG. 4A, and FIG. 4B have described the case where there is one threshold value, this embodiment can also be applied to cases where there are two or more threshold values. For example, in FIG. 3A and FIG. 3B, in addition to the threshold value X RB , a threshold value Y RB (> X RB ) is provided, and when the RB allocation number is Y RB or more, the terminal 10 (control unit 101) A waveform different from S-OFDM may be selected. Similarly, in FIG. 4A and FIG. 4B, in addition to threshold value X RBG , threshold value Y RBG (> X RBG ) is provided, and when the number of RBG allocations is equal to or greater than Y RBG , terminal 10 (control unit 101) A waveform different from DFT-S-OFDM may be selected.
<実施の形態1の効果>
 実施の形態1では、ユーザ端末10の制御部101が、UL信号に対する、周波数領域におけるリソースの割当に応じて、UL信号に適用する波形を選択する。例えば、制御部101は、UL信号に対するRB割当数又はRBG割当数が、閾値以上の場合、CP-OFDMを選択し、閾値未満の場合、DFT-S-OFDMを選択する。又は、制御部101は、ULに対するRB又はRBGの割当が、不連続の場合、CP-OFDMを選択し、連続の場合、DFT-S-OFDMを選択する。
<Effect of Embodiment 1>
In the first embodiment, the control unit 101 of the user terminal 10 selects a waveform to be applied to the UL signal according to resource allocation in the frequency domain for the UL signal. For example, the control unit 101 selects CP-OFDM when the RB allocation number or the RBG allocation number for the UL signal is equal to or greater than the threshold, and selects DFT-S-OFDM when it is less than the threshold. Alternatively, the control unit 101 selects CP-OFDM when the RB or RBG assignment to the UL is discontinuous, and selects DFT-S-OFDM when it is continuous.
 これにより、端末10は、UL信号用のリソースの割当に応じて、UL信号に適用する波形を動的(ダイナミック)に切り換えることができる。 Thereby, the terminal 10 can dynamically switch the waveform applied to the UL signal according to the allocation of the resource for the UL signal.
 (実施の形態2)
 実施の形態2では、ユーザ端末10の制御部101が、ULリソース割当タイプの設定に応じて、UL信号に適用する波形を選択する一例について説明する。
(Embodiment 2)
In Embodiment 2, an example will be described in which the control unit 101 of the user terminal 10 selects a waveform to be applied to the UL signal in accordance with the setting of the UL resource allocation type.
 図6A及び図6Bは、ULリソース割当タイプに応じて、端末10がUL信号に適用する波形を選択する方法を説明する図である。 6A and 6B are diagrams illustrating a method for selecting a waveform to be applied to the UL signal by the terminal 10 according to the UL resource allocation type.
 端末10は、自端末10に設定されたULリソース割当タイプに応じて、UL信号に適用する波形を選択する。例えば、端末10は、ULリソース割当タイプ「0」が設定された場合、CP-OFDMを選択し、ULリソース割当タイプ「1」が設定された場合、DFT-S-OFDMを選択する。 The terminal 10 selects a waveform to be applied to the UL signal according to the UL resource allocation type set in the terminal 10 itself. For example, the terminal 10 selects CP-OFDM when the UL resource allocation type “0” is set, and selects DFT-S-OFDM when the UL resource allocation type “1” is set.
 これにより、端末10は、設定されたULリソース割当タイプが「0」か「1」かに応じて、UL信号に適用する波形を選択できる。 Thereby, the terminal 10 can select a waveform to be applied to the UL signal according to whether the set UL resource allocation type is “0” or “1”.
 また、ULリソース割当タイプ「0」にCP-OFDMを対応付けると共に、RBGを構成するRB数に最小値Xminを定めてもよい。例えば、図6Aに示すように、最小値Xmin=5の場合、RBGは5以上のRB(図6Aでは6RB)によって構成される。 Further, CP-OFDM may be associated with UL resource allocation type “0”, and the minimum value X min may be determined for the number of RBs constituting the RBG. For example, as shown in FIG. 6A, when the minimum value X min is 5, the RBG is composed of 5 or more RBs (6 RBs in FIG. 6A).
 これにより、図4Aの場合と同様の作用効果が得られることに加えて、次の作用効果も得られる。すなわち、端末10に対して、当該端末10に割り当てるRBGを指示するための情報(以下「RBG割当指示情報」という)のデータ量を削減できる。 Thereby, in addition to obtaining the same operational effects as in FIG. 4A, the following operational effects are also obtained. That is, it is possible to reduce the data amount of information (hereinafter referred to as “RBG allocation instruction information”) for instructing the terminal 10 to assign an RBG to the terminal 10.
 例えば、端末10に対して割り当てる各RBGを1ビットで表現する。この場合、図4Aに示すRBG割当指示情報は、RBG0~16の17ビットで表現される。これに対して、図6Aに示すRBG割当指示情報は、RBG0~8の9ビットで表現できる。すなわち、最小値Xminを大きく設定することにより、RBG割当指示情報のデータ量(ビット数)を削減できる。 For example, each RBG assigned to the terminal 10 is expressed by 1 bit. In this case, the RBG assignment instruction information shown in FIG. 4A is expressed by 17 bits of RBG0 to RBG16. On the other hand, the RBG assignment instruction information shown in FIG. 6A can be expressed by 9 bits of RBG0 to RBG8. That is, the data amount (number of bits) of the RBG allocation instruction information can be reduced by setting the minimum value Xmin to a large value.
 また、ULリソース割当タイプ「1」にDFT-S-OFDMを対応付けると共に、RB割当数に最大値Xmaxを定めてもよい。最大値Xmaxは、図3Bを参照して説明した、DFT-S-OFDMが選択される場合のRB割当数の最大値(例えば図3Bの閾値XRB)に相当してよい。 Further, DFT-S-OFDM may be associated with UL resource allocation type “1”, and the maximum value X max may be determined for the number of RB allocations. The maximum value X max may correspond to the maximum value (for example, the threshold value X RB in FIG. 3B) of the number of RB allocations when DFT-S-OFDM is selected as described with reference to FIG. 3B.
 これにより、図3Bの場合と同様の作用効果が得られることに加えて、次の作用効果も得られる。すなわち、端末10に対して、当該端末10に割り当てるRBを指示するための情報(以下「RB割当指示情報」という)のデータ量を削減できる。 Thereby, in addition to the same operational effects as in FIG. 3B, the following operational effects are also obtained. That is, it is possible to reduce the data amount of information for instructing the terminal 10 to assign an RB to the terminal 10 (hereinafter referred to as “RB assignment instruction information”).
 例えば、RB割当指示情報を、割り当ての先頭のRB番号と、連続するRB割当数とによって表現する。この場合、図3Bでは、RB割当数に上限が存在しないため、RB割当数は最大「51」となり、RB割当指示情報は、最大11ビットとなる。これに対して、図6Bでは、最大値Xmax=7が定められているため、RB割当数は最大「6」(<Xmax)となり、RB割当指示情報は、最大9ビットとなる。したがって、最大値Xmaxを小さく設定することにより、RB割当指示情報のデータ量(ビット数)を削減できる。 For example, the RB allocation instruction information is represented by an RB number at the beginning of allocation and the number of consecutive RB allocations. In this case, in FIG. 3B, since there is no upper limit to the number of RB allocations, the maximum number of RB allocations is “51”, and the maximum number of RB allocation instruction information is 11 bits. On the other hand, in FIG. 6B, since the maximum value X max = 7 is defined, the number of RB allocations is “6” (<X max ) at maximum , and the RB allocation instruction information is 9 bits at maximum. Therefore, the data amount (number of bits) of the RB allocation instruction information can be reduced by setting the maximum value Xmax small.
<実施の形態2の効果>
 実施の形態2では、ULリソース割当タイプに対して、互いに異なるUL信号の波形を対応付ける。例えば、ULリソース割当タイプ「0」に対してCP-OFDMを対応付け、ULリソース割当タイプ「1」に対してDFT-S-OFDMを対応付ける。この場合、端末10の制御部101は、ULリソース割当タイプ「0」の場合にCP-OFDMを選択し、ULリソース割当タイプ「1」の場合にDFT-S-OFDMを選択する。
<Effect of Embodiment 2>
In the second embodiment, different UL signal waveforms are associated with UL resource allocation types. For example, CP-OFDM is associated with UL resource allocation type “0”, and DFT-S-OFDM is associated with UL resource allocation type “1”. In this case, the control unit 101 of the terminal 10 selects CP-OFDM when the UL resource allocation type is “0”, and selects DFT-S-OFDM when the UL resource allocation type is “1”.
 これにより、端末10は、ULリソース割当タイプの指示に応じて、UL信号に適用する波形を切り換えることができる。 Thereby, the terminal 10 can switch the waveform applied to the UL signal according to the instruction of the UL resource allocation type.
(実施の形態3)
 実施の形態3では、ULに適用する信号波形毎にMCSインデックステーブルを用意する形態について説明する。
(Embodiment 3)
In the third embodiment, a mode in which an MCS index table is prepared for each signal waveform applied to UL will be described.
 図7は、DFT-S-OFDM用のMCSインデックステーブルと、CP-OFDM用のMCSインデックステーブルの一例を示す図である。 FIG. 7 is a diagram showing an example of an MCS index table for DFT-S-OFDM and an MCS index table for CP-OFDM.
 図7に示すように、DFT-S-OFDM用のMCSインデックステーブル及びCP-OFDM用のMCSインデックステーブルは、それぞれ、0~15の16通りのMCSインデックス番号を有する。すなわち、それぞれのMCSインデックステーブルは、0~31の32通りのMCSインデックス番号を有するMCSインデックステーブルよりも、MCSインデックスの数が少ない。 As shown in FIG. 7, the MCS index table for DFT-S-OFDM and the MCS index table for CP-OFDM each have 16 MCS index numbers from 0 to 15. That is, each MCS index table has a smaller number of MCS indexes than an MCS index table having 32 MCS index numbers from 0 to 31.
 端末10(制御部101)は、実施の形態1又は2において説明したように、UL信号に適用する波形を選択した場合、その選択した波形に対応するMCSインデックステーブルの中から、MCSインデックス番号を選択する。これにより、MCSインデックス番号のデータ量(ビット数)を削減できる。 As described in the first or second embodiment, when the terminal 10 (control unit 101) selects the waveform to be applied to the UL signal, the terminal 10 (control unit 101) sets the MCS index number from the MCS index table corresponding to the selected waveform. select. Thereby, the data amount (bit number) of the MCS index number can be reduced.
 例えば、MCSインデックス番号が32通りの場合、MCSインデックス番号は、5ビットで表現される。これに対して、本実施の形態は、各MCSインデックステーブルのMCSインデックス番号が16通りであるため、MCSインデックス番号を4ビットで表現できる。よって、MCSインデックス番号を表現するビット数を、1ビット削減できる。 For example, when there are 32 types of MCS index numbers, the MCS index numbers are expressed by 5 bits. On the other hand, in this embodiment, since there are 16 MCS index numbers in each MCS index table, the MCS index number can be expressed by 4 bits. Therefore, the number of bits expressing the MCS index number can be reduced by 1 bit.
 なお、実施の形態1又は2にて説明したように、UL信号に適用された波形は、基地局20において既知であるため、端末10は基地局20に対してUL信号に適用した波形を通知する必要はない。 As described in the first or second embodiment, since the waveform applied to the UL signal is known in the base station 20, the terminal 10 notifies the base station 20 of the waveform applied to the UL signal. do not have to.
<実施の形態3の効果>
 実施の形態3では、ユーザ端末10の制御部101は、UL信号に適用する波形に対応付けられているMCSインデックステーブルから、MCSインデックス番号を選択する。ここで、各波形に対応付けられているMCSインデックステーブルのMCSインデックスの数は、全ての波形に関するMCSインデックステーブルのMCSインデックスの数よりも少ない。これにより、MCSインデックス番号のデータ量を削減できる。
<Effect of Embodiment 3>
In the third embodiment, the control unit 101 of the user terminal 10 selects an MCS index number from the MCS index table associated with the waveform applied to the UL signal. Here, the number of MCS indexes in the MCS index table associated with each waveform is smaller than the number of MCS indexes in the MCS index table for all waveforms. Thereby, the data amount of the MCS index number can be reduced.
 なお、本提案においてDFT-S-OFDMと表記したものは何れもCombの構成であってもよい。 It should be noted that any of the items described as DFT-S-OFDM in this proposal may have a Comb configuration.
 以上、本発明の実施の形態について説明した。 The embodiment of the present invention has been described above.
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
(Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
 例えば、本発明の一実施の形態における無線基地局20、ユーザ端末10などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、本発明の一実施の形態に係る無線基地局20及びユーザ端末10のハードウェア構成の一例を示す図である。上述の無線基地局20及びユーザ端末10は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the radio base station 20 and the user terminal 10 according to an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention. FIG. 8 is a diagram illustrating an example of a hardware configuration of the radio base station 20 and the user terminal 10 according to the embodiment of the present invention. The wireless base station 20 and the user terminal 10 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局20及びユーザ端末10のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 20 and the user terminal 10 may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or in another manner. Note that the processor 1001 may be implemented by one or more chips.
 無線基地局20及びユーザ端末10における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the radio base station 20 and the user terminal 10 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部101、201、前処理部102、204、マッピング部103、IFFT部104、後処理部105、207、FFT部205、信号検出部206などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including a peripheral device interface, a control device, an arithmetic device, a register, and the like. For example, the control units 101 and 201, the preprocessing units 102 and 204, the mapping unit 103, the IFFT unit 104, the post-processing units 105 and 207, the FFT unit 205, the signal detection unit 206, and the like may be realized by the processor 1001. Good.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末10の制御部101は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 101 of the user terminal 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送信部106、アンテナ107,202、受信部203などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the transmission unit 106, the antennas 107 and 202, the reception unit 203, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、無線基地局20及びユーザ端末10は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 The radio base station 20 and the user terminal 10 include a microprocessor, a digital signal processor (DSP), an application specific specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
(Information notification, signaling)
The notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof. The RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
(Adaptive system)
Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(Processing procedure etc.)
As long as there is no contradiction, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
(Operation of base station)
The specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases. In a network composed of one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway). In the above, the case where there is one network node other than the base station is illustrated, but a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
(I / O direction)
Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
(Handling of input / output information, etc.)
Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
(Judgment method)
The determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
(software)
Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Further, software, instructions, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave. When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
(Information, signal)
Information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。 Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal. The signal may be a message. Further, the component carrier (CC) may be called a carrier frequency, a cell, or the like.
 (「システム」、「ネットワーク」)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
("System", "Network")
As used herein, the terms “system” and “network” are used interchangeably.
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
(Parameter, channel name)
In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for the above parameters are not limited in any way. Further, mathematical formulas and the like that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements (eg, TPC, etc.) can be identified by any suitable name, the various names assigned to these various channels and information elements are However, it is not limited.
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「gNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、gNodeB(gNB)アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
(base station)
A base station (radio base station) can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services. The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “gNB”, “cell”, and “sector” may be used interchangeably herein. A base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), gNodeB (gNB) access point, femtocell, small cell, and the like.
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
(Terminal)
A user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
(Meaning and interpretation of terms)
As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 The terms “connected”, “coupled”, or any variation thereof, means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements. The coupling or connection between the elements may be physical, logical, or a combination thereof. As used herein, the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples By using electromagnetic energy, such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、DMRSは、対応する別の呼び方、例えば、復調用RSまたはDM-RSなどであってもよい。 The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard. The DMRS may be another corresponding name, for example, a demodulation RS or DM-RS.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。 The “unit” in the configuration of each device described above may be replaced with “means”, “circuit”, “device”, and the like.
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as “including”, “comprising”, and variations thereof are used in the specification or claims, these terms are inclusive of the term “comprising”. Intended to be Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。 The radio frame may be composed of one or a plurality of frames in the time domain. One or more frames in the time domain may be referred to as subframes, time units, etc. A subframe may further be composed of one or more slots in the time domain. The slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
 無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。 The radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal. Radio frames, subframes, slots, minislots, and symbols may be called differently corresponding to each.
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。 For example, in the LTE system, the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station. The minimum time unit of scheduling may be called TTI (Transmission Time Interval).
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよいし、1ミニスロットをTTIと呼んでもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, one slot may be called a TTI, and one minislot may be called a TTI.
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。 The resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. In the time domain of the resource unit, it may include one or a plurality of symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource units. The resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband. Further, the resource unit may be composed of one or a plurality of REs. For example, 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、サブフレームに含まれるミニスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。 The structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of minislots included in the subframe, the symbols and resource blocks included in the slots, The number and the number of subcarriers included in the resource block can be variously changed.
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 Throughout this disclosure, if articles are added by translation, for example, a, an, and the in English, these articles must be clearly not otherwise indicated by context, Including multiple things.
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
(Aspect variations, etc.)
Each aspect / embodiment described in this specification may be used independently, may be used in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
 本発明の一態様は、移動通信システムに有用である。 One embodiment of the present invention is useful for a mobile communication system.
 10 ユーザ端末
 20 無線基地局
 101 制御部
 102 前処理部
 103 マッピング部
 104 IFFT部
 105 後処理部
 106 送信部
 107 アンテナ
 201 制御部
 202 アンテナ
 203 受信部
 204 前処理部
 205 FFT部
 206 信号検出部
 207 後処理部
 
DESCRIPTION OF SYMBOLS 10 User terminal 20 Radio base station 101 Control part 102 Preprocessing part 103 Mapping part 104 IFFT part 105 Post-processing part 106 Transmission part 107 Antenna 201 Control part 202 Antenna 203 Reception part 204 Preprocessing part 205 FFT part 206 Signal detection part 207 After Processing part

Claims (7)

  1.  第1又は第2の波形のうち何れかを適用した上りリンク信号を無線基地局に送信するユーザ端末であって、
     前記無線基地局から指示された、上りリンク信号用のリソースの割当に応じて、前記上りリンク信号に適用する波形を選択する制御部と、
     前記選択された波形を適用した前記上りリンク信号を、前記無線基地局に送信する送信部と、
     を具備する、
     ユーザ端末。
    A user terminal that transmits an uplink signal to which the first or second waveform is applied to a radio base station,
    A control unit that selects a waveform to be applied to the uplink signal in accordance with the allocation of resources for the uplink signal instructed by the radio base station;
    A transmitter that transmits the uplink signal to which the selected waveform is applied to the radio base station;
    Comprising
    User terminal.
  2.  前記制御部は、
     前記リソースの周波数領域を所定の帯域幅で分割したリソースブロックの割当数が、所定の閾値以上の場合、前記第1の波形を選択し、前記閾値未満の場合、前記第2の波形を選択する、
     請求項1に記載のユーザ端末。
    The controller is
    The first waveform is selected when the allocated number of resource blocks obtained by dividing the frequency domain of the resource by a predetermined bandwidth is equal to or greater than a predetermined threshold, and the second waveform is selected when the number is less than the threshold. ,
    The user terminal according to claim 1.
  3.  前記制御部は、
     前記リソースの周波数領域を所定の帯域幅で分割した複数のリソースブロックによって構成されるリソースブロックグループの割当数が、所定の閾値以上の場合、前記第1の波形を選択し、前記閾値未満の場合、前記第2の波形を選択する、
     請求項1に記載のユーザ端末。
    The controller is
    When the allocated number of resource block groups composed of a plurality of resource blocks obtained by dividing the frequency domain of the resource by a predetermined bandwidth is equal to or greater than a predetermined threshold, the first waveform is selected, and is less than the threshold Selecting the second waveform;
    The user terminal according to claim 1.
  4.  前記制御部は、
     前記リソースが、周波数領域において、不連続に割り当てられている場合、前記第1の波形を選択し、連続して割り当てられている場合、前記第2の波形を選択する、
     請求項1に記載のユーザ端末。
    The controller is
    Selecting the first waveform if the resource is allocated discontinuously in the frequency domain, and selecting the second waveform if allocated continuously.
    The user terminal according to claim 1.
  5.  前記リソースの割当タイプには、前記リソースの周波数領域を所定の帯域幅で分割したリソースブロックを割り当てる第1のタイプと、複数の前記リソースブロックによって構成されるリソースブロックグループを割り当てる第2のタイプとがあり、
     前記制御部は、
     前記無線基地局から、前記第2のタイプを指示された場合、前記第1の波形を選択し、前記第1のタイプを指示された場合、前記第2の波形を選択する、
     請求項1に記載のユーザ端末。
    The resource allocation type includes a first type that allocates a resource block obtained by dividing the frequency domain of the resource by a predetermined bandwidth, and a second type that allocates a resource block group composed of a plurality of the resource blocks. There is
    The controller is
    When the second type is instructed from the radio base station, the first waveform is selected, and when the first type is instructed, the second waveform is selected.
    The user terminal according to claim 1.
  6.  前記第1の波形はCP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)により生成され、前記第2の波形はDFT-S-OFDM(DFT Spread OFDM)により生成される、
     請求項1から5の何れか1項に記載のユーザ端末。
    The first waveform is generated by CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing), and the second waveform is generated by DFT-S-OFDM (DFT Spread OFDM).
    The user terminal according to any one of claims 1 to 5.
  7.  第1又は第2の波形のうち何れかを適用した上りリンク信号を送信する無線通信方法であって、
     無線基地局から指示された、上りリンク信号用のリソースの割当に応じて、前記上りリンク信号に適用する波形を選択し、
     前記選択された波形を適用した前記上りリンク信号を、前記無線基地局に送信する、
     無線通信方法。
    A wireless communication method for transmitting an uplink signal to which one of the first and second waveforms is applied,
    Select a waveform to be applied to the uplink signal according to the allocation of resources for the uplink signal instructed by the radio base station,
    Transmitting the uplink signal to which the selected waveform is applied to the radio base station;
    Wireless communication method.
PCT/JP2018/006831 2018-02-23 2018-02-23 User equipment and radio communication method WO2019163113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006831 WO2019163113A1 (en) 2018-02-23 2018-02-23 User equipment and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006831 WO2019163113A1 (en) 2018-02-23 2018-02-23 User equipment and radio communication method

Publications (1)

Publication Number Publication Date
WO2019163113A1 true WO2019163113A1 (en) 2019-08-29

Family

ID=67688021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006831 WO2019163113A1 (en) 2018-02-23 2018-02-23 User equipment and radio communication method

Country Status (1)

Country Link
WO (1) WO2019163113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709542A (en) * 2022-11-14 2023-09-05 荣耀终端有限公司 Waveform switching method and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157169A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Power head room reporting method and mobile station device
WO2010090052A1 (en) * 2009-02-03 2010-08-12 シャープ株式会社 Radio communication system, base station device, mobile station device, and communication method
JP2011166559A (en) * 2010-02-12 2011-08-25 Sharp Corp Base station device, mobile station device and integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157169A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Power head room reporting method and mobile station device
WO2010090052A1 (en) * 2009-02-03 2010-08-12 シャープ株式会社 Radio communication system, base station device, mobile station device, and communication method
JP2011166559A (en) * 2010-02-12 2011-08-25 Sharp Corp Base station device, mobile station device and integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709542A (en) * 2022-11-14 2023-09-05 荣耀终端有限公司 Waveform switching method and electronic equipment
CN116709542B (en) * 2022-11-14 2024-05-14 荣耀终端有限公司 Waveform switching method and electronic equipment

Similar Documents

Publication Publication Date Title
WO2018123441A1 (en) User terminal and wireless communication method
JP7470513B2 (en) Terminal and base station
WO2018083868A1 (en) User device and uplink signal transmission method
US11012280B2 (en) User terminal and radio communication method
US10856179B2 (en) User equipment
WO2018203395A1 (en) User terminal, wireless base station, and wireless communication method
US20200351135A1 (en) Radio transmission apparatus and radio reception apparatus
US11477773B2 (en) User terminal, base station, and radio communication method for mapping a demodulation reference signal
WO2019163113A1 (en) User equipment and radio communication method
WO2018128038A1 (en) User device and base station
WO2018142990A1 (en) Base station and user device
WO2018143325A1 (en) User terminal and wireless communication method
WO2018229955A1 (en) User terminal and channel estimation method
WO2018025928A1 (en) User terminal and wireless communication method
US11076410B2 (en) User terminal and radio communication method
WO2018229957A1 (en) User terminal and channel estimation method
WO2019193728A1 (en) User terminal and communication method
WO2018229956A1 (en) User terminal and wireless communication method
JP7053685B2 (en) User terminal and wireless communication method
EP3654708B1 (en) User terminal and wireless communication method
WO2019244308A1 (en) User terminal
WO2019244305A1 (en) User terminal
WO2019012595A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP