WO2019181954A1 - Polymerizable compound, photocurable polymer, insulating film, protective film, and organic transistor device - Google Patents

Polymerizable compound, photocurable polymer, insulating film, protective film, and organic transistor device Download PDF

Info

Publication number
WO2019181954A1
WO2019181954A1 PCT/JP2019/011494 JP2019011494W WO2019181954A1 WO 2019181954 A1 WO2019181954 A1 WO 2019181954A1 JP 2019011494 W JP2019011494 W JP 2019011494W WO 2019181954 A1 WO2019181954 A1 WO 2019181954A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
formula
polymer
fluoroalkyl
Prior art date
Application number
PCT/JP2019/011494
Other languages
French (fr)
Japanese (ja)
Inventor
山川浩
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018128598A external-priority patent/JP7283035B2/en
Priority claimed from JP2019044889A external-priority patent/JP7371334B2/en
Priority claimed from JP2019044884A external-priority patent/JP7363060B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2019181954A1 publication Critical patent/WO2019181954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F24/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a polymer for forming an insulating film and a protective film that can be solution-coated on an organic semiconductor layer included in an organic transistor device.
  • the present invention also relates to a polymer for forming an insulating layer included in an organic transistor device.
  • the present invention also relates to a polymer suitable for use in an electronic device.
  • a top gate type organic transistor device manufactured by a full printing method has a flattening layer or an insulating layer (A layer), a lower metal electrode (source, and the like) on a substrate such as a plastic film from the lower surface to the upper surface of the device.
  • a drain electrode), an organic semiconductor layer (B layer), an insulating layer (C layer), and an upper metal electrode (gate electrode) are formed in this order.
  • the organic semiconductor layer is locally formed in a shape covering the source electrode and the drain electrode, and the drain electrode has a shape drawn to the outside of the region where the organic semiconductor layer is formed, and is in contact with the C layer.
  • the C layer also serves as a protective film that reduces the influence of the organic semiconductor and the organic transistor device coming into contact with the outside air and deteriorating.
  • the A layer and the C layer are formed by printing a solution obtained by dissolving an insulating polymer in an organic solvent.
  • the polymer solution forming the C layer must not dissolve the already formed organic semiconductor layer (B layer). Further, it is necessary to form a contact hole in the C layer.
  • the contact hole is a hole for connecting the drain electrode under the C layer and the driving circuit of the transistor.
  • a method of forming the C layer on the upper surface of the B layer for example, a method of forming a polyparaxylylene (PPX) film by vapor deposition is known. Since this method does not use a solvent, the raw material is heated and vapor-deposited onto a substrate under vacuum to form a polyparaxylylene thin film, so that the organic semiconductor layer should not be dissolved by contact with the solvent. I can do it.
  • the PPX film does not dissolve in a general-purpose hydrocarbon solvent at room temperature, and has a fatal defect that it is difficult to form a contact hole.
  • the method of vapor deposition limits the size of the substrate that can be treated, and it is difficult to continuously manufacture by the entire printing process, and the batch process is inferior in economic efficiency.
  • a method in which a solution obtained by dissolving a fluorinated cyclic ether polymer in a fluorinated solvent is coated on the upper surface of the organic semiconductor layer is known. Since many of the currently known organic semiconductors do not dissolve in fluorine-based solvents, an insulating layer of a fluorine-based cyclic ether polymer can be formed on the organic semiconductor layer without affecting the organic semiconductor layer.
  • aliphatic alcohol is one of highly versatile solvents. If the high-boiling point aliphatic alcohol remains in the insulating layer, the semiconductor performance is deteriorated, and therefore, a low-boiling point lower aliphatic alcohol is suitable as the solvent.
  • Known resins that dissolve in lower aliphatic alcohols include butyral resin, polyvinyl alcohol, and alkyl methacrylate having a specific structure. However, butyral resin and polyvinyl alcohol have a hydroxyl group, and this hydroxyl group traps electric charge and deteriorates semiconductor performance.
  • Non-patent Document 1 Poly (n-butyl methacrylate) and poly (n-octyl methacrylate) are dissolved in lower aliphatic alcohols (Non-patent Document 1), and have no hydroxyl groups, so that they are used as insulating layer materials. When this occurs, the problem of charge trapping is less likely to occur.
  • these polymers do not have photocrosslinkability and, when used as an insulating layer, do not exhibit solvent resistance to organic solvents, making it difficult to form contact holes.
  • a polymer that can be dissolved in a lower aliphatic alcohol and that can be crosslinked (cured) is required as a polymer for forming the C layer.
  • a method using heat or radiation is generally used as the polymer crosslinking method.
  • the cross-linking by heating is not preferable from the viewpoint of suppressing performance degradation due to thermal expansion / contraction of the organic semiconductor layer as much as possible.
  • crosslinking by radiation is preferable, and crosslinking by ultraviolet rays (photocrosslinking) is particularly suitable.
  • the photocrosslinkable polymer can be obtained by introducing a photocrosslinkable functional group into the main chain or side chain of the polymer.
  • Various photo-crosslinkable functional groups are known, and polycyclic aromatic compounds such as anthracene and tetracene, coumarin (for example, Non-Patent Document 2) are known as those having high chemical stability to radicals.
  • Non-Patent Documents 3 and 4 are known as those having high chemical stability to radicals.
  • quinolinone for example, Non-Patent Documents 3 and 4
  • a photocrosslinkable polymer can be obtained by radical copolymerizing a monomer having these functional groups with another monomer.
  • Non-patent document 5 a copolymer of 6- (anthracen-9-yl) hexyl methacrylate and fluoroalkyl methacrylate
  • Non-patent document 6 diblock copolymer comprising poly (2-ethylhexyl methacrylate) and poly (9-anthrylmethyl methacrylate)
  • Non-patent Document 7 a technique related to (Non-Patent Document 7) is disclosed.
  • Patent Document 1 As a polymer containing coumarin and quinolinone, for example, a polymer for a liquid crystal alignment film has been proposed (for example, Patent Document 1). However, this polymer has a problem that it does not dissolve in lower aliphatic alcohols.
  • an organic transistor device basically includes three electrodes (a source electrode, a drain electrode, and a gate electrode), an insulating layer, and an organic semiconductor layer.
  • a source electrode a drain electrode, and a gate electrode
  • an organic semiconductor layer an organic semiconductor layer.
  • all printing methods for producing organic transistors by printing on plastics such as polyethylene naphthalate film.
  • the order in which the electrode, the insulating layer, and the organic semiconductor layer are formed differs depending on the form of the organic transistor. For example, by printing an aqueous or non-aqueous ink containing metal nanoparticles.
  • An electrode can be formed by printing a crosslinkable polymer solution, and an organic semiconductor layer can be formed by printing an organic semiconductor solution.
  • An organic solvent is used for the preparation of the polymer solution and the organic semiconductor solution.
  • PPX polyparaxylylene
  • BCB benzocyclobutene
  • PVP polyvinylphenol
  • FCE fluorine-based cyclic ether
  • the plastic of the base material is deformed by heating at the time of crosslinking, so that it is difficult to use other than engineering plastic films such as polyimide having excellent heat resistance.
  • the FCE polymer dissolves in a specific fluorine-based solvent such as perfluorotributylamine (PFTBA) but does not dissolve in a general-purpose organic solvent.
  • PFTBA perfluorotributylamine
  • the FCE polymer has a small surface tension, and when the organic semiconductor layer solution is printed on the polymer film, the solution does not spread and uniform printing is difficult. Further, the polymer and the solvent were both expensive and inferior in economic efficiency.
  • photocrosslinkable polymers that can be crosslinked at room temperature in a short time are attracting attention.
  • a polymer having a photocrosslinkable cinnamoyl group introduced into a polymer having a hydroxyl group such as poly (hydroxyethyl methacrylate) (for example, see Patent Document 2) and a polymer having a phenol group in the side chain have photocrosslinkability.
  • a polymer into which coumarin is introduced (for example, see Patent Document 3) has been proposed.
  • Patent Document 3 discloses a technique for reducing the amount of residual hydroxyl group by reacting an unreacted hydroxyl group with trifluoroacetic anhydride.
  • organic transistors are being developed as electronic devices.
  • This organic transistor is manufactured through a number of processes, and includes a process of forming an organic semiconductor film in a specific minute region.
  • This minute region is, for example, a rectangular region on the order of microns including a source electrode and a drain electrode.
  • an organic semiconductor solution is printed in the region using ink jet, it is necessary to drop the organic semiconductor solution in a minute region and prevent the organic semiconductor solution from getting wet out of the region.
  • a method for preventing wetting and spreading a method for preventing the solution from spreading out of the micro area by making only the above micro area lyophilic and making the outside of the area lyophobic is known. Yes.
  • the film is called a partition wall.
  • a fluorine-based resin having a low surface tension that exhibits liquid repellency to water and organic solvents is suitable.
  • a fluorine-based resin that is soluble in a solvent is required.
  • the fluorine-based resin include perfluorobutenyl ether polymers (product name: Cytop, manufactured by Asahi Glass). Tetrafluoroethylene / perfluorodioxole copolymer (manufactured by Mitsui DuPont Fluorochemicals, trade name Teflon (registered trademark) AF) and the like are known.
  • a fluorine-based solvent such as fluoroalkylamine is used as the solvent.
  • the adhesion problem can be solved by forming the insulating film and the partition with the same material, there is a problem that the partition dissolves when the insulating film is laminated.
  • dissolution of the partition wall greatly reduces the transistor performance due to peeling of the organic semiconductor film due to the flow of the partition wall or loss of uniformity of the insulating film thickness.
  • the material for forming the partition walls is required to be capable of being easily printed by being dissolved in a fluorinated solvent, and to be insoluble in the fluorinated solvent when forming the partition walls.
  • a resin crosslinking technique is known as such an insolubilization technique, and photocrosslinking is known as a technique capable of crosslinking in a short time.
  • a technique of a polyfluoroalkyl methacrylate copolymer having an azide group introduced has been proposed (see, for example, Patent Document 7).
  • the photocrosslinking rate is low, so that an ultraviolet irradiation amount of 1 J / cm 2 or more is necessary, and the productivity is low.
  • the surface tension was as high as 18 to 23 mN / m, and the liquid repellency was insufficient.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a polymer for forming an insulating layer which can be dissolved in a lower aliphatic alcohol and photocrosslinked in a short time with ultraviolet rays to form a contact hole. There is to do.
  • Another object of the present invention is to provide a polymer excellent in insulation that dissolves in a general-purpose solvent that can be used as an insulating layer of an organic transistor device and crosslinks at room temperature in a short time.
  • Another object is to provide a polymer that is soluble in a solvent, insolubilized in a solvent by photocrosslinking at room temperature in a short time, and exhibits liquid repellency.
  • R 1 represents either hydrogen or a C1-C6 alkyl group
  • L represents a divalent linking group having 1 to 14 carbon atoms
  • n represents 0 or 1
  • A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl
  • X represents O or S
  • Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1
  • G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group, X 1 ⁇ X 4 each independently are O or S, r and s are each independently an integer of 0 to 3 Represent.) [3
  • R 1 represents either hydrogen or a C1-C6 alkyl group
  • L represents a divalent linking group having 1 to 14 carbon atoms
  • n represents 0 or 1
  • A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl Consists of ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group (One of the groups, X represents O or S, and m represents an integer of 0 to
  • R 1 represents either hydrogen or a C1-C6 alkyl group
  • L represents a divalent linking group having 1 to 14 carbon atoms
  • n represents 0 or 1
  • A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl Consists of ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group (One of the groups, X represents O or S, and m represents an integer of 0
  • Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1
  • G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group the one of the group consisting of, X 1 ⁇ X 4 are each independently O or S, And s
  • R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.
  • R 9 is either hydrogen or a C1-C6 alkyl group
  • M is a divalent linking group having 1 to 14 carbon atoms
  • k is 0 or 1
  • Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group
  • j is 0
  • R 10 represents hydrogen or a C1-C6 alkyl group
  • E represents —O—, —S—, or —NH—
  • t represents 0 or 1
  • R 11 represents 1 to Represents 18 fluoroalkyl groups.
  • R 8 represents either hydrogen or a C1-C6 alkyl group
  • Z represents a C1-C12 alkyl group.
  • R 9 is either hydrogen or a C1-C6 alkyl group
  • M is a divalent linking group having 1 to 14 carbon atoms
  • k is 0 or 1
  • Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group
  • j is 0
  • R 10 is hydrogen or a C1-C6 alkyl group
  • E is —O—, —S—, or —NH—
  • t is 0 or 1
  • R 11 is a fluoro having 1 to 18 carbon atoms. Represents an alkyl group.
  • [7] A crosslinked product of the polymer according to [3] to [6].
  • An insulating film containing at least one of the polymer according to [3] to [6] or the crosslinked product according to [7].
  • a protective film comprising at least one of the polymer according to [4] or the crosslinked product according to [7].
  • a liquid repellent film containing at least one of the polymer according to [6] or the crosslinked product according to [7].
  • An organic transistor device comprising the insulating film according to [8].
  • [12] An organic transistor device comprising the protective film according to [9].
  • the present invention is a polymerizable compound represented by the formula (1).
  • R 1 represents either hydrogen or a C1-C6 alkyl group
  • L represents a divalent linking group having 1 to 14 carbon atoms
  • n represents 0 or 1
  • A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl One of the group consisting of ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group
  • X represents O or S
  • m represents an integer of 0 to 3.
  • the C1-C6 alkyl group for R 1 in the formula (1) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • L represents a divalent linking group having 1 to 14 carbon atoms.
  • the divalent linking group having 1 to 14 carbon atoms is not particularly limited as long as it is a divalent organic group that does not easily undergo structural change by radiation.
  • n 0 or 1.
  • A, R 2 and R 3 are each independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl Ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkoxy group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl group, fluorothio group, cycloalkyl group, 1 type of the group which consists of a cycloheteroalkyl group is represented.
  • the halogen in A, R 2 and R 3 is not particularly limited, and examples thereof include chlorine and fluorine.
  • the C1-C18 alkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. It is done.
  • the alkoxy group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, An isobutoxy group etc. are mentioned.
  • the alkylthio group in A, R 2 and R 3 is not particularly limited, and examples thereof include methylsulfanyl group, ethylsulfanyl group, isopropylsulfanyl group, n-propylsulfanyl group, n-butylsulfanyl group, isobutyl Examples thereof include a sulfanyl group and a sec-butylsulfanyl group.
  • the alkylamino group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methylamino group, an ethylamino group, an n-propylamino group, an n-butylamino group, a dimethylamino group, Examples thereof include a diethylamino group, a di (n-propyl) amino group, a methylethylamino group, and a methyl-n-propylamino group.
  • the alkyl ketone group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methyl ketone group, an ethyl ketone group, an isopropyl ketone group, an n-propyl ketone group, an n-butyl ketone group, and an isobutyl ketone group. And sec-butyl ketone group.
  • the alkyl ester group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methyl ester group, an ethyl ester group, an isopropyl ester group, an n-propyl ester group, an n-butyl ester group, Examples thereof include isobutyl ester group and sec-butyl ester group.
  • the alkylamide group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methylamide group, an ethylamide group, an isopropylamide group, an n-propylamide group, an n-butylamide group, and an isobutylamide group. And sec-butylamide group.
  • the aryl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
  • the aryl ether group in A, R 2 and R 3 is not particularly limited, and examples thereof include a phenyl ether group, a naphthyl ether group, an anthryl ether group, and a biphenyl ether group.
  • the arylthio group in A, R 2 and R 3 is not particularly limited, and examples thereof include a phenylsulfanyl group, a naphthylsulfanyl group, an anthrylsulfanyl group, and a biphenylsulfanyl group.
  • the carboxyalkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, a carboxy-n-propyl group, and a carboxy-n-butyl group. It is done.
  • the fluoroalkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include perfluoromethyl group, perfluoropropyl group, perfluorobutyl group, 1H, 1H-pentafluoropropyl group, 1H, 1H. , 2H, 2H-pentafluorobutyl group, 1H, 1H-heptafluorobutyl group, 4,4,4-trifluorobutyl group and the like.
  • the fluoroalkoxy group in A, R 2 and R 3 is not particularly limited, and examples thereof include perfluoromethoxy group, perfluoropropoxy group, perfluorobutoxy group, 1H, 1H-pentafluoropropoxy group, 1H, 1H. , 2H, 2H-pentafluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group, and the like.
  • the fluoroalkylcarbonyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a perfluoromethylcarbonyl group, a perfluoropropylcarbonyl group, a perfluorobutylcarbonyl group, and 1H, 1H-pentafluoropropylcarbonyl.
  • the fluoroalkyl ester group in A, R 2 and R 3 is not particularly limited, and examples thereof include a perfluoromethyl ester group, a perfluoropropyl ester group, a perfluorobutyl ester group, and a 1H, 1H-pentafluoropropyl ester.
  • a perfluoromethyl ester group a perfluoropropyl ester group
  • a perfluorobutyl ester group a 1H, 1H-pentafluoropropyl ester.
  • the fluoroaryl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a 4-fluorophenyl group, 2,3,4,5,6-pentafluorophenyl group, 1-fluoro Examples include naphthyl group, octafluoronaphthyl group, 1-fluoroanthryl group, 2-fluoroanthryl group, 9-fluoroanthryl group, 2-fluorobiphenyl group, 4-fluorobiphenyl group, and the like.
  • the fluorothio group in A, R 2 and R 3 is not particularly limited, and examples thereof include perfluoromethylsulfanyl group, perfluoropropylsulfanyl group, perfluorobutylsulfanyl group, 1H, 1H-pentafluoropropylsulfanyl group, Examples thereof include 1H, 1H, 2H, 2H-pentafluorobutylsulfanyl group, 1H, 1H-heptafluorobutylsulfanyl group, 4,4,4-trifluorobutylsulfanyl group and the like.
  • the cycloalkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • the cycloheteroalkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include 2-furyl group, 3-furyl group, tetrahydrothiophen-3-yl, and tetrahydrothiophen-2-yl.
  • 1-thiacyclohexane-4-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, tetrahydrothiophen-4-yl, tetrahydropyran-4-yl, tetrahydropyran-3-yl, tetrahydropyran-2- Ir etc. are mentioned.
  • X represents O or S.
  • m represents an integer of 0 to 3.
  • Another aspect of the present invention is a polymerizable compound represented by the following formula (2).
  • Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1
  • G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group and each X 1 ⁇ X 4 are independently O or S, r and s which Independently represents an integer of
  • Q 1 and Q 2 represent a divalent linking group having 1 to 14 carbon atoms.
  • the divalent linking group having 1 to 14 carbon atoms is not particularly limited as long as it is a divalent organic group that does not easily undergo structural change by radiation.
  • p and q each independently represent 0 or 1.
  • G 1 , G 2 and R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl Ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkoxy group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl 1 type of the group which consists of group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group.
  • the halogen in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include chlorine, fluorine and the like.
  • the C1-C18 alkyl group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. Groups and the like.
  • the alkoxy group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec -Butoxy group, isobutoxy group and the like.
  • the alkylthio group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methylsulfanyl group, an ethylsulfanyl group, an isopropylsulfanyl group, an n-propylsulfanyl group, and n-butyl. Examples thereof include a sulfanyl group, an isobutylsulfanyl group, and a sec-butylsulfanyl group.
  • the alkylamino group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methylamino group, an ethylamino group, an n-propylamino group, an n-butylamino group, Examples thereof include a dimethylamino group, a diethylamino group, a di (n-propyl) amino group, a methylethylamino group, and a methyl-n-propylamino group.
  • the alkyl ketone group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methyl ketone group, an ethyl ketone group, an isopropyl ketone group, an n-propyl ketone group, and an n-butyl ketone group. , Isobutyl ketone group, sec-butyl ketone group and the like.
  • the alkyl ester group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methyl ester group, an ethyl ester group, an isopropyl ester group, an n-propyl ester group, an n- Examples thereof include a butyl ester group, an isobutyl ester group, a sec-butyl ester group and the like.
  • the alkylamide group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methylamide group, an ethylamide group, an isopropylamide group, an n-propylamide group, and an n-butylamide group. , Isobutylamide group, sec-butylamide group and the like.
  • the aryl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
  • the aryl ether group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a phenyl ether group, a naphthyl ether group, an anthryl ether group, and a biphenyl ether group. .
  • the arylthio group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a phenylsulfanyl group, a naphthylsulfanyl group, an anthrylsulfanyl group, and a biphenylsulfanyl group.
  • the carboxyalkyl group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, a carboxy-n-propyl group, and a carboxy-n-butyl group. Groups and the like.
  • the fluoroalkyl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethyl group, a perfluoropropyl group, a perfluorobutyl group, and a 1H, 1H-pentafluoropropyl group. Examples thereof include 1H, 1H, 2H, 2H-pentafluorobutyl group, 1H, 1H-heptafluorobutyl group, 4,4,4-trifluorobutyl group and the like.
  • the fluoroalkoxy group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethoxy group, a perfluoropropoxy group, a perfluorobutoxy group, and a 1H, 1H-pentafluoropropoxy group.
  • 1H, 1H, 2H, 2H-pentafluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group and the like can be mentioned.
  • the fluoroalkyl ether group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethoxy group, a perfluoropropoxy group, a perfluorobutoxy group, and 1H, 1H-pentafluoropropoxy group.
  • a perfluoromethoxy group a perfluoropropoxy group
  • a perfluorobutoxy group a perfluorobutoxy group
  • 1H, 1H-pentafluoropropoxy group 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group and the like.
  • the fluoroalkylcarbonyl group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethylcarbonyl group, a perfluoropropylcarbonyl group, a perfluorobutylcarbonyl group, 1H, 1H— Examples thereof include a pentafluoropropylcarbonyl group, 1H, 1H, 2H, 2H-pentafluorobutylcarbonyl group, 1H, 1H-heptafluorobutylcarbonyl group, 4,4,4-trifluorobutylcarbonyl group and the like.
  • the fluoroalkyl ester group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethyl ester group, a perfluoropropyl ester group, a perfluorobutyl ester group, 1H, 1H— Examples thereof include a pentafluoropropyl ester group, 1H, 1H, 2H, 2H-pentafluorobutyl ester group, 1H, 1H-heptafluorobutyl ester group, 4,4,4-trifluorobutyl ester group and the like.
  • the fluoroaryl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a 4-fluorophenyl group and a 2,3,4,5,6-pentafluorophenyl group.
  • the fluorothio group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethylsulfanyl group, a perfluoropropylsulfanyl group, a perfluorobutylsulfanyl group, and 1H, 1H-pentafluoro.
  • examples thereof include a propylsulfanyl group, 1H, 1H, 2H, 2H-pentafluorobutylsulfanyl group, 1H, 1H-heptafluorobutylsulfanyl group, 4,4,4-trifluorobutylsulfanyl group and the like.
  • the cycloalkyl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • the cycloheteroalkyl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include 2-furyl group, 3-furyl group, tetrahydrothiophen-3-yl, tetrahydrothiophene.
  • X 1 to X 4 each independently represents O or S.
  • r and s each independently represent an integer of 0 to 3.
  • the present invention includes at least one of the following formulas (3) to (5) obtained by using the polymerizable compound represented by the above formula (1) or the above formula (2) as a repeating unit, And it is a polymer containing at least 1 type of repeating unit of the group which consists of the following formula
  • R 1 represents either hydrogen or a C1-C6 alkyl group
  • L represents a divalent linking group having 1 to 14 carbon atoms
  • n represents 0 or 1
  • A, R 2 and R 3 are each independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group , Aryl group, aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cyclo One of the group consisting of heteroalkyl groups, X represents O or S, and m represents an integer of 0 to 3.
  • Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1
  • G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group the one of the group consisting of, X 1 ⁇ X 4 are each independently O or S, And s
  • R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.
  • R 9 is either hydrogen or a C1-C6 alkyl group
  • M is a divalent linking group having 1 to 14 carbon atoms
  • k is 0 or 1
  • Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group
  • j is 0
  • R 10 represents hydrogen or a C1-C6 alkyl group
  • E represents —O—, —S—, or —NH—
  • t represents 0 or 1
  • R 11 represents 1 to Represents 18 fluoroalkyl groups.
  • the present invention is preferably a polymer containing repeating units represented by the following formulas (4) and (6). Thereby, the polymer of this invention can be used more suitably as an insulating film or a protective film.
  • R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.
  • R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.
  • R 8 represents hydrogen or a C1-C6 alkyl group.
  • the C1-C6 alkyl group in R 8 is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • Z represents a C1-C12 alkyl group.
  • the C1-C12 alkyl group in Z is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • the polymer of the present invention is preferably a polymer including at least one of the following formulas (3) to (5) as a repeating unit and including a repeating unit represented by the formula (7).
  • R 9 is either hydrogen or a C1-C6 alkyl group
  • M is a divalent linking group having 1 to 14 carbon atoms
  • k is 0 or 1
  • Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group
  • j is 0
  • the polymer of the present invention preferably contains at least repeating units of the above formulas (3) and (7).
  • the polymer of the present invention preferably contains at least a repeating unit of the above formula (4).
  • the polymer of the present invention preferably contains a repeating unit of the above formula (7).
  • the polymer of the present invention includes a polymer containing the above formula (4) and the above formula (7) as repeating units, a polymer containing the above formula (5) and the above formula (7) as repeating units, and the above formula (4). It is preferably one of the group consisting of polymers containing the above formulas (5) and (7) as repeating units, and more preferably a polymer containing the above formulas (4) and (7) as repeating units. It is a coalescence. Thereby, it is possible to crosslink by irradiation with short radiation, and the insulation performance of the obtained crosslinked body is improved.
  • the ratio of the repeating units of the above formulas (4), (5) and (7) is not particularly limited, and can be appropriately determined depending on the balance between solubility in an organic solvent and crosslinkability by ultraviolet rays.
  • the ratio of is 40 mol% or more.
  • R 9 represents hydrogen or a C1-C6 alkyl group.
  • the C1-C6 alkyl group for R 9 in formula (7) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • M is not particularly limited as a divalent linking group having 1 to 14 carbon atoms.
  • —C (O) O—, —OC (O) —, —C (O) OCH 2 —, —CH 2 —, —C (O) —, —O—, —OCH 2 CH 2 O— and the like can be mentioned.
  • k 0 or 1.
  • each Y is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group.
  • the halogen in Y is not particularly limited, and examples thereof include chlorine and fluorine.
  • the C1-C18 alkyl group in Y is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • the alkoxy group in Y is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and an isobutoxy group. .
  • the alkylthioether group in Y is not particularly limited, and examples thereof include methylsulfanyl group, ethylsulfanyl group, isopropylsulfanyl group, n-propylsulfanyl group, n-butylsulfanyl group, isobutylsulfanyl group, sec- A butylsulfanyl group etc. are mentioned.
  • the alkylamino group in Y is not particularly limited, and examples thereof include a methylamino group, an ethylamino group, an n-propylamino group, an n-butylamino group, a dimethylamino group, a diethylamino group, a di (n -Propyl) amino group, methylethylamino group, methyl-n-propylamino group and the like.
  • the alkyl ketone group in Y is not particularly limited, and examples thereof include a methyl ketone group, an ethyl ketone group, an isopropyl ketone group, an n-propyl ketone group, an n-butyl ketone group, an isobutyl ketone group, and a sec-butyl ketone group. Is mentioned.
  • the alkyl ester group in Y is not particularly limited.
  • methyl ester group, ethyl ester group, isopropyl ester group, n-propyl ester group, n-butyl ester group, isobutyl ester group, sec- A butyl ester group etc. are mentioned.
  • the alkylamide group in Y is not particularly limited, and examples thereof include a methylamide group, an ethylamide group, an isopropylamide group, an n-propylamide group, an n-butylamide group, an isobutylamide group, and a sec-butylamide group. Is mentioned.
  • the aryl group in Y is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
  • the aryl ether group in Y is not particularly limited, and examples thereof include a phenyl ether group, a naphthyl ether group, an anthryl ether group, and a biphenyl ether group.
  • the arylthioether group in Y is not particularly limited, and examples thereof include a phenylsulfanyl group, a naphthylsulfanyl group, an anthrylsulfanyl group, and a biphenylsulfanyl group.
  • the carboxyalkyl group in Y is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, a carboxy-n-propyl group, and a carboxy-n-butyl group.
  • the fluoroalkyl group in Y is not particularly limited, and examples thereof include perfluoromethyl group, perfluoropropyl group, perfluorobutyl group, 1H, 1H-pentafluoropropyl group, 1H, 1H, 2H, 2H-penta.
  • a fluorobutyl group, 1H, 1H-heptafluorobutyl group, 4,4,4-trifluorobutyl group and the like can be mentioned.
  • the fluoroalkoxy group in Y is not particularly limited, and examples thereof include perfluoromethoxy group, perfluoropropoxy group, perfluorobutoxy group, 1H, 1H-pentafluoropropoxy group, 1H, 1H, 2H, 2H-penta. Examples thereof include a fluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group and the like.
  • the fluoroalkyl ether group in Y is not particularly limited, and examples thereof include perfluoromethoxy group, perfluoropropoxy group, perfluorobutoxy group, 1H, 1H-pentafluoropropoxy group, 1H, 1H, 2H, 2H— A pentafluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group and the like can be mentioned.
  • the fluoroalkylcarbonyl group in Y is not particularly limited, and examples thereof include a perfluoromethylcarbonyl group, a perfluoropropylcarbonyl group, a perfluorobutylcarbonyl group, a 1H, 1H-pentafluoropropylcarbonyl group, 1H, 1H, Examples include 2H, 2H-pentafluorobutylcarbonyl group, 1H, 1H-heptafluorobutylcarbonyl group, 4,4,4-trifluorobutylcarbonyl group, and the like.
  • the fluoroalkyl ester group in Y is not particularly limited, and examples thereof include perfluoromethyl ester group, perfluoropropyl ester group, perfluorobutyl ester group, 1H, 1H-pentafluoropropyl ester group, 1H, 1H, Examples include 2H, 2H-pentafluorobutyl ester group, 1H, 1H-heptafluorobutyl ester group, 4,4,4-trifluorobutyl ester group and the like.
  • the fluoroaryl group in Y is not particularly limited, and examples thereof include 4-fluorophenyl group, 2,3,4,5,6-pentafluorophenyl group, 1-fluoronaphthyl group, and octafluoronaphthyl.
  • 4-fluorophenyl group 2,3,4,5,6-pentafluorophenyl group, 1-fluoronaphthyl group, and octafluoronaphthyl.
  • the fluorothioether group in Y is not particularly limited, and examples thereof include perfluoromethylsulfanyl group, perfluoropropylsulfanyl group, perfluorobutylsulfanyl group, 1H, 1H-pentafluoropropylsulfanyl group, 1H, 1H, 2H. , 2H-pentafluorobutylsulfanyl group, 1H, 1H-heptafluorobutylsulfanyl group, 4,4,4-trifluorobutylsulfanyl group and the like.
  • the cycloalkyl group in Y is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • the cycloheteroalkyl group in Y is not particularly limited, and examples thereof include 2-furyl group, 3-furyl group, tetrahydrothiophen-3-yl, tetrahydrothiophen-2-yl, 1-thiacyclohexane- Examples include 4-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, tetrahydrothiophen-4-yl, tetrahydropyran-4-yl, tetrahydropyran-3-yl, tetrahydropyran-2-yl and the like.
  • j represents an integer of 0 to 5.
  • the polymer of the present invention preferably contains a repeating unit represented by the following formula (4) and the following formula (8).
  • R 10 is hydrogen or a C1-C6 alkyl group
  • E is —O—, —S—, or —NH—
  • t is 0 or 1
  • R 11 is a fluoro having 1 to 18 carbon atoms. Represents an alkyl group.
  • R 10 represents hydrogen or a C1-C6 alkyl group.
  • the C1-C6 alkyl group for R 10 in formula (8) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • E represents —O—, —S—, or —NH—.
  • k 0 or 1.
  • R 11 represents a fluoroalkyl group having 1 to 18 carbon atoms.
  • the fluoroalkyl group for R 11 is not particularly limited, and examples thereof include 2,2,2-trifluoroethyl group, 1,1,1,2,2-pentafluoropropyl group, 1,1 1,1,2,2-pentafluorobutyl group, 1,1,1,2,2-pentafluoropentyl group, 1,1,1,2,2,3,3-heptafluorohexyl group, 1,1, Examples include 1,2,2,3,3-heptafluoroheptyl group, 1,1,1,2,2,3,3-heptafluorooctyl group, hexafluoroisobutyl group and the like.
  • the polymerizable compound represented by the formulas (1) and (2) of the present invention has a benzopyran group that is a photocrosslinkable functional group. Therefore, a copolymer (polymer) obtained by copolymerizing the polymerizable compound with another polymerizable compound has photocrosslinkability, and the photocrosslinkability depends on the amount of the polymerizable compound introduced. It changes depending on.
  • the polymerizable compound represented by the formula (1) of the present invention has a feature that the influence on the solubility in a lower alcohol is small. When the polymerizable compound according to the present invention is used, A copolymer (polymer) excellent in both solubility in a lower alcohol can be obtained.
  • the polymerizable compound represented by the formulas (1) and (2) of the present invention is suitably used as a polymer obtained by polymerization using the polymerizable compound as a monomer.
  • the polymerizable compound represented by the formula (1) is a repeating unit represented by the formula (4)
  • the polymerizable compound represented by the formula (2) is represented by the formula (5). It becomes a repeating unit represented by.
  • the repeating unit represented by the formula (4) is a photocrosslinking group, and the content thereof is shortening of the photocrosslinking time, high crosslink density (excellent solvent resistance), and dissolution in a lower aliphatic alcohol. From the viewpoint of properties, when the total of repeating units of formulas (6) and (4) is 100 mol%, the ratio of the repeating units represented by formula (4) is preferably 5 to 35 mol%. .
  • M is the number of the longest carbon chains constituting L in the formula (4), it is more preferable to complete photocrosslinking in a short time. Therefore, this M constitutes Z in the formula ((6)) It is preferable that N + 2 ⁇ M ⁇ N ⁇ 2 is satisfied with respect to the number N of the longest carbon chains.
  • the polymer containing at least one of the above formula (4) and formula (5) as a repeating unit and containing a repeating unit represented by formula (7) is crosslinked.
  • the polymer which performed can be shown.
  • Radiation is preferably used for the crosslinking treatment.
  • Examples of radiation include ultraviolet rays having a wavelength of 245 to 350 nm.
  • the amount of radiation irradiation is appropriately changed depending on the composition of the polymer, and examples thereof include 100 to 500 mJ / cm 2 , and further 100 to 300 mJ / cm 2, which prevents a reduction in the degree of crosslinking and shortens the process. In order to improve the economic efficiency due to time, it is preferably 50 to 300 mJ / cm 2 and 50 to 200 mJ / cm 2 .
  • the environment in particular when irradiating an ultraviolet-ray is not restrict
  • Whether the copolymer is cross-linked can be determined by the solubility when the copolymer film is immersed in a good solvent, and the degree of cross-linking can be quantitatively evaluated by measuring the residual film rate described later. Specifically, if the copolymer thin film formed on the glass plate is immersed in a good solvent without being crosslinked, the copolymer film is completely dissolved. On the other hand, a sufficiently crosslinked copolymer film does not dissolve in a good solvent, maintains a solid state, and does not change the thickness of the film. In addition, when the crosslinking is insufficient, the polymer film maintains a solid state, but a part of the copolymer is dissolved, so that the film thickness becomes small.
  • the structure of the polymer after the crosslinking treatment can be identified by a method using a thermogravimetric / mass spectrometer (TG-MS) and an infrared absorption spectrum (IR).
  • TG-MS thermogravimetric / mass spectrometer
  • IR infrared absorption spectrum
  • the molecular weight of the polymer containing at least one repeating unit of the group consisting of the above formulas (3) to (8) for example, 5000 to 1,000,000 (g / mol).
  • Etc From the viewpoint of the solution viscosity of the polymer and the mechanical strength, it is preferably 10,000 to 500,000 (g / mol).
  • the polymer of the present invention can be obtained by polymerizing the monomers represented by the above formulas (1) and (9) by a known radical polymerization method.
  • the polymer of the present invention can be obtained by polymerizing at least one monomer of the formula (1) or the formula (2) and a monomer represented by the formula (10) by a radical polymerization method. it can.
  • R 9 , M, Y, k and j are the same as those defined in the formula (7)).
  • the polymer of the present invention can be obtained by polymerizing the monomers represented by the above formulas (1) and (11) by a known radical polymerization method.
  • R 10 , R 11 , E, and t are the same as those defined in formula (8).
  • specific examples of the polymerizable compound represented by the formula (1) include the following in addition to 7-methacryloyloxy-4-oxobenzopyran represented by the formula (12). It is done.
  • At least one monomer of the group consisting of the monomer represented by [Chemical Formula 33] and the monomer represented by [Chemical Formula 36 to Chemical Formula 56] is polymerized. It is preferable. As a result, it is dissolved in a lower aliphatic alcohol, photocrosslinked in a short time with ultraviolet rays, and becomes a polymer for forming an insulating layer capable of forming a contact hole.
  • the polymerizable compound represented by the formula (1) of the present invention can be produced by a known method in which a benzopyran compound having a hydroxy group and an acid chloride are reacted in a solvent.
  • a benzopyran compound having a hydroxy group and an acid chloride are reacted in a solvent.
  • the acid chloride acryloyl chloride, methacryloyl chloride, 2-alkyl acryloyl chloride, or 2-alkyl methacryloyl chloride is used, and the molar ratio of acid chloride to the benzopyran compound is reduced to reduce the amount of unreacted acid chloride. .5 to 1.0 is preferable.
  • Solvents that can be used in this reaction dissolve the above-mentioned benzopyran compound and acid chloride, do not react with these compounds, and are not limited as long as they are sufficiently dehydrated.
  • tetrahydrofuran methylene chloride, toluene, etc.
  • an acid acceptor for hydrogen chloride generated in the reaction and an esterification catalyst, and a polymerization inhibitor for preventing polymerization of a polymerizable compound during the reaction Is preferably added.
  • the acid acceptor include dehydrated triethylamine and pyridine
  • examples of the catalyst include strong bases such as N, N-dimethyl-4-aminopyridine
  • examples of the polymerization inhibitor include hydroquinone and dibutylhydroxytoluene.
  • the reaction temperature is not particularly limited, but is preferably 0 to 60 ° C. in order to prevent polymerization reaction.
  • the reaction time is not particularly limited, but is preferably 2 to 6 hours because of excellent economic efficiency.
  • the polymerizable compound represented by the formula (1) of the present invention can also be produced using a known method.
  • 6-vinyl-4-oxo-benzopyran compound, or 7-vinyl-4-oxo-benzopyran compound starts from 6-methyl-4-oxo-benzopyran compound, or 7-methyl-4-oxo-benzopyran compound Raw material, a step of bromomethylating a methyl group using a carbon tetrachloride as a solvent and a radical generator such as N-bromosuccinimide, a peroxide compound, or azoisobutyronitrile, a bromomethyl group as a solvent and a dimethylsulfoxide as a solvent
  • the catalyst can be used for the formylation with sodium hydrogencarbonate, and the formyl group can be produced by four processes for vinylation with potassium tert-butoxide using methyltriphenylphosphonium bromide as a catalyst.
  • the polymerizable compound represented by the formula (2) of the present invention can be produced by a known method in which a benzopyran compound having a hydroxy group and an acid chloride are reacted in a solvent.
  • the acid chloride include acid chlorides such as fumaric acid dichloride and maleic acid dichloride.
  • the molar ratio of the acid chloride to the benzopyran compound is preferably 0.35 to 0.45 in order to reduce the amount of unreacted acid chloride.
  • the solvent that can be used in this reaction is not limited as long as it dissolves the above-mentioned benzopyran compound and acid chloride, does not react with these compounds, and is sufficiently dehydrated.
  • N, N-dimethylacetamide An amide solvent such as N-methylpyrrolidone can be used.
  • an acid acceptor for hydrogen chloride generated in the reaction and an esterification catalyst, and a polymerization inhibitor for preventing polymerization of a polymerizable compound during the reaction Is preferably added.
  • the acid acceptor include dehydrated triethylamine and pyridine
  • examples of the catalyst include strong bases such as N, N-dimethyl-4-aminopyridine
  • examples of the polymerization inhibitor include hydroquinone and dibutylhydroxytoluene.
  • the reaction temperature is not particularly limited, but is preferably 0 to 70 ° C. in order to prevent the polymerization reaction.
  • the reaction time is not particularly limited, but is preferably 2 to 6 hours because of excellent economic efficiency.
  • specific examples of the monomer represented by the formula (10) include styrene, ⁇ -methylstyrene, 2-chlorostyrene, 2-bromostyrene, 2-fluorostyrene, 3-chlorostyrene, 3-bromostyrene, 3-fluorostyrene, 4-chlorostyrene, 4-bromostyrene, 4-fluorostyrene, 4-chloromethylstyrene, 3,5-trifluoromethylstyrene, 4-trifluorostyrene, 2,3, 4,5,6-pentafluorostyrene may be mentioned.
  • specific monomers represented by the formula (11) include, in addition to 1H, 1H, 2H, 2H-heptadecafluorodecyl methacrylate represented by the formula (13), for example, the following: Can be mentioned.
  • radical copolymerization When radically copolymerizing the monomer represented by the above formula (1) or (2) and the monomer represented by at least one selected from the group consisting of the formulas (9) to (11), for the radical copolymerization, known methods such as solution polymerization, emulsion polymerization, suspension polymerization, and bulk polymerization can be used.
  • the solvent used in the solution polymerization is not limited as long as the above-described monomer and the polymer of the present invention are dissolved.
  • amide solvents such as dimethylformamide and dimethylacetamide; toluene, xylene, 1,3-bis Aromatic hydrocarbon solvents such as (trifluoromethyl) benzene and ⁇ , ⁇ , ⁇ -trifluoromethylbenzene; cyclic ethers such as tetrahydrofuran and tetrahydropyran, and the like.
  • These solvents can also be used in combination.
  • the polymerization temperature is selected depending on the initiator used, but is not particularly limited.
  • any of azo initiators such as azoisobutyronitrile; peroxide initiators such as benzoyl peroxide and di (t-butyl) peroxide can be used.
  • the reaction time is set according to the half-life of the initiator used and is not limited at all, but is preferably 4 to 8 hours from the viewpoint of economy.
  • the polymer of the present invention can be applied or printed on various substrates in a solution state dissolved in a solvent.
  • the solvent can be used without any limitation as long as it dissolves the polymer and at the same time does not dissolve the organic semiconductor used in the production of the organic transistor.
  • aliphatic alcohols such as methanol, ethanol, n-propanol, isopropanol, 1-butanol, 2-butanol, t-butanol, n-pentanol and the like can be applied on the organic semiconductor layer.
  • aliphatic alcohols having 4 or less carbon atoms are more preferred.
  • coating or printing method there are no restrictions on the coating or printing method, such as spin coating, drop casting, dip coating, doctor blade coating, pad printing, squeegee coating, roll coating, rod bar coating, air knife coating, wire bar coating, flow coating, Printing can be performed using gravure printing, flexographic printing, screen printing, inkjet printing, letterpress reverse printing, and the like.
  • this insulating layer needs the solubility with respect to said solvent.
  • a fluorine-containing monomer represented by the formula (10) and having a specific structure such as 2,3,4,5,6-pentafluorostyrene is used, the polymer of the present invention is soluble in a general-purpose solvent. However, it also dissolves in fluorinated solvents.
  • the polymer of the present invention is dissolved in a fluorine-based solvent such as hexafluorobenzene, 2,3,4,5,6-pentafluorotoluene and printed on the uppermost layer of the organic transistor element as a protective film.
  • a fluorine-based solvent such as hexafluorobenzene, 2,3,4,5,6-pentafluorotoluene
  • the polymer according to the present invention has a photocrosslinkable group, and radiation is suitably used for the photocrosslinking (photocyclization).
  • the radiation include ultraviolet rays having a wavelength of 245 to 350 nm.
  • the irradiation amount of radiation is appropriately changed depending on the composition of the polymer. For example, it is 100 to 500 mJ / cm 2, and it is possible to prevent a decrease in the degree of crosslinking and improve economy by shortening the process. It is preferably 50 to 300 mJ / cm 2 .
  • Irradiation with ultraviolet rays is usually carried out in the atmosphere, but it can also be carried out in an inert gas or in a certain amount of inert gas flow as necessary.
  • a photosensitizer can be added to promote the photocrosslinking reaction.
  • the photosensitizer used is not particularly limited, and examples thereof include benzophenone compounds, anthraquinone compounds, thioxanthone compounds, nitrophenyl compounds, and the like, and benzophenone compounds having high compatibility with the polymer used in the present invention are preferable.
  • the sensitizers can be used in combination of two or more as required.
  • the polymer of the present invention can be photocrosslinked by ultraviolet rays, but may be heated if necessary.
  • the temperature in the case of heating in addition to ultraviolet irradiation is not particularly limited, a temperature of 120 ° C. or lower is preferable in order to avoid thermal deformation of the polymer used.
  • the polymer of the present invention contains a compound containing a plurality of olefins such as ethylene and propylene as a crosslinking agent in one molecule as a crosslinking agent in order to increase the crosslinking density or shorten the crosslinking time;
  • a compound containing a plurality of cyclic olefins such as cyclopentene in one molecule may be blended. These compounds may be used alone or in combination of two or more.
  • the polymer of the present invention can be efficiently photocrosslinked in a short time, and in order to efficiently photocrosslink in a shorter time, the time required for photocrosslinking is preferably within 2 minutes. In addition, since it is suitable for control of crosslinking time, it is more preferable that the time required for crosslinking is within 1 minute.
  • specific examples of the monomer represented by the formula (1) include the following in addition to 6- (chromone-7-oxy) hexamethyl methacrylate represented by the formula (14). It is done.
  • the polymer of the present invention can be suitably used as an insulating film containing the polymer of the present invention and / or a crosslinked product of the polymer of the present invention.
  • the polymer of the present invention can be suitably used as an organic transistor device including the insulating film.
  • the polymer of the present invention can be suitably used as a protective film containing the polymer of the present invention and / or a crosslinked product of the polymer of the present invention. Moreover, the polymer of this invention can be used suitably as an organic transistor device containing this protective film.
  • the polymer of the present invention can be suitably used as a liquid repellent film (layer) containing the polymer of the present invention and / or a crosslinked product of the polymer of the present invention.
  • the polymer of the present invention can be suitably used as an electronic device including the liquid repellent film, particularly as an organic transistor device.
  • the organic transistor of the present invention When the polymer of the present invention is used in an organic transistor device (hereinafter referred to as “organic transistor”), the organic transistor of the present invention has a bottom gate-top contact type (A), bottom gate-bottom contact type (A) shown in FIG. B), top gate-top contact type (C), and top gate-bottom contact type (D) may be used.
  • the polymer of the present invention has particularly high applicability to devices in the forms of (C) and (D).
  • 1 is an organic semiconductor layer
  • 2 is a substrate
  • 3 is a gate electrode
  • 4 is a gate insulating layer
  • 5 is a source electrode
  • 6 is a drain electrode.
  • the polymer of the present invention when used as a protective layer (film) for the organic semiconductor layer, the polymer can be used in either an uncrosslinked state or a crosslinked state.
  • a substrate that can be used is not particularly limited as long as sufficient flatness capable of producing an element can be ensured.
  • Plastics used as the substrate include polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polycarbonate, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyethylene, ethylene / vinyl acetate copolymer, polymethylpentene-1, and polypropylene.
  • the organic semiconductor that can be used in the present invention is not limited at all, and any of N-type and P-type organic semiconductors can be used, and it can also be used as a bipolar transistor that combines N-type and P-type. Moreover, both low molecular and high molecular organic semiconductors can be used, and these can also be mixed and used. Specific examples of the compound include formulas (F-1) to (F-11).
  • examples of the method for forming the organic semiconductor layer include a method in which the organic semiconductor is vacuum-deposited, a method in which the organic semiconductor is dissolved in an organic solvent, and a method for coating and printing.
  • concentration of the solution when the organic semiconductor layer is applied or printed using a solution in which the organic semiconductor layer is dissolved in an organic solvent varies depending on the structure of the organic semiconductor and the solvent to be used, but the viewpoint of forming a more uniform semiconductor layer and reducing the thickness of the layer Therefore, it is preferably 0.5 to 5% by weight.
  • the organic solvent at this time is not limited as long as the organic semiconductor dissolves at a certain concentration capable of forming a film, and is hexane, heptane, octane, decane, dodecane, tetradecane, decalin, indane, 1-methylnaphthalene, 2-ethyl.
  • a solvent having a high solubility of an organic semiconductor and a boiling point of 100 ° C. or more is suitable, and xylene, isopropylbenzene, anisole, cyclohexanone, mesitylene, 1,2-dichlorobenzene, 3,4-dimethylanisole. Pentylbenzene, tetralin, cyclohexylbenzene, and decahydro-2-naphthol are preferred.
  • the mixed solvent which mixed 2 or more types of the above-mentioned solvent in the appropriate ratio can also be used.
  • the organic transistor of the present invention can be suitably used as an organic transistor having contact holes formed by etching.
  • the solvent used for etching at the time of contact hole formation is not limited as long as it is a solvent that dissolves the polymer of the present invention and the organic semiconductor to be used.
  • Examples include general-purpose aromatic hydrocarbon solvents such as benzene and 1,3-dimethoxybenzene. If the above conditions are satisfied, a mixed solvent in which two or more of these solvents are mixed can also be used.
  • organic / inorganic polymers or oligomers, or organic / inorganic nanoparticles can be added as solids or as dispersions in which nanoparticles are dispersed in water or an organic solvent.
  • a protective film can be formed by applying a polymer solution on the body layer. Furthermore, various moisture-proof coatings and light-resistant coatings can be applied on the protective film as necessary.
  • Examples of a gate electrode, a source electrode, or a drain electrode that can be used in the present invention include aluminum, gold, silver, copper, highly doped silicon, polysilicon, silicide, tin oxide, indium oxide, indium tin oxide, chromium, Examples include conductive materials such as inorganic electrodes such as platinum, titanium, tantalum, graphene, and carbon nanotubes, or organic electrodes such as doped conductive polymers (for example, PEDOT-PSS). It can also be used by laminating. Moreover, in order to raise the injection
  • the method for forming the electrode on the substrate, the insulating layer, or the organic semiconductor layer includes vapor deposition, high-frequency sputtering, electron beam sputtering, and the like.
  • Methods such as solution spin coating, drop casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, screen printing, ink jet printing, letterpress reverse printing, etc., using ink dissolved in an organic solvent Can also be adopted.
  • the surface of the insulating layer is increased by irradiating the surface of the insulating layer with vacuum ultraviolet (VUV) light after UV crosslinking of the insulating layer and using a light shielding mask.
  • VUV vacuum ultraviolet
  • the irradiation time of VUV light varies depending on the structure of the polymer used in the insulating layer to be used and the distance between the light source and the surface of the insulating layer, but is preferably 1 minute to 8 minutes, more preferably 1 minute to 5 minutes from the viewpoint of economy. Minutes.
  • the mobility of the organic transistor of the present invention is preferably 0.20 cm 2 / Vs or more from the viewpoint of practicality of the organic transistor element.
  • the organic transistor of the present invention preferably has a threshold voltage of -10.0 V or higher and lower than 0 V from the viewpoint of practicality of the organic transistor element.
  • the organic transistor of the present invention preferably has a leakage current density of 10 ⁇ 9 A / cm 2 or less from the viewpoint of practicality of the organic transistor element.
  • a polymer for forming an insulating layer which can be dissolved in a lower aliphatic alcohol and photocrosslinked in a short time with ultraviolet rays to form a contact hole.
  • the present invention it is possible to provide a polymer that dissolves in a general-purpose solvent, crosslinks at room temperature in a short time, and has excellent insulating properties.
  • ADVANTAGE OF THE INVENTION According to this invention, the polymer which is soluble in a solvent, photocrosslinks in normal temperature for a short time, insolubilizes in a solvent, and shows liquid repellency can be provided.
  • FIG. 2 is a view showing a 1 H-NMR chart of a polymerizable compound produced in Example 1.
  • FIG. 2 is a diagram showing a 13 C-NMR chart of a polymerizable compound produced in Example 1.
  • FIG. 2 is a diagram showing a 1 H-NMR chart of a polymerizable compound produced in Example 2.
  • FIG. 2 is a diagram showing a 1 H-NMR chart of a polymerizable compound produced in Example 3.
  • FIG. 2 is a diagram showing a 1 H-NMR chart of a polymerizable compound produced in Example 4.
  • FIG. 3 is a view showing a 1 H-NMR chart of polymer 1 produced in Example 5.
  • FIG. 2 is a diagram showing a 1 H-NMR chart of polymer 6 produced in Example 10.
  • FIG. 2 is a view showing a 1 H-NMR chart of polymer 7 produced in Example 11.
  • FIG. 3 is a view showing a 1 H-NMR chart of polymer 8 produced in Example 12.
  • FIG. 2 is a view showing a 1 H-NMR chart of polymer 12 produced in Example 15.
  • the organic semiconductor (di-n-hexyldithienobenzodithiophene) used in the examples was synthesized according to the production method described in JP-A-2015-224238.
  • 7-Hydroxy-4-oxo-benzopyran (7HOB) was synthesized by the method described in Journal of Heterocyclic Chemistry, 2015, 52, 562 pages.
  • Kiesel-Gel-60 poly (n- butyl acrylate), polyvinyl butyral, and poly (vinyl alcohol) is with a reagent manufactured by Sigma-Aldrich.
  • Poly (n-octyl methacrylate) was synthesized according to the method described in Polymer Science, Series B, 2016, Vol. 58, No. 6, page 675.
  • a product Cytop manufactured by AGC Asahi Glass Co., Ltd. was used for the fluorine-based cyclic ether polymer, and perfluorotributylamine (CYTOP CT-SOLV180 manufactured by AGC Asahi Glass Co., Ltd.) was used as the solvent for Cytop.
  • 7-Methyl-4-oxo-benzopyran was prepared according to the method described in Journal of Heterocyclic Chemistry, Vol. 52, No. 2, 562, 2015. 7-formyl-4-oxo-benzopyran is described in Journal of Organic Chemistry, Vol. 58, No. 26, p. 598, 1993, by the method described in Medical Chemistry, Vol. 44, 672, 2001. 7-vinyl-4-oxo-benzopyran was prepared by the method described in Journal of American Chemical Society, Vol. 126, No. 12, p. 3856, 2004.
  • NMR NMR
  • polymer solubility polymer solubility
  • filterability spin coating
  • film thickness measurement UV irradiation
  • vacuum deposition residual film rate
  • contact angle surface tension
  • dielectric breakdown strength dispenser printing
  • partition wall formation The evaluation of the organic transistor element was carried out under the following conditions / apparatus.
  • ⁇ NMR> JNM-ECZ400S FT-NMR manufactured by JEOL Ltd. was used for measurement using a polymer deuterated chloroform solvent.
  • X a (I 1 + I 2 ) / ⁇ a (I 1 + I 2 ) + bI 3 ⁇ (Where I 1 represents the peak intensity at ⁇ 8.0 to 8.3 ppm, I 2 represents the peak intensity at ⁇ 6.0 to 6.5 ppm, and I 3 represents the peak intensity at ⁇ 3.3 to 4.1 ppm, a represents the number of hydrogen atoms bonded to the carbon adjacent to the ester group in the substituent Z of the formula (6), and b represents the total number of hydrogen atoms of the substituents R 2 and R 3 of the benzopyran group in the formula (4).
  • the benzopyran group content X was calculated by the following method using 1 H-NMR according to the following formula.
  • X (3I 2 ⁇ aI 1 ) / ⁇ (5-a) I1 + 2I 2 ⁇ (Where I 1 is the peak intensity at ⁇ 0.8 to 2.5 ppm, I 2 is the peak intensity at ⁇ 6.0 to 8.5 ppm, and a is bonded to the phenyl group in formula (4) or (5).
  • the content X of the chromone group was calculated by the following formula using 1 H-NMR.
  • ⁇ Vacuum deposition> A small vacuum deposition apparatus VTR-350M / ERH manufactured by ULVAC KIKOH Co., Ltd. was used. ⁇ Polymer solubility> When the test solvent was toluene, xylene, mesitylene, and tetralin, it was evaluated as “dissolved” when dissolved in any of these organic solvents, and “insoluble” when not dissolved in any of the solvents.
  • This insulating film was irradiated with 300 mJ / cm 2 of ultraviolet rays to photocrosslink the insulating film.
  • the thickness of this film was measured by Bruker DektakXT stylus profiler and a T 0. Then, 1 minute after immersion in a good solvent I ⁇ III of the glass plate the photocrosslinked insulating film is coated toluene, or the polymer, evaporate the toluene at room temperature was taken out, T 1 and measure the thickness It was. Using these measured film thicknesses, the remaining film ratio was calculated by the following equation.
  • Remaining film ratio T 1 / T 0 ⁇ 100 (%)
  • solvent I 1,3-bis (trifluoromethyl) benzene
  • solvent II a reagent manufactured by Tokyo Chemical Industry
  • solvent II Fluorinert (manufactured by 3M Japan)
  • solvent III CT-Solvent (trademark) -180 manufactured by Asahi Glass).
  • the contact angle was measured using a contact angle meter drop master DM300 manufactured by Kyowa Interface Science Co., Ltd.
  • the surface tension ⁇ s of the polymer was determined according to the following procedures (1) to (3).
  • (2) The dispersion term ( ⁇ S d ) and the polar term ( ⁇ S p ) of the surface tension of the polymer film were determined from the obtained contact angle ⁇ using the following formula.
  • partition forming mask obtained by patterning 10 square ⁇ 10 micron squares 10 ⁇ 10 cm in a 10 cm ⁇ 10 cm square with 10 in a row and 10 in a horizontal pattern was used.
  • a mask is placed on a polymer film having a thickness of 100 nm printed on a substrate, irradiated with 100 mJ / cm 2 of ultraviolet rays, and then uncrosslinked parts are washed and removed with a good solvent of the polymer to thereby remove 50 on the film.
  • a partition wall having a shape of 100 holes of ⁇ 50 ⁇ m 2 size was formed.
  • Example 1 Synthesis of 7-methacryloyloxy-4-oxo-benzopyran (7MOB) A stirrer was placed in a 100 mL two-necked flask equipped with a nitrogen inlet tube, 5 g of 7-hydroxy-4-oxo-benzopyran, dehydrated pyridine 4.9 g and 4-dimethylaminopyridine 0.8 g were charged. Next, 50 mL of dehydrated THF was charged and stirred at room temperature to obtain a uniform solution. After cooling the resulting solution with ice, 6.0 mL of methacryloyl chloride was slowly added using a syringe. After the addition, the reaction was allowed to proceed for 1 hour under ice cooling and 2 hours at room temperature.
  • 7MOB 7-methacryloyloxy-4-oxo-benzopyran
  • the obtained solid was recrystallized from ethanol to obtain 3.8 g of the intended 7-methacryloyloxy-4-oxo-benzopyran (7MOB).
  • the obtained 1 MO-NMR chart of 7MOB is shown in FIG. 2, and the 13 C-NMR chart is shown in FIG.
  • the reaction solution was poured into a dilute hydrochloric acid aqueous solution, and further 100 mL of chloroform was added and stirred sufficiently, and then transferred to a separatory funnel to separate the chloroform layer.
  • the remaining aqueous layer was extracted three times with chloroform, and all the chloroform solutions were combined and concentrated by an evaporator to obtain a reddish brown oil.
  • the oily product was separated by silica gel column chromatography using ethyl acetate as a mobile phase to obtain 0.06 g of 7-vinyl-4-oxo-benzopyran (7VOB) as yellow crystals.
  • FIG. 4 shows a 1 H-NMR chart of the obtained 7VOB.
  • a 2-butanol solution (5 wt%) of polymer 1 was spin-coated on the organic semiconductor layer under conditions of 500 rpm ⁇ 5 seconds and 1000 rpm ⁇ 20 seconds, and dried at 100 ° C. for 10 minutes.
  • a contact hole mask was used for this element, a UV light intensity of 4 kW / cm 2 was used, UV irradiation was performed at room temperature for 5.4 seconds, and photocrosslinking was performed at a UV irradiation amount of 300 mJ / cm 2 .
  • a gate insulating layer was formed. Further, a silver electrode having a thickness of 30 nm was vacuum deposited on the gate insulating layer using a mask. Next, this element was immersed in toluene for 1 minute to form a contact hole, and a top gate / bottom contact (TGBC) type organic transistor element was produced. Table 1 shows the evaluation results and the like of the manufactured organic transistor.
  • Polymer 1 was photocrosslinked with a low UV dose, and it was confirmed that an insulating layer having excellent solvent resistance was formed, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
  • Example 6 0.78 g of isobutyl methacrylate, 0.23 g of 7MOB, 5.0 g of DMF, and 109 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 68 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and precipitated. The precipitate was filtered and dried under reduced pressure to obtain 0.55 g of Polymer 2. The resulting polymer 2 contained 19 mol% 7-methacryloyloxy-4-oxo-benzopyran units.
  • a top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to the polymer 2.
  • An evaluation result etc. are shown according to Table 1.
  • Polymer 2 was photocrosslinked at a low UV irradiation amount, and it was confirmed that an insulating layer having excellent solvent resistance was formed, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
  • Example 7 0.86 g of isobutyl methacrylate, 0.15 g of 7MOB, 5.0 g of DMF, and 108 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 68 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and precipitated. The precipitate was filtered and dried under reduced pressure to obtain 0.67 g of Polymer 3. The resulting polymer 3 contained 12 mol% 7-methacryloyloxy-4-oxo-benzopyran units.
  • the polymer 3 was photocrosslinked with a low UV irradiation amount to form an insulating layer with excellent solvent resistance, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
  • Example 8 0.86 g of isobutyl methacrylate, 0.15 g of 7MOB, 5.0 g of DMF, and 108 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 68 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and precipitated. The precipitate was filtered and dried under reduced pressure to obtain 0.68 g of Polymer 4. The resulting polymer 4 contained 16 mol% 7-methacryloyloxy-4-oxo-benzopyran units.
  • a top gate / bottom contact (TGBC) type organic transistor was fabricated in the same manner as in Example 5 except that the polymer 1 was changed to the polymer 4.
  • An evaluation result etc. are shown according to Table 1.
  • the polymer 4 was photocrosslinked with a low UV irradiation amount to form an insulating layer having excellent solvent resistance, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
  • Example 9 0.77 g of isobutyl methacrylate, 0.23 g of 7VOB, 5 g of DMF, and 11 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 65 ° C. for 6 hours under a nitrogen seal. The obtained polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer, isolated by filtration, and then dried under reduced pressure to obtain 0.6 g of polymer 5. The resulting polymer 5 contained 26 mol% 7-vinyl-4-oxo-benzopyran units.
  • a top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to the polymer 5.
  • An evaluation result etc. are shown according to Table 1.
  • the polymer 5 was photocrosslinked at a low UV irradiation amount to form an insulating layer having excellent solvent resistance, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
  • Example 1 A top gate / bottom contact (TGBC) type organic transistor was prepared in the same manner as in Example 5 except that the polymer 1 was changed to poly (n-butyl methacrylate) (PNBMA). PNBMA was not photocrosslinked by ultraviolet rays, and it was confirmed that the flatness of the film surface was lost due to heat when vacuum-depositing the source electrode and the drain electrode. Moreover, there was no solvent resistance, and the PNBMA film was dissolved at the time of contact hole formation, so that an organic transistor element could not be produced. Table 1 shows the evaluation results.
  • PNBMA poly (n-butyl methacrylate)
  • Example 2 A top gate / bottom contact (TGBC) type organic transistor was fabricated in the same manner as in Example 5 except that the polymer 1 was changed to poly (n-octyl methacrylate) (PNOMA). It was confirmed that PNOMA was not photocrosslinked by ultraviolet rays, and the flatness of the film surface was lost due to the heat when vacuum-depositing the source electrode and the drain electrode. Further, the organic transistor element was not able to be produced because it had no solvent resistance and the PNOMA film was dissolved when the contact hole was formed. Table 1 shows the evaluation results.
  • PNOMA poly (n-octyl methacrylate)
  • Example 3 A top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to polyvinyl butyral (PVB).
  • the PVB resin was not photocrosslinked by ultraviolet rays and did not exhibit solvent resistance. Further, the PVB film was not dissolved in toluene, and when butanol was used, the PVB film was dissolved and a contact hole could not be formed.
  • An evaluation result etc. are shown according to Table 1.
  • Example 4 A top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to polyvinyl alcohol (PVA). PVA was not photocrosslinked by ultraviolet rays and did not exhibit solvent resistance. Further, the PVA film was not dissolved in toluene, and when butanol was used, the PVA film was dissolved and a contact hole could not be formed. An evaluation result etc. are shown according to Table 1.
  • Example 5 A top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to a fluorine-based cyclic ether polymer (Cytop). Cytop was not photocrosslinked by ultraviolet rays and did not exhibit solvent resistance. The Cytop film was not dissolved in toluene, and when the fluorinated solvent CYTOP CT-SOLV180 was used, the Cytop film was dissolved and a contact hole could not be formed. An evaluation result etc. are shown according to Table 1.
  • Example 6 The solubility and solvent resistance were evaluated in the same manner as in Example 5 except that the polymer 1 was used and ultraviolet rays were not irradiated. Polymer 1 was dissolved in n-butanol, and the residual film ratio was 0. ⁇ Production and evaluation of organic transistor element> A top gate / bottom contact (TGBC) type organic transistor was fabricated in the same manner as in Example 5. The polymer 1 did not have solvent resistance, the entire film was dissolved, and a contact hole could not be formed. An evaluation result etc. are shown according to Table 1.
  • Example 10 2 g of styrene, 0.78 g of 7MOB, 14 g of DMF, and 39 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 65 ° C. for 6 hours under a nitrogen seal.
  • the obtained polymer solution was poured into 300 mL of methanol under stirring to precipitate the polymer, isolated by filtration, and then dried under reduced pressure to obtain 0.4 g of polymer 6.
  • the resulting polymer 6 contained 28 mol% 4-oxo-benzopyran units (formula (4)) and 72 mol% styrene monomer units (formula (7)).
  • a 1 H-NMR chart of the obtained polymer 6 is shown in FIG.
  • UV irradiation is performed at room temperature for 5.4 seconds, and crosslinking is performed under the condition of an ultraviolet irradiation amount of 300 mJ / cm 2.
  • Gold was vacuum-deposited on the substrate on which the gate electrode and the polymer dielectric layer were formed to form a source electrode and a drain electrode having a thickness of 50 nm, a channel length of 100 ⁇ m, and an electrode width of 500 ⁇ m.
  • Example 11 A 25 mL Schlenk tube was charged with 0.3 g of BOBF obtained in Example 3, 0.012 g of azoisobutyronitrile (AIBN), 0.7 g of styrene, and 7.5 g of N-methylpyrrolidone, and freeze degassing with liquid nitrogen. And dissolution was repeated 4 times, followed by polymerization at 73 ° C. for 6 hours under nitrogen pressure. After completion of the polymerization, the reaction solution was poured into 100 mL of methanol to precipitate a polymer, filtered and washed with methanol, and then dried at 50 ° C. to obtain 0.5 g of light brown polymer 7.
  • AIBN azoisobutyronitrile
  • the resulting polymer 7 had 4 mol% of BOBF-derived repeating units (formula (5)) and 96 mol% of styrene units (formula (7)).
  • a 1 H-NMR chart of the obtained polymer 7 is shown in FIG.
  • Table 2 shows the results and the like of an organic transistor element prepared and evaluated in the same manner as in Example 10 except that the polymer 6 was changed to the polymer 7.
  • Example 12 7MOB 0.35g, THF 14g, and AIBN 17.5mg were charged into a 20ML Schlenk tube and sufficiently deaerated, and then PFS 1.65g was charged in a nitrogen box. After sufficiently performing nitrogen substitution again, polymerization was performed at 60 ° C. for 6 hours under a nitrogen seal. The obtained polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer, isolated by filtration, and then dried under reduced pressure to obtain 0.4 g of polymer 8.
  • the resulting polymer 8 comprises 16 mol% 4-oxo-benzopyran units (formula (4)) and 84 mol% 2,3,4,5,6-pentafluorostyrene styrene (PFS) monomer units ( (7)).
  • a 1 H-NMR chart of the obtained polymer 8 is shown in FIG.
  • Table 2 shows the results obtained by producing an organic transistor element in the same manner as in Example 10 except that the polymer 6 is changed to the polymer 8.
  • Example 13 1.0 g of styrene, 0.78 g of 7MOB, 18 g of THF, and 39 mg of AIBN were charged into a 20 ML Schlenk tube and sufficiently deaerated, and then 1.86 g of PFS was charged in a nitrogen box. After sufficiently performing nitrogen substitution again, polymerization was performed at 60 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration.
  • the filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring and precipitated, and the precipitate was filtered and dried under reduced pressure to obtain 0.5 g of polymer 9.
  • the obtained polymer 9 was composed of 21 mol% of 4-oxo-benzopyran unit (formula (4)), 42 mol% of 2,3,4,5,6-pentafluorostyrene monomer unit (formula (7) ) And 37 mol% of styrene monomer units (formula (7)) (formula (7) is mol% in total).
  • Table 2 shows the results obtained by producing and evaluating an organic transistor element in the same manner as in Example 10 except that the polymer 6 is changed to the polymer 9.
  • Example 14 A 20-ML Schlenk tube was charged with 0.232 g of 7VOB, 0.708 g of styrene, 14 mg of AIBN, and 5 g of dimethylformamide. After nitrogen substitution, polymerization was performed at 60 ° C. for 6 hours under nitrogen pressure. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The obtained polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and reprecipitated. Then, the precipitate was filtered and dried under reduced pressure to obtain 0.6 g of the polymer 10. The resulting polymer 10 contained 35 mol% 4-oxo-benzopyran units (formula (43)) and 37 mol% styrene monomer units (formula (7)).
  • Table 2 shows the results of producing and evaluating an organic transistor element in the same manner as in Example 10 except that the polymer 6 was changed to the polymer 10.
  • Example 7 Solubility, UV crosslinkability, and solvent resistance were evaluated in the same manner as in Example 10 except that the polymer 6 was changed to an FCE polymer (Cytop, manufactured by AGC Asahi Glass Co., Ltd.).
  • the FCE polymer did not dissolve in any of the test solvents and could not be formed using a general-purpose solvent. Moreover, it was dissolved in the fluorine-based solvent PFTBA and irradiated with UV, but it was not crosslinked, and the remaining film ratio with respect to this solvent was 0. Accordingly, UV irradiation to the FCE polymer layer was omitted, and an organic transistor device was produced in the same manner as in Example 10.
  • the nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped.
  • the Schlenk tube was cooled with ice water, and cinnamic acid chloride was dropped from the dropping funnel over 10 minutes. The color of the polymer solution colored reddish purple as it was dropped.
  • the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 28 hours.
  • the reaction solution was cooled again with ice water, and 20 ml of 35% aqueous hydrochloric acid was added dropwise. After stirring in this state for 5 hours, the reaction solution was transferred to a separatory funnel, and the methylene chloride layer was separated.
  • Example 11 The polymer 6 obtained in Example 10 was used, and the solubility and solvent resistance were evaluated by the same method as in Example 10 except that ultraviolet rays were not irradiated. The polymer 6 was dissolved in the test solvent and the remaining film rate was 0.
  • Example 15 In a nitrogen box, put a magnetic stir bar in a 20 ML Schlenk tube, 7.1 mg of azobisisobutyronitrile (AIBN), monomer with inhibitor removed (0.27 g of 6CHMA, and 1H, 1H, 2H, 2H -Heptadecafluorodecyl methacrylate (HFDMA) (1.73 g), toluene (4.3 g), ⁇ , ⁇ , ⁇ , ⁇ ', ⁇ ', ⁇ '-hexafluoro-m-xylene (HFMX) (7 g), Gas (freezing with liquid nitrogen, degassing, thawing by heating) was performed 4 times.
  • AIBN azobisisobutyronitrile
  • FIG. 11 shows a 1 H-NMR chart of the polymer 12 measured by dissolving it in a mixed solvent of deuterated chloroform and HFMX.
  • the polymer 12 was dissolved in the solvent I, spin-coated on a glass plate, and the solvent resistance, contact angle, and surface tension of the UV-crosslinked polymer film were measured.
  • the polymer 12 was dissolved in the solvent I to form a polymer film having excellent solvent resistance at room temperature and a UV irradiation amount of 100 mJ / cm 2 .
  • the outstanding liquid repellency with respect to water and tetralin was shown.
  • the solvent I to III had a small contact angle and excellent wettability, but did not dissolve and had excellent solvent resistance.
  • Parylene-C manufactured by Japan Parylene Godo Kaisha
  • SCS Lab Coater 2 manufactured by Japan Parylene Godo Kaisha (model PDS2010)
  • base material base material
  • a film was formed by a vacuum evaporation method to form an insulating layer 1 having a thickness of 300 nm (substrate 1).
  • Gold was vacuum-deposited on this substrate (1) to form a source electrode and a drain electrode having a thickness of 50 nm, a channel length of 50 ⁇ m, and an electrode width of 50 ⁇ m.
  • a HFMX solution (2 wt%) of the polymer 12 was spin-coated on the substrate 2 under conditions of 500 rpm ⁇ 5 seconds and 1000 rpm ⁇ 20 seconds to form a polymer film having a thickness of 100 nm.
  • the polymer film was crosslinked by irradiating with 100 mJ / cm 2 ultraviolet rays through a partition wall forming mask, and washed with HFMX to remove uncrosslinked portions (substrate 3).
  • Example 16 In a nitrogen box, a magnetic stirrer was placed in a 20-ML Schlenk tube, 6.6 mg of AIBN, and the monomer from which the inhibitor was removed (6CHMA 0.24 g, and 1H, 1H, 2H, 2H-heptadecafluoro Decyl methacrylate (HFDMA) 1.76 g), toluene 3.0 g, ⁇ , ⁇ , ⁇ , ⁇ ′, ⁇ ′, ⁇ ′-hexafluoro-m-xylene (HFMX) 4.9 g, and then deaerated ( Freezing with liquid nitrogen, deaeration, and thawing by heating) were performed 4 times.
  • HFDMA 1H, 1H, 2H, 2H-heptadecafluoro Decyl methacrylate
  • HMFX ⁇ ′-hexafluoro-m-xylene
  • Example 17 In a nitrogen box, put a magnetic stir bar in a 20 ML Schlenk tube, AIBN 6.8 mg, monomer with inhibitor removed (6CHMA 0.34 g, and 1H, 1H, 2H, 2H-heptadecafluorodecyl methacrylate (HFDMA) 1.66 g), 3.0 g of toluene, 4.9 g of ⁇ , ⁇ , ⁇ , ⁇ ′, ⁇ ′, ⁇ ′-hexafluoro-m-xylene (HFMX), and then degassed (freeze with liquid nitrogen, Degassing and melting by heating) were performed 4 times. Under stirring, the mixture was heated under nitrogen pressure and polymerized at 60 ° C. for 6 hours.
  • HFDMA monomer with inhibitor removed
  • a polymerization inhibitor (BHT) solution was added to the Schlenk tube and stirred for 1 minute, and then cooled to room temperature.
  • the obtained reaction solution was poured into a 500 mL methanol solution to precipitate a polymer, and vacuum dried at 50 ° C. to obtain 0.9 g of the polymer 14.
  • the resulting polymer 14 contained 75 mol% HFDMA units and 25 mol% 6CHMA units.
  • Resins suitable for forming insulating layers for high-quality organic transistor devices that can be manufactured by printed electronics technology can be provided.
  • A Bottom gate-top contact type organic transistor
  • B Bottom gate-bottom contact type organic transistor
  • C Top gate-top contact type organic transistor
  • D Top gate-bottom contact type organic transistor 1: Organic semiconductor layer 2: Substrate 3: Gate electrode 4: Gate insulating layer 5: Source electrode 6: Drain electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

Provided are: a polymer for forming an insulating layer in which contact holes can be formed, the polymer dissolving in a lower aliphatic alcohol and photocrosslinking in a short period of time with ultraviolet rays; a polymer that can be used as an insulating layer in an organic transistor device, dissolves in general-purpose solvents, crosslinks at normal temperature and in a short period of time, and exhibits excellent insulating properties; and a polymer which is soluble in a solvent, can be made insoluble in a solvent by photocrosslinking at ordinary temperature in a short period of time, and is liquid repellent. A polymerizable compound represented by formula (1) and formula (2). (In formula (1): R1 is hydrogen or a C1-C6 alkyl group; L is a C1-C14 divalent linking group; n is 0 or 1; A, R2 and R3 are each independently one from the group consisting of hydrogen, halogens, cyano groups, nitro groups, C1-C18 alkyl groups, alkoxy groups, alkyl thio groups, alkyl amino groups, alkyl ketone groups, alkyl ester groups, alkyl amido groups, aryl groups, aryl ether groups, aryl thio groups, carboxyalkyl groups, fluoroalkyl groups, fluoroalkoxy groups, fluoroalkyl carbonyl groups, fluoroalkyl ester groups, fluoroaryl groups, fluorothio groups, cycloalkyl groups, and cycloheteroalkyl groups; X is O or S; and m is an integer of 0-3.) (In formula (2): Q1 and Q2 are each independently a C1-C14 divalent linking group; p and q are each independently 0 or 1; G1, G2, and R4-R7 are each independently a hydrogen, a halogen, a cyano group, a nitro group, a C1-C18 alkyl group, an alkoxy group, an alkyl thio group, an alkyl amino group, an alkyl ketone group, an alkyl ester group, an alkyl amido group, an aryl group, an aryl ether group, an aryl thio group, a carboxyalkyl group, a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkyl carbonyl group, a fluoroalkyl ester group, a fluoroaryl group, a fluorothio group, a cycloalkyl group or a cycloheteroalkyl group; X1-X4 are each independently O or S; and r and s are each independently an integer of 0-3.)

Description

重合性化合物、光硬化型重合体、絶縁膜、保護膜、及び有機トランジスタデバイスPolymerizable compound, photocurable polymer, insulating film, protective film, and organic transistor device
 本発明は有機トランジスタデバイスに含まれる有機半導体層の上に溶液塗工可能な絶縁膜、及び保護膜を形成するための重合体に関するものである。 The present invention relates to a polymer for forming an insulating film and a protective film that can be solution-coated on an organic semiconductor layer included in an organic transistor device.
 また、本発明は有機トランジスタデバイスに含まれる絶縁層を形成するための重合体に関するものである。 The present invention also relates to a polymer for forming an insulating layer included in an organic transistor device.
 また、本発明は電子デバイスに用いるのに好適な重合体に関するものである。 The present invention also relates to a polymer suitable for use in an electronic device.
 全印刷法により製造するトップゲート型有機トランジスタデバイスはデバイスの下面から上面に向かって、例えばプラスチックフィルム等の基材上に、平坦化層または絶縁層(A層)、下部金属電極(ソース、及びドレイン電極)、有機半導体層(B層)、絶縁層(C層)、上部金属電極(ゲート電極)の順に形成される。有機半導体層はソース電極とドレイン電極を覆う形状で局所的に形成され、ドレイン電極は有機半導体層が形成された領域の外部まで引き出された形状を持ち、C層と接触している。このC層は絶縁層としての機能に加え、有機半導体及び有機トラジスタデバイスが外気と接触して劣化する影響を低減させる保護膜としての役割も果たす。A層、及びC層は絶縁性重合体を有機溶剤に溶解させた溶液を印刷することで形成される。C層の形成においては、C層を形成する重合体の溶液が、既に形成されている有機半導体層(B層)を溶解させてはならない。また、C層にはコンタクトホールを形成する必要がある。コンタクトホールはC層の下部にあるドレイン電極とトランジスタの駆動回路を繋ぐための穴である。 A top gate type organic transistor device manufactured by a full printing method has a flattening layer or an insulating layer (A layer), a lower metal electrode (source, and the like) on a substrate such as a plastic film from the lower surface to the upper surface of the device. A drain electrode), an organic semiconductor layer (B layer), an insulating layer (C layer), and an upper metal electrode (gate electrode) are formed in this order. The organic semiconductor layer is locally formed in a shape covering the source electrode and the drain electrode, and the drain electrode has a shape drawn to the outside of the region where the organic semiconductor layer is formed, and is in contact with the C layer. In addition to the function as the insulating layer, the C layer also serves as a protective film that reduces the influence of the organic semiconductor and the organic transistor device coming into contact with the outside air and deteriorating. The A layer and the C layer are formed by printing a solution obtained by dissolving an insulating polymer in an organic solvent. In forming the C layer, the polymer solution forming the C layer must not dissolve the already formed organic semiconductor layer (B layer). Further, it is necessary to form a contact hole in the C layer. The contact hole is a hole for connecting the drain electrode under the C layer and the driving circuit of the transistor.
 有機半導体は溶解度の差はあるものの、種々の汎用有機溶剤により少なくとも部分的に溶解する場合が多い。従って、現状ではB層の上面にC層を形成する方法として、例えば蒸着によりポリパラキシリレン(PPX)膜を形成する方法が知られている。この方法は溶剤を用いず、原料を加熱し、真空下で基材上に蒸着重合させてポリパラキシリレン薄膜を形成させるため、有機半導体層が溶剤との接触により溶解することを避けることが出来る。一方で、PPX膜は汎用の炭化水素系溶剤に室温で溶解せず、コンタクトホールの形成が困難であるという致命的な欠陥が有った。また、蒸着による方法では処理できる基材のサイズが制限される上、全印刷プロセスによる連続的な製造が難しく、バッチプロセスのため経済性にも劣るという問題を有している。 Although organic semiconductors have a difference in solubility, they are often dissolved at least partially by various general-purpose organic solvents. Therefore, at present, as a method of forming the C layer on the upper surface of the B layer, for example, a method of forming a polyparaxylylene (PPX) film by vapor deposition is known. Since this method does not use a solvent, the raw material is heated and vapor-deposited onto a substrate under vacuum to form a polyparaxylylene thin film, so that the organic semiconductor layer should not be dissolved by contact with the solvent. I can do it. On the other hand, the PPX film does not dissolve in a general-purpose hydrocarbon solvent at room temperature, and has a fatal defect that it is difficult to form a contact hole. In addition, the method of vapor deposition limits the size of the substrate that can be treated, and it is difficult to continuously manufacture by the entire printing process, and the batch process is inferior in economic efficiency.
 また、別の方法としてフッ素系環状エーテル重合体をフッ素系溶剤に溶解させた溶液を有機半導体層の上面に塗工する方法が知られている。現在知られている有機半導体の多くはフッ素系溶剤には溶解しないため、有機半導体層に影響を与えずに該層の上にフッ素系環状エーテル重合体の絶縁層を形成出来る。しかし、該フッ素系環状エーテル重合体、及び、該フッ素系溶剤は経済性に劣る上、該溶液は有機半導体との親和性が低いために該フッ素系環状エーテル重合体層と該有機半導体層との密着性が低いことが原因となり有機電界効果トランジスタデバイスとしての性能が低下するという問題もあった。 As another method, a method in which a solution obtained by dissolving a fluorinated cyclic ether polymer in a fluorinated solvent is coated on the upper surface of the organic semiconductor layer is known. Since many of the currently known organic semiconductors do not dissolve in fluorine-based solvents, an insulating layer of a fluorine-based cyclic ether polymer can be formed on the organic semiconductor layer without affecting the organic semiconductor layer. However, since the fluorine-based cyclic ether polymer and the fluorine-based solvent are inferior in economic efficiency and the solution has low affinity with an organic semiconductor, the fluorine-based cyclic ether polymer layer and the organic semiconductor layer There is also a problem that the performance as an organic field effect transistor device is lowered due to the low adhesion of the film.
 有機半導体層の上面に塗工しても広範な種類の有機半導体層に影響を与えず、汎用性が高い溶剤の一つに脂肪族アルコールがある。高沸点の脂肪族アルコールが絶縁層中に残存すると半導体性能を低下させるため、溶剤としては低沸点の低級脂肪族アルコールが好適である。低級脂肪族アルコールに溶解する樹脂としてブチラール樹脂、ポリビニルアルコール、及び特定の構造を有するアルキルメタクリレート等が知られている。しかし、ブチラール樹脂、及びポリビニルアルコールは水酸基を有しており、この水酸基が電荷をトラップして半導体性能を低下させるため、絶縁層を形成する樹脂としては適さない。一方、該アルキルメタクリレートのうち、ポリ(n-ブチルメタクリレート)、及びポリ(n-オクチルメタクリレート)は低級脂肪族アルコールに溶解し(非特許文献1)、水酸基を有さないため絶縁層材料として使用した際に電荷トラップの問題は生じにくい。しかし、これらの重合体は光架橋性を有しておらず、絶縁層として用いた場合有機溶剤に対する耐溶剤性が発現しないためコンタクトホールの形成が困難であった。 ¡Even if it is applied to the upper surface of the organic semiconductor layer, it does not affect a wide variety of organic semiconductor layers, and aliphatic alcohol is one of highly versatile solvents. If the high-boiling point aliphatic alcohol remains in the insulating layer, the semiconductor performance is deteriorated, and therefore, a low-boiling point lower aliphatic alcohol is suitable as the solvent. Known resins that dissolve in lower aliphatic alcohols include butyral resin, polyvinyl alcohol, and alkyl methacrylate having a specific structure. However, butyral resin and polyvinyl alcohol have a hydroxyl group, and this hydroxyl group traps electric charge and deteriorates semiconductor performance. Therefore, it is not suitable as a resin for forming an insulating layer. On the other hand, among the alkyl methacrylates, poly (n-butyl methacrylate) and poly (n-octyl methacrylate) are dissolved in lower aliphatic alcohols (Non-patent Document 1), and have no hydroxyl groups, so that they are used as insulating layer materials. When this occurs, the problem of charge trapping is less likely to occur. However, these polymers do not have photocrosslinkability and, when used as an insulating layer, do not exhibit solvent resistance to organic solvents, making it difficult to form contact holes.
 このような背景から、C層を形成するための重合体としては、低級脂肪族アルコールに溶解し、かつ、架橋(硬化)可能なものが求められている。重合体の架橋方法としては熱、または放射線による方法が一般に用いられる。しかし、有機半導体層の上部に形成された絶縁層の架橋においては、有機半導体層の熱膨張・収縮による性能劣化を極力抑制するという観点から加熱による架橋は好ましくない。このため、放射線による架橋が好ましく、特に紫外線による架橋(光架橋)が適している。紫外線によるC層の光架橋においては、光学的に透明なC層を通過した放射線による有機半導体の劣化を防ぐため、紫外線の照射量は出来る限り低くすることが好ましい。この観点から短時間で光架橋可能なC層形成用の重合体が求められている。 From such a background, a polymer that can be dissolved in a lower aliphatic alcohol and that can be crosslinked (cured) is required as a polymer for forming the C layer. As the polymer crosslinking method, a method using heat or radiation is generally used. However, in the cross-linking of the insulating layer formed on the organic semiconductor layer, the cross-linking by heating is not preferable from the viewpoint of suppressing performance degradation due to thermal expansion / contraction of the organic semiconductor layer as much as possible. For this reason, crosslinking by radiation is preferable, and crosslinking by ultraviolet rays (photocrosslinking) is particularly suitable. In photocrosslinking of the C layer by ultraviolet rays, it is preferable to reduce the amount of ultraviolet rays as much as possible in order to prevent deterioration of the organic semiconductor due to radiation that has passed through the optically transparent C layer. From this viewpoint, a polymer for forming a C layer that can be photocrosslinked in a short time is required.
 光架橋性の重合体は光架橋性の官能基を重合体の主鎖、または側鎖に導入することにより得られる。光架橋性の官能基としては種々のものが知られているが、ラジカルに対して化学的な安定性が高いものとしてアントラセン、テトラセン等の多環芳香族化合物、クマリン(例えば、非特許文献2)、及びキノリノン等が知られている(例えば、非特許文献3、4)。これらの官能基を有するモノマーを他のモノマーとラジカル共重合することにより光架橋性の重合体を得ることが出来る。 The photocrosslinkable polymer can be obtained by introducing a photocrosslinkable functional group into the main chain or side chain of the polymer. Various photo-crosslinkable functional groups are known, and polycyclic aromatic compounds such as anthracene and tetracene, coumarin (for example, Non-Patent Document 2) are known as those having high chemical stability to radicals. ) And quinolinone are known (for example, Non-Patent Documents 3 and 4). A photocrosslinkable polymer can be obtained by radical copolymerizing a monomer having these functional groups with another monomer.
 アントラセンを光架橋基として導入した光架橋性重合体として、例えば、アントリル基を光架橋基として導入した重合体として、6-(アントラセン-9-イル)ヘキシルメタクリレートとフルオロアルキルメタクリレートとの共重合体(非特許文献5)、ポリ(2-エチルヘキシルメタクリレート)とポリ(9-アントリルメチルメタクリレート)からなるジブロック共重合体(非特許文献6)、6-(9-アントリロキシ)ヘキシルメタクリレート単独重合体(非特許文献7)に関する技術が開示されている。しかし、分子量の大きなアントラセン基は低級アルコールへの溶解性を低下させるため、その導入量には限界があり、テトラセンに関しても同様である。従って、これらの重合体においては、その光架橋速度に上限値があり、紫外線の照射量低減に対応出来ず、また、ロールTOロール法により有機トランジスタを印刷のみで連続生産する際に求められる短時間での光架橋に対応出来なかった。 As a photocrosslinkable polymer in which anthracene is introduced as a photocrosslinking group, for example, as a polymer in which an anthryl group is introduced as a photocrosslinking group, a copolymer of 6- (anthracen-9-yl) hexyl methacrylate and fluoroalkyl methacrylate (Non-patent document 5), diblock copolymer comprising poly (2-ethylhexyl methacrylate) and poly (9-anthrylmethyl methacrylate) (non-patent document 6), 6- (9-anthryloxy) hexyl methacrylate homopolymer A technique related to (Non-Patent Document 7) is disclosed. However, since an anthracene group having a large molecular weight reduces the solubility in a lower alcohol, its introduction amount is limited, and the same applies to tetracene. Therefore, in these polymers, there is an upper limit for the photocrosslinking rate, which cannot cope with the reduction of the irradiation amount of ultraviolet rays, and the short required for continuous production of organic transistors only by printing by the roll-to-roll method. Could not cope with photocrosslinking in time.
 クマリン、及びキノリノンを含有する重合体としては、例えば液晶配向膜用の重合体が提案されている(例えば、特許文献1)。しかし、本重合体は低級脂肪族アルコールへ溶解しないという問題があった。 As a polymer containing coumarin and quinolinone, for example, a polymer for a liquid crystal alignment film has been proposed (for example, Patent Document 1). However, this polymer has a problem that it does not dissolve in lower aliphatic alcohols.
 上述のように、低級脂肪族アルコールに溶解し、紫外線により短時間で光架橋し、コンタクトホールを形成可能な絶縁層形成用の重合体が求められていた。 As described above, there has been a demand for a polymer for forming an insulating layer that can be dissolved in a lower aliphatic alcohol and photocrosslinked with ultraviolet rays in a short time to form a contact hole.
 また、別の課題として有機トランジスタデバイスは基本的には、3つの電極(ソース電極、ドレイン電極、ゲート電極)、絶縁層、及び有機半導体層からなる。現在、ポリエチレンナフタレートフィルム等のプラスチック上に印刷によって有機トランジスタを製造する技術(全印刷法)の開発が進められている。全印刷法により有機トランジスタを製造する際、該有機トランジスタの形態により電極、絶縁層、及び有機半導体層を形成する順序は異なるが、例えば、金属ナノ粒子を含有する水系または非水系インクの印刷により電極を、架橋可能な重合体溶液の印刷により絶縁層を、有機半導体溶液の印刷により有機半導体層を形成することが出来る。該重合体溶液、及び該有機半導体溶液の調製には有機溶剤が用いられる。 As another problem, an organic transistor device basically includes three electrodes (a source electrode, a drain electrode, and a gate electrode), an insulating layer, and an organic semiconductor layer. Currently, development of technology (all printing methods) for producing organic transistors by printing on plastics such as polyethylene naphthalate film is underway. When an organic transistor is manufactured by a full printing method, the order in which the electrode, the insulating layer, and the organic semiconductor layer are formed differs depending on the form of the organic transistor. For example, by printing an aqueous or non-aqueous ink containing metal nanoparticles. An electrode can be formed by printing a crosslinkable polymer solution, and an organic semiconductor layer can be formed by printing an organic semiconductor solution. An organic solvent is used for the preparation of the polymer solution and the organic semiconductor solution.
 これまでに、絶縁層としてポリパラキシリレン(PPX)、ベンゾシクロブテン(BCB)重合体、ポリビニルフェノール(PVP)組成物、及びフッ素系環状エーテル(FCE)重合体の利用が提案されている。PPXは絶縁性には優れているが、汎用溶剤に溶解せず、上記の印刷プロセスには適用できない。BCB重合体、及びPVP組成物は架橋温度がそれぞれ150℃、及び250℃と高く、架橋時間も長い。このため、ロールTOロール方式での連続製造プロセスへの適用が難しい。特に、プラスチックを基材とした有機トランジスタデバイスの製造においては、架橋時の加熱によって基材のプラスチックが変形を起こすため、耐熱性に優れたポリイミド等のエンプラフィルム以外の使用は困難である。一方、FCE重合体はパーフルオロトリブチルアミン(PFTBA)等特定のフッ素系溶剤に溶解するが汎用の有機溶剤には溶解しない。FCE重合体は表面張力が小さく、該重合体膜上に有機半導体層溶液を印刷する際、溶液が濡れ広がらず均一な印刷も難しい。更に、該重合体、及び該溶剤は何れも高価であり経済性にも劣っていた。 So far, it has been proposed to use polyparaxylylene (PPX), benzocyclobutene (BCB) polymer, polyvinylphenol (PVP) composition, and fluorine-based cyclic ether (FCE) polymer as the insulating layer. PPX is excellent in insulation, but does not dissolve in a general-purpose solvent and cannot be applied to the above printing process. The BCB polymer and the PVP composition have high crosslinking temperatures of 150 ° C. and 250 ° C., respectively, and the crosslinking time is also long. For this reason, it is difficult to apply to a continuous production process using a roll-to-roll system. In particular, in the production of an organic transistor device using a plastic as a base material, the plastic of the base material is deformed by heating at the time of crosslinking, so that it is difficult to use other than engineering plastic films such as polyimide having excellent heat resistance. On the other hand, the FCE polymer dissolves in a specific fluorine-based solvent such as perfluorotributylamine (PFTBA) but does not dissolve in a general-purpose organic solvent. The FCE polymer has a small surface tension, and when the organic semiconductor layer solution is printed on the polymer film, the solution does not spread and uniform printing is difficult. Further, the polymer and the solvent were both expensive and inferior in economic efficiency.
 上記の背景から、常温、かつ短時間で架橋が可能な光架橋性重合体が注目されている。例えば、ポリ(ヒドロキシエチルメタクリレート)等の水酸基を有するポリマーに光架橋性を有するシンナモイル基を導入した重合体(例えば、特許文献2参照)、及びフェノール基を側鎖に有するポリマーに光架橋性を有するクマリンを導入した重合体(例えば、特許文献3参照)が提案されている。しかしながら、これらの重合体には未反応の水酸基が残存しており、この水酸基が絶縁破壊強度を低下させ絶縁層としての性能に劣るという問題があった。特許文献2では、未反応の水酸基を無水トリフルオロ酢酸と反応させて残存水酸基量を低減させる技術も開示しているが、この手法によって水酸基を完全に消失させることは極めて難しかった。 From the above background, photocrosslinkable polymers that can be crosslinked at room temperature in a short time are attracting attention. For example, a polymer having a photocrosslinkable cinnamoyl group introduced into a polymer having a hydroxyl group such as poly (hydroxyethyl methacrylate) (for example, see Patent Document 2) and a polymer having a phenol group in the side chain have photocrosslinkability. A polymer into which coumarin is introduced (for example, see Patent Document 3) has been proposed. However, an unreacted hydroxyl group remains in these polymers, and this hydroxyl group has a problem that the dielectric breakdown strength is lowered and the performance as an insulating layer is inferior. Patent Document 2 discloses a technique for reducing the amount of residual hydroxyl group by reacting an unreacted hydroxyl group with trifluoroacetic anhydride. However, it has been extremely difficult to completely eliminate the hydroxyl group by this method.
 また、光架橋性のシンナモイル基を有するビニル単量体、及び含フッ素ビニル単量体との共重合体も提案されている(例えば、特許文献4参照)。本技術に従いシンナモイル基を側鎖に有する上記の単量体をラジカル重合すると、シンナモイル基の二重結合がラジカルと反応して重合体が架橋し、ゲルを生成することから製膜性に劣るという問題があった。 Also, a vinyl monomer having a photocrosslinkable cinnamoyl group and a copolymer with a fluorine-containing vinyl monomer have been proposed (for example, see Patent Document 4). According to this technique, when the above-mentioned monomer having a cinnamoyl group in the side chain is radically polymerized, the double bond of the cinnamoyl group reacts with the radical to crosslink the polymer to form a gel, resulting in poor film forming properties. There was a problem.
 また、ポリスチレン等の芳香族ビニル重合体に光架橋性を有するシンナモイル基をフリーデル・クラフツ・アシル化反応により導入した光架橋性重合体に関する技術も開示されている(例えば、特許文献5、特許文献6参照)。しかし、本技術ではシンナモイル基の導入量に係わらず、該反応中にゲルが生成し、シンナモイル基が一定量を超えると反応溶液自体がゲル化するという致命的な問題があった。 In addition, a technique related to a photocrosslinkable polymer in which a cinnamoyl group having photocrosslinkability is introduced into an aromatic vinyl polymer such as polystyrene by Friedel-Crafts acylation reaction is also disclosed (for example, Patent Document 5, Patent Reference 6). However, this technique has a fatal problem that a gel is generated during the reaction regardless of the amount of cinnamoyl groups introduced, and the reaction solution itself gels when the amount of cinnamoyl groups exceeds a certain amount.
 ここで一般に、絶縁層に異物があると絶縁破壊強度が低下し、該層の平坦性も低下するために有機トランジスタの性能が劣る等の問題が発生するものである。従って、絶縁層の形成に先立ち、重合体溶液は精密濾過する必要がある。しかし、特許文献4~6で提案されている重合体はゲルを含有しているため、精密濾過を経済的かつ高い生産性で行うことが難しかった。 Here, generally, when there is a foreign substance in the insulating layer, the dielectric breakdown strength is lowered, and the flatness of the layer is also lowered, so that problems such as inferior performance of the organic transistor occur. Therefore, the polymer solution must be microfiltered prior to the formation of the insulating layer. However, since the polymers proposed in Patent Documents 4 to 6 contain gel, it is difficult to perform microfiltration economically and with high productivity.
 このような背景から、汎用溶剤へ溶解し、ゲルを含まず、低温かつ短時間で架橋する絶縁性に優れた重合体及び該重合体を含む絶縁膜が求められていた。 From such a background, there has been a demand for a polymer that dissolves in a general-purpose solvent, does not contain gel, has excellent insulating properties that crosslinks at low temperature in a short time, and an insulating film containing the polymer.
 また、別の課題として、近年、低コストで生産性が高い全印刷による電子デバイスの製造に関する技術開発が積極的に行われている。電子デバイスとして、例えば有機トランジスタの開発も進められている。この有機トランジスタは多数の工程を経て製造されるが、有機半導体膜を特定の微小領域内に形成させる工程も含まれている。この微小領域は、例えば、ソース電極及びドレイン電極を含むミクロンオーダーの矩形領域である。インクジェットを用いて該領域内に有機半導体溶液を印刷する場合、微小領域内に有機半導体溶液の液滴を滴下した上で、該領域外に有機半導体溶液が濡れ広がらないようにする必要がある。濡れ広がらないようにする方法として、上記の微小領域のみを親液性とし、その領域外を撥液性とすることにより該溶液の該微小領域外への濡れ広がりを防止する方法が知られている。このとき、該領域外への濡れ広がり防止するため膜を設ける場合、該膜は隔壁と呼ばれている。また、該微小領域の周囲に一定の幅と厚みを有した撥液性の壁を形成する方法もあり、この壁も併せて隔壁と呼ばれている。 Also, as another issue, in recent years, technological development relating to the manufacture of electronic devices by full printing with low cost and high productivity has been actively carried out. For example, organic transistors are being developed as electronic devices. This organic transistor is manufactured through a number of processes, and includes a process of forming an organic semiconductor film in a specific minute region. This minute region is, for example, a rectangular region on the order of microns including a source electrode and a drain electrode. When an organic semiconductor solution is printed in the region using ink jet, it is necessary to drop the organic semiconductor solution in a minute region and prevent the organic semiconductor solution from getting wet out of the region. As a method for preventing wetting and spreading, a method for preventing the solution from spreading out of the micro area by making only the above micro area lyophilic and making the outside of the area lyophobic is known. Yes. At this time, when a film is provided to prevent wetting and spreading outside the region, the film is called a partition wall. There is also a method of forming a liquid-repellent wall having a certain width and thickness around the minute region, and this wall is also called a partition.
 隔壁形成に用いられる材料としては水、および有機溶剤に対して撥液性を示す表面張力の小さいフッ素系樹脂が適している。また、この隔壁を印刷により形成するためには、溶剤に可溶なフッ素系樹脂が必要となり、該フッ素系樹脂としては、例えば、パーフルオロブテニルエーテル重合体(旭硝子製、商品名サイトップ)、テトラフルオロエチレン・パーフルオロジオキソール共重合体(三井デュポン・フロロケミカル製、商品名テフロン(登録商標)AF)等が知られている。このとき、該溶剤としてはフルオロアルキルアミン等のフッ素系溶剤が用いられるものである。 As the material used for forming the partition walls, a fluorine-based resin having a low surface tension that exhibits liquid repellency to water and organic solvents is suitable. Moreover, in order to form this partition wall by printing, a fluorine-based resin that is soluble in a solvent is required. Examples of the fluorine-based resin include perfluorobutenyl ether polymers (product name: Cytop, manufactured by Asahi Glass). Tetrafluoroethylene / perfluorodioxole copolymer (manufactured by Mitsui DuPont Fluorochemicals, trade name Teflon (registered trademark) AF) and the like are known. At this time, a fluorine-based solvent such as fluoroalkylamine is used as the solvent.
 上記のフッ素系樹脂で隔壁を形成しようとする場合、該隔壁は表面張力が小さいため、この隔壁上に他の樹脂を用いて絶縁膜を積層する際、両樹脂間の接着性が低く電子デバイスを形成できないという問題があった。 When a partition wall is to be formed from the above fluororesin, since the partition wall has a low surface tension, when an insulating film is laminated on the partition wall using another resin, the adhesion between the two resins is low and the electronic device There was a problem that could not be formed.
 絶縁膜と隔壁を同一の材料で形成することで接着性の問題は解決できるものの、絶縁膜を積層する際に隔壁が溶解する問題があった。ここで、隔壁の溶解は、隔壁の流動による有機半導体膜の剥離、または絶縁膜の厚みの均一性損失によりトランジスタ性能を大きく低下させるものである。このため、隔壁を形成する材料にはフッ素系溶剤に溶解して容易に印刷でき、かつ、隔壁を形成する際に該フッ素系溶剤に対し不溶化する性能が求められる。このような不溶化技術として樹脂の架橋技術が知られており、短時間で架橋できる技術として光架橋が知られている。 Although the adhesion problem can be solved by forming the insulating film and the partition with the same material, there is a problem that the partition dissolves when the insulating film is laminated. Here, dissolution of the partition wall greatly reduces the transistor performance due to peeling of the organic semiconductor film due to the flow of the partition wall or loss of uniformity of the insulating film thickness. For this reason, the material for forming the partition walls is required to be capable of being easily printed by being dissolved in a fluorinated solvent, and to be insoluble in the fluorinated solvent when forming the partition walls. A resin crosslinking technique is known as such an insolubilization technique, and photocrosslinking is known as a technique capable of crosslinking in a short time.
 光架橋可能な樹脂としてアジド基を導入したポリフルオロアルキルメタクリレート共重合体の技術が提案されている(例えば、特許文献7参照)。しかし、この樹脂で隔壁を形成する場合、光架橋速度が小さいために、1J/cm以上の紫外線照射量が必要であり、生産性が低かった。また、表面張力が18~23mN/mと高く、撥液性も不十分であった。 As a photocrosslinkable resin, a technique of a polyfluoroalkyl methacrylate copolymer having an azide group introduced has been proposed (see, for example, Patent Document 7). However, when the partition walls are formed from this resin, the photocrosslinking rate is low, so that an ultraviolet irradiation amount of 1 J / cm 2 or more is necessary, and the productivity is low. Further, the surface tension was as high as 18 to 23 mN / m, and the liquid repellency was insufficient.
 上記の背景から、溶剤に可溶で、常温かつ短時間で光架橋により溶剤に不溶化する撥液性の重合体が求められていた。 From the above background, a liquid repellent polymer that is soluble in a solvent and insolubilized in a solvent by photocrosslinking at room temperature in a short time has been demanded.
米国特許6201087号公報US Pat. No. 6,2010,871 日本国特許第5148624号Japanese Patent No. 5148624 日本国特許第5960202号Japanese Patent No. 5960202 日本国特許第5938192号Japanese Patent No. 5938192 米国特許2566302号US Pat. No. 2,662,302 米国特許2708665号U.S. Pat. No. 2,708,665 米国特許4365049号U.S. Pat. No. 4,365,049
 本発明は上記課題に鑑みてなされたものであり、その目的は、低級脂肪族アルコールに溶解し、紫外線により短時間で光架橋し、コンタクトホールを形成可能な絶縁層形成用の重合体を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a polymer for forming an insulating layer which can be dissolved in a lower aliphatic alcohol and photocrosslinked in a short time with ultraviolet rays to form a contact hole. There is to do.
 また、本発明の別の目的として、有機トランジスタデバイスの絶縁層として利用できる汎用溶剤へ溶解し、常温かつ短時間で架橋する絶縁性に優れた重合体を提供することにある。 Another object of the present invention is to provide a polymer excellent in insulation that dissolves in a general-purpose solvent that can be used as an insulating layer of an organic transistor device and crosslinks at room temperature in a short time.
 また、溶剤に可溶で、常温かつ短時間で光架橋により溶剤に不溶化し、撥液性を示す重合体を提供することを別の目的とする。 Another object is to provide a polymer that is soluble in a solvent, insolubilized in a solvent by photocrosslinking at room temperature in a short time, and exhibits liquid repellency.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の構造を有する重合性化合物、及びそれから得られる特定の重合体が上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a polymerizable compound having a specific structure and a specific polymer obtained therefrom can solve the above problems, and complete the present invention. It came.
 すなわち、本発明は以下の[1]乃至[10]に存する。
[1] 以下の式(1)で表される重合性化合物。
That is, the present invention resides in the following [1] to [10].
[1] A polymerizable compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式(1)中、Rは水素またはC1~C6のアルキル基のいずれかを、Lは炭素数1~14の2価の連結基を、nは0または1を、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルコキシ基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、XはOまたはSを、mは0~3の整数を表す。)
[2] 以下の式(2)で表される重合性化合物。
(In the formula (1), R 1 represents either hydrogen or a C1-C6 alkyl group, L represents a divalent linking group having 1 to 14 carbon atoms, n represents 0 or 1, and A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl One kind of the group consisting of an ether group, an arylthio group, a carboxyalkyl group, a fluoroalkyl group, a fluoroalkoxy group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group X represents O or S, and m represents an integer of 0 to 3.)
[2] A polymerizable compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式(2)中、Q及びQはそれぞれ独立して炭素数1~14の2価の連結基を、p及びqはそれぞれ独立して0または1を、G、G、R~Rはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基を、X~Xはそれぞれ独立してOまたはSを、r及びsはそれぞれ独立して0~3の整数を表す。)
[3] 以下の式(3)乃至式(5)からなる群の少なくとも1種の反復単位として含み、かつ、以下の式(6)乃至式(8)からなる群の少なくとも1種の反復単位を含む重合体。
(In Formula (2), Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1, G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group, X 1 ~ X 4 each independently are O or S, r and s are each independently an integer of 0 to 3 Represent.)
[3] At least one repeating unit of the group consisting of the following formulas (6) to (8), which is included as at least one repeating unit of the group consisting of the following formulas (3) to (5) A polymer comprising
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式(3)中、Rは水素またはC1~C6のアルキル基のいずれかを、Lは炭素数1~14の2価の連結基を、nは0または1を、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、XはOまたはSを、mは0~3の整数を表す。) (In the formula (3), R 1 represents either hydrogen or a C1-C6 alkyl group, L represents a divalent linking group having 1 to 14 carbon atoms, n represents 0 or 1, and A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl Consists of ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group (One of the groups, X represents O or S, and m represents an integer of 0 to 3.)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式(4)中、Rは水素またはC1~C6のアルキル基のいずれかを、Lは炭素数1~14の2価の連結基を、nは0または1を、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、XはOまたはSを、mは0~3の整数を表す。) (In the formula (4), R 1 represents either hydrogen or a C1-C6 alkyl group, L represents a divalent linking group having 1 to 14 carbon atoms, n represents 0 or 1, and A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl Consists of ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group (One of the groups, X represents O or S, and m represents an integer of 0 to 3.)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式(5)中、Q及びQはそれぞれ独立して炭素数1~14の2価の連結基を、p及びqはそれぞれ独立して0または1を、G、G、R~Rはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、X~Xはそれぞれ独立してOまたはSを、r及びsはそれぞれ独立して0~3の整数を表す。) (In the formula (5), Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1, G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group the one of the group consisting of, X 1 ~ X 4 are each independently O or S, And s each independently represents an integer of 0-3.)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式(6)中、Rは水素またはC1~C6のアルキル基のいずれかを、ZはC1~C12のアルキル基を表す。) (In the formula (6), R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式(7)中、Rは水素またはC1~C6のアルキル基のいずれかを、Mは炭素数1~14の2価の連結基を、kは0または1を、Yは水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、jは0~5の整数を表す。) (In the formula (7), R 9 is either hydrogen or a C1-C6 alkyl group, M is a divalent linking group having 1 to 14 carbon atoms, k is 0 or 1, Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group, and j is 0 to Represents an integer of 5.)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式(8)中、R10は水素またはC1~C6のアルキル基を、Eは-O-、-S-、または-NH-を、tは0または1を、R11は炭素数1~18のフルオロアルキル基を表す。)
[4] 以下の式(4)及び以下の式(6)で表される反復単位を含む[3]の重合体。
(In formula (8), R 10 represents hydrogen or a C1-C6 alkyl group, E represents —O—, —S—, or —NH—, t represents 0 or 1, and R 11 represents 1 to Represents 18 fluoroalkyl groups.)
[4] The polymer of [3] comprising repeating units represented by the following formula (4) and the following formula (6).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(ここで、R、L、n、A、R、R、X及びmは前記式(1)で定義したものと同様である。) (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(ここで、Rは水素またはC1~C6のアルキル基のいずれかを、ZはC1~C12のアルキル基を表す。)
[5] 以下の式(4)または式(5)の少なくともいずれかを反復単位として含み、かつ、以下の式(7)で表される反復単位を含む[3]の重合体。
(Here, R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.)
[5] The polymer according to [3], which contains at least one of the following formula (4) and formula (5) as a repeating unit and further contains a repeating unit represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(ここで、R、L、n、A、R、R、X及びmは、前記式(1)で定義したものと同様である。) (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(ここで、Q、Q、p、q、G、G、R~R、X~X、r及びsは、前記式(2)で定義したものと同様である。) (Here, Q 1 , Q 2 , p, q, G 1 , G 2 , R 4 to R 7 , X 1 to X 4 , r and s are the same as those defined in the formula (2)). .)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式(7)中、Rは水素またはC1~C6のアルキル基のいずれかを、Mは炭素数1~14の2価の連結基を、kは0または1を、Yは水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、jは0~5の整数を表す。)
[6] 以下の式(4)及び以下の式(8)で表される反復単位を含む[3]の重合体。
(In the formula (7), R 9 is either hydrogen or a C1-C6 alkyl group, M is a divalent linking group having 1 to 14 carbon atoms, k is 0 or 1, Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group, and j is 0 to Represents an integer of 5.)
[6] The polymer of [3] comprising repeating units represented by the following formula (4) and the following formula (8).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(ここで、R、L、n、A、R、R、X及びmは前記式(1)で定義したものと同様である。) (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(ここで、R10は水素またはC1~C6のアルキル基を、Eは-O-、-S-、または-NH-を、tは0または1を、R11は炭素数1~18のフルオロアルキル基を表す。)
[7] [3]乃至[6]に記載の重合体の架橋物。
[8] [3]乃至[6]に記載の重合体または[7]に記載の架橋物の少なくともいずれかを含む絶縁膜。

[9] [4]に記載の重合体または[7]に記載の架橋物の少なくともいずれかを含む保護膜。
[10] [6]に記載の重合体または[7]に記載の架橋物の少なくともいずれかを含む撥液膜。
[11] [8]に記載の絶縁膜を備える有機トランジスタデバイス。
[12] [9]に記載の保護膜を備える有機トランジスタデバイス。
[13] [10]に記載の撥液膜を備える電子デバイス。
(Where R 10 is hydrogen or a C1-C6 alkyl group, E is —O—, —S—, or —NH—, t is 0 or 1, and R 11 is a fluoro having 1 to 18 carbon atoms. Represents an alkyl group.)
[7] A crosslinked product of the polymer according to [3] to [6].
[8] An insulating film containing at least one of the polymer according to [3] to [6] or the crosslinked product according to [7].

[9] A protective film comprising at least one of the polymer according to [4] or the crosslinked product according to [7].
[10] A liquid repellent film containing at least one of the polymer according to [6] or the crosslinked product according to [7].
[11] An organic transistor device comprising the insulating film according to [8].
[12] An organic transistor device comprising the protective film according to [9].
[13] An electronic device comprising the liquid repellent film according to [10].
 以下、本発明について説明する。 Hereinafter, the present invention will be described.
 本発明は、式(1)で表される重合性化合物である。 The present invention is a polymerizable compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(式(1)中、Rは水素またはC1~C6のアルキル基のいずれかを、Lは炭素数1~14の2価の連結基を、nは0または1を、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、XはOまたはSを、mは0~3の整数を表す。)
 式(1)中、Rは水素またはC1~C6のアルキル基のいずれかを表す。
(In the formula (1), R 1 represents either hydrogen or a C1-C6 alkyl group, L represents a divalent linking group having 1 to 14 carbon atoms, n represents 0 or 1, and A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl One of the group consisting of ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group , X represents O or S, and m represents an integer of 0 to 3.)
In the formula (1), R 1 represents either hydrogen or a C1-C6 alkyl group.
 式(1)中のRにおけるC1~C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The C1-C6 alkyl group for R 1 in the formula (1) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(1)中、Lは炭素数1~14の2価の連結基を表す。 In formula (1), L represents a divalent linking group having 1 to 14 carbon atoms.
 該炭素数1~14の2価の連結基としては、放射線で容易に構造変化を起こさない2価の有機基であれば特に制限がなく、例えば、-CH-、-OCH-、-C(O)-、-C(O)O-、-C(O)N<、-O-、―N<、>NC(O)N<、アリール基等が挙げられる。 The divalent linking group having 1 to 14 carbon atoms is not particularly limited as long as it is a divalent organic group that does not easily undergo structural change by radiation. For example, —CH 2 —, —OCH 2 —, — C (O)-, -C (O) O-, -C (O) N <, -O-, -N <,> NC (O) N <, an aryl group, and the like.
 式(1)中、nは0または1を表す。 In the formula (1), n represents 0 or 1.
 式(1)中、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルコキシ基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を表す。 In the formula (1), A, R 2 and R 3 are each independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl Ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkoxy group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl group, fluorothio group, cycloalkyl group, 1 type of the group which consists of a cycloheteroalkyl group is represented.
 式(1)中、A、R及びRにおけるハロゲンとしては特に制限がなく、例えば、塩素、フッ素等が挙げられる。 In formula (1), the halogen in A, R 2 and R 3 is not particularly limited, and examples thereof include chlorine and fluorine.
 式(1)中、A、R及びRにおけるC1~C18のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 In formula (1), the C1-C18 alkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. It is done.
 式(1)中、A、R及びRにおけるアルコキシ基としては特に制限がなく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基等が挙げられる。 In the formula (1), the alkoxy group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, An isobutoxy group etc. are mentioned.
 式(1)中、A、R及びRにおけるアルキルチオ基としては特に制限がなく、例えば、メチルスルファニル基、エチルスルファニル基、イソプロピルスルファニル基、n-プロピルスルファニル基、n-ブチルスルファニル基、イソブチルスルファニル基、sec-ブチルスルファニル基等が挙げられる。 In formula (1), the alkylthio group in A, R 2 and R 3 is not particularly limited, and examples thereof include methylsulfanyl group, ethylsulfanyl group, isopropylsulfanyl group, n-propylsulfanyl group, n-butylsulfanyl group, isobutyl Examples thereof include a sulfanyl group and a sec-butylsulfanyl group.
 式(1)中、A、R及びRにおけるアルキルアミノ基としては特に制限がなく、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基、n-ブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、メチルエチルアミノ基、メチル-n-プロピルアミノ基等が挙げられる。 In formula (1), the alkylamino group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methylamino group, an ethylamino group, an n-propylamino group, an n-butylamino group, a dimethylamino group, Examples thereof include a diethylamino group, a di (n-propyl) amino group, a methylethylamino group, and a methyl-n-propylamino group.
 式(1)中、A、R及びRにおけるアルキルケトン基としては特に制限がなく、例えば、メチルケトン基、エチルケトン基、イソプロピルケトン基、n-プロピルケトン基、n-ブチルケトン基、イソブチルケトン基、sec-ブチルケトン基等が挙げられる。 In the formula (1), the alkyl ketone group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methyl ketone group, an ethyl ketone group, an isopropyl ketone group, an n-propyl ketone group, an n-butyl ketone group, and an isobutyl ketone group. And sec-butyl ketone group.
 式(1)中、A、R及びRにおけるアルキルエステル基としては特に制限がなく、例えば、メチルエステル基、エチルエステル基、イソプロピルエステル基、n-プロピルエステル基、n-ブチルエステル基、イソブチルエステル基、sec-ブチルエステル基等が挙げられる。 In formula (1), the alkyl ester group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methyl ester group, an ethyl ester group, an isopropyl ester group, an n-propyl ester group, an n-butyl ester group, Examples thereof include isobutyl ester group and sec-butyl ester group.
 式(1)中、A、R及びRにおけるアルキルアミド基としては特に制限がなく、例えば、メチルアミド基、エチルアミド基、イソプロピルアミド基、n-プロピルアミド基、n-ブチルアミド基、イソブチルアミド基、sec-ブチルアミド基等が挙げられる。 In formula (1), the alkylamide group in A, R 2 and R 3 is not particularly limited, and examples thereof include a methylamide group, an ethylamide group, an isopropylamide group, an n-propylamide group, an n-butylamide group, and an isobutylamide group. And sec-butylamide group.
 式(1)中、A、R及びRにおけるアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントリル基、ビフェニル基等が挙げられる。 In formula (1), the aryl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
 式(1)中、A、R及びRにおけるアリールエーテル基としては特に制限がなく、例えば、フェニルエーテル基、ナフチルエーテル基、アントリルエーテル基、ビフェニルエーテル基等が挙げられる。 In formula (1), the aryl ether group in A, R 2 and R 3 is not particularly limited, and examples thereof include a phenyl ether group, a naphthyl ether group, an anthryl ether group, and a biphenyl ether group.
 式(1)中、A、R及びRにおけるアリールチオ基としては特に制限がなく、例えば、フェニルスルファニル基、ナフチルスルファニル基、アントリルスルファニル基、ビフェニルスルファニル基等が挙げられる。 In formula (1), the arylthio group in A, R 2 and R 3 is not particularly limited, and examples thereof include a phenylsulfanyl group, a naphthylsulfanyl group, an anthrylsulfanyl group, and a biphenylsulfanyl group.
 式(1)中、A、R及びRにおけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシ-n-プロピル基、カルボキシ-n-ブチル基等が挙げられる。 In formula (1), the carboxyalkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, a carboxy-n-propyl group, and a carboxy-n-butyl group. It is done.
 式(1)中、A、R及びRにおけるフルオロアルキル基としては特に制限がなく、例えば、ペルフルオロメチル基、ペルフルオロプロピル基、ペルフルオロブチル基、1H,1H-ペンタフルオロプロピル基、1H,1H,2H,2H-ペンタフルオロブチル基、1H,1H-ヘプタフルオロブチル基、4,4,4-トリフルオロブチル基等が挙げられる。 In formula (1), the fluoroalkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include perfluoromethyl group, perfluoropropyl group, perfluorobutyl group, 1H, 1H-pentafluoropropyl group, 1H, 1H. , 2H, 2H-pentafluorobutyl group, 1H, 1H-heptafluorobutyl group, 4,4,4-trifluorobutyl group and the like.
 式(1)中、A、R及びRにおけるフルオロアルコキシ基としては特に制限がなく、例えば、ペルフルオロメトキシ基、ペルフルオロプロポキシ基、ペルフルオロブトキシ基、1H,1H-ペンタフルオロプロポキシ基、1H,1H,2H,2H-ペンタフルオロブトキシ基、1H,1H-ヘプタフルオロブトキシ基、4,4,4-トリフルオロブトキシ基等が挙げられる。 In the formula (1), the fluoroalkoxy group in A, R 2 and R 3 is not particularly limited, and examples thereof include perfluoromethoxy group, perfluoropropoxy group, perfluorobutoxy group, 1H, 1H-pentafluoropropoxy group, 1H, 1H. , 2H, 2H-pentafluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group, and the like.
 式(1)中、A、R及びRにおけるフルオロアルキルカルボニル基としては特に制限がなく、例えば、ペルフルオロメチルカルボニル基、ペルフルオロプロピルカルボニル基、ペルフルオロブチルカルボニル基、1H,1H-ペンタフルオロプロピルカルボニル基、1H,1H,2H,2H-ペンタフルオロブチルカルボニル基、1H,1H-ヘプタフルオロブチルカルボニル基、4,4,4-トリフルオロブチルカルボニル基等が挙げられる。 In the formula (1), the fluoroalkylcarbonyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a perfluoromethylcarbonyl group, a perfluoropropylcarbonyl group, a perfluorobutylcarbonyl group, and 1H, 1H-pentafluoropropylcarbonyl. Group, 1H, 1H, 2H, 2H-pentafluorobutylcarbonyl group, 1H, 1H-heptafluorobutylcarbonyl group, 4,4,4-trifluorobutylcarbonyl group and the like.
 式(1)中、A、R及びRにおけるフルオロアルキルエステル基としては特に制限がなく、例えば、ペルフルオロメチルエステル基、ペルフルオロプロピルエステル基、ペルフルオロブチルエステル基、1H,1H-ペンタフルオロプロピルエステル基、1H,1H,2H,2H-ペンタフルオロブチルエステル基、1H,1H-ヘプタフルオロブチルエステル基、4,4,4-トリフルオロブチルエステル基等が挙げられる。 In the formula (1), the fluoroalkyl ester group in A, R 2 and R 3 is not particularly limited, and examples thereof include a perfluoromethyl ester group, a perfluoropropyl ester group, a perfluorobutyl ester group, and a 1H, 1H-pentafluoropropyl ester. Group, 1H, 1H, 2H, 2H-pentafluorobutyl ester group, 1H, 1H-heptafluorobutyl ester group, 4,4,4-trifluorobutyl ester group and the like.
 式(1)中、A、R及びRにおけるフルオロアリール基としては特に制限がなく、例えば、4-フルオロフェニル基、2,3,4,5,6-ペンタフルオロフェニル基、1-フルオロナフチル基、オクタフルオロナフチル基、1-フルオロアントリル基、2-フルオロアントリル基、9-フルオロアントリル基、2-フルオロビフェニル基、4-フルオロビフェニル基、等が挙げられる。 In the formula (1), the fluoroaryl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a 4-fluorophenyl group, 2,3,4,5,6-pentafluorophenyl group, 1-fluoro Examples include naphthyl group, octafluoronaphthyl group, 1-fluoroanthryl group, 2-fluoroanthryl group, 9-fluoroanthryl group, 2-fluorobiphenyl group, 4-fluorobiphenyl group, and the like.
 式(1)中、A、R及びRにおけるフルオロチオ基としては特に制限がなく、例えば、ペルフルオロメチルスルファニル基、ペルフルオロプロピルスルファニル基、ペルフルオロブチルスルファニル基、1H,1H-ペンタフルオロプロピルスルファニル基、1H,1H,2H,2H-ペンタフルオロブチルスルファニル基、1H,1H-ヘプタフルオロブチルスルファニル基、4,4,4-トリフルオロブチルスルファニル基等が挙げられる。 In formula (1), the fluorothio group in A, R 2 and R 3 is not particularly limited, and examples thereof include perfluoromethylsulfanyl group, perfluoropropylsulfanyl group, perfluorobutylsulfanyl group, 1H, 1H-pentafluoropropylsulfanyl group, Examples thereof include 1H, 1H, 2H, 2H-pentafluorobutylsulfanyl group, 1H, 1H-heptafluorobutylsulfanyl group, 4,4,4-trifluorobutylsulfanyl group and the like.
 式(1)中、A、R及びRにおけるシクロアルキル基としては特に制限がなく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。 In formula (1), the cycloalkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
 式(1)中、A、R及びRにおけるシクロヘテロアルキル基としては特に制限がなく、例えば、2-フリル基、3-フリル基、テトラヒドロチオフェン-3-イル、テトラヒドロチオフェン-2-イル、1-チアシクロヘキサン-4-イル、テトラヒドロチオフェン-2-イル、テトラヒドロチオフェン-3-イル、テトラヒドロチオフェン-4-イル、テトラヒドロピラン-4-イル、テトラヒドロピラン-3-イル、テトラヒドロピラン-2-イル等が挙げられる。 In formula (1), the cycloheteroalkyl group in A, R 2 and R 3 is not particularly limited, and examples thereof include 2-furyl group, 3-furyl group, tetrahydrothiophen-3-yl, and tetrahydrothiophen-2-yl. 1-thiacyclohexane-4-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, tetrahydrothiophen-4-yl, tetrahydropyran-4-yl, tetrahydropyran-3-yl, tetrahydropyran-2- Ir etc. are mentioned.
 式(1)中、XはOまたはSを表す。 In the formula (1), X represents O or S.
 式(1)中、mは0~3の整数を表す。 In the formula (1), m represents an integer of 0 to 3.
 また、本発明の別の態様は、以下の式(2)で表される重合性化合物である。 Another aspect of the present invention is a polymerizable compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(式(2)中、Q及びQはそれぞれ独立して炭素数1~14の2価の連結基を、p及びqはそれぞれ独立して0または1を、G、G、R~Rはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基を、X~Xはそれぞれ独立してOまたはSを、r及びsはそれぞれ独立して0~3の整数を表す。)。 (In Formula (2), Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1, G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group and each X 1 ~ X 4 are independently O or S, r and s which Independently represents an integer of 0 to 3.).
 式(2)中、Q、Qは炭素数1~14の2価の連結基を表す。 In formula (2), Q 1 and Q 2 represent a divalent linking group having 1 to 14 carbon atoms.
 該炭素数1~14の2価の連結基としては、放射線で容易に構造変化を起こさない2価の有機基であれば特に制限がなく、例えば、-CH-、-OCH-、-C(O)-、-C(O)O-、-C(O)N<、-O-、―N<、>NC(O)N<、アリール基からなる群の1種が挙げられる。 The divalent linking group having 1 to 14 carbon atoms is not particularly limited as long as it is a divalent organic group that does not easily undergo structural change by radiation. For example, —CH 2 —, —OCH 2 —, — And C (O) —, —C (O) O—, —C (O) N <, —O—, —N <,> NC (O) N <, and an aryl group.
 式(2)中、p、qはそれぞれ独立して0または1を表す。 In the formula (2), p and q each independently represent 0 or 1.
 式(2)中、G、G、R~Rはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルコキシ基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を表す。 In formula (2), G 1 , G 2 and R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl Ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkoxy group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl 1 type of the group which consists of group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group.
 式(2)中、G、G、R~Rにおけるハロゲンとしては特に制限がなく、例えば、塩素、フッ素等が挙げられる。 In formula (2), the halogen in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include chlorine, fluorine and the like.
 式(2)中、G、G、R~RにおけるC1~C18のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 In the formula (2), the C1-C18 alkyl group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. Groups and the like.
 式(2)中、G、G、R~Rにおけるアルコキシ基としては特に制限がなく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基等が挙げられる。 In the formula (2), the alkoxy group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec -Butoxy group, isobutoxy group and the like.
 式(2)中、G、G、R~Rにおけるアルキルチオ基としては特に制限がなく、例えば、メチルスルファニル基、エチルスルファニル基、イソプロピルスルファニル基、n-プロピルスルファニル基、n-ブチルスルファニル基、イソブチルスルファニル基、sec-ブチルスルファニル基等が挙げられる。 In the formula (2), the alkylthio group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methylsulfanyl group, an ethylsulfanyl group, an isopropylsulfanyl group, an n-propylsulfanyl group, and n-butyl. Examples thereof include a sulfanyl group, an isobutylsulfanyl group, and a sec-butylsulfanyl group.
 式(2)中、G、G、R~Rにおけるアルキルアミノ基としては特に制限がなく、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基、n-ブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、メチルエチルアミノ基、メチル-n-プロピルアミノ基等が挙げられる。 In formula (2), the alkylamino group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methylamino group, an ethylamino group, an n-propylamino group, an n-butylamino group, Examples thereof include a dimethylamino group, a diethylamino group, a di (n-propyl) amino group, a methylethylamino group, and a methyl-n-propylamino group.
 式(2)中、G、G、R~Rにおけるアルキルケトン基としては特に制限がなく、例えば、メチルケトン基、エチルケトン基、イソプロピルケトン基、n-プロピルケトン基、n-ブチルケトン基、イソブチルケトン基、sec-ブチルケトン基等が挙げられる。 In the formula (2), the alkyl ketone group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methyl ketone group, an ethyl ketone group, an isopropyl ketone group, an n-propyl ketone group, and an n-butyl ketone group. , Isobutyl ketone group, sec-butyl ketone group and the like.
 式(2)中、G、G、R~Rにおけるアルキルエステル基としては特に制限がなく、例えば、メチルエステル基、エチルエステル基、イソプロピルエステル基、n-プロピルエステル基、n-ブチルエステル基、イソブチルエステル基、sec-ブチルエステル基等が挙げられる。 In the formula (2), the alkyl ester group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methyl ester group, an ethyl ester group, an isopropyl ester group, an n-propyl ester group, an n- Examples thereof include a butyl ester group, an isobutyl ester group, a sec-butyl ester group and the like.
 式(2)中、G、G、R~Rにおけるアルキルアミド基としては特に制限がなく、例えば、メチルアミド基、エチルアミド基、イソプロピルアミド基、n-プロピルアミド基、n-ブチルアミド基、イソブチルアミド基、sec-ブチルアミド基等が挙げられる。 In formula (2), the alkylamide group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a methylamide group, an ethylamide group, an isopropylamide group, an n-propylamide group, and an n-butylamide group. , Isobutylamide group, sec-butylamide group and the like.
 式(2)中、G、G、R~Rにおけるアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントリル基、ビフェニル基等が挙げられる。 In the formula (2), the aryl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
 式(2)中、G、G、R~Rにおけるアリールエーテル基としては特に制限がなく、例えば、フェニルエーテル基、ナフチルエーテル基、アントリルエーテル基、ビフェニルエーテル基等が挙げられる。 In the formula (2), the aryl ether group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a phenyl ether group, a naphthyl ether group, an anthryl ether group, and a biphenyl ether group. .
 式(2)中、G、G、R~Rにおけるアリールチオ基としては特に制限がなく、例えば、フェニルスルファニル基、ナフチルスルファニル基、アントリルスルファニル基、ビフェニルスルファニル基等が挙げられる。 In formula (2), the arylthio group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a phenylsulfanyl group, a naphthylsulfanyl group, an anthrylsulfanyl group, and a biphenylsulfanyl group.
 式(2)中、G、G、R~Rにおけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシ-n-プロピル基、カルボキシ-n-ブチル基等が挙げられる。 In the formula (2), the carboxyalkyl group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, a carboxy-n-propyl group, and a carboxy-n-butyl group. Groups and the like.
 式(2)中、G、G、R~Rにおけるフルオロアルキル基としては特に制限がなく、例えば、ペルフルオロメチル基、ペルフルオロプロピル基、ペルフルオロブチル基、1H,1H-ペンタフルオロプロピル基、1H,1H,2H,2H-ペンタフルオロブチル基、1H,1H-ヘプタフルオロブチル基、4,4,4-トリフルオロブチル基等が挙げられる。 In the formula (2), the fluoroalkyl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethyl group, a perfluoropropyl group, a perfluorobutyl group, and a 1H, 1H-pentafluoropropyl group. Examples thereof include 1H, 1H, 2H, 2H-pentafluorobutyl group, 1H, 1H-heptafluorobutyl group, 4,4,4-trifluorobutyl group and the like.
 式(2)中、G、G、R~Rにおけるフルオロアルコキシ基としては特に制限がなく、例えば、ペルフルオロメトキシ基、ペルフルオロプロポキシ基、ペルフルオロブトキシ基、1H,1H-ペンタフルオロプロポキシ基、1H,1H,2H,2H-ペンタフルオロブトキシ基、1H,1H-ヘプタフルオロブトキシ基、4,4,4-トリフルオロブトキシ基等が挙げられる。 In the formula (2), the fluoroalkoxy group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethoxy group, a perfluoropropoxy group, a perfluorobutoxy group, and a 1H, 1H-pentafluoropropoxy group. 1H, 1H, 2H, 2H-pentafluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group and the like can be mentioned.
 式(2)中、G、G、R~Rにおけるフルオロアルキルエーテル基としては特に制限がなく、例えば、ペルフルオロメトキシ基、ペルフルオロプロポキシ基、ペルフルオロブトキシ基、1H,1H-ペンタフルオロプロポキシ基、1H,1H,2H,2H-ペンタフルオロブトキシ基、1H,1H-ヘプタフルオロブトキシ基、4,4,4-トリフルオロブトキシ基等が挙げられる。 In the formula (2), the fluoroalkyl ether group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethoxy group, a perfluoropropoxy group, a perfluorobutoxy group, and 1H, 1H-pentafluoropropoxy group. Group, 1H, 1H, 2H, 2H-pentafluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group and the like.
 式(2)中、G、G、R~Rにおけるフルオロアルキルカルボニル基としては特に制限がなく、例えば、ペルフルオロメチルカルボニル基、ペルフルオロプロピルカルボニル基、ペルフルオロブチルカルボニル基、1H,1H-ペンタフルオロプロピルカルボニル基、1H,1H,2H,2H-ペンタフルオロブチルカルボニル基、1H,1H-ヘプタフルオロブチルカルボニル基、4,4,4-トリフルオロブチルカルボニル基等が挙げられる。 In the formula (2), the fluoroalkylcarbonyl group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethylcarbonyl group, a perfluoropropylcarbonyl group, a perfluorobutylcarbonyl group, 1H, 1H— Examples thereof include a pentafluoropropylcarbonyl group, 1H, 1H, 2H, 2H-pentafluorobutylcarbonyl group, 1H, 1H-heptafluorobutylcarbonyl group, 4,4,4-trifluorobutylcarbonyl group and the like.
 式(2)中、G、G、R~Rにおけるフルオロアルキルエステル基としては特に制限がなく、例えば、ペルフルオロメチルエステル基、ペルフルオロプロピルエステル基、ペルフルオロブチルエステル基、1H,1H-ペンタフルオロプロピルエステル基、1H,1H,2H,2H-ペンタフルオロブチルエステル基、1H,1H-ヘプタフルオロブチルエステル基、4,4,4-トリフルオロブチルエステル基等が挙げられる。 In the formula (2), the fluoroalkyl ester group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethyl ester group, a perfluoropropyl ester group, a perfluorobutyl ester group, 1H, 1H— Examples thereof include a pentafluoropropyl ester group, 1H, 1H, 2H, 2H-pentafluorobutyl ester group, 1H, 1H-heptafluorobutyl ester group, 4,4,4-trifluorobutyl ester group and the like.
 式(2)中、G、G、R~Rにおけるフルオロアリール基としては特に制限がなく、例えば、4-フルオロフェニル基、2,3,4,5,6-ペンタフルオロフェニル基、1-フルオロナフチル基、オクタフルオロナフチル基、1-フルオロアントリル基、2-フルオロアントリル基、9-フルオロアントリル基、2-フルオロビフェニル基、4-フルオロビフェニル基、等が挙げられる。 In the formula (2), the fluoroaryl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a 4-fluorophenyl group and a 2,3,4,5,6-pentafluorophenyl group. 1-fluoronaphthyl group, octafluoronaphthyl group, 1-fluoroanthryl group, 2-fluoroanthryl group, 9-fluoroanthryl group, 2-fluorobiphenyl group, 4-fluorobiphenyl group, and the like.
 式(2)中、G、G、R~Rにおけるフルオロチオ基としては特に制限がなく、例えば、ペルフルオロメチルスルファニル基、ペルフルオロプロピルスルファニル基、ペルフルオロブチルスルファニル基、1H,1H-ペンタフルオロプロピルスルファニル基、1H,1H,2H,2H-ペンタフルオロブチルスルファニル基、1H,1H-ヘプタフルオロブチルスルファニル基、4,4,4-トリフルオロブチルスルファニル基等が挙げられる。 In the formula (2), the fluorothio group in G 1 , G 2 , R 4 to R 7 is not particularly limited, and examples thereof include a perfluoromethylsulfanyl group, a perfluoropropylsulfanyl group, a perfluorobutylsulfanyl group, and 1H, 1H-pentafluoro. Examples thereof include a propylsulfanyl group, 1H, 1H, 2H, 2H-pentafluorobutylsulfanyl group, 1H, 1H-heptafluorobutylsulfanyl group, 4,4,4-trifluorobutylsulfanyl group and the like.
 式(2)中、G、G、R~Rにおけるシクロアルキル基としては特に制限がなく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。 In formula (2), the cycloalkyl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
 式(2)中、G、G、R~Rにおけるシクロヘテロアルキル基としては特に制限がなく、例えば、2-フリル基、3-フリル基、テトラヒドロチオフェン-3-イル、テトラヒドロチオフェン-2-イル、1-チアシクロヘキサン-4-イル、テトラヒドロチオフェン-2-イル、テトラヒドロチオフェン-3-イル、テトラヒドロチオフェン-4-イル、テトラヒドロピラン-4-イル、テトラヒドロピラン-3-イル、テトラヒドロピラン-2-イル等が挙げられる。 In the formula (2), the cycloheteroalkyl group in G 1 , G 2 and R 4 to R 7 is not particularly limited, and examples thereof include 2-furyl group, 3-furyl group, tetrahydrothiophen-3-yl, tetrahydrothiophene. -2-yl, 1-thiacyclohexane-4-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, tetrahydrothiophen-4-yl, tetrahydropyran-4-yl, tetrahydropyran-3-yl, tetrahydro And pyran-2-yl.
 式(2)中、X~Xはそれぞれ独立してOまたはSを表す。 In formula (2), X 1 to X 4 each independently represents O or S.
 式(2)中、r、sはそれぞれ独立して0~3の整数を表す。 In formula (2), r and s each independently represent an integer of 0 to 3.
 また、本発明は上記式(1)または上記式(2)で表される重合性化合物を用いて得られる、以下の式(3)乃至式(5)の少なくともいずれかを反復単位として含み、かつ、以下の式(6)乃至式(8)からなる群の少なくとも1種の反復単位を含む重合体である。 In addition, the present invention includes at least one of the following formulas (3) to (5) obtained by using the polymerizable compound represented by the above formula (1) or the above formula (2) as a repeating unit, And it is a polymer containing at least 1 type of repeating unit of the group which consists of the following formula | equation (6) thru | or Formula (8).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(式(3)及び式(4)中、Rは水素またはC1~C6のアルキル基のいずれかを、Lは炭素数1~14の2価の連結基を、nは0または1を、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、XはOまたはSを、mは0~3の整数を表す。) (In Formula (3) and Formula (4), R 1 represents either hydrogen or a C1-C6 alkyl group, L represents a divalent linking group having 1 to 14 carbon atoms, n represents 0 or 1, A, R 2 and R 3 are each independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group , Aryl group, aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cyclo One of the group consisting of heteroalkyl groups, X represents O or S, and m represents an integer of 0 to 3. .)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(式(5)中、Q及びQはそれぞれ独立して炭素数1~14の2価の連結基を、p及びqはそれぞれ独立して0または1を、G、G、R~Rはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、X~Xはそれぞれ独立してOまたはSを、r及びsはそれぞれ独立して0~3の整数を表す。) (In the formula (5), Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1, G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group the one of the group consisting of, X 1 ~ X 4 are each independently O or S, And s each independently represents an integer of 0-3.)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式(6)中、Rは水素またはC1~C6のアルキル基のいずれかを、ZはC1~C12のアルキル基を表す。) (In the formula (6), R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(式(7)中、Rは水素またはC1~C6のアルキル基のいずれかを、Mは炭素数1~14の2価の連結基を、kは0または1を、Yは水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、jは0~5の整数を表す。) (In the formula (7), R 9 is either hydrogen or a C1-C6 alkyl group, M is a divalent linking group having 1 to 14 carbon atoms, k is 0 or 1, Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group, and j is 0 to Represents an integer of 5.)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式(8)中、R10は水素またはC1~C6のアルキル基を、Eは-O-、-S-、または-NH-を、tは0または1を、R11は炭素数1~18のフルオロアルキル基を表す。)
 本発明は、好ましくは以下の式(4)、及び式(6)で表される反復単位を含む重合体である。これにより、本発明の重合体が、より好適に絶縁膜または保護膜として使用することができる。
(In formula (8), R 10 represents hydrogen or a C1-C6 alkyl group, E represents —O—, —S—, or —NH—, t represents 0 or 1, and R 11 represents 1 to Represents 18 fluoroalkyl groups.)
The present invention is preferably a polymer containing repeating units represented by the following formulas (4) and (6). Thereby, the polymer of this invention can be used more suitably as an insulating film or a protective film.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(式(6)中、Rは水素またはC1~C6のアルキル基のいずれかを、ZはC1~C12のアルキル基を表す。) (In the formula (6), R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(式(4)中、R~R、A、L、X、m及びnは式(1)で定義したものと同様である。)。 (In the formula (4), R 1 to R 3 , A, L, X, m and n are the same as those defined in the formula (1)).
 本発明の重合体における、式(6)で表される反復体について説明する。 The repeating body represented by the formula (6) in the polymer of the present invention will be described.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(式(6)中、R8は水素またはC1~C6のアルキル基のいずれかを、ZはC1~C12のアルキル基を表す。)
 式(6)中、Rは水素またはC1~C6のアルキル基を表す。
(In formula (6), R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.)
In the formula (6), R 8 represents hydrogen or a C1-C6 alkyl group.
 式(6)中、RにおけるC1~C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 In the formula (6), the C1-C6 alkyl group in R 8 is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(6)中、ZはC1~C12のアルキル基を表す。 In the formula (6), Z represents a C1-C12 alkyl group.
 式(6)中、ZにおけるC1~C12のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 In formula (6), the C1-C12 alkyl group in Z is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 本発明の重合体は、以下の式(3)乃至式(5)の少なくともいずれかを反復単位として含み、かつ、式(7)で表される反復単位を含む重合体であることが好ましい。 The polymer of the present invention is preferably a polymer including at least one of the following formulas (3) to (5) as a repeating unit and including a repeating unit represented by the formula (7).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(ここで、R、L、n、A、R、R、X及びmは、前記式(1)で定義したものと同様である。) (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(ここで、R、L、n、A、R、R、X及びmは、前記式(1)で定義したものと同様である。) (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(ここで、Q、Q、p、q、G、G、R~R、X~X、r及びsは、前記式(2)で定義したものと同様である。) (Here, Q 1 , Q 2 , p, q, G 1 , G 2 , R 4 to R 7 , X 1 to X 4 , r and s are the same as those defined in the formula (2)). .)
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(式(7)中、Rは水素またはC1~C6のアルキル基のいずれかを、Mは炭素数1~14の2価の連結基を、kは0または1を、Yは水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、jは0~5の整数を表す。)
 本発明の重合体は、上記式(3)乃至式(5)の少なくともいずれかを反復単位として含むことが好ましい。
(In the formula (7), R 9 is either hydrogen or a C1-C6 alkyl group, M is a divalent linking group having 1 to 14 carbon atoms, k is 0 or 1, Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group, and j is 0 to Represents an integer of 5.)
The polymer of the present invention preferably contains at least one of the above formulas (3) to (5) as a repeating unit.
 本発明の重合体は、少なくとも上記式(3)及び(7)の反復単位を含むことが好ましい。 The polymer of the present invention preferably contains at least repeating units of the above formulas (3) and (7).
 本発明の重合体は、少なくとも上記式(4)の反復単位を含むことが好ましい。 The polymer of the present invention preferably contains at least a repeating unit of the above formula (4).
 本発明の重合体は、上記式(7)の反復単位を含むことが好ましい。 The polymer of the present invention preferably contains a repeating unit of the above formula (7).
 本発明の重合体は、上記式(4)及び上記式(7)を反復単位として含む重合体、上記式(5)及び上記式(7)を反復単位として含む重合体、上記式(4)、上記式(5)及び上記(7)を反復単位として含む重合体からなる群の1種であることが好ましく、更に好ましくは上記式(4)及び上記式(7)を反復単位として含む重合体である。これにより短い放射線の照射で架橋させることが可能となり、得られる架橋体の絶縁性能が向上する。 The polymer of the present invention includes a polymer containing the above formula (4) and the above formula (7) as repeating units, a polymer containing the above formula (5) and the above formula (7) as repeating units, and the above formula (4). It is preferably one of the group consisting of polymers containing the above formulas (5) and (7) as repeating units, and more preferably a polymer containing the above formulas (4) and (7) as repeating units. It is a coalescence. Thereby, it is possible to crosslink by irradiation with short radiation, and the insulation performance of the obtained crosslinked body is improved.
 上記式(4)、(5)、(7)の反復単位の比率は特に制限されず、有機溶剤への溶解性及び紫外線による架橋性のバランスにより適宜決定することができる。例えば、汎用の有機溶剤への溶解性の観点から、式(4)、(5)、(7)の反復単位の合計を100モル%とした場合に、式(7)で表される反復単位の比率が40モル%以上であることが好ましい。 The ratio of the repeating units of the above formulas (4), (5) and (7) is not particularly limited, and can be appropriately determined depending on the balance between solubility in an organic solvent and crosslinkability by ultraviolet rays. For example, from the viewpoint of solubility in a general-purpose organic solvent, when the total number of repeating units of formulas (4), (5) and (7) is 100 mol%, the repeating unit represented by formula (7) It is preferable that the ratio of is 40 mol% or more.
 本発明の重合体における、式(7)で表される反復体について説明する。 The repeating body represented by the formula (7) in the polymer of the present invention will be described.
 式(7)中、Rは水素またはC1~C6のアルキル基を表す。 In the formula (7), R 9 represents hydrogen or a C1-C6 alkyl group.
 式(7)中のRにおけるC1~C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The C1-C6 alkyl group for R 9 in formula (7) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(7)中、Mは炭素数1~14の2価の連結基としては特に制限がなく、例えば、-C(O)O-、-OC(O)-、-C(O)OCH-、-CH-、-C(O)-、-O-、-OCHCHO-等が挙げられる。 In formula (7), M is not particularly limited as a divalent linking group having 1 to 14 carbon atoms. For example, —C (O) O—, —OC (O) —, —C (O) OCH 2 —, —CH 2 —, —C (O) —, —O—, —OCH 2 CH 2 O— and the like can be mentioned.
 式(7)中、kは0または1を表す。 In the formula (7), k represents 0 or 1.
 式(7)中、Yはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルコキシ基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を表す。 In formula (7), each Y is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group. , Aryl group, aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkoxy group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroaryl group, fluorothio group, cycloalkyl group, cyclo 1 type of the group which consists of heteroalkyl groups is represented.
 式(7)中、Yにおけるハロゲンとしては特に制限がなく、例えば、塩素、フッ素等が挙げられる。 In formula (7), the halogen in Y is not particularly limited, and examples thereof include chlorine and fluorine.
 式(7)中、YにおけるC1~C18のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 In formula (7), the C1-C18 alkyl group in Y is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(7)中、Yにおけるアルコキシ基としては特に制限がなく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基等が挙げられる。 In formula (7), the alkoxy group in Y is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and an isobutoxy group. .
 式(7)中、Yにおけるアルキルチオエーテル基としては特に制限がなく、例えば、メチルスルファニル基、エチルスルファニル基、イソプロピルスルファニル基、n-プロピルスルファニル基、n-ブチルスルファニル基、イソブチルスルファニル基、sec-ブチルスルファニル基等が挙げられる。 In formula (7), the alkylthioether group in Y is not particularly limited, and examples thereof include methylsulfanyl group, ethylsulfanyl group, isopropylsulfanyl group, n-propylsulfanyl group, n-butylsulfanyl group, isobutylsulfanyl group, sec- A butylsulfanyl group etc. are mentioned.
 式(7)中、Yにおけるアルキルアミノ基としては特に制限がなく、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基、n-ブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、メチルエチルアミノ基、メチル-n-プロピルアミノ基等が挙げられる。 In formula (7), the alkylamino group in Y is not particularly limited, and examples thereof include a methylamino group, an ethylamino group, an n-propylamino group, an n-butylamino group, a dimethylamino group, a diethylamino group, a di (n -Propyl) amino group, methylethylamino group, methyl-n-propylamino group and the like.
 式(7)中、Yにおけるアルキルケトン基としては特に制限がなく、例えば、メチルケトン基、エチルケトン基、イソプロピルケトン基、n-プロピルケトン基、n-ブチルケトン基、イソブチルケトン基、sec-ブチルケトン基等が挙げられる。 In formula (7), the alkyl ketone group in Y is not particularly limited, and examples thereof include a methyl ketone group, an ethyl ketone group, an isopropyl ketone group, an n-propyl ketone group, an n-butyl ketone group, an isobutyl ketone group, and a sec-butyl ketone group. Is mentioned.
 式(7)中、Yにおけるアルキルエステル基としては特に制限がなく、例えば、メチルエステル基、エチルエステル基、イソプロピルエステル基、n-プロピルエステル基、n-ブチルエステル基、イソブチルエステル基、sec-ブチルエステル基等が挙げられる。 In formula (7), the alkyl ester group in Y is not particularly limited. For example, methyl ester group, ethyl ester group, isopropyl ester group, n-propyl ester group, n-butyl ester group, isobutyl ester group, sec- A butyl ester group etc. are mentioned.
 式(7)中、Yにおけるアルキルアミド基としては特に制限がなく、例えば、メチルアミド基、エチルアミド基、イソプロピルアミド基、n-プロピルアミド基、n-ブチルアミド基、イソブチルアミド基、sec-ブチルアミド基等が挙げられる。 In formula (7), the alkylamide group in Y is not particularly limited, and examples thereof include a methylamide group, an ethylamide group, an isopropylamide group, an n-propylamide group, an n-butylamide group, an isobutylamide group, and a sec-butylamide group. Is mentioned.
 式(7)中、Yにおけるアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントリル基、ビフェニル基等が挙げられる。 In formula (7), the aryl group in Y is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
 式(7)中、Yにおけるアリールエーテル基としては特に制限がなく、例えば、フェニルエーテル基、ナフチルエーテル基、アントリルエーテル基、ビフェニルエーテル基等が挙げられる。 In formula (7), the aryl ether group in Y is not particularly limited, and examples thereof include a phenyl ether group, a naphthyl ether group, an anthryl ether group, and a biphenyl ether group.
 式(7)中、Yにおけるアリールチオエーテル基としては特に制限がなく、例えば、フェニルスルファニル基、ナフチルスルファニル基、アントリルスルファニル基、ビフェニルスルファニル基等が挙げられる。 In formula (7), the arylthioether group in Y is not particularly limited, and examples thereof include a phenylsulfanyl group, a naphthylsulfanyl group, an anthrylsulfanyl group, and a biphenylsulfanyl group.
 式(7)中、Yにおけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシ-n-プロピル基、カルボキシ-n-ブチル基等が挙げられる。 In formula (7), the carboxyalkyl group in Y is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, a carboxy-n-propyl group, and a carboxy-n-butyl group.
 式(7)中、Yにおけるフルオロアルキル基としては特に制限がなく、例えば、ペルフルオロメチル基、ペルフルオロプロピル基、ペルフルオロブチル基、1H,1H-ペンタフルオロプロピル基、1H,1H,2H,2H-ペンタフルオロブチル基、1H,1H-ヘプタフルオロブチル基、4,4,4-トリフルオロブチル基等が挙げられる。 In formula (7), the fluoroalkyl group in Y is not particularly limited, and examples thereof include perfluoromethyl group, perfluoropropyl group, perfluorobutyl group, 1H, 1H-pentafluoropropyl group, 1H, 1H, 2H, 2H-penta. A fluorobutyl group, 1H, 1H-heptafluorobutyl group, 4,4,4-trifluorobutyl group and the like can be mentioned.
 式(7)中、Yにおけるフルオロアルコキシ基としては特に制限がなく、例えば、ペルフルオロメトキシ基、ペルフルオロプロポキシ基、ペルフルオロブトキシ基、1H,1H-ペンタフルオロプロポキシ基、1H,1H,2H,2H-ペンタフルオロブトキシ基、1H,1H-ヘプタフルオロブトキシ基、4,4,4-トリフルオロブトキシ基等が挙げられる。 In formula (7), the fluoroalkoxy group in Y is not particularly limited, and examples thereof include perfluoromethoxy group, perfluoropropoxy group, perfluorobutoxy group, 1H, 1H-pentafluoropropoxy group, 1H, 1H, 2H, 2H-penta. Examples thereof include a fluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group and the like.
 式(7)中、Yにおけるフルオロアルキルエーテル基としては特に制限がなく、例えば、ペルフルオロメトキシ基、ペルフルオロプロポキシ基、ペルフルオロブトキシ基、1H,1H-ペンタフルオロプロポキシ基、1H,1H,2H,2H-ペンタフルオロブトキシ基、1H,1H-ヘプタフルオロブトキシ基、4,4,4-トリフルオロブトキシ基等が挙げられる。 In formula (7), the fluoroalkyl ether group in Y is not particularly limited, and examples thereof include perfluoromethoxy group, perfluoropropoxy group, perfluorobutoxy group, 1H, 1H-pentafluoropropoxy group, 1H, 1H, 2H, 2H— A pentafluorobutoxy group, 1H, 1H-heptafluorobutoxy group, 4,4,4-trifluorobutoxy group and the like can be mentioned.
 式(7)中、Yにおけるフルオロアルキルカルボニル基としては特に制限がなく、例えば、ペルフルオロメチルカルボニル基、ペルフルオロプロピルカルボニル基、ペルフルオロブチルカルボニル基、1H,1H-ペンタフルオロプロピルカルボニル基、1H,1H,2H,2H-ペンタフルオロブチルカルボニル基、1H,1H-ヘプタフルオロブチルカルボニル基、4,4,4-トリフルオロブチルカルボニル基等が挙げられる。 In formula (7), the fluoroalkylcarbonyl group in Y is not particularly limited, and examples thereof include a perfluoromethylcarbonyl group, a perfluoropropylcarbonyl group, a perfluorobutylcarbonyl group, a 1H, 1H-pentafluoropropylcarbonyl group, 1H, 1H, Examples include 2H, 2H-pentafluorobutylcarbonyl group, 1H, 1H-heptafluorobutylcarbonyl group, 4,4,4-trifluorobutylcarbonyl group, and the like.
 式(7)中、Yにおけるフルオロアルキルエステル基としては特に制限がなく、例えば、ペルフルオロメチルエステル基、ペルフルオロプロピルエステル基、ペルフルオロブチルエステル基、1H,1H-ペンタフルオロプロピルエステル基、1H,1H,2H,2H-ペンタフルオロブチルエステル基、1H,1H-ヘプタフルオロブチルエステル基、4,4,4-トリフルオロブチルエステル基等が挙げられる。 In formula (7), the fluoroalkyl ester group in Y is not particularly limited, and examples thereof include perfluoromethyl ester group, perfluoropropyl ester group, perfluorobutyl ester group, 1H, 1H-pentafluoropropyl ester group, 1H, 1H, Examples include 2H, 2H-pentafluorobutyl ester group, 1H, 1H-heptafluorobutyl ester group, 4,4,4-trifluorobutyl ester group and the like.
 式(7)中、Yにおけるフルオロアリール基としては特に制限がなく、例えば、4-フルオロフェニル基、2,3,4,5,6-ペンタフルオロフェニル基、1-フルオロナフチル基、オクタフルオロナフチル基、1-フルオロアントリル基、2-フルオロアントリル基、9-フルオロアントリル基、2-フルオロビフェニル基、4-フルオロビフェニル基、等が挙げられる。 In formula (7), the fluoroaryl group in Y is not particularly limited, and examples thereof include 4-fluorophenyl group, 2,3,4,5,6-pentafluorophenyl group, 1-fluoronaphthyl group, and octafluoronaphthyl. Group, 1-fluoroanthryl group, 2-fluoroanthryl group, 9-fluoroanthryl group, 2-fluorobiphenyl group, 4-fluorobiphenyl group, and the like.
 式(7)中、Yにおけるフルオロチオエーテル基としては特に制限がなく、例えば、ペルフルオロメチルスルファニル基、ペルフルオロプロピルスルファニル基、ペルフルオロブチルスルファニル基、1H,1H-ペンタフルオロプロピルスルファニル基、1H,1H,2H,2H-ペンタフルオロブチルスルファニル基、1H,1H-ヘプタフルオロブチルスルファニル基、4,4,4-トリフルオロブチルスルファニル基等が挙げられる。 In formula (7), the fluorothioether group in Y is not particularly limited, and examples thereof include perfluoromethylsulfanyl group, perfluoropropylsulfanyl group, perfluorobutylsulfanyl group, 1H, 1H-pentafluoropropylsulfanyl group, 1H, 1H, 2H. , 2H-pentafluorobutylsulfanyl group, 1H, 1H-heptafluorobutylsulfanyl group, 4,4,4-trifluorobutylsulfanyl group and the like.
 式(7)中、Yにおけるシクロアルキル基としては特に制限がなく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。 In formula (7), the cycloalkyl group in Y is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
 式(7)中、Yにおけるシクロヘテロアルキル基としては特に制限がなく、例えば、2-フリル基、3-フリル基、テトラヒドロチオフェン-3-イル、テトラヒドロチオフェン-2-イル、1-チアシクロヘキサン-4-イル、テトラヒドロチオフェン-2-イル、テトラヒドロチオフェン-3-イル、テトラヒドロチオフェン-4-イル、テトラヒドロピラン-4-イル、テトラヒドロピラン-3-イル、テトラヒドロピラン-2-イル等が挙げられる。 In formula (7), the cycloheteroalkyl group in Y is not particularly limited, and examples thereof include 2-furyl group, 3-furyl group, tetrahydrothiophen-3-yl, tetrahydrothiophen-2-yl, 1-thiacyclohexane- Examples include 4-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, tetrahydrothiophen-4-yl, tetrahydropyran-4-yl, tetrahydropyran-3-yl, tetrahydropyran-2-yl and the like.
 式(7)中、jは0~5の整数を表す。 In formula (7), j represents an integer of 0 to 5.
 本発明の重合体は、以下の式(4)及び以下の式(8)で表される反復単位を含むことが好ましい。 The polymer of the present invention preferably contains a repeating unit represented by the following formula (4) and the following formula (8).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(ここで、R、L、n、A、R、R、X及びmは前記式(1)で定義したものと同様である。) (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(ここで、R10は水素またはC1~C6のアルキル基を、Eは-O-、-S-、または-NH-を、tは0または1を、R11は炭素数1~18のフルオロアルキル基を表す。)
 本発明の重合体における、式(8)で表される反復体について説明する。
(Where R 10 is hydrogen or a C1-C6 alkyl group, E is —O—, —S—, or —NH—, t is 0 or 1, and R 11 is a fluoro having 1 to 18 carbon atoms. Represents an alkyl group.)
The repeating body represented by Formula (8) in the polymer of the present invention will be described.
 式(8)中、R10は水素またはC1~C6のアルキル基を表す。 In the formula (8), R 10 represents hydrogen or a C1-C6 alkyl group.
 式(8)中のR10におけるC1~C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The C1-C6 alkyl group for R 10 in formula (8) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(8)中、Eは-O-、-S-、-NH-を表す。 In the formula (8), E represents —O—, —S—, or —NH—.
 式(8)中、kは0または1を表す。 In the formula (8), k represents 0 or 1.
 式(8)中、R11は炭素数1~18のフルオロアルキル基を表す。 In the formula (8), R 11 represents a fluoroalkyl group having 1 to 18 carbon atoms.
 式(8)中、R11におけるフルオロアルキル基としては特に制限がなく、例えば、2,2,2-トリフルオロエチル基、1,1,1,2,2-ペンタフルオロプロピル基、1,1,1,2,2-ペンタフルオロブチル基、1,1,1,2,2-ペンタフルオロペンチル基、1,1,1,2,2,3,3-ヘプタフルオロヘキシル基、1,1,1,2,2,3,3-ヘプタフルオロヘプチル基、1,1,1,2,2,3,3-ヘプタフルオロオクチル基、ヘキサフルオロイソブチル基等が挙げられる。 In formula (8), the fluoroalkyl group for R 11 is not particularly limited, and examples thereof include 2,2,2-trifluoroethyl group, 1,1,1,2,2-pentafluoropropyl group, 1,1 1,1,2,2-pentafluorobutyl group, 1,1,1,2,2-pentafluoropentyl group, 1,1,1,2,2,3,3-heptafluorohexyl group, 1,1, Examples include 1,2,2,3,3-heptafluoroheptyl group, 1,1,1,2,2,3,3-heptafluorooctyl group, hexafluoroisobutyl group and the like.
 本発明の式(1)および式(2)で表される重合性化合物は、光架橋性の官能基であるベンゾピラン基を有している。従って、本重合性化合物を他の重合性化合物と共重合することによって得られる共重合体(重合体)は光架橋性を有しており、その光架橋性は本重合性化合物の導入量に依存して変化する。これに加えて、本発明の式(1)で表される重合性化合物は低級アルコールへの溶解性に対する影響が小さいという特徴があり、本発明に係る重合性化合物を用いるとき、光架橋性及び低級アルコールへの溶解性の両者に優れた共重合体(重合体)を得ることができるものとなる。 The polymerizable compound represented by the formulas (1) and (2) of the present invention has a benzopyran group that is a photocrosslinkable functional group. Therefore, a copolymer (polymer) obtained by copolymerizing the polymerizable compound with another polymerizable compound has photocrosslinkability, and the photocrosslinkability depends on the amount of the polymerizable compound introduced. It changes depending on. In addition to this, the polymerizable compound represented by the formula (1) of the present invention has a feature that the influence on the solubility in a lower alcohol is small. When the polymerizable compound according to the present invention is used, A copolymer (polymer) excellent in both solubility in a lower alcohol can be obtained.
 本発明の式(1)および式(2)で表される重合性化合物は、該重合性化合物を単量体として用い、重合することにより得られる重合体として好適に用いられる。このとき、該重合体において、式(1)で表される重合性化合物は、式(4)で表される反復単位となり、式(2)で表される重合性化合物は、式(5)で表される反復単位となる。 The polymerizable compound represented by the formulas (1) and (2) of the present invention is suitably used as a polymer obtained by polymerization using the polymerizable compound as a monomer. At this time, in the polymer, the polymerizable compound represented by the formula (1) is a repeating unit represented by the formula (4), and the polymerizable compound represented by the formula (2) is represented by the formula (5). It becomes a repeating unit represented by.
 本発明において、式(4)で表される反復単位は光架橋基であり、その含有量は、光架橋時間の短縮、高い架橋密度(優れた耐溶剤性)及び低級脂肪族アルコールへの溶解性の観点から、式(6)及び(4)の反復単位の合計を100モル%とした場合に、式(4)で表される反復単位の比率が5~35モル%であることが好ましい。 In the present invention, the repeating unit represented by the formula (4) is a photocrosslinking group, and the content thereof is shortening of the photocrosslinking time, high crosslink density (excellent solvent resistance), and dissolution in a lower aliphatic alcohol. From the viewpoint of properties, when the total of repeating units of formulas (6) and (4) is 100 mol%, the ratio of the repeating units represented by formula (4) is preferably 5 to 35 mol%. .
 式(4)中のLを構成する最長の炭素連鎖の数をMとするとき、短時間で光架橋を完結させるのにより好適なため、このMが式((6)中のZを構成する最長の炭素連鎖の数Nに対して、N+2≧M≧N-2を満たすのが好ましい。 When M is the number of the longest carbon chains constituting L in the formula (4), it is more preferable to complete photocrosslinking in a short time. Therefore, this M constitutes Z in the formula ((6)) It is preferable that N + 2 ≧ M ≧ N−2 is satisfied with respect to the number N of the longest carbon chains.
 本発明の重合体の別の態様として、上記式(4)または式(5)の少なくともいずれかを反復単位として含み、かつ、式(7)で表される反復単位を含む重合体に架橋処理を行った重合体を示すことができる。 As another aspect of the polymer of the present invention, the polymer containing at least one of the above formula (4) and formula (5) as a repeating unit and containing a repeating unit represented by formula (7) is crosslinked. The polymer which performed can be shown.
 架橋処理には放射線が好適に用いられる。放射線としては、例えば、波長245~350nmの紫外線が挙げられる。放射線の照射量は重合体の組成により適宜変更されるが、例えば、100~500mJ/cm、さらには100~300mJ/cmが挙げられ、架橋度の低下を防止し、かつ、プロセスの短時間化による経済性向上のため、好ましくは50~300mJ/cm、50~200mJ/cmである。紫外線を照射する際の環境は特に制限されず、大気中、不活性ガス中、または一定量の不活性ガス気流下で行うことが出来る。 Radiation is preferably used for the crosslinking treatment. Examples of radiation include ultraviolet rays having a wavelength of 245 to 350 nm. The amount of radiation irradiation is appropriately changed depending on the composition of the polymer, and examples thereof include 100 to 500 mJ / cm 2 , and further 100 to 300 mJ / cm 2, which prevents a reduction in the degree of crosslinking and shortens the process. In order to improve the economic efficiency due to time, it is preferably 50 to 300 mJ / cm 2 and 50 to 200 mJ / cm 2 . The environment in particular when irradiating an ultraviolet-ray is not restrict | limited, It can carry out in air | atmosphere, inert gas, or a fixed amount of inert gas flow.
 共重合体が架橋していることは共重合体膜を良溶剤に浸漬した際の溶解性により判断可能であり、その架橋度は後述の残膜率を測定することにより定量的に評価できる。具体的には、ガラス板上に形成した共重合体の薄膜を架橋させていない状態で良溶剤に浸漬させると共重合体膜は全て溶解してしまう。一方、十分に架橋した共重合体膜は良溶剤に溶解せず、固体状態を維持し、膜の厚みに変化はない。また、架橋が不十分な場合には、重合体膜は固体状態を維持しているが、一部の共重合体が溶解するため、その膜厚は小さくなる。したがって、溶剤浸漬前後の膜厚を測定することで共重合体がどの程度架橋したかを定量的に判断出来る。架橋処理後の重合体の構造は、熱重量・質量分析装置(TG-MS)、赤外線吸収スペクトル(IR)を用いた方法により同定することができる。 Whether the copolymer is cross-linked can be determined by the solubility when the copolymer film is immersed in a good solvent, and the degree of cross-linking can be quantitatively evaluated by measuring the residual film rate described later. Specifically, if the copolymer thin film formed on the glass plate is immersed in a good solvent without being crosslinked, the copolymer film is completely dissolved. On the other hand, a sufficiently crosslinked copolymer film does not dissolve in a good solvent, maintains a solid state, and does not change the thickness of the film. In addition, when the crosslinking is insufficient, the polymer film maintains a solid state, but a part of the copolymer is dissolved, so that the film thickness becomes small. Therefore, it is possible to quantitatively determine how much the copolymer has been crosslinked by measuring the film thickness before and after the solvent immersion. The structure of the polymer after the crosslinking treatment can be identified by a method using a thermogravimetric / mass spectrometer (TG-MS) and an infrared absorption spectrum (IR).
 本発明において、上式(3)~(8)からなる群の少なくとも1種の反復単位を含む重合体の分子量には何ら制限はなく、例えば、5000~1,000,000(g/モル)等が挙げられる。重合体の溶液粘度、及び力学強度の観点から、好ましくは10,000~500,000(g/モル)である。 In the present invention, there is no limitation on the molecular weight of the polymer containing at least one repeating unit of the group consisting of the above formulas (3) to (8), for example, 5000 to 1,000,000 (g / mol). Etc. From the viewpoint of the solution viscosity of the polymer and the mechanical strength, it is preferably 10,000 to 500,000 (g / mol).
 本発明の重合体は、前記式(1)、及び式(9)で表される単量体を公知のラジカル重合法により重合させることで得ることができる。 The polymer of the present invention can be obtained by polymerizing the monomers represented by the above formulas (1) and (9) by a known radical polymerization method.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
(式(9)中、R、及びZは式(6)で定義したものと同様である)。 (In formula (9), R 8 and Z are the same as defined in formula (6)).
 本発明の重合体は、前記式(1)または式(2)の少なくともいずれかの単量体と、式(10)で表される単量体をラジカル重合法により重合させることで得ることができる。 The polymer of the present invention can be obtained by polymerizing at least one monomer of the formula (1) or the formula (2) and a monomer represented by the formula (10) by a radical polymerization method. it can.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(式(10)中、R、M、Y、k及びjは式(7)で定義したものと同様である)。 (In the formula (10), R 9 , M, Y, k and j are the same as those defined in the formula (7)).
 本発明の重合体は前記式(1)、及び式(11)で表される単量体を公知のラジカル重合法により重合させることで得ることができる。 The polymer of the present invention can be obtained by polymerizing the monomers represented by the above formulas (1) and (11) by a known radical polymerization method.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(式(11)中、R10、R11、E、及びtは式(8)で定義したものと同様である。)
 本発明において、具体的な前記式(1)で表される重合性化合物としては、式(12)で表される7-メタクリロイルオキシ-4-オキソベンゾピランの他、例えば、以下のものが挙げられる。
(In formula (11), R 10 , R 11 , E, and t are the same as those defined in formula (8).)
In the present invention, specific examples of the polymerizable compound represented by the formula (1) include the following in addition to 7-methacryloyloxy-4-oxobenzopyran represented by the formula (12). It is done.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 本発明において、具体的な式(2)で表される単量体としては、例えば下記のような化合物が例示される。 In the present invention, specific examples of the monomer represented by the formula (2) include the following compounds.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 本発明の重合性化合物において、前記[化33]で表される単量体、前記[化36~化56]で表される単量体からなる群の少なくとも1種の単量体を重合させることが好ましい。これにより、低級脂肪族アルコールに溶解し、紫外線により短時間で光架橋し、コンタクトホールを形成可能な絶縁層形成用の重合体となる。 In the polymerizable compound of the present invention, at least one monomer of the group consisting of the monomer represented by [Chemical Formula 33] and the monomer represented by [Chemical Formula 36 to Chemical Formula 56] is polymerized. It is preferable. As a result, it is dissolved in a lower aliphatic alcohol, photocrosslinked in a short time with ultraviolet rays, and becomes a polymer for forming an insulating layer capable of forming a contact hole.
 本発明の式(1)で表される重合性化合物はヒドロキシ基を有するベンゾピラン化合物と酸クロリドを溶剤中で反応させる公知の方法で製造できる。該酸クロリドとしてはアクリロイルクロリド、メタクリロイルクロリド、2-アルキルアクリロイルクロリド、または2-アルキルメタクリロイルクロリドが用いられ、酸クロリドの該ベンゾピラン化合物に対するモル比は、未反応の酸クロリド量を低減させるため、0.5~1.0が好ましい。本反応で用いることが出来る溶剤は上記のベンゾピラン化合物、及び酸クロリドを溶解し、これらの化合物と反応せず、十分に脱水されている限り何ら制限されず、例えば、テトラヒドロフラン、塩化メチレン、トルエン等を用いることが出来る。本反応においては反応速度を上げ、収量を増大させるため、反応で発生する塩化水素の受酸剤、及びエステル化触媒を、また反応中に重合性化合物が重合するのを防止するため重合禁止剤を添加することが好ましい。該受酸剤としては脱水されたトリエチルアミン、ピリジン等が、該触媒としてはN,N-ジメチル-4-アミノピリジン等の強塩基が、該重合禁止剤としてはヒドロキノン、ジブチルヒドロキシトルエン等が例示される。反応温度は特に制限されないが、重合反応を防止するため、0~60℃が好ましい。反応時間は特に制限されないが、経済性に優れるため、2~6時間が好ましい。 The polymerizable compound represented by the formula (1) of the present invention can be produced by a known method in which a benzopyran compound having a hydroxy group and an acid chloride are reacted in a solvent. As the acid chloride, acryloyl chloride, methacryloyl chloride, 2-alkyl acryloyl chloride, or 2-alkyl methacryloyl chloride is used, and the molar ratio of acid chloride to the benzopyran compound is reduced to reduce the amount of unreacted acid chloride. .5 to 1.0 is preferable. Solvents that can be used in this reaction dissolve the above-mentioned benzopyran compound and acid chloride, do not react with these compounds, and are not limited as long as they are sufficiently dehydrated. For example, tetrahydrofuran, methylene chloride, toluene, etc. Can be used. In this reaction, in order to increase the reaction rate and increase the yield, an acid acceptor for hydrogen chloride generated in the reaction and an esterification catalyst, and a polymerization inhibitor for preventing polymerization of a polymerizable compound during the reaction. Is preferably added. Examples of the acid acceptor include dehydrated triethylamine and pyridine, examples of the catalyst include strong bases such as N, N-dimethyl-4-aminopyridine, and examples of the polymerization inhibitor include hydroquinone and dibutylhydroxytoluene. The The reaction temperature is not particularly limited, but is preferably 0 to 60 ° C. in order to prevent polymerization reaction. The reaction time is not particularly limited, but is preferably 2 to 6 hours because of excellent economic efficiency.
 また、本発明の式(1)で表される重合性化合物は公知の方法を利用して製造することも出来る。例えば、6-ビニル-4-オキソ-ベンゾピラン化合物、或いは7-ビニル-4-オキソ-ベンゾピラン化合物は、6-メチル-4-オキソ-ベンゾピラン化合物、或いは7-メチル-4-オキソ-ベンゾピラン化合物を出発原料、四塩化炭素を溶媒とし、N-ブロモスクシンイミド、及びパーオキサイド化合物、或いはアゾイソブチロニトリル等のラジカル発生剤を用いてメチル基をブロモメチル化する工程、ブロモメチル基を、ジメチルスルホキシドを溶媒かつ触媒として用いて、炭酸水素ナトリウムによりホルミル化する工程、ホルミル基を、メチルトリフェニルホスホニウムブロミドを触媒に用いて、カリウム-t-ブトキサイドによりビニル化する4つの工程により製造出来る。 Further, the polymerizable compound represented by the formula (1) of the present invention can also be produced using a known method. For example, 6-vinyl-4-oxo-benzopyran compound, or 7-vinyl-4-oxo-benzopyran compound starts from 6-methyl-4-oxo-benzopyran compound, or 7-methyl-4-oxo-benzopyran compound Raw material, a step of bromomethylating a methyl group using a carbon tetrachloride as a solvent and a radical generator such as N-bromosuccinimide, a peroxide compound, or azoisobutyronitrile, a bromomethyl group as a solvent and a dimethylsulfoxide as a solvent The catalyst can be used for the formylation with sodium hydrogencarbonate, and the formyl group can be produced by four processes for vinylation with potassium tert-butoxide using methyltriphenylphosphonium bromide as a catalyst.
 本発明の式(2)で表される重合性化合物はヒドロキシ基を有するベンゾピラン化合物と酸クロリドを溶剤中で反応させる公知の方法で製造できる。該酸クロリドとしてはフマル酸ジクロリド、マレイン酸ジクロリド等の酸クロリドが例示される。該酸クロリドの該ベンゾピラン化合物に対するモル比は、未反応の酸クロリド量を低減させるため、0.35~0.45が好ましい。本反応で用いることが出来る溶剤は上記のベンゾピラン化合物、及び酸クロリドを溶解し、これらの化合物と反応せず、十分に脱水されている限り何ら制限されず、例えば、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤を用いることが出来る。本反応においては反応速度を上げ、収量を増大させるため、反応で発生する塩化水素の受酸剤、及びエステル化触媒を、また反応中に重合性化合物が重合するのを防止するため重合禁止剤を添加することが好ましい。該受酸剤としては脱水されたトリエチルアミン、ピリジン等が、該触媒としてはN,N-ジメチル-4-アミノピリジン等の強塩基が、該重合禁止剤としてはヒドロキノン、ジブチルヒドロキシトルエン等が例示される。反応温度は特に制限されないが、重合反応を防止するため0~70℃が好ましい。反応時間は特に制限されないが、経済性に優れるため、2~6時間が好ましい。 The polymerizable compound represented by the formula (2) of the present invention can be produced by a known method in which a benzopyran compound having a hydroxy group and an acid chloride are reacted in a solvent. Examples of the acid chloride include acid chlorides such as fumaric acid dichloride and maleic acid dichloride. The molar ratio of the acid chloride to the benzopyran compound is preferably 0.35 to 0.45 in order to reduce the amount of unreacted acid chloride. The solvent that can be used in this reaction is not limited as long as it dissolves the above-mentioned benzopyran compound and acid chloride, does not react with these compounds, and is sufficiently dehydrated. For example, N, N-dimethylacetamide, An amide solvent such as N-methylpyrrolidone can be used. In this reaction, in order to increase the reaction rate and increase the yield, an acid acceptor for hydrogen chloride generated in the reaction and an esterification catalyst, and a polymerization inhibitor for preventing polymerization of a polymerizable compound during the reaction. Is preferably added. Examples of the acid acceptor include dehydrated triethylamine and pyridine, examples of the catalyst include strong bases such as N, N-dimethyl-4-aminopyridine, and examples of the polymerization inhibitor include hydroquinone and dibutylhydroxytoluene. The The reaction temperature is not particularly limited, but is preferably 0 to 70 ° C. in order to prevent the polymerization reaction. The reaction time is not particularly limited, but is preferably 2 to 6 hours because of excellent economic efficiency.
 本発明において、具体的な式(10)で表される単量体としては、例えば、スチレン、α―メチルスチレン、2-クロロスチレン、2-ブロモスチレン、2-フルオロスチレン、3-クロロスチレン、3-ブロモスチレン、3-フルオロスチレン、4-クロロスチレン、4-ブロモスチレン、4-フルオロスチレン、4-クロロメチルスチレン、3,5-トリフルオロメチルスチレン、4-トリフルオロスチレン、2,3,4,5,6-ペンタフルオロスチレンが挙げられる。 In the present invention, specific examples of the monomer represented by the formula (10) include styrene, α-methylstyrene, 2-chlorostyrene, 2-bromostyrene, 2-fluorostyrene, 3-chlorostyrene, 3-bromostyrene, 3-fluorostyrene, 4-chlorostyrene, 4-bromostyrene, 4-fluorostyrene, 4-chloromethylstyrene, 3,5-trifluoromethylstyrene, 4-trifluorostyrene, 2,3, 4,5,6-pentafluorostyrene may be mentioned.
 本発明において、具体的な式(11)で表される単量体としては式(13)で表される1H,1H,2H,2H-ヘプタデカフルオロデシルメタクリレートの他、例えば、以下のものが挙げられる。 In the present invention, specific monomers represented by the formula (11) include, in addition to 1H, 1H, 2H, 2H-heptadecafluorodecyl methacrylate represented by the formula (13), for example, the following: Can be mentioned.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 前述の式(1)または式(2)で表される単量体、および式(9)乃至式(11)からなる群の少なくとも1種で表される単量体をラジカル共重合するとき、該ラジカル共重合は溶液重合、乳化重合、懸濁重合、及び塊状重合等の公知の方法を用いることが出来る。 When radically copolymerizing the monomer represented by the above formula (1) or (2) and the monomer represented by at least one selected from the group consisting of the formulas (9) to (11), For the radical copolymerization, known methods such as solution polymerization, emulsion polymerization, suspension polymerization, and bulk polymerization can be used.
 溶液重合において用いる溶剤は上記の単量体、及び本発明の重合体が溶解する限り、何ら制限されず、例えば、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶剤;トルエン、キシレン、1,3-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン等の芳香族炭化水素溶剤;テトラヒドロフラン、テトラヒドロピラン等の環状エーテル等が挙げられ、これらの溶剤を混合して用いることも出来る。このとき、重合温度は用いる開始剤に依存して選択されるが、特に制限されない。開始剤としてはアゾイソブチロニトリル等のアゾ系開始剤;ベンゾイルパーオキサイド、ジ(t-ブチル)パーオキサイド等の過酸化物系開始剤の何れも用いることが出来る。反応時間は用いる開始剤の半減期に従い設定され、何ら制限はないが、経済性の観点から4~8時間であることが好ましい。 The solvent used in the solution polymerization is not limited as long as the above-described monomer and the polymer of the present invention are dissolved. For example, amide solvents such as dimethylformamide and dimethylacetamide; toluene, xylene, 1,3-bis Aromatic hydrocarbon solvents such as (trifluoromethyl) benzene and α, α, α-trifluoromethylbenzene; cyclic ethers such as tetrahydrofuran and tetrahydropyran, and the like. These solvents can also be used in combination. At this time, the polymerization temperature is selected depending on the initiator used, but is not particularly limited. As the initiator, any of azo initiators such as azoisobutyronitrile; peroxide initiators such as benzoyl peroxide and di (t-butyl) peroxide can be used. The reaction time is set according to the half-life of the initiator used and is not limited at all, but is preferably 4 to 8 hours from the viewpoint of economy.
 本発明の重合体は、溶剤に溶解させた溶液状態で種々の基材上に塗工又は印刷することが出来る。該溶剤としては、該重合体を溶解し、同時に有機トランジスタの製造に用いる有機半導体を溶解しない溶剤であれば何ら制限なく用いることができ、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、t-ブタノール、n-ペンタノール等の脂肪族アルコール類;塩化メチレン、1,1,2-トリクロロエチレン等の塩素化脂肪族炭化水素化合物;ジブチルエーテル、ジイソブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類;シクロヘキサン、ベンゼン、トルエン、キシレン、キュメン、メシチレン、エチルベンゼン、イソプロピルベンゼン、N-ヘキシルベンゼン、テトラリン、デカリン、1,3-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン、α,α,α,α’,α’,α’-ヘキサフルオロ-m-キシレン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、ブロモベンゼン等のハロゲン化芳香族炭化水素類;メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン、エチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;エチルアセテート、ジメチルフタレート、サリチル酸メチル、アミルアセテート酢酸n-ブチル、酢酸イソブチル、プロピオン酸プロピル、ジメチルフタレート、サリチル酸メチル、アミルアセテート等のエステル類、N-メチルピロリドン、ジメチルホルムアミド等のアミド類;ジエチレングリコールブチルメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート等のグリコール類、1-ニトロプロパン、2硫化炭素、リモネン等が挙げられ、単独または2種類以上の溶剤を併用してもよい。その中でも、有機半導体層の上に溶液塗工可能であることから、メタノール、エタノール、n-プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、t-ブタノール、n-ペンタノール等の脂肪族アルコール類が好ましく、炭素数4以下の低級脂肪族アルコールがさらに好ましい。 The polymer of the present invention can be applied or printed on various substrates in a solution state dissolved in a solvent. The solvent can be used without any limitation as long as it dissolves the polymer and at the same time does not dissolve the organic semiconductor used in the production of the organic transistor. For example, methanol, ethanol, n-propanol, isopropanol, 1- Aliphatic alcohols such as butanol, 2-butanol, t-butanol, n-pentanol; chlorinated aliphatic hydrocarbon compounds such as methylene chloride and 1,1,2-trichloroethylene; dibutyl ether, diisobutyl ether, tetrahydrofuran, tetrahydro Ethers such as pyran and dioxane; cyclohexane, benzene, toluene, xylene, cumene, mesitylene, ethylbenzene, isopropylbenzene, N-hexylbenzene, tetralin, decalin, 1,3-bis (trifluoromethyl) benzene, , Α, α-trifluoromethylbenzene, α, α, α, α ', α', α'-hexafluoro-m-xylene and other aromatic hydrocarbons; halogenated chlorobenzene, dichlorobenzene, bromobenzene and the like Aromatic hydrocarbons; ketones such as methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, ethyl isobutyl ketone, cyclopentanone, cyclohexanone; ethyl acetate, dimethyl phthalate, methyl salicylate, amyl acetate n-butyl acetate, isobutyl acetate, propyl propionate , Esters such as dimethyl phthalate, methyl salicylate, amyl acetate, amides such as N-methylpyrrolidone, dimethylformamide; diethylene glycol butyl methyl ether, diethylene glycol dimethyl ether, diethyl Glycols such as ethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol methyl ether acetate, 1-nitropropane, carbon disulfide, limonene, etc. may be used alone or in combination of two or more solvents . Among these, aliphatic alcohols such as methanol, ethanol, n-propanol, isopropanol, 1-butanol, 2-butanol, t-butanol, n-pentanol and the like can be applied on the organic semiconductor layer. Are preferred, and lower aliphatic alcohols having 4 or less carbon atoms are more preferred.
 塗工又は印刷方法には何ら制限はなく、例えば、スピンコーティング、ドロップキャスト、ディップコーティング、ドクターブレードコーティング、パッド印刷、スキージコート、ロールコーティング、ロッドバーコーティング、エアナイフコーティング、ワイヤーバーコーティング、フローコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等を用いて印刷することが出来る。 There are no restrictions on the coating or printing method, such as spin coating, drop casting, dip coating, doctor blade coating, pad printing, squeegee coating, roll coating, rod bar coating, air knife coating, wire bar coating, flow coating, Printing can be performed using gravure printing, flexographic printing, screen printing, inkjet printing, letterpress reverse printing, and the like.
 なお、本発明の重合体を絶縁層として用いるとき、該絶縁層はこれらの塗工又は印刷方法を用いて形成されるものであるため、該絶縁層は上記の溶剤に対する溶解性が必要となる。前記式(10)で表され、2,3,4,5,6-ペンタフルオロスチレン等の特定の構造を有する含フッ素単量体を用いた場合、本発明の重合体は汎用溶剤に溶解するが、同時にフッ素系の溶剤にも溶解する。このため、本発明の重合体をヘキサフルオロベンゼン、2,3,4,5,6-ペンタフルオロトルエン等のフッ素系溶剤に溶解させて有機トランジスタ素子の最上層に保護膜として印刷して使用することもできる。また、トップゲート型トランジスタ素子において有機半導体層の上に印刷可能な絶縁膜としても利用できる。 In addition, when using the polymer of this invention as an insulating layer, since this insulating layer is formed using these coating or printing methods, this insulating layer needs the solubility with respect to said solvent. . When a fluorine-containing monomer represented by the formula (10) and having a specific structure such as 2,3,4,5,6-pentafluorostyrene is used, the polymer of the present invention is soluble in a general-purpose solvent. However, it also dissolves in fluorinated solvents. For this reason, the polymer of the present invention is dissolved in a fluorine-based solvent such as hexafluorobenzene, 2,3,4,5,6-pentafluorotoluene and printed on the uppermost layer of the organic transistor element as a protective film. You can also. It can also be used as an insulating film that can be printed on the organic semiconductor layer in the top gate type transistor element.
 本発明に係る重合体は光架橋性基を有し、該光架橋(光環化)には放射線が好適に用いられ、放射線としては、例えば、波長245~350nmの紫外線が挙げられる。放射線の照射量は重合体の組成により適宜変更されるが、例えば、100~500mJ/cmが挙げられ、架橋度の低下を防止し、かつ、プロセスの短時間化による経済性の向上のため、好ましくは50~300mJ/cmである。紫外線の照射は通常大気中で行うが、必要に応じて不活性ガス中、または一定量の不活性ガス気流下で行うことも出来る。必要に応じて光増感剤を添加して光架橋反応を促進させることも出来る。用いる光増感剤には何ら制限はなく、例えば、ベンゾフェノン化合物、アントラキノン化合物、チオキサントン化合物、ニトロフェニル化合物等が挙げられるが、本発明で用いられる重合体との相溶性が高いベンゾフェノン化合物が好ましい。また、該増感剤は必要に応じて2種以上を組み合わせて使用できる。 The polymer according to the present invention has a photocrosslinkable group, and radiation is suitably used for the photocrosslinking (photocyclization). Examples of the radiation include ultraviolet rays having a wavelength of 245 to 350 nm. The irradiation amount of radiation is appropriately changed depending on the composition of the polymer. For example, it is 100 to 500 mJ / cm 2, and it is possible to prevent a decrease in the degree of crosslinking and improve economy by shortening the process. It is preferably 50 to 300 mJ / cm 2 . Irradiation with ultraviolet rays is usually carried out in the atmosphere, but it can also be carried out in an inert gas or in a certain amount of inert gas flow as necessary. If necessary, a photosensitizer can be added to promote the photocrosslinking reaction. The photosensitizer used is not particularly limited, and examples thereof include benzophenone compounds, anthraquinone compounds, thioxanthone compounds, nitrophenyl compounds, and the like, and benzophenone compounds having high compatibility with the polymer used in the present invention are preferable. The sensitizers can be used in combination of two or more as required.
 本発明の重合体は紫外線により光架橋出来るが、必要に応じて加熱しても良い。紫外線照射に加えて加熱する場合の温度は特に制限されないが、用いる重合体の熱変形を避けるため120℃以下の温度が好ましい。 The polymer of the present invention can be photocrosslinked by ultraviolet rays, but may be heated if necessary. Although the temperature in the case of heating in addition to ultraviolet irradiation is not particularly limited, a temperature of 120 ° C. or lower is preferable in order to avoid thermal deformation of the polymer used.
 更に、本発明の重合体には架橋密度を上げる、または架橋時間を短縮するために架橋剤としてエチレン、プロピレン等のオレフィンを1分子内に複数個含有する化合物;アセチレン、ブチン等を1分子内に複数個含有する化合物;シクロペンテン等の環状オレフィンを1分子内に複数個含有する化合物等が配合されていてもよい。これらの化合物は1種類、または2種類以上が配合されていてもよい。 Further, the polymer of the present invention contains a compound containing a plurality of olefins such as ethylene and propylene as a crosslinking agent in one molecule as a crosslinking agent in order to increase the crosslinking density or shorten the crosslinking time; A compound containing a plurality of cyclic olefins such as cyclopentene in one molecule may be blended. These compounds may be used alone or in combination of two or more.
 また、本発明の重合体は、短時間で効率良く光架橋することができるものであり、より短時間で効率良く光架橋するため、光架橋に要する時間を2分以内とすることが好ましい。なお、架橋時間の制御に好適であることから、架橋に要する時間を1分以内とすることがさらに好ましい。 In addition, the polymer of the present invention can be efficiently photocrosslinked in a short time, and in order to efficiently photocrosslink in a shorter time, the time required for photocrosslinking is preferably within 2 minutes. In addition, since it is suitable for control of crosslinking time, it is more preferable that the time required for crosslinking is within 1 minute.
 本発明において、具体的な式(1)で表される単量体としては式(14)で表される6-(クロモン-7-オキシ)ヘキサメチルメタクリレートの他、例えば、以下のものが挙げられる。 In the present invention, specific examples of the monomer represented by the formula (1) include the following in addition to 6- (chromone-7-oxy) hexamethyl methacrylate represented by the formula (14). It is done.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095

 本発明の重合体は、本発明の重合体及び/又は本発明の重合体の架橋物を含有する絶縁膜として好適に用いることができる。また、本発明の重合体は、該絶縁膜を含む有機トランジスタデバイスとして好適に用いることができる。

The polymer of the present invention can be suitably used as an insulating film containing the polymer of the present invention and / or a crosslinked product of the polymer of the present invention. In addition, the polymer of the present invention can be suitably used as an organic transistor device including the insulating film.
 本発明の重合体は、本発明の重合体及び/又は本発明の重合体の架橋物を含有する保護膜として好適に用いることができる。また、本発明の重合体は、該保護膜を含む有機トランジスタデバイスとして好適に用いることができる。 The polymer of the present invention can be suitably used as a protective film containing the polymer of the present invention and / or a crosslinked product of the polymer of the present invention. Moreover, the polymer of this invention can be used suitably as an organic transistor device containing this protective film.
 本発明の重合体は、本発明の重合体及び/又は本発明の重合体の架橋物を含有する撥液膜(層)として好適に用いることができる。また、本発明の重合体は、該撥液膜を含む電子デバイス、特に有機トランジスタデバイスとして好適に用いることができる。 The polymer of the present invention can be suitably used as a liquid repellent film (layer) containing the polymer of the present invention and / or a crosslinked product of the polymer of the present invention. The polymer of the present invention can be suitably used as an electronic device including the liquid repellent film, particularly as an organic transistor device.
 本発明の重合体が有機トランジスタデバイス(以下、「有機トランジスタ」という)に用いられるとき、本発明の有機トランジスタは図1に示すボトムゲート-トップコンタクト型(A)、ボトムゲート-ボトムコンタクト型(B)、トップゲート-トップコンタクト型(C)、トップゲート-ボトムコンタクト型(D)のいずれの素子構造でもよい。本発明の重合体は特に(C)及び(D)の形態の素子への適用性が高い。ここで、1は有機半導体層、2は基板、3はゲート電極、4はゲート絶縁層、5はソース電極、6はドレイン電極を示す。 When the polymer of the present invention is used in an organic transistor device (hereinafter referred to as “organic transistor”), the organic transistor of the present invention has a bottom gate-top contact type (A), bottom gate-bottom contact type (A) shown in FIG. B), top gate-top contact type (C), and top gate-bottom contact type (D) may be used. The polymer of the present invention has particularly high applicability to devices in the forms of (C) and (D). Here, 1 is an organic semiconductor layer, 2 is a substrate, 3 is a gate electrode, 4 is a gate insulating layer, 5 is a source electrode, and 6 is a drain electrode.
 本発明の重合体を有機半導体層の保護層(膜)として用いる場合、本重合体は未架橋または架橋された何れの状態でも使用出来る。 When the polymer of the present invention is used as a protective layer (film) for the organic semiconductor layer, the polymer can be used in either an uncrosslinked state or a crosslinked state.
 該有機トランジスタにおいて、用いることが出来る基材(基板)は素子を作製できる十分な平坦性を確保できれば特に制限されず、例えば、ガラス、石英、酸化アルミニウム、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;プラスチック;金、銅、クロム、チタン、アルミニウム等の金属;セラミックス;コート紙;表面コート不織布等が挙げられ、これらの材料からなる複合材料又はこれらの材料を多層化した材料であっても良い。また、表面張力を調整するため、これらの材料表面をコーティングすることも出来る。 In the organic transistor, a substrate (substrate) that can be used is not particularly limited as long as sufficient flatness capable of producing an element can be ensured. For example, glass, quartz, aluminum oxide, highly doped silicon, silicon oxide, tantalum dioxide, Inorganic material substrates such as tantalum pentoxide and indium tin oxide; plastics; metals such as gold, copper, chromium, titanium, and aluminum; ceramics; coated papers; A material obtained by multilayering these materials may be used. Moreover, in order to adjust surface tension, the surface of these materials can also be coated.
 基材として用いるプラスチックとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリカーボネート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリメチルペンテン-1、ポリプロピレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリスチレン、ポリイミド、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエステルエラストマー、ポリウレタンエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、スチレンブロック共重合体等が例示される。また、上記のプラスチックを2種以上用いて積層して基材として用いることができる。 Plastics used as the substrate include polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polycarbonate, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyethylene, ethylene / vinyl acetate copolymer, polymethylpentene-1, and polypropylene. , Cyclic polyolefin, fluorinated cyclic polyolefin, polystyrene, polyimide, polyvinylphenol, polyvinyl alcohol, poly (diisopropyl fumarate), poly (diethyl fumarate), poly (diisopropyl maleate), polyethersulfone, polyphenylene sulfide, polyphenylene ether, Polyester elastomer, polyurethane elastomer, polyolefin elastomer, polyamide elastomer Tomah, styrene block copolymer and the like. Moreover, it can laminate | stack using said plastics 2 or more types, and can be used as a base material.
 本発明で用いることが出来る有機半導体には何ら制限はなく、N型及びP型の有機半導体の何れも使用することができ、N型とP型を組み合わせたバイポーラトランジスタとしても使用できる。また、低分子及び高分子の有機半導体の何れも用いることができ、これらを混合して使用することも出来る。具体的な化合物としては、例えば式(F-1)~(F-11)等が例示される。 The organic semiconductor that can be used in the present invention is not limited at all, and any of N-type and P-type organic semiconductors can be used, and it can also be used as a bipolar transistor that combines N-type and P-type. Moreover, both low molecular and high molecular organic semiconductors can be used, and these can also be mixed and used. Specific examples of the compound include formulas (F-1) to (F-11).
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 本発明において、有機半導体層を形成する方法としては、有機半導体を真空蒸着する方法、または有機半導体を有機溶剤に溶解させて塗布、印刷する方法等が例示されるが、有機半導体層の薄膜を形成出来る方法であれば何らの制限もない。有機半導体層を有機溶剤に溶解させた溶液を用いて塗布、または印刷する場合の溶液濃度は有機半導体の構造及び用いる溶剤により異なるが、より均一な半導体層の形成及び層の厚みの低減の観点から、0.5~5重量%であることが好ましい。この際の有機溶剤としては有機半導体が製膜可能な一定の濃度で溶解する限り何ら制限はなく、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン、デカリン、インダン、1-メチルナフタレン、2-エチルナフタレン、1,4-ジメチルナフタレン、ジメチルナフタレン異性体混合物、トルエン、キシレン、エチルベンゼン、1,2,4-トリメチルベンゼン、メシチレン、イソプロピルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、オクチルベンゼン、シクロヘキシルベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、トリクロロベンゼン、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、γ-ブチロラクトン、1,3-ブチレングリコール、エチレングリコール、ベンジルアルコール、グリセリン、シクロヘキサノールアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、アニソール、シクロヘキサノン、メシチレン、3-メトキシブチルアセテート、シクロヘキサノールアセテート、ジプロピレングリコールジアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、1,6-ヘキサンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート、エチルアセテート、フェニルアセテート、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-N-プロピルエーテル、テトラデカヒドロフェナントレン、1,2,3,4,5,6,7,8-オクタヒドロフェナントレン、デカヒドロ-2-ナフトール、1,2,3,4-テトラヒドロ-1-ナフトール、α-テルピネオール、イソホロントリアセチンデカヒドロ-2-ナフトール、ジプロピレングリコールジメチルエーテル、2,6-ジメチルアニソール、1,2-ジメチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、1-ベンゾチオフェン、3-メチルベンゾチオフェン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、クロロホルム、ジクロロメタン、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、シクロヘキサノン、アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、アセトフェノン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、リモネン等が例示されるが、好ましい性状の結晶膜を得るためには有機半導体の溶解力が高く、沸点が100℃以上の溶剤が適しており、キシレン、イソプロピルベンゼン、アニソール、シクロヘキサノン、メシチレン、1,2-ジクロロベンゼン、3,4-ジメチルアニソール、ペンチルベンゼン、テトラリン、シクロヘキシルベンゼン、デカヒドロ-2-ナフトールが好ましい。また、前述の溶剤2種以上を適切な割合で混合した混合溶剤も用いることが出来る。 In the present invention, examples of the method for forming the organic semiconductor layer include a method in which the organic semiconductor is vacuum-deposited, a method in which the organic semiconductor is dissolved in an organic solvent, and a method for coating and printing. There is no limitation as long as it can be formed. The concentration of the solution when the organic semiconductor layer is applied or printed using a solution in which the organic semiconductor layer is dissolved in an organic solvent varies depending on the structure of the organic semiconductor and the solvent to be used, but the viewpoint of forming a more uniform semiconductor layer and reducing the thickness of the layer Therefore, it is preferably 0.5 to 5% by weight. The organic solvent at this time is not limited as long as the organic semiconductor dissolves at a certain concentration capable of forming a film, and is hexane, heptane, octane, decane, dodecane, tetradecane, decalin, indane, 1-methylnaphthalene, 2-ethyl. Naphthalene, 1,4-dimethylnaphthalene, dimethylnaphthalene isomer mixture, toluene, xylene, ethylbenzene, 1,2,4-trimethylbenzene, mesitylene, isopropylbenzene, pentylbenzene, hexylbenzene, tetralin, octylbenzene, cyclohexylbenzene, 1 , 2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, trichlorobenzene, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, γ-butyrolactone, 1,3-butylene glycol, Tylene glycol, benzyl alcohol, glycerin, cyclohexanol acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, anisole, cyclohexanone, mesitylene, 3-methoxybutyl acetate, cyclohexanol Acetate, dipropylene glycol diacetate, dipropylene glycol methyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, 1,6-hexanediol diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol Diacetate, ethyl acetate Tate, phenyl acetate, dipropylene glycol dimethyl ether, dipropylene glycol methyl-N-propyl ether, tetradecahydrophenanthrene, 1,2,3,4,5,6,7,8-octahydrophenanthrene, decahydro-2-naphthol 1,2,3,4-tetrahydro-1-naphthol, α-terpineol, isophorone triacetin decahydro-2-naphthol, dipropylene glycol dimethyl ether, 2,6-dimethylanisole, 1,2-dimethylanisole, 2,3 -Dimethylanisole, 3,4-dimethylanisole, 1-benzothiophene, 3-methylbenzothiophene, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, chloroform, dichloromethane, tetrahydrofuran Examples include 1,2-dimethoxyethane, dioxane, cyclohexanone, acetone, methyl ethyl ketone, diethyl ketone, diisopropyl ketone, acetophenone, N, N-dimethylformamide, N-methyl-2-pyrrolidone, limonene, and the like. In order to obtain a film, a solvent having a high solubility of an organic semiconductor and a boiling point of 100 ° C. or more is suitable, and xylene, isopropylbenzene, anisole, cyclohexanone, mesitylene, 1,2-dichlorobenzene, 3,4-dimethylanisole. Pentylbenzene, tetralin, cyclohexylbenzene, and decahydro-2-naphthol are preferred. Moreover, the mixed solvent which mixed 2 or more types of the above-mentioned solvent in the appropriate ratio can also be used.
 本発明の有機トランジスタは、エッチングによりコンタクトホールを形成させた有機トランジスタとして好適に用いることができる。このとき、コンタクトホール形成時のエッチングに用いる溶剤としては、本発明の重合体及び用いる有機半導体を溶解する溶剤であれば何ら制限なく、例えば、トルエン、キシレン、エチルベンゼン、1,2,4-トリメチルベンゼン、メシチレン、イソプロピルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、オクチルベンゼン、シクロヘキシルベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、トリクロロベンゼン、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン等の汎用の芳香族炭化水素溶剤等が挙げられる。上記の条件を満足すれば、これらの溶剤を2種以上混合した混合溶剤も用いることが出来る。 The organic transistor of the present invention can be suitably used as an organic transistor having contact holes formed by etching. At this time, the solvent used for etching at the time of contact hole formation is not limited as long as it is a solvent that dissolves the polymer of the present invention and the organic semiconductor to be used. For example, toluene, xylene, ethylbenzene, 1,2,4-trimethyl Benzene, mesitylene, isopropylbenzene, pentylbenzene, hexylbenzene, tetralin, octylbenzene, cyclohexylbenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, trichlorobenzene, 1,2-dimethoxy Examples include general-purpose aromatic hydrocarbon solvents such as benzene and 1,3-dimethoxybenzene. If the above conditions are satisfied, a mixed solvent in which two or more of these solvents are mixed can also be used.
 有機半導体層には必要に応じて各種有機・無機の高分子若しくはオリゴマー、又は有機・無機ナノ粒子を固体若しくは、ナノ粒子を水若しくは有機溶剤に分散させた分散液として添加でき、上記高分子誘電体層上に高分子溶液を塗布して保護膜を形成出来る。更に、必要に応じて本保護膜上に各種防湿コーティング、耐光性コーティング等を行うことが出来る。 If necessary, various organic / inorganic polymers or oligomers, or organic / inorganic nanoparticles can be added as solids or as dispersions in which nanoparticles are dispersed in water or an organic solvent. A protective film can be formed by applying a polymer solution on the body layer. Furthermore, various moisture-proof coatings and light-resistant coatings can be applied on the protective film as necessary.
 本発明で用いることが出来るゲート電極、ソース電極、又はドレイン電極としては、アルミニウム、金、銀、銅、ハイドープシリコン、ポリシリコン、シリサイド、スズ酸化物、酸化インジウム、インジウムスズ酸化物、クロム、白金、チタン、タンタル、グラフェン、カーボンナノチューブ等の無機電極、又はドープされた導電性高分子(例えば、PEDOT-PSS)等の有機電極等の導電性材料が例示され、これらの導電性材料を複数、積層して用いることもできる。また、キャリアの注入効率を上げるために、これらの電極に表面処理剤を用いて表面処理を実施することもできる。このような表面処理剤としては、例えば、ベンゼンチオール、ペンタフルオロベンゼンチオール等を挙げることができる。 Examples of a gate electrode, a source electrode, or a drain electrode that can be used in the present invention include aluminum, gold, silver, copper, highly doped silicon, polysilicon, silicide, tin oxide, indium oxide, indium tin oxide, chromium, Examples include conductive materials such as inorganic electrodes such as platinum, titanium, tantalum, graphene, and carbon nanotubes, or organic electrodes such as doped conductive polymers (for example, PEDOT-PSS). It can also be used by laminating. Moreover, in order to raise the injection | pouring efficiency of a carrier, surface treatment can also be implemented using a surface treating agent for these electrodes. Examples of such a surface treatment agent include benzenethiol and pentafluorobenzenethiol.
 また、前記の基材、絶縁層または有機半導体層の上に電極を形成する方法に特に制限はなく、蒸着、高周波スパッタリング、電子ビームスパッタリング等が挙げられ、前記導電性材料のナノ粒子を水又は有機溶剤に溶解させたインクを用いて、溶液スピンコート、ドロップキャスト、ディップコート、ドクターブレード、ダイコート、パッド印刷、ロールコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等の方法を採用することも出来る。 In addition, there is no particular limitation on the method for forming the electrode on the substrate, the insulating layer, or the organic semiconductor layer, and examples thereof include vapor deposition, high-frequency sputtering, electron beam sputtering, and the like. Methods such as solution spin coating, drop casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, screen printing, ink jet printing, letterpress reverse printing, etc., using ink dissolved in an organic solvent Can also be adopted.
 電極の形成(回路パターンの形成)の際に、前記の絶縁層をUV架橋後、遮光マスクを用い、絶縁層表面に真空紫外(VUV)光を照射することで、絶縁層の表面張力を上げて有機溶剤に対する濡れ性を増大させることができる。VUV光の照射時間は用いる絶縁層に用いる重合体の構造、及び光源と絶縁層表面間の距離により異なるが、経済性の観点から、1分~8分が好ましく、更に好ましくは1分~5分である。 During electrode formation (circuit pattern formation), the surface of the insulating layer is increased by irradiating the surface of the insulating layer with vacuum ultraviolet (VUV) light after UV crosslinking of the insulating layer and using a light shielding mask. Thus, the wettability with respect to the organic solvent can be increased. The irradiation time of VUV light varies depending on the structure of the polymer used in the insulating layer to be used and the distance between the light source and the surface of the insulating layer, but is preferably 1 minute to 8 minutes, more preferably 1 minute to 5 minutes from the viewpoint of economy. Minutes.
 本発明の有機トランジスタは、有機トランジスタ素子の実用性の観点から、移動度が0.20cm/Vs以上であることが好ましい。 The mobility of the organic transistor of the present invention is preferably 0.20 cm 2 / Vs or more from the viewpoint of practicality of the organic transistor element.
 本発明の有機トランジスタは、有機トランジスタ素子の実用性の観点から、閾値電圧が-10.0V以上で0Vより小さいことが好ましい。 The organic transistor of the present invention preferably has a threshold voltage of -10.0 V or higher and lower than 0 V from the viewpoint of practicality of the organic transistor element.
 本発明の有機トランジスタは、有機トランジスタ素子の実用性の観点から、漏洩電流密度が10-9A/cm以下であることが好ましい。 The organic transistor of the present invention preferably has a leakage current density of 10 −9 A / cm 2 or less from the viewpoint of practicality of the organic transistor element.
 本発明により低級脂肪族アルコールに溶解し、紫外線により短時間で光架橋し、コンタクトホールを形成可能な絶縁層形成用の重合体を提供できる。 According to the present invention, it is possible to provide a polymer for forming an insulating layer which can be dissolved in a lower aliphatic alcohol and photocrosslinked in a short time with ultraviolet rays to form a contact hole.
 本発明により汎用溶剤に溶解し、常温かつ短時間で架橋し、絶縁性に優れた重合体を提供できる。
 本発明によれば、溶剤に可溶で、常温かつ短時間で光架橋して溶剤に不溶化して撥液性を示す重合体を提供することができる。
According to the present invention, it is possible to provide a polymer that dissolves in a general-purpose solvent, crosslinks at room temperature in a short time, and has excellent insulating properties.
ADVANTAGE OF THE INVENTION According to this invention, the polymer which is soluble in a solvent, photocrosslinks in normal temperature for a short time, insolubilizes in a solvent, and shows liquid repellency can be provided.
;有機トランジスタの断面形状を示す図である。; It is a figure which shows the cross-sectional shape of an organic transistor. ;実施例1で製造した重合性化合物のH-NMRチャートを示す図である。FIG. 2 is a view showing a 1 H-NMR chart of a polymerizable compound produced in Example 1. ;実施例1で製造した重合性化合物の13C-NMRチャートを示す図である。FIG. 2 is a diagram showing a 13 C-NMR chart of a polymerizable compound produced in Example 1. ;実施例2で製造した重合性化合物のH-NMRチャートを示す図である。FIG. 2 is a diagram showing a 1 H-NMR chart of a polymerizable compound produced in Example 2. ;実施例3で製造した重合性化合物のH-NMRチャートを示す図である。FIG. 2 is a diagram showing a 1 H-NMR chart of a polymerizable compound produced in Example 3. ;実施例4で製造した重合性化合物のH-NMRチャートを示す図である。FIG. 2 is a diagram showing a 1 H-NMR chart of a polymerizable compound produced in Example 4. ;実施例5で製造した重合体1のH-NMRチャートを示す図である。FIG. 3 is a view showing a 1 H-NMR chart of polymer 1 produced in Example 5. ;実施例10で製造した重合体6のH-NMRチャートを示す図である。FIG. 2 is a diagram showing a 1 H-NMR chart of polymer 6 produced in Example 10. ;実施例11で製造した重合体7のH-NMRチャートを示す図である。FIG. 2 is a view showing a 1 H-NMR chart of polymer 7 produced in Example 11. ;実施例12で製造した重合体8のH-NMRチャートを示す図である。FIG. 3 is a view showing a 1 H-NMR chart of polymer 8 produced in Example 12. ;実施例15で製造した重合体12のH-NMRチャートを示す図である。FIG. 2 is a view showing a 1 H-NMR chart of polymer 12 produced in Example 15.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例において用いた有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)は、特開2015-224238号公報の製造方法に従って合成した。7-ヒドロキシ-4-オキソ-ベンゾピラン(7HOB)はジャーナル・オブ・ヘテロサイクリック・ケミストリー誌、2015年、52巻、562頁記載の方法により合成した。ヘキサン、酢酸エチル、エタノール、四塩化炭素、ジメチルスルホキシド、炭酸水素ナトリウム、N-メチルピロリドン、メタノール、イソプロパノール、ジメチルホルムアミド(DMF)、脱水ピリジン、テトラヒドロフラン(THF)、脱水テトラヒドロフラン(THF)、トルエン、スチレン、及びアゾイソブチロニトリル(AIBN)は和光純薬製の試薬を、ジブチルヒドロキシトルエン(BHT)、4-ジメチルアミノピリジン、2,3,4,5,6-ペンタフルオロスチレン(PFS)、及び塩化メタクリロイル、ペンタフルオロベンゼンチオール、N-ブロモスクシンイミド、トリメチルトリフェニルホスホニウムブロミド、カリウム-t-ブトキサイドは東京化成製の試薬を、シリカゲルカラムクロマトグラフィーにはメルク製のKiesel-Gel-60を、ポリ(n-ブチルアクリレート)、ポリビニルブチラール、及びポリ(ビニルアルコール)はシグマ・アルドリッチ製の試薬を用いた。また、ポリ(n-オクチルメタクリレート)はポリマー・サイエンス誌、シリーズB、2016年、58巻、6号、675頁記載の方法に従い合成した。フッ素系環状エーテル重合体にはAGC旭硝子(株)製の製品サイトップを、サイトップの溶剤にはパーフルオロトリブチルアミン(AGC旭硝子(株)製CYTOP CT-SOLV180)を用いた。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The organic semiconductor (di-n-hexyldithienobenzodithiophene) used in the examples was synthesized according to the production method described in JP-A-2015-224238. 7-Hydroxy-4-oxo-benzopyran (7HOB) was synthesized by the method described in Journal of Heterocyclic Chemistry, 2015, 52, 562 pages. Hexane, ethyl acetate, ethanol, carbon tetrachloride, dimethyl sulfoxide, sodium bicarbonate, N-methylpyrrolidone, methanol, isopropanol, dimethylformamide (DMF), dehydrated pyridine, tetrahydrofuran (THF), dehydrated tetrahydrofuran (THF), toluene, styrene Azoisobutyronitrile (AIBN) is a reagent manufactured by Wako Pure Chemical Industries, Ltd., dibutylhydroxytoluene (BHT), 4-dimethylaminopyridine, 2,3,4,5,6-pentafluorostyrene (PFS), and Methacryloyl chloride, pentafluorobenzenethiol, N-bromosuccinimide, trimethyltriphenylphosphonium bromide, and potassium-t-butoxide are reagents manufactured by Tokyo Chemical Industry, and are used for silica gel column chromatography. The manufacturing of Kiesel-Gel-60, poly (n- butyl acrylate), polyvinyl butyral, and poly (vinyl alcohol) is with a reagent manufactured by Sigma-Aldrich. Poly (n-octyl methacrylate) was synthesized according to the method described in Polymer Science, Series B, 2016, Vol. 58, No. 6, page 675. A product Cytop manufactured by AGC Asahi Glass Co., Ltd. was used for the fluorine-based cyclic ether polymer, and perfluorotributylamine (CYTOP CT-SOLV180 manufactured by AGC Asahi Glass Co., Ltd.) was used as the solvent for Cytop.
 7-メチル-4-オキソ-ベンゾピランはジャーナル・オブ・ヘテロサイクリック・ケミストリー誌、52巻、2号、562頁、2015年記載の方法により、7-ブロモメチル-4-オキソ-ベンゾピランはジャーナル・オブ・メディカル・ケミストリー誌、44巻、672頁、2001年記載の方法により、7-ホルミル-4-オキソ-ベンゾピランはジャーナル・オブ・オーガニック・ケミストリー誌、58巻、26号、7598頁、1993年記載の方法により、7-ビニル-4-オキソ-ベンゾピランはジャーナル・オブ・アメリカン・ケミカル・ソサエティー誌、126巻、12号、3856頁、2004年記載に方法により製造した。 7-Methyl-4-oxo-benzopyran was prepared according to the method described in Journal of Heterocyclic Chemistry, Vol. 52, No. 2, 562, 2015. 7-formyl-4-oxo-benzopyran is described in Journal of Organic Chemistry, Vol. 58, No. 26, p. 598, 1993, by the method described in Medical Chemistry, Vol. 44, 672, 2001. 7-vinyl-4-oxo-benzopyran was prepared by the method described in Journal of American Chemical Society, Vol. 126, No. 12, p. 3856, 2004.
 実施例において、NMR、重合体の溶解性、濾過性、スピンコート、膜厚測定、UV照射、真空蒸着、残膜率、接触角、及び表面張力、絶縁破壊強度、ディスペンサー印刷、隔壁の形成、有機トランジスタ素子の評価については、以下に示す条件・装置で実施した。
<NMR>
 JNM-ECZ400S FT-NMR(日本電子(株)製)を用いて重合体の重水素化クロロホルム溶剤を用いて測定した。
In Examples, NMR, polymer solubility, filterability, spin coating, film thickness measurement, UV irradiation, vacuum deposition, residual film rate, contact angle, surface tension, dielectric breakdown strength, dispenser printing, partition wall formation, The evaluation of the organic transistor element was carried out under the following conditions / apparatus.
<NMR>
JNM-ECZ400S FT-NMR (manufactured by JEOL Ltd.) was used for measurement using a polymer deuterated chloroform solvent.
 実施例5~9においては、以下の方法によりベンゾピラン基の含有量はH-NMRを用いて算出した。 In Examples 5 to 9, the content of benzopyran groups was calculated using 1 H-NMR by the following method.
 X=a(I+I)/{a(I+I)+bI
(ここで、Iはδ8.0~8.3ppmおけるピーク強度を、Iはδ6.0~6.5ppmおけるピーク強度を、Iはδ3.3~4.1ppmおけるピーク強度を表し、aは式(6)の置換基Zにおいてエステル基に隣接した炭素に結合している水素の数を、bは式(4)においてベンゾピラン基の置換基R、及びRの水素数の総和を表す。)
 実施例10~14においては、以下の方法により、ベンゾピラン基の含有量XはH-NMRを用いて下記の式により算出した。
X=(3I2-aI)/{(5-a)I1+2I
(ここで、Iはδ0.8~2.5ppmおけるピーク強度を、Iはδ6.0~8.5ppmおけるピーク強度を、aは式(4)または(5)においてフェニル基に結合している水素の数を表す。)
 実施例15~17においては、重合体をα,α,α,α’,α’,α’-ヘキサフルオロ-m-キシレン(HFMX)に溶解して調製した重合体溶液を内管にいれ、外管に重水素化クロロホルムを入れた2重管を用いて測定した。なお、NMRスペクトルに現れるδ7.68ppm、δ7.50ppm、及びδ7.28ppmの3つのピークはHFMXの芳香環の水素によるものである。
X = a (I 1 + I 2 ) / {a (I 1 + I 2 ) + bI 3 }
(Where I 1 represents the peak intensity at δ 8.0 to 8.3 ppm, I 2 represents the peak intensity at δ 6.0 to 6.5 ppm, and I 3 represents the peak intensity at δ 3.3 to 4.1 ppm, a represents the number of hydrogen atoms bonded to the carbon adjacent to the ester group in the substituent Z of the formula (6), and b represents the total number of hydrogen atoms of the substituents R 2 and R 3 of the benzopyran group in the formula (4). Represents.)
In Examples 10 to 14, the benzopyran group content X was calculated by the following method using 1 H-NMR according to the following formula.
X = (3I 2 −aI 1 ) / {(5-a) I1 + 2I 2 }
(Where I 1 is the peak intensity at δ 0.8 to 2.5 ppm, I 2 is the peak intensity at δ 6.0 to 8.5 ppm, and a is bonded to the phenyl group in formula (4) or (5). This represents the number of hydrogen atoms.)
In Examples 15 to 17, a polymer solution prepared by dissolving a polymer in α, α, α, α ′, α ′, α′-hexafluoro-m-xylene (HFMX) was placed in an inner tube, The measurement was performed using a double tube in which deuterated chloroform was put in the outer tube. Note that the three peaks of δ 7.68 ppm, δ 7.50 ppm, and δ 7.28 ppm appearing in the NMR spectrum are due to the hydrogen of the aromatic ring of HFMX.
 クロモン基の含有量XはH-NMRを用いて下記の式により算出した。 The content X of the chromone group was calculated by the following formula using 1 H-NMR.
 X=(4α―13)/(6+2α)
(ここで、α=I/Iであり、Iはδ3.0~δ1.0ppmのピーク積分値を、Iはδ4.5~δ3.8ppmのピーク積分値を表す。)
<スピンコート>
 ミカサ株式会社製MS―A100を用いた。
<膜厚測定>
 ブルカー社製DektakXTスタイラスプロファイラーを用いて測定した。
<UV照射>
 (株)ジーエス・ユアサ コーポレーション製UV-System、CSN-40A-2を用い、UV強度4.0kW/cmの条件で、搬送速度を変えてUV照射時間を調整した。
<真空蒸着>
 アルバック機工社製 小型真空蒸着装置VTR-350M/ERHを用いた。
<重合体の溶解性>
 テスト溶剤をトルエン、キシレン、メシチレン、及びテトラリンとし、これらの有機溶剤の何れかに溶解した場合に「溶解」、何れの溶剤にも溶解しない場合には「不溶」と評価した。
<濾過性>
 重合体を濃度5wt%となるようにテスト溶剤に溶解させて得られた溶液2MLをポアサイズ0.22μmのテフロン(登録商標)フィルターで濾過した際、濾過圧力の上昇、及び目詰まりがない場合に「良好」、それ以外の場合を「不良」と評価した。
<残膜率(耐溶剤性)>
 洗浄、乾燥した30×30mmのガラス(コーニング社製Eagle XG)上に、スピンコータ―を用いて重合体の溶液を乾燥後の膜厚が500nmとなるようにスピンコート製膜し、十分に乾燥させた。この絶縁膜に300mJ/cmの紫外線を照射して絶縁膜を光架橋した。この膜の厚みをブルカー社製DektakXTスタイラスプロファイラーにより測定し、Tとした。次に、この光架橋した絶縁膜がコーティングされたガラス板をトルエン、もしくは重合体の良溶剤I~IIIに1分浸漬後、取り出して常温でトルエンを揮発させ、その膜厚を測定しTとした。これらの膜厚測定値を用いて、残膜率を下記の式により算出した。
X = (4α−13) / (6 + 2α)
(Here, α = I 1 / I 2 , I 1 represents a peak integral value of δ3.0 to δ1.0 ppm, and I 2 represents a peak integral value of δ4.5 to δ3.8 ppm.)
<Spin coat>
MS-A100 manufactured by Mikasa Corporation was used.
<Film thickness measurement>
Measurements were made using a Bruker DektakXT stylus profiler.
<UV irradiation>
Using UV-System and CSN-40A-2 manufactured by GS Yuasa Corporation, the UV irradiation time was adjusted by changing the conveyance speed under the condition of UV intensity of 4.0 kW / cm 2 .
<Vacuum deposition>
A small vacuum deposition apparatus VTR-350M / ERH manufactured by ULVAC KIKOH Co., Ltd. was used.
<Polymer solubility>
When the test solvent was toluene, xylene, mesitylene, and tetralin, it was evaluated as “dissolved” when dissolved in any of these organic solvents, and “insoluble” when not dissolved in any of the solvents.
<Filterability>
When 2ML of the solution obtained by dissolving the polymer in the test solvent so as to have a concentration of 5 wt% is filtered through a Teflon (registered trademark) filter having a pore size of 0.22 μm, and there is no increase in filtration pressure and clogging. “Good” and other cases were evaluated as “bad”.
<Residual film rate (solvent resistance)>
A polymer solution is spin-coated on a cleaned and dried 30 × 30 mm 2 glass (Corning Eagle XG) using a spin coater so that the film thickness after drying is 500 nm, and is sufficiently dried. I let you. This insulating film was irradiated with 300 mJ / cm 2 of ultraviolet rays to photocrosslink the insulating film. The thickness of this film was measured by Bruker DektakXT stylus profiler and a T 0. Then, 1 minute after immersion in a good solvent I ~ III of the glass plate the photocrosslinked insulating film is coated toluene, or the polymer, evaporate the toluene at room temperature was taken out, T 1 and measure the thickness It was. Using these measured film thicknesses, the remaining film ratio was calculated by the following equation.
 残膜率=T/T×100(%)
 ここで、重合体の良溶剤I~IIIとしては1,3-ビス(トリフルオロメチル)ベンゼン(溶剤I、東京化成製試薬)、トリス(ノナフルオロブチル)アミン(溶剤II、3Mジャパン製Fluorinert(商標)FC-43)、ジ-ノナフルオロブチル-ペンタフルオロエチルアミン(溶剤III、旭硝子製CT-Solvent(商標)―180)を用いた。
Remaining film ratio = T 1 / T 0 × 100 (%)
Here, as the good solvents I to III of the polymer, 1,3-bis (trifluoromethyl) benzene (solvent I, a reagent manufactured by Tokyo Chemical Industry), tris (nonafluorobutyl) amine (solvent II, Fluorinert (manufactured by 3M Japan) ( (Trademark) FC-43) and di-nonafluorobutyl-pentafluoroethylamine (solvent III, CT-Solvent (trademark) -180 manufactured by Asahi Glass).
 残膜率が低い程、光架橋が不十分で耐溶剤性に劣ることを示し、残膜率が0%の場合には膜が完全溶解したことを示す。
<接触角、及び表面張力>
 液体、及び基材の表面張力をそれぞれγ、及びγとするとき、γ>γの場合には液体は基材にはじかれ、接触角θは大きくなる(例えば、接触角θ≧60)。一方、γ<γの場合には液体は基材上に濡れ広がり、接触角θは小さくなる(例えば、接触角θ<50)。
The lower the remaining film ratio, the less photocrosslinking and the poor solvent resistance. When the remaining film ratio is 0%, the film is completely dissolved.
<Contact angle and surface tension>
When the surface tensions of the liquid and the substrate are γ L and γ S , respectively, when γ L > γ S , the liquid is repelled by the substrate and the contact angle θ becomes large (for example, contact angle θ ≧ 60). On the other hand, when γ LS , the liquid spreads on the substrate and the contact angle θ becomes small (for example, the contact angle θ <50).
 接触角は協和界面科学(株)製の接触角計ドロップマスターDM300を用いて測定した。なお、重合体の表面張力γは下記(1)~(3)の手順に従い求めた。
(1)ガラス上に重合体をスピンコートして成膜した重合体膜と水、及びジヨードメタンとの接触角θを測定した。
(2)得られた接触角θから下記の式を用いて重合体膜の表面張力の分散項(γ )、及び極性項(γ )を求めた。
The contact angle was measured using a contact angle meter drop master DM300 manufactured by Kyowa Interface Science Co., Ltd. The surface tension γ s of the polymer was determined according to the following procedures (1) to (3).
(1) The contact angle θ between a polymer film formed by spin-coating a polymer on glass, water, and diiodomethane was measured.
(2) The dispersion term (γ S d ) and the polar term (γ S p ) of the surface tension of the polymer film were determined from the obtained contact angle θ using the following formula.
Figure JPOXMLDOC01-appb-M000107
Figure JPOXMLDOC01-appb-M000107
(ここで、θは接触角を、γ、γ 、及びγ は測定溶剤の表面張力、表面張力の分散項、及び、表面張力の極性項を、γ、γ 、及びγ は重合体膜の表面張力、表面張力の分散項、及び、表面張力の極性項を表す。)
(3)γ 、及びγ から下記の式によって重合体膜の表面張力γを求めた。
(Where θ is the contact angle, γ L , γ L d , and γ L p are the surface tension of the measurement solvent, the surface tension dispersion term, and the surface tension polarity term, γ S , γ S d , and gamma S p represents the surface tension of the polymer film, the surface tension dispersion terms, and a polar term of the surface tension.)
(3) The surface tension γ S of the polymer film was determined from γ S d and γ S p by the following formula.
Figure JPOXMLDOC01-appb-M000108
Figure JPOXMLDOC01-appb-M000108
<絶縁破壊強度>
 洗浄、乾燥した30×30mmのガラス(コーニング社製Eagle XG)に銀を真空蒸着し、厚み30nmの電極を形成した。その後、電極を形成した基材上に重合体(絶縁体)を製膜し、該重合体膜上に金電極を真空蒸着してMIM(Metal Insulator Metal)コンデンサを作製し、上記の銀-金電極間に電圧をかけて、絶縁破壊により電流が誘電体層内部を流れ始める電圧を測定し、該重合体膜の厚みで割った値を絶縁破壊強度とした。
<ディスペンサー印刷>
 武蔵エンジニアリング(株)製IMAGE MASTER 350PC SMARTを用いた。
<隔壁の形成>
 10cm×10cmの石英ガラスに、一辺が10ミクロンの正方形を縦に10個、横に10個配列した形状をクロムでパターニングしたマスク(隔壁形成用マスク)を用いた。基材上に印刷した厚み100nmの重合体膜上にマスクを配置し、100mJ/cmの紫外線を照射した後、未架橋部分を重合体の良溶剤で洗浄除去することにより、膜上に50×50μmサイズの穴が100個空いた形状の隔壁を形成した。
<有機トランジスタ素子の評価>
 有機電界効果トランジスタの一形態であるトップゲート・ボトムコンタクト(TGBC)型素子、またはボトムゲート・ボトムコンタクト(BGBC)型素子を作製し、ケースレイ社製半導体パラメータアナライザーSCS4200を用い、ソース・ドレイン間電圧をマイナス60ボルトとして、ゲート電圧を変化させることにより、移動度、閾値電圧、漏洩電流を評価した。
<Dielectric breakdown strength>
Silver was vacuum-deposited on washed and dried 30 × 30 mm 2 glass (Eagle XG manufactured by Corning) to form an electrode having a thickness of 30 nm. Thereafter, a polymer (insulator) is formed on the substrate on which the electrode is formed, and a gold electrode is vacuum-deposited on the polymer film to produce a MIM (Metal Insulator Metal) capacitor. A voltage was applied between the electrodes, and a voltage at which a current began to flow inside the dielectric layer due to dielectric breakdown was measured. A value divided by the thickness of the polymer film was taken as dielectric breakdown strength.
<Dispenser printing>
An IMAGE MASTER 350PC SMART manufactured by Musashi Engineering Co., Ltd. was used.
<Formation of partition walls>
A mask (partition forming mask) obtained by patterning 10 square × 10 micron squares 10 × 10 cm in a 10 cm × 10 cm square with 10 in a row and 10 in a horizontal pattern was used. A mask is placed on a polymer film having a thickness of 100 nm printed on a substrate, irradiated with 100 mJ / cm 2 of ultraviolet rays, and then uncrosslinked parts are washed and removed with a good solvent of the polymer to thereby remove 50 on the film. A partition wall having a shape of 100 holes of × 50 μm 2 size was formed.
<Evaluation of organic transistor element>
A top gate / bottom contact (TGBC) type element or a bottom gate / bottom contact (BGBC) type element, which is one form of an organic field effect transistor, is manufactured, and source-drain is used using a semiconductor parameter analyzer SCS4200 manufactured by Keithley The mobility, threshold voltage, and leakage current were evaluated by changing the gate voltage at a voltage of minus 60 volts.
 以下に実施例を示すが、ポリマーの合成反応、精製、乾燥は全てイエローライト下、又は遮光下で行った。なお、実施例において、イエローライト下又は遮光下で行ったのは、前述の光重合性化合物の光架橋反応、及び該光重合性化合物が導入された重合体の光架橋反応を防ぐためである。 Examples are shown below, but the polymer synthesis reaction, purification, and drying were all performed under yellow light or under light shielding. In the examples, the reason why the reaction was carried out under yellow light or under light shielding was to prevent the photocrosslinking reaction of the photopolymerizable compound and the photocrosslinking reaction of the polymer into which the photopolymerizable compound was introduced. .
 (実施例1) 7-メタクリロイルオキシ-4-オキソ-ベンゾピラン(7MOB)の合成
 窒素導入管を備えた100MLの2口フラスコに撹拌子を入れ、7-ヒドロキシ-4-オキソ-ベンゾピラン5g、脱水ピリジン4.9g、4-ジメチルアミノピリジン0.8gを仕込んだ。次に、脱水THF50MLを仕込んで、室温で撹拌し、均一溶液を得た。得られた溶液を氷冷した後、注射器を用いて塩化メタクリロイル6.0MLをゆっくり添加した。添加後、氷冷下で1時間、室温で2時間反応させた。反応後、溶剤、ピリジン、及び塩化メタクリロイルを減圧留去し、塩化メチレン50ML及び水50MLを加えた。この液を分液ロートに移し、塩化メチレン層を分離した。この塩化メチレン層を、濃塩酸5MLを加えた水100MLで3回洗浄し、更に飽和炭酸水素ナトリウム水溶液100MLで3回洗浄した。更に、飽和食塩水100MLで3回洗浄した。洗浄した塩化メチレン層を濃縮・乾固させて固体4.9gを得た。得られた固体をエタノールにより再結晶して目的とする7-メタクリロイルオキシ-4-オキソ-ベンゾピラン(7MOB)3.8gを得た。得られた7MOBのH-NMRチャートを図2に、13C-NMRチャートを図3に示す。
Example 1 Synthesis of 7-methacryloyloxy-4-oxo-benzopyran (7MOB) A stirrer was placed in a 100 mL two-necked flask equipped with a nitrogen inlet tube, 5 g of 7-hydroxy-4-oxo-benzopyran, dehydrated pyridine 4.9 g and 4-dimethylaminopyridine 0.8 g were charged. Next, 50 mL of dehydrated THF was charged and stirred at room temperature to obtain a uniform solution. After cooling the resulting solution with ice, 6.0 mL of methacryloyl chloride was slowly added using a syringe. After the addition, the reaction was allowed to proceed for 1 hour under ice cooling and 2 hours at room temperature. After the reaction, the solvent, pyridine, and methacryloyl chloride were distilled off under reduced pressure, and 50 mL of methylene chloride and 50 mL of water were added. This liquid was transferred to a separatory funnel and the methylene chloride layer was separated. This methylene chloride layer was washed 3 times with 100 mL of water to which 5 mL of concentrated hydrochloric acid was added, and further washed 3 times with 100 mL of a saturated aqueous sodium hydrogen carbonate solution. Further, it was washed with 100 mL of saturated saline three times. The washed methylene chloride layer was concentrated and dried to obtain 4.9 g of a solid. The obtained solid was recrystallized from ethanol to obtain 3.8 g of the intended 7-methacryloyloxy-4-oxo-benzopyran (7MOB). The obtained 1 MO-NMR chart of 7MOB is shown in FIG. 2, and the 13 C-NMR chart is shown in FIG.
 H-NMR(400MHz、CDCl):δ8.23(d,-O-CH=CH-,1H),δ7.86(d,芳香族,1H),δ7.31(d,芳香族,1H),δ7.19(dd,芳香族,1H),δ6.39(d,-O-CH=CH,1H),δ6.33(s,t,CH=C<,1H),δ5.98(t,CH=C<,1H),δ2.07(s,-CH,1H)
 13C-NMR(400MHz、CDCl):δ(ppm)176.61(-C(O)-CH=CH-O-),164.70(-OC(O)-C(CH)=),156.74(芳香族),155.33(芳香族),154.65(芳香族),135.02(CH=CH<),128.21(芳香族),126.93(CH=C<),122.38(芳香族),119.38(芳香族),112.86(芳香族),110.95(芳香族),18.08(CH=C(CH)-)
 (実施例2)7-ビニル-4-オキソ-ベンゾピラン(7VOB)の合成
 <7-メチル-4-オキソ-ベンゾピラン(7MeOB)の合成>
 撹拌子を入れた1Lのビーカーに2’-ヒドロキシ-4’-メチルアセトフェノン(東京化成、試薬)25g、トリエチルオルトフォルメート(東京化成、試薬)142.5gを入れ、均一に混合した後、27.9gの過塩素酸(東京化成、試薬)を分割して添加し、撹拌下で2時間20分反応させた。その後、反応溶液に撹拌下で無水ジエチルエーテル(東京化成、試薬)500MLを注ぎ入れ、反応物を沈殿させた。沈殿物を濾過し、ジエチルエーテルで3回洗浄後、得られた緑色固体を1000mLのビーカーに移し、水500MLを添加して95℃で2時間半反応させた。得られた赤紫色の反応溶液を冷却し、室温で一昼夜静置した。反応溶液に200MLのジクロロメタンを加えて、十分に撹拌した後、分液ロートに移し、ジクロロメタン層を分離した。水層にジクロロメタンを加えて抽出操作を2回行い、上述のジクロロメタン層に加えた上で、エバポレーターにより濃縮、乾固させて濃赤茶色の固体を得た。この固体をヘキサンを用いて2回再結晶精製し、13gの7MeOBを得た。
1 H-NMR (400 MHz, CDCl 3 ): δ 8.23 (d, —O—CH═CH—, 1H), δ 7.86 (d, aromatic, 1H), δ 7.31 (d, aromatic, 1H ), Δ 7.19 (dd, aromatic, 1H), δ 6.39 (d, —O—CH═CH, 1H), δ 6.33 (s, t, CH 2 = C <, 1H), δ 5.98. (T, CH 2 = C <, 1H), δ2.07 (s, —CH 3 , 1H)
13 C-NMR (400 MHz, CDCl 3 ): δ (ppm) 176.61 (—C (O) —CH═CH—O—), 164.70 (—OC (O) —C (CH 3 ) =) , 156.74 (aromatic), 155.33 (aromatic), 154.65 (aromatic), 135.02 (CH 2 = CH <), 128.21 (aromatic), 126.93 (CH 2 = C <), 122.38 (aromatic), 119.38 (aromatic), 112.86 (aromatic), 110.95 (aromatic), 18.08 (CH 2 = C (CH 3) - )
Example 2 Synthesis of 7-vinyl-4-oxo-benzopyran (7VOB) <Synthesis of 7-methyl-4-oxo-benzopyran (7MeOB)>
In a 1 L beaker containing a stir bar, 25 g of 2′-hydroxy-4′-methylacetophenone (Tokyo Kasei, reagent) and 142.5 g of triethylorthoformate (Tokyo Kasei, reagent) were added and mixed uniformly. .9 g of perchloric acid (Tokyo Kasei, reagent) was added in portions and reacted for 2 hours and 20 minutes with stirring. Thereafter, 500 mL of anhydrous diethyl ether (Tokyo Kasei, reagent) was poured into the reaction solution with stirring to precipitate the reaction product. The precipitate was filtered and washed three times with diethyl ether. The obtained green solid was transferred to a 1000 mL beaker, and 500 mL of water was added and reacted at 95 ° C. for 2.5 hours. The resulting red-purple reaction solution was cooled and allowed to stand overnight at room temperature. After adding 200 mL of dichloromethane to the reaction solution and stirring sufficiently, it was transferred to a separatory funnel and the dichloromethane layer was separated. Dichloromethane was added to the aqueous layer, and the extraction operation was performed twice. After adding to the dichloromethane layer described above, the mixture was concentrated and dried by an evaporator to obtain a dark red-brown solid. This solid was recrystallized and purified twice using hexane to obtain 13 g of 7MeOB.
 H-NMR(CDCl,400MHz)δ8.08(d,1H,-CH=CH-),δ7.81(d,1H,芳香族),δ7.24(s,1H,芳香族),δ7.21(d,1H,芳香族),δ6.30(d,1H,-CH=CH-), δ2.48(s,3H,-CH)。 1 H-NMR (CDCl 3 , 400 MHz) δ 8.08 (d, 1H, —CH═CH—), δ 7.81 (d, 1H, aromatic), δ 7.24 (s, 1H, aromatic), δ7 .21 (d, 1H, aromatic), δ 6.30 (d, 1H, —CH═CH—), δ 2.48 (s, 3H, —CH 3 ).
 <7-ブロモメチル-4-オキソ-ベンゾピラン(7BMOB)の合成>
 窒素ボックス中で、500MLのシュレンク管に7MeOB11.8g、N-ブロモスクシンイミド22.8g、アゾビスイソブチルニトリル(AIBN)0.15g、脱水した四塩化炭素350MLを仕込んだ。窒素気流下で攪拌し、内容物を溶解させた上で加熱し、還流下で4時間反応させた。反応後、氷冷して濾過し、濾液を濃縮し、真空ポンプで残存溶剤を取り除き乾固させた。得られた固体をヘキサンで再結晶し、4.3gの7BMOBを得た。
<Synthesis of 7-bromomethyl-4-oxo-benzopyran (7BMOB)>
In a nitrogen box, a 500 mL Schlenk tube was charged with 11.8 g of 7MeOB, 22.8 g of N-bromosuccinimide, 0.15 g of azobisisobutylnitrile (AIBN), and 350 mL of dehydrated carbon tetrachloride. The mixture was stirred under a stream of nitrogen to dissolve the contents, heated, and reacted for 4 hours under reflux. After the reaction, the reaction mixture was cooled with ice and filtered. The filtrate was concentrated, and the residual solvent was removed with a vacuum pump to dryness. The obtained solid was recrystallized from hexane to obtain 4.3 g of 7BMOB.
 H-NMR(CDCl,400MHz)δ8.18(d,1H,-CH=CH-),δ7.49(d,1H,芳香族),δ7.86(d,1H,芳香族),δ7.42(d,1H,芳香族),δ6.34(d,1H,-CH=CH-),δ4.54(s,2H,-CHBr)。 1 H-NMR (CDCl 3 , 400 MHz) δ 8.18 (d, 1H, —CH═CH—), δ 7.49 (d, 1H, aromatic), δ 7.86 (d, 1H, aromatic), δ7 .42 (d, 1H, aromatic), δ 6.34 (d, 1H, —CH═CH—), δ 4.54 (s, 2H, —CH 3 Br).
 <7-ホルミル-4-オキソ-ベンゾピラン(7FOB)の合成>
 300MLの反応器に炭酸水素ナトリウム29g、ジメチルスルホキシド230MLを仕込み、攪拌下、100℃に加熱した。この中に、7BMOB4.5gを分割添加し、添加後、1時間反応後、反応液を氷1kgを入れたビーカーに注いで生成物を沈殿させた。このスラリーに塩化メチレンを加え、分液ロートで有機層を分離した。有機層を飽和食塩水で洗浄した後、エバポレータで濃縮、乾固させた。得られた固体をシリカゲルカラムクロマトグラフィーにより分離し、1.7gの7FOBを得た。
<Synthesis of 7-formyl-4-oxo-benzopyran (7FOB)>
A 300 mL reactor was charged with 29 g of sodium hydrogen carbonate and 230 mL of dimethyl sulfoxide and heated to 100 ° C. with stirring. To this, 4.5 g of 7BMOB was added in portions, and after the addition, after reacting for 1 hour, the reaction solution was poured into a beaker containing 1 kg of ice to precipitate the product. Methylene chloride was added to this slurry, and the organic layer was separated with a separatory funnel. The organic layer was washed with saturated brine, and then concentrated to dryness with an evaporator. The obtained solid was separated by silica gel column chromatography to obtain 1.7 g of 7FOB.
 H-NMR(CDCl,400MHz)δ10.15(s,1H,-CHO),δ8.38(d,1H,-CH=CH-),δ7.98(d,1H,芳香族),δ7.95(d,1H,芳香族),δ7.95(d,1H,芳香族),δ7.91(dd,1H,芳香族),δ6.43(d,1H,-CH=CH-)。 1 H-NMR (CDCl 3 , 400 MHz) δ 10.15 (s, 1 H, —CHO), δ 8.38 (d, 1 H, —CH═CH—), δ 7.98 (d, 1 H, aromatic), δ 7 .95 (d, 1 H, aromatic), δ 7.95 (d, 1 H, aromatic), δ 7.91 (dd, 1 H, aromatic), δ 6.43 (d, 1 H, —CH═CH—).
 <7-ビニル-4-オキソ-ベンゾピラン(7VOB)の合成>
 50MLのシュレンク管に0.92gのメチルトリフェニルホスフィニウムブロミド、10gのTHFを仕込んだ後、カリウム-t-ブトキサイド0.29gを14gのTHFに溶解させた溶液を仕込んだ。窒素シールした状態で攪拌下、室温で4時間反応させた後、7FOB0.3gを10gのTHFに部分溶解させたスラリーを5分間かけて、ゆっくりと添加した。添加終了後、室温で19時間反応させた。反応溶液を希塩酸水溶液に注ぎ、更にクロロホルム100MLを添加し、十分に攪拌した後、分液ロートに移してクロロホルム層を分離した。残った水層をクロロホルムで3回抽出し、全てのクロロホルム溶液を合わせてエバポレータにより濃縮し、赤褐色のオイル状物を得た。酢酸エチルを移動相としたシリカゲルカラムクロマトグラフィにより上記オイル状物を分離して、黄色結晶として0・06gの7-ビニル-4-オキソ-ベンゾピラン(7VOB)を得た。得られた7VOBのH-NMRチャートを図4に示す。
<Synthesis of 7-vinyl-4-oxo-benzopyran (7VOB)>
A 50 ML Schlenk tube was charged with 0.92 g of methyltriphenylphosphinium bromide and 10 g of THF, and then a solution of 0.29 g of potassium tert-butoxide in 14 g of THF was charged. After reacting for 4 hours at room temperature under stirring with nitrogen sealed, a slurry in which 0.3 g of 7FOB was partially dissolved in 10 g of THF was slowly added over 5 minutes. After completion of the addition, the mixture was reacted at room temperature for 19 hours. The reaction solution was poured into a dilute hydrochloric acid aqueous solution, and further 100 mL of chloroform was added and stirred sufficiently, and then transferred to a separatory funnel to separate the chloroform layer. The remaining aqueous layer was extracted three times with chloroform, and all the chloroform solutions were combined and concentrated by an evaporator to obtain a reddish brown oil. The oily product was separated by silica gel column chromatography using ethyl acetate as a mobile phase to obtain 0.06 g of 7-vinyl-4-oxo-benzopyran (7VOB) as yellow crystals. FIG. 4 shows a 1 H-NMR chart of the obtained 7VOB.
 H-NMR(CDCl,400MHz)δ8.16(d,1H,-CH=CH-),δ7.84(d,1H,芳香族),δ7.48(d,1H,芳香族),δ7.42(s,1H,芳香族),δ6.79(q,1H,-CH=),δ6.33(d,1H,-CH=CH-),δ5.95(d,1H,=CH),δ5.49(d,1H,=CH)。 1 H-NMR (CDCl 3 , 400 MHz) δ 8.16 (d, 1H, —CH═CH—), δ 7.84 (d, 1H, aromatic), δ 7.48 (d, 1H, aromatic), δ7 .42 (s, 1H, aromatic), δ 6.79 (q, 1H, —CH =), δ 6.33 (d, 1H, —CH═CH—), δ 5.95 (d, 1H, ═CH 2 ), Δ 5.49 (d, 1H, ═CH 2 ).
 (実施例3) ビス(7-(4-オキソ-ベンゾピラニル))フマレート(BOBF)の合成
 窒素下で、100MLのシュレンク管に7-ヒドロキシ-4-オキソ-ベンゾピラン5.0g、4-ジメチルアミノピリジン0.15g、N-メチルピロリドン50gを仕込み、攪拌下で固形物を溶解させた後、氷冷した。次に、フマリルクロリド1.9gをゆっくりと滴下し、滴下完了後、氷冷下で30分反応させた。更に室温で1.5時間反応させた後、反応物を水300mLに注ぎ、沈殿物を濾過し黒茶色の固体を得た。本固体をエタノール中に添加し攪拌下で30分間洗浄し、濾過した。得られた茶色の固体をエタノールとN-メチルピロリドンの混合溶剤を用いて再結晶し、薄茶色の針状結晶としてビス(7-(4-オキソ-ベンゾピラニル))フマレート0.8gを得た。得られたBOBFのH-NMRチャートを図5に示す。
Example 3 Synthesis of bis (7- (4-oxo-benzopyranyl)) fumarate (BOBF) Under nitrogen, 5.0 g of 7-hydroxy-4-oxo-benzopyran, 4-dimethylaminopyridine was added to a 100 mL Schlenk tube. 0.15 g and N-methylpyrrolidone 50 g were charged, and the solid matter was dissolved under stirring, followed by ice cooling. Next, 1.9 g of fumaryl chloride was slowly added dropwise, and after completion of the addition, the reaction was allowed to proceed for 30 minutes under ice cooling. After further reaction at room temperature for 1.5 hours, the reaction product was poured into 300 mL of water, and the precipitate was filtered to obtain a black brown solid. The solid was added into ethanol, washed with stirring for 30 minutes, and filtered. The obtained brown solid was recrystallized using a mixed solvent of ethanol and N-methylpyrrolidone to obtain 0.8 g of bis (7- (4-oxo-benzopyranyl)) fumarate as light brown needle-like crystals. A 1 H-NMR chart of the obtained BOBF is shown in FIG.
 H-NMR(400MHz、DMSO-d):δ8.31(d,-O-CH=CH-C(O)-,2H),δ8.11(d,芳香族,2H),δ7.68(d,芳香族,2H),δ7.41(dd,芳香族,2H),δ7.25(s,-C(O)-CH=CH-C(O)-,2H),δ6.37(d,-O-CH=CH-C(O)-,1H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.31 (d, —O—CH═CH—C (O) —, 2H), δ 8.11 (d, aromatic, 2H), δ 7.68 (D, aromatic, 2H), δ 7.41 (dd, aromatic, 2H), δ 7.25 (s, —C (O) —CH═CH—C (O) —, 2H), δ 6.37 ( d, —O—CH═CH—C (O) —, 1H).
 (実施例4)6-(クロモン-7-オキシ)ヘキサメチルメタクリレート(6CHMA)の合成
 7-(6-ヒドロキシヘキサノイル)-4H-クロモン-1-オン(HHC)はジャーナル・オブ・メディカル・ケミストリー誌、2014年、57巻22号、9343頁記載の方法により合成した。100MLのフラスコにHHC3.0g、ピリジン1.4g、4-ジメチルアミノピリジン0.14g、脱水テトラヒドロフラン(THF)24gを仕込み、室温で撹拌して均一溶液を得た。この溶液を氷冷により冷却した後、塩化メタクリロイル1.8gをゆっくりと添加した。その後、撹拌下で3時間反応を行い、微量のジブチルヒドロキシトルエン(BHT)を添加した後、50℃、減圧下で溶剤等の揮発分を全て留去した。得られた固形物に塩化メチレン50mL、及び水200mLを添加して固形物を溶解させた。次に、得られた溶液を分液ロートに移して、35%塩酸5mLを加えて塩化メチレン層(油層)を洗浄した後、油層を分離した。この油層を飽和炭酸カルシウム水溶液で3回、飽和食塩水で2回洗浄し、相分離濾紙で濾過して油層のみを分離した。この油層に微量のBHTを加え、エバポレータで濃縮して赤橙色の液体から、真空ポンプにより揮発分を除去することにより3.0gの6CHMA(橙色結晶)を得た。得られた6CHMAのH-NMRを図6に示す。
Example 4 Synthesis of 6- (chromone-7-oxy) hexamethyl methacrylate (6CHMA) 7- (6-hydroxyhexanoyl) -4H-chromon-1-one (HHC) is a journal of medical chemistry. It was synthesized by the method described in Journal, 2014, Vol. 57, No. 22, page 9343. A 100 mL flask was charged with 3.0 g of HHC, 1.4 g of pyridine, 0.14 g of 4-dimethylaminopyridine, and 24 g of dehydrated tetrahydrofuran (THF), and stirred at room temperature to obtain a uniform solution. After this solution was cooled by ice cooling, 1.8 g of methacryloyl chloride was slowly added. Thereafter, the reaction was carried out for 3 hours with stirring, and after adding a small amount of dibutylhydroxytoluene (BHT), all volatile components such as solvent were distilled off at 50 ° C. under reduced pressure. To the obtained solid, 50 mL of methylene chloride and 200 mL of water were added to dissolve the solid. Next, the obtained solution was transferred to a separatory funnel, 5 mL of 35% hydrochloric acid was added to wash the methylene chloride layer (oil layer), and then the oil layer was separated. This oil layer was washed three times with a saturated calcium carbonate aqueous solution and twice with a saturated saline solution, and filtered with a phase separation filter paper to separate only the oil layer. A small amount of BHT was added to the oil layer, and the mixture was concentrated by an evaporator, and volatile matter was removed from the reddish orange liquid by a vacuum pump to obtain 3.0 g of 6CHMA (orange crystals). The 1 H-NMR of the obtained 6CHMA is shown in FIG.
 H-NMR(400MHz、CDCl):δ8.10(d,-CH=CH-,1H),δ7.78(d,芳香族,1H),δ6.96(dd, 芳香族,1H),δ6.82(s,芳香族,1H),δ6.28(d,-CH=CH- ,1H),δ6.10(s,>C=CH-,1H),δ5.56(s,>C=CH-,1H),δ4.17(t,-CHOC(O)-,2H),δ4.04(t,―OCH―,2H),δ1.95(s,-CH,3H),δ1.87~1.47(m,-(CH-,8H)
 (実施例5)
 イソブチルメタクリレート1.05g、7MOB0.45g、DMF7.5g、及びAIBN93mgを20MLシュレンク管に仕込み、十分に脱気した後、窒素シール下、65℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した。濾過した重合体を塩化メチレン10MLに溶解させ、撹拌下でメタノール300MLに注いで沈殿させ、沈殿物を濾過、減圧乾燥して1.0gの粉末状重合体1を得た。得られた重合体1は29モル%の7-メタクリロイルオキシ-4-オキソ-ベンゾピラン単位を含有していた。得られた重合体1のH-NMR
チャートを図7に示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 8.10 (d, —CH═CH—, 1H), δ 7.78 (d, aromatic, 1H), δ 6.96 (dd, aromatic, 1H), δ 6.82 (s, aromatic, 1H), δ 6.28 (d, —CH═CH—, 1H), δ 6.10 (s,> C═CH 2 —, 1H), δ 5.56 (s,> C = CH 2 —, 1H), δ 4.17 (t, —CH 2 OC (O) —, 2H), δ 4.04 (t, —OCH 2 —, 2H), δ 1.95 (s, —CH 3 , 3H), δ 1.87 to 1.47 (m, — (CH 2 ) 4 —, 8H)
(Example 5)
1.05 g of isobutyl methacrylate, 0.45 g of 7MOB, 7.5 g of DMF, and 93 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 65 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and precipitated. The precipitate was filtered and dried under reduced pressure to obtain 1.0 g of powdery polymer 1. The resulting polymer 1 contained 29 mol% of 7-methacryloyloxy-4-oxo-benzopyran units. 1 H-NMR of the obtained polymer 1
A chart is shown in FIG.
 H-NMR(400MHz、CDCl):δ8.21(br,-C(O)-CH=CH-O-),δ7.87(br,芳香族),δ7.38~7.13(m,芳香族),δ6.34(br,-C(O)-CH=CH-O-),δ2.07~1.83(m,>C(CH)-,>CH-),δ1.22~0.96(m,-CH-,-CH 1 H-NMR (400 MHz, CDCl 3 ): δ 8.21 (br, —C (O) —CH═CH—O—), δ 7.87 (br, aromatic), δ 7.38 to 7.13 (m , Aromatic), δ6.34 (br, —C (O) —CH═CH—O—), δ2.07 to 1.83 (m,> C (CH 3 ) —,> CH—), δ1. 22 to 0.96 (m, —CH 2 —, —CH 3 )
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
<有機トランジスタ素子の作製及び評価>
 洗浄、乾燥した30×30mmのガラス(基材)(コーニング社製Eagle XG)にジクロロジパラキシリレン(日本パリレン社製、商品名DPX-C)0.2gをラボコータ(日本パリレン社製、商品名PDS2010)を用いて真空蒸着し、ポリ(パラクロロキシリレン)の平坦化層を形成した。さらに平坦化層上にマスクを用いて銀電極を真空蒸着し、厚み30nmの電極を形成した。その後、直ちにペンタフルオロベンゼンチオール30mmol/Lの2-プロパノール溶液に浸漬し、5分間経過した時点で取り出し、2-プロパノールで洗浄後、ブロー乾燥した。電極を形成した基材上に、2,7-ジ(n-ヘキシル)ジチエノベンゾジチオフェンの0.2wt%トルエン溶液をドロップキャストし、室温下(25℃)で自然乾燥させ有機半導体層を形成した。さらに有機半導体層上に重合体1の2-ブタノール溶液(5wt%)を500rpm×5秒、1000rpm×20秒の条件でスピンコートし、100℃で10分間乾燥した。この素子にコンタクトホール用マスクを用い、紫外線強度4kW/cmの光源を用い、室温で紫外線を5.4秒照射して紫外線照射量300mJ/cmの条件で光架橋し、膜厚590nmのゲート絶縁層を形成した。さらに、このゲート絶縁層上にマスクを用いて厚み30nmの銀電極を真空蒸着した。次に、この素子をトルエンに1分浸漬してコンタクトホールを形成し、トップゲート・ボトムコンタクト(TGBC)型有機トランジスタ素子を作製した。作製した有機トランジスタの評価結果等を表1に示す。
<Production and evaluation of organic transistor element>
Labo Coater (Nippon Parylene Co., Ltd., commercial product) 0.2 g of dichlorodiparaxylylene (Nippon Parylene Co., Ltd., trade name DPX-C) on 30 x 30 mm 2 glass (base material) (Corning Eagle XG) No. PDS2010) was vacuum-deposited to form a planarization layer of poly (parachloroxylylene). Further, a silver electrode was vacuum-deposited on the planarizing layer using a mask to form an electrode having a thickness of 30 nm. Then, it was immediately immersed in a 2-propanol solution of pentafluorobenzenethiol 30 mmol / L, taken out after 5 minutes, washed with 2-propanol, and blow-dried. On the substrate on which the electrode is formed, a 0.2 wt% toluene solution of 2,7-di (n-hexyl) dithienobenzodithiophene is drop-cast, and naturally dried at room temperature (25 ° C.) to form an organic semiconductor layer. Formed. Further, a 2-butanol solution (5 wt%) of polymer 1 was spin-coated on the organic semiconductor layer under conditions of 500 rpm × 5 seconds and 1000 rpm × 20 seconds, and dried at 100 ° C. for 10 minutes. A contact hole mask was used for this element, a UV light intensity of 4 kW / cm 2 was used, UV irradiation was performed at room temperature for 5.4 seconds, and photocrosslinking was performed at a UV irradiation amount of 300 mJ / cm 2 . A gate insulating layer was formed. Further, a silver electrode having a thickness of 30 nm was vacuum deposited on the gate insulating layer using a mask. Next, this element was immersed in toluene for 1 minute to form a contact hole, and a top gate / bottom contact (TGBC) type organic transistor element was produced. Table 1 shows the evaluation results and the like of the manufactured organic transistor.
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
 重合体1は低いUV照射量で光架橋し、耐溶剤性に優れた絶縁層を形成することが確認され、コンタクトホールの形成も容易であった。また、作製した有機トランジスタは漏洩電流が小さく、絶縁性にも優れていることを確認した。 Polymer 1 was photocrosslinked with a low UV dose, and it was confirmed that an insulating layer having excellent solvent resistance was formed, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
 (実施例6)
 イソブチルメタクリレート0.78g、7MOB0.23g、DMF5.0g、及びAIBN109mgを20MLシュレンク管に仕込み、十分に脱気した後、窒素シール下、68℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した。濾過した重合体を塩化メチレン10MLに溶解させ、撹拌下でメタノール300MLに注いで沈殿させ、沈殿物を濾過、減圧乾燥して0.55gの重合体2を得た。得られた重合体2は19モル%の7-メタクリロイルオキシ-4-オキソ-ベンゾピラン単位を含有していた。
(Example 6)
0.78 g of isobutyl methacrylate, 0.23 g of 7MOB, 5.0 g of DMF, and 109 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 68 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and precipitated. The precipitate was filtered and dried under reduced pressure to obtain 0.55 g of Polymer 2. The resulting polymer 2 contained 19 mol% 7-methacryloyloxy-4-oxo-benzopyran units.
 H-NMR(400MHz、CDCl):δ8.21(br,-C(O)-CH=CH-O-),δ7.87(br,芳香族),δ7.38~7.13(m,芳香族),δ6.34(br,-C(O)-CH=CH-O-),δ2.07~1.83(m,>C(CH)-,>CH-),δ1.22~0.96(m,-CH-,-CH 1 H-NMR (400 MHz, CDCl 3 ): δ 8.21 (br, —C (O) —CH═CH—O—), δ 7.87 (br, aromatic), δ 7.38 to 7.13 (m , Aromatic), δ6.34 (br, —C (O) —CH═CH—O—), δ2.07 to 1.83 (m,> C (CH 3 ) —,> CH—), δ1. 22 to 0.96 (m, —CH 2 —, —CH 3 )
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
<有機トランジスタ素子の作製及び評価>
 重合体1を重合体2に変えた以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。評価結果等を表1に合わせて示す。
<Production and evaluation of organic transistor element>
A top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to the polymer 2. An evaluation result etc. are shown according to Table 1.
 重合体2は低いUV照射量で光架橋し、耐溶剤性に優れた絶縁層を形成することが確認され、コンタクトホールの形成も容易であった。また、作製した有機トランジスタは漏洩電流が小さく、絶縁性にも優れていることを確認した。 Polymer 2 was photocrosslinked at a low UV irradiation amount, and it was confirmed that an insulating layer having excellent solvent resistance was formed, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
 (実施例7)
 イソブチルメタクリレート0.86g、7MOB0.15g、DMF5.0g、及びAIBN108mgを20MLシュレンク管に仕込み、十分に脱気した後、窒素シール下、68℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した。濾過した重合体を塩化メチレン10MLに溶解させ、撹拌下でメタノール300MLに注いで沈殿させ、沈殿物を濾過、減圧乾燥して0.67gの重合体3を得た。得られた重合体3は12モル%の7-メタクリロイルオキシ-4-オキソ-ベンゾピラン単位を含有していた。
(Example 7)
0.86 g of isobutyl methacrylate, 0.15 g of 7MOB, 5.0 g of DMF, and 108 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 68 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and precipitated. The precipitate was filtered and dried under reduced pressure to obtain 0.67 g of Polymer 3. The resulting polymer 3 contained 12 mol% 7-methacryloyloxy-4-oxo-benzopyran units.
 H-NMR(400MHz、CDCl):δ8.21(br,-C(O)-CH=CH-O-),δ7.87(br,芳香族),δ7.38~7.13(m,芳香族),δ6.34(br,-C(O)-CH=CH-O-),δ2.07~1.83(m,>C(CH)-,>CH-),δ1.22~0.96(m,-CH-,-CH 1 H-NMR (400 MHz, CDCl 3 ): δ 8.21 (br, —C (O) —CH═CH—O—), δ 7.87 (br, aromatic), δ 7.38 to 7.13 (m , Aromatic), δ6.34 (br, —C (O) —CH═CH—O—), δ2.07 to 1.83 (m,> C (CH 3 ) —,> CH—), δ1. 22 to 0.96 (m, —CH 2 —, —CH 3 )
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
<有機トランジスタ素子の作製及び評価>
 重合体1を重合体3に変えたこと以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。評価結果等を表1に合わせて示す。
<Production and evaluation of organic transistor element>
A top gate / bottom contact (TGBC) type organic transistor was fabricated in the same manner as in Example 5 except that the polymer 1 was changed to the polymer 3. An evaluation result etc. are shown according to Table 1.
 重合体3は低いUV照射量で光架橋し、耐溶剤性に優れた絶縁層を形成することが確認され、コンタクトホールの形成も容易であった。また、作製した有機トランジスタは漏洩電流が小さく、絶縁性にも優れていることを確認した。 It was confirmed that the polymer 3 was photocrosslinked with a low UV irradiation amount to form an insulating layer with excellent solvent resistance, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
 (実施例8)
 イソブチルメタクリレート0.86g、7MOB0.15g、DMF5.0g、及びAIBN108mgを20MLシュレンク管に仕込み、十分に脱気した後、窒素シール下、68℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した。濾過した重合体を塩化メチレン10MLに溶解させ、撹拌下でメタノール300MLに注いで沈殿させ、沈殿物を濾過、減圧乾燥して0.68gの重合体4を得た。得られた重合体4は16モル%の7-メタクリロイルオキシ-4-オキソ-ベンゾピラン単位を含有していた。
(Example 8)
0.86 g of isobutyl methacrylate, 0.15 g of 7MOB, 5.0 g of DMF, and 108 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 68 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and precipitated. The precipitate was filtered and dried under reduced pressure to obtain 0.68 g of Polymer 4. The resulting polymer 4 contained 16 mol% 7-methacryloyloxy-4-oxo-benzopyran units.
 H-NMR(400MHz、CDCl):δ8.21(br,-C(O)-CH=CH-O-),δ7.87(br,芳香族),δ7.38~7.13(m,芳香族),δ6.34(br,-C(O)-CH=CH-O-),δ2.07~1.83(m,>C(CH)-,>CH-),δ1.22~0.96(m,-CH-,-CH 1 H-NMR (400 MHz, CDCl 3 ): δ 8.21 (br, —C (O) —CH═CH—O—), δ 7.87 (br, aromatic), δ 7.38 to 7.13 (m , Aromatic), δ6.34 (br, —C (O) —CH═CH—O—), δ2.07 to 1.83 (m,> C (CH 3 ) —,> CH—), δ1. 22 to 0.96 (m, —CH 2 —, —CH 3 )
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
<有機トランジスタ素子の作製及び評価>
 重合体1を重合体4に変えたこと以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。評価結果等を表1に合わせて示す。
<Production and evaluation of organic transistor element>
A top gate / bottom contact (TGBC) type organic transistor was fabricated in the same manner as in Example 5 except that the polymer 1 was changed to the polymer 4. An evaluation result etc. are shown according to Table 1.
 重合体4は低いUV照射量で光架橋し、耐溶剤性に優れた絶縁層を形成することが確認され、コンタクトホールの形成も容易であった。また、作製した有機トランジスタは漏洩電流が小さく、絶縁性にも優れていることを確認した。 It was confirmed that the polymer 4 was photocrosslinked with a low UV irradiation amount to form an insulating layer having excellent solvent resistance, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
 (実施例9)
 イソブチルメタクリレート0.77g、7VOB0.23g、DMF5g、及びAIBN11mgを20MLシュレンク管に仕込み、十分に脱気した後、窒素シール下、65℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した後、減圧乾燥して0.6gの重合体5を得た。得られた重合体5は26モル%の7-ビニル-4-オキソ-ベンゾピラン単位を含有していた。
Example 9
0.77 g of isobutyl methacrylate, 0.23 g of 7VOB, 5 g of DMF, and 11 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 65 ° C. for 6 hours under a nitrogen seal. The obtained polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer, isolated by filtration, and then dried under reduced pressure to obtain 0.6 g of polymer 5. The resulting polymer 5 contained 26 mol% 7-vinyl-4-oxo-benzopyran units.
 H-NMR(400MHz、CDCl):δ7.99(brs,-C(O)-CH=CH-O-),δ7.79(brs,芳香族),δ7.07~6.94(brm,芳香族),δ6.28(br,-C(O)-CH=CH-O-),δ3.67(brs,-OCH-),δ1.89~1.80(brm,-CH<),δ1.00~0.67(brm,>C(CH)-,-CH-,-CH 1 H-NMR (400 MHz, CDCl 3 ): δ 7.9 (brs, —C (O) —CH═CH—O—), δ 7.79 (brs, aromatic), δ 7.07 to 6.94 (brm) , Aromatic), δ 6.28 (br, —C (O) —CH═CH—O—), δ 3.67 (brs, —OCH 2 —), δ 1.89 to 1.80 (brm, —CH < ), Δ1.00 to 0.67 (brm,> C (CH 3 ) —, —CH 2 —, —CH 3 )
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
<有機トランジスタ素子の作製及び評価>
 重合体1を重合体5に変えたこと以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。評価結果等を表1に合わせて示す。
<Production and evaluation of organic transistor element>
A top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to the polymer 5. An evaluation result etc. are shown according to Table 1.
 重合体5は低いUV照射量で光架橋し、耐溶剤性に優れた絶縁層を形成することが確認され、コンタクトホールの形成も容易であった。また、作製した有機トランジスタは漏洩電流が小さく、絶縁性にも優れていることを確認した。 It was confirmed that the polymer 5 was photocrosslinked at a low UV irradiation amount to form an insulating layer having excellent solvent resistance, and the formation of contact holes was easy. In addition, it was confirmed that the produced organic transistor had a small leakage current and an excellent insulating property.
 (比較例1)
 重合体1をポリ(n-ブチルメタクリレート)(PNBMA)に変えた以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。PNBMAは紫外線により光架橋せず、ソース電極、及びドレイン電極を真空蒸着する際の熱により膜表面の平坦性が失われていることが確認された。また、耐溶剤性がなく、コンタクトホール形成時にPNBMA膜が溶解して有機トランジスタ素子は作製出来なかった。評価結果等を表1に示す。
(Comparative Example 1)
A top gate / bottom contact (TGBC) type organic transistor was prepared in the same manner as in Example 5 except that the polymer 1 was changed to poly (n-butyl methacrylate) (PNBMA). PNBMA was not photocrosslinked by ultraviolet rays, and it was confirmed that the flatness of the film surface was lost due to heat when vacuum-depositing the source electrode and the drain electrode. Moreover, there was no solvent resistance, and the PNBMA film was dissolved at the time of contact hole formation, so that an organic transistor element could not be produced. Table 1 shows the evaluation results.
 (比較例2)
 重合体1をポリ(n-オクチルメタクリレート)(PNOMA)に変えた以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。PNOMAは紫外線により光架橋せず、ソース電極、及びドレイン電極を真空蒸着する際の熱により膜表面の平坦性が失われていることが確認された。また、耐溶剤性がなく、コンタクトホール形成時にPNOMA膜が溶解し、動作する有機トランジスタ素子を作製出来なかった。評価結果等を表1に示す。
(Comparative Example 2)
A top gate / bottom contact (TGBC) type organic transistor was fabricated in the same manner as in Example 5 except that the polymer 1 was changed to poly (n-octyl methacrylate) (PNOMA). It was confirmed that PNOMA was not photocrosslinked by ultraviolet rays, and the flatness of the film surface was lost due to the heat when vacuum-depositing the source electrode and the drain electrode. Further, the organic transistor element was not able to be produced because it had no solvent resistance and the PNOMA film was dissolved when the contact hole was formed. Table 1 shows the evaluation results.
 (比較例3)
 重合体1をポリビニルブチラール(PVB)に変えた以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。PVB樹脂は紫外線により光架橋せず、耐溶剤性は発現しなかった。また、PVB膜はトルエンに溶解せず、ブタノールを用いた場合にはPVB膜が溶解してコンタクトホールを形成出来なかった。評価結果等を表1に合わせて示す。
(Comparative Example 3)
A top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to polyvinyl butyral (PVB). The PVB resin was not photocrosslinked by ultraviolet rays and did not exhibit solvent resistance. Further, the PVB film was not dissolved in toluene, and when butanol was used, the PVB film was dissolved and a contact hole could not be formed. An evaluation result etc. are shown according to Table 1.
 (比較例4)
 重合体1をポリビニルアルコール(PVA)に変えた以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。PVAは紫外線により光架橋せず耐溶剤性は発現しなかった。また、PVA膜はトルエンに溶解せず、ブタノールを用いた場合にはPVA膜が溶解してコンタクトホールを形成出来なかった。評価結果等を表1に合わせて示す。
(Comparative Example 4)
A top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to polyvinyl alcohol (PVA). PVA was not photocrosslinked by ultraviolet rays and did not exhibit solvent resistance. Further, the PVA film was not dissolved in toluene, and when butanol was used, the PVA film was dissolved and a contact hole could not be formed. An evaluation result etc. are shown according to Table 1.
 (比較例5)
 重合体1をフッ素系環状エーテル重合体(サイトップ)に変えた以外は実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。サイトップは紫外線により光架橋せず耐溶剤性は発現しなかった。また、サイトップ膜はトルエンに溶解せず、フッ素系溶剤CYTOP CT-SOLV180を用いた場合にはサイトップ膜が溶解してコンタクトホールを形成出来なかった。評価結果等を表1に合わせて示す。
(Comparative Example 5)
A top gate / bottom contact (TGBC) type organic transistor was produced in the same manner as in Example 5 except that the polymer 1 was changed to a fluorine-based cyclic ether polymer (Cytop). Cytop was not photocrosslinked by ultraviolet rays and did not exhibit solvent resistance. The Cytop film was not dissolved in toluene, and when the fluorinated solvent CYTOP CT-SOLV180 was used, the Cytop film was dissolved and a contact hole could not be formed. An evaluation result etc. are shown according to Table 1.
 (比較例6)
 重合体1を用い、紫外線を照射しなかった以外は実施例5と同様の手法により溶解性、耐溶剤性を評価した。重合体1はn-ブタノールに溶解し、残膜率は0であった。
<有機トランジスタ素子の作製及び評価>
 実施例5と同様の手法でトップゲート・ボトムコンタクト(TGBC)型の有機トランジスタを作製した。重合体1は耐溶剤性がなく、膜全体が溶解し、コンタクトホールを形成出来なかった。評価結果等を表1に合わせて示す。
(Comparative Example 6)
The solubility and solvent resistance were evaluated in the same manner as in Example 5 except that the polymer 1 was used and ultraviolet rays were not irradiated. Polymer 1 was dissolved in n-butanol, and the residual film ratio was 0.
<Production and evaluation of organic transistor element>
A top gate / bottom contact (TGBC) type organic transistor was fabricated in the same manner as in Example 5. The polymer 1 did not have solvent resistance, the entire film was dissolved, and a contact hole could not be formed. An evaluation result etc. are shown according to Table 1.
 (実施例10)
 スチレン2g、7MOB0.78g、DMF14g、及びAIBN39mgを20MLシュレンク管に仕込み、十分に脱気した後、窒素シール下、65℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した後、減圧乾燥して0.4gの重合体6を得た。得られた重合体6は28モル%の4-オキソ-ベンゾピラン単位(式(4))及び72モル%のスチレン単量体単位(式(7))を含有していた。得られた重合体6のH-NMRチャートを図8に示す。
(Example 10)
2 g of styrene, 0.78 g of 7MOB, 14 g of DMF, and 39 mg of AIBN were charged into a 20 ML Schlenk tube, sufficiently deaerated, and then polymerized at 65 ° C. for 6 hours under a nitrogen seal. The obtained polymer solution was poured into 300 mL of methanol under stirring to precipitate the polymer, isolated by filtration, and then dried under reduced pressure to obtain 0.4 g of polymer 6. The resulting polymer 6 contained 28 mol% 4-oxo-benzopyran units (formula (4)) and 72 mol% styrene monomer units (formula (7)). A 1 H-NMR chart of the obtained polymer 6 is shown in FIG.
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 H-NMR(400MHz、CDCl):δ7.98(brd,-C(O)-CH=CH-O-,δ7.80(br,芳香族),δ7.03~6.08(brm,芳香族),δ6.46(brs,-C(O)-CH=CH-O-), δ2.63~0.24(brm,-CH<,-CH-)。 1 H-NMR (400 MHz, CDCl 3 ): δ 7.98 (brd, —C (O) —CH═CH—O—, δ 7.80 (br, aromatic), δ 7.03 to 6.08 (brm, Aromatic), δ 6.46 (brs, —C (O) —CH═CH—O—), δ 2.63 to 0.24 (brm, —CH <, —CH 2 —).
 <有機トランジスタ素子の作製及び評価>
 洗浄、乾燥した30×30mmのガラス(基材)(コーニング社製Eagle XG)にアルミニウムを真空蒸着し、厚み50nmのゲート電極を形成した。電極が形成された基材の上に、得られた重合体6のトルエン溶液(5wt%)を500rpm×5秒、1000rpm×20秒の条件でスピンコートし、100℃で10分間乾燥した後(絶縁膜の形成)、紫外線強度4kW/cmの光源を用い、室温で紫外線を5.4秒照射して紫外線照射量300mJ/cmの条件で架橋し、膜厚500nmの高分子誘電体層を形成した。ゲート電極及び高分子誘電体層が形成された基材上に金を真空蒸着して厚み50nm、チャンネル長100μm、電極幅500μmのソース電極、及びドレイン電極を形成
した。その後、直ちにペンタフルオロベンゼンチオール30mmolのイソプロパノール溶液に浸漬し、5分間経過した時点で取り出し、イソプロパノールで洗浄後、ブロー乾燥した。その後、有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の0.8wt%トルエン溶液60nLをディスペンサにより印刷した。溶剤を揮発させ50℃で1時間乾燥した後、ボトムゲート・ボトムコンタクト(BGBC)型の有機トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの構成、評価結果等を表2に示す。
<Production and evaluation of organic transistor element>
Aluminum was vacuum-deposited on washed and dried 30 × 30 mm 2 glass (base material) (Eagle XG manufactured by Corning) to form a gate electrode having a thickness of 50 nm. A toluene solution (5 wt%) of the obtained polymer 6 was spin-coated on the substrate on which the electrode was formed under the conditions of 500 rpm × 5 seconds and 1000 rpm × 20 seconds, and dried at 100 ° C. for 10 minutes ( Insulating film formation) Using a light source with an ultraviolet intensity of 4 kW / cm 2 , UV irradiation is performed at room temperature for 5.4 seconds, and crosslinking is performed under the condition of an ultraviolet irradiation amount of 300 mJ / cm 2. Formed. Gold was vacuum-deposited on the substrate on which the gate electrode and the polymer dielectric layer were formed to form a source electrode and a drain electrode having a thickness of 50 nm, a channel length of 100 μm, and an electrode width of 500 μm. Thereafter, it was immediately immersed in an isopropanol solution of 30 mmol of pentafluorobenzenethiol, taken out after 5 minutes, washed with isopropanol, and blow-dried. Thereafter, 60 nL of a 0.8 wt% toluene solution of an organic semiconductor (di-n-hexyldithienobenzodithiophene) was printed by a dispenser. After the solvent was evaporated and dried at 50 ° C. for 1 hour, a bottom gate / bottom contact (BGBC) type organic transistor device was produced. Table 2 shows the configuration, evaluation results, and the like of the fabricated organic field effect transistor device.
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000116
 (実施例11)
 25mLのシュレンク管に、実施例3で得られたBOBF0.3g、アゾイソブチロニトリル(AIBN)0.012g、スチレン0.7g、N-メチルピロリドン7.5gを仕込み、液体窒素による凍結脱気と溶解を4回繰り返した後、窒素加圧下、73℃で6時間重合した。重合完了後、反応溶液を100mLのメタノールに注いでポリマーを沈殿させ、濾過、メタノール洗浄を行った後、50℃で乾燥し、淡茶色の重合体7を0.5g得た。得られた重合体7は4モル%のBOBF由来の繰り返し単位(式(5))と、96モル%のスチレン単位(式(7))を有していた。得られた重合体7のH-NMRチャートを図9に示す。
(Example 11)
A 25 mL Schlenk tube was charged with 0.3 g of BOBF obtained in Example 3, 0.012 g of azoisobutyronitrile (AIBN), 0.7 g of styrene, and 7.5 g of N-methylpyrrolidone, and freeze degassing with liquid nitrogen. And dissolution was repeated 4 times, followed by polymerization at 73 ° C. for 6 hours under nitrogen pressure. After completion of the polymerization, the reaction solution was poured into 100 mL of methanol to precipitate a polymer, filtered and washed with methanol, and then dried at 50 ° C. to obtain 0.5 g of light brown polymer 7. The resulting polymer 7 had 4 mol% of BOBF-derived repeating units (formula (5)) and 96 mol% of styrene units (formula (7)). A 1 H-NMR chart of the obtained polymer 7 is shown in FIG.
 H-NMR(400MHz、CDCl):δ8.12(brs,-O-CH=CH-C(O)-), δ8.05(brs,-O-CH=CH-C(O)-),δ7.79(brs,芳香族),δ6.33(brs,-O-CH=CH-C(O)-,H),δ3.14,δ2,72,δ2.29,δ2.24,δ1.83,δ1.60,δ1.42(brm,-CH<,-CH-) 1 H-NMR (400 MHz, CDCl 3 ): δ 8.12 (brs, —O—CH═CH—C (O) —), δ 8.05 (brs, —O—CH═CH—C (O) —) , Δ 7.79 (brs, aromatic), δ 6.33 (brs, —O—CH═CH—C (O) —, H), δ 3.14, δ 2, 72, δ 2.29, δ 2.24, δ 1 .83, δ1.60, δ1.42 (brm, —CH <, —CH 2 —)
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
 <有機トランジスタ素子の作製及び評価>
 重合体6を重合体7に変えた以外は、実施例10と同様の手法で有機トランジスタ素子を作成し、評価した結果等を表2に合わせて示す。
<Production and evaluation of organic transistor element>
Table 2 shows the results and the like of an organic transistor element prepared and evaluated in the same manner as in Example 10 except that the polymer 6 was changed to the polymer 7.
 (実施例12)
 7MOB0.35g、THF14g、及びAIBN17.5mgを20MLシュレンク管に仕込み、十分に脱気した後、窒素ボックス内でPFS1.65gを仕込んだ。再度、十分に窒素置換を行った後、窒素シール下、60℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した後、減圧乾燥して0.4gの重合体8を得た。得られた重合体8は16モル%の4-オキソ-ベンゾピラン単位(式(4))及び84モル%の2,3,4,5,6-ペンタフルオロスチレンスチレン(PFS)単量体単位(式(7))を含有していた。得られた重合体8のH-NMRチャートを図10に示す。
Example 12
7MOB 0.35g, THF 14g, and AIBN 17.5mg were charged into a 20ML Schlenk tube and sufficiently deaerated, and then PFS 1.65g was charged in a nitrogen box. After sufficiently performing nitrogen substitution again, polymerization was performed at 60 ° C. for 6 hours under a nitrogen seal. The obtained polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer, isolated by filtration, and then dried under reduced pressure to obtain 0.4 g of polymer 8. The resulting polymer 8 comprises 16 mol% 4-oxo-benzopyran units (formula (4)) and 84 mol% 2,3,4,5,6-pentafluorostyrene styrene (PFS) monomer units ( (7)). A 1 H-NMR chart of the obtained polymer 8 is shown in FIG.
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
 H-NMR(400MHz、CDCl):δ8.17(brd,-C(O)-CH=CH-O-,δ7.86(brs,芳香族),δ6.92(brs,芳香族),δ6.35(brs,-C(O)-CH=CH-O-), δ3.00~0.91(brm,-CH<,-CH-)。 1 H-NMR (400 MHz, CDCl 3 ): δ 8.17 (brd, —C (O) —CH═CH—O—, δ 7.86 (brs, aromatic), δ 6.92 (brs, aromatic), δ6.35 (brs, —C (O) —CH═CH—O—), δ3.00 to 0.91 (brm, —CH <, —CH 2 —).
 <有機トランジスタ素子の作製及び評価>
 重合体6を重合体8に変えた以外は、実施例10と同様の手法で有機トランジスタ素子を作製し、評価した結果等を表2に示す。
<Production and evaluation of organic transistor element>
Table 2 shows the results obtained by producing an organic transistor element in the same manner as in Example 10 except that the polymer 6 is changed to the polymer 8.
 (実施例13)
 スチレン1.0g、7MOB0.78g、THF18g、及びAIBN39mgを20MLシュレンク管に仕込み、十分に脱気した後、窒素ボックス内でPFS1.86gを仕込んだ。再度、十分に窒素置換を行った後、窒素シール下、60℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した。濾過した重合体を塩化メチレン10MLに溶解させ、撹拌下でメタノール300MLに注いで沈殿させ、沈殿物を濾過、減圧乾燥して0.5gの重合体9を得た。得られた重合体9は21モル%の4-オキソ-ベンゾピラン単位(式(4))、42モル%の2,3,4,5,6-ペンタフルオロスチレン単量体単位(式(7))、及び37モル%のスチレン単量体単位(式(7))(式(7)は合わせて79モル%)を含有していた。
(Example 13)
1.0 g of styrene, 0.78 g of 7MOB, 18 g of THF, and 39 mg of AIBN were charged into a 20 ML Schlenk tube and sufficiently deaerated, and then 1.86 g of PFS was charged in a nitrogen box. After sufficiently performing nitrogen substitution again, polymerization was performed at 60 ° C. for 6 hours under a nitrogen seal. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The filtered polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring and precipitated, and the precipitate was filtered and dried under reduced pressure to obtain 0.5 g of polymer 9. The obtained polymer 9 was composed of 21 mol% of 4-oxo-benzopyran unit (formula (4)), 42 mol% of 2,3,4,5,6-pentafluorostyrene monomer unit (formula (7) ) And 37 mol% of styrene monomer units (formula (7)) (formula (7) is 79 mol% in total).
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
 H-NMR(400MHz、CDCl):δ8.0(brd,-C(O)-CH=CH-O-,δ7.86~6.08(brm,芳香族),δ6.41(brs,-C(O)-CH=CH-O-), δ3.00~0.24(brm,-CH<,-CH-)。 1 H-NMR (400 MHz, CDCl 3 ): δ 8.0 (brd, —C (O) —CH═CH—O—, δ 7.86 to 6.08 (brm, aromatic), δ 6.41 (brs, —C (O) —CH═CH—O—), δ3.00 to 0.24 (brm, —CH <, —CH 2 —).
 <有機トランジスタ素子の作製及び評価>
重合体6を重合体9に変えた以外は、実施例10と同様の手法で有機トランジスタ素子を作製し、評価した結果を表2に示す。
<Production and evaluation of organic transistor element>
Table 2 shows the results obtained by producing and evaluating an organic transistor element in the same manner as in Example 10 except that the polymer 6 is changed to the polymer 9.
 (実施例14)
20MLのシュレンク管に7VOB0.232g、スチレン0.708g、AIBN14mg、ジメチルホルムアミド5gを仕込み、窒素置換を行った後、窒素加圧下で60℃で6時間重合した。得られた重合体溶液を撹拌下で300mLのメタノールに注いで重合体を沈殿させ、濾過により単離した。得られた重合体を塩化メチレン10MLに溶解させ、撹拌下でメタノール300MLに注いで再沈殿後、沈殿物を濾過、減圧乾燥して0.6gの重合体10を得た。得られた重合体10は、35モル%の4-オキソ-ベンゾピラン単位(式(43))及び37モル%のスチレン単量体単位(式(7))を含有していた。
(Example 14)
A 20-ML Schlenk tube was charged with 0.232 g of 7VOB, 0.708 g of styrene, 14 mg of AIBN, and 5 g of dimethylformamide. After nitrogen substitution, polymerization was performed at 60 ° C. for 6 hours under nitrogen pressure. The resulting polymer solution was poured into 300 mL of methanol with stirring to precipitate the polymer and isolated by filtration. The obtained polymer was dissolved in 10 mL of methylene chloride, poured into 300 mL of methanol with stirring, and reprecipitated. Then, the precipitate was filtered and dried under reduced pressure to obtain 0.6 g of the polymer 10. The resulting polymer 10 contained 35 mol% 4-oxo-benzopyran units (formula (43)) and 37 mol% styrene monomer units (formula (7)).
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
H-NMR(400MHz、CDCl):δ7.76(brs,-C(O)-CH=CH-O-,δ6.99(brs,芳香族), δ6.34(brs,芳香族),δ6.29(brs,芳香族、-C(O)-CH=CH-O-), δ2.67~1.41(brm,-CH<,-CH-)。 1 H-NMR (400 MHz, CDCl 3 ): δ 7.76 (brs, —C (O) —CH═CH—O—, δ 6.99 (brs, aromatic), δ 6.34 (brs, aromatic), δ 6.29 (brs, aromatic, —C (O) —CH═CH—O—), δ 2.67 to 1.41 (brm, —CH <, —CH 2 —).
 <有機トランジスタ素子の作製及び評価>
重合体6を重合体10に変えた以外は、実施例10と同様の手法で有機トランジスタ素子を作製し、評価した結果を表2に示す。
<Production and evaluation of organic transistor element>
Table 2 shows the results of producing and evaluating an organic transistor element in the same manner as in Example 10 except that the polymer 6 was changed to the polymer 10.
 (比較例7)
 重合体6をFCE重合体(サイトップ、AGC旭硝子(株)製)に変えた以外は実施例10と同様の手法により溶解性、UV架橋性、耐溶剤性を評価した。FCE重合体は何れのテスト溶剤にも溶解せず、汎用溶剤による製膜は出来なかった。また、フッ素系溶剤PFTBAに溶解させてUV照射をおこなったが架橋せず、本溶剤に対する残膜率は0であった。そこで、FCE重合体層へのUV照射を省略し、実施例10と同様の方法で有機トランジスタデバイスを作製した。ゲート電極、FCE重合体層、ソース及びドレインを形成した基板上に有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の0.8wt%トルエン溶液60nLをディスペンサにより印刷したが、溶液がはじかれ均一な有機半導体の結晶膜が形成されず、有機トランジスタデバイスは動作しなかった。評価結果等を表2に合わせて示す。
(Comparative Example 7)
Solubility, UV crosslinkability, and solvent resistance were evaluated in the same manner as in Example 10 except that the polymer 6 was changed to an FCE polymer (Cytop, manufactured by AGC Asahi Glass Co., Ltd.). The FCE polymer did not dissolve in any of the test solvents and could not be formed using a general-purpose solvent. Moreover, it was dissolved in the fluorine-based solvent PFTBA and irradiated with UV, but it was not crosslinked, and the remaining film ratio with respect to this solvent was 0. Accordingly, UV irradiation to the FCE polymer layer was omitted, and an organic transistor device was produced in the same manner as in Example 10. On the substrate on which the gate electrode, FCE polymer layer, source and drain were formed, 60 nL of a 0.8 wt% toluene solution of an organic semiconductor (di-n-hexyldithienobenzodithiophene) was printed with a dispenser. A uniform organic semiconductor crystal film was not formed, and the organic transistor device did not operate. An evaluation result etc. are shown according to Table 2.
 (比較例8)
 重合体6をポリスチレン(PS)(アルドリッチ製試薬)に変えた以外は実施例10と同様の手法により溶解性、UV架橋性、耐溶剤性を評価した。PSはUV照射により架橋せず、テスト溶剤に対する残膜率は0であった。
(Comparative Example 8)
Solubility, UV crosslinkability, and solvent resistance were evaluated in the same manner as in Example 10 except that the polymer 6 was changed to polystyrene (PS) (Aldrich reagent). PS was not crosslinked by UV irradiation, and the remaining film ratio with respect to the test solvent was zero.
 <有機トランジスタ素子の作製及び評価>
 実施例10と同様の方法で、ゲート電極、FCE重合体層、ソース及びドレインを形成した基板上に有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の0.8wt%トルエン溶液60nLをディスペンサにより印刷したが、本溶液によりPS膜は溶解し、良好な性状の有機半導体膜が形成されず、有機トランジスタデバイスとして動作しなかった。評価結果等を表2に合わせて示す。
<Production and evaluation of organic transistor element>
In the same manner as in Example 10, 60 nL of a 0.8 wt% toluene solution of an organic semiconductor (di-n-hexyldithienobenzodithiophene) was dispensed on the substrate on which the gate electrode, FCE polymer layer, source and drain were formed. However, the PS film was dissolved by this solution, an organic semiconductor film having good properties was not formed, and the device did not operate as an organic transistor device. An evaluation result etc. are shown according to Table 2.
 (比較例9)
 重合体6をポリ(2,3,4,5,6-ペンタフルオロスチレン)(PPFS)(アルドリッチ製試薬)に変えた以外は実施例10と同様の手法により溶解性、UV架橋性、耐溶剤性を評価した。PPFSはUV照射により架橋せず、テスト溶剤に対する残膜率は0であった。
(Comparative Example 9)
Solubility, UV crosslinkability, solvent resistance were the same as in Example 10 except that the polymer 6 was changed to poly (2,3,4,5,6-pentafluorostyrene) (PPFS) (Aldrich reagent). Sex was evaluated. PPFS was not crosslinked by UV irradiation, and the residual film ratio with respect to the test solvent was 0.
 <有機トランジスタ素子の作製及び評価>
 実施例10と同様の方法で、ゲート電極、FCE重合体層、ソース及びドレインを形成した基板上に有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の0.8wt%トルエン溶液60nLをディスペンサにより印刷したが、本溶液によりPPFS膜は溶解し、良好な性状の有機半導体膜が形成されず、有機トランジスタデバイスとして動作しなかった。評価結果等を表2に合わせて示す。
<Production and evaluation of organic transistor element>
In the same manner as in Example 10, 60 nL of a 0.8 wt% toluene solution of an organic semiconductor (di-n-hexyldithienobenzodithiophene) was dispensed on the substrate on which the gate electrode, FCE polymer layer, source and drain were formed. However, the PPFS film was dissolved by this solution, an organic semiconductor film having good properties was not formed, and the device did not operate as an organic transistor device. An evaluation result etc. are shown according to Table 2.
 (比較例10)
 <樹脂の合成>
 窒素ボックス内で300mLのシュレンク管にポリスチレン(アルドリッチ製試薬)5.0g、脱水した塩化メチレン150mL、無水塩化アルミニウム3.9gを仕込み、室温、撹拌下で溶解させた。上部に3方コックを取り付け、下部を密閉した30mLの滴下ロートに桂皮酸クロリド4.0gの塩化メチレン溶液30mlを仕込んだ。上記のシュレンク管と滴下ロートを窒素ボックスから取り出し、窒素シールした状態でシュレンク管と滴下ロートを連結させた。シュレンク管への窒素フローを停止し、滴下ロート上部の3方コックを塩化カルシウム管に連結後、窒素フローを停止した。次に、シュレンク管を氷水で冷却し、滴下ロートから桂皮酸クロリドを10分かけて滴下した。滴下とともに重合体溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で28時間反応させた。反応溶液を再度、氷水で冷却した後、35%塩酸水溶液20mlを滴下した。この状態で5時間撹拌後、反応溶液を分液ロートに移し、塩化メチレン層を分離した。この塩化メチレン層を4回繰り返し水洗した。水層は塩化メチレンで3回抽出し、分液した。得られた塩化メチレン層を合わせて1.5Lのメタノールで再沈殿させ、重合体を濾過により単離する操作を2回行った後、50℃で減圧乾燥して5.9gの重合体11を得た。H-NMRによる分析の結果、得られた重合体11は、スチレン単量体単位(式(7))を85モル%及び光架橋基(カルコン基)単位を15モル%有していることを確認した。
(Comparative Example 10)
<Resin synthesis>
In a nitrogen box, a 300 mL Schlenk tube was charged with 5.0 g of polystyrene (Aldrich reagent), 150 mL of dehydrated methylene chloride, and 3.9 g of anhydrous aluminum chloride, and dissolved at room temperature with stirring. A 30-mL dropping funnel with a three-way cock attached to the upper part and a sealed lower part was charged with 30 ml of a methylene chloride solution of 4.0 g of cinnamic acid chloride. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed. The nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped. Next, the Schlenk tube was cooled with ice water, and cinnamic acid chloride was dropped from the dropping funnel over 10 minutes. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 28 hours. The reaction solution was cooled again with ice water, and 20 ml of 35% aqueous hydrochloric acid was added dropwise. After stirring in this state for 5 hours, the reaction solution was transferred to a separatory funnel, and the methylene chloride layer was separated. This methylene chloride layer was washed with water repeatedly 4 times. The aqueous layer was extracted three times with methylene chloride and separated. The obtained methylene chloride layers were combined, reprecipitated with 1.5 L of methanol, and the polymer was isolated by filtration twice, and then dried under reduced pressure at 50 ° C. to obtain 5.9 g of the polymer 11. Obtained. As a result of analysis by 1 H-NMR, the obtained polymer 11 has 85 mol% of styrene monomer units (formula (7)) and 15 mol% of photocrosslinking group (chalcone group) units. It was confirmed.
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
 H-NMR(400MHz,CDCl):δ7.62(brs,-CH=CH-Ph),7.39~6.51(m,芳香族,-CH=CH-Ph),2.04(brs, -CH―CH-),1.78~1.40(bm,-CH-)。 1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (brs, —CH═CH—Ph), 7.39 to 6.51 (m, aromatic, —CH═CH—Ph), 2.04 ( brs, —CH 2 —CH—), 1.78 to 1.40 (bm, —CH 2 —).
 <有機トランジスタ素子の作製及び評価>
重合体11はテスト溶剤に溶解したが、ゲルを含んでおり0.22μmのフィルターで濾過出来なかった。そこで、濃度を1wt%とした重合体のトルエン溶液を10μm、5μm、3μm、1μm、0.5μm、0.22μmのフィルターで順に重合体溶液を濾過した後、エバポレータで濃縮して重合体濃度を5wt%とした上で、重合体6を重合体11に変えた以外は、実施例10と同様の手法で有機トランジスタ素子を作製し、評価した結果を表2に示す。重合体11は実施例10~14の重合体に比べ、濾過性、及びUV架橋性に劣っていた。
<Production and evaluation of organic transistor element>
The polymer 11 was dissolved in the test solvent, but contained a gel and could not be filtered with a 0.22 μm filter. Therefore, after the polymer toluene solution having a concentration of 1 wt% is filtered through a 10 μm, 5 μm, 3 μm, 1 μm, 0.5 μm, and 0.22 μm filter in order, the polymer solution is concentrated by an evaporator to reduce the polymer concentration. Table 2 shows the results of producing and evaluating an organic transistor element in the same manner as in Example 10 except that the polymer 6 was changed to the polymer 11 after setting it to 5 wt%. Polymer 11 was inferior in filterability and UV crosslinkability as compared with the polymers of Examples 10-14.
 (比較例11)
 実施例10で得られた重合体6を用い、紫外線を照射しなかった以外は実施例10と同様の手法により溶解性、耐溶剤性を評価した。重合体6はテスト溶剤に溶解し、残膜率は0であった。
(Comparative Example 11)
The polymer 6 obtained in Example 10 was used, and the solubility and solvent resistance were evaluated by the same method as in Example 10 except that ultraviolet rays were not irradiated. The polymer 6 was dissolved in the test solvent and the remaining film rate was 0.
 <有機トランジスタ素子の作製及び評価>
 実施例10と同様の方法で、ゲート電極、重合体層、ソース及びドレインを形成した基板上に有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の0.8wt%トルエン溶液60nLをディスペンサにより印刷したが、本溶液により重合体膜が溶解し、良好な性状の有機半導体膜が形成されず、有機トランジスタデバイスとして動作しなかった。評価結果等を表2に合わせて示す。
<Production and evaluation of organic transistor element>
In the same manner as in Example 10, 60 nL of a 0.8 wt% toluene solution of an organic semiconductor (di-n-hexyldithienobenzodithiophene) was dispensed on a substrate on which a gate electrode, a polymer layer, a source and a drain were formed using a dispenser. Although it was printed, the polymer film was dissolved by this solution, an organic semiconductor film having good properties was not formed, and it did not operate as an organic transistor device. An evaluation result etc. are shown according to Table 2.
 (実施例15)
 窒素ボックス内で、20MLのシュレンク管に磁気撹拌子を入れ、アゾビスイソブチロニトリル(AIBN)7.1mg、禁止剤を除去した単量体(6CHMA0.27g、及び1H,1H,2H,2H-ヘプタデカフルオロデシルメタクリレート(HFDMA)1.73g)、トルエン4.3g、α,α,α,α’,α’,α’-ヘキサフルオロ-m-キシレン(HFMX)7gを仕込んだ後、脱気(液体窒素による凍結、脱気、加温による融解)を4回行った。撹拌下、窒素で加圧した状態で加熱し、60℃で6時間重合した後、シュレンク管内に重合禁止剤(BHT)の溶液を適量加えて、1分間撹拌した後、室温まで冷却した。得られた反応溶液を500MLのメタノール溶液に注いで、重合体を沈殿させ、50℃で真空乾燥して0.7gの重合体12を得た。得られた重合体12はHFDMA単位を79モル%、6CHMA単位を21モル%含んでいた。重クロロホルムとHFMXの混合溶剤に溶解させて測定した重合体12のH-NMRチャートを図11に示す。
(Example 15)
In a nitrogen box, put a magnetic stir bar in a 20 ML Schlenk tube, 7.1 mg of azobisisobutyronitrile (AIBN), monomer with inhibitor removed (0.27 g of 6CHMA, and 1H, 1H, 2H, 2H -Heptadecafluorodecyl methacrylate (HFDMA) (1.73 g), toluene (4.3 g), α, α, α, α ', α', α'-hexafluoro-m-xylene (HFMX) (7 g), Gas (freezing with liquid nitrogen, degassing, thawing by heating) was performed 4 times. Under stirring, the mixture was heated under nitrogen pressure and polymerized at 60 ° C. for 6 hours. Then, an appropriate amount of a polymerization inhibitor (BHT) solution was added to the Schlenk tube and stirred for 1 minute, and then cooled to room temperature. The obtained reaction solution was poured into a 500 mL methanol solution to precipitate a polymer, and vacuum dried at 50 ° C. to obtain 0.7 g of the polymer 12. The resulting polymer 12 contained 79 mol% HFDMA units and 21 mol% 6CHMA units. FIG. 11 shows a 1 H-NMR chart of the polymer 12 measured by dissolving it in a mixed solvent of deuterated chloroform and HFMX.
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
 H-NMR(400MHz、CDCl):δ8.02(s,-CH=CH-),δ7.89(s,芳香族),δ6.84(brs,芳香族),δ6.67(brs,芳香族),δ6.09(brs,-CH=CH-),δ4.30(brs,-OCH-),δ3.97(brs,-OCH-),δ2.48(brs,-CHCF-),δ2.14~1.12(brm, -CH-),δ1.55(s,-CH
 重合体12を溶剤Iに溶解させてガラス板上にスピンコート成膜し、更にUV架橋した重合体膜の耐溶剤性、接触角、及び表面張力を測定した。重合体12は溶剤Iに溶解し、室温、UV照射量100mJ/cmで耐溶剤性に優れた重合体膜を形成した。また、水、及びテトラリンに対して優れた撥液性を示した。また、溶剤I~IIIに対しては接触角が小さく、濡れ性に優れているが、溶解はせず耐溶剤性に優れていた。
1 H-NMR (400 MHz, CDCl 3 ): δ 8.02 (s, —CH═CH—), δ 7.89 (s, aromatic), δ 6.84 (brs, aromatic), δ 6.67 (brs, Aromatic), δ 6.09 (brs, —CH═CH—), δ 4.30 (brs, —OCH 2 —), δ 3.97 (brs, —OCH 2 —), δ 2.48 (brs, —CH 2). CF 2 −), δ 2.14 to 1.12 (brm, —CH 2 —), δ 1.55 (s, —CH 3 )
The polymer 12 was dissolved in the solvent I, spin-coated on a glass plate, and the solvent resistance, contact angle, and surface tension of the UV-crosslinked polymer film were measured. The polymer 12 was dissolved in the solvent I to form a polymer film having excellent solvent resistance at room temperature and a UV irradiation amount of 100 mJ / cm 2 . Moreover, the outstanding liquid repellency with respect to water and tetralin was shown. In addition, the solvent I to III had a small contact angle and excellent wettability, but did not dissolve and had excellent solvent resistance.
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000123
<有機トランジスタ素子の作成及び評価>
 洗浄、乾燥した30×30mmのガラス(基材)(コーニング社製Eagle XG)に、パリレン-C(日本パリレン合同会社製)をSCSラボコータ2(日本パリレン合同会社製(型式PDS2010))を用いて真空蒸着法により製膜し、膜厚300nmの絶縁層1を形成した(基板1)。この基板(1)上に金を真空蒸着して厚み50nm、チャンネル長50μm、電極幅50μmのソース電極、及びドレイン電極を形成した。その後、ペンタフルオロベンゼンチオール30mmolのイソプロパノール溶液に5分間浸漬し、イソプロパノールで洗浄後、ブロー乾燥した(基板2)。
<Creation and evaluation of organic transistor element>
Parylene-C (manufactured by Japan Parylene Godo Kaisha) and SCS Lab Coater 2 (manufactured by Japan Parylene Godo Kaisha (model PDS2010)) are used on 30 × 30 mm 2 glass (base material) (Eagle XG manufactured by Corning). Then, a film was formed by a vacuum evaporation method to form an insulating layer 1 having a thickness of 300 nm (substrate 1). Gold was vacuum-deposited on this substrate (1) to form a source electrode and a drain electrode having a thickness of 50 nm, a channel length of 50 μm, and an electrode width of 50 μm. Then, it was immersed in an isopropanol solution of 30 mmol of pentafluorobenzenethiol for 5 minutes, washed with isopropanol, and blow-dried (substrate 2).
 次に、基板2上に、重合体12のHFMX溶液(2wt%)を500rpm×5秒、1000rpm×20秒の条件でスピンコートし厚み100nmの重合体膜を形成した。隔壁形成用マスクを介して、この重合体膜に100mJ/cmの紫外線を照射して架橋し、HFMXで洗浄して未架橋部分を除去することにより隔壁を形成した(基板3)。 Next, a HFMX solution (2 wt%) of the polymer 12 was spin-coated on the substrate 2 under conditions of 500 rpm × 5 seconds and 1000 rpm × 20 seconds to form a polymer film having a thickness of 100 nm. The polymer film was crosslinked by irradiating with 100 mJ / cm 2 ultraviolet rays through a partition wall forming mask, and washed with HFMX to remove uncrosslinked portions (substrate 3).
 その後、基板3上に、有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の0.8wt%トルエン溶液60nLをディスペンサにより印刷し、50℃で1時間ベークした(基板4)。更に、基板4の上面に重合体12のHFMX溶液(5wt%)を500rpm×5秒、1000rpm×20秒の条件でスピンコートし厚み300nmの絶縁層を形成した(基板5)。この上部にアルミニウムを真空蒸着し、厚み50nmのゲート電極を形成し、有機トランジスタ素子を得た。 Thereafter, 60 nL of a 0.8 wt% toluene solution of an organic semiconductor (di-n-hexyldithienobenzodithiophene) was printed on the substrate 3 with a dispenser, and baked at 50 ° C. for 1 hour (substrate 4). Further, an HFMX solution (5 wt%) of the polymer 12 was spin coated on the upper surface of the substrate 4 under conditions of 500 rpm × 5 seconds and 1000 rpm × 20 seconds to form an insulating layer having a thickness of 300 nm (substrate 5). Aluminum was vacuum-deposited on this to form a gate electrode having a thickness of 50 nm, and an organic transistor element was obtained.
 重合体12を用いて形成した隔壁上へ同一の重合体12を積層した後の隔壁形状とその厚みには変化がなく積層性に優れていた。絶縁破壊強度も高く、有機トランジスタとして安定に動作することを確認した。評価結果を表4に示す。 The shape of the partition after the same polymer 12 was laminated on the partition formed using the polymer 12 and the thickness thereof were not changed, and the laminate was excellent. The dielectric breakdown strength was also high, and it was confirmed that the transistor operates stably as an organic transistor. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000124
 (実施例16) 窒素ボックス内で、20MLのシュレンク管に磁気撹拌子を入れ、AIBN6.6mg、禁止剤を除去した単量体(6CHMA0.24g、及び1H,1H,2H,2H-ヘプタデカフルオロデシルメタクリレート(HFDMA)1.76g)、トルエン3.0g、α,α,α,α’,α’,α’-ヘキサフルオロ-m-キシレン(HFMX)4.9gを仕込んだ後、脱気(液体窒素による凍結、脱気、加温による融解)を4回行った。撹拌下、窒素で加圧した状態で加熱し、60℃で6時間重合した後、シュレンク管内に重合禁止剤ジブチルヒドロキシトルエン(BHT)の溶液を適量加えて、1分間撹拌した後、室温まで冷却した。得られた反応溶液を500MLのメタノール溶液に注いで、重合体を沈殿させ、濾過、メタノール洗浄を行った後、50℃で真空乾燥して0.7gの重合体13を得た。得られた重合体13はHFDMA単位を82モル%、6CHMA単位を18モル%含んでいた。 (Example 16) In a nitrogen box, a magnetic stirrer was placed in a 20-ML Schlenk tube, 6.6 mg of AIBN, and the monomer from which the inhibitor was removed (6CHMA 0.24 g, and 1H, 1H, 2H, 2H-heptadecafluoro Decyl methacrylate (HFDMA) 1.76 g), toluene 3.0 g, α, α, α, α ′, α ′, α′-hexafluoro-m-xylene (HFMX) 4.9 g, and then deaerated ( Freezing with liquid nitrogen, deaeration, and thawing by heating) were performed 4 times. Under stirring, heated in a pressurized state with nitrogen, polymerized at 60 ° C. for 6 hours, added a suitable amount of a polymerization inhibitor dibutylhydroxytoluene (BHT) in a Schlenk tube, stirred for 1 minute, and then cooled to room temperature. did. The obtained reaction solution was poured into a 500 mL methanol solution to precipitate a polymer, filtered and washed with methanol, and then vacuum dried at 50 ° C. to obtain 0.7 g of the polymer 13. The resulting polymer 13 contained 82 mol% HFDMA units and 18 mol% 6CHMA units.
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
 H-NMR(400MHz、CDCl):δ8.02(s,-CH=CH-),δ7.89(s,芳香族),δ6.84(brs,芳香族),δ6.67(brs,芳香族),δ6.09(brs,-CH=CH-),δ4.30(brs,-OCH-),δ3.97(brs,-OCH-),δ2.48(brs,-CHCF-),δ2.14~1.12(brm, -CH-),δ1.55(s,-CH
 重合体12を重合体13に変えた以外は実施例15と同様の手法で重合体膜の耐溶剤性、接触角、及び表面張力を測定した。評価結果を表3に合わせて示す。重合体13は溶剤への溶解性、室温でのUV架橋性、撥液性、及び隔壁上へのフッ素系樹脂の積層性に優れることを確認した。また、有機トランジスタとして安定に動作した。評価結果を表4に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 8.02 (s, —CH═CH—), δ 7.89 (s, aromatic), δ 6.84 (brs, aromatic), δ 6.67 (brs, Aromatic), δ 6.09 (brs, —CH═CH—), δ 4.30 (brs, —OCH 2 —), δ 3.97 (brs, —OCH 2 —), δ 2.48 (brs, —CH 2). CF 2 −), δ 2.14 to 1.12 (brm, —CH 2 —), δ 1.55 (s, —CH 3 )
The solvent resistance, contact angle, and surface tension of the polymer film were measured in the same manner as in Example 15 except that the polymer 12 was changed to the polymer 13. The evaluation results are shown in Table 3. It was confirmed that the polymer 13 was excellent in solubility in a solvent, UV crosslinkability at room temperature, liquid repellency, and laminating property of a fluororesin on a partition wall. Moreover, it operated stably as an organic transistor. The evaluation results are shown in Table 4.
 (実施例17)
 窒素ボックス内で、20MLのシュレンク管に磁気撹拌子を入れ、AIBN6.8mg、禁止剤を除去した単量体(6CHMA0.34g、及び1H,1H,2H,2H-ヘプタデカフルオロデシルメタクリレート(HFDMA)1.66g)、トルエン3.0g、α,α,α,α’,α’,α’-ヘキサフルオロ-m-キシレン(HFMX)4.9gを仕込んだ後、脱気(液体窒素による凍結、脱気、加温による融解)を4回行った。撹拌下、窒素で加圧した状態で加熱し、60℃で6時間重合した後、シュレンク管内に重合禁止剤(BHT)の溶液を適量加えて、1分間撹拌した後、室温まで冷却した。得られた反応溶液を500MLのメタノール溶液に注いで、重合体を沈殿させ、50℃で真空乾燥して0.9gの重合体14を得た。得られた重合体14はHFDMA単位を75モル%、6CHMA単位を25モル%含んでいた。
(Example 17)
In a nitrogen box, put a magnetic stir bar in a 20 ML Schlenk tube, AIBN 6.8 mg, monomer with inhibitor removed (6CHMA 0.34 g, and 1H, 1H, 2H, 2H-heptadecafluorodecyl methacrylate (HFDMA) 1.66 g), 3.0 g of toluene, 4.9 g of α, α, α, α ′, α ′, α′-hexafluoro-m-xylene (HFMX), and then degassed (freeze with liquid nitrogen, Degassing and melting by heating) were performed 4 times. Under stirring, the mixture was heated under nitrogen pressure and polymerized at 60 ° C. for 6 hours. Then, an appropriate amount of a polymerization inhibitor (BHT) solution was added to the Schlenk tube and stirred for 1 minute, and then cooled to room temperature. The obtained reaction solution was poured into a 500 mL methanol solution to precipitate a polymer, and vacuum dried at 50 ° C. to obtain 0.9 g of the polymer 14. The resulting polymer 14 contained 75 mol% HFDMA units and 25 mol% 6CHMA units.
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
 H-NMR(400MHz、CDCl):δ8.02(s,-CH=CH-),δ7.89(s,芳香族),δ6.84(brs,芳香族),δ6.67(brs,芳香族),δ6.09(brs,-CH=CH-),δ4.30(brs,-OCH-),δ3.97(brs,-OCH-),δ2.48(brs,-CHCF-),δ2.14~1.12(brm, -CH-),δ1.55(s,-CH
 重合体12を重合体14に変えた以外は実施例15と同様の手法で重合体膜の耐溶剤性、接触角、及び表面張力を測定した。評価結果を表3に合わせて示す。重合体14は溶剤への溶解性、室温でのUV架橋性、撥液性、及び隔壁上へのフッ素系樹脂の積層性に優れることを確認した。また、有機トランジスタとして安定に動作した。評価結果を表4に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 8.02 (s, —CH═CH—), δ 7.89 (s, aromatic), δ 6.84 (brs, aromatic), δ 6.67 (brs, Aromatic), δ 6.09 (brs, —CH═CH—), δ 4.30 (brs, —OCH 2 —), δ 3.97 (brs, —OCH 2 —), δ 2.48 (brs, —CH 2). CF 2 −), δ 2.14 to 1.12 (brm, —CH 2 —), δ 1.55 (s, —CH 3 )
The solvent resistance, contact angle, and surface tension of the polymer film were measured in the same manner as in Example 15 except that the polymer 12 was changed to the polymer 14. The evaluation results are shown in Table 3. It was confirmed that the polymer 14 was excellent in solubility in a solvent, UV crosslinkability at room temperature, liquid repellency, and laminating property of a fluororesin on a partition wall. Moreover, it operated stably as an organic transistor. The evaluation results are shown in Table 4.
 (比較例12)
 窒素ボックス内で、20MLのシュレンク管に磁気撹拌子を入れ、AIBN6.2mg、禁止剤を除去した1H,1H,2H,2H-ヘプタデカフルオロデシルメタクリレート(HFDMA)2.0g)、トルエン3.0g、α,α,α,α’,α’,α’-ヘキサフルオロ-m-キシレン(HFMX)4.9gを仕込んだ後、脱気(液体窒素による凍結、脱気、加温による融解)を4回行った。撹拌下、窒素で加圧した状態で加熱し、60℃で6時間重合した後、シュレンク管内に重合禁止剤(BHT)の溶液を適量加えて、1分間撹拌した後、室温まで冷却した。得られた反応溶液を500MLのメタノール溶液に注いで、重合体を沈殿させ、50℃で真空乾燥して0.5gの重合体15を得た。
(Comparative Example 12)
In a nitrogen box, put a magnetic stir bar in a 20 ML Schlenk tube, AIBN 6.2 mg, 2.0 g of 1H, 1H, 2H, 2H-heptadecafluorodecyl methacrylate (HFDMA) with the inhibitor removed, 3.0 g of toluene , Α, α, α, α ′, α ′, α′-hexafluoro-m-xylene (HFMX) 4.9 g, and then degassing (freezing with liquid nitrogen, degassing, melting by heating) 4 times. Under stirring, the mixture was heated under nitrogen pressure and polymerized at 60 ° C. for 6 hours. Then, an appropriate amount of a polymerization inhibitor (BHT) solution was added to the Schlenk tube and stirred for 1 minute, and then cooled to room temperature. The obtained reaction solution was poured into a 500 mL methanol solution to precipitate a polymer, and vacuum dried at 50 ° C. to obtain 0.5 g of the polymer 15.
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
 H-NMR(400MHz、CDCl):δ3.97(brs,-OCH-),δ2.48(brs,-CHCF-),δ2.14~1.12(brm, -CH-),δ1.55(s,-CH
 重合体12を重合体15に変えた以外は実施例15と同様の手法で重合体膜の耐溶剤性、接触角、及び表面張力を測定した。評価結果を表3に合わせて示す。重合体15は溶剤への溶解性、撥液性には優れるが、室温でUV架橋せず、耐溶剤性がないため、隔壁上へのフッ素系樹脂の積層により、隔壁が溶解するため、積層が難しいことが確認された。有機トランジスタは移動度が低く、素子間の移動度にバラつきがあった。評価結果を表4に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 3.97 (brs, —OCH 2 —), δ 2.48 (brs, —CH 2 CF 2 —), δ 2.14 to 1.12 (brm, —CH 2 -), Δ1.55 (s, -CH 3 )
The solvent resistance, contact angle, and surface tension of the polymer film were measured in the same manner as in Example 15 except that the polymer 12 was changed to the polymer 15. The evaluation results are shown in Table 3. Polymer 15 is excellent in solvent solubility and liquid repellency, but does not undergo UV crosslinking at room temperature and does not have solvent resistance, so that the partition walls are dissolved by stacking the fluororesin on the partition walls. It was confirmed that it was difficult. Organic transistors have low mobility, and the mobility between elements varies. The evaluation results are shown in Table 4.
 (比較例13)
 重合体12をサイトップ(AGC旭硝子(株)製)に変え、溶剤Iを溶剤IIに変えた以外は実施例15と同様の手法で重合体膜の耐溶剤性、接触角、及び表面張力を測定した。評価結果を表3に合わせて示す。サイトップは溶剤への溶解性、撥液性には優れるが、室温でUV架橋せず、耐溶剤性がないため、隔壁上へのフッ素系樹脂の積層により、隔壁が溶解するため、積層が難しいことが確認された。
(Comparative Example 13)
The polymer 12 was changed to Cytop (manufactured by AGC Asahi Glass Co., Ltd.), and the solvent resistance, contact angle, and surface tension of the polymer film were changed in the same manner as in Example 15 except that the solvent I was changed to the solvent II. It was measured. The evaluation results are shown in Table 3. CYTOP has excellent solubility in solvents and liquid repellency, but it does not undergo UV crosslinking at room temperature and has no solvent resistance. Therefore, lamination of fluorocarbon resin on the partition walls dissolves the partition walls. It was confirmed that it was difficult.
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
 (比較例14)
 重合体12をテフロン(登録商標)-AF(三井・デュポンフロロケミカル(株)製)に変え、溶剤Iを溶剤IIIに変えた以外は実施例15と同様の手法で重合体膜の耐溶剤性、接触角、及び表面張力を測定した。評価結果を表3に合わせて示す。テフロン(登録商標)-AFは溶剤への溶解性、撥液性には優れるが、室温でUV架橋せず、耐溶剤性がないため、隔壁上へのフッ素系樹脂の積層により、隔壁が溶解するため、積層が難しいことが確認された。有機トランジスタは移動度が低く、素子間の移動度にバラつきがあった。評価結果を表4に合わせて示す。
(Comparative Example 14)
The solvent resistance of the polymer film was changed in the same manner as in Example 15 except that the polymer 12 was changed to Teflon (registered trademark) -AF (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) and the solvent I was changed to the solvent III. , Contact angle, and surface tension were measured. The evaluation results are shown in Table 3. Teflon (registered trademark) -AF is excellent in solvent solubility and liquid repellency, but does not undergo UV crosslinking at room temperature and does not have solvent resistance, so the partition walls dissolve by lamination of fluororesin on the partition walls. Therefore, it was confirmed that lamination was difficult. Organic transistors have low mobility, and the mobility between elements varies. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2018年3月23日に出願された日本特許出願2018-057039号、2019年3月12日に出願された日本特許出願2019-044884号、2018年5月11日に出願された日本特許出願2018-092191号、2019年3月12日に出願された日本特許出願2019-044889号、2018年7月5日に出願された日本特許出願2018-128598号、の明細書、配列表、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Japanese Patent Application No. 2018-057039 filed on March 23, 2018, Japanese Patent Application No. 2019-048884 filed on March 12, 2019, Japanese Patent Application filed on May 11, 2018 Application No. 2018-092191, Japanese Patent Application No. 2019-044889 filed on Mar. 12, 2019, Japanese Patent Application No. 2018-128598 filed on Jul. 5, 2018, Specification, Sequence Listing, Patent The entire contents of the claims, drawings and abstract are hereby incorporated by reference as the disclosure of the specification of the present invention.
 プリンテッドエレクトロニクス技術により製造出来る高品質の有機トランジスタデバイス用の絶縁層形成に好適な樹脂を提供できる。 Resins suitable for forming insulating layers for high-quality organic transistor devices that can be manufactured by printed electronics technology can be provided.
 (A):ボトムゲート-トップコンタクト型有機トランジスタ
 (B):ボトムゲート-ボトムコンタクト型有機トランジスタ
 (C):トップゲート-トップコンタクト型有機トランジスタ
 (D):トップゲート-ボトムコンタクト型有機トランジスタ
 1:有機半導体層
 2:基板
 3:ゲート電極
 4:ゲート絶縁層
 5:ソース電極
 6:ドレイン電極
(A): Bottom gate-top contact type organic transistor (B): Bottom gate-bottom contact type organic transistor (C): Top gate-top contact type organic transistor (D): Top gate-bottom contact type organic transistor 1: Organic semiconductor layer 2: Substrate 3: Gate electrode 4: Gate insulating layer 5: Source electrode 6: Drain electrode

Claims (13)

  1. 式(1)で表される重合性化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素またはC1~C6のアルキル基のいずれかを、Lは炭素数1~14の2価の連結基を、nは0または1を、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルコキシ基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、XはOまたはSを、mは0~3の整数を表す。)
    A polymerizable compound represented by formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 represents either hydrogen or a C1-C6 alkyl group, L represents a divalent linking group having 1 to 14 carbon atoms, n represents 0 or 1, and A, R 2 and R 3 is independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl One kind of the group consisting of an ether group, an arylthio group, a carboxyalkyl group, a fluoroalkyl group, a fluoroalkoxy group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group X represents O or S, and m represents an integer of 0 to 3.)
  2. 式(2)で表される重合性化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Q及びQはそれぞれ独立して炭素数1~14の2価の連結基を、p及びqはそれぞれ独立して0または1を、G、G、R~Rはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基を、X~Xはそれぞれ独立してOまたはSを、r及びsはそれぞれ独立して0~3の整数を表す。)。
    A polymerizable compound represented by formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (2), Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1, G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group and each X 1 ~ X 4 are independently O or S, r and s which Independently represents an integer of 0 to 3.).
  3. 式(3)乃至式(5)の少なくともいずれかを反復単位として含み、かつ、以下の式(6)乃至(8)からなる群の少なくとも1種の反復単位を含む重合体。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Rは水素またはC1~C6のアルキル基のいずれかを、Lは炭素数1~14の2価の連結基を、nは0または1を、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオエーテル基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオエーテル基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオエーテル基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、XはOまたはSを、mは0~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Rは水素またはC1~C6のアルキル基のいずれかを、Lは炭素数1~14の2価の連結基を、nは0または1を、A、R及びRはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオエーテル基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオエーテル基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオエーテル基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、XはOまたはSを、mは0~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、Q及びQはそれぞれ独立して炭素数1~14の2価の連結基を、p及びqはそれぞれ独立して0または1を、G、G、R~Rはそれぞれ独立して水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、X~Xはそれぞれ独立してOまたはSを、r及びsはそれぞれ独立して0~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、Rは水素またはC1~C6のアルキル基のいずれかを、ZはC1~C12のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、Rは水素またはC1~C6のアルキル基のいずれかを、Mは炭素数1~14の2価の連結基を、kは0または1を、Yは水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、jは0~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(8)中、R10は水素またはC1~C6のアルキル基を、Eは-O-、-S-、または-NH-を、tは0または1を、R11は炭素数1~18のフルオロアルキル基を表す。)
    A polymer comprising at least one of the formulas (3) to (5) as a repeating unit and at least one repeating unit of the group consisting of the following formulas (6) to (8).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), R 1 represents either hydrogen or a C1-C6 alkyl group, L represents a divalent linking group having 1 to 14 carbon atoms, n represents 0 or 1, and A, R 2 and R 3 is each independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthioether group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, Aryl ether group, aryl thioether group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothioether group, cycloalkyl group, cycloheteroalkyl One of the group consisting of groups, X is O or S, m is 0 to Of an integer.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (4), R 1 represents either hydrogen or a C1-C6 alkyl group, L represents a divalent linking group having 1 to 14 carbon atoms, n represents 0 or 1, and A, R 2 and R 3 is each independently hydrogen, halogen, cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthioether group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, Aryl ether group, aryl thioether group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothioether group, cycloalkyl group, cycloheteroalkyl One of the group consisting of groups, X is O or S, m is 0 to Of an integer.)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (5), Q 1 and Q 2 are each independently a divalent linking group having 1 to 14 carbon atoms, p and q are each independently 0 or 1, G 1 , G 2 , R 4 to R 7 are each independently hydrogen, halogen, cyano group, nitro group, C1 to C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group , Aryl ether group, arylthio group, carboxyalkyl group, fluoroalkyl group, fluoroalkyl ether group, fluoroalkylcarbonyl group, fluoroalkyl ester group, fluoroalkoxy group, fluoroaryl group, fluorothio group, cycloalkyl group, cycloheteroalkyl group the one of the group consisting of, X 1 ~ X 4 are each independently O or S, And s each independently represents an integer of 0-3.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (6), R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.)
    Figure JPOXMLDOC01-appb-C000007
    (In the formula (7), R 9 is either hydrogen or a C1-C6 alkyl group, M is a divalent linking group having 1 to 14 carbon atoms, k is 0 or 1, Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group, and j is 0 to Represents an integer of 5.)
    Figure JPOXMLDOC01-appb-C000008
    (In formula (8), R 10 represents hydrogen or a C1-C6 alkyl group, E represents —O—, —S—, or —NH—, t represents 0 or 1, and R 11 represents 1 to Represents 18 fluoroalkyl groups.)
  4. 式(4)及び以下の式(6)で表される反復単位を含む請求項3に記載の重合体。
    Figure JPOXMLDOC01-appb-C000009
    (ここで、R、L、n、A、R、R、X及びmは前記式(1)で定義したものと同様である。)
    Figure JPOXMLDOC01-appb-C000010
    (ここで、Rは水素またはC1~C6のアルキル基のいずれかを、ZはC1~C12のアルキル基を表す。)
    The polymer of Claim 3 containing the repeating unit represented by Formula (4) and the following formula | equation (6).
    Figure JPOXMLDOC01-appb-C000009
    (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
    Figure JPOXMLDOC01-appb-C000010
    (Here, R 8 represents either hydrogen or a C1-C6 alkyl group, and Z represents a C1-C12 alkyl group.)
  5. 式(4)または式(5)の少なくともいずれかを反復単位として含み、かつ、以下の式(7)で表される反復単位を含む請求項3に記載の重合体。
    Figure JPOXMLDOC01-appb-C000011
    (ここで、R、L、n、A、R、R、X及びmは、前記式(1)で定義したものと同様である。)
    Figure JPOXMLDOC01-appb-C000012
    (ここで、Q、Q、p、q、G、G、R~R、X~X、r及びsは、前記式(2)で定義したものと同様である。)
    Figure JPOXMLDOC01-appb-C000013
    (式(7)中、Rは水素またはC1~C6のアルキル基のいずれかを、Mは炭素数1~14の2価の連結基を、kは0または1を、Yは水素、ハロゲン、シアノ基、ニトロ基、C1~C18のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキルケトン基、アルキルエステル基、アルキルアミド基、アリール基、アリールエーテル基、アリールチオ基、カルボキシアルキル基、フルオロアルキル基、フルオロアルキルエーテル基、フルオロアルキルカルボニル基、フルオロアルキルエステル基、フルオロアルコキシ基、フルオロアリール基、フルオロチオ基、シクロアルキル基、シクロヘテロアルキル基からなる群の1種を、jは0~5の整数を表す。)
    The polymer of Claim 3 which contains at least any one of Formula (4) or Formula (5) as a repeating unit, and contains the repeating unit represented by the following formula | equation (7).
    Figure JPOXMLDOC01-appb-C000011
    (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
    Figure JPOXMLDOC01-appb-C000012
    (Here, Q 1 , Q 2 , p, q, G 1 , G 2 , R 4 to R 7 , X 1 to X 4 , r and s are the same as those defined in the formula (2)). .)
    Figure JPOXMLDOC01-appb-C000013
    (In the formula (7), R 9 is either hydrogen or a C1-C6 alkyl group, M is a divalent linking group having 1 to 14 carbon atoms, k is 0 or 1, Y is hydrogen, halogen, Cyano group, nitro group, C1-C18 alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl ketone group, alkyl ester group, alkylamide group, aryl group, aryl ether group, arylthio group, carboxyalkyl group, One of the group consisting of a fluoroalkyl group, a fluoroalkyl ether group, a fluoroalkylcarbonyl group, a fluoroalkyl ester group, a fluoroalkoxy group, a fluoroaryl group, a fluorothio group, a cycloalkyl group, and a cycloheteroalkyl group, and j is 0 to Represents an integer of 5.)
  6. 式(4)及び以下の式(8)で表される反復単位を含む請求項3に記載の重合体。
    Figure JPOXMLDOC01-appb-C000014
    (ここで、R、L、n、A、R、R、X及びmは前記式(1)で定義したものと同様である。)
    Figure JPOXMLDOC01-appb-C000015
    (ここで、R10は水素またはC1~C6のアルキル基を、Eは-O-、-S-、または-NH-を、tは0または1を、R11は炭素数1~18のフルオロアルキル基を表す。)
    The polymer of Claim 3 containing the repeating unit represented by Formula (4) and the following formula | equation (8).
    Figure JPOXMLDOC01-appb-C000014
    (Here, R 1 , L, n, A, R 2 , R 3 , X and m are the same as those defined in the formula (1).)
    Figure JPOXMLDOC01-appb-C000015
    (Where R 10 is hydrogen or a C1-C6 alkyl group, E is —O—, —S—, or —NH—, t is 0 or 1, and R 11 is a fluoro having 1 to 18 carbon atoms. Represents an alkyl group.)
  7. 請求項3乃至請求項6に記載の重合体の架橋物。 The crosslinked product of the polymer according to claim 3.
  8. 請求項3乃至請求項6に記載の重合体または請求項7に記載の架橋物の少なくともいずれかを含む絶縁膜。 An insulating film containing at least one of the polymer according to claim 3 or the crosslinked product according to claim 7.
  9. 請求項4に記載の重合体または請求項7に記載の架橋物の少なくともいずれかを含む保護膜。 A protective film comprising at least one of the polymer according to claim 4 or the crosslinked product according to claim 7.
  10. 請求項6に記載の重合体または請求項7に記載の架橋物の少なくともいずれかを含む撥液膜。 A liquid repellent film comprising at least one of the polymer according to claim 6 or the crosslinked product according to claim 7.
  11. 請求項8に記載の絶縁膜を備える有機トランジスタデバイス。 An organic transistor device comprising the insulating film according to claim 8.
  12. 請求項9に記載の保護膜を備える有機トランジスタデバイス。 An organic transistor device comprising the protective film according to claim 9.
  13. 請求項10に記載の撥液膜を備える電子デバイス。 An electronic device comprising the liquid repellent film according to claim 10.
PCT/JP2019/011494 2018-03-23 2019-03-19 Polymerizable compound, photocurable polymer, insulating film, protective film, and organic transistor device WO2019181954A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018057039 2018-03-23
JP2018-057039 2018-03-23
JP2018092191 2018-05-11
JP2018-092191 2018-05-11
JP2018128598A JP7283035B2 (en) 2018-07-05 2018-07-05 Polymers, insulating films, liquid-repellent films, and electronic devices
JP2018-128598 2018-07-05
JP2019044889A JP7371334B2 (en) 2018-05-11 2019-03-12 Polymerizable compounds, photocrosslinkable polymers, insulating films, and organic transistor devices
JP2019044884A JP7363060B2 (en) 2018-03-23 2019-03-12 Polymerizable compounds, photocurable polymers, insulating films, protective films, and organic transistor devices
JP2019-044884 2019-03-12
JP2019-044889 2019-03-12

Publications (1)

Publication Number Publication Date
WO2019181954A1 true WO2019181954A1 (en) 2019-09-26

Family

ID=67986237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011494 WO2019181954A1 (en) 2018-03-23 2019-03-19 Polymerizable compound, photocurable polymer, insulating film, protective film, and organic transistor device

Country Status (1)

Country Link
WO (1) WO2019181954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426750A (en) * 2020-10-29 2022-05-03 秀昌有限公司 Liquid crystal polymer composition and insulating film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817273B1 (en) * 1966-09-19 1973-05-28
US20030073028A1 (en) * 2001-08-30 2003-04-17 Clean Creative Co. Ltd. Organic polymers for bottom antireflective coating, process for preparing the same, and compositions containing the same
JP2018018928A (en) * 2016-07-27 2018-02-01 東ソー株式会社 Insulating film and organic field-effect transistor device including the same
JP2018154814A (en) * 2017-03-16 2018-10-04 東ソー株式会社 Photocrosslinkable polymer, insulation film, flattened film, repellent patterning film, and organic field effect transistor device containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817273B1 (en) * 1966-09-19 1973-05-28
US20030073028A1 (en) * 2001-08-30 2003-04-17 Clean Creative Co. Ltd. Organic polymers for bottom antireflective coating, process for preparing the same, and compositions containing the same
JP2018018928A (en) * 2016-07-27 2018-02-01 東ソー株式会社 Insulating film and organic field-effect transistor device including the same
JP2018154814A (en) * 2017-03-16 2018-10-04 東ソー株式会社 Photocrosslinkable polymer, insulation film, flattened film, repellent patterning film, and organic field effect transistor device containing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATTILA VASAS ET AL.: "The Heck Reaction of Protected Hydroxychromones on route to Natural Products", AUSTRALIAN JOURNAL OF CHEMISTRY, vol. 64, no. 5, 2011, pages 647 - 657, XP055638200 *
BO - LIANG DENG ET AL.: "Synthesis of 7 - Vinylflavone and 7 - Aminoflavone by Palladium - Catalyzed Coupling Reactions", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 1999, no. 10, October 1999 (1999-10-01), pages 2683 - 2688, XP055638202 *
KWANG-DUK AHN ET AL.: "New Antireflective Coating Materials Containing a Novel Chromophore for KrF Laser Lithography", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 14, no. 3, 2001, pages 475 - 480, XP008050242 *
ROBERTO ARTALI ET AL.: "Synthesis, X-ray crystal structure and biological properties of acetylenic flavone derivatives, II Farmaco", INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY AND PHARMACEUTICAL CHEMISTRY, vol. 58, no. 9, 2003, pages 875 - 881, XP055638201 *
THIRUPATHI GOGULA ET AL.: "Synthesis of Diverse Oxa - Carbocycle - Annulated Flavones Using the Combined Claisen Rearrangement and Ring - Closing Metathesis", HELVETICA CHIMICA ACTA, vol. 99, no. 7, 2016, pages 547 - 557, XP055638203 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426750A (en) * 2020-10-29 2022-05-03 秀昌有限公司 Liquid crystal polymer composition and insulating film

Similar Documents

Publication Publication Date Title
TWI516510B (en) Hardening composition and hardening film
JP6262204B2 (en) Bank structure for organic electronic devices
JP6821991B2 (en) Insulating film and organic field effect transistor device containing it
WO2014156910A1 (en) Composition, method for producing substrate having pattern formed thereon, film and method for producing same, and compound
JP6801374B2 (en) Polymers, insulating films and organic field effect transistor devices containing them
WO2015002204A1 (en) Production method for organic transistor element
WO2019181954A1 (en) Polymerizable compound, photocurable polymer, insulating film, protective film, and organic transistor device
JP2019178191A (en) Fluorine resin
TW201925382A (en) Formulation and layer
JP6992546B2 (en) Photocrosslinkable polymers, insulating films, flattening films, repellent patterning films and organic field effect transistor devices containing them
EP3597673B1 (en) Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same
WO2022210326A1 (en) Fluorine resin, composition, photocrosslinked product, and electronic device provided therewith
JP7480484B2 (en) Resin composition
JP7371334B2 (en) Polymerizable compounds, photocrosslinkable polymers, insulating films, and organic transistor devices
WO2014034671A1 (en) Curable composition and method for producing curable film
WO2018168676A1 (en) Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same
JP7363060B2 (en) Polymerizable compounds, photocurable polymers, insulating films, protective films, and organic transistor devices
JP7283035B2 (en) Polymers, insulating films, liquid-repellent films, and electronic devices
WO2011158929A1 (en) Optical energy-crosslinkable insulating layer material for organic thin film transistor, overcoat insulating layer, and organic thin film transistor
JP6992545B2 (en) Photocrosslinkable polymer, insulating film, repellent patterning film and organic transistor containing them
JP7243180B2 (en) Photocrosslinkable polymer, insulating layer and organic transistor device containing the same
JP6953986B2 (en) Photocrosslinkable polymers, insulating films and organic field effect transistor devices containing them
WO2024070915A1 (en) Resin, composition, photocrosslinked product, pattern, and electronic device comprising same
WO2023074606A1 (en) Resin, insulating film and organic field effect transistor comprising same
US20240182617A1 (en) Fluorine resin, composition, photocrosslinked product, and electronic device provided therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771700

Country of ref document: EP

Kind code of ref document: A1