WO2018168676A1 - Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same - Google Patents

Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same Download PDF

Info

Publication number
WO2018168676A1
WO2018168676A1 PCT/JP2018/009167 JP2018009167W WO2018168676A1 WO 2018168676 A1 WO2018168676 A1 WO 2018168676A1 JP 2018009167 W JP2018009167 W JP 2018009167W WO 2018168676 A1 WO2018168676 A1 WO 2018168676A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
resin
film
effect transistor
Prior art date
Application number
PCT/JP2018/009167
Other languages
French (fr)
Japanese (ja)
Inventor
山川浩
奥慎也
弓野翔平
李廷輝
片桐史章
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017199489A external-priority patent/JP6953986B2/en
Priority claimed from JP2018011579A external-priority patent/JP6992545B2/en
Priority claimed from JP2018011580A external-priority patent/JP6992546B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US16/494,107 priority Critical patent/US20210135115A1/en
Priority to EP18767508.7A priority patent/EP3597673B1/en
Priority to CN201880017891.8A priority patent/CN110418808B/en
Publication of WO2018168676A1 publication Critical patent/WO2018168676A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/10Acylation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention forms a film having excellent flatness by coating in a solution state, easily crosslinks by light irradiation for a short time, and has solvent resistance (crack resistance) but also wettability to solvent (
  • the present invention relates to a resin having excellent overcoat property and high dielectric breakdown strength.
  • Dielectric breakdown strength refers to the maximum electric field value that can be applied without destroying the dielectric layer that constitutes the device. The higher the dielectric breakdown strength, the higher the stability of the device.
  • the leakage current is an index indicating the magnitude of a current other than the original conductive path, for example, a current flowing from the gate electrode through the insulating dielectric layer to the source electrode.
  • the leakage current is obtained by preparing a MIM capacitor having a three-layer structure of metal / dielectric / metal and measuring the value of current flowing in the dielectric layer.
  • a polymer dielectric layer is an overlay layer such as an organic semiconductor layer. Laminated. Therefore, when an overlay layer is formed on a polymer dielectric layer by a printing method using a solvent, the polymer dielectric must not be dissolved in this solvent (a solvent used in the printing method). . Therefore, the polymer dielectric layer (insulating film layer) must be dissolved in a general-purpose organic solvent when forming the layer, and insoluble in the organic solvent after forming the layer. Conflicting performance is required.
  • a technique for crosslinking a polymer dielectric layer formed by solution film formation is known.
  • benzocyclobutene resin and polyvinyl phenol resin are known.
  • a benzocyclobutene resin has a high crosslinking temperature of 250 ° C. and a plastic is used as a base material, the base material is thermally deformed. It was difficult and the curing time was long and the economy was poor. Furthermore, it is extremely difficult to apply to the roll-to-roll process, and the flatness of the film that affects the device performance is not sufficient.
  • Polyvinylphenol uses a melamine resin or the like as a cross-linking agent and requires a long curing reaction at a temperature of about 150 ° C., and is extremely difficult to apply to a roll-to-roll process.
  • the hydroxyl groups of the polyvinylphenol resin do not disappear completely, and there is a problem of high leakage current estimated to be caused by hydrophilicity due to the remaining hydroxyl groups.
  • the flatness of the film was not sufficient.
  • fluorine-based cyclic ether resin polyparaxylylene resin, or the like as a type of resin that does not require crosslinking used for the polymer dielectric layer (insulating film layer)
  • the fluorine-based cyclic ether resin does not dissolve in a general-purpose organic solvent after film formation, it has an advantage that it is insoluble in a general-purpose solvent even if it is not crosslinked, but is inferior in economic efficiency.
  • this material has a low surface tension, the wettability with respect to the base material is poor, and the base material that can be coated or printed has a great restriction.
  • Polyparaxylylene resin has the advantage that it is not dissolved in a general-purpose solvent because it is deposited on a substrate by vapor deposition and polymerized on the substrate by vacuum deposition. It has a fatal defect that it cannot respond.
  • Photocrosslinking technology is known as a means that can be crosslinked at a low temperature and shortens the crosslinking time.
  • it has photocrosslinkability such as cinnamoyl group for polymers having hydroxyl groups in the side chain such as poly (hydroxyethyl methacrylate), vinylphenol-methyl methacrylate copolymer, polyacetoxyethyl methacrylate, polyhydroxyethyl methacrylate, etc.
  • a technique of using a photocrosslinkable polymer obtained by reacting a compound having a polymer dielectric as a polymer dielectric is disclosed (for example, see Patent Document 1).
  • Patent Document 1 also discloses a technique for reducing the amount of residual hydroxyl groups by reacting unreacted hydroxyl groups with trifluoroacetic anhydride for esterification.
  • it is extremely difficult to completely eliminate the hydroxyl group, and there is a problem that the wettability with respect to the organic solvent is lowered by the introduction of the fluorine compound.
  • Non-Patent Document 1 a technique using poly (vinyl cinnamate) as a polymer dielectric layer of an organic field effect transistor device has been proposed (see, for example, Non-Patent Document 1 and Non-Patent Document 2), but the solution was applied.
  • the flatness of the polymer dielectric layer (insulating film layer) is about 0.7 nm, and further flattening has been demanded.
  • a compound having a photoreactive group is introduced into an aromatic vinyl polymer such as polystyrene or poly- ⁇ -methylstyrene by Friedel-Crafts acylation reaction.
  • a technique related to the photosensitive resin is disclosed in the 1950s. However, this technique has a problem that the resin gels during the manufacturing process if a large number of photoreactive groups are introduced to shorten the exposure time. Therefore, the introduction amount of the photoreactive group needs to be less than 17 mol% with respect to the total number of moles of monomers constituting the polymer (for example, see Patent Document 3 and Patent Document 4).
  • the concentration of the photoreactive group is small, and thus the crosslink density of the photocrosslinked film is low.
  • the crosslinked film absorbs the solvent and swells.
  • the present invention has been made in view of the above problems, and its purpose is solubility in general-purpose solvents, crosslinking temperature, time required for crosslinking, solvent resistance (crack resistance), wettability to solvents, leakage current,
  • An object of the present invention is to provide a resin capable of producing a polymer dielectric layer (insulating film layer) having excellent performance in terms of dielectric breakdown strength.
  • the present inventors have found that a specific resin is soluble in a general-purpose solvent required for an insulating film, a crosslinking temperature, a time required for crosslinking, and solvent resistance (crack resistance).
  • the present invention has been completed by finding that it has excellent wettability to solvent, leakage current, and dielectric breakdown strength.
  • R 1 represents hydrogen or a C1-C6 alkyl group
  • S 1 represents —O— or —C (O) —
  • p represents 0 or 1
  • a 1 represents a C6-C19 aryl.
  • Y represents a halogen, a cyano group, a carboxyalkyl group, an alkyl ether group, an aryl ether group, a C1-C18 alkyl group, a fluoroalkyl group, or a cycloalkyl group
  • k represents 0 to (s-1 Where s represents the number of carbon atoms constituting A 1.
  • R 2 represents hydrogen or a C1-C6 alkyl group
  • S 2 represents —O— or —C (O) —
  • q represents 0 or 1
  • a 2 represents C6 to C19.
  • Y represents an aryl group
  • Y represents a substituent defined in formula (1)
  • j represents an integer of 0 to (r-2)
  • m represents an integer of 1 to (rj-1), where r Represents the number of carbon atoms constituting A 2.
  • Z represents at least one organic group selected from formulas (A) to (D).
  • R 3 and R 4 each independently represent hydrogen, a C1-C6 alkyl group, an aryl group, or a carboxyalkyl group
  • R 5 to R 29 each independently represent Represents hydrogen, halogen, cyano group, carboxyalkyl group, alkyl ether group, aryl ether group, C1-C18 alkyl group, fluoroalkyl group, or cycloalkyl group
  • An insulating film comprising the cross-linked product of the resin according to [1].
  • the gate insulating layer is described in [2] above.
  • An organic field effect transistor device characterized by being an insulating film.
  • a planarization film comprising the resin according to [1] and / or the crosslinked product of the resin according to [1].
  • a hydrophilic / repellent patterning film comprising the resin according to [1] and / or a crosslinked product of the resin according to [1].
  • the resin of the present invention contains repeating units of the above formula (1) and the above formula (2).
  • R 1 represents hydrogen or a C1-C6 alkyl group.
  • the C1-C6 alkyl group for R 1 in the formula (1) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • S 1 represents —O— or —C (O) —.
  • p 0 or 1.
  • a 1 represents a C6 to C19 aryl group.
  • the C6 to C19 aryl group in A 1 in the formula (1) is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
  • Y represents a halogen, a cyano group, a carboxyalkyl group, an alkyl ether group, an aryl ether group, a C1-C18 alkyl group, a fluoroalkyl group, or a cycloalkyl group.
  • halogen in Y in Formula (1) For example, chlorine, a fluorine, etc. are mentioned.
  • the alkyl ether group for Y in the formula (1) is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and a butoxy group.
  • the aryl ether group in Y in the formula (1) is not particularly limited, and examples thereof include a phenoxy group, 4-methylphenoxy group, 4-tert-butylphenoxy group, 1-naphthoxy group, 2-naphthoxy group and the like. .
  • the C1-C18 alkyl group for Y in the formula (1) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • the fluoroalkyl group for Y in formula (1) is not particularly limited, and examples thereof include 1,1,1-trifluoroethyl group, 1,1,1,2,2-pentafluoropropyl group, 1,1,1, Examples include 1,2,2,3,3-heptafluorobutyl group.
  • the cycloalkyl group for Y in the formula (1) is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, etc.
  • k is an integer of 0 to (s-1). To express.
  • s represents the number of carbon atoms constituting the A 1.
  • R 2 represents hydrogen or a C1-C6 alkyl group.
  • the C1-C6 alkyl group in R 2 in the formula (2) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • S 2 represents —O— or —C (O) —.
  • q 0 or 1.
  • a 2 represents a C6 to C19 aryl group.
  • the C6 to C19 aryl group in A 2 in Formula (2) is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
  • Y represents a substituent similar to the substituent defined in formula (1).
  • m represents an integer of 1 to (r ⁇ j ⁇ 1).
  • r represents the number of carbon atoms constituting A 2
  • j represents an integer of 0 to (r ⁇ 2).
  • Z represents at least one organic group selected from formulas (A) to (D).
  • R 3 and R 4 each independently represent hydrogen, a C1-C6 alkyl group, an aryl group, or a carboxyalkyl group
  • R 5 to R 29 each independently It represents hydrogen, halogen, cyano group, carboxyalkyl group, alkyl ether group, aryl ether group, C1-C18 alkyl group, fluoroalkyl group, or cycloalkyl group.
  • the C1-C6 alkyl group in R 3 and R 4 in the formulas (A) to (D) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Etc.
  • the aryl group in R 3 and R 4 in the formulas (A) to (D) is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
  • the carboxyalkyl group for R 3 and R 4 in formulas (A) to (D) is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, and a carboxypropyl group.
  • the halogen in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include chlorine and fluorine.
  • the carboxyalkyl group in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, and a carboxypropyl group.
  • the alkyl ether group in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and a butoxy group. .
  • the aryl ether group in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a phenoxy group, a p-methylphenoxy group, a p-ethylphenoxy group, and a p-methoxyphenoxy group. Is mentioned.
  • the alkyl group of C1 to C18 in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. N-hexyl group, n-decyl group, n-octadecyl group and the like.
  • the fluoroalkyl group for R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include 1,1,1-trifluoroethyl group, 1,1,1,2,2- Examples thereof include a pentafluoropropyl group and a 1,1,1,2,2,3,3-heptafluorobutyl group.
  • the cycloalkyl group in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • organic group represented by the formula (A) include the following.
  • organic group represented by the formula (B) include the following.
  • organic group represented by the formula (C) include the following.
  • organic group represented by the formula (D) include the following.
  • the polymer containing the repeating unit of the specific formula (1) and formula (2) used in the present invention contains an aromatic group and contains a hydroxyl group, an amino group, a thiol group and the like that react with an acid chloride. If not, it can be used without any restrictions.
  • the molecular weight of the resin having the repeating unit of the above formula (1) and the above formula (2) for example, those having 200 to 10,000,000 (g / mol).
  • it is preferably 10,000 to 1,000,000 (g / mol).
  • the resin having repeating units of the above formulas (1) and (2) used in the present invention can be obtained by introducing a photocyclizable compound into an aromatic group-containing polymer by Friedel-Crafts acylation reaction.
  • the photocyclization compound is introduced into a film in a certain amount or more, so that the film has excellent flatness and can be photocrosslinked in a short time. It is inferior in flatness only and cannot be photocrosslinked.
  • the photocyclizable compound is represented by the cinnamic acid chloride compound represented by the following formula (3), the phenylethenylbenzoic acid chloride compound represented by the following formula (4), and the following formula (5).
  • Pyridinylethenylbenzoic acid chloride and coumarin-6-carboxylic acid chloride represented by the following formula (6) are shown.
  • cinnamic acid chloride which is easy to produce, is preferably used.
  • these compounds can also use 2 or more types together as needed.
  • the amount of the above-mentioned acid chloride charged in the resin having the repeating unit of the formula (1) and the formula (2) is the aromatic contained in the resin in order to improve the solubility of the resulting resin in the organic solvent and the storage stability.
  • the amount is preferably 0.2 to 2.0 mol, more preferably 0.2 to 1.5 mol, per 1 mol of the group.
  • the amount of photoreactive groups introduced into the aromatic group in the reaction is the solubility in organic solvents, storage stability, ease of photocrosslinking, and solvent resistance (crack resistance) of the resin layer after photocrosslinking. From this point of view, the amount is preferably 0.2 to 1.0 mol, more preferably 0.2 to 0.7 mol with respect to 1 mol of the aromatic group contained in the resin.
  • the aromatic group-containing polymer into which the photoreactive group is introduced by Friedel-Crafts acylation reaction is not limited as long as it is inactive with respect to the reaction catalyst described later.
  • poly- ⁇ -methylstyrene Polystyrene, such as poly-p-methoxystyrene and syndiopolystyrene; polyvinyl naphthalene; polyvinyl biphenyl; polyvinyl anthracene; polyvinyl carbazole; polyvinyl aryl ketone such as polyvinyl phenyl ketone; styrene butadiene copolymer; ethylene / styrene copolymer; ⁇ Acrylonitrile copolymer; Styrene / alkyl acrylate copolymer; Styrene / alkyl methacrylate copolymer; Styrene / ⁇ -phenylalkyl acrylate copolymer;
  • a polymer composed only of an aromatic hydrocarbon and an aliphatic hydrocarbon is used. Is preferred. Moreover, these copolymers can also be used in combination of 2 or more types.
  • the Friedel-Crafts acylation reaction can be carried out using a reaction catalyst.
  • a known super strong acid can be used as a reaction catalyst, and there is no limitation as long as it is a super strong acid, and examples thereof include trifluoromethane sulfonic acid, fluorosulfonic acid, fluoroantimonic acid, and carborane acid.
  • the addition amount of the catalyst is 0.1 to 1.5 times mol of the above acid chloride in order to avoid complicated neutralization after the reaction and to prevent the reaction rate from decreasing. Is preferred.
  • the Friedel-Crafts acylation reaction is an exothermic reaction and may cause a side reaction in which the photoreactive group is crosslinked by heating in this reaction system. Therefore, in the present invention, in order to suppress the side reaction, it is preferable to carry out by a solution reaction in which the reaction temperature can be easily controlled.
  • the reaction solvent used in the solution reaction in the present invention can be used without any limitation as long as it is stable against the Friedel-Crafts reaction, and is sufficiently dehydrated chlorine-based hydrocarbon solvent, aliphatic carbonization which is inert to the reaction.
  • a hydrogen solvent, a sulfur-containing solvent, a nitrile solvent or the like is preferably used.
  • chlorinated hydrocarbon solvents examples include methylene chloride, carbon tetrachloride, 1,1,2-trichloroethane, chloroform, etc., aliphatic hydrocarbon solvents such as cyclohexane, and sulfur-containing solvents such as carbon disulfide and sulfonedimethyl. Examples thereof include sulfoxide, dimethyl sulfate and dimethyl sulfone, and examples of the nitrile solvent include acetonitrile.
  • the reaction temperature is not particularly limited, but it is preferably 0 to 40 ° C. from the viewpoint of economy related to cooling and heating, and 0 to 15 ° C. from the viewpoint of suppressing the formation of microgel. Further preferred. Moreover, although it is possible to carry out at the reflux temperature of the solvent used as necessary, a temperature of less than 200 ° C. is preferred.
  • the reaction time is not particularly limited, and examples thereof include 5 to 100 hours. From the viewpoint of reaction rate and economy, it is preferably 10 hours to 50 hours.
  • the resin having the repeating unit of formula (1) and formula (2) may contain a structure based on the cyclization of the photoreactive group in the polymer molecule as long as the solubility is not impaired.
  • Examples of the structure based on cyclization of the photoreactive group include structures represented by the following formulas (7) to (10).
  • R 3 , R 4 and R 10 to R 18 are the same as in Formula (4)).
  • R 3 , R 4 , R 27 to R 29 are the same as in Formula (6)
  • the resin having the repeating units of the formulas (1) and (2) may contain, for example, a dimerized photoreactive group as shown below.
  • R 3 and R 4 to R 26 are the same as those defined in Formulas (A) to (C).
  • A, b, and c) Represents an integer of 0 to 4, R A is a substituents selected from R 5 to R 9 defined in Formula (A), and R B is selected from R 14 to R 18 defined in Formula (B) B substituents, R C represents c substituents selected from R 23 to R 26 defined in formula (C).
  • Z in the formula (2) is an organic group represented by the formula (A)
  • the resins having repeating units of the formula (1) and the formula (2) are represented by the formulas (1) and (1).
  • the resin may have a repeating unit (2) and further have a repeating unit represented by the formula (18). At this time, since a part of the repeating unit of the formula (2) becomes the repeating unit of the formula (18), generation of microgel can be suppressed, and the resin is more excellent in productivity.
  • R 2 , S 2 , A 2 and Y are the substituents defined in the formula (2), q is an integer defined in the formula (2), and n is 0 to (t-4)
  • t represents the total number of carbon atoms constituting A 2.
  • d and e are located at positions ortho to each other on the aromatic group A 2 (bonded to adjacent carbon atoms).
  • R 3 to R 9 are the same as defined in formula (A).
  • n represents an integer of 0 to (t-4).
  • t represents the total number of carbon atoms constituting the A 2.
  • D and e each represent a single bond located at the position of the ortho position on the aromatic group A 2 (bonded to adjacent carbon).
  • the resin having the repeating unit of the formula (1) and the formula (2) has the repeating unit of the above formula (1) and the above formula (2), and further has the repeating unit represented by the formula (19). Resin may be used. At this time, the liquid repellency in the case of the hydrophilic / repellent patterning film is improved, and the resin becomes more excellent in resolution when the fine electrode is formed.
  • a 3 is a C6-C19 aryl group
  • Y is a substituent defined in the formula (1)
  • R 30 is hydrogen or a C1-C6 alkyl group
  • R f is a C1-C18 the fluoroalkyl group
  • v is an integer of 0 ⁇ (u-2)
  • w represents an integer of 1 ⁇ (u-v-1 ).
  • u represents the number of carbon atoms constituting the a 3.
  • a 3 represents a C6 to C19 aryl group.
  • the C6 to C19 aryl group in A 3 in Formula (19) is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
  • Y represents an organic group similar to the organic group defined in formula (1).
  • R 30 represents hydrogen or a C1-C6 alkyl group.
  • the C1-C6 alkyl group for R 30 in formula (19) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • R f represents a C1-C18 fluoroalkyl group.
  • the C1-C18 fluoroalkyl group in R f in the formula (19) is not particularly limited, and examples thereof include a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, Perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, perfluorododecyl group, perfluorooctadecyl group and other linear perfluoroalkyl groups; perfluoroisopropyl group, perfluoro Branched perfluoroalkyl groups such as fluoroisobutyl group, perfluoro-sec-butyl group, perfluoro-tert-butyl group, perfluoroneopentyl group; perfluorocyclopropyl group, per
  • v represents an integer of 0 to (u-2), and m represents an integer of 1 to (uv-1).
  • u represents the number of carbon atoms constituting the A 3.
  • any solvent that dissolves the resin can be used without any limitation.
  • Aromatic hydrocarbons such as: Chlorinated aliphatic hydrocarbon compounds such as methylene chloride and 1,1,2-trichloroethylene; Aliphatic cyclic ether compounds such as tetrahydrofuran and dioxane; Ketone compounds such as methyl ethyl ketone and cyclohexanone; Ethyl acetate and dimethyl Examples include ester compounds such as phthalate, methyl salicylate, and amyl acetate; alcohols such as n-butanol, ethanol, and iso-butanol; and 1-nitropropane, carbon disulfide, and limonene. These solvents can be used as a mixture as required.
  • Examples of the resin according to the present invention include spin coating, drop casting, dip coating, doctor blade coating, pad printing, squeegee coating, roll coating, rod bar coating, air knife coating, wire bar coating, flow coating, gravure printing, flexographic printing. , Screen printing, ink jet printing, letterpress reversal printing, and the like. Note that since the insulating film of the present invention is formed using these methods, the insulating film of the present invention is required to have excellent solubility in general-purpose solvents.
  • the resin according to the present invention When the resin according to the present invention is used as an insulating film, it can be used in a state where the film is formed or as a cross-linked product that is photo-crosslinked (photocyclized) as necessary.
  • the general-purpose solvent used for forming the film exhibits good solubility, and the upper portion of the film
  • the organic semiconductor layer can be formed using a solvent different from the general-purpose solvent.
  • the film has solvent resistance (crack resistance) with respect to the organic semiconductor solution, it can be used as an insulating film with the film formed.
  • it is not excellent in solvent resistance (crack resistance) film formation by a printing method cannot be performed, and it is necessary to form into a film by methods, such as a vapor deposition method inferior to the printing method.
  • UV rays having a wavelength of 245 to 350 nm are exemplified.
  • the irradiation amount is appropriately changed depending on the composition of the resin. For example, 150 to 3000 mJ / cm 2 can be mentioned, and it is preferable to prevent a decrease in the degree of crosslinking and to improve economy by shortening the process. 50 to 1000 mJ / cm 2 .
  • Irradiation with ultraviolet rays is usually carried out in the atmosphere, but it can also be carried out in an inert gas or in a certain amount of inert gas flow as necessary.
  • a photosensitizer can be added to promote the photocrosslinking reaction.
  • the photosensitizer used is not particularly limited, and examples thereof include benzophenone compounds, anthracene compounds, anthraquinone compounds, thioxanthone compounds, nitrophenyl compounds, etc., but benzophenone compounds having high compatibility with the resin used in the present invention. Is preferred.
  • the sensitizers can be used in combination of two or more as required.
  • the resin of the present invention can be crosslinked by ultraviolet rays, but may be heated if necessary.
  • the temperature in the case of heating in addition to the ultraviolet irradiation is not particularly limited, but a temperature of 120 ° C. or lower is preferable in order to avoid thermal deformation of the resin used.
  • the resin of the present invention can be crosslinked efficiently in a short time, and the time required for crosslinking can be within 5 minutes. Note that, since it is suitable for controlling the crosslinking time, the time required for crosslinking is preferably within 1 to 2 minutes.
  • the resin of the present invention can be formed into a film and used as a gate insulating layer (polymer dielectric layer) in an organic field effect transistor (OFET).
  • the organic field effect transistor can be obtained, for example, by laminating an organic semiconductor layer provided with a source electrode and a drain electrode and a gate electrode on a substrate via a gate insulating layer (polymer dielectric layer). .
  • the insulating film obtained from the resin of the present invention has a low leakage current because the formation of fine holes (pinholes) that cause leakage is suppressed. Further, when the insulating film is used as a polymer dielectric layer, the leakage current is preferably 0.01 nA or less from the viewpoint of practicality as an organic field effect transistor (OFET) element.
  • OFET organic field effect transistor
  • the insulating film obtained from the resin of the present invention has excellent wettability with respect to a solvent.
  • a gate insulating layer polymer dielectric layer
  • the bottom gate / bottom contact (BGBC) type and the top gate / bottom contact are used.
  • BGBC bottom gate / bottom contact
  • TGBC TGBC type organic field effect transistor device
  • the insulating film obtained from the resin of the present invention has excellent flatness.
  • the surface roughness (Ra) is 0. 0 from the viewpoint of flatness. It is preferable that it is 5 nm or less.
  • the threshold voltage of the FET element is 0 from the viewpoint of practicality as an organic field effect transistor (OFET) element. It is preferably 2.0 V or less, or ⁇ 2.0 V or more and less than 0 V.
  • the mobility of the FET element is 0. 0 from the viewpoint of practicality as an organic field effect transistor (OFET) element. It is preferably 20 cm 2 / Vs or more.
  • the on-current / off-current of the FET element is preferably 10 6 or more.
  • the insulating film obtained from the resin of the present invention is used as a gate insulating layer (polymer dielectric layer), from the viewpoint of practicality as an organic field effect transistor (OFET) element, the source-drain current of the FET element It is preferable that there is no hysteresis.
  • the dielectric breakdown strength of the FET element is 4 MV from the viewpoint of practicality as an organic field effect transistor (OFET) element. / Cm or more is preferable.
  • the organic field effect transistor is a bottom gate / bottom contact (BGBC) type, a bottom gate / top contact (BGTC) type, a top gate / bottom contact (TGBC) type, a top gate / top contact (TGTC).
  • BGBC bottom gate / bottom contact
  • TGBC top gate / bottom contact
  • TGTC top gate / top contact
  • the resin of the present invention is suitably used as a planarizing film containing the resin of the present invention and / or a cross-linked product of the resin of the present invention, and is particularly suitably used as an insulating planarizing film capable of continuous printing.
  • the planarizing film is a film made of an insulating resin that is applied on the base material and used for the purpose of reducing the surface roughness of the base material itself.
  • the planarizing film obtained from the resin of the present invention can be continuously printed by dissolving in the above-mentioned organic solvent, has excellent insulating properties and flatness, and can be particularly suitably used as a repellent patterning film.
  • the hydrophilic / repellent patterning is a technique of patterning by hydrophilicizing the surface of a plastic using vacuum ultraviolet (VUV), and a film having a surface patterned by using the technique is called a hydrophilic / repellent patterning film. is there.
  • the new repellent patterning film of the present invention is also preferable in that it can prevent the occurrence of defects when the aqueous metal nano ink is applied.
  • the hydrophilic / repellent patterning is preferably performed by irradiating vacuum / ultraviolet pattern (VUV) having a wavelength of 10 nm to 200 nm to the hydrophilic / repellent patterning film through a photomask having a chromium pattern.
  • VUV vacuum / ultraviolet pattern
  • the distance between the light source and the film and the distance between the mask and the film are appropriately selected depending on the composition of the hydrophilic / repellent patterning film to be used.
  • VUV vacuum / ultraviolet pattern
  • it can be performed under a gas having various compositions ranging from the atmosphere to nitrogen.
  • the irradiation time of VUV is not limited as long as good repellent patterning can be performed, but it is more suitable for preventing film deterioration and more suitable for receptive patterning. A range is preferable.
  • a hydrophilic pattern is drawn on the hydrophobic film by the hydrophilic / repellent patterning.
  • the contact angles of the hydrophobic region and the hydrophilic region with respect to water are preferably 100 ° or more and 20 ° or less, respectively.
  • the difference in contact angle is preferably 80 ° or more.
  • the surface tension difference between the hydrophobic region and the hydrophilic region is preferably 40 mN / m.
  • the drying temperature and the baking temperature are not limited as long as the substrate and the hydrophilic / repellent patterning film are not affected.
  • the drying temperature is preferably 10 to 50 ° C.
  • the heating and baking temperature is preferably 100 to 180 ° C. It is done.
  • resolution in the hydrophobic / repellent patterning film is appropriately selected depending on the application, but is preferably 10 ⁇ m or less from the viewpoint of practicality.
  • “resolution” refers to a pattern in which a linear electrode wiring (line) having a width of A micron is optically patterned using a mask in which A micron intervals (spaces) are arranged at equal intervals, and then metal When wiring is formed with nano ink, it means the minimum value of A that can form wiring with the shape of a mask. In this case, the line and space is A micron resolution.
  • the metal nanoink that can be used in the present invention and the concentration of metal nanoparticles contained in the ink are not limited as long as a low-resistance metal wiring can be formed.
  • examples include inks containing metal nanoparticles such as gold, silver, platinum, etc., and solids concentrations of, for example, 5 to 50 wt% can be mentioned.
  • an ink using water or a water / alcohol mixed solvent is exemplified as a medium for dispersing the metal nanoparticles.
  • the type of alcohol is not limited as long as it is compatible with water, and examples thereof include methanol and ethanol.
  • the threshold value of the FET element is used from the viewpoint of practicality as an organic field effect transistor (OFET) element including the electrode
  • the voltage is preferably more than 0 and not more than 2.0V, or more than ⁇ 8.0V and less than 0V, more preferably more than 0 and less than 2.0V, or more than ⁇ 2.0V and less than 0V.
  • the FET element is moved from the viewpoint of practicality as an organic field effect transistor (OFET) element including the electrode.
  • the degree is preferably 0.20 cm 2 / Vs or more.
  • the FET element is turned on from the viewpoint of practicality as an organic field effect transistor (OFET) element including the electrode.
  • the current / off-current ratio is preferably 10 6 or more.
  • the source of the FET element -It is preferable that there is no hysteresis of current between drains.
  • a substrate that can be used is not particularly limited as long as sufficient flatness capable of producing an element can be secured.
  • a multilayered material may be used.
  • the surface of these materials can also be coated.
  • Plastics used as the substrate include polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polycarbonate, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyethylene, ethylene / vinyl acetate copolymer, polymethylpentene-1, and polypropylene.
  • Examples of the conductive gate electrode, source electrode, or drain electrode that can be used in the present invention include gold, silver, aluminum, copper, titanium, platinum, chromium, polysilicon, silicide, indium / tin / oxide (ITO), A conductive material such as tin oxide is exemplified. In addition, a plurality of these conductive materials can be stacked.
  • the electrode formation method is not particularly limited, and examples thereof include vapor deposition, high-frequency sputtering, electron beam sputtering, and the like.
  • vapor deposition high-frequency sputtering, electron beam sputtering, and the like.
  • solution spin coating drop Methods such as casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, screen printing, ink jet printing, letterpress reverse printing and the like can also be employed.
  • the organic semiconductor that can be used in the present invention is not limited at all, and any of N-type and P-type organic semiconductors can be used, and can be used as a bipolar transistor that combines N-type and P-type. Examples are (F-1) to (F-10).
  • both low-molecular and high-molecular organic semiconductors can be used, and these can be used in combination.
  • examples of the method for forming the organic semiconductor layer include a method in which the organic semiconductor is vacuum-deposited, a method in which the organic semiconductor is dissolved in an organic solvent, and a method for coating and printing. There is no limitation as long as it can be formed.
  • the concentration of the solution when the organic semiconductor layer is applied or printed using a solution in which the organic semiconductor layer is dissolved in an organic solvent varies depending on the structure of the organic semiconductor and the solvent to be used. Therefore, the content is preferably 0.5% to 5% by weight.
  • the organic solvent at this time is not limited as long as the organic semiconductor dissolves at a certain concentration capable of forming a film, and is hexane, heptane, octane, decane, dodecane, tetradecane, decalin, indane, 1-methylnaphthalene, 2-ethyl.
  • Suitable solvents are those having a high boiling point and a boiling point of 100 ° C. or higher, xylene, isopropylbenzene, anisole, cyclohexanone, mesitylene, 1,2-dichlorobenzene, 3,4-dimethylanisole, pentylbenzene, tetralin, cyclohexylbenzene, decahydro- 2-Naphthol is preferred.
  • the mixed solvent which mixed 2 or more types of the above-mentioned solvent in the appropriate ratio can also be used.
  • organic / inorganic polymers or oligomers, or organic / inorganic nanoparticles can be added as solids or as dispersions in which nanoparticles are dispersed in water or an organic solvent.
  • a protective film can be formed by applying a polymer solution on the body layer. Furthermore, various moisture-proof coatings and light-resistant coatings can be applied on the protective film as necessary.
  • solubility in general-purpose solvents crosslinking temperature, time required for crosslinking, solvent resistance (crack resistance), dielectric breakdown strength, leakage current, wettability to solvent, and flatness in the case of a film
  • a resin suitable for a polymer dielectric layer having excellent performance can be provided.
  • FIG. 2 is a diagram showing a cross-sectional shape of a bottom gate-bottom contact (BGBC) type element.
  • FIG. 2 is a view showing a 1 H-NMR chart of Resin 1 produced in Example 1. The hysteresis between the source-drain current (I SD ) (solid line) observed when the gate voltage (V GS ) is changed in the OFET device manufactured in Example 1 is not observed, and the leakage current value (I L ) (Broken line) is a figure showing that it is as small as 0.01 nA or less.
  • FIG. 2 is a view showing a cross-sectional shape of a top gate / bottom contact (TGBC) type element;
  • FIG. 10 is a view showing a test pattern of an Ag wiring formed by repellent patterning in Example 9.
  • the organic semiconductor (di-n-hexyldithienobenzodithiophene) used in the examples was synthesized according to the production method described in JP-A-2015-224238.
  • 2-oxo-2H-1-benzopyran-6-carbonyl chloride (the following formula (G)) is 4- [2- (4-pyridinyl) ethenyl] benzoyl chloride (formula (G)) according to CN 103183634.
  • the following formula (H)) was synthesized in accordance with the method described in Journard-Fur Practice Hemi, Vol.
  • NMR NMR
  • spin coating film thickness measurement
  • dispenser printing UV irradiation, vacuum deposition, UV irradiation amount necessary for crosslinking
  • wettability of polymer dielectric layer to solvent dielectric breakdown strength
  • OFET element The solvent resistance (crack resistance) was evaluated under the following conditions and equipment.
  • ⁇ NMR> Measurement was performed using JNM-ECZ400S FT-NMR (manufactured by JEOL Ltd.).
  • the mole fraction X of the photocyclization group in the aromatic group can be obtained by the following formula using the integrated intensity of the peak obtained by 1 H-NMR measurement.
  • ⁇ Dispenser printing> An IMAGE MASTER 350PC SMART manufactured by Musashi Engineering Co., Ltd. was used.
  • ⁇ UV irradiation> Using UV-System and CSN-40A-2 manufactured by GS Yuasa Corporation, the UV irradiation time was adjusted by changing the transport speed under the condition of UV intensity of 4.0 kW.
  • ⁇ Vacuum deposition> A small vacuum deposition apparatus VTR-350M / ERH manufactured by ULVAC KIKOH Co., Ltd. was used.
  • solvents toluene, tetralin, xylene, mesitylene, chlorobenzene
  • the organic semiconductor solution covering the S electrode and the D electrode it is possible to cover all over the electrode if the shape at the moment when the droplet is applied is maintained or if it spreads wet. It was evaluated as (1 point).
  • the droplet contracts and / or moves the electrode cannot be covered, and thus the case where the liquid contracts and / or moves is evaluated as defective (0 point).
  • the score is 5 when good results are obtained with all solvents.
  • a bottom gate / bottom contact (BGBC) type element which is one form of an organic field effect transistor, is manufactured, and the gate voltage is changed by using a semiconductor parameter analyzer SCS4200 manufactured by Keithley, with a source-drain voltage of minus 60 volts.
  • SCS4200 semiconductor parameter analyzer manufactured by Keithley
  • Parylene dimer was introduced into PDS2010 manufactured by Japan Parylene LLC and a film was formed by chemical vapor deposition.
  • the surface of the planarizing film was patterned into a lyophilic portion and a lyophobic portion by irradiating with vacuum ultraviolet rays (VUV) through a photomask having a chromium pattern with a line and space of 5 to 50 microns.
  • VUV vacuum ultraviolet rays
  • This substrate is placed in an automatic film applicator body heated to 70 ° C., and after dropping Ag nano ink, the film applicator with film thickness adjusting function is moved at a speed of 140 mm / s, coating is performed, and baking is performed at 120 ° C. for 30 minutes. did. All the formed patterns were observed, and the smallest line and space value among the patterns formed without defects was defined as the resolution.
  • Example 1 ⁇ Resin synthesis>
  • a 300 mL Schlenk tube was charged with 5.0 g of polystyrene having a weight average molecular weight of 280,000 (hereinafter referred to as “raw polymer A”), 150 mL of dehydrated methylene chloride, and 4.0 g of cinnamic acid chloride. Dissolved. 9.0 g of trifluoromethanesulfonic acid (hereinafter referred to as “TFMS”) was charged into a 30 mL dropping funnel having a three-way cock attached to the upper portion and the lower portion sealed. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed.
  • TFMS trifluoromethanesulfonic acid
  • the reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 ⁇ m Teflon (registered trademark) filter, reprecipitated with 1.5 L of methanol, and the polymer was isolated by filtration twice, followed by drying at 50 ° C. under reduced pressure to obtain 6.8 g. Of resin 1 was obtained.
  • Teflon registered trademark
  • a toluene solution (3 wt%) of the obtained resin 1 was spin-coated on the substrate on which the electrode was formed under the conditions of 500 rpm ⁇ 5 seconds and 1000 rpm ⁇ 20 seconds, and dried at 50 ° C. for 5 minutes (insulation) Formation of Film)
  • a polymer dielectric layer having a thickness of 520 nm was formed by irradiation with 250 mJ / cm 2 of ultraviolet rays.
  • Gold was vacuum-deposited on the substrate on which the gate electrode and the polymer dielectric layer were formed to form a source electrode and a drain electrode having a thickness of 50 nm, a channel length of 100 ⁇ m, and a channel width of 500 ⁇ m.
  • Example 2 In a nitrogen box, a 300 mL Schlenk tube was charged with 10 g of the starting polymer A, 260 mL of dehydrated methylene chloride, and 19.2 g of cinnamic acid chloride, and dissolved under stirring at room temperature. 26 g of TFMS was charged into a 100 mL dropping funnel with a three-way cock attached to the top and the bottom sealed. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed. The nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped.
  • the Schlenk tube was cooled with ice water, and TFMS was dropped from the dropping funnel over 10 minutes.
  • the color of the polymer solution colored reddish purple as it was dropped.
  • the ice water bath was removed and the reaction was allowed to proceed at room temperature for 55 hours.
  • the reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 36 g of saturated sodium bicarbonate was dissolved was added to neutralize TFMS and hydrochloric acid in the system.
  • the reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer.
  • the obtained resin 2 (the following formula) has 30 mol% and 70 mol% of the structural units represented by formula (1) and formula (2), respectively. confirmed.
  • Example 3 Resin 3 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to coumarin-6-carboxylic acid chloride.
  • the obtained resin 3 (the following formula) has 75 mol% and 25 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
  • Example 4 Resin 4 was obtained in the same manner as in Example 1, except that cinnamic acid chloride was changed to coumarin-6-carboxylic acid chloride.
  • Example 5 Resin 5 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to pyridinylethenyl benzoic acid chloride.
  • Example 6 As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
  • Resin 6 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to pyridinylethenylbenzoic acid chloride.
  • the obtained resin 6 (the following formula) has 58 mol% and 42 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
  • Example 7 As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
  • Example 7 Resin 7 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to phenylethenylbenzoic acid chloride.
  • the obtained resin 7 (the following formula) has 60 mol% and 40 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
  • Example 8 As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
  • Resin 8 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to phenylethenylbenzoic acid chloride.
  • the obtained resin 8 (the following formula) has 40 mol% and 60 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
  • Example 9 Polystyrene-b-poly (ethylene propylene) -b-polystyrene (SEPS) having a weight average molecular weight of 150,000 and a polystyrene content of 65 wt% in a 300 mL Schlenk tube in a nitrogen box (hereinafter referred to as “raw polymer B”) 4 .01 g, 150 mL of dehydrated methylene chloride, and 4.5 g of cinnamic acid chloride were charged and dissolved under stirring at room temperature. Next, the Schlenk tube was cooled to 0 ° C.
  • SEPS Polystyrene-b-poly (ethylene propylene) -b-polystyrene
  • the obtained resin 9 (the following formula) has 27 mol% and 29 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
  • the xylene solution (3 wt%) of the resin 9 obtained was spin-coated on the cleaned and dried 30 ⁇ 30 mm 2 glass (base material) (Eagle XG manufactured by Corning) under the conditions of 500 rpm ⁇ 5 seconds and 1500 rpm ⁇ 20 seconds. After drying at 50 ° C. for 5 minutes, an undercoat film having a thickness of 100 nm was formed by irradiation with ultraviolet rays of 100 mJ / cm 2 . Then, VUV was irradiated for 180 seconds through the photomask, and the surface of the base film was patterned to be lyophilic and liquid repellent.
  • This substrate is placed on an automatic film applicator body heated to 70 ° C., and after Ag nanoink is dropped, the film applicator with a film thickness adjusting function is applied at a speed of 140 mm / s, coating is performed, and baking is performed at 120 ° C. for 30 minutes.
  • a source electrode and a drain electrode having a thickness of 500 nm, a channel length of 5 ⁇ m, a channel width of 500 ⁇ m, and an electrode width of 100 ⁇ m were formed. Thereafter, it was immediately immersed in an isopropanol solution of pentafluorobenzenethiol 30 mmol / L, taken out after 5 minutes, washed with isopropanol, and blow-dried.
  • a 0.8 wt% xylene / tetralin mixed solution of an organic semiconductor (di-n-hexyldithienobenzothiophene) was formed by spin coating. In order to volatilize the solvent, it was dried at 90 ° C. for 20 minutes. Thereafter, 0.6 g of the obtained substrate and parylene dimer are placed in a vacuum vapor deposition device, heated in vacuum to vaporize the parylene dimer, polymerized on the substrate, and gate insulation composed of polyparaxylylene having a thickness of 430 nm. Layers were deposited.
  • VUV was irradiated for 180 seconds through a photomask, and the surface of the gate insulating film was patterned to be lyophilic and lyophobic.
  • This substrate is placed in an automatic film applicator body heated to 70 ° C, and after dropping Ag nano ink, it is applied at a rate of 140 mm / s and baked at 90 ° C for 20 minutes to form a gate electrode having a thickness of 500 nm.
  • a top gate / bottom contact (TGBC) type organic field effect transistor device was fabricated. The structure of the produced organic field effect transistor is shown in FIG.
  • Example 10 In a nitrogen box, a 300 mL Schlenk tube was charged with 4.01 g of the raw material polymer B, 150 mL of dehydrated methylene chloride, and 5.99 g of cinnamic acid chloride, and dissolved at room temperature with stirring. Next, the Schlenk tube was cooled to 0 ° C. or lower, and 8.2 g of TFMS was dropped using a syringe. The color of the polymer solution colored reddish purple as it was dropped. After completion of dropping, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 25 hours.
  • the reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 9.14 g of saturated sodium bicarbonate was dissolved was added to neutralize TFMS and hydrochloric acid in the system.
  • the reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer.
  • This solution was filtered through a 3 ⁇ m Teflon (registered trademark) filter. Subsequently, the filtrate was passed through a silica gel column to remove impurities and decolorized, and then reprecipitated with 1.5 L of methanol. Further, the polymer was purified by reprecipitation and dried under reduced pressure at 40 ° C. to obtain 6.0 g of resin 10.
  • the obtained resin 10 (the following formula) has 21 mol% and 32 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
  • Example 11 In a nitrogen box, a 300 mL Schlenk tube was charged with 3.0 g of raw material polymer B, 150 mL of dehydrated methylene chloride, and 6.3 g of cinnamic acid chloride, and dissolved at room temperature with stirring. Next, the Schlenk tube was cooled to 0 ° C. or lower, and 8.44 g of TFMS was added dropwise using a syringe. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 29 hours.
  • the obtained resin 11 (the following formula) has 17 mol% and 39 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
  • Example 12 In a nitrogen box, a 300 mL Schlenk tube was charged with 10 g of the starting polymer A, 260 mL of dehydrated methylene chloride, and 19.2 g of cinnamic acid chloride, and dissolved under stirring at room temperature. 26 g of TFMS was charged into a 100 mL dropping funnel with a three-way cock attached to the top and the bottom sealed. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed.
  • the nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped. Next, it cooled in the low temperature thermostat, and TFMS was dripped over 10 minutes from the dropping funnel, stirring with a magnetic stirrer. The color of the polymer solution colored reddish purple as it was dropped. After completion of dropping, the reaction was carried out at 1 ° C. for 55 hours. Of 360 mL of saturated aqueous solution in which 36 g of saturated sodium bicarbonate was dissolved, 100 mL was slowly added dropwise. The remaining saturated sodium bicarbonate solution was placed in a 1 L beaker, and 100 g of ice was added and cooled.
  • reaction solution was poured into this beaker and stirred for 2 hours, and then transferred to a separatory funnel to separate the methylene chloride layer. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer.
  • the polymer solution was reprecipitated with 3 L of methanol twice, filtered and dried under reduced pressure at 50 ° C. to obtain 17.9 g of resin 12.
  • the obtained resin 12 (the following formula) was obtained by converting the structural units represented by the formula (1), the formula (2) and the formula (18) to 36.5 mol% and 62.5 It was confirmed that they had mol% and 1.0 mol%.
  • Example 13 In a nitrogen box, a 300 mL Schlenk tube was charged with 1.1 g of the raw material polymer B, 30 mL of dehydrated methylene chloride and 1.3 g of 3- (perfluorohexyl) propionyl chloride, and dissolved at room temperature with stirring. Next, the Schlenk tube was cooled with ice water, and 1.2 g of TFMS was added dropwise using a syringe under a nitrogen flow. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed for 48 hours at room temperature.
  • reaction solution was cooled again with ice water, and then an aqueous solution in which 1.2 g of sodium bicarbonate was dissolved was added dropwise to neutralize TFMS and hydrochloric acid in the system.
  • the reaction solution was transferred to a separatory funnel and the aqueous phase was separated. Further, the methylene chloride phase was washed with water three times and separated to obtain a methylene chloride solution of the polymer.
  • This solution was reprecipitated with 300 mL of methanol. Further, the polymer was purified by reprecipitation twice and dried under reduced pressure at 40 ° C. to obtain 1.7 g of resin 13-a (the following formula).
  • reaction solution was cooled again with ice water, and then an aqueous solution in which 1.2 g of sodium bicarbonate was dissolved was added dropwise to neutralize TFMS and hydrochloric acid in the system.
  • the reaction solution was transferred to a separatory funnel and the aqueous phase was separated. Further, the methylene chloride phase was washed with water three times and separated to obtain a methylene chloride solution of the polymer.
  • This solution was reprecipitated with 350 mL of methanol. Furthermore, the polymer was purified by reprecipitation twice and dried under reduced pressure at 40 ° C. to obtain 1.1 g of resin 13.
  • the obtained resin 13 (the following formula) was obtained by adding 3 mol%, 29 mol%, and 29 mol% of structural units represented by formula (1), formula (2), and formula (19), respectively. And 24 mol%.
  • Example 1 As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance. ⁇ Evaluation of repellent patterning performance> Evaluation was made in the same manner as in Example 9, and it was confirmed that good drawing was achieved with all the lines and spaces of 5 to 50 microns, and that there was a resolution of 5 microns. The obtained film had a surface roughness of 0.3 nm and excellent flatness.
  • Comparative Example 1 In a nitrogen box, a 300 mL Schlenk tube was charged with 5.0 g of the starting polymer A, 150 mL of dehydrated methylene chloride, and 3.9 g of anhydrous aluminum chloride, and dissolved at room temperature with stirring.
  • a 30-mL dropping funnel with a three-way cock attached to the upper part and a sealed lower part was charged with 30 mL of methylene chloride solution of 4.0 g of cinnamic acid chloride.
  • the Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed.
  • the nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped.
  • the Schlenk tube was cooled with ice water, and cinnamic acid chloride was dropped from the dropping funnel over 10 minutes. The color of the polymer solution colored reddish purple as it was dropped.
  • the obtained resin 14 (the following formula) has 86 mol% and 14 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
  • the nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped.
  • the Schlenk tube was cooled with ice water, and cinnamic acid chloride was dropped from the dropping funnel over 10 minutes. The color of the polymer solution colored reddish purple as it was dropped.
  • the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 28 hours.
  • the reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 2.1 g of saturated sodium bicarbonate was dissolved was added to neutralize hydrochloric acid in the system.
  • the reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 ⁇ m Teflon (registered trademark) filter, reprecipitated with 1.5 L of methanol, and the polymer was isolated by filtration twice, followed by drying at 50 ° C. under reduced pressure to 4.7 g Of resin 15 was obtained.
  • Teflon registered trademark
  • the obtained resin 15 (the following formula) has 92 mol% and 8 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
  • the nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped.
  • the Schlenk tube was cooled with ice water, and cinnamic acid chloride was dropped from the dropping funnel over 9 minutes. The color of the polymer solution colored reddish purple as it was dropped.
  • the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 28 hours.
  • the reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 3.9 g of saturated sodium bicarbonate was dissolved was added to neutralize hydrochloric acid in the system.
  • the reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 ⁇ m Teflon (registered trademark) filter, reprecipitated with 1.5 L of methanol, and the polymer was isolated by filtration twice, followed by drying at 50 ° C. under reduced pressure to obtain 4.9 g. Of resin 16 was obtained.
  • Teflon registered trademark
  • the obtained resin 16 (the following formula) has 87 mol% and 13 mol% of the structural units represented by formula (1) and formula (2), respectively. confirmed.
  • the obtained resin 20 (the following formula) has 86 mol% and 14 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
  • the obtained resin 22 (the following formula) has 85 mol% and 15 mol% of the structural units represented by the formulas (1) and (2), respectively. It was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

Provided is a resin which is excellent in terms of solubility in common solvents, crosslinking temperature, time required for crosslinking, solvent resistance (cracking resistance), dielectric breakdown strength, leakage current, solvent wettability, and planarity in cases where the resin is formed into a thin film. A resin which comprises repeating units represented by formula (1) and formula (2), and wherein the repeating unit represented by formula (2) is contained in an amount of 20% by mole or more relative to the total amount of the repeating units represented by formula (1) and formula (2). (In formula (1), R1 represents a hydrogen atom or a C1-C6 alkyl group; S1 represents -O- or -C(O)-; p represents 0 or 1; A1 represents a C6-C19 aryl group; Y represents a halogen atom, a cyano group, a carboxyalkyl group, an alkyl ether group, an aryl ether group, a C1-C18 alkyl group, a fluoroalkyl group or a cycloalkyl group; and k represents an integer of from 0 to (s - 1) wherein s represents the number of carbon atoms constituting the aromatic group A1.) {(In formula (2), R2 represents a hydrogen atom or a C1-C6 alkyl group; S2 represents -O- or -C(O)-; q represents 0 or 1; A2 represents a C6-C19 aryl group; Y represents a substituent as defined in formula (1); j represents an integer of from 0 to (r - 2) and m represents an integer of from 1 to (r - j - 1), wherein r represents the number of carbon atoms constituting the aromatic group A2; and Z represents at least one organic group selected from among formulae (A)-(D).) (In formulae (A)-(D), each of R3 and R4 independently represents a hydrogen atom, a C1-C6 alkyl group, an aryl group or a carboxyalkyl group; and each of R5-R29 independently represents a hydrogen atom, a halogen atom, a cyano group, a carboxyalkyl group, an alkyl ether group, an aryl ether group, a C1-C18 alkyl group, a fluoroalkyl group or a cycloalkyl group.)}

Description

光架橋性重合体、絶縁膜、平坦化膜、親撥パターニング膜及びこれを含む有機電界効果トランジスタデバイスPhotocrosslinkable polymer, insulating film, planarizing film, hydrophilic / repellent patterning film, and organic field effect transistor device including the same
 本発明は溶液状態で塗工することにより平坦性に優れた膜を形成し、短時間の光照射により容易に架橋し、耐溶剤性(耐クラック性)を有しながらも溶剤に対する濡れ性(オーバーコート性)に優れ、高い絶縁破壊強度を有する樹脂に関するものである。 The present invention forms a film having excellent flatness by coating in a solution state, easily crosslinks by light irradiation for a short time, and has solvent resistance (crack resistance) but also wettability to solvent ( The present invention relates to a resin having excellent overcoat property and high dielectric breakdown strength.
 有機電界効果トランジスタデバイスに用いられる高分子誘電体層(絶縁膜層)を形成するための樹脂には高絶縁破壊強度、低漏洩電流、汎用有機溶剤への溶解性、耐溶剤性(耐クラック性)を発現させるための架橋性が求められ、更に架橋後の高分子誘電体層には有機溶剤に対する優れた濡れ性、高い平坦性が要求される。 High dielectric breakdown strength, low leakage current, solubility in general-purpose organic solvents, solvent resistance (crack resistance) for the resin used to form polymer dielectric layers (insulating film layers) used in organic field effect transistor devices ) Is required, and the polymer dielectric layer after crosslinking is required to have excellent wettability and high flatness with respect to an organic solvent.
 絶縁破壊強度はデバイスを構成する誘電体層を破壊させずに印加できる最大の電界値を指す。絶縁破壊強度が高いほどデバイスとしての安定性が高まる。漏洩電流は本来の導電経路以外の経路、例えばゲート電極から絶縁性の有る誘電体層内を通ってソース電極に流れる電流等の大きさを表す指標である。漏洩電流は金属/誘電体/金属の3層構造からなるMIMコンデンサを作製し、誘電体層内を流れる電流値を測定することで求められる。 Dielectric breakdown strength refers to the maximum electric field value that can be applied without destroying the dielectric layer that constitutes the device. The higher the dielectric breakdown strength, the higher the stability of the device. The leakage current is an index indicating the magnitude of a current other than the original conductive path, for example, a current flowing from the gate electrode through the insulating dielectric layer to the source electrode. The leakage current is obtained by preparing a MIM capacitor having a three-layer structure of metal / dielectric / metal and measuring the value of current flowing in the dielectric layer.
 汎用溶剤への溶解性は印刷法により有機電界効果トランジスタデバイスを製造するのに必須の要件であるが、一方、有機電界効果トランジスタデバイスにおいては高分子誘電体層は有機半導体層等のオーバーレイ層と積層される。このため、高分子誘電体層上に溶剤を用いた印刷法によりオーバーレイ層を形成する際には、高分子誘電体は本溶剤(印刷法に用いる溶剤)に対して溶解しないことが必要である。従って、高分子誘電体層(絶縁膜層)に対しては、層を形成する際には汎用の有機溶剤に溶解し、かつ、層を形成した後には有機溶剤に対し不溶でなければならないという相反する性能が要求される。 While solubility in general-purpose solvents is an essential requirement for producing organic field effect transistor devices by printing methods, in organic field effect transistor devices, a polymer dielectric layer is an overlay layer such as an organic semiconductor layer. Laminated. Therefore, when an overlay layer is formed on a polymer dielectric layer by a printing method using a solvent, the polymer dielectric must not be dissolved in this solvent (a solvent used in the printing method). . Therefore, the polymer dielectric layer (insulating film layer) must be dissolved in a general-purpose organic solvent when forming the layer, and insoluble in the organic solvent after forming the layer. Conflicting performance is required.
 このような要求に対応する技術として溶液製膜した高分子誘電体層を架橋する技術が知られている。例えば、ベンゾシクロブテン樹脂、ポリビニルフェノール樹脂が知られているが、ベンゾシクロブテン樹脂は架橋温度が250℃と高くプラスチックを基材として用いた場合、基材が熱変形を起こすため、その使用が難しく、また硬化時間が長く経済性にも劣っていた。更に、ロールTOロールプロセスへの適用が極めて難しい上に、デバイス性能を左右する膜の平坦性も十分とは言えなかった。ポリビニルフェノールは架橋剤としてメラミン樹脂等を用い150℃前後の温度において長時間の硬化反応が必要でありロールTOロールプロセスへの適用が極めて難しい。また、ポリビニルフェノール樹脂の水酸基は完全に消失せず、残存する水酸基による親水性などが原因と推定される漏洩電流の高さが問題となっている。更に、膜の平坦性も十分とは言えなかった。 As a technique for meeting such demands, a technique for crosslinking a polymer dielectric layer formed by solution film formation is known. For example, benzocyclobutene resin and polyvinyl phenol resin are known. However, when a benzocyclobutene resin has a high crosslinking temperature of 250 ° C. and a plastic is used as a base material, the base material is thermally deformed. It was difficult and the curing time was long and the economy was poor. Furthermore, it is extremely difficult to apply to the roll-to-roll process, and the flatness of the film that affects the device performance is not sufficient. Polyvinylphenol uses a melamine resin or the like as a cross-linking agent and requires a long curing reaction at a temperature of about 150 ° C., and is extremely difficult to apply to a roll-to-roll process. In addition, the hydroxyl groups of the polyvinylphenol resin do not disappear completely, and there is a problem of high leakage current estimated to be caused by hydrophilicity due to the remaining hydroxyl groups. Furthermore, the flatness of the film was not sufficient.
 また、高分子誘電体層(絶縁膜層)に用いられる架橋を必要としないタイプの樹脂としてフッ素系環状エーテル樹脂、ポリパラキシリレン樹脂等の利用が提案されている。フッ素系環状エーテル樹脂は製膜後、汎用の有機溶剤には溶解しないため架橋しない状態でも汎用溶剤に対し不溶であるという長所があるが、経済性に劣るものである。更に、本材料は表面張力が低いため基材に対する濡れ性が悪く、塗工または印刷できる基材にも大きな制約があった。また、濡れ性が悪いためピンホールを形成しやすく漏洩電流が高いという問題もあった。ポリパラキシリレン樹脂は真空蒸着法によりモノマーを基板上に蒸着させ、基板上で重合して製膜されるため汎用溶剤には溶解しない長所があるものの、印刷プロセス、及び、ロールTOロールプロセスに対応出来ないという致命的な欠陥を有している。 Also, the use of a fluorine-based cyclic ether resin, polyparaxylylene resin, or the like as a type of resin that does not require crosslinking used for the polymer dielectric layer (insulating film layer) has been proposed. Since the fluorine-based cyclic ether resin does not dissolve in a general-purpose organic solvent after film formation, it has an advantage that it is insoluble in a general-purpose solvent even if it is not crosslinked, but is inferior in economic efficiency. Furthermore, since this material has a low surface tension, the wettability with respect to the base material is poor, and the base material that can be coated or printed has a great restriction. In addition, since the wettability is poor, there is a problem that a pinhole is easily formed and a leakage current is high. Polyparaxylylene resin has the advantage that it is not dissolved in a general-purpose solvent because it is deposited on a substrate by vapor deposition and polymerized on the substrate by vacuum deposition. It has a fatal defect that it cannot respond.
 低温で架橋可能であり、かつ架橋時間を短縮する手段として光架橋技術が知られている。例えば、ポリ(ヒドロキシエチルメタクリレート)、ビニルフェノール-メタクリル酸メチル共重合体、ポリメタクリル酸アセトキシエチル、ポリメタクリル酸ヒドロキシエチル等の水酸基を側鎖に有するポリマーに対し、シンナモイル基等の光架橋性を有する化合物を反応させた光架橋性ポリマーを高分子誘電体として用いる技術が開示されている(例えば、特許文献1参照。)。また、フェノール基を側鎖に有するビニルポリマーに光架橋性基としてクマリンを導入した光架橋性ポリマーが提案されている(例えば、特許文献2参照)。しかしながら、特許文献1、及び特許文献2で開示されている技術では何れも、水酸基含有ポリマー中に存在している水酸基を全て光架橋性化合物と反応させることは難しく、水酸基の残存は避けられない。その結果、これらのポリマーを絶縁膜として用いた場合には漏洩電流値、及び/又はヒステリシスの増大を招く。また、特許文献1では、未反応の水酸基を無水トリフルオロ酢酸と反応させてエステル化することで残存水酸基量を低減する技術についても開示している。しかし、水酸基を完全に消失させることは極めて難しい上、フッ素化合物の導入により有機溶剤に対する濡れ性が低下するという弊害がある。 Photocrosslinking technology is known as a means that can be crosslinked at a low temperature and shortens the crosslinking time. For example, it has photocrosslinkability such as cinnamoyl group for polymers having hydroxyl groups in the side chain such as poly (hydroxyethyl methacrylate), vinylphenol-methyl methacrylate copolymer, polyacetoxyethyl methacrylate, polyhydroxyethyl methacrylate, etc. A technique of using a photocrosslinkable polymer obtained by reacting a compound having a polymer dielectric as a polymer dielectric is disclosed (for example, see Patent Document 1). In addition, a photocrosslinkable polymer in which coumarin is introduced as a photocrosslinkable group into a vinyl polymer having a phenol group in the side chain has been proposed (see, for example, Patent Document 2). However, in any of the techniques disclosed in Patent Document 1 and Patent Document 2, it is difficult to react all the hydroxyl groups present in the hydroxyl group-containing polymer with the photocrosslinkable compound, and the remaining hydroxyl groups are unavoidable. . As a result, when these polymers are used as insulating films, the leakage current value and / or the hysteresis increase. Patent Document 1 also discloses a technique for reducing the amount of residual hydroxyl groups by reacting unreacted hydroxyl groups with trifluoroacetic anhydride for esterification. However, it is extremely difficult to completely eliminate the hydroxyl group, and there is a problem that the wettability with respect to the organic solvent is lowered by the introduction of the fluorine compound.
 また、ポリ(桂皮酸ビニル)を有機電界効果トランジスタデバイスの高分子誘電体層として利用する技術が提案されているが(例えば、非特許文献1、非特許文献2参照。)、溶液塗布された高分子誘電体層(絶縁膜層)の平坦性は0.7nm程度であり更なる平坦化が求められていた。 In addition, a technique using poly (vinyl cinnamate) as a polymer dielectric layer of an organic field effect transistor device has been proposed (see, for example, Non-Patent Document 1 and Non-Patent Document 2), but the solution was applied. The flatness of the polymer dielectric layer (insulating film layer) is about 0.7 nm, and further flattening has been demanded.
 これら以外にも感光性樹脂に関する技術が知られており、例えばポリスチレン、ポリ-α-メチルスチレン等の芳香族ビニル重合体に光反応性基を有する化合物をフリーデル・クラフツ・アシル化反応により導入した感光性樹脂に関する技術が1950年代に開示されている。しかし、本技術では感光時間を短縮するため光反応性基を多く導入しようとすると樹脂が製造工程中ゲル化するという問題を有していた。そのため、光反応性基の導入量はポリマーを構成する単量体の総モル数に対し17モル%未満とする必要があった(例えば、特許文献3、特許文献4参照)。従って、光照射により反応(架橋)する該感光性樹脂を前述の高分子誘電体層として用いた場合、光反応性基の濃度が小さいため、光架橋した膜の架橋密度が低くなる。その結果、該膜上に有機半導体の有機溶剤溶液、又はポリマー溶液等を印刷した際、該架橋膜が溶剤を吸収して膨潤する。この膜を乾燥すると膜が再度収縮し、この収縮過程で膜にクラックが発生するという問題を有していた。更に、光反応性基の濃度が低い為、架橋時間が長く生産性が低いという問題も有していた。 In addition to these, technologies relating to photosensitive resins are known. For example, a compound having a photoreactive group is introduced into an aromatic vinyl polymer such as polystyrene or poly-α-methylstyrene by Friedel-Crafts acylation reaction. A technique related to the photosensitive resin is disclosed in the 1950s. However, this technique has a problem that the resin gels during the manufacturing process if a large number of photoreactive groups are introduced to shorten the exposure time. Therefore, the introduction amount of the photoreactive group needs to be less than 17 mol% with respect to the total number of moles of monomers constituting the polymer (for example, see Patent Document 3 and Patent Document 4). Therefore, when the photosensitive resin that reacts (crosslinks) by light irradiation is used as the above-described polymer dielectric layer, the concentration of the photoreactive group is small, and thus the crosslink density of the photocrosslinked film is low. As a result, when an organic solvent solution of an organic semiconductor or a polymer solution is printed on the film, the crosslinked film absorbs the solvent and swells. When this film was dried, the film contracted again, and there was a problem that cracks occurred in the film during the contraction process. Further, since the concentration of the photoreactive group is low, there is a problem that the crosslinking time is long and the productivity is low.
 上記のように従来知られている高分子誘電体層(絶縁膜層)に用いられる樹脂は汎用溶剤への溶解性、架橋温度、架橋に要する時間、耐溶剤性(耐クラック性)、溶剤に対する濡れ性、漏洩電流、絶縁破壊強度、膜にした場合の平坦性に関し何らかの課題を有しており、これらの課題を全て解決できる樹脂及び該樹脂を含む高分子誘電体層(絶縁膜層)が求められていた。 As described above, conventionally used resins for polymer dielectric layers (insulating film layers) are soluble in general-purpose solvents, crosslinking temperature, time required for crosslinking, solvent resistance (crack resistance), solvent resistance There are some problems with respect to wettability, leakage current, dielectric breakdown strength, and flatness when formed into a film. A resin capable of solving all these problems and a polymer dielectric layer (insulating film layer) containing the resin It was sought after.
日本国特許第5148624号公報Japanese Patent No. 5148624 日本国特許第5960202号公報Japanese Patent No. 5960202 米国特許2566302号公報US Pat. No. 2,662,302 米国特許2708665号公報U.S. Pat. No. 2,708,665
 本発明は上記課題に鑑みてなされたものであり、その目的は、汎用溶剤への溶解性、架橋温度、架橋に要する時間、耐溶剤性(耐クラック性)、溶剤に対する濡れ性、漏洩電流、絶縁破壊強度の点で優れた性能を有する高分子誘電体層(絶縁膜層)を製造出来る樹脂を提供することを目的とする。 The present invention has been made in view of the above problems, and its purpose is solubility in general-purpose solvents, crosslinking temperature, time required for crosslinking, solvent resistance (crack resistance), wettability to solvents, leakage current, An object of the present invention is to provide a resin capable of producing a polymer dielectric layer (insulating film layer) having excellent performance in terms of dielectric breakdown strength.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の樹脂が絶縁膜に求められる汎用溶剤への溶解性、架橋温度、架橋に要する時間、耐溶剤性(耐クラック性)、溶剤に対する濡れ性、漏洩電流、絶縁破壊強度の何れにも優れていることを見出し本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a specific resin is soluble in a general-purpose solvent required for an insulating film, a crosslinking temperature, a time required for crosslinking, and solvent resistance (crack resistance). As a result, the present invention has been completed by finding that it has excellent wettability to solvent, leakage current, and dielectric breakdown strength.
 即ち、本発明は、以下の[1]及至[5]に存する。
[1] 式(1)及び式(2)で表される反復単位を含む樹脂であって、式(1)及び式(2)の反復単位の総数に対して式(2)の反復単位を20モル%以上含む樹脂。
That is, the present invention resides in the following [1] to [5].
[1] A resin containing repeating units represented by formula (1) and formula (2), wherein the repeating unit of formula (2) is added to the total number of repeating units of formula (1) and formula (2). Resin containing 20 mol% or more.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは水素またはC1~C6のアルキル基を、S1は-O-又は-C(O)-を、pは0又は1を、AはC6~C19のアリール基を、Yはハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1~C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を表す。また、kは0~(s-1)の整数を表す。ここで、sはA1を構成する炭素数を表す。) (In the formula (1), R 1 represents hydrogen or a C1-C6 alkyl group, S 1 represents —O— or —C (O) —, p represents 0 or 1, and A 1 represents a C6-C19 aryl. Y represents a halogen, a cyano group, a carboxyalkyl group, an alkyl ether group, an aryl ether group, a C1-C18 alkyl group, a fluoroalkyl group, or a cycloalkyl group, and k represents 0 to (s-1 Where s represents the number of carbon atoms constituting A 1. )
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
{(式(2)中、Rは水素またはC1~C6のアルキル基を、Sは-O-又は-C(O)-を、qは0又は1を、AはC6~C19のアリール基を、Yは式(1)で定義した置換基を、jは0~(r-2)の整数を、mは1~(r-j-1)の整数を表す。ここで、rはAを構成する炭素数を表す。また、Zは式(A)~(D)から選ばれる少なくとも1つの有機基を表す。) {(In the formula (2), R 2 represents hydrogen or a C1-C6 alkyl group, S 2 represents —O— or —C (O) —, q represents 0 or 1, and A 2 represents C6 to C19. Y represents an aryl group, Y represents a substituent defined in formula (1), j represents an integer of 0 to (r-2), and m represents an integer of 1 to (rj-1), where r Represents the number of carbon atoms constituting A 2. Z represents at least one organic group selected from formulas (A) to (D).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(A)~(D)中、R及びRはそれぞれ独立して水素、C1~C6のアルキル基、アリール基、またはカルボキシアルキル基を示し、R~R29はそれぞれ独立して水素、ハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1~C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を表す。)}
[2] 上記[1]に記載の樹脂の架橋物を含有することを特徴とする絶縁膜。
[3] 基板上に、ソース電極及びドレイン電極を付設した有機半導体層とゲート電極とをゲート絶縁層を介して積層した有機電界効果トランジスタデバイスにおいて、該ゲート絶縁層が上記[2]に記載の絶縁膜であることを特徴とする有機電界効果トランジスタデバイス。
[4] 上記[1]に記載の樹脂および/または上記[1]に記載の樹脂の架橋物を含有することを特徴とする平坦化膜。
[5] 上記[1]に記載の樹脂および/または上記[1]に記載の樹脂の架橋物を含有することを特徴とする親撥パターニング膜。
(In the formulas (A) to (D), R 3 and R 4 each independently represent hydrogen, a C1-C6 alkyl group, an aryl group, or a carboxyalkyl group, and R 5 to R 29 each independently represent Represents hydrogen, halogen, cyano group, carboxyalkyl group, alkyl ether group, aryl ether group, C1-C18 alkyl group, fluoroalkyl group, or cycloalkyl group)}
[2] An insulating film comprising the cross-linked product of the resin according to [1].
[3] In the organic field effect transistor device in which an organic semiconductor layer provided with a source electrode and a drain electrode and a gate electrode are stacked on a substrate via a gate insulating layer, the gate insulating layer is described in [2] above. An organic field effect transistor device characterized by being an insulating film.
[4] A planarization film comprising the resin according to [1] and / or the crosslinked product of the resin according to [1].
[5] A hydrophilic / repellent patterning film comprising the resin according to [1] and / or a crosslinked product of the resin according to [1].
 以下に本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明の樹脂は、上式(1)及び上式(2)の反復単位を含む。 The resin of the present invention contains repeating units of the above formula (1) and the above formula (2).
 式(1)中、Rは水素またはC1~C6のアルキル基を示す。 In the formula (1), R 1 represents hydrogen or a C1-C6 alkyl group.
 式(1)中のRにおけるC1~C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The C1-C6 alkyl group for R 1 in the formula (1) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(1)中、Sは-O-または-C(O)-を示す。 In the formula (1), S 1 represents —O— or —C (O) —.
 式(1)中、pは0または1を示す。 In the formula (1), p represents 0 or 1.
 式(1)中、AはC6~C19のアリール基を示す。 In the formula (1), A 1 represents a C6 to C19 aryl group.
 式(1)中のAにおけるC6~C19のアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントリル基、ビフェニル基等が挙げられる。 The C6 to C19 aryl group in A 1 in the formula (1) is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
 式(1)中、Yはハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1~C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を表す。 In the formula (1), Y represents a halogen, a cyano group, a carboxyalkyl group, an alkyl ether group, an aryl ether group, a C1-C18 alkyl group, a fluoroalkyl group, or a cycloalkyl group.
 式(1)中のYにおけるハロゲンとしては特に制限がなく、例えば、塩素、フッ素等が挙げられる。 There is no restriction | limiting in particular as a halogen in Y in Formula (1), For example, chlorine, a fluorine, etc. are mentioned.
 式(1)中のYにおけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。 There is no restriction | limiting in particular as a carboxyalkyl group in Y in Formula (1), For example, a carboxymethyl group, a carboxyethyl group, a carboxypropyl group etc. are mentioned.
 式(1)中のYにおけるアルキルエーテル基としては特に制限がなく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、ブトキシ基等が挙げられる。 The alkyl ether group for Y in the formula (1) is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and a butoxy group.
 式(1)中のYにおけるアリールエーテル基としては特に制限がなく、例えば、フェノキシ基、4‐メチルフェノキシ基、4-tert-ブチルフェノキシ基、1-ナフトキシ基、2-ナフトキシ基等が挙げられる。 The aryl ether group in Y in the formula (1) is not particularly limited, and examples thereof include a phenoxy group, 4-methylphenoxy group, 4-tert-butylphenoxy group, 1-naphthoxy group, 2-naphthoxy group and the like. .
 式(1)中のYにおけるC1~C18のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The C1-C18 alkyl group for Y in the formula (1) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(1)中のYにおけるフルオロアルキル基としては特に制限がなく、例えば、1,1,1-トリフルオロエチル基、1,1,1,2,2-ペンタフルオロプロピル基、1,1,1,2,2,3,3-ヘプタフルオロブチル基等が挙げられる。 The fluoroalkyl group for Y in formula (1) is not particularly limited, and examples thereof include 1,1,1-trifluoroethyl group, 1,1,1,2,2-pentafluoropropyl group, 1,1,1, Examples include 1,2,2,3,3-heptafluorobutyl group.
 式(1)中のYにおけるシクロアルキル基としては特に制限がなく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる
 式(1)中、kは0~(s-1)の整数を表す。ここで、sはAを構成する炭素数を表す。
The cycloalkyl group for Y in the formula (1) is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, etc. In the formula (1), k is an integer of 0 to (s-1). To express. Here, s represents the number of carbon atoms constituting the A 1.
 式(2)中、Rは水素またはC1~C6のアルキル基を示す。 In the formula (2), R 2 represents hydrogen or a C1-C6 alkyl group.
 式(2)中のRにおけるC1~C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The C1-C6 alkyl group in R 2 in the formula (2) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(2)中、Sは-O-または-C(O)-を示す。 In the formula (2), S 2 represents —O— or —C (O) —.
 式(2)中、qは0または1を示す。 In the formula (2), q represents 0 or 1.
 式(2)中、AはC6~C19のアリール基を示す。 In the formula (2), A 2 represents a C6 to C19 aryl group.
 式(2)中のAにおけるC6~C19のアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントリル基、ビフェニル基等が挙げられる。 The C6 to C19 aryl group in A 2 in Formula (2) is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
 式(2)中、Yは式(1)で定義した置換基と同様の置換基を表す。 In formula (2), Y represents a substituent similar to the substituent defined in formula (1).
 式(2)中、mは1~(r-j-1)の整数を表す。ここで、rはA2を構成する炭素数を表し、jは0~(r-2)の整数を表す。 In the formula (2), m represents an integer of 1 to (r−j−1). Here, r represents the number of carbon atoms constituting A 2 , and j represents an integer of 0 to (r−2).
 式(2)中、Zは式(A)~(D)から選ばれる少なくとも1つの有機基を表す。 In formula (2), Z represents at least one organic group selected from formulas (A) to (D).
 式(A)~式(D)中、R及びRはそれぞれ独立して水素、C1~C6のアルキル基、アリール基、またはカルボキシアルキル基を示し、R~R29はそれぞれ独立して水素、ハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1~C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を表す。 In formulas (A) to (D), R 3 and R 4 each independently represent hydrogen, a C1-C6 alkyl group, an aryl group, or a carboxyalkyl group, and R 5 to R 29 each independently It represents hydrogen, halogen, cyano group, carboxyalkyl group, alkyl ether group, aryl ether group, C1-C18 alkyl group, fluoroalkyl group, or cycloalkyl group.
 式(A)~式(D)中のR及びRにおけるC1~C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The C1-C6 alkyl group in R 3 and R 4 in the formulas (A) to (D) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Etc.
 式(A)~式(D)中のR及びRにおけるアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントリル基、ビフェニル基等が挙げられる。 The aryl group in R 3 and R 4 in the formulas (A) to (D) is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
 式(A)~式(D)中のR及びRにおけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。 The carboxyalkyl group for R 3 and R 4 in formulas (A) to (D) is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, and a carboxypropyl group.
 式(A)~式(D)中のR~R29におけるハロゲンとしては特に制限がなく、例えば、塩素、フッ素等が挙げられる。 The halogen in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include chlorine and fluorine.
 式(A)~式(D)中のR~R29におけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。 The carboxyalkyl group in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, and a carboxypropyl group.
 式(A)~式(D)中のR~R29におけるアルキルエーテル基としては特に制限がなく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、ブトキシ基等が挙げられる。 The alkyl ether group in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and a butoxy group. .
 式(A)~式(D)中のR~R29におけるアリールエーテル基としては特に制限がなく、例えば、フェノキシ基、p-メチルフェノキシ基、p-エチルフェノキシ基、p-メトキシフェノキシ基等が挙げられる。 The aryl ether group in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a phenoxy group, a p-methylphenoxy group, a p-ethylphenoxy group, and a p-methoxyphenoxy group. Is mentioned.
 式(A)~式(D)中のR~R29におけるC1~C18のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ヘキシル基、n-デシル基、n-オクタデシル基等が挙げられる。 The alkyl group of C1 to C18 in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. N-hexyl group, n-decyl group, n-octadecyl group and the like.
 式(A)~式(D)中のR~R29におけるフルオロアルキル基としては特に制限がなく、例えば、1,1,1-トリフルオロエチル基、1,1,1,2,2-ペンタフルオロプロピル基、1,1,1,2,2,3,3-ヘプタフルオロブチル基等が挙げられる。 The fluoroalkyl group for R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include 1,1,1-trifluoroethyl group, 1,1,1,2,2- Examples thereof include a pentafluoropropyl group and a 1,1,1,2,2,3,3-heptafluorobutyl group.
 式(A)~式(D))中のR~R29におけるシクロアルキル基としては特に制限がなく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 The cycloalkyl group in R 5 to R 29 in the formulas (A) to (D) is not particularly limited, and examples thereof include a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
 具体的な式(A)で表される有機基としては、例えば、以下のものを挙げることが出来る。 Specific examples of the organic group represented by the formula (A) include the following.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 具体的な式(B)で表される有機基としては、例えば、以下のものを挙げることが出来る。 Specific examples of the organic group represented by the formula (B) include the following.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 具体的な式(C)で表される有機基としては、例えば、以下のものを挙げることが出来る。 Specific examples of the organic group represented by the formula (C) include the following.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 具体的な式(D)で表される有機基としては、例えば、以下のものを挙げることが出来る。 Specific examples of the organic group represented by the formula (D) include the following.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本発明で用いられる具体的な式(1)及び式(2)の反復単位を含む重合体は芳香族基を含有し、かつ、酸クロリドと反応する水酸基、アミノ基、チオール基等を含有していなければ何ら制限なく用いることが出来る。 The polymer containing the repeating unit of the specific formula (1) and formula (2) used in the present invention contains an aromatic group and contains a hydroxyl group, an amino group, a thiol group and the like that react with an acid chloride. If not, it can be used without any restrictions.
 本発明において、上式(1)及び上式(2)の反復単位を有する樹脂の分子量に対しては何らの制限もなく、例えば、200~10,000,000(g/モル)のものを用いることが出来る。得られる樹脂の溶液粘度、及び力学強度の観点から、好ましくは10,000~1,000,000(g/モル)である。 In the present invention, there is no limitation on the molecular weight of the resin having the repeating unit of the above formula (1) and the above formula (2), for example, those having 200 to 10,000,000 (g / mol). Can be used. From the viewpoint of the solution viscosity and mechanical strength of the obtained resin, it is preferably 10,000 to 1,000,000 (g / mol).
 本発明で用いる上式(1)及び上式(2)の反復単位を有する樹脂は光環化性化合物をフリーデルクラフツ・アシル化反応により芳香族基含有重合体に導入することで得られる。ここで、本発明において、該光環化性化合物が一定量以上導入されることで膜とした場合の平坦性が優れ、短時間で光架橋可能となるものであり、芳香族基含有共重合体のみでは平坦性に劣り、光架橋することは出来ない。 The resin having repeating units of the above formulas (1) and (2) used in the present invention can be obtained by introducing a photocyclizable compound into an aromatic group-containing polymer by Friedel-Crafts acylation reaction. Here, in the present invention, the photocyclization compound is introduced into a film in a certain amount or more, so that the film has excellent flatness and can be photocrosslinked in a short time. It is inferior in flatness only and cannot be photocrosslinked.
 本発明において、光環化性化合物は、下記式(3)で表される桂皮酸クロリド化合物、下記式(4)で表されるフェニルエテニル安息香酸クロリド化合物、下記式(5)で表されるピリジニルエテニル安息香酸クロリド、下記式(6)で表されるクマリン―6-カルボン酸クロリドを示す。この中で、製造が容易である桂皮酸クロリドを用いるのが好ましい。また、これらの化合物は必要に応じて2種以上を併用することも出来る。 In the present invention, the photocyclizable compound is represented by the cinnamic acid chloride compound represented by the following formula (3), the phenylethenylbenzoic acid chloride compound represented by the following formula (4), and the following formula (5). Pyridinylethenylbenzoic acid chloride and coumarin-6-carboxylic acid chloride represented by the following formula (6) are shown. Of these, cinnamic acid chloride, which is easy to produce, is preferably used. Moreover, these compounds can also use 2 or more types together as needed.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式(3)~(6)中、R~R29は式(A)~(D)で定義したものと同様である。)
 式(1)及び式(2)の反復単位を有する樹脂に対する前述の酸クロリドの仕込み量は、得られる樹脂の有機溶剤に対する溶解性、及び保存安定性を高めるため、該樹脂が含有する芳香族基1モルに対し0.2~2.0モルであることが好ましく、さらに好ましくは0.2~1.5モルである。反応で芳香族基に導入される光反応性基の量は、有機溶剤に対する溶解性、保存安定性、光架橋のし易さ、及び光架橋後の樹脂層の耐溶剤性(耐クラック性)の観点から、該樹脂が含有する芳香族基1モルに対し0.2~1.0モルであることが好ましく、更に好ましくは0.2~0.7モルである。
(In formulas (3) to (6), R 3 to R 29 are the same as defined in formulas (A) to (D).)
The amount of the above-mentioned acid chloride charged in the resin having the repeating unit of the formula (1) and the formula (2) is the aromatic contained in the resin in order to improve the solubility of the resulting resin in the organic solvent and the storage stability. The amount is preferably 0.2 to 2.0 mol, more preferably 0.2 to 1.5 mol, per 1 mol of the group. The amount of photoreactive groups introduced into the aromatic group in the reaction is the solubility in organic solvents, storage stability, ease of photocrosslinking, and solvent resistance (crack resistance) of the resin layer after photocrosslinking. From this point of view, the amount is preferably 0.2 to 1.0 mol, more preferably 0.2 to 0.7 mol with respect to 1 mol of the aromatic group contained in the resin.
 フリーデルクラフツ・アシル化反応により光反応性基が導入される芳香族基含有重合体としては、後述の反応触媒に対し不活性である限り何らの制限もなく、例えば、ポリ-α-メチルスチレン、ポリ-p-メトキシスチレン、シンジオポリスチレン等のポリスチレン;ポリビニルナフタレン;ポリビニルビフェニル;ポリビニルアントラセン;ポリビニルカルバゾール;ポリビニルフェニルケトン等のポリビニルアリールケトン;スチレンブタジエン共重合体;エチレン・スチレン共重合体;スチレン・アクリロニトリル共重合体;スチレン・アルキルアクリレート共重合体;スチレン・アルキルメタアクリレート共重合体;スチレン・α-フェニルアルキルアクリレート共重合体;スチレン・無水マレイン酸共重合体;スチレン・アクリル酸共重合体;スチレン・4-ビニルピリジン共重合体;スチレン・トランス-1,3-ペンタジエン共重合体;スチレン・2,4,6-トリメチルスチレン共重合体;スチレン・p-アセトキシスチレン共重合体;スチレン・ビニル-トリス(トリメトキシシロキシ)シラン共重合体;スチレン・ビニルベンゾエート共重合体;スチレン・ビニルブチルエーテル共重合体;ポリ(スチレン・エチレン・ブチレン)共重合体;ポリ(スチレン・エチレン・プロピレン)共重合体;ポリ(スチレン・エチレン・プロピレン・ブチレン)共重合体;ポリ(プロピレン・スチレン)共重合体;ポリスチレン-b-ポリ(エチレン・プロピレン)-b-ポリスチレン共重合体;ポリスチレン-b-ポリ(エチレン・ブチレン)-b-ポリスチレン共重合体;ポリスチレン-b-ポリ(エチレン・プロピレン・ブチレン)-b-ポリスチレン共重合体;ポリスチレンとポリイソプレンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリスチレンとポリブタジエンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリスチレン-b-ポリイソブチレン-b-ポリスチレン共重合体;ポリスチレンとポリイソブチレンからなるマルチブロック共重合体、スターポリマー、デンドリマー;ポリビニルナフタレンとポリブタジエン又はポリイソプレンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリビニルナフタレンとポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリビニルアントラセンとポリブタジエン又はポリイソプレンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリビニルアントラセンとポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリビニルビフェニルとポリブタジエン又はポリイソプレンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリビニルビフェニルとポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリ(スチレン-co-ビニルナフタレン)とポリイソプレン又はポリブタジエンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体、及びその水素添加物;ポリ(スチレン-co-ビニルナフタレン)とポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリ(スチレン-co-ビニルアントラセン)とポリイソプレン又はポリブタジエンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体、及びその水素添加物;ポリ(スチレン-co-ビニルアントラセン)とポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリ(スチレン-co-ビニルビフェニル)とポリイソプレン又はポリブタジエンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体、及びその水素添加物;ポリ(スチレン-co-ビニルビフェニル)とポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;石油樹脂等が例示されるが、誘電率を低くして漏洩電流を低減させるため、芳香族炭化水素及び脂肪族炭化水素のみから構成されている重合体を用いるのが好ましい。また、これらの共重合体は2種以上を組み合わせて使用することも出来る。 The aromatic group-containing polymer into which the photoreactive group is introduced by Friedel-Crafts acylation reaction is not limited as long as it is inactive with respect to the reaction catalyst described later. For example, poly-α-methylstyrene Polystyrene, such as poly-p-methoxystyrene and syndiopolystyrene; polyvinyl naphthalene; polyvinyl biphenyl; polyvinyl anthracene; polyvinyl carbazole; polyvinyl aryl ketone such as polyvinyl phenyl ketone; styrene butadiene copolymer; ethylene / styrene copolymer;・ Acrylonitrile copolymer; Styrene / alkyl acrylate copolymer; Styrene / alkyl methacrylate copolymer; Styrene / α-phenylalkyl acrylate copolymer; Styrene / maleic anhydride copolymer; Styrene / acrylic Sulfuric acid copolymer; Styrene / 4-vinylpyridine copolymer; Styrene / trans-1,3-pentadiene copolymer; Styrene / 2,4,6-trimethylstyrene copolymer; Styrene / p-acetoxystyrene copolymer Styrene / vinyl-tris (trimethoxysiloxy) silane copolymer; Styrene / vinyl benzoate copolymer; Styrene / vinyl butyl ether copolymer; Poly (styrene / ethylene / butylene) copolymer; Poly (styrene / polymer) Ethylene / propylene) copolymer; poly (styrene / ethylene / propylene / butylene) copolymer; poly (propylene / styrene) copolymer; polystyrene-b-poly (ethylene / propylene) -b-polystyrene copolymer; Polystyrene-b-poly (ethylene / butylene) -b-polystyrene copolymer Polystyrene-b-poly (ethylene / propylene / butylene) -b-polystyrene copolymer; diblock copolymer, multiblock copolymer, star polymer, dendrimer, graft copolymer of polystyrene and polyisoprene Hydrogenated products: Diblock copolymers, multiblock copolymers, star polymers, dendrimers, and graft copolymers made of polystyrene and polybutadiene; polystyrene-b-polyisobutylene-b-polystyrene copolymers; polystyrene And polyisobutylene multiblock copolymers, star polymers and dendrimers; polyvinyl naphthalene and polybutadiene or polyisoprene diblock copolymers, multiblock copolymers, star polymers, dendrimers and graft copolymers Hydrogenated polymer; diblock copolymer consisting of polyvinyl naphthalene and polyisobutene, multiblock copolymer, star polymer, dendrimer, graft copolymer; diblock copolymer consisting of polyvinyl anthracene and polybutadiene or polyisoprene, Hydrogenated polyblock copolymer, star polymer, dendrimer, graft copolymer; diblock copolymer consisting of polyvinyl anthracene and polyisobutene, multiblock copolymer, star polymer, dendrimer, graft copolymer; polyvinyl biphenyl Diblock copolymer, multiblock copolymer, star polymer, dendrimer, graft copolymer hydrogenated product of polybutadiene or polyisoprene; polyvinyl biphenyl and polyisobutene Diblock copolymer, multiblock copolymer, star polymer, dendrimer, graft copolymer; diblock copolymer consisting of poly (styrene-co-vinylnaphthalene) and polyisoprene or polybutadiene, multiblock copolymer , Star polymers, dendrimers, graft copolymers, and hydrogenated products thereof; diblock copolymers composed of poly (styrene-co-vinylnaphthalene) and polyisobutene, multiblock copolymers, star polymers, dendrimers, graft copolymers Diblock copolymer, multiblock copolymer, star polymer, dendrimer, graft copolymer, and hydrogenated product thereof comprising poly (styrene-co-vinylanthracene) and polyisoprene or polybutadiene; poly (styrene- co-bini Diblock copolymer consisting of luanthracene) and polyisobutene, multiblock copolymer, star polymer, dendrimer, graft copolymer; diblock copolymer consisting of poly (styrene-co-vinylbiphenyl) and polyisoprene or polybutadiene , Multiblock copolymers, star polymers, dendrimers, graft copolymers, and hydrogenated products thereof; diblock copolymers composed of poly (styrene-co-vinylbiphenyl) and polyisobutene, multiblock copolymers, star polymers , Dendrimer, graft copolymer; petroleum resin, etc. are exemplified, but in order to reduce the leakage current by lowering the dielectric constant, a polymer composed only of an aromatic hydrocarbon and an aliphatic hydrocarbon is used. Is preferred. Moreover, these copolymers can also be used in combination of 2 or more types.
 該フリーデルクラフツ・アシル化反応は、反応触媒を用いて実施することができる。 The Friedel-Crafts acylation reaction can be carried out using a reaction catalyst.
 本発明では公知の超強酸を反応触媒として使用することができ、超強酸であれば何ら制限は無く、トリフルオロメタンスルホン酸、フルオロスルホン酸、フルオロアンチモン酸、カルボラン酸が例示される。該触媒の添加量は、該反応後の中和操作が煩雑になるのを回避し、かつ、反応率の低下を防ぐため上述の酸クロリドに対し0.1~1.5倍モルであることが好ましい。 In the present invention, a known super strong acid can be used as a reaction catalyst, and there is no limitation as long as it is a super strong acid, and examples thereof include trifluoromethane sulfonic acid, fluorosulfonic acid, fluoroantimonic acid, and carborane acid. The addition amount of the catalyst is 0.1 to 1.5 times mol of the above acid chloride in order to avoid complicated neutralization after the reaction and to prevent the reaction rate from decreasing. Is preferred.
 該フリーデルクラフツ・アシル化反応は発熱反応であり、かつ、本反応系において光反応性基が加熱により架橋する副反応を生じさせる場合がある。従って、本発明では、該副反応を抑制するため、反応温度制御が容易な溶液反応により実施するのが好ましい。本発明において該溶液反応で用いられる反応溶剤はフリーデルクラフツ反応に対して安定であれば何ら制限なく使用でき、反応に対し不活性である十分に脱水された塩素系炭化水素溶剤、脂肪族炭化水素溶剤、含硫黄溶剤、ニトリル系溶剤等が好適に用いられる。塩素系炭化水素溶剤としては、塩化メチレン、四塩化炭素、1,1,2-トリクロロエタン、クロロホルム等が、脂肪族炭化水素溶剤としてはシクロヘキサン等が、含硫黄溶剤としては、二硫化炭素、スルホンジメチルスルホキシド、ジメチルスルフェート、ジメチルスルホン等が、ニトリル系溶剤としてはアセトニトリルが例示される。 The Friedel-Crafts acylation reaction is an exothermic reaction and may cause a side reaction in which the photoreactive group is crosslinked by heating in this reaction system. Therefore, in the present invention, in order to suppress the side reaction, it is preferable to carry out by a solution reaction in which the reaction temperature can be easily controlled. The reaction solvent used in the solution reaction in the present invention can be used without any limitation as long as it is stable against the Friedel-Crafts reaction, and is sufficiently dehydrated chlorine-based hydrocarbon solvent, aliphatic carbonization which is inert to the reaction. A hydrogen solvent, a sulfur-containing solvent, a nitrile solvent or the like is preferably used. Examples of chlorinated hydrocarbon solvents include methylene chloride, carbon tetrachloride, 1,1,2-trichloroethane, chloroform, etc., aliphatic hydrocarbon solvents such as cyclohexane, and sulfur-containing solvents such as carbon disulfide and sulfonedimethyl. Examples thereof include sulfoxide, dimethyl sulfate and dimethyl sulfone, and examples of the nitrile solvent include acetonitrile.
 該フリーデルクラフツ・アシル化反応において、反応温度に特に制限はないが、冷却及び加熱に係る経済性の観点から0~40℃が好ましく、ミクロゲルの生成の抑制の観点から、0~15℃がさらに好ましい。また、必要に応じて用いる溶剤の還流温度で実施することも可能であるが、200℃未満の温度が好ましい。 In the Friedel-Crafts acylation reaction, the reaction temperature is not particularly limited, but it is preferably 0 to 40 ° C. from the viewpoint of economy related to cooling and heating, and 0 to 15 ° C. from the viewpoint of suppressing the formation of microgel. Further preferred. Moreover, although it is possible to carry out at the reflux temperature of the solvent used as necessary, a temperature of less than 200 ° C. is preferred.
 該フリーデルクラフツ・アシル化反応において、反応時間は特に制限はなく、例えば、5時間から100時間が挙げられる。反応率及び経済性の観点から、好ましくは10時間から50時間である。 In the Friedel-Crafts acylation reaction, the reaction time is not particularly limited, and examples thereof include 5 to 100 hours. From the viewpoint of reaction rate and economy, it is preferably 10 hours to 50 hours.
 また、式(1)及び式(2)の反復単位を有する樹脂は溶解性が損なわれない限り、重合体分子が光反応性基の環化に基づく構造を含有していても良い。 In addition, the resin having the repeating unit of formula (1) and formula (2) may contain a structure based on the cyclization of the photoreactive group in the polymer molecule as long as the solubility is not impaired.
 該光反応性基の環化に基づく構造としては、下記式(7)~(10)で表される構造が挙げられる。 Examples of the structure based on cyclization of the photoreactive group include structures represented by the following formulas (7) to (10).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式(7)、式(8)中、R~Rは式(3)と同様である) (In formulas (7) and (8), R 3 to R 9 are the same as in formula (3))
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式(9)、式(10)中、R、R、R10~R18は式(4)と同様である) (In Formula (9) and Formula (10), R 3 , R 4 and R 10 to R 18 are the same as in Formula (4)).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式(11)、式(12)中、R、R、R19~R26は式(5)と同様である) (In Formula (11) and Formula (12), R 3 , R 4 and R 19 to R 26 are the same as in Formula (5)).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (式(13)、式(14)中、R、R、R27~R29は式(6)と同様である)
 また、式(1)及び式(2)の反復単位を有する樹脂は、例えば、下記に示すような光反応性基の2量化物を含んでいても良い。
(In Formula (13) and Formula (14), R 3 , R 4 , R 27 to R 29 are the same as in Formula (6))
In addition, the resin having the repeating units of the formulas (1) and (2) may contain, for example, a dimerized photoreactive group as shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(式(15)、式(16)、及び式(17)において、R、R~R26は式(A)~式(C)で定義したものと同様である。a、b及びcは0~4の整数を表し、Rは式(A)で定義したR~Rから選ばれるa個の置換基、Rは式(B)で定義したR14~R18から選ばれるb個の置換基、Rは式(C)で定義したR23~R26から選ばれるc個の置換基を表す。)
 本発明において、式(2)におけるZが式(A)で表される有機基である場合、式(1)及び式(2)の反復単位を有する樹脂は、上式(1)及び上式(2)の反復単位を有し、さらに式(18)で表される反復単位を有する樹脂であってもよい。このとき、式(2)の反復単位の一部が式(18)の反復単位となることでミクロゲルの発生を抑制することができ、より生産性に優れる樹脂となる。
(In Formula (15), Formula (16), and Formula (17), R 3 and R 4 to R 26 are the same as those defined in Formulas (A) to (C). A, b, and c) Represents an integer of 0 to 4, R A is a substituents selected from R 5 to R 9 defined in Formula (A), and R B is selected from R 14 to R 18 defined in Formula (B) B substituents, R C represents c substituents selected from R 23 to R 26 defined in formula (C).)
In the present invention, when Z in the formula (2) is an organic group represented by the formula (A), the resins having repeating units of the formula (1) and the formula (2) are represented by the formulas (1) and (1). The resin may have a repeating unit (2) and further have a repeating unit represented by the formula (18). At this time, since a part of the repeating unit of the formula (2) becomes the repeating unit of the formula (18), generation of microgel can be suppressed, and the resin is more excellent in productivity.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(式(18)中、R、S、A、Yは式(2)で定義した置換基を、qは式(2)で定義した整数を、nは0~(t-4)の整数を表す。ここで、tはAを構成する炭素の総数を表す。また、d及びeは芳香族基A上で互いにオルト位の位置にある(隣接する炭素と結合している)単結合を表す。また、R~Rは式(A)で定義したものと同様である。)
 式(18)中、nは0~(t-4)の整数を表す。ここで、tはAを構成する炭素の総数を表す。また、d及びeは芳香族基A上で互いにオルト位の位置にある(隣接する炭素と結合している)単結合を表す。
(In the formula (18), R 2 , S 2 , A 2 and Y are the substituents defined in the formula (2), q is an integer defined in the formula (2), and n is 0 to (t-4) Here, t represents the total number of carbon atoms constituting A 2. Also, d and e are located at positions ortho to each other on the aromatic group A 2 (bonded to adjacent carbon atoms). ) Represents a single bond, and R 3 to R 9 are the same as defined in formula (A).
In formula (18), n represents an integer of 0 to (t-4). Here, t represents the total number of carbon atoms constituting the A 2. D and e each represent a single bond located at the position of the ortho position on the aromatic group A 2 (bonded to adjacent carbon).
 また、式(1)及び式(2)の反復単位を有する樹脂は、上式(1)及び上式(2)の反復単位を有し、さらに式(19)で表される反復単位を有する樹脂であってもよい。このとき、親撥パターニング膜とした場合の撥液性が向上し、微細電極を形成した際の解像度により優れる樹脂となる。 Further, the resin having the repeating unit of the formula (1) and the formula (2) has the repeating unit of the above formula (1) and the above formula (2), and further has the repeating unit represented by the formula (19). Resin may be used. At this time, the liquid repellency in the case of the hydrophilic / repellent patterning film is improved, and the resin becomes more excellent in resolution when the fine electrode is formed.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(式(19)中、AはC6~C19のアリール基を、Yは式(1)で定義した置換基を、R30は水素またはC1~C6のアルキル基を、RはC1~C18のフルオロアルキル基を、vは0~(u-2)の整数を、wは1~(u-v-1)の整数を表す。ここで、uはAを構成する炭素数を表す。)
 式(19)中、AはC6~C19のアリール基を表す。
(In the formula (19), A 3 is a C6-C19 aryl group, Y is a substituent defined in the formula (1), R 30 is hydrogen or a C1-C6 alkyl group, and R f is a C1-C18 the fluoroalkyl group, v is an integer of 0 ~ (u-2), w represents an integer of 1 ~ (u-v-1 ). here, u represents the number of carbon atoms constituting the a 3. )
In the formula (19), A 3 represents a C6 to C19 aryl group.
 式(19)中のAにおけるC6~C19のアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントリル基、ビフェニル基等が挙げられる。 The C6 to C19 aryl group in A 3 in Formula (19) is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
 式(19)中、Yは式(1)で定義した有機基と同様の有機基を表す。 In formula (19), Y represents an organic group similar to the organic group defined in formula (1).
 式(19)中、R30は水素またはC1~C6のアルキル基を表す。 In the formula (19), R 30 represents hydrogen or a C1-C6 alkyl group.
 式(19)中のR30におけるC1~C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The C1-C6 alkyl group for R 30 in formula (19) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
 式(19)中、RはC1~C18のフルオロアルキル基を表す。 In the formula (19), R f represents a C1-C18 fluoroalkyl group.
 式(19)中のRにおけるC1~C18のフルオロアルキル基としては特に制限がなく、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロノニル基、パーフルオロデシル基、パーフルオロドデシル基、パーフルオロオクタデシル基等の直鎖状パーフルオロアルキル基;パーフルオロイソプロピル基、パーフルオロイソブチル基、パーフルオロ-sec-ブチル基、パーフルオロ-tert-ブチル基、パーフルオロネオペンチル基等の分岐状パーフルオロアルキル基;パーフルオロシクロプロピル基、パーフルオロシクロブチル基、パーフルオロシクロペンチル基、パーフルオロシクロヘキシル基等の環状パーフルオロアルキル基;1,1,1-パーフルオロエチル基、1,1,1,2,2-ペンタフルオロプロピル基、1,1,1,2,2,3,3-ヘプタフルオロブチル基、2-(パーフルオロヘキシル)エチル基、2-(パーフルオロオクチル)エチル基等の一部がフッ素化したセミフルオロアルキル基等が挙げられる。 The C1-C18 fluoroalkyl group in R f in the formula (19) is not particularly limited, and examples thereof include a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, Perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, perfluorododecyl group, perfluorooctadecyl group and other linear perfluoroalkyl groups; perfluoroisopropyl group, perfluoro Branched perfluoroalkyl groups such as fluoroisobutyl group, perfluoro-sec-butyl group, perfluoro-tert-butyl group, perfluoroneopentyl group; perfluorocyclopropyl group, perfluorocyclobutyl group, perfluorocyclopenty Cyclic perfluoroalkyl groups such as thiol groups and perfluorocyclohexyl groups; 1,1,1-perfluoroethyl groups, 1,1,1,2,2-pentafluoropropyl groups, 1,1,1,2,2 , 3,3-heptafluorobutyl group, 2- (perfluorohexyl) ethyl group, 2- (perfluorooctyl) ethyl group and the like partially fluorinated semifluoroalkyl groups.
 式(19)中、vは0~(u-2)の整数を、mは1~(u-v-1)の整数を表す。ここで、uはAを構成する炭素数を表す。 In the formula (19), v represents an integer of 0 to (u-2), and m represents an integer of 1 to (uv-1). Here, u represents the number of carbon atoms constituting the A 3.
 上式(1)及び上式(2)の反復単位を有する樹脂を溶剤に溶解させた溶液を用いて種々の基材上に塗工又は印刷することが出来る。 It can be coated or printed on various substrates using a solution obtained by dissolving a resin having repeating units of the above formulas (1) and (2) in a solvent.
 該溶剤としては、該樹脂を溶解する溶剤であれば何ら制限なく用いることができ、例えば、シクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン、n-ヘキシルベンゼン、テトラリン、デカリン、イソプロピルベンゼン、クロロベンゼンなどの芳香族炭化水素;塩化メチレン、1,1,2-トリクロロエチレン等の塩素化脂肪族炭化水素化合物;テトラヒドロフラン、ジオキサン等の脂肪族環状エーテル化合物;メチルエチルケトン、シクロヘキサノン等のケトン化合物;エチルアセテート、ジメチルフタレート、サリチル酸メチル、アミルアセテート等のエステル化合物;n-ブタノール、エタノール、iso-ブタノール等のアルコール類;1-ニトロプロパン、2硫化炭素、リモネン等が例示され、これらの溶剤は必要に応じて混合して使用することが出来る。 As the solvent, any solvent that dissolves the resin can be used without any limitation. For example, cyclohexane, benzene, toluene, xylene, ethylbenzene, isopropylbenzene, n-hexylbenzene, tetralin, decalin, isopropylbenzene, chlorobenzene. Aromatic hydrocarbons such as: Chlorinated aliphatic hydrocarbon compounds such as methylene chloride and 1,1,2-trichloroethylene; Aliphatic cyclic ether compounds such as tetrahydrofuran and dioxane; Ketone compounds such as methyl ethyl ketone and cyclohexanone; Ethyl acetate and dimethyl Examples include ester compounds such as phthalate, methyl salicylate, and amyl acetate; alcohols such as n-butanol, ethanol, and iso-butanol; and 1-nitropropane, carbon disulfide, and limonene. These solvents can be used as a mixture as required.
 本発明に係る樹脂は、例えば、スピンコーティング、ドロップキャスト、ディップコーティング、ドクターブレードコーティング、パッド印刷、スキージコート、ロールコーティング、ロッドバーコーティング、エアナイフコーティング、ワイヤーバーコーティング、フローコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等を用いて印刷することが出来る。なお、本発明の絶縁膜はこれらの方法を用いて形成されるものであるため、本発明の絶縁膜は汎用溶剤に対する溶解性に優れることが必要となる。 Examples of the resin according to the present invention include spin coating, drop casting, dip coating, doctor blade coating, pad printing, squeegee coating, roll coating, rod bar coating, air knife coating, wire bar coating, flow coating, gravure printing, flexographic printing. , Screen printing, ink jet printing, letterpress reversal printing, and the like. Note that since the insulating film of the present invention is formed using these methods, the insulating film of the present invention is required to have excellent solubility in general-purpose solvents.
 本発明に係る樹脂を絶縁膜として用いる場合、該膜を形成した状態、または必要に応じて光架橋(光環化)した架橋物として用いることができる。なお、本発明において該膜を形成した後、光架橋せずに絶縁膜として用いる場合には、該膜を形成するのに用いる汎用溶剤には良好な溶解性を示し、更に、該膜の上部に該汎用溶剤とは異なる溶剤を用いて有機半導体層を形成可能なことが必要となる。この際、該膜が有機半導体溶液に対して耐溶剤性(耐クラック性)を持つとき、該膜を形成した状態のままで絶縁膜として用いることが出来る。なお、耐溶剤性(耐クラック性)に優れるものではない場合、印刷法による製膜ができず、印刷法に比べ経済性に劣る蒸着法等の方法により製膜する必要がある。 When the resin according to the present invention is used as an insulating film, it can be used in a state where the film is formed or as a cross-linked product that is photo-crosslinked (photocyclized) as necessary. In the present invention, when the film is formed and then used as an insulating film without photocrosslinking, the general-purpose solvent used for forming the film exhibits good solubility, and the upper portion of the film In addition, it is necessary that the organic semiconductor layer can be formed using a solvent different from the general-purpose solvent. At this time, when the film has solvent resistance (crack resistance) with respect to the organic semiconductor solution, it can be used as an insulating film with the film formed. In addition, when it is not excellent in solvent resistance (crack resistance), film formation by a printing method cannot be performed, and it is necessary to form into a film by methods, such as a vapor deposition method inferior to the printing method.
 本発明に係る樹脂を絶縁膜として用いる場合、光架橋(光環化)には放射線が用いられ、例えば、波長245~350nmの紫外線が例示される。照射量は樹脂の組成により適宜変更されるが、例えば、150~3000mJ/cmが挙げられ、架橋度の低下を防止し、かつ、プロセスの短時間化による経済性の向上のため、好ましくは50~1000mJ/cmである。紫外線の照射は通常大気中で行うが、必要に応じて不活性ガス中、または一定量の不活性ガス気流下で行うことも出来る。必要に応じて光増感剤を添加して光架橋反応を促進させることも出来る。用いる光増感剤には何ら制限はなく、例えば、ベンゾフェノン化合物、アントラセン化合物、アントラキノン化合物、チオキサントン化合物、ニトロフェニル化合物等が例示されるが、本発明で用いられる樹脂との相溶性が高いベンゾフェノン化合物が好ましい。また、該増感剤は必要に応じて2種以上を組み合わせて使用できる。 When the resin according to the present invention is used as an insulating film, radiation is used for photocrosslinking (photocyclization), for example, ultraviolet rays having a wavelength of 245 to 350 nm are exemplified. The irradiation amount is appropriately changed depending on the composition of the resin. For example, 150 to 3000 mJ / cm 2 can be mentioned, and it is preferable to prevent a decrease in the degree of crosslinking and to improve economy by shortening the process. 50 to 1000 mJ / cm 2 . Irradiation with ultraviolet rays is usually carried out in the atmosphere, but it can also be carried out in an inert gas or in a certain amount of inert gas flow as necessary. If necessary, a photosensitizer can be added to promote the photocrosslinking reaction. The photosensitizer used is not particularly limited, and examples thereof include benzophenone compounds, anthracene compounds, anthraquinone compounds, thioxanthone compounds, nitrophenyl compounds, etc., but benzophenone compounds having high compatibility with the resin used in the present invention. Is preferred. The sensitizers can be used in combination of two or more as required.
 本発明の樹脂は紫外線により架橋出来るが、必要に応じて加熱しても良い。紫外線照射に加えて加熱する場合の温度は特に制限されないが、用いる樹脂の熱変形を避けるため120℃以下の温度が好ましい。 The resin of the present invention can be crosslinked by ultraviolet rays, but may be heated if necessary. The temperature in the case of heating in addition to the ultraviolet irradiation is not particularly limited, but a temperature of 120 ° C. or lower is preferable in order to avoid thermal deformation of the resin used.
 また、本発明の樹脂は、短時間で効率良く架橋することができるものであり、架橋に要する時間を5分以内とすることができる。なお、架橋時間の制御に好適であることから、架橋に要する時間を1~2分以内とすることが好ましい。 Further, the resin of the present invention can be crosslinked efficiently in a short time, and the time required for crosslinking can be within 5 minutes. Note that, since it is suitable for controlling the crosslinking time, the time required for crosslinking is preferably within 1 to 2 minutes.
 本発明の樹脂を製膜して有機電界効果トランジスタ(OFET)におけるゲート絶縁層(高分子誘電体層)として用いることができる。該有機電界効果トランジスタは、例えば、基板上に、ソース電極及びドレイン電極を付設した有機半導体層とゲート電極とをゲート絶縁層(高分子誘電体層)を介して積層することにより得ることができる。 The resin of the present invention can be formed into a film and used as a gate insulating layer (polymer dielectric layer) in an organic field effect transistor (OFET). The organic field effect transistor can be obtained, for example, by laminating an organic semiconductor layer provided with a source electrode and a drain electrode and a gate electrode on a substrate via a gate insulating layer (polymer dielectric layer). .
 本発明の樹脂から得られる絶縁膜は、漏電の原因となる微細な穴(ピンホール)の形成が抑制されるため、低漏洩電流である。また、該絶縁膜は、高分子誘電体層として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、漏洩電流が0.01nA以下であることが好ましい。 The insulating film obtained from the resin of the present invention has a low leakage current because the formation of fine holes (pinholes) that cause leakage is suppressed. Further, when the insulating film is used as a polymer dielectric layer, the leakage current is preferably 0.01 nA or less from the viewpoint of practicality as an organic field effect transistor (OFET) element.
 本発明の樹脂から得られる絶縁膜は溶剤に対する濡れ性に優れるものであり、ゲート絶縁層(高分子誘電体層)として用いられる場合、ボトムゲート・ボトムコンタクト(BGBC)型及びトップゲート・ボトムコンタクト(TGBC)型の有機電界効果トランジスタデバイスにおいて該層上のS(ソース)電極及びD(ドレイン)電極を覆う適量の有機半導体溶液を塗布したとき、電極上をくまなく覆うことができるものである。 The insulating film obtained from the resin of the present invention has excellent wettability with respect to a solvent. When used as a gate insulating layer (polymer dielectric layer), the bottom gate / bottom contact (BGBC) type and the top gate / bottom contact are used. In a (TGBC) type organic field effect transistor device, when an appropriate amount of an organic semiconductor solution covering the S (source) electrode and D (drain) electrode on the layer is applied, the entire electrode can be covered. .
 本発明の樹脂から得られる絶縁膜は優れた平坦性を有するものであり、ゲート絶縁層(高分子誘電体層)として用いられる場合、平坦性の観点から、表面粗さ(Ra)が0.5nm以下であることが好ましい。 The insulating film obtained from the resin of the present invention has excellent flatness. When used as a gate insulating layer (polymer dielectric layer), the surface roughness (Ra) is 0. 0 from the viewpoint of flatness. It is preferable that it is 5 nm or less.
 本発明の樹脂から得られる絶縁膜を、ゲート絶縁層(高分子誘電体層)として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子の閾値電圧が0を超えて2.0V以下、または-2.0V以上で0Vより小さいことが好ましい。 When an insulating film obtained from the resin of the present invention is used as a gate insulating layer (polymer dielectric layer), the threshold voltage of the FET element is 0 from the viewpoint of practicality as an organic field effect transistor (OFET) element. It is preferably 2.0 V or less, or −2.0 V or more and less than 0 V.
 本発明の樹脂から得られる絶縁膜を、ゲート絶縁層(高分子誘電体層)として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子の移動度が0.20cm/Vs以上であることが好ましい。 When the insulating film obtained from the resin of the present invention is used as a gate insulating layer (polymer dielectric layer), the mobility of the FET element is 0. 0 from the viewpoint of practicality as an organic field effect transistor (OFET) element. It is preferably 20 cm 2 / Vs or more.
 本発明の樹脂から得られる絶縁膜を、ゲート絶縁層(高分子誘電体層)として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子のオン電流/オフ電流比が10以上であることが好ましい。 When the insulating film obtained from the resin of the present invention is used as a gate insulating layer (polymer dielectric layer), from the viewpoint of practicality as an organic field effect transistor (OFET) element, the on-current / off-current of the FET element The ratio is preferably 10 6 or more.
 本発明の樹脂から得られる絶縁膜を、ゲート絶縁層(高分子誘電体層)として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子のソース・ドレイン間電流のヒステリシスが無いことが好ましい。 When the insulating film obtained from the resin of the present invention is used as a gate insulating layer (polymer dielectric layer), from the viewpoint of practicality as an organic field effect transistor (OFET) element, the source-drain current of the FET element It is preferable that there is no hysteresis.
 本発明の樹脂から得られる絶縁膜を、ゲート絶縁層(高分子誘電体層)として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子の絶縁破壊強度が4MV/cm以上であることが好ましい。 When the insulating film obtained from the resin of the present invention is used as a gate insulating layer (polymer dielectric layer), the dielectric breakdown strength of the FET element is 4 MV from the viewpoint of practicality as an organic field effect transistor (OFET) element. / Cm or more is preferable.
 本発明において、該有機電界トランジスタ(OFET)はボトムゲート・ボトムコンタクト(BGBC)型、ボトムゲート・トップコンタクト(BGTC)型、トップゲート・ボトムコンタクト(TGBC)型、トップゲート・トップコンタクト(TGTC)型の何れでも良い。ここで、これらの各種構造の有機電界トランジスタの内、例えば、ボトムゲート・ボトムコンタクト(BGBC)型素子の構造は、図1で示される。 In the present invention, the organic field effect transistor (OFET) is a bottom gate / bottom contact (BGBC) type, a bottom gate / top contact (BGTC) type, a top gate / bottom contact (TGBC) type, a top gate / top contact (TGTC). Any of the molds may be used. Here, among these organic field-effect transistors having various structures, for example, the structure of a bottom gate / bottom contact (BGBC) type element is shown in FIG.
 本発明の樹脂は、本発明の樹脂および/または本発明の樹脂の架橋物を含有する平坦化膜として好適に用いられ、特に連続印刷可能な絶縁性の平坦化膜として好適に用いられる。ここで、平坦化膜は、基材上に塗工し、基材自体の表面粗さを低減させる目的で用いられる絶縁性樹脂からなる膜である。 The resin of the present invention is suitably used as a planarizing film containing the resin of the present invention and / or a cross-linked product of the resin of the present invention, and is particularly suitably used as an insulating planarizing film capable of continuous printing. Here, the planarizing film is a film made of an insulating resin that is applied on the base material and used for the purpose of reducing the surface roughness of the base material itself.
 本発明の樹脂から得られる平坦化膜は前述の有機溶剤に溶解させて連続印刷が可能であり、絶縁性、及び平坦性に優れており、親撥パターニング膜として特に好適に用いることができる。ここで、親撥パターニングとは、真空紫外線(VUV)を用いてプラスチック表面上を親水化してパターニングする技術であり、該技術を用いてパターニングされた表面を有する膜を親撥パターニング膜というものである。本発明の新撥パターニング膜は、従来のパリレン膜を用いたものと異なり、水系金属ナノインクを塗布した際の欠陥発生が防止できる点でも好適である。 The planarizing film obtained from the resin of the present invention can be continuously printed by dissolving in the above-mentioned organic solvent, has excellent insulating properties and flatness, and can be particularly suitably used as a repellent patterning film. Here, the hydrophilic / repellent patterning is a technique of patterning by hydrophilicizing the surface of a plastic using vacuum ultraviolet (VUV), and a film having a surface patterned by using the technique is called a hydrophilic / repellent patterning film. is there. Unlike the conventional parylene film, the new repellent patterning film of the present invention is also preferable in that it can prevent the occurrence of defects when the aqueous metal nano ink is applied.
 本発明において、親撥パターニングには、波長が10nm~200nmの真空紫外線(VUV)を、クロムパターンを有するフォトマスクを介して親撥パターニング膜に照射することにより行うことが好ましい。光源と該膜の距離、及び、マスクと該膜の距離は用いる親撥パターニング膜の組成により適宜選択される。また、VUVを照射する際、大気~窒素にわたる種々の組成の気体下で行うことが出来る。VUVの照射時間は良好な親撥パターニングが行える限り何らの制限もないが、より膜の劣化防止に好適であり、かつ、より十分な親撥パターニングに好適であることから、100~1000秒の範囲であることが好ましい。 In the present invention, the hydrophilic / repellent patterning is preferably performed by irradiating vacuum / ultraviolet pattern (VUV) having a wavelength of 10 nm to 200 nm to the hydrophilic / repellent patterning film through a photomask having a chromium pattern. The distance between the light source and the film and the distance between the mask and the film are appropriately selected depending on the composition of the hydrophilic / repellent patterning film to be used. In addition, when irradiating VUV, it can be performed under a gas having various compositions ranging from the atmosphere to nitrogen. The irradiation time of VUV is not limited as long as good repellent patterning can be performed, but it is more suitable for preventing film deterioration and more suitable for receptive patterning. A range is preferable.
 親撥パターニングにより疎水性の該膜上に親水性のパターンが描画されるが、この際、疎水性領域と親水性領域の水に対する接触角はそれぞれ100°以上、20°以下であることが好ましく、これら接触角の差が80°以上であることが好ましい。また、疎水性領域と親水性領域の表面張力差が40mN/mであることが好ましい。この状態で乾燥、必要に応じて加熱焼成するとき、より好適にマイクロメートルサイズの微細な金属配線パターンを形成することが出来る。乾燥温度、及び加熱焼成温度は基材、親撥パターニング膜に影響が無い限り何ら制限されず、乾燥温度は10~50℃が好適に用いられ、加熱焼成温度は100~180℃が好適に用いられる。 A hydrophilic pattern is drawn on the hydrophobic film by the hydrophilic / repellent patterning. In this case, the contact angles of the hydrophobic region and the hydrophilic region with respect to water are preferably 100 ° or more and 20 ° or less, respectively. The difference in contact angle is preferably 80 ° or more. In addition, the surface tension difference between the hydrophobic region and the hydrophilic region is preferably 40 mN / m. In this state, when dried and heated and fired as necessary, a fine metal wiring pattern having a micrometer size can be more suitably formed. The drying temperature and the baking temperature are not limited as long as the substrate and the hydrophilic / repellent patterning film are not affected. The drying temperature is preferably 10 to 50 ° C., and the heating and baking temperature is preferably 100 to 180 ° C. It is done.
 親撥パターニング膜における解像度は用途により適宜選択されるが、実用性の観点から10μm以下が好ましい。ここで、本発明において、「解像度」とは幅がAミクロンの直線状の電極配線(ライン)がAミクロンの間隔(スペース)で等間隔に並んでいるマスクを用いて光パターニングした後、金属ナノインクにより配線を形成した際に、マスク通りの形状の配線が形成出来る最小のAの値をいう。この場合、ライン・アンド・スペースがAミクロンの解像度となる。 The resolution in the hydrophobic / repellent patterning film is appropriately selected depending on the application, but is preferably 10 μm or less from the viewpoint of practicality. Here, in the present invention, “resolution” refers to a pattern in which a linear electrode wiring (line) having a width of A micron is optically patterned using a mask in which A micron intervals (spaces) are arranged at equal intervals, and then metal When wiring is formed with nano ink, it means the minimum value of A that can form wiring with the shape of a mask. In this case, the line and space is A micron resolution.
 本発明の樹脂が親撥パターニング膜として用いられるとき、本発明で用いることが出来る金属ナノインク、及び該インクが含有する金属ナノ粒子濃度は、低抵抗の金属配線が形成出来る限り何らの制限もないが、例えば、金、銀、白金等の金属ナノ粒子を含むインクが挙げられ、固形分濃度は例えば5~50wt%のものを挙げることが出来る。また該金属ナノ粒子を分散させる媒体として水、または水・アルコール混合溶剤を用いたインクが例示される。アルコールの種類は水と相溶する限り何らの制限もなく、例えば、メタノール、エタノール等が挙げられる。 When the resin of the present invention is used as a hydrophobic / repellent patterning film, the metal nanoink that can be used in the present invention and the concentration of metal nanoparticles contained in the ink are not limited as long as a low-resistance metal wiring can be formed. However, examples include inks containing metal nanoparticles such as gold, silver, platinum, etc., and solids concentrations of, for example, 5 to 50 wt% can be mentioned. Further, an ink using water or a water / alcohol mixed solvent is exemplified as a medium for dispersing the metal nanoparticles. The type of alcohol is not limited as long as it is compatible with water, and examples thereof include methanol and ethanol.
 本発明の樹脂から得られる平坦化膜を、親撥パターニング膜として用いて電極を形成する場合、該電極を含む有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子の閾値電圧が0を超えて2.0V以下、または-8.0V以上で0Vより小さいことが好ましく、0を超えて2.0V以下、または-2.0V以上で0Vより小さいことがさらに好ましい。 In the case where an electrode is formed by using the planarization film obtained from the resin of the present invention as a hydrophilic / repellent patterning film, the threshold value of the FET element is used from the viewpoint of practicality as an organic field effect transistor (OFET) element including the electrode The voltage is preferably more than 0 and not more than 2.0V, or more than −8.0V and less than 0V, more preferably more than 0 and less than 2.0V, or more than −2.0V and less than 0V.
 本発明の樹脂から得られる平坦化膜を、親撥パターニング膜として用いて電極を形成する場合、該電極を含む有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子の移動度が0.20cm/Vs以上であることが好ましい。 In the case where an electrode is formed using the planarizing film obtained from the resin of the present invention as a hydrophilic / repellent patterning film, the FET element is moved from the viewpoint of practicality as an organic field effect transistor (OFET) element including the electrode. The degree is preferably 0.20 cm 2 / Vs or more.
 本発明の樹脂から得られる平坦化膜を、親撥パターニング膜として用いて電極を形成する場合、該電極を含む有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子のオン電流/オフ電流比が10以上であることが好ましい。 In the case where an electrode is formed by using a planarizing film obtained from the resin of the present invention as a hydrophilic / repellent patterning film, the FET element is turned on from the viewpoint of practicality as an organic field effect transistor (OFET) element including the electrode. The current / off-current ratio is preferably 10 6 or more.
 本発明の樹脂から得られる平坦化膜を、親撥パターニング膜として用いて電極を形成する場合、該電極を含む有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子のソース・ドレイン間電流のヒステリシスが無いことが好ましい。 In the case where an electrode is formed using the planarizing film obtained from the resin of the present invention as a hydrophilic / repellent patterning film, from the viewpoint of practicality as an organic field effect transistor (OFET) element including the electrode, the source of the FET element -It is preferable that there is no hysteresis of current between drains.
 該OFETにおいて、用いることが出来る基材は素子を作製できる十分な平坦性を確保できれば特に制限されず、例えば、ガラス、石英、酸化アルミニウム、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;プラスチック;金、銅、クロム、チタン、アルミニウム等の金属;セラミックス;コート紙;表面コート不織布等が挙げられ、これらの材料からなる複合材料又はこれらの材料を多層化した材料であっても良い。また、表面張力を調整するため、これらの材料表面をコーティングすることも出来る。 In the OFET, a substrate that can be used is not particularly limited as long as sufficient flatness capable of producing an element can be secured. For example, glass, quartz, aluminum oxide, highly doped silicon, silicon oxide, tantalum dioxide, tantalum pentoxide, Inorganic tin oxide and other inorganic material substrates; plastics; metals such as gold, copper, chromium, titanium, and aluminum; ceramics; coated papers; surface-coated non-woven fabrics, and the like. A multilayered material may be used. Moreover, in order to adjust surface tension, the surface of these materials can also be coated.
 基材として用いるプラスチックとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリカーボネート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリメチルペンテン-1、ポリプロピレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリスチレン、ポリイミド、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエステルエラストマー、ポリウレタンエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、スチレンブロック共重合体等が例示される。また、上記のプラスチックを2種以上用いて積層して基材として用いることができる。 Plastics used as the substrate include polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polycarbonate, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyethylene, ethylene / vinyl acetate copolymer, polymethylpentene-1, and polypropylene. , Cyclic polyolefin, fluorinated cyclic polyolefin, polystyrene, polyimide, polyvinylphenol, polyvinyl alcohol, poly (diisopropyl fumarate), poly (diethyl fumarate), poly (diisopropyl maleate), polyethersulfone, polyphenylene sulfide, polyphenylene ether, Polyester elastomer, polyurethane elastomer, polyolefin elastomer, polyamide elastomer Tomah, styrene block copolymer and the like. Moreover, it can laminate | stack using said plastics 2 or more types, and can be used as a base material.
 本発明で用いることが出来る導電性のゲート電極、ソース電極、又はドレイン電極としては、金、銀、アルミニウム、銅、チタン、白金、クロム、ポリシリコン、シリサイド、インジウム・錫・オキサイド(ITO)、酸化錫等の導電性材料が例示される。また、これらの導電材料を複数、積層して用いることもできる。 Examples of the conductive gate electrode, source electrode, or drain electrode that can be used in the present invention include gold, silver, aluminum, copper, titanium, platinum, chromium, polysilicon, silicide, indium / tin / oxide (ITO), A conductive material such as tin oxide is exemplified. In addition, a plurality of these conductive materials can be stacked.
 電極の形成方法としては特に制限はなく、蒸着、高周波スパッタリング、電子ビームスパッタリング等が挙げられ、前記導電性材料のナノ粒子を水又は有機溶剤に溶解させたインクを用いて、溶液スピンコート、ドロップキャスト、ディップコート、ドクターブレード、ダイコート、パッド印刷、ロールコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等の方法を採用することも出来る。また、必要に応じて電極上にフルオロアルキルチオール、フルオロアリルチオール等を吸着させる処理を行っても良い。 The electrode formation method is not particularly limited, and examples thereof include vapor deposition, high-frequency sputtering, electron beam sputtering, and the like. Using an ink in which nanoparticles of the conductive material are dissolved in water or an organic solvent, solution spin coating, drop Methods such as casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, screen printing, ink jet printing, letterpress reverse printing and the like can also be employed. Moreover, you may perform the process which makes a fluoroalkyl thiol, a fluoro allyl thiol, etc. adsorb | suck on an electrode as needed.
 本発明で用いることが出来る有機半導体には何ら制限はなく、N型及びP型の有機半導体の何れも使用することができ、N型とP型を組み合わせたバイポーラトランジスタとしても使用でき、例えば式(F-1)~(F-10)等が例示される。 The organic semiconductor that can be used in the present invention is not limited at all, and any of N-type and P-type organic semiconductors can be used, and can be used as a bipolar transistor that combines N-type and P-type. Examples are (F-1) to (F-10).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 本発明において、低分子及び高分子の有機半導体の何れも用いることができ、これらを混合して使用することも出来る。 In the present invention, both low-molecular and high-molecular organic semiconductors can be used, and these can be used in combination.
 本発明において、有機半導体層を形成する方法としては、有機半導体を真空蒸着する方法、または有機半導体を有機溶剤に溶解させて塗布、印刷する方法等が例示されるが、有機半導体層の薄膜を形成出来る方法であれば何らの制限もない。有機半導体層を有機溶剤に溶解させた溶液を用いて塗布、または印刷する場合の溶液濃度は有機半導体の構造及び用いる溶剤により異なるが、より均一な半導体層の形成及び層の厚みの低減の観点から、0.5%~5重量%であることが好ましい。この際の有機溶剤としては有機半導体が製膜可能な一定の濃度で溶解する限り何ら制限はなく、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン、デカリン、インダン、1-メチルナフタレン、2-エチルナフタレン、1,4-ジメチルナフタレン、ジメチルナフタレン異性体混合物、トルエン、キシレン、エチルベンゼン、1,2,4-トリメチルベンゼン、メシチレン、イソプロピルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、オクチルベンゼン、シクロヘキシルベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、トリクロロベンゼン、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、γ-ブチロラクトン、1,3-ブチレングリコール、エチレングリコール、ベンジルアルコール、グリセリン、シクロヘキサノールアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、アニソール、シクロヘキサノン、メシチレン、ジプロピレングリコールジアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、1,6-ヘキサンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート、エチルアセテート、フェニルアセテート、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-n-プロピルエーテル、テトラデカヒドロフェナントレン、1,2,3,4,5,6,7,8-オクタヒドロフェナントレン、デカヒドロ-2-ナフトール、1,2,3,4-テトラヒドロ-1-ナフトール、α-テルピネオール、イソホロントリアセチンデカヒドロ-2-ナフトール、ジプロピレングリコールジメチルエーテル、2,6-ジメチルアニソール、1,2-ジメチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、1-ベンゾチオフェン、3-メチルベンゾチオフェン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、クロロホルム、ジクロロメタン、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、シクロヘキサノン、アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、アセトフェノン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、リモネン等が例示されるが、好ましい性状の結晶膜を得るためには有機半導体の溶解力が高く、沸点が100℃以上の溶剤が適しており、キシレン、イソプロピルベンゼン、アニソール、シクロヘキサノン、メシチレン、1,2-ジクロロベンゼン、3,4-ジメチルアニソール、ペンチルベンゼン、テトラリン、シクロヘキシルベンゼン、デカヒドロ-2-ナフトールが好ましい。また、前述の溶剤2種以上を適切な割合で混合した混合溶剤も用いることが出来る。 In the present invention, examples of the method for forming the organic semiconductor layer include a method in which the organic semiconductor is vacuum-deposited, a method in which the organic semiconductor is dissolved in an organic solvent, and a method for coating and printing. There is no limitation as long as it can be formed. The concentration of the solution when the organic semiconductor layer is applied or printed using a solution in which the organic semiconductor layer is dissolved in an organic solvent varies depending on the structure of the organic semiconductor and the solvent to be used. Therefore, the content is preferably 0.5% to 5% by weight. The organic solvent at this time is not limited as long as the organic semiconductor dissolves at a certain concentration capable of forming a film, and is hexane, heptane, octane, decane, dodecane, tetradecane, decalin, indane, 1-methylnaphthalene, 2-ethyl. Naphthalene, 1,4-dimethylnaphthalene, dimethylnaphthalene isomer mixture, toluene, xylene, ethylbenzene, 1,2,4-trimethylbenzene, mesitylene, isopropylbenzene, pentylbenzene, hexylbenzene, tetralin, octylbenzene, cyclohexylbenzene, 1 , 2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, trichlorobenzene, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, γ-butyrolactone, 1,3-butylene glycol, Tylene glycol, benzyl alcohol, glycerin, cyclohexanol acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, anisole, cyclohexanone, mesitylene, dipropylene glycol diacetate, dipropylene Glycol methyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, 1,6-hexanediol diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol diacetate, ethyl acetate, phenyl acetate, di Propylene glycol dimethyl ether Ether, dipropylene glycol methyl-n-propyl ether, tetradecahydrophenanthrene, 1,2,3,4,5,6,7,8-octahydrophenanthrene, decahydro-2-naphthol, 1,2,3,4 -Tetrahydro-1-naphthol, α-terpineol, isophorone triacetin decahydro-2-naphthol, dipropylene glycol dimethyl ether, 2,6-dimethylanisole, 1,2-dimethylanisole, 2,3-dimethylanisole, 3,4- Dimethylanisole, 1-benzothiophene, 3-methylbenzothiophene, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, chloroform, dichloromethane, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, cyclohexanone, a Ton, methyl ethyl ketone, diethyl ketone, diisopropyl ketone, acetophenone, N, N-dimethylformamide, N-methyl-2-pyrrolidone, limonene and the like are exemplified. Suitable solvents are those having a high boiling point and a boiling point of 100 ° C. or higher, xylene, isopropylbenzene, anisole, cyclohexanone, mesitylene, 1,2-dichlorobenzene, 3,4-dimethylanisole, pentylbenzene, tetralin, cyclohexylbenzene, decahydro- 2-Naphthol is preferred. Moreover, the mixed solvent which mixed 2 or more types of the above-mentioned solvent in the appropriate ratio can also be used.
 有機半導体層には必要に応じて各種有機・無機の高分子若しくはオリゴマー、又は有機・無機ナノ粒子を固体若しくは、ナノ粒子を水若しくは有機溶剤に分散させた分散液として添加でき、上記高分子誘電体層上に高分子溶液を塗布して保護膜を形成出来る。更に、必要に応じて本保護膜上に各種防湿コーティング、耐光性コーティング等を行うことが出来る。 If necessary, various organic / inorganic polymers or oligomers, or organic / inorganic nanoparticles can be added as solids or as dispersions in which nanoparticles are dispersed in water or an organic solvent. A protective film can be formed by applying a polymer solution on the body layer. Furthermore, various moisture-proof coatings and light-resistant coatings can be applied on the protective film as necessary.
 本発明により汎用溶剤への溶解性、架橋温度、架橋に要する時間、耐溶剤性(耐クラック性)、絶縁破壊強度、漏洩電流、溶剤に対する濡れ性、膜とした場合の平坦性の点で、優れた性能を有する高分子誘電体層に好適な樹脂を提供できる。 According to the present invention, solubility in general-purpose solvents, crosslinking temperature, time required for crosslinking, solvent resistance (crack resistance), dielectric breakdown strength, leakage current, wettability to solvent, and flatness in the case of a film, A resin suitable for a polymer dielectric layer having excellent performance can be provided.
;ボトムゲート-ボトムコンタクト(BGBC)型素子の断面形状を示す図である。FIG. 2 is a diagram showing a cross-sectional shape of a bottom gate-bottom contact (BGBC) type element. ;実施例1で製造した樹脂1のH-NMRチャートを示す図である。FIG. 2 is a view showing a 1 H-NMR chart of Resin 1 produced in Example 1. ;実施例1で製造したOFET素子においてゲート電圧(VGS)を変化させた際に観測されるソース-ドレイン間電流(ISD)(実線)にヒステリシスが見られず、漏洩電流値(I)(破線)が0.01nA以下と極めて小さいことを示す図である。The hysteresis between the source-drain current (I SD ) (solid line) observed when the gate voltage (V GS ) is changed in the OFET device manufactured in Example 1 is not observed, and the leakage current value (I L ) (Broken line) is a figure showing that it is as small as 0.01 nA or less. ;トップゲート・ボトムコンタクト(TGBC)型素子の断面形状を示す図である。FIG. 2 is a view showing a cross-sectional shape of a top gate / bottom contact (TGBC) type element; ;実施例9において親撥パターニングにより形成したAg配線のテストパターンを示す図である。FIG. 10 is a view showing a test pattern of an Ag wiring formed by repellent patterning in Example 9.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例において用いた有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)は、特開2015-224238号公報の製造方法に従って合成した。用いた光環化性化合物のうち、2-オキソ-2H-1-ベンゾピラン-6-カルボニルクロリド(下記式(G))はCN103183634号に従い、4-[2-(4-ピリジニル)エテニル]ベンゾイルクロリド(下記式(H))はジュルナール・フュア・プラクティッシェ・ヘミー、6巻、72頁(1958年)記載の方法に従って合成した。また、桂皮酸クロリド(下記式(I))は東京化成製の試薬を用いた。フルオロアルキル基を有する化合物(下記式(J))はジャーナル・オブ・フルオリンケミストリー誌、131巻、621頁(2010年)記載の方法に従って合成した。また、Agナノインク(銀ナノ粒子を含むインク)は三菱マテリアル株式会社製の銀ナノコロイドH-1を用いた。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The organic semiconductor (di-n-hexyldithienobenzodithiophene) used in the examples was synthesized according to the production method described in JP-A-2015-224238. Among the photocyclizing compounds used, 2-oxo-2H-1-benzopyran-6-carbonyl chloride (the following formula (G)) is 4- [2- (4-pyridinyl) ethenyl] benzoyl chloride (formula (G)) according to CN 103183634. The following formula (H)) was synthesized in accordance with the method described in Journard-Fur Practice Hemi, Vol. 6, p. 72 (1958). Moreover, the cinnamate chloride (following formula (I)) used the reagent made from Tokyo Chemical Industry. A compound having a fluoroalkyl group (the following formula (J)) was synthesized according to the method described in Journal of Fluorine Chemistry, vol. 131, page 621 (2010). Further, Ag nano ink (ink containing silver nanoparticles) was silver nano colloid H-1 manufactured by Mitsubishi Materials Corporation.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 実施例において、NMR、スピンコート、膜厚測定、ディスペンサー印刷、UV照射、真空蒸着、架橋に必要なUV照射量、高分子誘電体層の溶剤に対する濡れ性、絶縁破壊強度、OFET素子の評価、耐溶剤性(耐クラック性)の評価については、以下に示す条件・装置で実施した。
<NMR>
 JNM-ECZ400S FT-NMR(日本電子(株)製)を用いて測定した。なお、芳香族基中の光環化基のモル分率XはH-NMR測定により得られたピークの積分強度を用いて下記式により求めることが出来る。
In Examples, NMR, spin coating, film thickness measurement, dispenser printing, UV irradiation, vacuum deposition, UV irradiation amount necessary for crosslinking, wettability of polymer dielectric layer to solvent, dielectric breakdown strength, evaluation of OFET element, The solvent resistance (crack resistance) was evaluated under the following conditions and equipment.
<NMR>
Measurement was performed using JNM-ECZ400S FT-NMR (manufactured by JEOL Ltd.). The mole fraction X of the photocyclization group in the aromatic group can be obtained by the following formula using the integrated intensity of the peak obtained by 1 H-NMR measurement.
  X=(P-1)×I/{(N+1)×I-M×I
(ここで、Iはδ0.8~δ2.04ppmに存在するピークの積分値を、Iはδ6.50~δ7.6ppmに存在するピークの積分値を表し、Pは光環化基に存在する水素の総数を、Nはメチレン、メチン、及びメチル基の総数を、Mは芳香族基の水素の総数を表す。)
<スピンコート>
 ミカサ株式会社製MS―A100を用いた。
<膜厚測定>
 ブルカー社製DektakXTスタイラスプロファイラーを用いて測定した。
<ディスペンサー印刷>
 武蔵エンジニアリング(株)製IMAGE MASTER 350PC SMARTを用いた。
<UV照射>
 (株)ジーエス・ユアサ コーポレーション製UV-System、CSN-40A-2を用い、UV強度4.0kWの条件で、搬送速度を変えてUV照射時間を調整した。
<真空蒸着>
 アルバック機工社製 小型真空蒸着装置VTR-350M/ERHを用いた。
<架橋に必要なUV照射量>
 洗浄、乾燥した30×30mmのガラス(コーニング社製Eagle XG)上に樹脂の溶液を膜厚500nmとなるようにスピンコート製膜し、十分に乾燥させた。この時点の初期膜厚(A)を測定した上で、UV照射量を変えて得られた架橋膜をトルエンに1時間浸漬、乾燥後の膜厚(B)を測定した。これらの膜厚を用い、下記式
     残膜率=膜厚(B)/初期膜厚(A)×100
で与えられる残膜率が95%以上となるUV照射量を架橋に必要な照射量とした。
<高分子誘電体層の溶剤に対する濡れ性>
 樹脂の架橋膜上に表面張力が異なる5種の溶剤(トルエン、テトラリン、キシレン、メシチレン、クロロベンゼン)をそれぞれ1μL滴下した。S電極及びD電極を覆う適量の有機半導体溶液を塗布したとき、液滴を塗布した瞬間の形状を維持するか、又は濡れ広がれば、電極上をくまなく覆うことが出来るため、この場合を良好(1点)として評価した。一方、該液滴が収縮する場合、及び/又は移動する場合には電極上を覆うことが出来なくなるため、液が収縮及び/又は移動した場合を不良(0点)として評価した。全ての溶剤で良好な結果が得られた場合5点となる。
<絶縁破壊強度>
 洗浄、乾燥した30×30mmのガラス(コーニング社製Eagle XG)に銀を真空蒸着し、厚み30nmの電極を形成した。その後、電極を形成した基材上に誘電体(絶縁体)を製膜し、誘電体層上に金電極を真空蒸着してMIMコンデンサを作製して上記の銀-金電極間に電圧をかけて、絶縁破壊により電流が誘電体層内部を流れ始める電圧を測定し、誘電体層の厚みで割った値を絶縁破壊強度とした。
<FET素子の評価>
 有機電界効果トランジスタの一形態であるボトムゲート・ボトムコンタクト(BGBC)型素子を作製し、ケースレイ社製半導体パラメータアナライザーSCS4200を用い、ソース・ドレイン間電圧をマイナス60ボルトとして、ゲート電圧を変化させることにより、移動度、漏洩電流、オン電流/オフ電流比、ソース・ドレイン間電流のヒステリシス、閾値電圧を評価した。
<耐溶剤性(耐クラック性)>
 サイズ5cm×5cm、厚み100ミクロンのPETフィルム(帝人デュポンフィルム製)上に、スピンコータ―を用いて厚み600nmの絶縁膜を形成後、光環化(光架橋)を行った。このフィルムをトルエンに1時間浸漬後、取り出して常温でトルエンを揮発させ、フィルム表面を形状測定レーザーマイクロスコープ((株)キーエンス製VK-X100)によりフィルム表面上のミクロクラックの有無を確認した。
X = (P−1) × I 2 / {(N + 1) × I 2 −M × I 1 }
(Where I 1 represents the integrated value of the peak existing at δ0.8 to δ2.04 ppm, I 2 represents the integrated value of the peak present at δ6.50 to δ7.6 ppm, and P is present in the photocyclization group. N represents the total number of methylene, methine, and methyl groups, and M represents the total number of hydrogens in the aromatic group.)
<Spin coat>
MS-A100 manufactured by Mikasa Corporation was used.
<Film thickness measurement>
Measurements were made using a Bruker DektakXT stylus profiler.
<Dispenser printing>
An IMAGE MASTER 350PC SMART manufactured by Musashi Engineering Co., Ltd. was used.
<UV irradiation>
Using UV-System and CSN-40A-2 manufactured by GS Yuasa Corporation, the UV irradiation time was adjusted by changing the transport speed under the condition of UV intensity of 4.0 kW.
<Vacuum deposition>
A small vacuum deposition apparatus VTR-350M / ERH manufactured by ULVAC KIKOH Co., Ltd. was used.
<UV irradiation amount necessary for crosslinking>
A resin solution was spin-coated on a washed and dried 30 × 30 mm 2 glass (Eagle XG manufactured by Corning) to a film thickness of 500 nm and sufficiently dried. After measuring the initial film thickness (A) at this time, the crosslinked film obtained by changing the UV irradiation amount was immersed in toluene for 1 hour, and the film thickness (B) after drying was measured. Using these film thicknesses, the following formula: remaining film ratio = film thickness (B) / initial film thickness (A) × 100
The UV irradiation amount at which the remaining film ratio given in (1) was 95% or more was determined as the irradiation amount necessary for crosslinking.
<Wettability of polymer dielectric layer to solvent>
1 μL of each of five types of solvents (toluene, tetralin, xylene, mesitylene, chlorobenzene) having different surface tensions was dropped on the crosslinked resin film. When an appropriate amount of the organic semiconductor solution covering the S electrode and the D electrode is applied, it is possible to cover all over the electrode if the shape at the moment when the droplet is applied is maintained or if it spreads wet. It was evaluated as (1 point). On the other hand, when the droplet contracts and / or moves, the electrode cannot be covered, and thus the case where the liquid contracts and / or moves is evaluated as defective (0 point). The score is 5 when good results are obtained with all solvents.
<Dielectric breakdown strength>
Silver was vacuum-deposited on washed and dried 30 × 30 mm 2 glass (Eagle XG manufactured by Corning) to form an electrode having a thickness of 30 nm. Thereafter, a dielectric (insulator) is formed on the substrate on which the electrode is formed, and a gold electrode is vacuum-deposited on the dielectric layer to produce an MIM capacitor, and a voltage is applied between the silver-gold electrode. Thus, the voltage at which current starts to flow inside the dielectric layer due to dielectric breakdown was measured, and the value divided by the thickness of the dielectric layer was taken as the dielectric breakdown strength.
<Evaluation of FET element>
A bottom gate / bottom contact (BGBC) type element, which is one form of an organic field effect transistor, is manufactured, and the gate voltage is changed by using a semiconductor parameter analyzer SCS4200 manufactured by Keithley, with a source-drain voltage of minus 60 volts. Thus, mobility, leakage current, on-current / off-current ratio, source-drain current hysteresis, and threshold voltage were evaluated.
<Solvent resistance (crack resistance)>
An insulating film having a thickness of 600 nm was formed on a PET film (made by Teijin DuPont Film) having a size of 5 cm × 5 cm and a thickness of 100 microns using a spin coater, and then photocyclization (photocrosslinking) was performed. This film was immersed in toluene for 1 hour and then taken out, and the toluene was volatilized at room temperature. The film surface was checked for the presence or absence of microcracks on the film surface with a shape measurement laser microscope (VK-X100 manufactured by Keyence Corporation).
 以下に実施例を示すが、反応、精製、乾燥は全てイエローライト下、又は遮光下で行った。なお、実施例において、イエローライト下又は遮光下で行ったのは、光環化性化合物の光環化反応、及び光環化性化合物が導入された樹脂の光環化反応を防ぐためである。
<VUV照射>
 ウシオ電機株式会社製SUS740を用いて照射時間を調整して照射した。
<ブレードコート>
 オールグッド株式会社製自動フィルムアプリケーター100-5と膜厚調整機能付フィルムアプリケーター064-13とを用いてブレードコートした。
<ポリパラキシリレン(パリレン)膜の形成>
 日本パリレン合同会社製PDS2010にパリレンダイマーを投入し、化学気相成長法により膜を形成した。
<親撥パターニング性能の評価>
 洗浄、乾燥した30×30mmのガラス(基材)(コーニング社製Eagle XG)に樹脂のキシレン溶液(3wt%)を500rpm×5秒、1500rpm×20秒の条件でスピンコートし、50℃で1分間乾燥した後、紫外線を照射して架橋した平坦化膜を形成した。その後、ライン・アンド・スペースが5ミクロンから50ミクロンのクロムパターンを有するフォトマスクを介して真空紫外線(VUV)を照射し平坦化膜の表面を親液部と撥液部にパターニングした。本基板を70℃に加熱した自動フィルムアプリケーター本体に設置し、Agナノインクを滴下後、140mm/sの速さで膜厚調整機能付フィルムアプリケーターを移動させて塗工し、120℃で30分焼成した。形成された全パターンを観察し、欠陥なく形成されたパターンの中で最も小さいライン・アンド・スペースの値を解像度とした。
(実施例1)
<樹脂の合成>
 窒素ボックス内で300mLのシュレンク管に重量平均分子量28万のポリスチレン(以下、「原料ポリマーA」という)5.0g、脱水した塩化メチレン150mL、桂皮酸クロリド4.0gを仕込み、室温、撹拌下で溶解させた。上部に3方コックを取り付け、下部を密閉した30mLの滴下ロートにトリフルオロメタンスルホン酸(以下、「TFMS」という)9.0gを仕込んだ。上記のシュレンク管と滴下ロートを窒素ボックスから取り出し、窒素シールした状態でシュレンク管と滴下ロートを連結させた。シュレンク管への窒素フローを停止し、滴下ロート上部の3方コックを塩化カルシウム管に連結後、窒素フローを停止した。次に、シュレンク管を氷水で冷却し、滴下ロートからTFMSを10分かけて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で28時間反応させた。反応溶液を再度、氷水で冷却した後、飽和炭酸水素ナトリウム10.6gを溶解させた飽和水溶液を添加してTFMS及び系内の塩酸を中和した。反応物を分液ロートに移し、塩化メチレン層を分離した。更に水層を塩化メチレンで3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を3μmのテフロン(登録商標)フィルターで濾過後、1.5Lのメタノールで再沈殿させ、ポリマーを濾過により単離する操作を2回行った後、50℃で減圧乾燥して6.8gの樹脂1を得た。
Examples are shown below, but the reaction, purification, and drying were all performed under yellow light or under light shielding. In the examples, the reason why the reaction was performed under yellow light or under light shielding was to prevent the photocyclization reaction of the photocyclizable compound and the photocyclization reaction of the resin into which the photocyclizable compound was introduced.
<VUV irradiation>
Irradiation was performed by adjusting the irradiation time using SUS740 manufactured by USHIO INC.
<Blade coat>
Blade coating was performed using an automatic film applicator 100-5 manufactured by Allgood Co., Ltd. and a film applicator 064- 13 with a film thickness adjusting function.
<Formation of polyparaxylylene (parylene) film>
Parylene dimer was introduced into PDS2010 manufactured by Japan Parylene LLC and a film was formed by chemical vapor deposition.
<Evaluation of repellent patterning performance>
Washed and dried 30 × 30 mm 2 glass (base material) (Eagle XG manufactured by Corning) was spin-coated with a resin xylene solution (3 wt%) at 500 rpm × 5 seconds and 1500 rpm × 20 seconds at 50 ° C. After drying for 1 minute, a planarized film was formed by irradiation with ultraviolet rays. Thereafter, the surface of the planarizing film was patterned into a lyophilic portion and a lyophobic portion by irradiating with vacuum ultraviolet rays (VUV) through a photomask having a chromium pattern with a line and space of 5 to 50 microns. This substrate is placed in an automatic film applicator body heated to 70 ° C., and after dropping Ag nano ink, the film applicator with film thickness adjusting function is moved at a speed of 140 mm / s, coating is performed, and baking is performed at 120 ° C. for 30 minutes. did. All the formed patterns were observed, and the smallest line and space value among the patterns formed without defects was defined as the resolution.
Example 1
<Resin synthesis>
In a nitrogen box, a 300 mL Schlenk tube was charged with 5.0 g of polystyrene having a weight average molecular weight of 280,000 (hereinafter referred to as “raw polymer A”), 150 mL of dehydrated methylene chloride, and 4.0 g of cinnamic acid chloride. Dissolved. 9.0 g of trifluoromethanesulfonic acid (hereinafter referred to as “TFMS”) was charged into a 30 mL dropping funnel having a three-way cock attached to the upper portion and the lower portion sealed. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed. The nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped. Next, the Schlenk tube was cooled with ice water, and TFMS was dropped from the dropping funnel over 10 minutes. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 28 hours. The reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 10.6 g of saturated sodium bicarbonate was dissolved was added to neutralize TFMS and hydrochloric acid in the system. The reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 μm Teflon (registered trademark) filter, reprecipitated with 1.5 L of methanol, and the polymer was isolated by filtration twice, followed by drying at 50 ° C. under reduced pressure to obtain 6.8 g. Of resin 1 was obtained.
 H-NMRによる分析の結果、得られた樹脂1(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ59モル%、及び41モル%有していることを確認した。 As a result of analysis by 1 H-NMR, it was confirmed that the obtained resin 1 (the following formula) had 59 mol% and 41 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 なお、樹脂1に係るH-NMRチャートを図2に示した。 A 1 H-NMR chart relating to Resin 1 is shown in FIG.
 H-NMR(400MHz,CDCl):δ7.62(brs,-CH=CH-Ph),7.39~6.51(m,芳香族,-CH=CH-Ph),2.04(brs,-CH―CH-),1.78~1.40(bm,-CH-)
<FET素子の作成及び評価>
 洗浄、乾燥した30×30mmのガラス(基材)(コーニング社製Eagle XG)にアルミニウムを真空蒸着し、厚み50nmのゲート電極を形成した。電極が形成された基材の上に、得られた樹脂1のトルエン溶液(3wt%)を500rpm×5秒、1000rpm×20秒の条件でスピンコートし、50℃で5分間乾燥した後(絶縁膜の形成)、250mJ/cmの紫外線を照射して架橋した膜厚520nmの高分子誘電体層を形成した。ゲート電極及び高分子誘電体層が形成された基材上に金を真空蒸着して厚み50nm、チャンネル長100μm、チャンネル幅500μmのソース電極、及びドレイン電極を形成した。その後、直ちにペンタフルオロベンゼンチオール30mmol/Lのイソプロパノール溶液に浸漬し、5分間経過した時点で取り出し、イソプロパノールで洗浄後、ブロー乾燥した。その後、有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の0.8wt%トルエン溶液60nLをディスペンサにより印刷した。溶剤を揮発させ50℃で1時間乾燥した後、ボトムゲート・ボトムコンタクト(BGBC)型の有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (brs, —CH═CH—Ph), 7.39 to 6.51 (m, aromatic, —CH═CH—Ph), 2.04 ( brs, —CH 2 —CH—), 1.78 to 1.40 (bm, —CH 2 —)
<Creation and evaluation of FET element>
Aluminum was vacuum-deposited on washed and dried 30 × 30 mm 2 glass (base material) (Eagle XG manufactured by Corning) to form a gate electrode having a thickness of 50 nm. A toluene solution (3 wt%) of the obtained resin 1 was spin-coated on the substrate on which the electrode was formed under the conditions of 500 rpm × 5 seconds and 1000 rpm × 20 seconds, and dried at 50 ° C. for 5 minutes (insulation) Formation of Film) A polymer dielectric layer having a thickness of 520 nm was formed by irradiation with 250 mJ / cm 2 of ultraviolet rays. Gold was vacuum-deposited on the substrate on which the gate electrode and the polymer dielectric layer were formed to form a source electrode and a drain electrode having a thickness of 50 nm, a channel length of 100 μm, and a channel width of 500 μm. Thereafter, it was immediately immersed in an isopropanol solution of pentafluorobenzenethiol 30 mmol / L, taken out after 5 minutes, washed with isopropanol, and blow-dried. Thereafter, 60 nL of a 0.8 wt% toluene solution of an organic semiconductor (di-n-hexyldithienobenzodithiophene) was printed by a dispenser. After the solvent was volatilized and dried at 50 ° C. for 1 hour, a bottom gate / bottom contact (BGBC) type organic field effect transistor device was fabricated. The evaluation results and the like of the produced organic field effect transistor device are shown in Table 1.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 ドレイン・ソース間電圧VDSを-60ボルトとして、ゲート・ソース間電圧を変化させて本素子を評価した結果、移動度は0.36cm/V・s、漏洩電流は0.01nA、ソース・ドレイン間の電流にヒステリシスは見られず、オン電流/オフ電流比は10以上、絶縁破壊強度は4MV/cm以上であり、漏洩電流、ヒステリシス、オン電流/オフ電流比、絶縁破壊強度に優れ、有機半導体層、及び絶縁膜にクラックは発生しなかった。該ヒステリシスが見られないことについては、図3に示した。
(実施例2)
 窒素ボックス内で300mLのシュレンク管に原料ポリマーA10g、脱水した塩化メチレン260mL、桂皮酸クロリド19.2gを仕込み、室温、撹拌下で溶解させた。上部に3方コックを取り付け、下部を密閉した100mLの滴下ロートにTFMS26gを仕込んだ。上記のシュレンク管と滴下ロートを窒素ボックスから取り出し、窒素シールした状態でシュレンク管と滴下ロートを連結させた。シュレンク管への窒素フローを停止し、滴下ロート上部の3方コックを塩化カルシウム管に連結後、窒素フローを停止した。次に、シュレンク管を氷水で冷却し、滴下ロートからTFMSを10分かけて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で55時間反応させた。反応溶液を再度、氷水で冷却した後、飽和炭酸水素ナトリウム36gを溶解させた飽和水溶液を添加してTFMS及び系内の塩酸を中和した。反応物を分液ロートに移し、塩化メチレン層を分離した。更に水層を塩化メチレンで3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を3μmのテフロン(登録商標)フィルターで濾過した。引き続き、本濾液をシリカゲルカラムに通して不純物を除去、脱色した後、3Lのメタノールで再沈殿させた。更に、ポリマーを再沈殿により精製し、50℃で減圧乾燥して18.2gの樹脂2を得た。
As a result of evaluating this element by changing the gate-source voltage by setting the drain-source voltage V DS to −60 volts, the mobility was 0.36 cm 2 / V · s, the leakage current was 0.01 nA, the source-source voltage was There is no hysteresis in the drain-to-drain current, the on-current / off-current ratio is 10 7 or more, and the dielectric breakdown strength is 4 MV / cm or more. Excellent leakage current, hysteresis, on-current / off-current ratio, and dielectric breakdown strength No cracks occurred in the organic semiconductor layer and the insulating film. The fact that the hysteresis is not seen is shown in FIG.
(Example 2)
In a nitrogen box, a 300 mL Schlenk tube was charged with 10 g of the starting polymer A, 260 mL of dehydrated methylene chloride, and 19.2 g of cinnamic acid chloride, and dissolved under stirring at room temperature. 26 g of TFMS was charged into a 100 mL dropping funnel with a three-way cock attached to the top and the bottom sealed. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed. The nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped. Next, the Schlenk tube was cooled with ice water, and TFMS was dropped from the dropping funnel over 10 minutes. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice water bath was removed and the reaction was allowed to proceed at room temperature for 55 hours. The reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 36 g of saturated sodium bicarbonate was dissolved was added to neutralize TFMS and hydrochloric acid in the system. The reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 μm Teflon (registered trademark) filter. Subsequently, the filtrate was passed through a silica gel column to remove impurities and decolorized, and then reprecipitated with 3 L of methanol. Furthermore, the polymer was purified by reprecipitation and dried under reduced pressure at 50 ° C. to obtain 18.2 g of Resin 2.
 H-NMRによる分析の結果、得られた樹脂2(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ30モル%、及び70モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 2 (the following formula) has 30 mol% and 70 mol% of the structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 H-NMR(400MHz,CDCl):δ7.62(brs,-CH=CH-Ph),7.39~6.51(m,芳香族,-CH=CH-Ph),2.04(brs,-CH―CH-),1.78~1.40(bm,-CH-)
 実施例2により製造した樹脂2を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (brs, —CH═CH—Ph), 7.39 to 6.51 (m, aromatic, —CH═CH—Ph), 2.04 ( brs, —CH 2 —CH—), 1.78 to 1.40 (bm, —CH 2 —)
An organic field effect transistor device was fabricated after an insulating film was formed using the same method as in Example 1 using the resin 2 produced in Example 2. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例3)
 桂皮酸クロリドをクマリン-6-カルボン酸クロリドに変えた以外は、実施例1と同様の手法で、樹脂3を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
(Example 3)
Resin 3 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to coumarin-6-carboxylic acid chloride.
 H-NMRによる分析の結果、得られた樹脂3(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ75モル%、及び25モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 3 (the following formula) has 75 mol% and 25 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 H-NMR(400MHz,CDCl):δ7.82(brs,-CH=CH-C(O)-),7.70~6.60(m,芳香族,-CH=CH-Ph),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂3を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.82 (brs, —CH═CH—C (O) —), 7.70 to 6.60 (m, aromatic, —CH═CH—Ph), 2.15 (brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
An insulating film was formed using the obtained resin 3 using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例4)
 桂皮酸クロリドをクマリン-6-カルボン酸クロリドに変えた以外は、実施例1と同様の手法で、樹脂4を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
Example 4
Resin 4 was obtained in the same manner as in Example 1, except that cinnamic acid chloride was changed to coumarin-6-carboxylic acid chloride.
 H-NMRによる分析の結果、得られた樹脂4(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ60モル%、及び40モル%有していることを確認した。 As a result of analysis by 1 H-NMR, it was found that the obtained resin 4 (the following formula) had 60 mol% and 40 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 H-NMR(400MHz,CDCl):δ7.82(brs,-CH=CH-C(O)-),7.70~6.60(m,芳香族,-CH=CH-Ph),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂4を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.82 (brs, —CH═CH—C (O) —), 7.70 to 6.60 (m, aromatic, —CH═CH—Ph), 2.15 (brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
An insulating film was formed using the obtained resin 4 using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例5)
 桂皮酸クロリドをピリジニルエテニル安息香酸クロリドに変えた以外は、実施例1と同様の手法で、樹脂5を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
(Example 5)
Resin 5 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to pyridinylethenyl benzoic acid chloride.
 H-NMRによる分析の結果、得られた樹脂5(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ72モル%、及び28モル%有していることを確認した。 As a result of analysis by 1 H-NMR, it was found that the obtained resin 5 (the following formula) had 72 mol% and 28 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 H-NMR(400MHz,CDCl):δ7.80(brs,Py-CH=CH-),7.76~6.60(m,芳香族,-CH=CH-Ph),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂5を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.80 (brs, Py—CH═CH—), 7.76 to 6.60 (m, aromatic, —CH═CH—Ph), 2.15 ( brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
An insulating film was formed using the obtained resin 5 in the same manner as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例6)
 桂皮酸クロリドをピリジニルエテニル安息香酸クロリドに変えた以外は、実施例1と同様の手法で、樹脂6を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
(Example 6)
Resin 6 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to pyridinylethenylbenzoic acid chloride.
 H-NMRによる分析の結果、得られた樹脂6(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ58モル%、及び42モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 6 (the following formula) has 58 mol% and 42 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 H-NMR(400MHz,CDCl):δ7.80(brs,Py-CH=CH-),7.76~6.60(m,芳香族,-CH=CH-Ph),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂6を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.80 (brs, Py—CH═CH—), 7.76 to 6.60 (m, aromatic, —CH═CH—Ph), 2.15 ( brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
Using the obtained resin 6, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例7)
 桂皮酸クロリドをフェニルエテニル安息香酸クロリドに変えた以外は、実施例1と同様の手法で、樹脂7を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
(Example 7)
Resin 7 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to phenylethenylbenzoic acid chloride.
 H-NMRによる分析の結果、得られた樹脂7(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ60モル%、及び40モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 7 (the following formula) has 60 mol% and 40 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 H-NMR(400MHz,CDCl):δ7.67(brs,-CH=CH-),7.10~6.32(m,芳香族,-CH=CH-),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂7を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.67 (brs, —CH═CH—), 7.10 to 6.32 (m, aromatic, —CH═CH—), 2.15 (brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
An insulating film was formed using the obtained resin 7 in the same manner as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例8)
 桂皮酸クロリドをフェニルエテニル安息香酸クロリドに変えた以外は、実施例1と同様の手法で、樹脂8を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
(Example 8)
Resin 8 was obtained in the same manner as in Example 1 except that cinnamic acid chloride was changed to phenylethenylbenzoic acid chloride.
 H-NMRによる分析の結果、得られた樹脂8(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ40モル%、及び60モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 8 (the following formula) has 40 mol% and 60 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 H-NMR(400MHz,CDCl):δ7.67(brs,-CH=CH-),7.10~6.32(m,芳香族,-CH=CH-),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂8を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.67 (brs, —CH═CH—), 7.10 to 6.32 (m, aromatic, —CH═CH—), 2.15 (brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
An insulating film was formed using the obtained resin 8 using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例9)
 窒素ボックス内で300mLのシュレンク管に重量平均分子量15万、ポリスチレン含有量が65wt%のポリスチレン-b-ポリ(エチレン・プロピレン)-b-ポリスチレン(SEPS)(以下、「原料ポリマーB」という)4.01g、脱水した塩化メチレン150mL、桂皮酸クロリド4.5gを仕込み、室温、撹拌下で溶解させた。次に、シュレンク管を0℃以下に冷却し、TFMS6.2gを注射器を用いて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で24時間反応させた。反応溶液を再度、氷水で冷却した後、飽和炭酸水素ナトリウム6.9gを溶解させた飽和水溶液を添加してTFMS及び系内の塩酸を中和した。反応物を分液ロートに移し、塩化メチレン層を分離した。更に水層を塩化メチレンで3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を3μmのテフロン(登録商標)フィルターで濾過した。引き続き、本濾液をシリカゲルカラムに通して不純物を除去、脱色した後、1.5Lのメタノールで再沈殿させた。更に、ポリマーを2回再沈殿により精製し、40℃で減圧乾燥して5.6gの樹脂9を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
Example 9
Polystyrene-b-poly (ethylene propylene) -b-polystyrene (SEPS) having a weight average molecular weight of 150,000 and a polystyrene content of 65 wt% in a 300 mL Schlenk tube in a nitrogen box (hereinafter referred to as “raw polymer B”) 4 .01 g, 150 mL of dehydrated methylene chloride, and 4.5 g of cinnamic acid chloride were charged and dissolved under stirring at room temperature. Next, the Schlenk tube was cooled to 0 ° C. or lower, and 6.2 g of TFMS was dropped using a syringe. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 24 hours. The reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 6.9 g of saturated sodium bicarbonate was dissolved was added to neutralize TFMS and hydrochloric acid in the system. The reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 μm Teflon (registered trademark) filter. Subsequently, the filtrate was passed through a silica gel column to remove impurities and decolorized, and then reprecipitated with 1.5 L of methanol. Further, the polymer was purified by reprecipitation twice and dried under reduced pressure at 40 ° C. to obtain 5.6 g of resin 9.
 H-NMRによる分析の結果、得られた樹脂9(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ27モル%、及び29モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 9 (the following formula) has 27 mol% and 29 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 H-NMR(400MHz,CDCl):δ7.59(brs,-CH=CH-Ph),7.36(brs,芳香族),6.99(brs,芳香族),6.45(brs,-CH=CH-Ph),1.90~1.00(bm,-CH-),0.84(bm,-CH
<親撥パターニング性能の評価>
 5~50ミクロンのライン・アンド・スペースのパターン全てで良好な描画ができており、5ミクロンの解像度があることを確認した。また得られた膜の表面粗さは0.3nmであり平坦性にも優れていた。
<有機TFT素子の作成及び評価>
 洗浄、乾燥した30×30mmのガラス(基材)(コーニング社製Eagle XG)に得られた樹脂9のキシレン溶液(3wt%)を500rpm×5秒、1500rpm×20秒の条件でスピンコートし、50℃で5分間乾燥した後、100mJ/cmの紫外線を照射して架橋した膜厚100nmの下地膜を形成した。その後、フォトマスクを介してVUVを180秒照射し下地膜の表面を親液性と撥液性にパターニングした。本基板を70℃に加熱した自動フィルムアプリケーター本体に設置し、Agナノインクを滴下後、140mm/sの速さで膜厚調整機能付フィルムアプリケーターを移動させて塗工し、120℃30分焼成することで、厚さ500nm、チャネル長5μm、チャネル幅500μm、電極幅100μmのソース電極、及びドレイン電極を形成した。その後、直ちにペンタフルオロベンゼンチオール30mmol/Lのイソプロパノール溶液に浸漬し、5分間経過した時点で取り出し、イソプロパノールで洗浄後、ブロー乾燥した。その後、有機半導体(ジ-n-ヘキシルジチエノベンゾチオフェン)の0.8wt%キシレン/テトラリン混合溶液をスピンコートにより成膜した。溶剤を揮発させるため90℃で20分間乾燥した。その後、得られた基板とパリレンダイマー0.6gを真空蒸着器中に入れ、真空中で加熱してパリレンダイマーを気化させ、基板上で重合させて厚さ430nmのポリパラキシリレンからなるゲート絶縁層を成膜した。その後、フォトマスクを介してVUVを180秒照射しゲート絶縁膜の表面を親液性と撥液性にパターニングした。本基板を70℃に加熱した自動フィルムアプリケーター本体に設置し、Agナノインクを滴下後、140mm/sの速さで塗工し、90℃20分焼成することで、厚さ500nmのゲート電極を形成し、トップゲート・ボトムコンタクト(TGBC)型の有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタの構成を図4、評価結果を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.59 (brs, —CH═CH—Ph), 7.36 (brs, aromatic), 6.99 (brs, aromatic), 6.45 (brs) , —CH═CH—Ph), 1.90 to 1.00 (bm, —CH 2 —), 0.84 (bm, —CH 3 )
<Evaluation of repellent patterning performance>
It was confirmed that all of the 5 to 50 micron line and space patterns were satisfactorily drawn, and that there was a resolution of 5 microns. Further, the surface roughness of the obtained film was 0.3 nm and the flatness was excellent.
<Creation and evaluation of organic TFT element>
The xylene solution (3 wt%) of the resin 9 obtained was spin-coated on the cleaned and dried 30 × 30 mm 2 glass (base material) (Eagle XG manufactured by Corning) under the conditions of 500 rpm × 5 seconds and 1500 rpm × 20 seconds. After drying at 50 ° C. for 5 minutes, an undercoat film having a thickness of 100 nm was formed by irradiation with ultraviolet rays of 100 mJ / cm 2 . Then, VUV was irradiated for 180 seconds through the photomask, and the surface of the base film was patterned to be lyophilic and liquid repellent. This substrate is placed on an automatic film applicator body heated to 70 ° C., and after Ag nanoink is dropped, the film applicator with a film thickness adjusting function is applied at a speed of 140 mm / s, coating is performed, and baking is performed at 120 ° C. for 30 minutes. Thus, a source electrode and a drain electrode having a thickness of 500 nm, a channel length of 5 μm, a channel width of 500 μm, and an electrode width of 100 μm were formed. Thereafter, it was immediately immersed in an isopropanol solution of pentafluorobenzenethiol 30 mmol / L, taken out after 5 minutes, washed with isopropanol, and blow-dried. Thereafter, a 0.8 wt% xylene / tetralin mixed solution of an organic semiconductor (di-n-hexyldithienobenzothiophene) was formed by spin coating. In order to volatilize the solvent, it was dried at 90 ° C. for 20 minutes. Thereafter, 0.6 g of the obtained substrate and parylene dimer are placed in a vacuum vapor deposition device, heated in vacuum to vaporize the parylene dimer, polymerized on the substrate, and gate insulation composed of polyparaxylylene having a thickness of 430 nm. Layers were deposited. Thereafter, VUV was irradiated for 180 seconds through a photomask, and the surface of the gate insulating film was patterned to be lyophilic and lyophobic. This substrate is placed in an automatic film applicator body heated to 70 ° C, and after dropping Ag nano ink, it is applied at a rate of 140 mm / s and baked at 90 ° C for 20 minutes to form a gate electrode having a thickness of 500 nm. A top gate / bottom contact (TGBC) type organic field effect transistor device was fabricated. The structure of the produced organic field effect transistor is shown in FIG.
 ドレイン・ソース間電圧VDSを-60ボルトとして、ゲート・ソース間電圧を変化させて本素子を評価した結果、移動度は0.3cm/V・s、漏洩電流は0.01nA、ソース・ドレイン間の電流にヒステリシスは見られず、オン電流/オフ電流比は10以上、絶縁破壊強度は4MV/cm以上であり、漏洩電流、ヒステリシス、オン電流/オフ電流比、絶縁破壊強度に優れ、有機半導体層、及び下地膜にクラックは発生しなかった。
(実施例10)
 窒素ボックス内で300mLのシュレンク管に原料ポリマーB4.01g、脱水した塩化メチレン150mL、桂皮酸クロリド5.99gを仕込み、室温、撹拌下で溶解させた。次に、シュレンク管を0℃以下に冷却し、TFMS8.2gを注射器を用いて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で25時間反応させた。反応溶液を再度、氷水で冷却した後、飽和炭酸水素ナトリウム9.14gを溶解させた飽和水溶液を添加してTFMS及び系内の塩酸を中和した。反応物を分液ロートに移し、塩化メチレン層を分離した。更に水層を塩化メチレンで3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を3μmのテフロン(登録商標)フィルターで濾過した。引き続き、本濾液をシリカゲルカラムに通して不純物を除去、脱色した後、1.5Lのメタノールで再沈殿させた。更に、ポリマーを再沈殿により精製し、40℃で減圧乾燥して6.0gの樹脂10を得た。
As a result of evaluating this element by changing the gate-source voltage with the drain-source voltage V DS set to -60 volts, the mobility was 0.3 cm 2 / V · s, the leakage current was 0.01 nA, the source-source voltage was There is no hysteresis in the drain-to-drain current, the on-current / off-current ratio is 10 7 or more, and the dielectric breakdown strength is 4 MV / cm or more. Excellent leakage current, hysteresis, on-current / off-current ratio, and dielectric breakdown strength No cracks occurred in the organic semiconductor layer and the base film.
(Example 10)
In a nitrogen box, a 300 mL Schlenk tube was charged with 4.01 g of the raw material polymer B, 150 mL of dehydrated methylene chloride, and 5.99 g of cinnamic acid chloride, and dissolved at room temperature with stirring. Next, the Schlenk tube was cooled to 0 ° C. or lower, and 8.2 g of TFMS was dropped using a syringe. The color of the polymer solution colored reddish purple as it was dropped. After completion of dropping, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 25 hours. The reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 9.14 g of saturated sodium bicarbonate was dissolved was added to neutralize TFMS and hydrochloric acid in the system. The reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 μm Teflon (registered trademark) filter. Subsequently, the filtrate was passed through a silica gel column to remove impurities and decolorized, and then reprecipitated with 1.5 L of methanol. Further, the polymer was purified by reprecipitation and dried under reduced pressure at 40 ° C. to obtain 6.0 g of resin 10.
 H-NMRによる分析の結果、得られた樹脂10(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ21モル%、及び32モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 10 (the following formula) has 21 mol% and 32 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 H-NMR(400MHz,CDCl):δ7.59(brs,-CH=CH-Ph), 7.36(brs,芳香族),6.99(brs,芳香族),6.45(brs,-CH=CH-Ph),1.90~1.00(bm,-CH-),0.84(bm,-CH
<親撥パターニング性能の評価>
 実施例9と同様の手法により評価し、5~50ミクロンのライン・アンド・スペースのパターン全てで良好な描画ができており、5ミクロンの解像度があることを確認した。得られた膜の表面粗さは0.3nmであり平坦性にも優れていた。
<有機TFT素子の作成及び評価>
実施例9と同様の手法によりトップゲート・ボトムコンタクト(TGBC)型の有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタの評価結果を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.59 (brs, —CH═CH—Ph), 7.36 (brs, aromatic), 6.99 (brs, aromatic), 6.45 (brs) , —CH═CH—Ph), 1.90 to 1.00 (bm, —CH 2 —), 0.84 (bm, —CH 3 )
<Evaluation of repellent patterning performance>
Evaluation was made in the same manner as in Example 9, and it was confirmed that good drawing was achieved with all the lines and spaces of 5 to 50 microns, and that there was a resolution of 5 microns. The obtained film had a surface roughness of 0.3 nm and excellent flatness.
<Creation and evaluation of organic TFT element>
A top gate / bottom contact (TGBC) type organic field effect transistor device was fabricated in the same manner as in Example 9. The evaluation results of the produced organic field effect transistor are shown in Table 1.
 実施例9と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例11)
 窒素ボックス内で300mLのシュレンク管に原料ポリマーB3.0g、脱水した塩化メチレン150mL、桂皮酸クロリド6.3gを仕込み、室温、撹拌下で溶解させた。次に、シュレンク管を0℃以下に冷却し、TFMS8.44gを注射器を用いて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で29時間反応させた。反応溶液を再度、氷水で冷却した後、飽和炭酸水素ナトリウム9.45gを溶解させた飽和水溶液を添加してTFMS及び系内の塩酸を中和した。反応物を分液ロートに移し、塩化メチレン層を分離した。更に水層を塩化メチレンで3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を3μmのテフロン(登録商標)フィルターで濾過した。引き続き、本濾液をシリカゲルカラムに通して不純物を除去、脱色した後、1.5Lのメタノールで再沈殿させた。更に、ポリマーを再沈殿により精製し、40℃で減圧乾燥して4.9gの樹脂11を得た。
As in Example 9, it was confirmed that the organic field effect transistor device had excellent performance.
(Example 11)
In a nitrogen box, a 300 mL Schlenk tube was charged with 3.0 g of raw material polymer B, 150 mL of dehydrated methylene chloride, and 6.3 g of cinnamic acid chloride, and dissolved at room temperature with stirring. Next, the Schlenk tube was cooled to 0 ° C. or lower, and 8.44 g of TFMS was added dropwise using a syringe. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 29 hours. After the reaction solution was cooled again with ice water, a saturated aqueous solution in which 9.45 g of saturated sodium bicarbonate was dissolved was added to neutralize TFMS and hydrochloric acid in the system. The reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 μm Teflon (registered trademark) filter. Subsequently, the filtrate was passed through a silica gel column to remove impurities and decolorized, and then reprecipitated with 1.5 L of methanol. Furthermore, the polymer was purified by reprecipitation and dried under reduced pressure at 40 ° C. to obtain 4.9 g of resin 11.
 H-NMRによる分析の結果、得られた樹脂11(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ17モル%、及び39モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 11 (the following formula) has 17 mol% and 39 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 H-NMR(400MHz,CDCl):δ7.59(brs,-CH=CH-Ph), 7.36(brs,芳香族),6.99(brs,芳香族),6.45(brs,-CH=CH-Ph),1.90~1.00(bm,-CH-),0.84(bm,-CH
<親撥パターニング性能の評価>
 実施例9と同様の手法により評価し、5~50ミクロンのライン・アンド・スペースのパターン全てで良好な描画ができており、5ミクロンの解像度があることを確認した。得られた膜の表面粗さは0.3nmであり平坦性にも優れていた。
<有機TFT素子の作成及び評価>
実施例9と同様の手法によりトップゲート・ボトムコンタクト(TGBC)型の有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタの評価結果を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.59 (brs, —CH═CH—Ph), 7.36 (brs, aromatic), 6.99 (brs, aromatic), 6.45 (brs) , —CH═CH—Ph), 1.90 to 1.00 (bm, —CH 2 —), 0.84 (bm, —CH 3 )
<Evaluation of repellent patterning performance>
Evaluation was made in the same manner as in Example 9, and it was confirmed that good drawing was achieved with all the lines and spaces of 5 to 50 microns, and that there was a resolution of 5 microns. The obtained film had a surface roughness of 0.3 nm and excellent flatness.
<Creation and evaluation of organic TFT element>
A top gate / bottom contact (TGBC) type organic field effect transistor device was fabricated in the same manner as in Example 9. The evaluation results of the produced organic field effect transistor are shown in Table 1.
 実施例9と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例12)
 窒素ボックス内で300mLのシュレンク管に原料ポリマーA10g、脱水した塩化メチレン260mL、桂皮酸クロリド19.2gを仕込み、室温、撹拌下で溶解させた。上部に3方コックを取り付け、下部を密閉した100mLの滴下ロートにTFMS26gを仕込んだ。上記のシュレンク管と滴下ロートを窒素ボックスから取り出し、窒素シールした状態でシュレンク管と滴下ロートを連結させた。シュレンク管への窒素フローを停止し、滴下ロート上部の3方コックを塩化カルシウム管に連結後、窒素フローを停止した。次に、低温恒温槽中で冷却し、マグネチックスターラーで撹拌下、滴下ロートからTFMSを10分かけて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、1℃で55時間反応させた。飽和炭酸水素ナトリウム36gを溶解させた飽和水溶液360mLの内、100mLをゆっくりと滴下した。残りの飽和炭酸水素ナトリウム溶液を1Lのビーカーに入れ、氷100gを添加して冷却した。このビーカーに反応溶液を注いで、2時間撹拌した後、分液ロートに移し、塩化メチレン層を分離した。更に水層を塩化メチレンで3回洗浄、分液してポリマーの塩化メチレン溶液を得た。このポリマー溶液を3Lのメタノールで再沈殿させる操作を2回行い、濾別後、50℃で減圧乾燥して17.9gの樹脂12を得た。
As in Example 9, it was confirmed that the organic field effect transistor device had excellent performance.
(Example 12)
In a nitrogen box, a 300 mL Schlenk tube was charged with 10 g of the starting polymer A, 260 mL of dehydrated methylene chloride, and 19.2 g of cinnamic acid chloride, and dissolved under stirring at room temperature. 26 g of TFMS was charged into a 100 mL dropping funnel with a three-way cock attached to the top and the bottom sealed. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed. The nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped. Next, it cooled in the low temperature thermostat, and TFMS was dripped over 10 minutes from the dropping funnel, stirring with a magnetic stirrer. The color of the polymer solution colored reddish purple as it was dropped. After completion of dropping, the reaction was carried out at 1 ° C. for 55 hours. Of 360 mL of saturated aqueous solution in which 36 g of saturated sodium bicarbonate was dissolved, 100 mL was slowly added dropwise. The remaining saturated sodium bicarbonate solution was placed in a 1 L beaker, and 100 g of ice was added and cooled. The reaction solution was poured into this beaker and stirred for 2 hours, and then transferred to a separatory funnel to separate the methylene chloride layer. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. The polymer solution was reprecipitated with 3 L of methanol twice, filtered and dried under reduced pressure at 50 ° C. to obtain 17.9 g of resin 12.
 H-NMRによる分析の結果、得られた樹脂12(下記式)は式(1)、式(2)及び式(18)で表される構造単位をそれぞれ36.5モル%、62.5モル%、及び1.0モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 12 (the following formula) was obtained by converting the structural units represented by the formula (1), the formula (2) and the formula (18) to 36.5 mol% and 62.5 It was confirmed that they had mol% and 1.0 mol%.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 H-NMR(400MHz,CDCl):δ7.62(brs,-CH=CH-Ph),7.39~6.51(m,芳香族,-CH=CH-Ph),δ4.5(brs, -C(O)CH-CH(Ph)-),δ2.57(brs,-C(O)CH-CH(Ph)-),δ3.14(brs, ―C(O)CH-CH(Ph)-),2.04(brs,-CH―CH-),1.78~1.40(bm,-CH-)
 得られた樹脂12を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (brs, —CH═CH—Ph), 7.39 to 6.51 (m, aromatic, —CH═CH—Ph), δ4.5 ( brs, —C (O) CH 2 —CH (Ph) —), δ2.57 (brs, —C (O) CH 2 —CH (Ph) —), δ3.14 (brs, —C (O) CH 2 —CH (Ph) —), 2.04 (brs, —CH 2 —CH—), 1.78 to 1.40 (bm, —CH 2 —)
An insulating film was formed using the obtained resin 12 using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
(実施例13)
 窒素ボックス内で300mLのシュレンク管に原料ポリマーB1.1g、脱水した塩化メチレン30mL、3-(パーフルオロヘキシル)プロピオニルクロリド1.3gを仕込み、室温、撹拌下で溶解させた。次に、シュレンク管を氷水で冷却し、窒素フロー下でTFMS1.2gを注射器を用いて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で48時間反応させた。反応液を再度、氷水で冷却した後、炭酸水素ナトリウム1.2gを溶解させた水溶液を滴下してTFMSおよび系内の塩酸を中和した。反応液を分液ろうとに移し、水相を分離した。更に塩化メチレン相を水で3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を300mLのメタノールで再沈殿させた。更に、ポリマーを2回再沈殿により精製し、40℃で減圧乾燥して1.7gの樹脂13-a(下記式)を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
(Example 13)
In a nitrogen box, a 300 mL Schlenk tube was charged with 1.1 g of the raw material polymer B, 30 mL of dehydrated methylene chloride and 1.3 g of 3- (perfluorohexyl) propionyl chloride, and dissolved at room temperature with stirring. Next, the Schlenk tube was cooled with ice water, and 1.2 g of TFMS was added dropwise using a syringe under a nitrogen flow. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed for 48 hours at room temperature. The reaction solution was cooled again with ice water, and then an aqueous solution in which 1.2 g of sodium bicarbonate was dissolved was added dropwise to neutralize TFMS and hydrochloric acid in the system. The reaction solution was transferred to a separatory funnel and the aqueous phase was separated. Further, the methylene chloride phase was washed with water three times and separated to obtain a methylene chloride solution of the polymer. This solution was reprecipitated with 300 mL of methanol. Further, the polymer was purified by reprecipitation twice and dried under reduced pressure at 40 ° C. to obtain 1.7 g of resin 13-a (the following formula).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 さらに、窒素ボックス内で100mLのシュレンク管に得られた樹脂13-a1.0g、脱水した塩化メチレン40mL、桂皮酸クロリド0.59gを仕込み、室温、撹拌下で溶解させた。次に、シュレンク管を氷水で冷却し、窒素フロー下でTFMS1.3gを注射器を用いて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で48時間反応させた。反応液を再度、氷水で冷却した後、炭酸水素ナトリウム1.2gを溶解させた水溶液を滴下してTFMSおよび系内の塩酸を中和した。反応液を分液ろうとに移し、水相を分離した。更に塩化メチレン相を水で3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を350mLのメタノールで再沈殿させた。更に、ポリマーを2回再沈殿により精製し、40℃で減圧乾燥して1.1gの樹脂13を得た。 Further, 1.0 g of the resin 13-a obtained in a 100 mL Schlenk tube, 40 mL of dehydrated methylene chloride, and 0.59 g of cinnamic acid chloride were charged in a nitrogen box and dissolved at room temperature with stirring. Next, the Schlenk tube was cooled with ice water, and 1.3 g of TFMS was added dropwise using a syringe under a nitrogen flow. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice water bath was removed and the reaction was allowed to proceed for 48 hours at room temperature. The reaction solution was cooled again with ice water, and then an aqueous solution in which 1.2 g of sodium bicarbonate was dissolved was added dropwise to neutralize TFMS and hydrochloric acid in the system. The reaction solution was transferred to a separatory funnel and the aqueous phase was separated. Further, the methylene chloride phase was washed with water three times and separated to obtain a methylene chloride solution of the polymer. This solution was reprecipitated with 350 mL of methanol. Furthermore, the polymer was purified by reprecipitation twice and dried under reduced pressure at 40 ° C. to obtain 1.1 g of resin 13.
 H-NMRによる分析の結果、得られた樹脂13(下記式)は式(1)、式(2)、および式(19)で表される構造単位をそれぞれ3モル%、29モル%、および24モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 13 (the following formula) was obtained by adding 3 mol%, 29 mol%, and 29 mol% of structural units represented by formula (1), formula (2), and formula (19), respectively. And 24 mol%.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 H-NMR(400MHz,CDCl):δ7.62(brs,芳香族,-CH=CH-Ph),7.39~6.51(m,芳香族,-CH=CH-Ph),3.12(brs,-CH―C(=O)―),2.52(brs,-CF-CH―), 1.90~1.00(bm,-CH-),0.84(bm,-CH
 得られた樹脂13を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (brs, aromatic, —CH═CH—Ph), 7.39 to 6.51 (m, aromatic, —CH═CH—Ph), 3 .12 (brs, —CH 2 —C (═O) —), 2.52 (brs, —CF 2 —CH 2 —), 1.90 to 1.00 (bm, —CH 2 —), 0. 84 (bm, —CH 3 )
An insulating film was formed using the obtained resin 13 using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1と同様に有機電界効果トランジスタデバイスとして優れた性能を有することが確認された。
<親撥パターニング性能の評価>
 実施例9と同様の手法により評価し、5~50ミクロンのライン・アンド・スペースのパターン全てで良好な描画ができており、5ミクロンの解像度があることを確認した。得られた膜の表面粗さは0.3nmであり平坦性にも優れていた。
(比較例1)
 窒素ボックス内で300mLのシュレンク管に原料ポリマーA5.0g、脱水した塩化メチレン150mL、無水塩化アルミニウム3.9gを仕込み、室温、撹拌下で溶解させた。上部に3方コックを取り付け、下部を密閉した30mLの滴下ロートに桂皮酸クロリド4.0gの塩化メチレン溶液30mLを仕込んだ。上記のシュレンク管と滴下ロートを窒素ボックスから取り出し、窒素シールした状態でシュレンク管と滴下ロートを連結させた。シュレンク管への窒素フローを停止し、滴下ロート上部の3方コックを塩化カルシウム管に連結後、窒素フローを停止した。次に、シュレンク管を氷水で冷却し、滴下ロートから桂皮酸クロリドを10分かけて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で28時間反応させた。反応溶液を再度、氷水で冷却した後、35%塩酸水溶液20mLを滴下した。この状態で5時間撹拌後、反応溶液を分液ロートに移し、塩化メチレン層を分離した。この塩化メチレン層を4回繰り返し水洗した。水層は塩化メチレンで3回抽出し、分液した。得られた塩化メチレン層を合わせて3μmのテフロン(登録商標)フィルターで濾過後、1.5Lのメタノールで再沈殿させ、ポリマーを濾過により単離する操作を2回行った後、50℃で減圧乾燥して5.9gの樹脂14を得た。
As in Example 1, it was confirmed that the organic field effect transistor device had excellent performance.
<Evaluation of repellent patterning performance>
Evaluation was made in the same manner as in Example 9, and it was confirmed that good drawing was achieved with all the lines and spaces of 5 to 50 microns, and that there was a resolution of 5 microns. The obtained film had a surface roughness of 0.3 nm and excellent flatness.
(Comparative Example 1)
In a nitrogen box, a 300 mL Schlenk tube was charged with 5.0 g of the starting polymer A, 150 mL of dehydrated methylene chloride, and 3.9 g of anhydrous aluminum chloride, and dissolved at room temperature with stirring. A 30-mL dropping funnel with a three-way cock attached to the upper part and a sealed lower part was charged with 30 mL of methylene chloride solution of 4.0 g of cinnamic acid chloride. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed. The nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped. Next, the Schlenk tube was cooled with ice water, and cinnamic acid chloride was dropped from the dropping funnel over 10 minutes. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 28 hours. The reaction solution was cooled again with ice water, and 20 mL of 35% aqueous hydrochloric acid was added dropwise. After stirring in this state for 5 hours, the reaction solution was transferred to a separatory funnel, and the methylene chloride layer was separated. This methylene chloride layer was washed with water repeatedly 4 times. The aqueous layer was extracted three times with methylene chloride and separated. The obtained methylene chloride layers were combined, filtered through a 3 μm Teflon (registered trademark) filter, reprecipitated with 1.5 L of methanol, and the polymer was isolated by filtration twice. Drying gave 5.9 g of resin 14.
 H-NMRによる分析の結果、得られた樹脂14(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ86モル%、及び14モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 14 (the following formula) has 86 mol% and 14 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 H-NMR(400MHz,CDCl):δ7.62(brs,-CH=CH-Ph),7.39~6.51(m,芳香族,-CH=CH-Ph),2.04(brs, -CH―CH-),1.78~1.40(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (brs, —CH═CH—Ph), 7.39 to 6.51 (m, aromatic, —CH═CH—Ph), 2.04 ( brs, —CH 2 —CH—), 1.78 to 1.40 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。
(比較例2)
 窒素ボックス内で300mLのシュレンク管に原料ポリマーA5.0g、脱水した塩化メチレン150mL、無水塩化アルミニウム1.2gを仕込んだ。上部に3方コックを取り付け、下部を密閉した30mLの滴下ロートに桂皮酸クロリド1.3gを塩化メチレン20mLに溶解させた溶液を仕込んだ。上記のシュレンク管と滴下ロートを窒素ボックスから取り出し、窒素シールした状態でシュレンク管と滴下ロートを連結させた。シュレンク管への窒素フローを停止し、滴下ロート上部の3方コックを塩化カルシウム管に連結後、窒素フローを停止した。次に、シュレンク管を氷水で冷却し、滴下ロートから桂皮酸クロリドを10分かけて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で28時間反応させた。反応溶液を再度、氷水で冷却した後、飽和炭酸水素ナトリウム2.1gを溶解させた飽和水溶液を添加して系内の塩酸を中和した。反応物を分液ロートに移し、塩化メチレン層を分離した。更に水層を塩化メチレンで3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を3μmのテフロン(登録商標)フィルターで濾過後、1.5Lのメタノールで再沈殿させ、ポリマーを濾過により単離する操作を2回行った後、50℃で減圧乾燥して4.7gの樹脂15を得た。
Compared with Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
(Comparative Example 2)
In a nitrogen box, a 300 mL Schlenk tube was charged with 5.0 g of raw material polymer A, 150 mL of dehydrated methylene chloride, and 1.2 g of anhydrous aluminum chloride. A three-way cock was attached to the upper part, and a solution of 1.3 g of cinnamic acid chloride dissolved in 20 mL of methylene chloride was charged into a 30 mL dropping funnel with the lower part sealed. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed. The nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped. Next, the Schlenk tube was cooled with ice water, and cinnamic acid chloride was dropped from the dropping funnel over 10 minutes. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 28 hours. The reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 2.1 g of saturated sodium bicarbonate was dissolved was added to neutralize hydrochloric acid in the system. The reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 μm Teflon (registered trademark) filter, reprecipitated with 1.5 L of methanol, and the polymer was isolated by filtration twice, followed by drying at 50 ° C. under reduced pressure to 4.7 g Of resin 15 was obtained.
 H-NMRによる分析の結果、得られた樹脂15(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ92モル%、及び8モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 15 (the following formula) has 92 mol% and 8 mol% of the structural units represented by the formulas (1) and (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 H-NMR(400MHz,CDCl):δ7.62(brs,-CH=CH-Ph),7.39~6.51(m,芳香族,-CH=CH-Ph),2.04(brs, -CH―CH-),1.78~1.40(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (brs, —CH═CH—Ph), 7.39 to 6.51 (m, aromatic, —CH═CH—Ph), 2.04 ( brs, —CH 2 —CH—), 1.78 to 1.40 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。
(比較例3)
 窒素ボックス内で300mLのシュレンク管に原料ポリマーA5g、脱水した塩化メチレン150mL、無水塩化アルミニウム2.2gを仕込んだ。上部に3方コックを取り付け、下部を密閉した20mLの滴下ロートに桂皮酸クロリド2.3gを塩化メチレン50mLに溶解させた溶液を仕込んだ。上記のシュレンク管と滴下ロートを窒素ボックスから取り出し、窒素シールした状態でシュレンク管と滴下ロートを連結させた。シュレンク管への窒素フローを停止し、滴下ロート上部の3方コックを塩化カルシウム管に連結後、窒素フローを停止した。次に、シュレンク管を氷水で冷却し、滴下ロートから桂皮酸クロリドを9分かけて滴下した。滴下とともにポリマー溶液の色は赤紫色に着色した。滴下終了後、氷水浴を除き、室温で28時間反応させた。反応溶液を再度、氷水で冷却した後、飽和炭酸水素ナトリウム3.9gを溶解させた飽和水溶液を添加して系内の塩酸を中和した。反応物を分液ロートに移し、塩化メチレン層を分離した。更に水層を塩化メチレンで3回洗浄、分液してポリマーの塩化メチレン溶液を得た。この溶液を3μmのテフロン(登録商標)フィルターで濾過後、1.5Lのメタノールで再沈殿させ、ポリマーを濾過により単離する操作を2回行った後、50℃で減圧乾燥して4.9gの樹脂16を得た。
Compared with Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
(Comparative Example 3)
In a nitrogen box, a 300 mL Schlenk tube was charged with 5 g of the raw material polymer A, 150 mL of dehydrated methylene chloride, and 2.2 g of anhydrous aluminum chloride. A solution in which 2.3 g of cinnamic acid chloride was dissolved in 50 mL of methylene chloride was charged into a 20 mL dropping funnel with a three-way cock attached to the top and the bottom sealed. The Schlenk tube and the dropping funnel were taken out from the nitrogen box, and the Schlenk tube and the dropping funnel were connected with nitrogen sealed. The nitrogen flow to the Schlenk tube was stopped, the three-way cock at the top of the dropping funnel was connected to the calcium chloride tube, and then the nitrogen flow was stopped. Next, the Schlenk tube was cooled with ice water, and cinnamic acid chloride was dropped from the dropping funnel over 9 minutes. The color of the polymer solution colored reddish purple as it was dropped. After completion of the dropwise addition, the ice-water bath was removed and the reaction was allowed to proceed at room temperature for 28 hours. The reaction solution was cooled again with ice water, and then a saturated aqueous solution in which 3.9 g of saturated sodium bicarbonate was dissolved was added to neutralize hydrochloric acid in the system. The reaction was transferred to a separatory funnel and the methylene chloride layer was separated. Further, the aqueous layer was washed with methylene chloride three times and separated to obtain a methylene chloride solution of the polymer. This solution was filtered through a 3 μm Teflon (registered trademark) filter, reprecipitated with 1.5 L of methanol, and the polymer was isolated by filtration twice, followed by drying at 50 ° C. under reduced pressure to obtain 4.9 g. Of resin 16 was obtained.
 H-NMRによる分析の結果、得られた樹脂16(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ87モル%、及び13モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 16 (the following formula) has 87 mol% and 13 mol% of the structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 H-NMR(400MHz,CDCl):δ7.62(brs,-CH=CH-Ph),7.39~6.51(m,芳香族,-CH=CH-Ph),2.04(brs, -CH―CH-),1.78~1.40(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (brs, —CH═CH—Ph), 7.39 to 6.51 (m, aromatic, —CH═CH—Ph), 2.04 ( brs, —CH 2 —CH—), 1.78 to 1.40 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。
(比較例4)
 桂皮酸クロリドをクマリン-6-カルボン酸クロリドに変えた以外は、比較例1と同様の手法で、樹脂17を得た。以下にH-NMR(400MHz,CDCl)による分析結果、及びポリマーの構造式を示す。
Compared with Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
(Comparative Example 4)
Resin 17 was obtained in the same manner as in Comparative Example 1 except that cinnamic acid chloride was changed to coumarin-6-carboxylic acid chloride. The analysis results by 1 H-NMR (400 MHz, CDCl 3 ) and the structural formula of the polymer are shown below.
 H-NMRによる分析の結果、得られた樹脂17(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ94モル%、及び6モル%有していることを確認した。 As a result of analysis by 1 H-NMR, it was found that the obtained resin 17 (the following formula) had 94 mol% and 6 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 H-NMR(400MHz,CDCl):δ7.82(brs,-CH=CH-C(O)-),7.70~6.60(m,芳香族,-CH=CH-Ph),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.82 (brs, —CH═CH—C (O) —), 7.70 to 6.60 (m, aromatic, —CH═CH—Ph), 2.15 (brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。
(比較例5)
 桂皮酸クロリドをクマリン-6-カルボン酸クロリドに変えた以外は、比較例1と同様の手法で、樹脂18を得た。
Compared with Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
(Comparative Example 5)
Resin 18 was obtained in the same manner as in Comparative Example 1 except that cinnamic acid chloride was changed to coumarin-6-carboxylic acid chloride.
 H-NMRによる分析の結果、得られた樹脂18(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ88モル%、及び12モル%有していることを確認した。 As a result of analysis by 1 H-NMR, it was confirmed that the obtained resin 18 (the following formula) had 88 mol% and 12 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 H-NMR(400MHz,CDCl):δ7.82(brs,-CH=CH-C(O)-),7.70~6.60(m,芳香族,-CH=CH-Ph),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.82 (brs, —CH═CH—C (O) —), 7.70 to 6.60 (m, aromatic, —CH═CH—Ph), 2.15 (brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。
(比較例6)
 桂皮酸クロリドをピリジニルエテニル安息香酸クロリドに変えた以外は、比較例1と同様の手法で、樹脂19を得た。
Compared with Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
(Comparative Example 6)
Resin 19 was obtained in the same manner as in Comparative Example 1, except that cinnamic acid chloride was changed to pyridinylethenylbenzoic acid chloride.
 H-NMRによる分析の結果、得られた樹脂19(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ94モル%、及び6モル%有していることを確認した。 As a result of analysis by 1 H-NMR, it was found that the obtained resin 19 (the following formula) had 94 mol% and 6 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 H-NMR(400MHz,CDCl):δ7.80(brs,Py-CH=CH-),7.76~6.60(m,芳香族,-CH=CH-Ph),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.80 (brs, Py—CH═CH—), 7.76 to 6.60 (m, aromatic, —CH═CH—Ph), 2.15 ( brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。
(比較例7)
 桂皮酸クロリドをピリジニルエテニル安息香酸クロリドに変えた以外は、比較例1と同様の手法で、樹脂20を得た。
Compared with Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
(Comparative Example 7)
Resin 20 was obtained in the same manner as in Comparative Example 1 except that cinnamic acid chloride was changed to pyridinylethenylbenzoic acid chloride.
 H-NMRによる分析の結果、得られた樹脂20(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ86モル%、及び14モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 20 (the following formula) has 86 mol% and 14 mol% of structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 H-NMR(400MHz,CDCl):δ7.80(brs,Py-CH=CH-),7.76~6.60(m,芳香族,-CH=CH-Ph),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.80 (brs, Py—CH═CH—), 7.76 to 6.60 (m, aromatic, —CH═CH—Ph), 2.15 ( brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。
(比較例8)
 桂皮酸クロリドをフェニルエテニル安息香酸クロリドに変えた以外は、比較例1と同様の手法で、樹脂21を得た。
Compared with Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
(Comparative Example 8)
Resin 21 was obtained in the same manner as in Comparative Example 1 except that cinnamic acid chloride was changed to phenylethenylbenzoic acid chloride.
 H-NMRによる分析の結果、得られた樹脂21(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ95モル%、及び5モル%有していることを確認した。 As a result of analysis by 1 H-NMR, it was found that the obtained resin 21 (the following formula) had 95 mol% and 5 mol% of the structural units represented by formula (1) and formula (2), respectively. confirmed.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 H-NMR(400MHz,CDCl):δ7.67(brs,-CH=CH-),7.10~6.32(m,芳香族,-CH=CH-),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.67 (brs, —CH═CH—), 7.10 to 6.32 (m, aromatic, —CH═CH—), 2.15 (brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。
(比較例9)
 桂皮酸クロリドをフェニルエテニル安息香酸クロリドに変えた以外は、比較例1と同様の手法で、樹脂22を得た。
Compared with Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
(Comparative Example 9)
Resin 22 was obtained in the same manner as in Comparative Example 1 except that cinnamic acid chloride was changed to phenylethenylbenzoic acid chloride.
 H-NMRによる分析の結果、得られた、樹脂22(下記式)は式(1)及び式(2)で表される構造単位をそれぞれ85モル%、及び15モル%有していることを確認した。 As a result of analysis by 1 H-NMR, the obtained resin 22 (the following formula) has 85 mol% and 15 mol% of the structural units represented by the formulas (1) and (2), respectively. It was confirmed.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 H-NMR(400MHz,CDCl):δ7.67(brs,-CH=CH-),7.10~6.32(m,芳香族,-CH=CH-),2.15(brs, -CH―CH-),1.90~1.48(bm,-CH-)
 得られた樹脂を用いて実施例1と同様の手法を用いて絶縁膜を形成後、有機電界効果トランジスタデバイスを作製した。作製した有機電界効果トランジスタデバイスの評価結果等を表1に合わせて示す。
1 H-NMR (400 MHz, CDCl 3 ): δ 7.67 (brs, —CH═CH—), 7.10 to 6.32 (m, aromatic, —CH═CH—), 2.15 (brs, —CH 2 —CH—), 1.90 to 1.48 (bm, —CH 2 —)
Using the obtained resin, an insulating film was formed using the same method as in Example 1, and then an organic field effect transistor device was produced. The evaluation results and the like of the produced organic field effect transistor device are shown together in Table 1.
 実施例1~8と比較して架橋時間、耐溶剤性(耐クラック性)、及び絶縁破壊強度で劣っていることが確認された。 Compared to Examples 1 to 8, it was confirmed that the crosslinking time, solvent resistance (crack resistance), and dielectric breakdown strength were inferior.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2017年3月16日に出願された日本特許出願2017-051670号、2017年10月13日に出願された日本特許出願2017-199489号、2018年1月26日に出願された日本特許出願2018-011579号及び2018年1月26日に出願された日本特許出願2018-011580号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Japanese Patent Application No. 2017-051670 filed on March 16, 2017, Japanese Patent Application No. 2017-194489 filed on October 13, 2017, Japanese Patent Application filed on January 26, 2018 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2018-011580 and Japanese Patent Application No. 2018-011580 filed on Jan. 26, 2018 are incorporated herein by reference. It is incorporated as a disclosure.

Claims (5)

  1. 式(1)及び式(2)で表される反復単位を含む樹脂であって、式(1)及び式(2)の反復単位の総数に対して式(2)の反復単位を20モル%以上含む樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素またはC1~C6のアルキル基を、S1は-O-又は-C(O)-を、pは0又は1を、AはC6~C19のアリール基を、Yはハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1~C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を表す。また、kは0~(s-1)の整数を表す。ここで、sはA1を構成する炭素数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    {(式(2)中、Rは水素またはC1~C6のアルキル基を、Sは-O-又は-C(O)-を、qは0又は1を、AはC6~C19のアリール基を、Yは式(1)で定義した置換基を、jは0~(r-2)の整数を、mは1~(r-j-1)の整数を表す。ここで、rはAを構成する炭素数を表す。また、Zは式(A)~(D)から選ばれる少なくとも1つの有機基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (式(A)~(D)中、R及びRはそれぞれ独立して水素、C1~C6のアルキル基、アリール基、またはカルボキシアルキル基を示し、R~R29はそれぞれ独立して水素、ハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1~C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を表す。)}
    A resin comprising repeating units represented by formula (1) and formula (2), wherein the repeating unit of formula (2) is 20 mol% based on the total number of repeating units of formula (1) and formula (2). Resin containing above.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 represents hydrogen or a C1-C6 alkyl group, S 1 represents —O— or —C (O) —, p represents 0 or 1, and A 1 represents a C6-C19 aryl. Y represents a halogen, a cyano group, a carboxyalkyl group, an alkyl ether group, an aryl ether group, a C1-C18 alkyl group, a fluoroalkyl group, or a cycloalkyl group, and k represents 0 to (s-1 Where s represents the number of carbon atoms constituting A 1. )
    Figure JPOXMLDOC01-appb-C000002
    {(In the formula (2), R 2 represents hydrogen or a C1-C6 alkyl group, S 2 represents —O— or —C (O) —, q represents 0 or 1, and A 2 represents C6 to C19. Y represents an aryl group, Y represents a substituent defined in formula (1), j represents an integer of 0 to (r-2), and m represents an integer of 1 to (rj-1), where r Represents the number of carbon atoms constituting A 2. Z represents at least one organic group selected from formulas (A) to (D).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (In the formulas (A) to (D), R 3 and R 4 each independently represent hydrogen, a C1-C6 alkyl group, an aryl group, or a carboxyalkyl group, and R 5 to R 29 each independently represent Represents hydrogen, halogen, cyano group, carboxyalkyl group, alkyl ether group, aryl ether group, C1-C18 alkyl group, fluoroalkyl group, or cycloalkyl group)}
  2. 請求項1に記載の樹脂の架橋物を含有することを特徴とする絶縁膜。 An insulating film comprising the cross-linked product of the resin according to claim 1.
  3. 基板上に、ソース電極及びドレイン電極を付設した有機半導体層とゲート電極とをゲート絶縁層を介して積層した有機電界効果トランジスタデバイスにおいて、該ゲート絶縁層が請求項2に記載の絶縁膜であることを特徴とする有機電界効果トランジスタデバイス。 An organic field effect transistor device in which an organic semiconductor layer provided with a source electrode and a drain electrode and a gate electrode are stacked on a substrate via a gate insulating layer, and the gate insulating layer is the insulating film according to claim 2. An organic field effect transistor device.
  4. 請求項1に記載の樹脂および/または請求項1に記載の樹脂の架橋物を含有することを特徴とする平坦化膜。 A planarization film comprising the resin according to claim 1 and / or a crosslinked product of the resin according to claim 1.
  5. 請求項1に記載の樹脂および/または請求項1に記載の樹脂の架橋物を含有することを特徴とする親撥パターニング膜。 A hydrophilic / repellent patterning film comprising the resin according to claim 1 and / or a crosslinked product of the resin according to claim 1.
PCT/JP2018/009167 2017-03-16 2018-03-09 Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same WO2018168676A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/494,107 US20210135115A1 (en) 2017-03-16 2018-03-09 Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same
EP18767508.7A EP3597673B1 (en) 2017-03-16 2018-03-09 Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same
CN201880017891.8A CN110418808B (en) 2017-03-16 2018-03-09 Photocrosslinkable polymer, insulating film, planarizing film, lyophilic-lyophilic patterned film, and organic field effect transistor device comprising same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-051670 2017-03-16
JP2017051670 2017-03-16
JP2017199489A JP6953986B2 (en) 2017-10-13 2017-10-13 Photocrosslinkable polymers, insulating films and organic field effect transistor devices containing them
JP2017-199489 2017-10-13
JP2018011579A JP6992545B2 (en) 2018-01-26 2018-01-26 Photocrosslinkable polymer, insulating film, repellent patterning film and organic transistor containing them
JP2018011580A JP6992546B2 (en) 2017-03-16 2018-01-26 Photocrosslinkable polymers, insulating films, flattening films, repellent patterning films and organic field effect transistor devices containing them
JP2018-011579 2018-01-26
JP2018-011580 2018-01-26

Publications (1)

Publication Number Publication Date
WO2018168676A1 true WO2018168676A1 (en) 2018-09-20

Family

ID=63523122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009167 WO2018168676A1 (en) 2017-03-16 2018-03-09 Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same

Country Status (1)

Country Link
WO (1) WO2018168676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050298A (en) * 2019-09-26 2021-04-01 東ソー株式会社 Resin composition

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566302A (en) 1947-08-28 1951-09-04 Eastman Kodak Co Copolymers of cinnamoyl-vinyl aromatic hydrocarbons
US2708665A (en) 1951-09-13 1955-05-17 Eastman Kodak Co Preparation of vinyl benzal acetophenone polymers
JPS5065301A (en) * 1973-10-12 1975-06-03
JPS5148624B1 (en) 1971-07-20 1976-12-22
JPS6023403A (en) * 1983-07-18 1985-02-06 Agency Of Ind Science & Technol Photosensitive high polymer compound and its preparation
JPH1152134A (en) * 1997-06-06 1999-02-26 Sumitomo Chem Co Ltd Production of phase difference plate
JP2005093921A (en) * 2003-09-19 2005-04-07 Canon Inc Field effect organic transistor and manufacturing method thereof
CN103183634A (en) 2011-12-28 2013-07-03 天津市国际生物医药联合研究院有限公司 3-(2-isobutyl-5-(4-isobutylpiperidine-1-carbonyl)phenyl)propionic acid and preparation method thereof
JP2015224238A (en) 2014-05-29 2015-12-14 東ソー株式会社 Method for producing dithienobenzodithiophene derivative
JP5960202B2 (en) 2008-11-24 2016-08-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Photocurable polymeric dielectric, method for producing the same, and method for using the same
JP2017051670A (en) 2012-01-20 2017-03-16 キヤノン株式会社 Image processing device and image processing method
JP2017199489A (en) 2016-04-26 2017-11-02 三菱マテリアル株式会社 Surge protection element
JP2018011579A (en) 2016-07-22 2018-01-25 ヤンマー株式会社 Harvester
JP2018011580A (en) 2016-07-22 2018-01-25 株式会社ハルインテリアディレクションズ Plant pot cover
JP2018018928A (en) * 2016-07-27 2018-02-01 東ソー株式会社 Insulating film and organic field-effect transistor device including the same
JP2018070805A (en) * 2016-10-31 2018-05-10 東ソー株式会社 Polymer, and insulator film and organic field effect transistor device comprising the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566302A (en) 1947-08-28 1951-09-04 Eastman Kodak Co Copolymers of cinnamoyl-vinyl aromatic hydrocarbons
US2708665A (en) 1951-09-13 1955-05-17 Eastman Kodak Co Preparation of vinyl benzal acetophenone polymers
JPS5148624B1 (en) 1971-07-20 1976-12-22
JPS5065301A (en) * 1973-10-12 1975-06-03
JPS6023403A (en) * 1983-07-18 1985-02-06 Agency Of Ind Science & Technol Photosensitive high polymer compound and its preparation
JPH1152134A (en) * 1997-06-06 1999-02-26 Sumitomo Chem Co Ltd Production of phase difference plate
JP2005093921A (en) * 2003-09-19 2005-04-07 Canon Inc Field effect organic transistor and manufacturing method thereof
JP5960202B2 (en) 2008-11-24 2016-08-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Photocurable polymeric dielectric, method for producing the same, and method for using the same
CN103183634A (en) 2011-12-28 2013-07-03 天津市国际生物医药联合研究院有限公司 3-(2-isobutyl-5-(4-isobutylpiperidine-1-carbonyl)phenyl)propionic acid and preparation method thereof
JP2017051670A (en) 2012-01-20 2017-03-16 キヤノン株式会社 Image processing device and image processing method
JP2015224238A (en) 2014-05-29 2015-12-14 東ソー株式会社 Method for producing dithienobenzodithiophene derivative
JP2017199489A (en) 2016-04-26 2017-11-02 三菱マテリアル株式会社 Surge protection element
JP2018011579A (en) 2016-07-22 2018-01-25 ヤンマー株式会社 Harvester
JP2018011580A (en) 2016-07-22 2018-01-25 株式会社ハルインテリアディレクションズ Plant pot cover
JP2018018928A (en) * 2016-07-27 2018-02-01 東ソー株式会社 Insulating film and organic field-effect transistor device including the same
JP2018070805A (en) * 2016-10-31 2018-05-10 東ソー株式会社 Polymer, and insulator film and organic field effect transistor device comprising the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, vol. 92, 2008, pages 143306
APPLIED PHYSICS LETTERS, vol. 95, 2009, pages 073302
JOURNAL FUR PRACTITIONER TIPPER CHEZ CHEMIE, vol. 6, 1958, pages 72
JOURNAL OF FLUORINE CHEMISTRY, vol. 131, 2010, pages 621
See also references of EP3597673A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050298A (en) * 2019-09-26 2021-04-01 東ソー株式会社 Resin composition
JP7480484B2 (en) 2019-09-26 2024-05-10 東ソー株式会社 Resin composition

Similar Documents

Publication Publication Date Title
TWI571474B (en) Bank structures for organic electronic devices
JP6821991B2 (en) Insulating film and organic field effect transistor device containing it
JP6801374B2 (en) Polymers, insulating films and organic field effect transistor devices containing them
JP6992546B2 (en) Photocrosslinkable polymers, insulating films, flattening films, repellent patterning films and organic field effect transistor devices containing them
TW201335228A (en) Compound, polymer, curable composition, coating composition, article having cured film, article having pattern of lyophilic regions and lyophobic regions, and method for producing same
US11345778B2 (en) Organic dielectric materials and devices including them
EP3597673B1 (en) Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same
WO2018168676A1 (en) Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same
JP2019178191A (en) Fluorine resin
US20240182617A1 (en) Fluorine resin, composition, photocrosslinked product, and electronic device provided therewith
TWI573194B (en) Insulation film for semiconductor and organic film transister using the same
JP7480484B2 (en) Resin composition
JP6992545B2 (en) Photocrosslinkable polymer, insulating film, repellent patterning film and organic transistor containing them
WO2019181954A1 (en) Polymerizable compound, photocurable polymer, insulating film, protective film, and organic transistor device
JP6953986B2 (en) Photocrosslinkable polymers, insulating films and organic field effect transistor devices containing them
WO2024070915A1 (en) Resin, composition, photocrosslinked product, pattern, and electronic device comprising same
WO2023074606A1 (en) Resin, insulating film and organic field effect transistor comprising same
JP7371334B2 (en) Polymerizable compounds, photocrosslinkable polymers, insulating films, and organic transistor devices
WO2024189875A1 (en) Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor
WO2024189876A1 (en) Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor
JP7243180B2 (en) Photocrosslinkable polymer, insulating layer and organic transistor device containing the same
JP2021161378A (en) Fluorine-based resin, composition, light crosslinkable substance, and electronic device including the same
JP2022108813A (en) Composition for forming protective film
WO2017038948A1 (en) Organic thin-film transistor, organic thin-film transistor manufacturing method, organic semiconductor composition, organic semiconductor film, and organic semiconductor film manufacturing method
JP2020007433A (en) Polymer, insulation film, liquid-repellent film, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018767508

Country of ref document: EP

Effective date: 20191016