WO2019181683A1 - 熱電変換モジュール - Google Patents

熱電変換モジュール Download PDF

Info

Publication number
WO2019181683A1
WO2019181683A1 PCT/JP2019/010232 JP2019010232W WO2019181683A1 WO 2019181683 A1 WO2019181683 A1 WO 2019181683A1 JP 2019010232 W JP2019010232 W JP 2019010232W WO 2019181683 A1 WO2019181683 A1 WO 2019181683A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
fluid
region
conversion elements
conversion element
Prior art date
Application number
PCT/JP2019/010232
Other languages
English (en)
French (fr)
Inventor
輝之 池田
孝文 児島
隆敏 永野
拓哉 井手
村上 政明
沼田 富行
中嶋 英雄
Original Assignee
株式会社ロータスマテリアル研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ロータスマテリアル研究所 filed Critical 株式会社ロータスマテリアル研究所
Publication of WO2019181683A1 publication Critical patent/WO2019181683A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion module for efficiently converting thermal energy of a high-temperature fluid or a low-temperature fluid into electric energy, or conversely, converting electric energy into heat energy.
  • Thermoelectric conversion modules are devices that can extract electrical energy from thermal energy, and are attracting attention as playing a central role in maintaining the environment necessary for realizing a sustainable society.
  • Thermoelectric modules based on thermoelectric conversion utilize the Seebeck effect, which creates a potential difference between the high-temperature part and the low-temperature part by giving a temperature difference to different parts.
  • a structure in which a P-type thermoelectric conversion element and an N-type thermoelectric conversion element are sandwiched therebetween is widely known (for example, see Patent Document 1).
  • thermoelectric conversion modules that convert thermal energy into electrical energy and electrical energy into thermal energy, it is difficult to secure a large heat transfer area between each heat source and the module, ensuring thermal energy transfer efficiency There was a problem.
  • thermoelectric conversion efficiency it is necessary to give a large temperature difference to both ends of the thermoelectric element, but if the thermal conductivity of the thermoelectric conversion element is large, the temperature difference between both ends of the thermoelectric element is secured by conduction heat transfer Therefore, it is necessary to select a thermoelectric element having a small thermal conductivity.
  • the range of material selection is small, and there is a limit in terms of cost reduction.
  • a large number of thermoelectric conversion elements are used. However, if the thermal energy transfer efficiency is increased, an increase in the size of the apparatus can be avoided to secure a large heat transfer area. There was also a problem that it was not.
  • the present invention intends to provide a thermoelectric conversion module that can improve the efficiency of capturing heat energy, expand the range of material selection, and achieve compactness and low cost. It is in.
  • the present inventor has intensively studied to solve the above-mentioned problems, and first focused on heat transfer between the thermal fluid and the thermoelectric conversion element.
  • FIG. 7 shows the structure and schematic temperature distribution of a conventional thermoelectric conversion element.
  • 2A is a p-type thermoelectric conversion element
  • 2B is an n-type thermoelectric conversion element
  • 41 and 42 are electrode materials.
  • the heat flow of heat transfer between the fluid and the thermoelectric conversion element is expressed by the following equation (1).
  • h is a heat transfer coefficient
  • ⁇ T 2 is a temperature difference between the fluid and the thermoelectric conversion element.
  • thermoelectric conversion element The heat flow in the thermoelectric conversion element is expressed by the following equation (2) using the temperature difference ⁇ T 1 in the thermoelectric conversion element, the length d of the thermoelectric conversion element in the temperature gradient direction, and the thermal conductivity ⁇ .
  • equation (2) The heat flow in the thermoelectric conversion element is expressed by the following equation (2) using the temperature difference ⁇ T 1 in the thermoelectric conversion element, the length d of the thermoelectric conversion element in the temperature gradient direction, and the thermal conductivity ⁇ .
  • the value of ⁇ / hd can be estimated with respect to typical values of h and ⁇ as shown in Table 1.
  • the estimated value of ⁇ / hd cannot be said to be smaller than 1, and at present, the temperature difference between the low temperature fluid and the high temperature fluid cannot be used effectively.
  • thermoelectric conversion efficiency is a ratio of heat energy flowing in the thermoelectric conversion element (that is, within a temperature difference of ⁇ T 1 ) that can be extracted as electric energy.
  • the above-described equation (3) indicates how much of the temperature difference ⁇ T 0 between the thermal fluids can be effectively used as the temperature difference ⁇ T 1 in the thermoelectric conversion element.
  • thermoelectric conversion element In order to reduce the value of ⁇ / hd, it is conceivable to decrease the thermal conductivity ⁇ and increase the heat transfer coefficient h.
  • the thermal conductivity ⁇ is the material of the thermoelectric conversion element, and the heat transfer coefficient is the heat.
  • the selection range is narrow, and there is a limit to the improvement in the efficiency of capturing heat energy.
  • the present inventor has found that the thermal conductivity ⁇ and the thermal transfer coefficient h are largely dependent on the material of the thermoelectric conversion element between the thermal fluid and the thermoelectric conversion element. Inflow / outflow of heat is performed only at the end face of the thermoelectric conversion element, and this heat inflow / outflow structure is devised and changed to make heat transfer more efficient. It has been found that the heat transfer coefficient can be increased and the thermoelectric conversion efficiency can be improved, and the present invention has been completed.
  • thermoelectric conversion module in which a plurality of thermoelectric conversion elements are arranged in parallel with each other and adjacent thermoelectric conversion elements are connected to each other by an electrode material, and each thermoelectric conversion element is fluidized in the arrangement direction of the thermoelectric conversion elements.
  • the fluid passage hole through which the second fluid having a temperature higher or lower than that of the first fluid passes is opened, or the fluid passage hole is not opened, and the second fluid flows along the surface thereof.
  • thermoelectric conversion module comprising: a second flow path that communicates between the second areas and sequentially supplies a second fluid to the second areas of the thermoelectric conversion elements.
  • thermoelectric conversion module (2) The first electrode material provided between the inside and the vicinity of the first region facing each of the adjacent thermoelectric conversion elements and the second electrode facing each of the adjacent thermoelectric conversion elements
  • thermoelectric conversion module according to claim 1, further comprising a second electrode material provided inside or near the region.
  • thermoelectric conversion element In the present invention, at least the first fluid is transferred in the process of passing through the fluid passage hole of the thermoelectric conversion element. Therefore, the interface between the thermoelectric conversion element and the thermal fluid becomes three-dimensional, and heat transfer is also performed inside the element. As a result, the area where heat transfer occurs increases the interfacial heat flux dramatically, the effective heat transfer coefficient increases, and the energy conversion efficiency is significantly improved.
  • thermoelectric conversion element When a conventional thermoelectric conversion element is installed around a pipe through which a thermal fluid flows, and when a thermoelectric conversion element with a fluid passage hole according to the present invention is installed in a pipe having the same pipe diameter through which the same thermal fluid flows comparing the area of the interface of the heat exchanger, pipe diameter R as shown in FIG. 8, the radius r of the fluid passage holes, porosity P S, as a percentage P L thermoelectric conversion element occupies the pipe length, interfacial area of the present invention becomes (R / r) ⁇ P S ⁇ P L times as compared with the prior art.
  • R is 100 mm
  • P S is 0.3
  • P L is 0.5
  • r 15 times 1 mm
  • r is 150 times the 0.1 mm.
  • the flow quantity of the thermal fluid is the same (the same cross-sectional area) in pipes of different sizes through which the same thermal fluid flows.
  • the area of the heat exchange interface is compared, and the pipe diameter R and the radius r of the fluid passage hole are used as the interface of the present invention.
  • the area is (R / r) times that of the conventional one. When R is 100 mm, r is 100 mm when 1 mm, and 1000 times when r is 0.1 mm.
  • thermoelectric conversion device since heat exchange between the heat medium and the thermoelectric conversion element can be performed in a large heat transfer area, the thermoelectric conversion efficiency is significantly improved as compared with the conventional thermoelectric conversion module. For example, it is possible to construct a new high-efficiency thermoelectric conversion system that is effective for heat recovery of hot water waste heat, heat exhaust, and hot / cold fluid of a hot spring, fuel, and LNG plant.
  • thermoelectric conversion material since heat is exchanged very efficiently, there is no worry of temperature difference relaxation due to heat conduction in the thermoelectric conversion material, and conventionally it has been considered inefficient as a thermoelectric material due to its high thermal conductivity. Even if this material is used, it becomes a problem-free material, so that the range of selection of materials that are effective as materials for thermoelectric conversion elements is expanded.
  • thermoelectric conversion module of the present invention heat exchange with the heat medium is remarkably improved, so that sufficient heat exchange performance is ensured even if the flow path length per element is shortened. Therefore, it is possible to make the thermoelectric conversion element thin or to reduce the size of the heat medium in the flow path direction, thereby making it compact. As a result, it is possible to recover heat and electrical energy at a site where the prospect has been low.
  • the module of the present invention can be used with the same advantage as a cooling using the Peltier effect or as a power generation device, and is expected to be applied, for example, as a highly efficient heat exchanger.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. Explanatory drawing which shows the structure of the conventional thermoelectric conversion module, and typical temperature distribution in this module. Explanatory drawing for interface area comparison.
  • thermoelectric conversion module which concerns on this invention is described.
  • thermoelectric conversion module 1 includes a plurality of thermoelectric conversion elements 2 arranged in parallel at intervals, and adjacent thermoelectric conversion elements 2 are connected by electrode members 41 and 42.
  • thermoelectric conversion element 2 p-type thermoelectric conversion elements 2A and n-type thermoelectric conversion elements 2B are alternately arranged in parallel.
  • Each thermoelectric conversion element 2A / 2B is provided with a large number of fluid passage holes 20 through which fluid passes in the direction in which the thermoelectric conversion elements are arranged, and both the fluid passage holes 20 in each thermoelectric conversion element 2A / 2B open.
  • a first region R1 in which a fluid passage hole 20 for allowing a first fluid to pass is opened on each of the opening surfaces 21, and a fluid passage hole for allowing a second fluid having a temperature higher or lower than that of the first fluid to pass therethrough.
  • a second region R2 having an opening 20 is set.
  • thermoelectric conversion elements 2A / 2B known materials that can be used as p-type thermoelectric conversion elements or n-type thermoelectric conversion elements can be widely applied.
  • the fluid passage hole 20 can be formed by a publicly known method such as drilling or laser processing on the mug material, or can be configured by a mesh gap formed by knitting a wire material in a mesh shape.
  • the porous porous thermoelectric material formed body having a plurality of pores extending in one direction is formed of a porous material obtained by cutting in a direction crossing the direction in which the pores extend.
  • Such a Lotus-type porous thermoelectric material molded body can be obtained by a known method such as a high pressure gas method (Pressurized Gas Method) (for example, a method disclosed in Japanese Patent No. 3235813) or a thermal decomposition method (Thermal Decomposition Method). Can be molded.
  • the fluid passage hole 20 is the pore divided by the cutting.
  • thermoelectric conversion element 2A / 2B having a large number of through holes (fluid passage holes 20) extending in one direction can be easily obtained at low cost. Can do. Even when the wall material forming the flow path is joined to the end face, the joining area can be secured similarly, so that the joining strength can be sufficiently secured.
  • thermoelectric conversion element 2A / 2B made of a porous material cut out from a lotus-type porous thermoelectric material molded body also has a bottomed hole that does not penetrate other than the fluid passage hole 20, but such a bottomed hole is also There is an effect of increasing the surface area of the opening surface 21, and an effect of promoting heat transfer between the fluids.
  • the shape of the thermoelectric conversion element 2A / 2B is a flat plate having a relatively small dimension in the direction in which the fluid passage hole 20 extends in this example, but may be configured in various other shapes. . For example, it is also a preferable example to have a three-dimensional shape with a relatively long dimension in the direction in which the through hole extends.
  • thermoelectric conversion elements 2A / 2B are communicated with each other, and the first of each thermoelectric conversion element 2A / 2B is communicated.
  • the first flow path 31 for sequentially supplying the first fluid to the region R1 and the second region R2 facing each of the adjacent thermoelectric conversion elements 2A / 2B communicate with each other, and each thermoelectric conversion element 2A / 2B.
  • the first flow path 31 is specifically composed of a tube 50 (tubular body) made of a plurality of heat insulating materials provided between the first regions R1 facing each other.
  • Each tube 50 is provided in a state where the end surface is joined to the opening surface 21.
  • the tube 50 is a tube through which the first fluid flows, but functions as a partition between the fluids through which the second fluid flows.
  • the tube 50 is joined to each opening surface 21 in a sealed state so that fluid does not leak into and out of the tube.
  • Reference numeral 33 denotes a seal portion of the joint portion.
  • This seal portion may be brazed or an optimum known sealant can be used depending on the fluid.
  • fluorine rubber, silicone rubber, nitrile rubber, or the like can be used.
  • These sealing agents can be applied to the end portion of the tube 50 and bonded to the 21 opening surface, or a sheet-shaped sealing material molded in advance in an annular shape is sandwiched between the tube end portion and the opening surface. Also good.
  • the second flow path 32 is a low temperature or high temperature heat bath surrounded by a container wall surface (not shown). There is no container wall surface and it is good also as a form of air release.
  • the 2nd channel 32 serves as a heat bath, the 2nd field R2 does not need to have a fluid passage hole. That is, the second region R2 may be a region where the fluid passage hole is not opened and the second fluid flows along the surface thereof.
  • the electrode materials 41 and 42 are the first electrode material 42 provided between the first regions R1 facing each adjacent thermoelectric conversion element, and the second regions facing each adjacent thermoelectric conversion element.
  • the electrode material 41 and 42 are alternately provided.
  • the electrode materials 41 and 42 are configured so that n-type and p-type thermoelectric conversion elements are electrically connected in series and a large voltage can be taken out.
  • thermoelectric conversion element 2A and 2B are cooled together with the tubes 50 constituting the first flow path 31.
  • the center of the flow of the thermal fluid (region R1) in each thermoelectric conversion element 2A, 2B is directed outward (surrounding region R2) and perpendicular to the flow of the thermal fluid.
  • a temperature difference occurs in any direction, and the voltage generated in each element due to the Seebeck effect can be taken out collectively.
  • each of the thermoelectric conversion elements 2A / 2B is set with a first region R1 at the center and a second region R2 around it, but this is not limited to such an arrangement. A plurality of them may be set. For example, a plurality of first regions R1 to which the tube is connected can be provided, and two or more second regions are set so as to divide the second region into left and right, for example, in the first region R1. You can also
  • thermoelectric conversion module 1A of the present embodiment is configured by a tube 52 made of a heat insulating material as the first flow path 31 instead of a heat bath as the second flow path 32.
  • symbol 51 is the tube which consists of the heat insulating material which comprises the 1st flow path 31 of this embodiment.
  • the electrode materials 41 and 42 are adjacent to the first electrode material 42 provided between the end portions of the elements adjacent to the first region R1 facing each of the adjacent thermoelectric conversion elements. It consists of the 2nd electrode material 41 provided between the element edge parts which are the 2nd area
  • the electrode materials 41 and 42 are configured so that n-type and p-type thermoelectric conversion elements are electrically connected in series and a large voltage can be taken out.
  • thermoelectric conversion module 1 ⁇ / b> A of the present embodiment a high temperature (or low temperature) first fluid is caused to flow through the first flow path 31, and a low temperature (or high temperature) second fluid is caused to flow through the second flow path 32.
  • a temperature difference is generated in the direction from the adjacent region R1 to the region R2 and in the direction perpendicular to the flow of the thermal fluid, and the thermoelectrics in the vicinity of the regions R1 and R2
  • the electrode materials 41 and 42 provided at the ends of the conversion elements 2A and 2B the voltage generated in each element due to the Seebeck effect can be taken out collectively.
  • the electrodes 41 and 42 having the same structure can be adopted, and the cost can be reduced.
  • thermoelectric conversion module 1 ⁇ / b> C of the present embodiment has a first region in which a fluid passage hole 20 that allows a first fluid to pass through the opening surface 21 of each thermoelectric conversion element 2 ⁇ / b> A / 2 ⁇ / b> B.
  • a plate-shaped partition wall 60 is provided between each thermoelectric conversion element 2A / 2B to be divided into R1 and a second region R2 in which the fluid passage hole 20 through which the second fluid passes is opened.
  • a flow path 31 for flowing the first fluid and a flow path 32 for flowing the second fluid are provided on the left and right sides of the partition wall 60.
  • Each partition wall 60 is provided in a state in which the end surface is joined to the opening surface 21 as in the tubes 50 to 52 of the first embodiment and the second embodiment. As with the tubes 50 to 52, each opening surface 21 is joined in a state of being sealed by a seal portion 33 so that fluid does not leak to the other.
  • the first flow path 31 and the second flow path 32 are respectively a low temperature or high temperature heat bath surrounded by a partition wall 60 and a container wall surface (not shown). Either one of them may have a container wall surface and be open to the atmosphere. Further, the second region R2 may not have a fluid passage hole. That is, the second region R2 may be a region where the fluid passage hole is not opened and the second fluid flows along the surface thereof.
  • the electrode materials 41 and 42 are arranged such that the first electrode material 42 provided between the end portions of the elements in the first region R1 facing each of the adjacent thermoelectric conversion elements and the adjacent thermoelectric elements. It consists of the 2nd electrode material 41 provided between the element edge parts which are in 2nd area
  • the electrode materials 41 and 42 are configured so that n-type and p-type thermoelectric conversion elements are electrically connected in series and a large voltage can be taken out.
  • thermoelectric conversion module 1 ⁇ / b> C of this embodiment, a high temperature (or low temperature) first fluid is caused to flow through the first flow path 31, and a low temperature (or high temperature) second fluid is caused to flow through the second flow path 32.
  • a temperature difference is generated in the direction from the adjacent region R1 side to the region R2 side and in the direction perpendicular to the flow of the thermal fluid, and the thermoelectric conversion in each region R1, R2
  • the voltage generated in each element by the Seebeck effect can be taken out collectively through the electrode materials 41 and 42 provided at the ends of the elements 2A and 2B.
  • the electrodes 41 and 42 can have the same structure, and the cost can be reduced. Further reduction can be achieved.
  • thermoelectric conversion module 1D is configured as a partition wall that divides the opening surface 21 of each thermoelectric conversion element 2A / 2B into a first region R1 and a second region R2 on the left and right sides.
  • a plurality of (two in this example) plate-shaped partition walls 61 and 62 disposed between the first partition region 61 and the first region at a position outside the partition wall 61 in the left-right direction.
  • a second region R2 is formed at a position outside R1 in the left-right direction of the partition wall 62, and a fifth region R3 where no fluid flows is formed between the partition wall 61 and the partition wall 62 (inside).
  • the flow path 31 for circulating the first fluid is provided outside the partition wall 61 in the left-right direction
  • the flow path 32 for circulating the second fluid is provided outside the partition wall 62 in the left-right direction.
  • a partition wall 62 is provided with a space 70 through which fluid flows.
  • thermoelectric conversion module 1 ⁇ / b> D of the present embodiment a high-temperature (or low-temperature) first fluid is allowed to flow through the first flow path 31, and a low-temperature (or high-temperature) second fluid is allowed to flow through the second flow path 32.
  • a temperature difference occurs in the direction from the adjacent region R1 side to the region R2 side and in the direction perpendicular to the flow of the thermal fluid.
  • the presence of the fifth region R3 between the regions R2 reduces the heat flow in the thermoelectric material, thereby increasing the temperature difference in the thermoelectric material and generating a larger voltage. Since the region R3 does not allow fluid to flow, the region R3 may have no fluid passage hole, but the fluid passage hole is preferable because the heat flow can be reduced.
  • the thermoelectric conversion module 1 ⁇ / b> B of the present embodiment includes a first fluid passage hole 20 that allows the first fluid to pass through the opening surface 21 of each thermoelectric conversion element 2 ⁇ / b> A / 2 ⁇ / b> B.
  • the first region R1 and the second region R2 in which the fluid passage holes 20 for allowing the second fluid to pass therethrough are respectively provided (multiple), and according to each region, the second, Similar to the third embodiment, a plurality of first flow paths 31 and a plurality of second flow paths 32 are provided. That is, this embodiment is an application example that is suitable for the case where the principle of the second and third embodiments is developed and the flow rate of the thermal fluid is larger.
  • the electrode materials 41 and 42 are the first electrode material 42 provided between the insides of the first regions R1 facing each adjacent thermoelectric conversion element, and the facing surfaces of each adjacent thermoelectric conversion element.
  • a plurality of second electrode materials 41 provided between the insides of the second regions R2 are provided, and the electrode materials 41 and 42 are alternately provided. According to the present embodiment, since a plurality of sets of n-type and p-type thermoelectric conversion elements electrically connected in series are connected in parallel, a larger current can be taken out.
  • Thermoelectric conversion module 2A, 2B Thermoelectric conversion element 20 Fluid passage hole 21 Open surface 31 First flow path 32 Second flow path 33 Seal part 41, 42 Electrode material 50, 51, 52 Tube 60, 61, 62, 63 Partition 70 Space R1 region R2 region R3 region

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】熱電変換効率が向上するとともに、材料選択の幅も広がり、コンパクト化、低コストも実現できる熱電変換モジュールを提供せんとする。 【解決手段】熱電変換素子2A,2Bに多数の流体通過孔20を設け、流体通過孔20の両開口面21に、それぞれ第1の流体を通過させる第1の領域R1と、前記第1の流体よりも高温又は低温の第2の流体を通過させる、或いは第2の流体が表面に沿って流れる第2の領域R2とを設定し、隣接する各熱電変換素子2A,2Bの対面する第1の領域R1間を連通させ、各熱電変換素子の前記第1の領域に対して第1の流体を順次供給する第1の流路31と、隣接する各熱電変換素子の対面する第2の領域R2間を連通させ、各熱電変換素子の前記第2の領域に対して第2の流体を順次供給する第2の流路32とを設けた。

Description

熱電変換モジュール
 本発明は、高温流体あるいは低温流体のもつ熱エネルギーを効率よく電気エネルギーに、あるいは逆に電気エネルギーを熱エネルギーに変換するための熱電変換モジュールに関する。
 世界で生産されるエネルギーの60%以上が「廃熱」として捨てられている。熱電変換モジュールは、熱エネルギーから電気エネルギーを取り出すことが可能なデバイスであり、持続可能な社会の実現に必要な環境維持のために中心的役割を果たすべきものとして注目されている。熱電変換による熱発電モジュールは、異なる部位に温度差を与えることで、高温部と低温部との間に電位差を生じさせるゼーベック効果を利用したものであり、従来、低温側電極と高温側電極の間に、P型熱電変換素子とN型熱電変換素子が挟持された構造のものが広く知られている(例えば、特許文献1参照。)。
 熱エネルギーを電気エネルギーに、また電気エネルギーを熱エネルギーに変換する熱電変換モジュールでは、各熱源とモジュール間で大きな伝熱面積を確保するのが困難なことが原因して、熱エネルギー授受の効率確保に課題があった。また、大きな熱電変換効率を実現するためには、熱電素子の両端に大きな温度差を与える必要があるが、熱電変換素子の熱伝導率が大きいと伝導伝熱により熱電素子両端の温度差を確保することが困難になるため、熱電素子の熱伝導率は小さなものを選択する必要があった。しかし、材料選択の幅が小さく、コスト低減の面からも限界があった。更に熱エネルギーの授受と電力変換効率を大きくするためには熱電変換素子を多数用いる事になるが、熱エネルギーの授受効率を大きくしようとすると大きな伝熱面積確保のため装置の大型化が避けられないと言う課題もあった。
日本国特許公開2016-111326号公報
 そこで、本発明が前述の状況に鑑み、解決しようとするところは、熱エネルギーの取り込み効率が向上するとともに、材料選択の幅も広がり、コンパクト化、低コストも実現できる熱電変換モジュールを提供する点にある。
 本発明者は、上述の課題を解決するべく鋭意検討し、まず熱流体と熱電変換素子との間の熱伝達に着目した。
 図7は、従来の熱電変換素子の構造と模式的温度分布を示している。図中符号2Aはp型熱電変換素子、2Bはn型熱電変換素子、41、42は電極材である。流体と熱電変換素子との間の熱伝達の熱流は、次式(1)で表される。hは熱伝達係数、ΔTは流体と熱電変換素子の温度差である。
Figure JPOXMLDOC01-appb-M000001
 
 熱電変換素子中の熱流は、熱電変換素子中の温度差ΔT、熱電変換素子の温度勾配方向の長さd、熱伝導率κを用いて、次式(2)で表される。ただし、ここで用いているのは、熱電変換素子中でエネルギー変換がなされないとした単純なモデルである。実際には、ゼーベック効果による電気エネルギーの逃散、あるいはジュール熱の発生があるため、(2)式よりも精密な式を要するが、本質は変わらないためここでは簡単なモデルで論理を展開する。
Figure JPOXMLDOC01-appb-M000002
 
 式(1)、(2)、及び高温と低温の熱流体間の温度差ΔTについてΔT=ΔT+ΔTが成り立つことから、熱流体間の温度差(ΔT)と熱電変換素子中の温度差(ΔT)との比として、次の式(3)が導かれる。
Figure JPOXMLDOC01-appb-M000003
 
 熱電変換素子の発電電圧Vは、SΔT(Sはゼーベック係数)であり、熱流体間の温度差ΔTが大きくても、ΔTの値、ひいてはΔT/ΔTの値が大きくなければ大きい発電電圧(V)には結びつかない。この比(ΔT/ΔT)を1に近づけるには、式(3)のκ/hdの項をできるだけ1に対して小さくする必要がある。
 流体が液体、気体の場合にκ/hdがどのような値になり得るかを、hやκの代表的な値に対して見積もると表1のようになる。見積もられるκ/hdの値は1に対して小さいとは言えず、現状では、低温と高温の流体の温度差を有効に利用できていない。
Figure JPOXMLDOC01-appb-T000004
 
 なお、従来から、zT≡SσT/κ(σは電気伝導率)が高いと高い熱電変換効率に帰結することが知られている。ここでいう変換効率は、熱電変換素子中を流れる熱エネルギーのうち(すなわち、ΔTの温度差の中で)、電気エネルギーとして取り出すことのできる割合である。これに対し、上述の式(3)は、熱流体間の温度差ΔTのうち、どの程度熱電変換素子中の温度差ΔTとして有効に利用できるかを示している。
 κ/hdの値を小さくするためには、熱伝導率κを小さくすること、熱伝達係数hを大きくすることが考えられるが、熱伝導率κは熱電変換素子の材料、熱伝達係数は熱流体の種類と熱電変換素子の材料に依存し、結局のところ、熱電変換素子の材料選択に大きく依存し、選択の幅は狭く、熱エネルギーの取り込み効率の向上に限界がある。
 本発明者は、鋭意検討の結果、熱伝導率κおよび熱伝達係数hのうち、熱伝達係数hが熱電変換素子の材料に大きく依存している点について、熱流体と熱電変換素子との間の熱の流入/流出が熱電変換素子の端面のみで行われていることに原因があり、この熱の流入/流出構造を工夫・変更し、熱伝達をより効率化することにより、実効的な熱伝達係数を増加させ、熱電変換効率を向上させることが可能になることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の発明を包含する。
 (1) 熱電変換素子が間隔をあけて複数並設され、隣接する熱電変換素子同士が電極材で接続された熱電変換モジュールであって、各熱電変換素子に、熱電変換素子の並び方向に流体を通過させる多数の流体通過孔を設け、各熱電変換素子における前記流体通過孔が開口する両開口面に、それぞれ第1の流体を通過させる流体通過孔が開口している第1の領域と、前記第1の流体よりも高温又は低温の第2の流体を通過させる流体通過孔が開口しているか、或いは流体通過孔が開口しておらず、前記第2の流体がその表面に沿って流れる第2の領域とを設定し、隣接する各熱電変換素子の対面する第1の領域間を連通させ、各熱電変換素子の前記第1の領域に対して第1の流体を順次供給する第1の流路と、隣接する各熱電変換素子の対面する第2の領域間を連通させ、各熱電変換素子の前記第2の領域に対して第2の流体を順次供給する第2の流路とを設けてなることを特徴とする熱電変換モジュール。
 (2) 前記電極材が、隣接する各熱電変換素子の対面する第1の領域の内部又は近傍間に渡設される第1の電極材と、隣接する各熱電変換素子の対面する第2の領域の内部又は近傍間に渡設される第2の電極材とよりなる請求項1記載の熱電変換モジュール。
 本発明では、少なくとも第1の流体が熱電変換素子の流体通過孔を通過する過程で熱伝達されることから、熱電変換素子と熱流体との界面が立体化し、素子の内部においても熱伝達が生じ、熱伝達の生じる面積が増加して界面熱流束を飛躍的に増大させ、実効的な熱伝達係数が増加し、エネルギー変換効率が著しく向上することになる。
 熱流体が流通するパイプの周囲に従来の熱電変換素子を取り付けた場合と、同じ熱流体が流通する同じパイプ径のパイプ内に本発明に係る流体通過孔付きの熱電変換素子を取り付けた場合について、熱交換の界面の面積を比較すると、図8のようにパイプ径R、流体通過孔の半径r、ポロシティP、熱電変換素子がパイプ長さに占める割合Pとして、本発明の界面面積は、従来のものに比べて(R/r)×P×P倍となる。Rが100mm、Pが0.3、Pが0.5として、rが1mmで15倍、rが0.1mmでは150倍となる。
 また、同じく熱流体が流通するパイプの周囲に従来の熱電変換素子を取り付けた場合と、同じ熱流体が流通する異なる大きさのパイプ内に、熱流体の流通量が同じ(同じ断面積)になるようにパイプ内に本発明に係る流体通過孔付きの熱電変換素子を取り付けた場合について、熱交換の界面の面積を比較すると、パイプ径R、流体通過孔の半径rとして、本発明の界面面積は、従来のものに比べて(R/r)倍となる。Rが100mmとして、rが1mmで100倍、rが0.1mmでは1000倍となる。
 本発明に係わる熱電変換デバイスでは、熱媒体と熱電変換素子間の熱交換を大伝熱面積で行うことができるため従来の熱電変換モジュールに比べて熱電変換効率が著しく向上する。例えば、温水廃熱や熱排気、また温泉、燃料、LNGプラントの冷温熱流体の熱回収に有効な新しい高効率熱電変換システムを構築することができる。また、熱の授受が非常に効率的に行われることから、熱電変換材料中の熱伝導による温度差緩和の心配も無く、従来、熱伝導率が大きくて熱電材料としては非効率と考えられていた材料であっても、問題の無い材料となることから、熱電変換素子の材料として有効な材料の選択幅が広がる事になる。
 更に、本発明の熱電変換モジュールでは、熱媒体との熱交換が著しく向上することから、1素子当たりの流路長が短くなっても十分な熱交換性能が確保される。従って熱電変換素子を薄くしたり、熱媒体の流路方向サイズを短くし、コンパクト化を図ることが可能となる。これにより、従来、見込みが薄かった部位での熱回収や電気エネルギー回収も可能となる。本発明のモジュールは、ペルチェ効果を利用した冷却、あるいは発電デバイスとしても同様の優位性をもって用いることができ、例えば高効率な熱交換器としても応用が期待される。
本発明の第1実施形態に係る熱電変換モジュールを示す概略説明図。 本発明の第2実施形態に係る熱電変換モジュールを示す概略説明図。 本発明の第3実施形態に係る熱電変換モジュールを示す概略説明図。 本発明の第4実施形態に係る熱電変換モジュールを示す概略説明図。 本発明の第5実施形態に係る熱電変換モジュールを示す概略説明図。 図5のA-A断面図。 従来の熱電変換モジュールの構成ならびに該モジュールにおける模式的な温度分布を示す説明図。 界面面積比較のための説明図。
 次に、本発明の実施形態を添付図面に基づき詳細に説明する。まず、図1に基づき、本発明に係る熱電変換モジュールの第1実施形態を説明する。
 熱電変換モジュール1は、図1に示すように、熱電変換素子2が間隔をあけて複数並設され、隣接する熱電変換素子2同士が電極材41、42で接続されたものである。熱電変換素子2は、p型熱電変換素子2Aおよびn型熱電変換素子2Bが交互に並設されている。
 各熱電変換素子2A/2Bには、熱電変換素子の並び方向に流体を通過させる多数の流体通過孔20が設けられており、各熱電変換素子2A/2Bにおける前記流体通過孔20が開口する両開口面21に、それぞれ第1の流体を通過させる流体通過孔20が開口している第1の領域R1と、前記第1の流体よりも高温又は低温の第2の流体を通過させる流体通過孔20が開口している第2の領域R2とが設定されている。
 熱電変換素子2A/2Bとしては、p型熱電変換素子又はn型熱電変換素子として用いることができる公知の材料を広く適用できる。流体通過孔20は、ムク材にドリル加工やレーザ加工など公知の方法で形成することや、線材をメッシュ状に編んで構成したメッシュ隙間で構成することができるが、本例では、凝固法で成形された一方向に伸びた複数の気孔を有するロータス型ポーラス熱電材料成形体を、気孔の伸びる方向に交差する方向に切断加工してなる多孔材で構成されている。
 このようなロータス型ポーラス熱電材料成形体は、高圧ガス法(Pressurized Gas Method)(例えば日本国登録特許第3235813号公報開示の方法)や、熱分解法(Thermal Decomposition Method)など、公知の方法で成形することができる。流体通過孔20は、前記切断により分断された前記気孔である。
 このようにロータス型ポーラス熱電材料成形体から切り出した多孔材を用いることで、一方向に延びる多数の貫通孔(流体通過孔20)を有する熱電変換素子2A/2Bを低コスト且つ容易に得ることができる。端面に流路を形成する壁材を接合する場合にも、同じく接合面積を確保できるため接合強度を十分に確保することができる。
 ロータス型ポーラス熱電材料成形体から切り出した多孔材よりなる熱電変換素子2A/2Bには、流体通過孔20以外に貫通していない有底の孔も存在するが、このような有底の孔も開口面21の表面積を増大させる効果があり、各流体との間の伝熱を促進する効果がある。熱電変換素子2A/2Bの形状は、本例では流体通過孔20の延びている方向の寸法が比較的小さい扁平な板状とされているが、その他の種々の形状に構成しても勿論よい。例えば、貫通孔の延びている方向の寸法が比較的長い立体形状などにすることも好ましい例である。
 また、第1の流体、第2の流体の流路として、隣接する各熱電変換素子2A/2Bの対面する第1の領域R1間を連通させ、各熱電変換素子2A/2Bの前記第1の領域R1に対して第1の流体を順次供給する第1の流路31と、隣接する各熱電変換素子2A/2Bの対面する第2の領域R2間を連通させ、各熱電変換素子2A/2Bの前記第2の領域R2に対して第2の流体を順次供給する第2の流路32とが設けられている。
 第1の流路31は、具体的には対面する第1の領域R1間に設けられる複数の断熱材からなるチューブ50(管体)より構成されている。各チューブ50は、端面が開口面21に接合された状態に設けられている。チューブ50は、第1の流体を内部に流通させる管であるが、外側に第2の流体を流通させる流体間の隔壁として機能する。このようにチューブ50を用いることで、気孔が形成されやすいロータス型ポーラス熱電材料成形体よりなる熱電変換素子の中央付近に流路を形成することが容易となる。また、断面積が定まるチューブ50を用いることで、設計どおりの性能を安定して得ることができる。
 より具体的には、チューブ50は、各開口面21に対して流体が管内外に洩れないようにシールされた状態に接合されている。符号33は当該接合箇所のシール部である。このシール部は、ろう付けでもよいし、流体に応じて最適な公知のシール剤を用いることができる。例えば、フッ素ゴム、シリコーン系ゴム、ニトリルゴムなどを用いることができる。これらシール剤をチューブ50の端部に塗布して21開口面に接合することもできるし、あらかじめ環状に成形したシート状のシール材をチューブ端部と開口面との間に挟み込むように設けてもよい。
 第2の流路32は、図示しない容器壁面で囲まれた低温又は高温の熱浴とされている。容器壁面がなく大気開放の形態としてもよい。このように本例では第2の流路32が熱浴となるため、第2の領域R2は流体通過孔が無くてもよい。すなわち、第2の領域R2は、流体通過孔が開口しておらず、前記第2の流体がその表面に沿って流れる領域としてもよい。
 電極材41、42は、隣接する各熱電変換素子の対面する第1の領域R1の内部間に渡設される第1の電極材42と、隣接する各熱電変換素子の対面する第2の領域の内部又は近傍間に渡設される第2の電極材41とよりなり、これら電極材41、42が交互に設けられている。これら電極材41、42により、n型、p型の熱電変換素子が直列に電気接続され、大きい電圧を取り出すことが可能となるように構成されている。
 具体的には、高温(あるいは低温)の第1流体を第1の流路31に流すとともに、第1の流路31を構成する各チューブ50とともに各熱電変換素子2A,2Bの領域R2を低温(あるいは高温)の熱浴中に浸すことで、各熱電変換素子2A、2B中で熱流体の流れの中心部(領域R1)から外向き(周囲の領域R2)に、熱流体の流れに垂直な方向に温度差が生じ、ゼーベック効果により各素子に生じた電圧をまとめて取り出すことができる。
 第1の流体と第2の流体は温度が異なれば、どちらが低温又は高温の流体であってもよい。また、本例では、各熱電変換素子2A/2Bに、中央部の第1の領域R1と周囲の第2の領域R2とがそれぞれ一つづつ設定されているが、このような配置に何ら限定されず、いずれも複数設定されてもよい。たとえば、チューブが接続される第1の領域R1を複数設けることもできるし、また、たとえば第1の領域R1で第2の領域を左右に分断するようにして第2の領域を二つ以上設定することもできる。
 次に、図2に基づき、本発明の第2実施形態を説明する。
 本実施形態の熱電変換モジュール1Aは、図2に示すように、第2の流路32として熱浴の代わりに第1の流路31と同じく断熱材よりなるチューブ52で構成したものである。なお、符号51は本実施形態の第1流路31を構成する、断熱材よりなるチューブである。このように双方の流路31、32をともにチューブで構成することで、上記第1実施形態と同様、流路を形成しやすく、また、設計どおりの性能を安定して得ることができ、さらには、両流路31、32間、すなわちチューブ間に大きな隙間が維持され、両者間の断熱性が高まり、熱電変換効率をより向上させることができる。
 電極材41、42は、本実施形態では、隣接する各熱電変換素子の対面する第1の領域R1の近傍である素子端部間に渡設される第1の電極材42と、隣接する各熱電変換素子の対面する第2の領域R2の近傍である素子端部間に渡設される第2の電極材41とよりなり、これら電極材41、42が交互に設けられている。これら電極材41、42により、n型、p型の熱電変換素子が直列に電気接続され、大きい電圧を取り出すことが可能となるように構成されている。
 本実施形態の熱電変換モジュール1Aでは、高温(あるいは低温)の第1流体を第1の流路31に流すとともに、低温(あるいは高温)の第2流体を第2の流路32に流すことで、各熱電変換素子2A、2B中で互いに隣接する領域R1側から領域R2側に向けた方向で且つ熱流体の流れに垂直な方向に温度差が生じ、各領域R1、R2の近傍となる熱電変換素子2A、2Bの端部に設けた電極材41、42を通じてゼーベック効果により各素子に生じた電圧をまとめて取り出すことができる。本実施形態では、第1実施形態に比べ、電極41、42を同じ構造のものを採用でき、コスト低減を図ることができる。
 その他の構成、変形例等については、上述の第1実施形態と同じことがいえるため、同一構造については同一符号を付し、これらの説明は省略する。
 次に、図3に基づき、本発明の第3実施形態を説明する。
 本実施形態の熱電変換モジュール1Cは、図3に示すように、各熱電変換素子2A/2Bの開口面21を、第1の流体を通過させる流体通過孔20が開口している第1の領域R1と、第2の流体を通過させる流体通過孔20が開口している第2の領域R2とに左右に区分けする板状の隔壁60を、各熱電変換素子2A/2Bの間に設け、これら隔壁60を境に第1の流体を流通させる流路31と第2の流体を流通させる流路32とが左右に設けられている。
 各隔壁60は、第1実施形態や第2実施形態のチューブ50~52と同様、端面が開口面21に接合された状態に設けられている。チューブ50~52と同様、各開口面21に対して流体が他方に洩れないようにシール部33でシールされた状態に接合されている。
 第1の流路31および第2の流路32は、それぞれ隔壁60と図示しない容器壁面で囲まれた低温又は高温の熱浴とされている。いずれか一方は、容器壁面がなく大気開放の形態としてもよい。また、第2の領域R2は流体通過孔が無くてもよい。すなわち、第2の領域R2は、流体通過孔が開口しておらず、前記第2の流体がその表面に沿って流れる領域としてもよい。
 電極材41、42は、本実施形態では、隣接する各熱電変換素子の対面する第1の領域R1内である素子端部間に渡設される第1の電極材42と、隣接する各熱電変換素子の対面する第2の領域R2内である素子端部間に渡設される第2の電極材41とよりなり、これら電極材41、42が交互に設けられている。これら電極材41、42により、n型、p型の熱電変換素子が直列に電気接続され、大きい電圧を取り出すことが可能となるように構成されている。
 本実施形態の熱電変換モジュール1Cでは、高温(あるいは低温)の第1流体を第1の流路31に流すとともに、低温(あるいは高温)の第2流体を第2の流路32に流すことで、各熱電変換素子2A、2B中で互いに隣接する領域R1側から領域R2側に向けた方向で且つ熱流体の流れに垂直な方向に温度差が生じ、各領域R1、R2内となる熱電変換素子2A、2Bの端部に設けた電極材41、42を通じてゼーベック効果により各素子に生じた電圧をまとめて取り出すことができる。本実施形態では、第1実施形態や第2実施形態に比べ、流路を分離する構造が簡単になるとともに、第2実施形態と同様、電極41、42を同じ構造のものを採用でき、コスト低減を更に図ることができる。
 その他の構成、変形例等については、上述の第1実施形態や第2実施形態と同じことがいえるため、同一構造については同一符号を付し、これらの説明は省略する。
 次に、図4に基づき、本発明の第4実施形態を説明する。
 本実施形態の熱電変換モジュール1Dは、図4に示すように、各熱電変換素子2A/2Bの開口面21を第1の領域R1と第2の領域R2とに左右に区分けする隔壁として、互いの間に空間70を介して配置される複数(本例は2つ)の板状の隔壁61、62を設けたものであり、これにより隔壁61の左右方向の外側の位置に第1の領域R1が、隔壁62の左右方向の外側の位置に第2の領域R2が、それぞれ形成され、さらに隔壁61と隔壁62の間(内側)の位置に流体が流通しない第5の領域R3が形成される。
 これにより、隔壁61の左右方向の外側に第1の流体を流通させる流路31が設けられ、隔壁62の左右方向の外側に第2の流体を流通させる流路32が設けられ、さらに隔壁61と隔壁62の間に、流体が流通した空間70が設けられている。
 本実施形態の熱電変換モジュール1Dでは、高温(あるいは低温)の第1流体を第1の流路31に流すとともに、低温(あるいは高温)の第2流体を第2の流路32に流すことで、各熱電変換素子2A、2B中で互いに隣接する領域R1側から領域R2側に向けた方向で且つ熱流体の流れに垂直な方向に温度差が生じるが、特に本実施形態では、領域R1と領域R2の間に上記第5の領域R3が存在することで、熱電材料中の熱流が小さくなることから、熱電材料中の温度差が大きくなり、より大きい電圧を生じさせることが出来る。領域R3は流体を流通させないので流体通過孔が開口していないものでもよいが、流体通過孔がある方が熱流をより小さくできるため好ましい。
 その他の構成、変形例等については、上述の第3実施形態と同じことがいえるため、同一構造については同一符号を付し、これらの説明は省略する。
 次に、図5および図6に基づき、本発明の第5実施形態を説明する。
 本実施形態の熱電変換モジュール1Bは、図5および図6に示すように、各熱電変換素子2A/2Bの開口面21に、第1の流体を通過させる流体通過孔20が開口している第1の領域R1、第2の流体を通過させる流体通過孔20が開口している第2の領域R2を、それぞれ複数(多数)設けたものであり、各領域に応じて、上述の第2、第3実施形態と同様、第1の流路31、第2の流路32をそれぞれ複数設けた例である。すなわち本実施形態は、第2、第3実施形態の原理を発展させ、より熱流体の流量が大きい場合に好適な応用例である。
 電極材41、42は、本実施形態では、隣接する各熱電変換素子の対面する第1の領域R1の内部間に渡設される第1の電極材42と、隣接する各熱電変換素子の対面する第2の領域R2の内部間に渡設される第2の電極材41とが、それぞれ複数設けられ、これら電極材41、42が交互に設けられている。本実施形態によれば、直列に電気接続されたn型、p型の熱電変換素子の組が、複数並列に接続されるので、より大きい電流を取り出すことが可能となる。
 その他の構成、変形例等については、上述の第1~第4実施形態と同じことがいえるため、同一構造については同一符号を付し、これらの説明は省略する。
 以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではない。上述の各実施形態は、いずれも熱流体間の温度差を電気として取り出す例を示しているが、電気的負荷の代わりに外部電源を用いて直流電流を流すことにより、ペルチェ効果によって、電流の向きに応じて第1の流体と第2の流体の間に温度差を生じさせる装置として用いることもできる。その他、本発明は、その要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。
 1,1A,1B、1C、1D 熱電変換モジュール
 2A,2B 熱電変換素子
 20 流体通過孔
 21 開口面
 31 第1の流路
 32 第2の流路
 33 シール部
 41,42 電極材
 50,51,52 チューブ
 60、61、62、63 隔壁
 70 空間
 R1 領域
 R2 領域
 R3 領域

Claims (2)

  1.  熱電変換素子が間隔をあけて複数並設され、隣接する熱電変換素子同士が電極材で接続された熱電変換モジュールであって、
     各熱電変換素子に、熱電変換素子の並び方向に流体を通過させる多数の流体通過孔を設け、
     各熱電変換素子における前記流体通過孔が開口する両開口面に、それぞれ第1の流体を通過させる流体通過孔が開口している第1の領域と、前記第1の流体よりも高温又は低温の第2の流体を通過させる流体通過孔が開口しているか、或いは流体通過孔が開口しておらず、前記第2の流体がその表面に沿って流れる第2の領域とを設定し、
     隣接する各熱電変換素子の対面する第1の領域間を連通させ、各熱電変換素子の前記第1の領域に対して第1の流体を順次供給する第1の流路と、隣接する各熱電変換素子の対面する第2の領域間を連通させ、各熱電変換素子の前記第2の領域に対して第2の流体を順次供給する第2の流路とを設けてなることを特徴とする熱電変換モジュール。
  2.  前記電極材が、隣接する各熱電変換素子の対面する第1の領域の内部又は近傍間に渡設される第1の電極材と、隣接する各熱電変換素子の対面する第2の領域の内部又は近傍間に渡設される第2の電極材とよりなる請求項1記載の熱電変換モジュール。
PCT/JP2019/010232 2018-03-20 2019-03-13 熱電変換モジュール WO2019181683A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-052531 2018-03-20
JP2018052531A JP2019165137A (ja) 2018-03-20 2018-03-20 熱電変換モジュール

Publications (1)

Publication Number Publication Date
WO2019181683A1 true WO2019181683A1 (ja) 2019-09-26

Family

ID=67987202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010232 WO2019181683A1 (ja) 2018-03-20 2019-03-13 熱電変換モジュール

Country Status (2)

Country Link
JP (1) JP2019165137A (ja)
WO (1) WO2019181683A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5590279B2 (ja) * 2008-03-31 2014-09-17 株式会社三洋物産 遊技機
JP5590280B2 (ja) * 2008-04-11 2014-09-17 株式会社三洋物産 遊技機
JP6836221B2 (ja) * 2019-09-11 2021-02-24 株式会社三洋物産 遊技機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553470A (en) * 1978-10-14 1980-04-18 Ngk Insulators Ltd Thermoelectric generator
JP2013537790A (ja) * 2010-07-06 2013-10-03 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ 流動流体中に配置された熱電モジュールにもとづいて電流および/または電圧を生成するための装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009361A (ja) * 1998-06-22 2000-01-14 Itsuo Onaka 熱電変換システム
DE102009039228A1 (de) * 2009-08-28 2011-03-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelektrische Vorrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553470A (en) * 1978-10-14 1980-04-18 Ngk Insulators Ltd Thermoelectric generator
JP2013537790A (ja) * 2010-07-06 2013-10-03 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ 流動流体中に配置された熱電モジュールにもとづいて電流および/または電圧を生成するための装置

Also Published As

Publication number Publication date
JP2019165137A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2019181683A1 (ja) 熱電変換モジュール
US8378205B2 (en) Thermoelectric heat exchanger
JP5895301B2 (ja) 熱交換器
JP4785476B2 (ja) 熱電発電構造及び発電機能付き熱交換器
US20070095379A1 (en) Thermoelectric generator
JP5787755B2 (ja) 電気エネルギーを発生させる装置を備える熱交換管束、及びこの管束を備える熱交換器
US20130213449A1 (en) Thermoelectric plate and frame exchanger
KR20150106328A (ko) 구배 열 교환기를 사용한 열전 동력 생성 시스템
CN105593616A (zh) 用于电热能量转换的方法
CN104919610A (zh) 热电变换模块
KR20110077486A (ko) 차량용 배기열 회수 열전 발전 장치
JP6139865B2 (ja) 車両用熱電発電機
JP2011165976A (ja) 熱電気変換装置および熱電気変換方法
JP3556799B2 (ja) 熱電発電装置
JPH11274574A (ja) 熱電発電装置用熱交換ブロックの作製方法
JP2004140202A (ja) 熱電変換システム
JP6002623B2 (ja) 熱電変換モジュール
JP2004088057A (ja) 熱電モジュール
JP6350297B2 (ja) 熱電発電装置
KR20170036885A (ko) 열전 발전 장치
JP2018074873A (ja) 熱電発電熱交換器
JPH11340522A (ja) 熱電変換モジュールを用いた熱交換器
JP2009272327A (ja) 熱電変換システム
US20130082466A1 (en) Device for generating current and/or voltage based on a thermoelectric module placed in a flowing fluid
WO2020138288A1 (ja) 冷却兼発電装置および該冷却兼発電装置を用いた冷却兼発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771566

Country of ref document: EP

Kind code of ref document: A1