WO2019181457A1 - Light source system, optical diffraction element manufacturing method, distance measurement system, and optical diffraction element - Google Patents

Light source system, optical diffraction element manufacturing method, distance measurement system, and optical diffraction element Download PDF

Info

Publication number
WO2019181457A1
WO2019181457A1 PCT/JP2019/008353 JP2019008353W WO2019181457A1 WO 2019181457 A1 WO2019181457 A1 WO 2019181457A1 JP 2019008353 W JP2019008353 W JP 2019008353W WO 2019181457 A1 WO2019181457 A1 WO 2019181457A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
diffraction element
order
diffraction grating
Prior art date
Application number
PCT/JP2019/008353
Other languages
French (fr)
Japanese (ja)
Inventor
勝治 木村
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018203709A external-priority patent/JP7193304B2/en
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/963,771 priority Critical patent/US20210041536A1/en
Publication of WO2019181457A1 publication Critical patent/WO2019181457A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present disclosure relates to a light source system, an optical diffraction element manufacturing method, a ranging system, and an optical diffraction element.
  • solid-state imaging devices and biometric authentication devices that perform biometric authentication such as face authentication using a ranging function in order to prevent impersonation and fraud in electronic payment processing such as mobile terminal devices with cameras and banks, etc. It is becoming popular.
  • infrared light that is collimated light is irradiated onto an optical diffraction element (DOE), and diffracted light is generated by the optical diffraction element.
  • DOE optical diffraction element
  • a method of performing ranging and biometric authentication based on the diffracted light is generally used.
  • a general method is to perform biometric authentication by irradiating a subject with diffracted light, capturing reflected light from the subject, converting the image data into image data, and performing distance measurement by analyzing the reflected light.
  • JP 2013-190394 A JP2015-115527A JP2015-132546A
  • the diffracted light when the diffracted light is generated by the optical diffractive element, 0th-order light and multi-order light are generated.
  • the light intensity differs between the 0th-order light and the multi-order light, the reflected light is The zero-order light component cannot be accurately analyzed when the image is taken, and the accuracy of ranging and biometric authentication can be reduced.
  • a light source system includes a light source that emits light, an opening having a predetermined pattern that is formed on one surface and receives light from the light source, and generates diffracted light based on the incident light.
  • the generated diffraction grating portion and the other surface opposite to one surface are formed in at least a part of the region corresponding to the opening when viewed from the incident direction of light from the light source, and generated in the diffraction grating portion.
  • an optical diffraction element including a zero-order light correction unit that reduces the next light.
  • An optical diffraction element manufacturing method includes a step of forming a light shielding member in a predetermined pattern on one surface of a substrate, and a liquid on the other surface facing the one surface of the substrate. It includes a step of bringing the UV curable resin into contact, a step of irradiating the substrate with UV light from one surface side, and a step of cleaning the other surface of the substrate.
  • a distance measuring system includes a light source that emits light, an opening having a predetermined pattern that is formed on one surface and into which light from the light source is incident, and diffracted light based on the incident light Is formed in at least a part of the region corresponding to the opening when viewed from the incident direction of the light from the light source on the other surface opposite to the one surface.
  • An optical diffractive element including a 0th order light correcting unit for reducing 0th order light, an image capturing unit that captures reflected light of the diffracted light emitted from the optical diffractive element and applied to the subject, and generates image data;
  • a distance calculation unit that calculates a distance to the subject based on the data.
  • An optical diffractive element includes a substrate and a diffraction pattern that is formed on one surface of the substrate, has a predetermined pattern of light incident, and generates diffracted light based on the incident light.
  • diffracted light is generated by the diffraction grating unit.
  • the 0th-order light correction unit reduces the 0th-order light generated in the diffraction grating unit.
  • an optical diffraction element capable of reducing zero-order light is manufactured.
  • First Embodiment 1.0 Comparative Example (FIGS. 1 to 3) 1.1 Configuration and operation of the light source system and ranging system according to the first embodiment (FIGS. 4 to 5) 1.2 Optical diffraction element manufacturing method according to the first embodiment (FIG. 6) 1.3 Modifications of the optical diffraction element according to the first embodiment (FIGS. 7 to 8) 1.4 Effects Second embodiment (FIG. 9) 3.
  • the technology of the present disclosure irradiates CSP (Chip Size Package) solid-state imaging devices such as CCD (Charged Coupled Devices) sensors, CMOS (Complementary Metal Oxide Semiconductor) image sensors, and diffracted light for measuring the distance between subjects.
  • the present invention relates to a ranging system including a light source system.
  • a light source system and a ranging system of the present disclosure include, for example, a digital camera such as a digital video camera and a digital still camera, an image input camera such as a surveillance camera and an in-vehicle camera, a scanner device, a facsimile device, a television phone device, and a camera.
  • the present invention can be applied to electronic information devices such as attached mobile terminal devices.
  • the light source system and the distance measuring system of the present disclosure can be applied to a biometric authentication device and an inspection device.
  • Patent Document 2 Japanese Patent Laid-Open No. 2015-115527
  • Patent Document 3 Japanese Patent Laid-Open No. 2015-132546
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-190394
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-190394
  • Patent Document 1 in order to irradiate light of a random pattern, it takes time for analysis to measure the distance from image data after the reflected light is imaged by two solid-state imaging devices. There is a problem that the immediacy required for authentication is lost.
  • the pattern illumination device is arranged so that the pattern light irradiated to the measurement object does not include the zero-order light generated by the diffractive optical element, thereby avoiding the degradation of ranging performance due to the zero-order light.
  • the technology to do is described.
  • the technique described in Patent Document 1 requires two cameras (stereo cameras) that capture a random pattern for distance measurement, and is expensive.
  • FIG. 8 of Patent Document 1 even in the case of a random pattern, zero-order light is generated, and in order to avoid this, the position of the zero-order light is set to the distance between the cameras of the stereo camera. We take measures by changing.
  • Patent Document 2 is an example of a solid-state imaging device that realizes acquisition of color signals and distance measurement with a single camera, but means for avoiding degradation in distance measurement performance due to zero-order light is described. Absent. For this reason, it is inevitable that the distance measurement performance of the diffractive optical element is reduced by the 0th-order light.
  • Patent Document 3 attempts to increase the accuracy of distance measurement by changing the light emitted from the diffractive optical element to light in two different directions depending on the astigmatism lens.
  • the need for an astigmatism lens is expensive.
  • Patent Document 3 does not describe countermeasures for zero-order light.
  • FIG. 1 schematically shows a configuration example of a light source system and a distance measuring system according to a first comparative example.
  • FIG. 2 schematically shows an example of the light intensity measured in the distance measuring system according to the first comparative example.
  • the distance measuring system includes a light source system including a light source 1 and an optical diffraction element 200 and an imaging camera 3.
  • the light source 1 irradiates the optical diffraction element 200 with collimated light including infrared light, for example.
  • the optical diffraction element 200 is formed with a predetermined pattern for generating the diffracted light Ld.
  • the optical diffraction element 200 generates diffracted light Ld from the light emitted from the light source 1.
  • the diffracted light Ld emitted from the optical diffraction element 2 is applied to the subject 10.
  • the reflected light applied to the subject 10 is imaged by the imaging camera 3.
  • the imaging camera 3 has a solid-state imaging device, for example.
  • the imaging camera 3 stores and analyzes imaging data of the diffracted light Ld. In general, the diffracted light Ld is analyzed in the imaging camera 3 to measure the distance to the subject 10, the unevenness of the subject 10, and the like.
  • the captured image obtained by the imaging camera 3 includes diffracted light Ld and zero-order light L0 as schematically shown in FIG.
  • the light intensity of the 0th-order light L0 is higher than the light intensity of the diffracted light Ld.
  • the imaging camera 3 when exposure adjustment is performed so that diffracted light Ld other than the 0th-order light L0 is optimally imaged data by an electronic shutter, a mechanical shutter, or a diaphragm, as schematically illustrated in FIG.
  • there is a problem that the light intensity of the 0th-order light L0 is strong and becomes saturated.
  • the center of gravity of the reflected light circle of the diffracted light Ld irradiated to the subject 10 is obtained.
  • a method is adopted in which the reflected light component of the 0th-order light L0 is not used when calculating the distance.
  • the resolution of distance measurement deteriorates unless the 0th-order light L0 is used.
  • the imaging camera 3 when the exposure is adjusted by the electronic shutter, the mechanical shutter, or the aperture so that the 0th-order light L0 is optimally imaged data, the intensity of the diffracted light Ld other than the 0th-order light L0 is high. Obviously, it becomes smaller and it becomes difficult to calculate the distance.
  • FIG. 3 schematically shows an example of a light source system and a ranging system according to the second comparative example.
  • the light source system according to the second comparative example includes a 0th-order light correction element 5 as a countermeasure against the 0th-order light with respect to the ranging system according to the second comparative example of FIG.
  • the zero-order light correction element 5 is provided separately from the optical diffraction element 200.
  • the 0th-order light correction element 5 is a pattern that reduces the 0th-order light L0 of the optical diffractive element 200 in order to reduce the 0th-order light L0 from the optical diffractive element 200 (a predetermined pattern formed on the optical diffractive element 200). Has the opposite pattern).
  • the optical diffraction element 200 and the zero-order light correction element 5 are provided as separate bodies, it is difficult to align the patterns formed with each other, and there is a problem in that the yield decreases. .
  • FIG. 4 schematically illustrates a configuration example of the light source system and the distance measuring system according to the first embodiment of the present disclosure.
  • FIG. 5 schematically shows a cross-sectional configuration example and a planar configuration example of the optical diffraction element 2 according to the first embodiment.
  • substantially the same components as those of the light source system and the distance measuring system according to the comparative example are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • the distance measuring system includes a light source system including a light source 1 and an optical diffraction element 2, an imaging camera 3, a distance calculation unit 31, and a shape recognition unit 32. And a biometric authentication unit 33.
  • the imaging camera 3 captures the reflected light of the diffracted light Ld emitted from the optical diffraction element 2 and applied to the subject 10 to generate image data.
  • the distance calculation unit 31 calculates the distance to the subject 10 based on the image data.
  • the shape recognition unit 32 discriminates irregularities such as the face of the subject 10 and recognizes the shape of the subject 10.
  • the biometric authentication unit 33 performs biometric authentication such as face authentication based on the recognition result by the shape recognition unit 32.
  • the optical diffraction element 2 includes a glass substrate 20, a diffraction grating unit 6, and a zero-order light correction unit 24 as shown in FIG.
  • the glass substrate 20 is disposed between the diffraction grating unit 6 and the zero-order light correction unit 24.
  • the diffraction grating portion 6 is formed on one surface 21 of the glass substrate 20.
  • the diffraction grating unit 6 includes an opening having a predetermined pattern through which light from the light source 1 enters and a light shielding unit 25 as a light shielding member that shields light, and generates diffracted light Ld based on the incident light.
  • the predetermined pattern is a circular hole shape
  • the diffraction grating portion 6 has a circular hole 23 as an opening.
  • the zero-order light correction unit 24 is formed on the other surface 22 of the glass substrate 20 facing the one surface 21.
  • the zero-order light correction unit 24 is formed of, for example, a UV curable resin 41 as shown in FIG.
  • the 0th-order light correction unit 24 is formed with an ND (Neutral Density) pattern or a black pattern in order to reduce the 0th-order light L0 generated in the diffraction grating unit 6.
  • the optical diffraction element 2 has a function of adjusting the 0th-order light L0 as compared with the optical diffraction element 200 (FIG. 1) in the comparative example.
  • the zero-order light correction unit 24 is formed in at least a part of the region corresponding to the opening (circular hole 23) of the diffraction grating unit 6 when viewed from the incident direction of the light from the light source 1.
  • the size of the 0th-order light correction unit 24 is preferably substantially the same as or larger than the opening of the diffraction grating unit 6 in order to reduce the 0th-order light L0.
  • the shape of the zero-order light correction unit 24 is preferably substantially the same as the opening of the diffraction grating unit 6 in order to reduce the zero-order light L0.
  • the size of the zero-order light correction unit 24 may be smaller than the opening of the diffraction grating unit 6. Even if the shape of the zero-order light correction unit 24 is slightly different from the opening of the diffraction grating unit 6, the effect of reducing the zero-order light L0 can be obtained. For this reason, the shape of the zero-order light correction unit 24 may be slightly different from the opening of the diffraction grating unit 6.
  • TOPVIEW indicates a surface on the light source 1 side
  • BottomView indicates a surface on the subject 10 side.
  • collimated light including infrared light from the light source 1 is incident on the optical diffraction element 2 from TOPV View.
  • the optical diffraction element 2 emits the diffracted light Ld generated by the diffraction grating unit 6 to the subject 10 from the Bottom View side.
  • the diffraction grating portion 6 has a circular hole 23 as an opening, and thus the subject 10 is irradiated with circular diffracted light Ld.
  • the 0th-order light L0 generated in the diffraction grating unit 6 is adjusted so that the light intensity is reduced by the 0th-order light correction unit 24 formed of an ND pattern or a black pattern.
  • FIG. 6 shows an example of a method for manufacturing the optical diffraction element 2.
  • a black light shielding member is applied to one surface 21 of the glass substrate 20 in a predetermined pattern.
  • the light shielding part 25 and the opening (circular hole 23) to be the diffraction grating part 6 are formed on one surface 21 of the glass substrate 20.
  • the zero-order light correction unit 24 is formed on the other surface 22 of the glass substrate 20, and the pattern of the zero-order light correction unit 24 is accurately formed at a position facing the opening formed on the one surface 21. It is preferable to do. Therefore, next, as shown in FIG. 6B, a liquid UV curable resin 41 is brought into contact with the other surface 22 of the glass substrate 20 facing the one surface 21.
  • the liquid UV curable resin 41 is colored so as to be ND or black.
  • the glass substrate 20 is irradiated with UV light from the one surface 21 side to cure the liquid UV curable resin 41 brought into contact with the other surface 22.
  • the UV curable resin 41 is cured by the UV light (corresponding to the 0th-order light L0 generated in the diffraction grating portion 6) transmitted through the opening formed on the one surface 21.
  • the ND pattern or black pattern zero-order light correction unit 24 is formed in a region corresponding to the opening formed in the one surface 21 on the other surface 22.
  • the UV curable resin 41 may remain semi-fixed on the other surface 22 in a region other than the region corresponding to the opening formed on the one surface 21.
  • the other surface 22 of the glass substrate 20 is separated from the liquid UV curable resin 41, and the other surface 22 is cleaned. Thereby, the UV curable resin 41 that remains after being semi-fixed is removed.
  • a hybrid curable resin with a thermosetting resin may be used instead of the UV curable resin 41 when the zero-order light correction unit 24 is formed.
  • the zero-order light correction unit 24 may be formed by temporarily fixing with the UV curable resin 41, cleaning, and then fixing with a thermosetting resin.
  • the zero-order light correction unit 24 may be formed by temporarily fixing with the UV curable resin 41, then performing permanent fixing with a thermosetting resin, and then performing cleaning.
  • FIG. 7 schematically shows a cross-sectional configuration example and a planar configuration example of an optical diffraction element 2A according to a first modification of the first embodiment.
  • FIG. 8 schematically shows a cross-sectional configuration example and a planar configuration example of an optical diffraction element 2B according to a second modification of the first embodiment.
  • FIG. 5 shows a configuration example in which the diffraction grating portion 6 has a circular hole 23 as an opening of a predetermined pattern.
  • the predetermined pattern is not limited to a circular hole pattern, for example, a linear pattern or a random pattern. It may be a pattern.
  • the diffraction grating portion 6A formed on one surface 21 has a line hole 23A as an opening of a predetermined pattern. Also good.
  • a 0th-order light correction unit 24A having a linear pattern corresponding to the line hole 23A is formed on the other surface 22.
  • the diffraction grating portion 6A formed on one surface 21 has a random hole 23B as an opening of a predetermined pattern. May be.
  • a 0th-order light correction unit 24B having a random pattern corresponding to the random hole 23B is formed on the other surface 22.
  • Second Embodiment> a light source system and a distance measuring system according to the second embodiment of the present disclosure will be described.
  • the same reference numerals are given to substantially the same components as those of the light source system and the ranging system according to the first embodiment, and the description thereof will be omitted as appropriate.
  • FIG. 9 schematically shows a configuration example of the light source system and the distance measuring system according to the second embodiment.
  • the light source system and ranging system according to the second embodiment are configured to further include a correction lens 4 with respect to the light source system and ranging system according to the first embodiment.
  • the correction lens 4 is disposed between the light source 1 and the optical diffraction element 2 and corrects the light from the light source 1 to be parallel light.
  • infrared light is used for ranging and biometric authentication.
  • the optical diffraction element 2 is preferably irradiated with infrared light that is collimated light. It is generally known that a certain distance is required between the light source 1 and the optical diffraction element 2 in order to emit highly accurate collimated light from the light source 1. By disposing the correction lens 4 between the light source 1 and the optical diffraction element 2, the distance between the light source 1 and the optical diffraction element 2 can be reduced.
  • the distance data calculated by the distance calculation unit 31 is used for biometric authentication
  • the distance data may be used for purposes other than biometric authentication.
  • this technique can also take the following structures.
  • the intensity of the zero-order light can be reduced.
  • a light source that emits light;
  • a diffraction grating portion that is formed on one surface and has a predetermined pattern opening through which light from the light source is incident, and that generates diffracted light based on the incident light, and on the other surface facing the one surface
  • an optical system including a zeroth-order light correction unit that is formed in at least a part of a region corresponding to the opening when viewed from the incident direction of light from the light source and reduces zeroth-order light generated in the diffraction grating unit.
  • a light source system comprising a diffraction element.
  • the light source system according to (1) further comprising: (3) The light source system according to (1) or (2), wherein the zero-order light correction unit is formed of a UV curable resin.
  • the predetermined pattern is any one of a circular hole shape, a linear shape, and a random shape.
  • the UV curable resin is cured by being irradiated with UV light that has passed through the diffraction grating portion.
  • the optical diffraction element includes a substrate disposed between the diffraction grating portion and the zero-order light correction portion.
  • the step of irradiating the UV light includes The method for producing an optical diffraction element according to (7), further comprising a step of curing the liquid UV curable resin in contact with the other surface.
  • a light source that emits light
  • a diffraction grating portion that is formed on one surface and has a predetermined pattern opening through which light from the light source is incident, and that generates diffracted light based on the incident light, and on the other surface facing the one surface
  • an optical system including a zeroth-order light correction unit that is formed in at least a part of a region corresponding to the opening when viewed from the incident direction of light from the light source and reduces zeroth-order light generated in the diffraction grating unit.
  • a diffraction element An imaging unit that captures reflected light of the diffracted light emitted from the optical diffraction element and applied to a subject to generate image data;
  • a distance measuring system comprising: a distance calculating unit that calculates a distance to the subject based on the image data.
  • a substrate, A diffraction grating portion that is formed on one surface of the substrate and has a predetermined pattern of openings through which light enters, and that generates diffracted light based on the incident light; Reduced zero-order light generated in the diffraction grating portion formed in at least a part of the region corresponding to the opening when viewed from the light incident direction on the other surface of the substrate facing the one surface.
  • An optical diffraction element comprising: a zero-order light correction unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

This light source system comprises a light source for emitting light and an optical diffraction element including: a diffraction grating part that is formed on one surface of the optical diffraction element, has a prescribed pattern of openings upon which the light from the light source is incident, and generates diffracted light from the incident light, and a zero-order light correction part that is formed in at least a partial region of a region of another surface opposing the one surface, the region corresponding to the openings when viewed in the direction of the incidence of the light from the light source, and reduces the zero-order light generated by the diffraction grating part.

Description

光源システム、光学回折素子製造方法、および測距システム、ならびに光学回折素子Light source system, optical diffractive element manufacturing method, distance measuring system, and optical diffractive element
 本開示は、光源システム、光学回折素子製造方法、および測距システム、ならびに光学回折素子に関する。 The present disclosure relates to a light source system, an optical diffraction element manufacturing method, a ranging system, and an optical diffraction element.
 近年、カメラ付き移動体端末装置や銀行などの電子決済処理などで、なりすましや詐欺を防止するために、測距機能を用いて顔認証等の生体認証を行う固体撮像装置、および生体認証装置が普及するようになっている。このような装置において、小型化、薄型化、および高性能化を図る手法としては、コリメート光とされた赤外光を光学回折素子(DOE)に照射し、光学回折素子によって回折光を生成し、その回折光に基づいて、測距および生体認証を行う方法が一般的である。例えば、回折光を被写体に照射して被写体からの反射光を撮像し、画像データに変換後、反射光を解析することによって測距を行い、生体認証を行う方法が一般的である。 In recent years, solid-state imaging devices and biometric authentication devices that perform biometric authentication such as face authentication using a ranging function in order to prevent impersonation and fraud in electronic payment processing such as mobile terminal devices with cameras and banks, etc. It is becoming popular. In such an apparatus, as a technique for miniaturization, thinning, and high performance, infrared light that is collimated light is irradiated onto an optical diffraction element (DOE), and diffracted light is generated by the optical diffraction element. A method of performing ranging and biometric authentication based on the diffracted light is generally used. For example, a general method is to perform biometric authentication by irradiating a subject with diffracted light, capturing reflected light from the subject, converting the image data into image data, and performing distance measurement by analyzing the reflected light.
特開2013-190394号公報JP 2013-190394 A 特開2015-115527号公報JP2015-115527A 特開2015-132546号公報JP2015-132546A
 上記の装置において、光学回折素子によって回折光を生成する際には、0次光と多次光とが発生するが、0次光と多次光とでは光の強度が異なるため、反射光を撮像したときに0次光成分が正確に解析できずに測距および生体認証の精度が低下し得る。 In the above apparatus, when the diffracted light is generated by the optical diffractive element, 0th-order light and multi-order light are generated. However, since the light intensity differs between the 0th-order light and the multi-order light, the reflected light is The zero-order light component cannot be accurately analyzed when the image is taken, and the accuracy of ranging and biometric authentication can be reduced.
 0次光の強度を低減することが可能となる光源システム、および測距システム、ならびに光学回折素子を提供することが望ましい。また、0次光の強度を低減させる光学回折素子を製造することが可能な光学回折素子製造方法を提供することが望ましい。 It is desirable to provide a light source system, a ranging system, and an optical diffractive element that can reduce the intensity of 0th-order light. It is also desirable to provide an optical diffraction element manufacturing method capable of manufacturing an optical diffraction element that reduces the intensity of zero-order light.
 本開示の一実施の形態に係る光源システムは、光を発する光源と、一方の面に形成され、光源からの光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、一方の面に対向する他方の面における、光源からの光の入射方向から見て開口に対応する領域の少なくとも一部の領域に形成され、回折格子部で発生した0次光を低減する0次光補正部とを含む光学回折素子とを備える。 A light source system according to an embodiment of the present disclosure includes a light source that emits light, an opening having a predetermined pattern that is formed on one surface and receives light from the light source, and generates diffracted light based on the incident light. The generated diffraction grating portion and the other surface opposite to one surface are formed in at least a part of the region corresponding to the opening when viewed from the incident direction of light from the light source, and generated in the diffraction grating portion. And an optical diffraction element including a zero-order light correction unit that reduces the next light.
 本開示の一実施の形態に係る光学回折素子製造方法は、基板の一方の面に、遮光部材を所定のパターンで形成する工程と、基板における一方の面に対向する他方の面に、液体のUV硬化樹脂を接触させる工程と、基板に、一方の面側からUV光を照射する工程と、基板における他方の面を洗浄する工程とを含む。 An optical diffraction element manufacturing method according to an embodiment of the present disclosure includes a step of forming a light shielding member in a predetermined pattern on one surface of a substrate, and a liquid on the other surface facing the one surface of the substrate. It includes a step of bringing the UV curable resin into contact, a step of irradiating the substrate with UV light from one surface side, and a step of cleaning the other surface of the substrate.
 本開示の一実施の形態に係る測距システムは、光を発する光源と、一方の面に形成され、光源からの光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、一方の面に対向する他方の面における、光源からの光の入射方向から見て開口に対応する領域の少なくとも一部の領域に形成され、回折格子部で発生した0次光を低減する0次光補正部とを含む光学回折素子と、光学回折素子から射出され、被写体に照射された回折光の反射光を撮像して画像データを生成する撮像部と、画像データに基づいて、被写体までの距離を算出する距離算出部とを備える。 A distance measuring system according to an embodiment of the present disclosure includes a light source that emits light, an opening having a predetermined pattern that is formed on one surface and into which light from the light source is incident, and diffracted light based on the incident light Is formed in at least a part of the region corresponding to the opening when viewed from the incident direction of the light from the light source on the other surface opposite to the one surface. An optical diffractive element including a 0th order light correcting unit for reducing 0th order light, an image capturing unit that captures reflected light of the diffracted light emitted from the optical diffractive element and applied to the subject, and generates image data; A distance calculation unit that calculates a distance to the subject based on the data.
 本開示の一実施の形態に係る光学回折素子は、基板と、基板の一方の面に形成され、光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、一方の面に対向する基板の他方の面における、光の入射方向から見て開口に対応する領域の少なくとも一部の領域に形成され、回折格子部で発生した0次光を低減する0次光補正部とを含む。 An optical diffractive element according to an embodiment of the present disclosure includes a substrate and a diffraction pattern that is formed on one surface of the substrate, has a predetermined pattern of light incident, and generates diffracted light based on the incident light. Reduced zero-order light generated in the diffraction grating section, formed in at least a part of the area corresponding to the aperture when viewed from the incident direction of light on the other surface of the substrate facing the grating portion and one surface A 0th-order light correction unit.
 本開示の一実施の形態に係る光源システム、測距システム、または光学回折素子では、回折格子部によって回折光が生成される。0次光補正部によって、回折格子部で発生した0次光が低減する。
 本開示の一実施の形態に係る光学回折素子製造方法では、0次光を低減可能な光学回折素子が製造される。
In the light source system, distance measuring system, or optical diffraction element according to an embodiment of the present disclosure, diffracted light is generated by the diffraction grating unit. The 0th-order light correction unit reduces the 0th-order light generated in the diffraction grating unit.
In the optical diffraction element manufacturing method according to an embodiment of the present disclosure, an optical diffraction element capable of reducing zero-order light is manufactured.
第1の比較例に係る光源システムおよび測距システムの一構成例を概略的に示す構成図である。It is a block diagram which shows roughly the example of 1 structure of the light source system which concerns on a 1st comparative example, and a ranging system. 第1の比較例に係る測距システムにおいて測定される光強度の一例を概略的に示す説明図である。It is explanatory drawing which shows roughly an example of the light intensity measured in the ranging system which concerns on a 1st comparative example. 第2の比較例に係る光源システムおよび測距システムの一構成例を概略的に示す構成図である。It is a block diagram which shows roughly the example of 1 structure of the light source system which concerns on a 2nd comparative example, and a ranging system. 本開示の第1の実施の形態に係る光源システムおよび測距システムの一構成例を概略的に示す構成図である。It is a lineblock diagram showing roughly the example of 1 composition of the light source system and distance measuring system concerning a 1st embodiment of this indication. 第1の実施の形態に係る光学回折素子の一構成例を概略的に示す断面図および平面図である。It is sectional drawing and the top view which show roughly the example of 1 structure of the optical diffraction element which concerns on 1st Embodiment. 第1の実施の形態に係る光学回折素子の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the optical diffraction element which concerns on 1st Embodiment. 第1の実施の形態の第1の変形例に係る光学回折素子の一構成例を概略的に示す断面図および平面図である。It is sectional drawing and a top view which show roughly the example of 1 structure of the optical diffraction element which concerns on the 1st modification of 1st Embodiment. 第1の実施の形態の第2の変形例に係る光学回折素子の一構成例を概略的に示す断面図および平面図である。It is sectional drawing and the top view which show roughly the example of 1 structure of the optical diffraction element which concerns on the 2nd modification of 1st Embodiment. 第2の実施の形態に係る光源システムおよび測距システムの一構成例を概略的に示す構成図である。It is a block diagram which shows roughly the example of 1 structure of the light source system and distance measuring system which concern on 2nd Embodiment.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態
  1.0 比較例(図1~図3)
  1.1 第1の実施の形態に係る光源システムおよび測距システムの構成および動作(図4~図5)
  1.2 第1の実施の形態に係る光学回折素子製造方法(図6)
  1.3 第1の実施の形態に係る光学回折素子の変形例(図7~図8)
  1.4 効果
 2.第2の実施の形態(図9)
 3.その他の実施の形態
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. First Embodiment 1.0 Comparative Example (FIGS. 1 to 3)
1.1 Configuration and operation of the light source system and ranging system according to the first embodiment (FIGS. 4 to 5)
1.2 Optical diffraction element manufacturing method according to the first embodiment (FIG. 6)
1.3 Modifications of the optical diffraction element according to the first embodiment (FIGS. 7 to 8)
1.4 Effects Second embodiment (FIG. 9)
3. Other embodiments
<1.第1の実施の形態>
 本開示の技術は、例えば、CCD(Charged Coupled Devices)センサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどのCSP(Chip Size Package)固体撮像素子と、被写体の距離を測るための回折光を照射する光源システムとを備える測距システムに関する。本開示の光源システムおよび測距システムは、例えば、デジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラ、車載カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、およびカメラ付き移動体端末装置などの電子情報機器に適用可能である。また、本開示の光源システムおよび測距システムは、生体認証装置や検査装置に適用可能である。
<1. First Embodiment>
The technology of the present disclosure irradiates CSP (Chip Size Package) solid-state imaging devices such as CCD (Charged Coupled Devices) sensors, CMOS (Complementary Metal Oxide Semiconductor) image sensors, and diffracted light for measuring the distance between subjects. The present invention relates to a ranging system including a light source system. A light source system and a ranging system of the present disclosure include, for example, a digital camera such as a digital video camera and a digital still camera, an image input camera such as a surveillance camera and an in-vehicle camera, a scanner device, a facsimile device, a television phone device, and a camera. The present invention can be applied to electronic information devices such as attached mobile terminal devices. In addition, the light source system and the distance measuring system of the present disclosure can be applied to a biometric authentication device and an inspection device.
[1.0 比較例]
 特許文献2(特開2015-115527号公報)、および特許文献3(特開2015-132546号公報)には、一般的な測距を行うための実施例が開示されているが、前述の0次光成分による光の強度の問題を解決する技術は記載されていない。特許文献1(特開2013-190394号公報)に記載の技術では、固体撮像装置を2台有し、0次光成分による光の強度の回避は可能であるが、固体撮像装置を2つ有することにより高価になるという問題がある。また、特許文献1に記載の技術では、ランダムパターンの光を照射するために、反射光を2台の固体撮像装置で撮像後、画像データから距離を測定するには解析に時間がかかり、生体認証に必要な即時性が失われる問題がある。
[1.0 Comparative Example]
In Patent Document 2 (Japanese Patent Laid-Open No. 2015-115527) and Patent Document 3 (Japanese Patent Laid-Open No. 2015-132546), examples for performing general distance measurement are disclosed. A technique for solving the problem of light intensity due to the secondary light component is not described. The technique described in Patent Document 1 (Japanese Patent Laid-Open No. 2013-190394) has two solid-state imaging devices and can avoid the light intensity due to the 0th-order light component, but has two solid-state imaging devices. There is a problem that it becomes expensive. Further, in the technique described in Patent Document 1, in order to irradiate light of a random pattern, it takes time for analysis to measure the distance from image data after the reflected light is imaged by two solid-state imaging devices. There is a problem that the immediacy required for authentication is lost.
 特許文献1には、計測対象物に照射されるパターン光に回折光学素子で生ずる0次光が含まれなくなるようにパターン照明装置を配置することで、0次光による測距の性能低下を回避する技術が記載されている。しかしながら、特許文献1に記載の技術では、測距のためにランダムパターンを撮像する2つのカメラ(ステレオカメラ)が必要となり、高価であることが問題であった。また、特許文献1の図8で説明されているように、ランダムパターンであっても、0次光が発生し、それを回避するために0次光の位置をステレオカメラのカメラ間の距離を変えることで対策している。 In Patent Document 1, the pattern illumination device is arranged so that the pattern light irradiated to the measurement object does not include the zero-order light generated by the diffractive optical element, thereby avoiding the degradation of ranging performance due to the zero-order light. The technology to do is described. However, the technique described in Patent Document 1 requires two cameras (stereo cameras) that capture a random pattern for distance measurement, and is expensive. Further, as described in FIG. 8 of Patent Document 1, even in the case of a random pattern, zero-order light is generated, and in order to avoid this, the position of the zero-order light is set to the distance between the cameras of the stereo camera. We take measures by changing.
 特許文献2に記載の技術は、1つのカメラでカラー信号の取得と測距とを実現する固体撮像装置の一例であるが、0次光による測距の性能低下を回避する手段は記載されていない。このため、回折光学素子による0次光による測距の性能低下は避けられない。 The technique described in Patent Document 2 is an example of a solid-state imaging device that realizes acquisition of color signals and distance measurement with a single camera, but means for avoiding degradation in distance measurement performance due to zero-order light is described. Absent. For this reason, it is inevitable that the distance measurement performance of the diffractive optical element is reduced by the 0th-order light.
 特許文献3に記載の技術は、回折光学素子からの出射光を、非点収差レンズによって異なる2方向の光に変化させて、測距の精度を上げようとするものであり、回折光学素子とともに非点収差レンズが必要であることで、高価になる。また、特許文献3にも、0次光の対策は記載されていない。 The technique described in Patent Document 3 attempts to increase the accuracy of distance measurement by changing the light emitted from the diffractive optical element to light in two different directions depending on the astigmatism lens. The need for an astigmatism lens is expensive. Also, Patent Document 3 does not describe countermeasures for zero-order light.
 図1は、第1の比較例に係る光源システムおよび測距システムの一構成例を概略的に示している。図2は、第1の比較例に係る測距システムにおいて測定される光強度の一例を概略的に示している。 FIG. 1 schematically shows a configuration example of a light source system and a distance measuring system according to a first comparative example. FIG. 2 schematically shows an example of the light intensity measured in the distance measuring system according to the first comparative example.
 第1の比較例に係る測距システムは、光源1と光学回折素子200とを含む光源システムと、撮像カメラ3とを備えている。 The distance measuring system according to the first comparative example includes a light source system including a light source 1 and an optical diffraction element 200 and an imaging camera 3.
 光源1は、例えば赤外光を含むコリメート光を光学回折素子200に照射する。光学回折素子200には、回折光Ldを生成する所定のパターンが形成されている。光学回折素子200は、光源1から射出された光から回折光Ldを生成する。光学回折素子2から射出された回折光Ldは、被写体10に照射される。被写体10に照射された反射光を撮像カメラ3で撮像する。撮像カメラ3は例えば固体撮像装置を有している。撮像カメラ3は回折光Ldの撮像データを保存、解析する。撮像カメラ3内で回折光Ldを解析することで、被写体10までの距離や被写体10の凹凸などを測定することが一般的である。 The light source 1 irradiates the optical diffraction element 200 with collimated light including infrared light, for example. The optical diffraction element 200 is formed with a predetermined pattern for generating the diffracted light Ld. The optical diffraction element 200 generates diffracted light Ld from the light emitted from the light source 1. The diffracted light Ld emitted from the optical diffraction element 2 is applied to the subject 10. The reflected light applied to the subject 10 is imaged by the imaging camera 3. The imaging camera 3 has a solid-state imaging device, for example. The imaging camera 3 stores and analyzes imaging data of the diffracted light Ld. In general, the diffracted light Ld is analyzed in the imaging camera 3 to measure the distance to the subject 10, the unevenness of the subject 10, and the like.
 しかしながら、光学回折素子200からは回折光Ldだけでなく、光学回折素子200によって回折されない光(0次光L0)も射出され、被写体10に照射される。このため、撮像カメラ3によって得られる撮像イメージには、図2に模式的に示す通り、回折光Ldと0次光L0とが含まれている。一般に、0次光L0の光強度は回折光Ldの光強度に比べて大きい。このため、例えば、撮像カメラ3において、電子シャッタ、メカニカルシャッタ、または絞りなどによって、0次光L0以外の回折光Ldが最適に撮像データとなるように露出調整された場合、図2に模式的に示す通り、0次光L0の光強度が強く、飽和してしまう問題があった。 However, not only the diffracted light Ld but also light (0th-order light L0) that is not diffracted by the optical diffractive element 200 is emitted from the optical diffractive element 200 and irradiated onto the subject 10. For this reason, the captured image obtained by the imaging camera 3 includes diffracted light Ld and zero-order light L0 as schematically shown in FIG. In general, the light intensity of the 0th-order light L0 is higher than the light intensity of the diffracted light Ld. For this reason, for example, in the imaging camera 3, when exposure adjustment is performed so that diffracted light Ld other than the 0th-order light L0 is optimally imaged data by an electronic shutter, a mechanical shutter, or a diaphragm, as schematically illustrated in FIG. As shown in FIG. 4, there is a problem that the light intensity of the 0th-order light L0 is strong and becomes saturated.
 図1の第1の比較例に係る測距システムにおける測距の解析手法としては、図2に示したように、被写体10に照射された回折光Ldの反射光の円の重心を求めることにより、被写体10までの距離を算出する方法がある。その際、距離の算出時には0次光L0の反射光成分を使わないようにする手法がとられている。ただし、0次光L0を使わないと測距の分解能が悪くなるのは明らかである。また、撮像カメラ3において、電子シャッタ、メカニカルシャッタ、または絞りなどで、0次光L0が最適に撮像データとなるように露出調整された場合は、0次光L0以外の回折光Ldの強度が小さくなり、距離の算出が難しくなることは明らかである。 As a distance analysis method in the distance measuring system according to the first comparative example of FIG. 1, as shown in FIG. 2, the center of gravity of the reflected light circle of the diffracted light Ld irradiated to the subject 10 is obtained. There is a method for calculating the distance to the subject 10. At this time, a method is adopted in which the reflected light component of the 0th-order light L0 is not used when calculating the distance. However, it is clear that the resolution of distance measurement deteriorates unless the 0th-order light L0 is used. Further, in the imaging camera 3, when the exposure is adjusted by the electronic shutter, the mechanical shutter, or the aperture so that the 0th-order light L0 is optimally imaged data, the intensity of the diffracted light Ld other than the 0th-order light L0 is high. Obviously, it becomes smaller and it becomes difficult to calculate the distance.
 図3は、第2の比較例に係る光源システムおよび測距システムの一例を概略的に示している。 FIG. 3 schematically shows an example of a light source system and a ranging system according to the second comparative example.
 第2の比較例に係る光源システムは、図1の第2の比較例に係る測距システムに対して、0次光対策のために0次光補正素子5を備えている。0次光補正素子5は、光学回折素子200とは別体として設けられている。0次光補正素子5は、光学回折素子200からの0次光L0を低減するために、光学回折素子200の0次光L0を低減するパターン(光学回折素子200に形成された所定のパターンとは逆のパターン)を有している。しかしながら、この手法では光学回折素子200と0次光補正素子5とが別体として設けられているため、互いに形成されたパターン同士の位置合わせが困難であり、歩留りが低くなってしまう問題がある。 The light source system according to the second comparative example includes a 0th-order light correction element 5 as a countermeasure against the 0th-order light with respect to the ranging system according to the second comparative example of FIG. The zero-order light correction element 5 is provided separately from the optical diffraction element 200. The 0th-order light correction element 5 is a pattern that reduces the 0th-order light L0 of the optical diffractive element 200 in order to reduce the 0th-order light L0 from the optical diffractive element 200 (a predetermined pattern formed on the optical diffractive element 200). Has the opposite pattern). However, in this method, since the optical diffraction element 200 and the zero-order light correction element 5 are provided as separate bodies, it is difficult to align the patterns formed with each other, and there is a problem in that the yield decreases. .
[1.1 第1の実施の形態に係る光源システムおよび測距システムの構成および動作]
 図4は、本開示の第1の実施の形態に係る光源システムおよび測距システムの一構成例を概略的に示している。図5は、第1の実施の形態に係る光学回折素子2の断面構成例および平面構成例を概略的に示している。なお、以下では、上記比較例に係る光源システムおよび測距システムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[1.1 Configuration and Operation of Light Source System and Ranging System According to First Embodiment]
FIG. 4 schematically illustrates a configuration example of the light source system and the distance measuring system according to the first embodiment of the present disclosure. FIG. 5 schematically shows a cross-sectional configuration example and a planar configuration example of the optical diffraction element 2 according to the first embodiment. In the following description, substantially the same components as those of the light source system and the distance measuring system according to the comparative example are denoted by the same reference numerals, and description thereof is omitted as appropriate.
 第1の実施の形態に係る測距システムは、図4に示したように、光源1と光学回折素子2とを含む光源システムと、撮像カメラ3と、距離算出部31と、形状認識部32と、生体認証部33とを備えている。 As shown in FIG. 4, the distance measuring system according to the first embodiment includes a light source system including a light source 1 and an optical diffraction element 2, an imaging camera 3, a distance calculation unit 31, and a shape recognition unit 32. And a biometric authentication unit 33.
 撮像カメラ3は、光学回折素子2から射出され、被写体10に照射された回折光Ldの反射光を撮像して画像データを生成する。距離算出部31は、画像データに基づいて、被写体10までの距離を算出する。形状認識部32は、距離算出部31によって算出された距離データに基づいて、被写体10の顔などの凹凸を判別し、被写体10の形状認識を行う。生体認証部33は、形状認識部32による認識結果に基づいて、顔認証等の生体認証を行う。 The imaging camera 3 captures the reflected light of the diffracted light Ld emitted from the optical diffraction element 2 and applied to the subject 10 to generate image data. The distance calculation unit 31 calculates the distance to the subject 10 based on the image data. Based on the distance data calculated by the distance calculation unit 31, the shape recognition unit 32 discriminates irregularities such as the face of the subject 10 and recognizes the shape of the subject 10. The biometric authentication unit 33 performs biometric authentication such as face authentication based on the recognition result by the shape recognition unit 32.
 光学回折素子2は、図5に示したように、ガラス基板20と、回折格子部6と、0次光補正部24とを含む。ガラス基板20は、回折格子部6と0次光補正部24との間に配置されている。 The optical diffraction element 2 includes a glass substrate 20, a diffraction grating unit 6, and a zero-order light correction unit 24 as shown in FIG. The glass substrate 20 is disposed between the diffraction grating unit 6 and the zero-order light correction unit 24.
 回折格子部6は、ガラス基板20の一方の面21に形成されている。回折格子部6は、光源1からの光が入射する所定パターンの開口と、光を遮光する遮光部材としての遮光部25とを有し、入射した光に基づいて回折光Ldを生成する。図5の例では、所定パターンは円孔状であり、回折格子部6は、開口として円形孔23を有している。 The diffraction grating portion 6 is formed on one surface 21 of the glass substrate 20. The diffraction grating unit 6 includes an opening having a predetermined pattern through which light from the light source 1 enters and a light shielding unit 25 as a light shielding member that shields light, and generates diffracted light Ld based on the incident light. In the example of FIG. 5, the predetermined pattern is a circular hole shape, and the diffraction grating portion 6 has a circular hole 23 as an opening.
 0次光補正部24は、一方の面21に対向するガラス基板20の他方の面22に形成されている。0次光補正部24は、後述する図6に示すように、例えばUV硬化樹脂41によって形成されている。0次光補正部24は、回折格子部6で発生した0次光L0を低減するために、ND(Neutral Density)パターンまたは黒パターンで形成されている。これにより、光学回折素子2は、比較例における光学回折素子200(図1)と比べて、0次光L0を調整する機能を有している。0次光補正部24は、光源1からの光の入射方向から見て回折格子部6の開口(円形孔23)に対応する領域の少なくとも一部の領域に形成されている。0次光補正部24の大きさは、0次光L0を低減するために、回折格子部6の開口と略同じか回折格子部6の開口よりも大きいことが好ましい。また、0次光補正部24の形状も、0次光L0を低減するために、回折格子部6の開口と略同じであることが好ましい。ただし、0次光補正部24の大きさが回折格子部6の開口よりも小さくても、0次光L0を低減する効果は得られる。このため、0次光補正部24の大きさは、回折格子部6の開口よりも小さくともよい。また、0次光補正部24の形状が、回折格子部6の開口と多少異なっていても0次光L0を低減する効果は得られる。このため、0次光補正部24の形状は、回折格子部6の開口とは多少異なっていてもよい。 The zero-order light correction unit 24 is formed on the other surface 22 of the glass substrate 20 facing the one surface 21. The zero-order light correction unit 24 is formed of, for example, a UV curable resin 41 as shown in FIG. The 0th-order light correction unit 24 is formed with an ND (Neutral Density) pattern or a black pattern in order to reduce the 0th-order light L0 generated in the diffraction grating unit 6. Thereby, the optical diffraction element 2 has a function of adjusting the 0th-order light L0 as compared with the optical diffraction element 200 (FIG. 1) in the comparative example. The zero-order light correction unit 24 is formed in at least a part of the region corresponding to the opening (circular hole 23) of the diffraction grating unit 6 when viewed from the incident direction of the light from the light source 1. The size of the 0th-order light correction unit 24 is preferably substantially the same as or larger than the opening of the diffraction grating unit 6 in order to reduce the 0th-order light L0. In addition, the shape of the zero-order light correction unit 24 is preferably substantially the same as the opening of the diffraction grating unit 6 in order to reduce the zero-order light L0. However, even if the size of the 0th-order light correction unit 24 is smaller than the opening of the diffraction grating unit 6, the effect of reducing the 0th-order light L0 can be obtained. For this reason, the size of the zero-order light correction unit 24 may be smaller than the opening of the diffraction grating unit 6. Even if the shape of the zero-order light correction unit 24 is slightly different from the opening of the diffraction grating unit 6, the effect of reducing the zero-order light L0 can be obtained. For this reason, the shape of the zero-order light correction unit 24 may be slightly different from the opening of the diffraction grating unit 6.
 図5においてTOPVIEWは光源1側の面、BottomViewは被写体10側の面を示す。光学回折素子2には、光源1からの、例えば赤外光を含むコリメート光がTOPViewから入射する。光学回折素子2は、回折格子部6によって生成された回折光LdをBottomView側から被写体10に射出する。光学回折素子2が図5の構成の場合、回折格子部6が開口として円形孔23を有しているため、被写体10には、円形状の回折光Ldが照射される。一方、回折格子部6において生じた0次光L0は、NDパターンまたは黒パターンからなる0次光補正部24によって、光強度が低減するように調整される。 In FIG. 5, TOPVIEW indicates a surface on the light source 1 side, and BottomView indicates a surface on the subject 10 side. For example, collimated light including infrared light from the light source 1 is incident on the optical diffraction element 2 from TOPV View. The optical diffraction element 2 emits the diffracted light Ld generated by the diffraction grating unit 6 to the subject 10 from the Bottom View side. When the optical diffraction element 2 has the configuration shown in FIG. 5, the diffraction grating portion 6 has a circular hole 23 as an opening, and thus the subject 10 is irradiated with circular diffracted light Ld. On the other hand, the 0th-order light L0 generated in the diffraction grating unit 6 is adjusted so that the light intensity is reduced by the 0th-order light correction unit 24 formed of an ND pattern or a black pattern.
[1.2 第1の実施の形態に係る光学回折素子製造方法]
 図6は、光学回折素子2の製造方法の一例を示している。
[1.2 Optical diffractive element manufacturing method according to first embodiment]
FIG. 6 shows an example of a method for manufacturing the optical diffraction element 2.
 まず、図6の(A)に示したように、ガラス基板20の一方の面21に、例えば黒色の遮光部材を所定のパターンで塗布することによって形成する。これにより、ガラス基板20の一方の面21に、回折格子部6となる遮光部25と開口(円形孔23)とを形成する。 First, as shown in FIG. 6A, for example, a black light shielding member is applied to one surface 21 of the glass substrate 20 in a predetermined pattern. As a result, the light shielding part 25 and the opening (circular hole 23) to be the diffraction grating part 6 are formed on one surface 21 of the glass substrate 20.
 次に、ガラス基板20の他方の面22に0次光補正部24を形成するが、0次光補正部24のパターンは、一方の面21に形成された開口に対向する位置に正確に形成することが好ましい。そこで、次に、図6の(B)に示したように、ガラス基板20における一方の面21に対向する他方の面22に、液体のUV硬化樹脂41を接触させる。液体のUV硬化樹脂41は、NDまたは黒色となるように着色されている。 Next, the zero-order light correction unit 24 is formed on the other surface 22 of the glass substrate 20, and the pattern of the zero-order light correction unit 24 is accurately formed at a position facing the opening formed on the one surface 21. It is preferable to do. Therefore, next, as shown in FIG. 6B, a liquid UV curable resin 41 is brought into contact with the other surface 22 of the glass substrate 20 facing the one surface 21. The liquid UV curable resin 41 is colored so as to be ND or black.
 次に、図6の(C)に示したように、ガラス基板20に、一方の面21側からUV光を照射することによって、他方の面22に接触させた液体のUV硬化樹脂41を硬化させる。UV硬化樹脂41は、一方の面21に形成された開口を透過したUV光(回折格子部6で発生する0次光L0に相当する)によって硬化する。これにより、他方の面22において、一方の面21に形成された開口に対応する領域に、NDパターンまたは黒パターンの0次光補正部24が形成される。この際、他方の面22において、一方の面21に形成された開口に対応する領域以外の領域に、UV硬化樹脂41が半固着されて残る可能性がある。 Next, as shown in FIG. 6C, the glass substrate 20 is irradiated with UV light from the one surface 21 side to cure the liquid UV curable resin 41 brought into contact with the other surface 22. Let The UV curable resin 41 is cured by the UV light (corresponding to the 0th-order light L0 generated in the diffraction grating portion 6) transmitted through the opening formed on the one surface 21. As a result, the ND pattern or black pattern zero-order light correction unit 24 is formed in a region corresponding to the opening formed in the one surface 21 on the other surface 22. At this time, the UV curable resin 41 may remain semi-fixed on the other surface 22 in a region other than the region corresponding to the opening formed on the one surface 21.
 そこで、最後に、図6の(D),(E)に示したように、ガラス基板20における他方の面22を液体のUV硬化樹脂41から離し、他方の面22を洗浄する。これにより、半固着されて残ったUV硬化樹脂41は除去される。 Therefore, finally, as shown in FIGS. 6D and 6E, the other surface 22 of the glass substrate 20 is separated from the liquid UV curable resin 41, and the other surface 22 is cleaned. Thereby, the UV curable resin 41 that remains after being semi-fixed is removed.
(光学回折素子製造方法の変形例)
 以上で説明した製造方法において、0次光補正部24を形成する際に、UV硬化樹脂41に代えて、熱硬化樹脂とのハイブリッド硬化樹脂を用いてもよい。
(Modification of optical diffraction element manufacturing method)
In the manufacturing method described above, a hybrid curable resin with a thermosetting resin may be used instead of the UV curable resin 41 when the zero-order light correction unit 24 is formed.
 また、以上で説明した製造方法において、UV硬化樹脂41で仮固定した後、洗浄し、熱硬化樹脂を用いて本固定をすることによって、0次光補正部24を形成してもよい。また、UV硬化樹脂41で仮固定した後、熱硬化樹脂を用いて本固定をし、その後、洗浄を行うことによって、0次光補正部24を形成してもよい。 Further, in the manufacturing method described above, the zero-order light correction unit 24 may be formed by temporarily fixing with the UV curable resin 41, cleaning, and then fixing with a thermosetting resin. Alternatively, the zero-order light correction unit 24 may be formed by temporarily fixing with the UV curable resin 41, then performing permanent fixing with a thermosetting resin, and then performing cleaning.
[1.3 第1の実施の形態に係る光学回折素子の変形例]
 図7は、第1の実施の形態の第1の変形例に係る光学回折素子2Aの断面構成例および平面構成例を概略的に示している。図8は、第1の実施の形態の第2の変形例に係る光学回折素子2Bの断面構成例および平面構成例を概略的に示している。
[1.3 Modification of Optical Diffraction Element According to First Embodiment]
FIG. 7 schematically shows a cross-sectional configuration example and a planar configuration example of an optical diffraction element 2A according to a first modification of the first embodiment. FIG. 8 schematically shows a cross-sectional configuration example and a planar configuration example of an optical diffraction element 2B according to a second modification of the first embodiment.
 図5には、回折格子部6が所定パターンの開口として円形孔23を有する構成例を示したが、この所定パターンは、円孔状のパターンに限らず、例えば、線状のパターン、またはランダム状のパターンであってもよい。 FIG. 5 shows a configuration example in which the diffraction grating portion 6 has a circular hole 23 as an opening of a predetermined pattern. However, the predetermined pattern is not limited to a circular hole pattern, for example, a linear pattern or a random pattern. It may be a pattern.
 例えば、図7に示した第1の変形例に係る光学回折素子2Aのように、一方の面21に形成された回折格子部6Aが、所定パターンの開口として線孔23Aを有する構成であってもよい。この場合、他方の面22には線孔23Aに対応する線状のパターンからなる0次光補正部24Aを形成する。 For example, like the optical diffraction element 2A according to the first modification shown in FIG. 7, the diffraction grating portion 6A formed on one surface 21 has a line hole 23A as an opening of a predetermined pattern. Also good. In this case, a 0th-order light correction unit 24A having a linear pattern corresponding to the line hole 23A is formed on the other surface 22.
 また例えば、図8に示した第2の変形例に係る光学回折素子2Bのように、一方の面21に形成された回折格子部6Aが、所定パターンの開口としてランダム孔23Bを有する構成であってもよい。この場合、他方の面22にはランダム孔23Bに対応するランダムパターンの0次光補正部24Bを形成する。 Further, for example, as in the optical diffraction element 2B according to the second modification shown in FIG. 8, the diffraction grating portion 6A formed on one surface 21 has a random hole 23B as an opening of a predetermined pattern. May be. In this case, a 0th-order light correction unit 24B having a random pattern corresponding to the random hole 23B is formed on the other surface 22.
[1.4 効果]
 以上説明したように、第1の実施の形態に係る光源システムおよび測距システムによれば、0次光補正部を有する光学回折素子を備えるようにしたので、回折格子部で発生した0次光L0の強度を低減することが可能となる。これにより、0次光L0の強度を有効に調整することによって、高精度の測距が可能となる。これにより、例えば、高精度の生体認証を行うことが可能となる。
[1.4 Effect]
As described above, according to the light source system and the distance measuring system according to the first embodiment, since the optical diffraction element having the 0th-order light correction unit is provided, the 0th-order light generated in the diffraction grating unit. It becomes possible to reduce the intensity of L0. Thereby, it is possible to measure the distance with high accuracy by effectively adjusting the intensity of the 0th-order light L0. Thereby, for example, highly accurate biometric authentication can be performed.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。 It should be noted that the effects described in this specification are merely examples and are not limited, and other effects may be obtained. The same applies to the effects of the other embodiments thereafter.
<2.第2の実施の形態>
 次に、本開示の第2の実施の形態に係る光源システム、および測距システムについて説明する。なお、以下では、上記第1の実施の形態に係る光源システム、および測距システムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
<2. Second Embodiment>
Next, a light source system and a distance measuring system according to the second embodiment of the present disclosure will be described. In the following description, the same reference numerals are given to substantially the same components as those of the light source system and the ranging system according to the first embodiment, and the description thereof will be omitted as appropriate.
 図9は、第2の実施の形態に係る光源システムおよび測距システムの一構成例を概略的に示している。 FIG. 9 schematically shows a configuration example of the light source system and the distance measuring system according to the second embodiment.
 第2の実施の形態に係る光源システムおよび測距システムは、第1の実施の形態に係る光源システムおよび測距システムに対して、補正レンズ4をさらに備えた構成とされている。補正レンズ4は、光源1と光学回折素子2との間に配置され、光源1からの光を平行光となるように補正する。 The light source system and ranging system according to the second embodiment are configured to further include a correction lens 4 with respect to the light source system and ranging system according to the first embodiment. The correction lens 4 is disposed between the light source 1 and the optical diffraction element 2 and corrects the light from the light source 1 to be parallel light.
 一般的に測距および生体認証を行う際には、赤外光を用いる。光学回折素子2には、コリメート光とされた赤外光を照射することが好ましい。光源1から精度の良いコリメート光を射出するためには、光源1と光学回折素子2との間に、ある程度の距離が必要となることが一般的に知られている。光源1と光学回折素子2との間に補正レンズ4を配置することによって、光源1と光学回折素子2との間の距離を小さくすることができる。 Generally, infrared light is used for ranging and biometric authentication. The optical diffraction element 2 is preferably irradiated with infrared light that is collimated light. It is generally known that a certain distance is required between the light source 1 and the optical diffraction element 2 in order to emit highly accurate collimated light from the light source 1. By disposing the correction lens 4 between the light source 1 and the optical diffraction element 2, the distance between the light source 1 and the optical diffraction element 2 can be reduced.
 その他の構成、動作および効果は、上記第1の実施の形態に係る光源システムおよび測距システムと略同様であってもよい。 Other configurations, operations, and effects may be substantially the same as those of the light source system and the ranging system according to the first embodiment.
<3.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
<3. Other Embodiments>
The technology according to the present disclosure is not limited to the description of each of the above embodiments, and various modifications can be made.
 上記各実施の形態では、距離算出部31によって算出された距離データを生体認証に用いる場合を例に説明したが、生体認証以外の用途に距離データを用いてもよい。 In each of the above embodiments, the case where the distance data calculated by the distance calculation unit 31 is used for biometric authentication has been described as an example, but the distance data may be used for purposes other than biometric authentication.
 また、例えば、本技術は以下のような構成を取ることもできる。
 以下の構成の本技術によれば、0次光の強度を低減することが可能となる。また、0次光の強度を低減させる光学回折素子を製造することが可能となる。
For example, this technique can also take the following structures.
According to the present technology having the following configuration, the intensity of the zero-order light can be reduced. In addition, it is possible to manufacture an optical diffraction element that reduces the intensity of zero-order light.
(1)
 光を発する光源と、
 一方の面に形成され、前記光源からの光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、前記一方の面に対向する他方の面における、前記光源からの光の入射方向から見て前記開口に対応する領域の少なくとも一部の領域に形成され、前記回折格子部で発生した0次光を低減する0次光補正部とを含む光学回折素子と
 を備える
 光源システム。
(2)
 前記光源と前記光学回折素子との間に配置され、前記光源からの光を平行光となるように補正する補正レンズ、
 をさらに備えた
 上記(1)に記載の光源システム。
(3)
 前記0次光補正部は、UV硬化樹脂によって形成されている
 上記(1)または(2)に記載の光源システム。
(4)
 前記所定パターンは、円孔状、線状、およびランダム状のうち、いずれか1つである
 上記(1)ないし(3)のいずれか1つに記載の光源システム。
(5)
 前記UV硬化樹脂は、前記回折格子部を通過したUV光が照射されることにより硬化されている
 上記(3)に記載の光源システム。
(6)
 前記光学回折素子は、前記回折格子部と前記0次光補正部との間に配置された基板を含む
 上記(1)ないし(5)のいずれか1つに記載の光源システム。
(7)
 基板の一方の面に、遮光部材を所定のパターンで形成する工程と、
 前記基板における前記一方の面に対向する他方の面に、液体のUV硬化樹脂を接触させる工程と、
 前記基板に、前記一方の面側からUV光を照射する工程と、
 前記基板における前記他方の面を洗浄する工程と
 を含む
 光学回折素子製造方法。
(8)
 前記UV光を照射する工程は、
 前記他方の面に接触させた前記液体のUV硬化樹脂を硬化させる工程、を含む
 上記(7)に記載の光学回折素子製造方法。
(9)
 光を発する光源と、
 一方の面に形成され、前記光源からの光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、前記一方の面に対向する他方の面における、前記光源からの光の入射方向から見て前記開口に対応する領域の少なくとも一部の領域に形成され、前記回折格子部で発生した0次光を低減する0次光補正部とを含む光学回折素子と、
 前記光学回折素子から射出され、被写体に照射された前記回折光の反射光を撮像して画像データを生成する撮像部と、
 前記画像データに基づいて、前記被写体までの距離を算出する距離算出部と
 を備える
 測距システム。
(10)
 基板と、
 前記基板の一方の面に形成され、光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、
 前記一方の面に対向する前記基板の他方の面における、光の入射方向から見て前記開口に対応する領域の少なくとも一部の領域に形成され、前記回折格子部で発生した0次光を低減する0次光補正部と
 を含む
 光学回折素子。
(1)
A light source that emits light;
A diffraction grating portion that is formed on one surface and has a predetermined pattern opening through which light from the light source is incident, and that generates diffracted light based on the incident light, and on the other surface facing the one surface And an optical system including a zeroth-order light correction unit that is formed in at least a part of a region corresponding to the opening when viewed from the incident direction of light from the light source and reduces zeroth-order light generated in the diffraction grating unit. A light source system comprising a diffraction element.
(2)
A correction lens that is disposed between the light source and the optical diffraction element and corrects the light from the light source to be parallel light;
The light source system according to (1), further comprising:
(3)
The light source system according to (1) or (2), wherein the zero-order light correction unit is formed of a UV curable resin.
(4)
The light source system according to any one of (1) to (3), wherein the predetermined pattern is any one of a circular hole shape, a linear shape, and a random shape.
(5)
The light source system according to (3), wherein the UV curable resin is cured by being irradiated with UV light that has passed through the diffraction grating portion.
(6)
The light source system according to any one of (1) to (5), wherein the optical diffraction element includes a substrate disposed between the diffraction grating portion and the zero-order light correction portion.
(7)
Forming a light shielding member in a predetermined pattern on one surface of the substrate;
A step of bringing a liquid UV curable resin into contact with the other surface of the substrate facing the one surface;
Irradiating the substrate with UV light from the one surface side;
Cleaning the other surface of the substrate. An optical diffraction element manufacturing method.
(8)
The step of irradiating the UV light includes
The method for producing an optical diffraction element according to (7), further comprising a step of curing the liquid UV curable resin in contact with the other surface.
(9)
A light source that emits light;
A diffraction grating portion that is formed on one surface and has a predetermined pattern opening through which light from the light source is incident, and that generates diffracted light based on the incident light, and on the other surface facing the one surface And an optical system including a zeroth-order light correction unit that is formed in at least a part of a region corresponding to the opening when viewed from the incident direction of light from the light source and reduces zeroth-order light generated in the diffraction grating unit. A diffraction element;
An imaging unit that captures reflected light of the diffracted light emitted from the optical diffraction element and applied to a subject to generate image data;
A distance measuring system comprising: a distance calculating unit that calculates a distance to the subject based on the image data.
(10)
A substrate,
A diffraction grating portion that is formed on one surface of the substrate and has a predetermined pattern of openings through which light enters, and that generates diffracted light based on the incident light;
Reduced zero-order light generated in the diffraction grating portion formed in at least a part of the region corresponding to the opening when viewed from the light incident direction on the other surface of the substrate facing the one surface. An optical diffraction element comprising: a zero-order light correction unit.
 本出願は、日本国特許庁において2018年3月19日に出願された日本特許出願番号第2018-050773号、および2018年10月30日に出願された日本特許出願番号第2018-203709号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application is filed with Japanese Patent Application No. 2018-050773 filed on March 19, 2018 at the Japan Patent Office and Japanese Patent Application No. 2018-203709 filed on October 30, 2018. The priority is claimed as a basis, and the entire contents of this application are incorporated herein by reference.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (10)

  1.  光を発する光源と、
     一方の面に形成され、前記光源からの光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、
     前記一方の面に対向する他方の面における、前記光源からの光の入射方向から見て前記開口に対応する領域の少なくとも一部の領域に形成され、前記回折格子部で発生した0次光を低減する0次光補正部とを含む光学回折素子と
     を備える
     光源システム。
    A light source that emits light;
    A diffraction grating portion that is formed on one surface and has a predetermined pattern of openings through which light from the light source is incident, and that generates diffracted light based on the incident light;
    The zero-order light generated in the diffraction grating portion is formed on at least a part of the region corresponding to the opening when viewed from the incident direction of the light from the light source on the other surface facing the one surface. A light source system comprising: an optical diffractive element including a 0th-order light correction unit to reduce.
  2.  前記光源と前記光学回折素子との間に配置され、前記光源からの光を平行光となるように補正する補正レンズ、
     をさらに備えた
     請求項1に記載の光源システム。
    A correction lens that is disposed between the light source and the optical diffraction element and corrects the light from the light source to be parallel light;
    The light source system according to claim 1, further comprising:
  3.  前記0次光補正部は、UV硬化樹脂によって形成されている
     請求項1に記載の光源システム。
    The light source system according to claim 1, wherein the zero-order light correction unit is formed of a UV curable resin.
  4.  前記所定パターンは、円孔状、線状、およびランダム状のうち、いずれか1つである
     請求項1に記載の光源システム。
    The light source system according to claim 1, wherein the predetermined pattern is any one of a circular hole shape, a linear shape, and a random shape.
  5.  前記UV硬化樹脂は、前記回折格子部を通過したUV光が照射されることにより硬化されている
     請求項3に記載の光源システム。
    The light source system according to claim 3, wherein the UV curable resin is cured by being irradiated with UV light that has passed through the diffraction grating portion.
  6.  前記光学回折素子は、前記回折格子部と前記0次光補正部との間に配置された基板を含む
     請求項1に記載の光源システム。
    The light source system according to claim 1, wherein the optical diffraction element includes a substrate disposed between the diffraction grating part and the zero-order light correction part.
  7.  基板の一方の面に、遮光部材を所定のパターンで形成する工程と、
     前記基板における前記一方の面に対向する他方の面に、液体のUV硬化樹脂を接触させる工程と、
     前記基板に、前記一方の面側からUV光を照射する工程と、
     前記基板における前記他方の面を洗浄する工程と
     を含む
     光学回折素子製造方法。
    Forming a light shielding member in a predetermined pattern on one surface of the substrate;
    A step of bringing a liquid UV curable resin into contact with the other surface of the substrate facing the one surface;
    Irradiating the substrate with UV light from the one surface side;
    Cleaning the other surface of the substrate. An optical diffraction element manufacturing method.
  8.  前記UV光を照射する工程は、
     前記他方の面に接触させた前記液体のUV硬化樹脂を硬化させる工程、を含む
     請求項7に記載の光学回折素子製造方法。
    The step of irradiating the UV light includes
    The method of manufacturing an optical diffraction element according to claim 7, further comprising: curing the liquid UV curable resin in contact with the other surface.
  9.  光を発する光源と、
     一方の面に形成され、前記光源からの光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、前記一方の面に対向する他方の面における、前記光源からの光の入射方向から見て前記開口に対応する領域の少なくとも一部の領域に形成され、前記回折格子部で発生した0次光を低減する0次光補正部とを含む光学回折素子と、
     前記光学回折素子から射出され、被写体に照射された前記回折光の反射光を撮像して画像データを生成する撮像部と、
     前記画像データに基づいて、前記被写体までの距離を算出する距離算出部と
     を備える
     測距システム。
    A light source that emits light;
    A diffraction grating portion that is formed on one surface and has a predetermined pattern opening through which light from the light source is incident, and that generates diffracted light based on the incident light, and on the other surface facing the one surface And an optical system including a zeroth-order light correction unit that is formed in at least a part of a region corresponding to the opening when viewed from the incident direction of light from the light source and reduces zeroth-order light generated in the diffraction grating unit. A diffraction element;
    An imaging unit that captures reflected light of the diffracted light emitted from the optical diffraction element and applied to a subject to generate image data;
    A distance measuring system comprising: a distance calculating unit that calculates a distance to the subject based on the image data.
  10.  基板と、
     前記基板の一方の面に形成され、光が入射する所定パターンの開口を有し、入射した光に基づいて回折光を生成する回折格子部と、
     前記一方の面に対向する前記基板の他方の面における、光の入射方向から見て前記開口に対応する領域の少なくとも一部の領域に形成され、前記回折格子部で発生した0次光を低減する0次光補正部と
     を含む
     光学回折素子。
    A substrate,
    A diffraction grating portion that is formed on one surface of the substrate and has a predetermined pattern of openings through which light enters, and that generates diffracted light based on the incident light;
    Reduced zero-order light generated in the diffraction grating portion formed in at least a part of the region corresponding to the opening when viewed from the light incident direction on the other surface of the substrate facing the one surface. An optical diffraction element comprising: a zero-order light correction unit.
PCT/JP2019/008353 2018-03-19 2019-03-04 Light source system, optical diffraction element manufacturing method, distance measurement system, and optical diffraction element WO2019181457A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/963,771 US20210041536A1 (en) 2018-03-19 2019-03-04 Light source system, method of manufacturing diffractive optical element, ranging system, and diffractive optical element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-050773 2018-03-19
JP2018050773 2018-03-19
JP2018203709A JP7193304B2 (en) 2018-03-19 2018-10-30 Light source system, optical diffraction element manufacturing method, ranging system, and optical diffraction element
JP2018-203709 2018-10-30

Publications (1)

Publication Number Publication Date
WO2019181457A1 true WO2019181457A1 (en) 2019-09-26

Family

ID=67987759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008353 WO2019181457A1 (en) 2018-03-19 2019-03-04 Light source system, optical diffraction element manufacturing method, distance measurement system, and optical diffraction element

Country Status (1)

Country Link
WO (1) WO2019181457A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537252A (en) * 1993-12-23 1996-07-16 Xerox Corporation Double blazed binary diffraction optical element beam splitter
JP2005103991A (en) * 2003-09-30 2005-04-21 Dainippon Printing Co Ltd Method for producing duplicate stereotype
WO2006090807A1 (en) * 2005-02-25 2006-08-31 Nikon Corporation Exposure method and apparatus, and electronic device manufacturing method
JP2008171960A (en) * 2007-01-10 2008-07-24 Canon Inc Position detection device and exposure device
JP2008299084A (en) * 2007-05-31 2008-12-11 Ricoh Opt Ind Co Ltd Method of manufacturing optical element having fine irregular shape on the surface
JP2014209237A (en) * 2008-01-21 2014-11-06 プライムセンス リミテッド Optical designs for zero order reduction
JP2016001236A (en) * 2014-06-11 2016-01-07 株式会社エンプラス Diffraction grating and displacement measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537252A (en) * 1993-12-23 1996-07-16 Xerox Corporation Double blazed binary diffraction optical element beam splitter
JP2005103991A (en) * 2003-09-30 2005-04-21 Dainippon Printing Co Ltd Method for producing duplicate stereotype
WO2006090807A1 (en) * 2005-02-25 2006-08-31 Nikon Corporation Exposure method and apparatus, and electronic device manufacturing method
JP2008171960A (en) * 2007-01-10 2008-07-24 Canon Inc Position detection device and exposure device
JP2008299084A (en) * 2007-05-31 2008-12-11 Ricoh Opt Ind Co Ltd Method of manufacturing optical element having fine irregular shape on the surface
JP2014209237A (en) * 2008-01-21 2014-11-06 プライムセンス リミテッド Optical designs for zero order reduction
JP2016001236A (en) * 2014-06-11 2016-01-07 株式会社エンプラス Diffraction grating and displacement measuring device

Similar Documents

Publication Publication Date Title
JP5164509B2 (en) Photoelectric conversion device, photoelectric conversion device for visible light, and imaging system using them
IL276581A (en) Thin multi-aperture imaging system with auto-focus and methods for using same
JP4985061B2 (en) Spectroscopic apparatus and imaging apparatus
US20070097249A1 (en) Camera module
US20140192237A1 (en) Image processing apparatus, image processing method and program, and image pickup apparatus including image processing apparatus
WO2013054469A1 (en) Depth estimate image capture device and image capture element
TW200834434A (en) Image input apparatus, image input method, personal authentication apparatus, and electronic apparatus
JP2013124985A (en) Compound-eye imaging apparatus and distance measuring device
JP2005274925A (en) Focusing method and focusing device
US10021289B2 (en) Image pickup apparatus and image pickup system with point image intensity distribution calculation
US11460666B2 (en) Imaging apparatus and method, and image processing apparatus and method
JP2009164654A (en) Compound eye camera module
KR20160097299A (en) Imaging module and imaging device
JP7193304B2 (en) Light source system, optical diffraction element manufacturing method, ranging system, and optical diffraction element
WO2019159427A1 (en) Camera module adjustment device and camera module adjustment method
JP2010028289A (en) Imaging apparatus
US9841580B2 (en) Distance measuring apparatus
JP2009201008A (en) Compound-eye imaging apparatus
JP4656393B2 (en) Light source device
JP6550748B2 (en) Imaging device
WO2019181457A1 (en) Light source system, optical diffraction element manufacturing method, distance measurement system, and optical diffraction element
KR20060053147A (en) Imaging apparatus and imaging method
US20220139987A1 (en) Solid-state image sensor
US11215526B2 (en) Inspection apparatus and inspection method
JP2012195758A (en) Imaging module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771707

Country of ref document: EP

Kind code of ref document: A1