WO2019181450A1 - Daylighting member - Google Patents

Daylighting member Download PDF

Info

Publication number
WO2019181450A1
WO2019181450A1 PCT/JP2019/008331 JP2019008331W WO2019181450A1 WO 2019181450 A1 WO2019181450 A1 WO 2019181450A1 JP 2019008331 W JP2019008331 W JP 2019008331W WO 2019181450 A1 WO2019181450 A1 WO 2019181450A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
angle
light
protrusion
light beam
Prior art date
Application number
PCT/JP2019/008331
Other languages
French (fr)
Japanese (ja)
Inventor
佑輔 藤井
栄二 新倉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2019181450A1 publication Critical patent/WO2019181450A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a daylighting member.
  • a window having a prism surface is known (for example, Patent Document 1).
  • the window described in Patent Document 1 includes a transparent window plate that covers a prism sheet having a surface subjected to minute prism processing, and a window frame that supports the window plate.
  • the angle between the slope of the prism and the window plate is 40 °.
  • An object of the present invention is to suppress a change in the emission angle of the emitted light from the daylighting member even when the incident angle of the incident light on the daylighting member changes.
  • a daylighting member includes: A base material that transmits light, has a thickness in a first direction, and extends in a second direction orthogonal to the first direction; Projecting from the base material in the first direction and extending in the second direction; and
  • the protrusion includes an incident surface on which light is incident and a reflecting surface that reflects the light incident on the incident surface, The incident surface extends from the substrate in the first direction;
  • the daylighting member according to the present invention even when the incident angle of the incident light to the daylighting member changes, it is possible to suppress the change in the outgoing angle of the outgoing light from the daylighting member.
  • FIG. 2 is a perspective view showing a schematic configuration of a daylighting member according to Embodiment 1.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of a daylighting member according to Embodiment 1.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a protrusion of the lighting member according to Embodiment 1. It is a schematic diagram which shows the definition of the inclination of the reflective surface of a projection part. It is a schematic diagram which shows the behavior of the light ray in a projection part. It is a schematic diagram which shows the definition of the angle of the incident light with respect to a lighting member, and the angle of an emitted light.
  • FIG. 6 is a cross-sectional view of a modified example of a protrusion in the lighting member according to Embodiment 1.
  • FIG. 6 is a cross-sectional view of a modified example of a protrusion in the lighting member according to Embodiment 1.
  • FIG. 6 is a cross-sectional view of a modified example of a protrusion in the lighting member according to Embodiment 1.
  • FIG. 6 is a cross-sectional view of a modified example of a protrusion in the lighting member according to Embodiment 1. It is a schematic diagram which shows the behavior of the light ray which passes except a focus in a projection part. 6 is a schematic diagram showing the behavior of light rays in a daylighting member according to Embodiment 2. FIG. 6 is a schematic diagram showing an example of a daylighting member according to Embodiment 2. FIG. It is a figure which shows the simulation result of the angular intensity distribution of the emitted light in the lighting member which concerns on Embodiment 2. FIG.
  • the daylighting member described below is installed in, for example, a window. And a lighting member takes in sunlight indoors.
  • the daylighting member is, for example, a daylighting sheet. It is desired that the daylighting sheet realizes a stable amount of light and an irradiation range throughout the year.
  • the daylighting member according to the present invention suppresses the change in the emission angle of the light emitted from the protrusion with respect to the change in the incident angle of the incident light. This makes it possible to obtain a stable irradiation range throughout the year.
  • the coordinate axes of the xyz orthogonal coordinate system are shown in each drawing.
  • the x-axis direction is the first direction
  • the y-axis direction is the second direction
  • the z-axis direction is the third direction.
  • the x-axis direction is a direction orthogonal to the y-axis direction and the z-axis direction
  • the y-axis direction is a direction orthogonal to the x-axis direction and the z-axis direction
  • the z-axis direction is the x-axis direction and the y-axis direction. It is a direction orthogonal to.
  • the zx plane shown in each figure is a plane orthogonal to the y-axis direction.
  • the x-axis direction is a direction perpendicular to the surface 11 of the base material 10 of the daylighting member 1.
  • the x-axis direction is the thickness direction of the plate-shaped daylighting member 1.
  • the + x-axis direction is the direction on the surface 11 side of the substrate 10.
  • the ⁇ x-axis direction is the direction on the surface 12 side of the substrate 10.
  • external light for example, sunlight
  • the light emitted from the daylighting member 1 travels indoors on the ⁇ x axis direction side.
  • the y-axis direction is a direction that does not have the curvature of the reflection surface 15 of the cylindrical projection 13.
  • the + y-axis direction is the right side when the daylighting member 1 is installed from the protrusion 13 side when the daylighting member 1 is installed with the y-axis direction horizontal.
  • the ⁇ y-axis direction is the left side when the daylighting member 1 is viewed from the protrusion 13 side when the daylighting member 1 is installed with the y-axis direction horizontal. “Looking at the daylighting member 1 from the protrusion 13 side” means looking at the ⁇ x axis side from the + x axis side.
  • the z-axis direction is a direction perpendicular to the xy plane.
  • the + z-axis direction is a direction in which the incident surface 14 is disposed in one protrusion 13.
  • the ⁇ z-axis direction is a direction in which the reflecting surface 15 is disposed in one protrusion 13.
  • Embodiment 1 FIG. The first embodiment will be described below with reference to FIGS. In each drawing, the scale of a dimension may differ with components.
  • FIG. 1 is a perspective view showing a schematic configuration of a daylighting member 1 according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of the daylighting member 1 according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration of the protrusion 13 of the daylighting member 1 according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating the definition of the inclination of the reflection surface 15 of the protrusion 13.
  • FIG. 5 is a schematic diagram showing the behavior of light rays at the protrusion 13.
  • Figure 6 is a schematic diagram showing the definition of the angle theta OUT angle theta IN and the outgoing light L OUT of the incident light L IN for lighting member 1.
  • FIG. 7 is a schematic diagram showing the definition of coordinates on the reflecting surface 15 in the protrusion 13.
  • FIG. 8 is a diagram showing the traveling direction of the light beam passing through the focal point f when the solar altitude changes in the lighting member 1 and the emitting direction from the lighting member 1.
  • FIG. 9 is a diagram illustrating a simulation result of the angular intensity distribution of the outgoing light L OUT in the daylighting member 1 according to the first embodiment.
  • 10 to 12 are cross-sectional views of modifications of the protrusion 13 in the daylighting member 1 according to the first embodiment.
  • the daylighting member 1 includes a base material 10 and at least one protrusion 13.
  • “At least one protrusion 13” includes a plurality of protrusions 13.
  • a plurality of protrusions 13 are provided on the surface 11 (for example, the first surface) of the base material 10.
  • the protrusion 13 extends in the y-axis direction. That is, the bottom surface of the protrusion 13 is a surface on the zx plane.
  • the y-axis direction is a direction corresponding to the height direction of the columnar shape. That is, the protrusion 13 has a column shape extending in the y-axis direction.
  • the protrusion 13 protrudes from the base material 10 in the x-axis direction. Specifically, the tip of the protrusion 13 protrudes in the + x axis direction.
  • the protrusion 13 is formed on the surface 11. Specifically, the protrusion 13 is disposed on the surface 11 of the substrate 10. Specifically, the plurality of protrusions 13 are arranged in the z-axis direction on the surface 11 of the substrate 10.
  • the base material 10 has a plate shape.
  • the plate shape includes a sheet shape and a film shape.
  • the base material 10 includes a surface 11 and a surface 12 that is opposite to the surface 11 in the x-axis direction.
  • the surface 11 is disposed on the + x axis direction side of the daylighting member 1.
  • the surface 12 is disposed on the ⁇ x axis direction side of the daylighting member 1.
  • the surface 11 is a flat surface, for example.
  • the surface 12 is a flat surface, for example.
  • the surface 11 and the surface 12 are opposed to each other. For example, the surface 11 and the surface 12 are arranged in parallel.
  • the base material 10 has a thickness in the x-axis direction and extends in the y-axis direction and the z-axis direction.
  • the substrate 10 is formed of a material that transmits light. Therefore, the base material 10 transmits light.
  • the base material 10 may be formed of a resin film using, for example, a thermoplastic polymer, a thermosetting resin, a photopolymerizable resin, or the like.
  • a resin film acrylic polymer, olefin polymer, vinyl polymer, cellulose polymer, amide polymer, fluorine polymer, urethane polymer, silicone polymer, imide polymer, or the like can be used.
  • PMMA polymethyl methacrylate
  • the protrusion 13 includes an incident surface 14 and a reflecting surface 15 that reflects light incident on the incident surface 14.
  • the tip portion P of the protrusion 13 is a portion where the incident surface 14 and the reflecting surface 15 intersect. However, the boundary between the incident surface 14 and the reflecting surface 15 may be a curved surface.
  • the tip portion P is a point where the incident surface 14 and the reflecting surface 15 virtually intersect in the zx plane.
  • the protrusion 13 further includes a valley V 1 and a valley V 2 .
  • the valley portion V 1 of the protrusion 13 is an end portion of the incident surface 14 on the base material 10 side.
  • Valleys V 2 of the protruding portion 13 is an end portion of the base material 10 side of the reflecting surface 15.
  • the incident surface 14 is a surface on which light is incident. Light enters the protrusion 13 from the incident surface 14.
  • the light beam L 1 incident on the incident surface 14 reaches the reflecting surface 15.
  • the light beam L 1 that has reached the reflecting surface 15 is reflected by the reflecting surface 15.
  • the light beam L 1 that has reached the reflecting surface 15 is totally reflected by the reflecting surface 15.
  • the light beam L 2 reflected by the reflecting surface 15 reaches the surface 11.
  • the light beam L 2 that has reached the surface 11 travels in the substrate 10.
  • the light beam L 2 that has traveled through the substrate 10 reaches the surface 12.
  • the light beam L 2 that has reached the surface 12 is emitted from the surface 12.
  • the light emitted from the surface 12 is light L OUT .
  • the light L OUT is also called a light ray L OUT or an outgoing light L OUT .
  • the incident surface 14 extends from the base material 10 in the x-axis direction (specifically, the + x-axis direction).
  • the incident surface 14 is an optical surface.
  • the optical surface is a surface that suppresses wavefront disturbance and scattering because light is reflected, refracted, or transmitted.
  • the optical surface is a smooth surface. Thereby, the light incident on the incident surface 14 does not become scattered light.
  • the protrusion 13 has a focal point.
  • the point f (also referred to as the first point) is the focal point of the protrusion 13.
  • the point f is a point on a plane that is parallel to the plane including the valley portion V 1 and the valley portion V 2 and includes the tip portion P.
  • the point f is a focal point where the light beam from the base material 10 is reflected by the reflecting surface 15 and the reflected light beam from the reflecting surface 15 is collected.
  • light from the substrate 10 is a light ray incident from the substrate 10 to the projection 13, light rays incident on the projecting portion 13, parallel rays (e.g., rays parallel to the beam L 2 in FIG. 5) It is.
  • the reflecting surface 14 When the distance from the end E 1 to the point I 1 in the x-axis direction (specifically, the + x-axis direction) of the incident surface 14 is shorter than the distance from the end E 1 to the point I 2 , the reflecting surface The distance from the end E 2 to the point R 1 in 15 x-axis directions (specifically, the + x-axis direction) is shorter than the distance from the end E 2 to the point R 2 .
  • the distance on the incident surface 14 from the end E 1 to the incident position of the light beam L 1 on the incident surface 14 (that is, the point I 1 ) is the distance D in (also referred to as a first distance).
  • a distance on the reflection surface 15 from the end E 2 to the reflection position of the light beam L 1 (that is, the point R 1 ) is a distance D ref (also referred to as a second distance).
  • the distance D in changes continuously
  • the distance D ref changes continuously with the distance D in on a one-to-one basis.
  • the distance D in and the distance D ref have the same increase / decrease direction. In other words, the distance D in is increased the distance D ref with increasing distance D in the distance D ref decreases as decreases. Since the end E 1 and the end E 2 coincide with the tip end P on the zx plane, the relationship between the distance D in and the distance D ref described above is the end E 1 and the end E 2. Even if is replaced with the tip portion P, it is established.
  • the reflection surface 15 from the end E 2 to the valley V 2 using the formula (1) described later. can be set.
  • the incident surface 14 is, for example, a flat surface.
  • the incident surface 14 may be, for example, a cylindrical shape having a curvature in the x-axis direction (that is, a direction perpendicular to the surface 11).
  • the sign of curvature is not ask
  • the incident surface 14 may have a cylindrical shape that is convex with respect to the reflecting surface 15, that is, a cylindrical shape that has a bulge in the + z direction.
  • the incident surface 14 may have a cylindrical shape that is concave with respect to the reflecting surface 15, that is, a cylindrical shape that has a bulge in the ⁇ z direction.
  • the reflection surface 15 has a curved surface that is curved away from the incident surface 14.
  • the reflecting surface 15 has a curved surface protruding in a direction away from the incident surface 14.
  • the reflecting surface 15 has a curvature in the x-axis direction (that is, the direction perpendicular to the surface 11).
  • the reflective surface 15 does not have a curvature in the y-axis direction. That is, the reflecting surface 15 has a cylindrical shape.
  • a “cylindrical shape” has a curvature in one direction (eg, the first direction) and a curvature in a direction (eg, the second direction) perpendicular to that direction (ie, the first direction). There is no surface shape.
  • the cylindrical shape is not limited to a cylindrical shape.
  • the reflecting surface 15 has a cylindrical shape that is convex with respect to the incident surface 14, that is, a cylindrical shape that has a bulge in the ⁇ z direction.
  • the protrusion 13 can be made of, for example, a material such as acrylic resin, epoxy resin, or silicone resin. That is, the protrusion 13 can be formed of a material including an acrylic resin, an epoxy resin, or a silicone resin. These materials are organic materials having a property of transmitting light and photosensitivity. “Photosensitivity” is a property in which a substance undergoes a chemical change when irradiated with light. Moreover, what mixed the polymerization initiator, the coupling agent, the monomer, the organic solvent, etc. can be used for these organic materials. Furthermore, the polymerization initiator may contain various additive components. The various additive components are, for example, a stabilizer, an inhibitor, a plasticizer, an optical brightener, a release agent, a chain transfer agent, or other photopolymerizable monomer.
  • PMMA polymethyl methacrylate
  • the protruding portion 13 may be formed integrally with the base material 10.
  • the surface 11 is, for example, a plane passing through the valley V 1 and valleys V 2.
  • the protrusion 13 may be formed separately from the base material 10 and then integrated with the base material 10. However, it is desirable that the protrusion 13 is formed of the same material as the base material 10. Thereby, unnecessary refraction and reflection at the interface between the protrusion 13 and the substrate 10 can be avoided.
  • the point f is parallel to the plane including the valley part V 1 and the valley part V 2 and is on the plane including the tip part P.
  • the point f is a point on a line that is located on the opposite side of the reflecting surface 15 with respect to the incident surface 14 and is parallel to the y-axis direction.
  • the point f is a straight line passing through the tip P in the x-axis direction (specifically, the + x-axis direction) of the protrusion 13 and parallel to the z-axis direction in the zx plane.
  • the plane including the valley portion V 1 and the valley portion V 2 is, for example, the surface 11 of the base material 10.
  • a light ray that has entered the protrusion 13 from the incident surface 14 through the point f is defined as a light ray L 1 (for example, a first light ray).
  • the light beam L 1 reflected by the reflecting surface 15 is referred to as a light beam L 2 (for example, a second light beam).
  • the refraction angle of the light ray L 1 incident on the incident surface 14 is an angle ⁇ 1
  • the angle formed by the light ray L 2 reflected by the reflective surface 15 and the incident surface 14 is an angle. and ⁇ 2.
  • Light L 1 is the angle ⁇ formed by the tangent plane TP and the incident surface 14 of the Pt point of intersection with the reflecting surface 15 is defined by the following equation (1).
  • the point Pt is a point where the light beam L 1 is reflected by the reflecting surface 15.
  • the tangent plane TP is a plane in contact with the curved surface of the reflecting surface 15. Note that the angle ⁇ 1 , the angle ⁇ 2, and the angle ⁇ are angles on the zx plane.
  • the zx plane is a plane perpendicular to the direction in which the reflecting surface 15 has no curvature (that is, the y-axis direction).
  • (( ⁇ / 2) ⁇ 1 + ⁇ 2 ) / 2 (1) All the light rays incident on the incident surface 14 do not have to satisfy the above formula (1). That is, the above equation (1) may be established for at least a part of the light rays incident on the incident surface 14. In this case, at least some of the light incident on the incident surface 14, for example, a light L 1 described above.
  • the refraction angle ⁇ 1 of the light beam L 1 on the incident surface 14 is a variable.
  • An angle ⁇ 2 formed by the light ray L 2 with respect to the incident surface 14 is set.
  • the angle ⁇ 2 is an angle of the light beam L 2 traveling indoors.
  • the angle ⁇ 2 formed by the light beam L 2 may be set to be constant with respect to the angle ⁇ 1 .
  • the angle ⁇ 1 is a variable.
  • the angle ⁇ 2 is a constant (that is, a constant value).
  • the reflecting surface 15 designed based on the expression (1) reflects the light beam L 1 at a constant angle ⁇ 2 regardless of the angle ⁇ 1 .
  • the angle ⁇ 2 may be set so as to change with respect to the angle ⁇ 1 . Further, the angle ⁇ 2 may be set so as to change with respect to the angle range of the angle ⁇ 1 .
  • the relationship between the angle ⁇ and the angle ⁇ 1 defined by the equation (1) is shown in the equation (2).
  • the reflection on the reflection surface 15 is total reflection.
  • the angle ⁇ T represents a critical angle at the interface between the protrusion 13 and air. That is, when the total reflection occurs at the reflective surface 15, the critical angle of the light beam reflected by the reflecting surface 15 and theta T.
  • the “critical angle” is the smallest incident angle at which total reflection occurs when light travels from a high refractive index to a small one.
  • the reflecting surface 15 is a mirror surface.
  • the mirror surface is formed, for example, by coating the reflective surface 15 with a metal film or a dielectric film. These films reduce the transmission of light that does not satisfy the total reflection condition on the reflection surface 15.
  • the angle ⁇ 2 formed by the light beam L 2 is set to be constant with respect to the angle range of the angle ⁇ 1 .
  • the angle ⁇ 2 formed by each of the plurality of light beams L 2 with respect to the incident surface 14 is the same.
  • a plurality of light beams L 2 are parallel to each other.
  • the angle ⁇ IN shown in FIG. 5 is in the range of 20 ° ⁇ ⁇ IN ⁇ 90 °.
  • the angle ⁇ 1 has a one-to-one correspondence with the angle ⁇ IN .
  • the angle ⁇ 2 is expressed by Expression (3).
  • ⁇ 2 ⁇ (3)
  • the point f behaves as the focal point of the protrusion 13. Therefore, in this case, the point f is also referred to as the focal point f of the protrusion 13 or simply as the focal point f.
  • the focal point f of the protrusion 13 is located on the opposite side of the reflecting surface 15 with respect to the incident surface 14.
  • the focal point f is a point on a line parallel to the y axis.
  • the y axis is parallel to the direction in which the reflecting surface 15 has no curvature.
  • the angle theta 2 may be constant. However, in all the angular range of the angle theta 1 of the angular range, the angle theta 2 may be constant. If in some angular range of the angle theta 1 of the angular range angle theta 2 is constant, the angle theta 1 of the angular range, determined to cover a range of solar altitude at the installation location of the lighting member 1 Also good. In this case, the angle range of the angle theta IN, is set to correspond to the maximum value from the minimum value of the solar altitude at the installation location of the lighting member 1.
  • the angle range of the angle ⁇ IN corresponds to the minimum value of the solar altitude. 31 ° ⁇ ⁇ IN ⁇ 77 °.
  • the range of the angle ⁇ IN may be determined as 30 ° ⁇ ⁇ IN ⁇ 80 ° by rounding off the decimal place of the minimum value 31 ° and the maximum value 77 ° of the solar altitude.
  • the angle ⁇ 1 is calculated from the above formula (*), and the obtained angle ⁇ 1 , that is, the angle ⁇ 2 is constant in the angle range of the angle ⁇ 1 corresponding to the minimum value to the maximum value of the solar altitude. You may make it become. It is also possible to further reduce the lower limit of the angle theta IN considering the like glare from the ground.
  • the focal point f is a straight line passing through the tip portion P in the x-axis direction (specifically, the + x-axis direction) of the protrusion 13 in the zx plane, and is parallel to the z-axis direction. Located on a straight line.
  • light L IN reaches the incident surface 14 of the projection 13 of the lighting member 1 through the focal point f.
  • the light L IN also referred to as the incident light L IN.
  • the light beam L IN reaches the incident surface 14 at an angle ⁇ IN , for example.
  • Light L IN reaching the entrance surface 14 is refracted at the interface between air and the incident surface 14.
  • the angle ⁇ IN of the light incident on the protrusion 13 is defined by the inclination of the light ray L IN with respect to the x axis on the zx plane.
  • Angle theta IN is + a x-axis direction is 0 °, + direction of rotation from the x-axis direction to the + z-axis direction is positive (+), negative direction of rotation of the -z axis direction from the + x-axis direction (-) to .
  • the light beam L 1 refracted by the incident surface 14 enters the protrusion 13.
  • the light ray L 1 travels toward the reflecting surface 15.
  • the light beam L 1 that has reached the reflecting surface 15 is reflected by the reflecting surface 15.
  • the reflection at the reflection surface 15 is total reflection at the interface between the protrusion 13 and air, for example.
  • the light beam L 2 reflected by the reflecting surface 15 travels toward the surface 11. The angle between the ray L 2 and the x-axis and the angle beta.
  • the incident surface 14 is inclined at an inclination angle ⁇ in the positive direction with respect to the x-axis.
  • the range of the inclination angle ⁇ of the incident surface 14 is determined by the following equation (4). ⁇ ⁇ ⁇ (4)
  • the inclination angle ⁇ of the incident surface 14 is preferably within the range of the following formula (5). ⁇ ⁇ ⁇ ⁇ 60 ° (5)
  • the inclination angle ⁇ of the incident surface 14, light rays L 2 reflected by the reflecting surface 15 is provided in order to avoid reaching the entrance surface 14 again. That is, when the angle ⁇ of the light beam L 2 reflected by the reflecting surface 15 is larger than the inclination angle ⁇ , a part of the light beam L 2 reflected by the reflecting surface 15 is reflected by the incident surface 14. Therefore, the light beam L 2 reflected by the incident surface 14 is not emitted from the lighting member 1 at the emission angle ⁇ OUT .
  • Expression (4) the directivity of the light L OUT emitted from the daylighting member 1 can be improved.
  • the material of the lighting member 1 is, for example, PMMA.
  • the incident angle of light from air to PMMA exceeds 60 degrees, the reflectance of light on the surface of PMMA exceeds 10%. Therefore, in order to suppress a decrease in light utilization efficiency on the incident surface 14, the incident angle of light on the incident surface 14 is desirably 60 degrees or less.
  • the incident angle of the light ray L IN having a large angle ⁇ IN becomes large.
  • the angle ⁇ IN is the largest, it is 90 degrees.
  • the angle ⁇ IN is 90 degrees, the incident angle to the incident surface 14 is the angle ⁇ .
  • the angle ⁇ is small, the incident angle of the light ray L IN having a small angle ⁇ IN is large.
  • the angle ⁇ IN is the smallest, it is 20 degrees.
  • the incident angle to the incident surface 14 is (70 degrees ⁇ ).
  • the angle ⁇ is also related to the size of the room where the external light is incident.
  • the angle ⁇ is set in a range of 5 degrees to 10 degrees. From equation (4), the angle ⁇ is set to be equal to or greater than the angle ⁇ , and therefore the angle ⁇ is a value of 5 degrees to 10 degrees or more. Even when the angle ⁇ and the angle ⁇ are the same, the incident angle of the light on the incident surface 14 is a value close to 60 degrees.
  • the angle ⁇ is 10 degrees or more, the incident angle of light on the incident surface 14 is 60 degrees or less. Therefore, it is possible to suppress a decrease in light utilization efficiency at the incident surface 14.
  • both the base material 10 and the protrusion 13 are formed of PMMA. For this reason, as shown in FIG. 5, the light beam L ⁇ b > 2 goes straight at the interface between the protruding portion 13 and the base material 10.
  • the light beam L 2 that has traveled straight through the interface between the protrusion 13 and the substrate 10 reaches the surface 12.
  • the light beam L 2 that has reached the surface 12 is emitted from the surface 12 in the ⁇ x-axis direction.
  • the light beam emitted from the surface 12 is the light beam L OUT .
  • Ray L 2 is a light ray L OUT is refracted by the surface 12.
  • Ray L 2 is refracted at the interface between the surface 12 and the air.
  • the exit angle of the light beam L OUT is the exit angle ⁇ OUT .
  • the light beam L OUT from the daylighting member 1 travels indoors, for example.
  • the angle ⁇ OUT of the light emitted from the lighting member 1 is defined by the inclination of the light ray L OUT with respect to the x axis on the zx plane.
  • the angle ⁇ OUT is 0 ° in the ⁇ x-axis direction, the rotation direction from the ⁇ x-axis direction to the + z-axis direction is positive (+), and the rotation direction from the ⁇ x-axis direction to the ⁇ z-axis direction is negative ( ⁇ ).
  • FIG. 7 will be described using x′y ′ coordinates.
  • the focal point f is the origin in the x′y ′ coordinate.
  • the x ′ axis corresponds to the x axis of the xyz coordinates shown in other figures.
  • the + x′-axis direction corresponds to the ⁇ x-axis direction of the xyz coordinate.
  • the y ′ axis corresponds to the z axis of the xyz coordinate.
  • the + y′-axis direction corresponds to the + z-axis direction of the xyz coordinate.
  • the intersection (origin) of the x ′ axis and the y ′ axis is the focal point f.
  • the angle between the light beam LIN and the y ′ axis is the angle ⁇ i .
  • the angle formed by the incident surface 14 and the x ′ axis is an angle ⁇ .
  • the light ray L ⁇ i is emitted at an angle ⁇ i from the origin of the x′y ′ coordinate system (that is, the focal point f).
  • the light L IN from the origin (the focus f) emitted at an angle theta i and beam L .theta.i.
  • the coordinates of the intersection of the light beam L ⁇ i and the incident surface 14 are ( ⁇ x ′ i , ⁇ y ′ i ).
  • the angle ⁇ i ⁇ 1 is an angle smaller than the angle ⁇ i .
  • the light beam L ⁇ ′i is a light beam that is refracted at the incident surface 14 and is incident on the protrusion 13.
  • the angle formed between the light beam L ⁇ ′i and the y ′ axis is an angle ⁇ ′ i .
  • the coordinates of the intersection of the light ray L ⁇ ′i and the reflecting surface 15 are (x ′ i , y ′ i ).
  • Rays L Shita'i reflected by the reflecting surface 15 is a ray L .beta.i.
  • the light beam L ⁇ ′i ⁇ 1 is a light beam that is refracted at the incident surface 14 and is incident on the protrusion 13.
  • the angle formed between the light beam L ⁇ ′i ⁇ 1 and the y ′ axis is an angle ⁇ ′ i ⁇ 1 .
  • the coordinates of the intersection of the light beam L ⁇ ′i ⁇ 1 and the reflecting surface 15 are (x ′ i ⁇ 1 , y ′ i ⁇ 1 ).
  • Light L ⁇ 'i-1 reflected by the reflection surface 15 is a ray L ⁇ i-1.
  • the angle between the tangent line of the reflecting surface 15 at the point (x ′ i ⁇ 1 , y ′ i ⁇ 1 ) and the x ′ axis is defined as an inclination angle ⁇ i ⁇ 1 .
  • ⁇ i-1 is expressed as a solution of simultaneous equations of the following equations (7), (8a), and (8b).
  • 0 sin ( ⁇ ′ i ⁇ 1 + ⁇ i ⁇ 1 ) ⁇ sin ((90 ⁇ i ⁇ 1 ) + ⁇ i ⁇ 1 ) (7)
  • angles ⁇ ′ i ⁇ 1 and ⁇ ′ i are expressed by the following equations.
  • ⁇ ′ i ⁇ 1 arcsin (sin ( ⁇ i ⁇ 1 ) / n) + ⁇ (8a)
  • ⁇ ′ i arcsin (sin ( ⁇ i ) / n) + ⁇ (8b)
  • n is the refractive index of the protrusion 13.
  • ⁇ x ′ i and ⁇ y ′ i are expressed by the following equations (9a) and (9b).
  • ⁇ x ′ i y ′ 0 ⁇ tan ( ⁇ i ) / (1 + tan ( ⁇ ) ⁇ tan ( ⁇ i ))
  • ⁇ y ′ i y ′ 0 ⁇ x ′ i ⁇ tan ( ⁇ ) ⁇ (9b)
  • the initial value y ′ 0 of y ′ i is an arbitrary value, and the scale of the protrusion can be changed according to y ′ 0 .
  • the reflection surface 15 is a curve formed by changing the point (x ′ i , y ′ i ) in the range of 0 ° ⁇ ⁇ i ⁇ 70 °, which is defined by the above equations (9a) and (9b).
  • the reflecting surface 15 becomes a curved surface.
  • the reflecting surface 15 becomes a polyhedron.
  • the reflecting surface 15 is a surface that converts the light beam L .theta.i emitted at an angle theta i from the origin of the x'y 'coordinate system on the ray L .beta.i output angle beta i.
  • the origin of the x′y ′ coordinate system is the focal point f of the protrusion 13. Therefore, light that passes through the focal point f of the projection 13 enters the projection 13 (ray L .theta.i) is reflected at an angle ⁇ in the reflecting surface 15 irrespective of the angle theta IN.
  • the incident angle ⁇ IN satisfies the following formula (11). 20 ° ⁇ ⁇ IN ⁇ 90 ° (11)
  • the light beam L 2 reflected at the reflection surface 15 at the angle ⁇ is refracted by the surface 12 and is emitted from the daylighting member 1 at the angle ⁇ OUT .
  • angle ⁇ OUT is expressed by the following formula (12) using the angle ⁇ and the refractive index n of the protrusion 13.
  • ⁇ OUT arcsin (n ⁇ sin ( ⁇ )) (12)
  • the solar altitude range S is a range of the angle ⁇ IN represented by Expression (11).
  • the light passing through the focal point f (beam L .theta.i), as shown in FIG. 6, is emitted from the lighting member 1 at the exit angle theta OUT.
  • the daylighting member 1 can be used to supplement the power of the light source in an instrument such as a lighting device, and can also be used as a substitute for the light source in an instrument such as a lighting device.
  • the daylighting member 1 shown in Embodiment 1 enables stable daylight throughout the year.
  • the tip of the protrusion 13 is cut. That is, as shown in FIG. 10, the tip end portion P of the protruding portion 13 is cut.
  • the tip P is an intersection of the extension lines of the incident surface 14 and the reflecting surface 15 on the zx plane.
  • the distal end portion P is cut, for example, in parallel to the yz plane.
  • the protrusion 13 cannot capture light having a smaller incident angle when entering the incident surface 14 than light entering from the end E 1 on the distal end portion P side of the incident surface 14 through the focal point f. That is, the lighting efficiency is reduced.
  • the end portion E 2 is an end portion of the distal portion P side of the reflecting surface 15.
  • the focal point f can be arranged on a cutting plane parallel to the yz plane.
  • the reflection surface 15 of the protrusion 13 shown in FIG. 5 is moved in the ⁇ z-axis direction so that the shape of the reflection surface 15 is adjusted to match the incident light.
  • light parallel to the z-axis can be incident. For this reason, the reduction of the lighting efficiency as described above does not occur.
  • the focal point f is located in the ⁇ x-axis direction with respect to the tip portion P in the x-axis direction. That is, the focal point f is located closer to the base material 10 than the front end portion P in the thickness direction of the base material 10.
  • the amount of light incident on the focal point f from the ⁇ x-axis direction side of the focal point f is small due to the situation where the daylighting member 1 is disposed. That is, the amount of light incident on the focal point f from the base material 10 side is smaller than the focal point f in the thickness direction of the base material 10. Therefore, the effect of the daylighting is small in the portion of the protrusion 13 that is located on the + x axis direction side from the plane that includes the focal point f and is parallel to the yz plane.
  • the focal point f is located in the + x-axis direction with respect to the tip portion P in the x-axis direction. That is, the focal point f is located on the opposite side of the base material 10 with respect to the distal end portion P in the thickness direction of the base material 10. Note that the protrusion 13 cannot capture light having a smaller incident angle when entering the incident surface 14 than light entering the tip P through the focal point f.
  • the projection 13 shown in FIG. 5 can take in external light most efficiently.
  • the focal point f of the protrusion 13 shown in FIG. 5 is located on a plane that includes the tip P and is parallel to the surface 11 of the substrate 10.
  • the relationship between the distance D between the tip portions P of the protrusions 13 adjacent to each other and the width W on the incident surface 14 irradiated with the incident light LIN is expressed by the following equation (13).
  • the distance D is the length on the zx plane between the tips P of the protrusions 13 adjacent to each other.
  • Width W is the length of the z-x plane of the incident surface 14 of the incident light L IN is irradiated.
  • the width W is irradiated by the width of the incident light L IN at the incident surface 14.
  • W D / (cos ( ⁇ ) ⁇ tan ( ⁇ IN )) (13)
  • the width of the incident light LIN irradiated on the reflecting surface 15 is also reduced.
  • the distance D the amount of incident light L IN entering the projection 13 without passing through the smaller the focal point f is suppressed. Therefore, variation in the angle ⁇ OUT of the light L OUT emitted from the daylighting member 1 is also suppressed. That is, the directivity of the light L OUT emitted from the daylighting member 1 is improved.
  • the directivity of the light L OUT emitted from the daylighting member 1 is improved by arranging the protrusions 13 densely rather than arranging the protrusions 13 in the z-axis direction with a large interval. That is, the directivity of the light L OUT emitted from the daylighting member 1 is improved by arranging the projections 13 densely, rather than arranging the projections 13 with a wide interval in the z-axis direction.
  • the most projecting portion 13 but closely lined shape, a shape in which the valley portion V 2 of the protruding portion 13 is connected adjacent to the valleys V 1 of the protrusion 13 with.
  • the most protruding part 13 is arranged closely the shape, a shape in which the valley portion V 1 of the certain projection 13 and the valleys V 2 of the adjacent protrusions 13 coincide in the z-axis direction. That is, the “closely arranged shape” is a shape in which the protrusions 13 are continuously arranged.
  • the “closely arranged shape” indicates a shape in which the surface 11 of the base material 10 does not appear between the protruding portions 13 arranged.
  • the “closely arranged shape” includes, for example, a shape in which the valleys V 1 and V 2 of the adjacent protrusions 13 are connected by curved surfaces in consideration of formability and the like. Further, “continuous” means to continue without a break.
  • FIG. 9 is a diagram showing a simulation result of the intensity distribution of the outgoing light with respect to the angle ⁇ OUT of the outgoing light.
  • the intensity distribution of the emitted light within the range of the distance I from the daylighting member 1 is shown.
  • direct light means sunlight that does not contain diffuse light, and is generally direct sunlight.
  • Sunlight includes direct light and scattered light. Direct light is light received directly from the sun. Scattered light is light reflected, refracted or scattered by something sunlight.
  • direct light is treated as parallel light.
  • the daylighting member 1 is desired to emit light toward the ceiling.
  • light having an angle ⁇ OUT smaller than zero ( ⁇ OUT ⁇ 0) is light directed toward the floor.
  • the light toward the floor becomes glare light that makes a person in the room feel dazzling. For this reason, it is desirable to suppress the light which goes to a floor direction.
  • the emitted light that is, the light beam L OUT
  • the emitted light has an angular distribution
  • the outgoing angle ⁇ P at which the intensity of the outgoing light (that is, the light beam L OUT ) is maximum is as follows. In spring equinox, the emission angle ⁇ P is 23.5 °. In the summer solstice, the emission angle ⁇ P is 19.5 °. In the winter solstice, the emission angle ⁇ P is 10.5 °. The change in the angle of the outgoing light (that is, the light beam L OUT ) is suppressed to be smaller than the change in the angle of the incident light (that is, the light beam L IN ) due to the seasonal change.
  • the lighting member 1 even if the incident angle of the incident light L IN to the incident surface 14 is changed, suppressing the change of the emission angle theta OUT of the output light L OUT from the lighting member 1 Can do.
  • Embodiment 2 will be described with reference to FIGS.
  • the scale of a dimension may differ with components.
  • Embodiment 2 the light that is irradiated onto the floor is reduced by using the light shielding portion 21.
  • FIG. 13 shows the behavior of light rays when incident lights having different angles ⁇ IN (that is, light rays L IN ) are reflected at the same location on the reflecting surface 15.
  • the angles ⁇ , ⁇ ′, and ⁇ ′′ are angles with respect to the x axis.
  • the angle ⁇ IN of the reflected light increases as the angle ⁇ IN of the incident light (ie, light ray L IN ) increases. Becomes bigger.
  • the smaller the angle ⁇ IN of the incident light ie, the light beam L 2
  • the smaller the angle ⁇ of the reflected light ie, the light beam L 2 ).
  • a light ray passing through the focal point f is a light ray L.
  • a light ray that does not pass through the focal point f is defined as a light ray L ′.
  • the angle at which the light beam L is incident is defined as an angle ⁇ IN .
  • the angle at which the light beam L ′ is incident is defined as an angle ⁇ ′ IN .
  • the angle of the reflected light of the light beam L is defined as an angle ⁇ .
  • the angle of the reflected light of the light ray L ′ is defined as an angle ⁇ ′.
  • Light L incident on the projection 13 of the focal point f in street angle theta IN is a point R the point on the reflecting surface 15 to reach.
  • the angle ⁇ ′ IN is larger than the angle ⁇ IN
  • the angle ⁇ ′ becomes larger than the angle ⁇ .
  • the angle ⁇ usually has a value larger than 0 (zero). For this reason, the angle ⁇ ′ is also larger than 0 (zero). Then, the reflected light of the light beam L ′ is applied to the ceiling, for example.
  • the light that does not pass through the IN indicates smaller than the angle theta IN.
  • Focal f beam L angle theta to.
  • the angle at which the light beam L ′′ is incident is defined as an angle ⁇ ′′ IN .
  • the angle of the reflected light of the light beam L ′′ is defined as an angle ⁇ ′′.
  • angle ⁇ ′′ IN is smaller than angle ⁇ IN
  • angle ⁇ ′′ is smaller than angle ⁇ .
  • angle ⁇ ′′ is greater than 0 (zero).
  • the light beam L ′′ is applied to the ceiling.
  • the angle ⁇ ′′ is smaller than 0 (zero)
  • the light beam L ′′ is applied to the floor. .
  • the daylighting member 1 As shown in the first embodiment, in the daylighting member 1, light with an angle ⁇ ′′ smaller than 0 (zero) is suppressed. However, the light with the angle ⁇ ′′ smaller than 0 (zero) is better.
  • the light ray L ′ passes through the point located on the + z-axis direction side with respect to the focal point f on the plane including the focal point f and the tip P, and enters the incident surface 14. Incident.
  • the angle theta "If IN is less than the angle theta IN is light L" passes through the point located -z axis direction side than the focal point f on the plane including the focal point f and the tip portion P incident Incident on the surface 14.
  • the light shielding unit 21 is provided in the light shielding member 20, for example. Thereby, the occurrence of glare can be suppressed.
  • the daylighting member 2 includes a light shielding member 20 in addition to the base material 10 and the protrusions 13 described in the first embodiment.
  • the light shielding member 20 includes at least one light shielding portion 21 and a base material 22.
  • the light shielding portion 21 is provided on the surface or inside of the base material 22 on the ⁇ x axis direction side.
  • the base material 22 is formed of a material that transmits light.
  • the base material 22 may be formed from a resin film using, for example, a thermoplastic polymer, a thermosetting resin, a photopolymerizable resin, or the like.
  • a resin film an acrylic polymer, an olefin polymer, a vinyl polymer, a cellulose polymer, an amide polymer, a fluorine polymer, a urethane polymer, a silicone polymer, an imide polymer, or the like can be used.
  • polymethyl methacrylate (PMMA) is used as an example of the material of the base material 22.
  • the light shielding unit 21 adjusts the incident range of light on the incident surface 14.
  • the light shielding part 21 is formed on a surface including the focal point f and the tip part P, for example.
  • the light shielding portion 21 extends in the z-axis direction from the tip portion P in the x-axis direction (specifically, the + x-axis direction) of the incident surface 14.
  • the light shielding part 21 is formed in the range from the focal point f to the tip part P. That is, the light shielding part 21 is formed in a band shape.
  • a plurality of light shielding portions 21 are formed on the base material 22.
  • the plurality of light shielding portions 21 are arranged in parallel to each other on the base material 22. The interval between the adjacent light shielding portions 21 is equal to the interval between the tip portions P of the adjacent protruding portions 13.
  • the light shielding portion 21 may be arranged so that light passing through the focal point f is incident on the incident surface 14. In this case, the effect of the daylighting member 1 described in the first embodiment is also obtained.
  • the light shielding part 21 is a film formed of, for example, a black pigment.
  • the light shielding portion 21 is a black pigment printing film.
  • the light shielding part 21 may be a film formed of a white pigment.
  • the light shielding unit 21 may be, for example, a white pigment printing film.
  • the light shielding portion 21 is a black pigment printing film.
  • a cutting surface 24 is formed by cutting the vicinity of the tip portion P of the protruding portion 13 along a plane parallel to the yz plane, and the light shielding member 20 is formed on the protruding portion 13 by the cutting surface 24. It may be fixed.
  • FIG. 16 the intensity distribution of the emitted light within the range of the distance I from the daylighting member 2 is shown.
  • the outgoing angle ⁇ P at which the intensity of the outgoing light is maximum is as follows. In spring equinox, the emission angle ⁇ P is 23.5 °. In the summer solstice, the emission angle ⁇ P is 19.5 °. In the winter solstice, the emission angle ⁇ P is 10.5 °. The change in the angle of the outgoing light is suppressed to be smaller than the change in the angle of the incident light due to the seasonal change.
  • supplementary notes (1) and supplementary notes (2) are each independently labeled. Therefore, for example, “Appendix 1” exists in both appendices (1) and (2).
  • a daylighting member that meets the requirements
  • Appendix 3 The daylighting member according to appendix 1 or 2, wherein a focal point of the at least one protrusion is located at a position facing the incident surface.
  • the focal point is a straight line passing through a tip portion of the at least one protrusion in the first direction on a plane orthogonal to the second direction, and is orthogonal to the first direction and the second direction.
  • the daylighting member according to attachment 3 which is located on a straight line parallel to the third direction.
  • the at least one protrusion includes a plurality of protrusions;
  • the daylighting member according to any one of supplementary notes 1 to 5, wherein the plurality of protrusions are arranged in a third direction orthogonal to the first direction and the second direction.
  • Appendix 8 The daylighting member according to any one of appendices 1 to 7, wherein the base material has a plate shape.
  • the said base material is a lighting member as described in any one of the additional remarks 1-8 currently formed with the resin film.
  • ⁇ Appendix 10> The daylighting member according to any one of appendices 1 to 9, wherein the at least one protrusion is formed of a material including an acrylic resin, an epoxy resin, or a silicone resin.
  • ⁇ Appendix 11> A light-shielding part that adjusts an incident range of light on the incident surface; The light shielding portion extends from a tip portion of the incident surface in the first direction in a third direction orthogonal to the first direction and the second direction.
  • ⁇ Appendix 12> The daylighting member according to supplementary note 11, wherein the light shielding portion is a film formed of a black pigment.
  • the incident surface is arranged extending from the surface
  • the reflective surface is arranged extending from the surface and has a cylindrical shape having a curvature in a first direction perpendicular to the surface;
  • the direction having no cylindrical curvature is the second direction
  • the first direction and the direction perpendicular to the second direction is the third direction
  • a point on a line parallel to the second direction that is located on the opposite side of the reflecting surface with respect to the incident surface is defined as a first point
  • a light ray that has entered the incident surface through the first point is defined as a first point.
  • the first light beam reflected by the reflecting surface is the second light beam
  • the plane perpendicular to the second direction is the first plane
  • the angle on the first plane of the refraction angle of the first light beam at the incident surface and the angle theta 1 the angle the angle on the first plane of the angle of the second light flux to the incident surface ⁇ 2
  • the end of the incident surface opposite to the surface is the first end
  • the end of the reflecting surface opposite to the surface is the second end
  • the length on the incident surface from the first end to the incident position of the first light beam is a first length
  • the first end is the first length from the second end.
  • ⁇ Appendix 3> A light-shielding portion that prevents light incident on the side opposite to the incident surface with respect to the second point by the reflective surface by shielding light incident from the incident surface;
  • the daylighting member according to supplementary note 1 or 2 wherein the light-shielding portion is arranged from the end portion toward the side opposite to the reflecting surface.
  • ⁇ Appendix 4> Two surfaces parallel to a straight line connecting the first and second ends and a thickness in a direction opposite to a direction from the second end toward one surface of the base material, the first end.
  • the lighting member according to appendix 1 or 2 further comprising a light-shielding portion extending in a direction parallel to a straight line connecting the first end portion and the third end portion.
  • ⁇ Appendix 5> The daylighting member according to any one of supplementary notes 3 to 4, wherein the light shielding portion includes a light shielding portion on one surface of the protrusion portion.
  • the light-shielding portion has a width that passes through the second end portion and the second end portion of the protrusion, and is parallel to one surface of the base material.
  • the lighting member according to any one of supplementary notes 3 to 5, which is equal in length to a straight line connecting a point located on the opposite side.
  • the light-shielding portion has a width that passes through the second end portion and the second end portion of the protrusion, and is parallel to one surface of the base material.
  • the lighting member according to any one of supplementary notes 3 to 6, which is equal to a length of a straight line connecting a point located on the opposite side.
  • ⁇ Appendix 8> The daylighting member according to any one of appendices 3 to 7, wherein the daylighting member and the light-shielding portion are bonded together by filling a part of the plurality of protrusions included in the daylighting member with an adhesive layer.
  • ⁇ Appendix 12> The daylighting member according to any one of appendices 1 to 11, wherein the reflecting surface has a concave shape with respect to the first light beam.
  • a base material that transmits light has a thickness in a first direction, and extends in a second direction orthogonal to the first direction; Projecting from the base material in the first direction and extending in the second direction; and
  • the protrusion includes an incident surface on which light is incident and a reflecting surface that reflects the light incident on the incident surface, The incident surface extends from the substrate in the first direction;
  • the reflective surface is a cylindrical shape having a curvature in the first direction; At least a part of the light beam incident on the incident surface passes through a first point which is a point on a line parallel to the second direction and located on the opposite side of the reflecting surface with respect to the incident surface.
  • the daylighting member according to 2.
  • the protrusion has a focal point;
  • the focal point of the protrusion is a focal point where the light beam from the base material is reflected by the reflective surface and the reflected light beam from the reflective surface is collected,
  • the light beam from the base material is a light beam incident on the protrusion from the base material,
  • the daylighting member according to any one of appendices 1 to 3, wherein the light beam incident on the protrusion is a parallel light beam.
  • ⁇ Appendix 5> The refraction angle ⁇ 1 changes according to the incident angle ⁇ IN of the light beam incident on the protrusion to the protrusion,
  • the refraction angle ⁇ 1 changes according to the incident angle ⁇ IN of the light beam incident on the protrusion to the protrusion
  • the angular range of the incident angle theta IN is lighting member according to Appendix 3 or 4 corresponds to the maximum value from the minimum value of the solar altitude at the installation location of the lighting member.
  • the focal point of the protrusion is a straight line passing through the tip of the protrusion in the first direction on a plane orthogonal to the second direction, and orthogonal to the first direction and the second direction.
  • the lighting member according to any one of supplementary notes 4 to 8, which is located on a straight line parallel to the third direction.
  • the distance on the incident surface from the tip of the protrusion to the incident position of the light beam incident on the incident surface is defined as a first distance.
  • the distance on the reflection surface from the tip of the projection to the reflection position of the light beam incident on the incident surface is a second distance.
  • ⁇ Appendix 12> A plurality of the protrusions; The lighting member according to any one of supplementary notes 1 to 11, wherein the plurality of protrusions are arranged in a third direction orthogonal to the first direction and the second direction.
  • ⁇ Appendix 14> A light-shielding part that adjusts an incident range of light on the incident surface; The said light-shielding part extends in the 3rd direction orthogonal to the said 1st direction and the said 2nd direction from the front-end

Abstract

A daylighting member (1) has a substrate (10) and a projecting part (13) which protrudes in a first direction from the substrate (10) and extends in a second direction. The projecting part (13) includes an incidence surface (14) on which light is incident, and a reflecting surface (15) for reflecting light incident on the incidence surface (14). In a plane orthogonal to the second direction, the expression φ = ((π/2) – θ1 + θ2)/2 is satisfied with respect to at least a portion of a light ray (L1) incident on the incidence surface (14), where θ1 is the refracting angle of a light ray (L1) incident on the incidence surface (14), θ2 is the angle formed by the incidence surface (14) and a light ray (L2) reflected by the reflecting surface (15), and φ is the angle formed by the incidence surface (14) and a tangential plane (TP) at the point (Pt) at which the light ray (L2) is reflected by the reflecting surface (15).

Description

採光部材Daylighting member
 本発明は、採光部材に関する。 The present invention relates to a daylighting member.
 一般に、プリズム面を有する窓が知られている(例えば、特許文献1)。例えば、特許文献1に記載の窓は、表面に微小なプリズム加工を施したプリズムシートを被覆した透明な窓板と、窓板を支持する窓枠とを備えている。この窓では、プリズムの斜面と窓板とが交差する角度は40°である。これによって、太陽の高度が低い場合は、太陽光を室内の天井の方向に導き、太陽光を拡散させて部屋全体を明るくする。太陽の高度が高い場合でも、窓辺のみに入っていた太陽光が室内奥深い方向に導かれる。 Generally, a window having a prism surface is known (for example, Patent Document 1). For example, the window described in Patent Document 1 includes a transparent window plate that covers a prism sheet having a surface subjected to minute prism processing, and a window frame that supports the window plate. In this window, the angle between the slope of the prism and the window plate is 40 °. As a result, when the altitude of the sun is low, the sunlight is guided toward the ceiling of the room and the whole room is brightened by diffusing the sunlight. Even when the altitude of the sun is high, the sunlight that has entered only the window is directed deeper into the room.
特開平11-280350号公報JP-A-11-280350
 しかしながら、特許文献1に記載のプリズム面を有する窓では、プリズムに入射する光の入射角が変化した場合には、プリズムから出射される光の出射角の変化を抑制することが難しい。 However, in the window having the prism surface described in Patent Document 1, it is difficult to suppress the change in the emission angle of the light emitted from the prism when the incident angle of the light incident on the prism changes.
 本発明の目的は、採光部材への入射光の入射角が変化した場合でも、採光部材からの出射光の出射角の変化を抑制することである。 An object of the present invention is to suppress a change in the emission angle of the emitted light from the daylighting member even when the incident angle of the incident light on the daylighting member changes.
 本発明の一態様に係る採光部材は、
 光を透過させ、第1の方向に厚みを持ち、前記第1の方向と直交する第2の方向に延在する基材と、
 前記基材から前記第1の方向に突出しており、前記第2の方向に延在する突起部と
を備え、
 前記突起部は、光が入射する入射面と前記入射面に入射した前記光を反射する反射面とを含み、
 前記入射面は、前記基材から前記第1の方向に延在しており、
 前記反射面は、前記入射面から離れる方向に湾曲した曲面を有し、
 前記第2の方向と直交する平面において、前記入射面に入射した光線の屈折角をθとし、前記反射面で反射した前記光線と前記入射面とがなす角度をθとし、前記光線が前記反射面で反射する点における接平面と前記入射面とがなす角度をφとしたとき、前記入射面に入射した光線の少なくとも一部に対して、
 φ=((π/2)-θ+θ)/2
 を満たす。
A daylighting member according to one aspect of the present invention includes:
A base material that transmits light, has a thickness in a first direction, and extends in a second direction orthogonal to the first direction;
Projecting from the base material in the first direction and extending in the second direction; and
The protrusion includes an incident surface on which light is incident and a reflecting surface that reflects the light incident on the incident surface,
The incident surface extends from the substrate in the first direction;
The reflective surface has a curved surface curved in a direction away from the incident surface,
In a plane orthogonal to the second direction, the refraction angle of the light beam incident on the incident surface is θ 1 , the angle formed by the light beam reflected by the reflection surface and the incident surface is θ 2 , and the light beam is When the angle between the tangential plane at the point reflected by the reflecting surface and the incident surface is φ, at least a part of the light incident on the incident surface,
φ = ((π / 2) −θ 1 + θ 2 ) / 2
Meet.
 本発明に係る採光部材によれば、採光部材への入射光の入射角が変化した場合でも、採光部材からの出射光の出射角の変化を抑制することができる。 According to the daylighting member according to the present invention, even when the incident angle of the incident light to the daylighting member changes, it is possible to suppress the change in the outgoing angle of the outgoing light from the daylighting member.
実施の形態1に係る採光部材の概略構成を示す斜視図である。2 is a perspective view showing a schematic configuration of a daylighting member according to Embodiment 1. FIG. 実施の形態1に係る採光部材の概略構成を示す断面図である。3 is a cross-sectional view illustrating a schematic configuration of a daylighting member according to Embodiment 1. FIG. 実施の形態1に係る採光部材の突起部の構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of a protrusion of the lighting member according to Embodiment 1. 突起部の反射面の傾きの定義を示す模式図である。It is a schematic diagram which shows the definition of the inclination of the reflective surface of a projection part. 突起部における光線の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the light ray in a projection part. 採光部材に対する入射光の角度と出射光の角度の定義を示す模式図である。It is a schematic diagram which shows the definition of the angle of the incident light with respect to a lighting member, and the angle of an emitted light. 突起部における反射面上の座標の定義を示す模式図である。It is a schematic diagram which shows the definition of the coordinate on the reflective surface in a projection part. 太陽高度が変化した際の焦点を通過する光線の採光部材における進行方向及び採光部材からの出射方向を示す図である。It is a figure which shows the advancing direction in the lighting member of the light ray which passes the focus at the time of a solar height change, and the emitted direction from a lighting member. 実施の形態1に係る採光部材における、出射光の角度強度分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the angular intensity distribution of the emitted light in the lighting member which concerns on Embodiment 1. FIG. 実施の形態1に係る採光部材における、突起部の変形例の断面図である。FIG. 6 is a cross-sectional view of a modified example of a protrusion in the lighting member according to Embodiment 1. 実施の形態1に係る採光部材における、突起部の変形例の断面図である。FIG. 6 is a cross-sectional view of a modified example of a protrusion in the lighting member according to Embodiment 1. 実施の形態1に係る採光部材における、突起部の変形例の断面図である。FIG. 6 is a cross-sectional view of a modified example of a protrusion in the lighting member according to Embodiment 1. 突起部において、焦点以外を通過する光線の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the light ray which passes except a focus in a projection part. 実施の形態2に係る採光部材における光線の挙動を示す模式図である。6 is a schematic diagram showing the behavior of light rays in a daylighting member according to Embodiment 2. FIG. 実施の形態2に係る採光部材の一例を示す模式図である。6 is a schematic diagram showing an example of a daylighting member according to Embodiment 2. FIG. 実施の形態2に係る採光部材における、出射光の角度強度分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the angular intensity distribution of the emitted light in the lighting member which concerns on Embodiment 2. FIG.
 以下に説明する採光部材は、例えば、窓などに設置される。そして、採光部材は太陽光を室内に取り込む。採光部材は、例えば、採光シートである。採光シートは、年間を通じた安定した採光量と照射範囲とを実現することが望まれている。しかし、太陽高度の変化に伴い、採光部材の突起部(プリズム)に入射する光の入射角は変化する。本発明に係る採光部材は、入射する光の入射角の変化に対して、突起物から出射される光の出射角の変化を抑制する。これによって、年間を通じた安定した照射範囲を得ることができる。 The daylighting member described below is installed in, for example, a window. And a lighting member takes in sunlight indoors. The daylighting member is, for example, a daylighting sheet. It is desired that the daylighting sheet realizes a stable amount of light and an irradiation range throughout the year. However, as the solar altitude changes, the incident angle of the light incident on the projection (prism) of the daylighting member changes. The daylighting member according to the present invention suppresses the change in the emission angle of the light emitted from the protrusion with respect to the change in the incident angle of the incident light. This makes it possible to obtain a stable irradiation range throughout the year.
<図中座標の説明>
 以下の各実施の形態において、説明を容易にするために、各図中にxyz直交座標系の座標軸を示す。
 xyz直交座標系において、x軸方向は第1の方向であり、y軸方向は第2の方向であり、z軸方向は第3の方向である。x軸方向は、y軸方向及びz軸方向と直交する方向であり、y軸方向は、x軸方向及びz軸方向と直交する方向であり、z軸方向は、x軸方向及びy軸方向と直交する方向である。
<Explanation of coordinates in the figure>
In the following embodiments, for ease of explanation, the coordinate axes of the xyz orthogonal coordinate system are shown in each drawing.
In the xyz orthogonal coordinate system, the x-axis direction is the first direction, the y-axis direction is the second direction, and the z-axis direction is the third direction. The x-axis direction is a direction orthogonal to the y-axis direction and the z-axis direction, the y-axis direction is a direction orthogonal to the x-axis direction and the z-axis direction, and the z-axis direction is the x-axis direction and the y-axis direction. It is a direction orthogonal to.
 各図に示されるz-x平面は、y軸方向と直交する平面である。 The zx plane shown in each figure is a plane orthogonal to the y-axis direction.
 x軸方向は、採光部材1の基材10の面11に垂直な方向である。x軸方向は、板形状の採光部材1の厚さ方向である。+x軸方向は、基材10の面11側の方向である。-x軸方向は、基材10の面12側の方向である。例えば、外光(例えば、太陽光)は、+x軸方向側から採光部材1に入射する。例えば、採光部材1から出射された光は、-x軸方向側の屋内に進行する。 The x-axis direction is a direction perpendicular to the surface 11 of the base material 10 of the daylighting member 1. The x-axis direction is the thickness direction of the plate-shaped daylighting member 1. The + x-axis direction is the direction on the surface 11 side of the substrate 10. The −x-axis direction is the direction on the surface 12 side of the substrate 10. For example, external light (for example, sunlight) enters the daylighting member 1 from the + x-axis direction side. For example, the light emitted from the daylighting member 1 travels indoors on the −x axis direction side.
 y軸方向は、シリンドリカル形状の突起部13の反射面15の曲率を有しない方向である。+y軸方向は、採光部材1がy軸方向を水平として設置された場合に、突起部13側から採光部材1を見て右側である。-y軸方向は、採光部材1がy軸方向を水平として設置された場合に、突起部13側から採光部材1を見て左側である。「突起部13側から採光部材1を見て」とは、+x軸側から-x軸側を見ることである。 The y-axis direction is a direction that does not have the curvature of the reflection surface 15 of the cylindrical projection 13. The + y-axis direction is the right side when the daylighting member 1 is installed from the protrusion 13 side when the daylighting member 1 is installed with the y-axis direction horizontal. The −y-axis direction is the left side when the daylighting member 1 is viewed from the protrusion 13 side when the daylighting member 1 is installed with the y-axis direction horizontal. “Looking at the daylighting member 1 from the protrusion 13 side” means looking at the −x axis side from the + x axis side.
 z軸方向は、x-y平面に垂直な方向である。+z軸方向は、1つの突起部13において入射面14が配置されている方向である。-z軸方向は、1つの突起部13において反射面15が配置されている方向である。 The z-axis direction is a direction perpendicular to the xy plane. The + z-axis direction is a direction in which the incident surface 14 is disposed in one protrusion 13. The −z-axis direction is a direction in which the reflecting surface 15 is disposed in one protrusion 13.
実施の形態1.
 以下、実施の形態1について、図1から図12を用いて説明する。各図面においては、構成要素によって寸法の縮尺が異なることがある。
Embodiment 1 FIG.
The first embodiment will be described below with reference to FIGS. In each drawing, the scale of a dimension may differ with components.
 図1は、実施の形態1に係る採光部材1の概略構成を示す斜視図である。
 図2は、実施の形態1に係る採光部材1の概略構成を示す断面図である。
 図3は、実施の形態1に係る採光部材1の突起部13の構成を示す断面図である。
 図4は、突起部13の反射面15の傾きの定義を示す模式図である。
 図5は、突起部13における光線の挙動を示す模式図である。
 図6は、採光部材1に対する入射光LINの角度θINと出射光LOUTの角度θOUTの定義を示す模式図である。
 図7は、突起部13における反射面15上の座標の定義を示す模式図である。
 図8は、太陽高度が変化した際の焦点fを通過する光線の採光部材1における進行方向及び採光部材1からの出射方向を示す図である。
 図9は、実施の形態1に係る採光部材1における、出射光LOUTの角度強度分布のシミュレーション結果を示す図である。
 図10から図12は、実施の形態1に係る採光部材1における、突起部13の変形例の断面図である。
FIG. 1 is a perspective view showing a schematic configuration of a daylighting member 1 according to Embodiment 1. FIG.
FIG. 2 is a cross-sectional view showing a schematic configuration of the daylighting member 1 according to the first embodiment.
FIG. 3 is a cross-sectional view showing the configuration of the protrusion 13 of the daylighting member 1 according to the first embodiment.
FIG. 4 is a schematic diagram illustrating the definition of the inclination of the reflection surface 15 of the protrusion 13.
FIG. 5 is a schematic diagram showing the behavior of light rays at the protrusion 13.
Figure 6 is a schematic diagram showing the definition of the angle theta OUT angle theta IN and the outgoing light L OUT of the incident light L IN for lighting member 1.
FIG. 7 is a schematic diagram showing the definition of coordinates on the reflecting surface 15 in the protrusion 13.
FIG. 8 is a diagram showing the traveling direction of the light beam passing through the focal point f when the solar altitude changes in the lighting member 1 and the emitting direction from the lighting member 1.
FIG. 9 is a diagram illustrating a simulation result of the angular intensity distribution of the outgoing light L OUT in the daylighting member 1 according to the first embodiment.
10 to 12 are cross-sectional views of modifications of the protrusion 13 in the daylighting member 1 according to the first embodiment.
<採光部材1の構成> 以下に、採光部材1の構成について図1及び図2を参照して説明する。 <Configuration of Daylighting Member 1> The configuration of the daylighting member 1 will be described below with reference to FIGS.
 図1に示すように、採光部材1は、基材10及び少なくとも1つの突起部13を備える。「少なくとも1つの突起部13」とは、複数の突起部13を含む。本実施の形態では、複数の突起部13が、基材10の面11(例えば、第1の面)上に備えられている。 As shown in FIG. 1, the daylighting member 1 includes a base material 10 and at least one protrusion 13. “At least one protrusion 13” includes a plurality of protrusions 13. In the present embodiment, a plurality of protrusions 13 are provided on the surface 11 (for example, the first surface) of the base material 10.
 突起部13は、y軸方向に延在する。つまり、突起部13の底面は、z-x平面上の面である。ここで、y軸方向は、柱形状の高さ方向に相当する方向である。すなわち、突起部13は、y軸方向に延在する柱形状である。突起部13は、基材10からx軸方向に突出している。具体的には、突起部13の先端は、+x軸方向に突出している。突起部13は、面11上に形成されている。具体的には、突起部13は、基材10の面11上に配置されている。具体的には、複数の突起部13は、基材10の面11上において、z軸方向に配列されている。 The protrusion 13 extends in the y-axis direction. That is, the bottom surface of the protrusion 13 is a surface on the zx plane. Here, the y-axis direction is a direction corresponding to the height direction of the columnar shape. That is, the protrusion 13 has a column shape extending in the y-axis direction. The protrusion 13 protrudes from the base material 10 in the x-axis direction. Specifically, the tip of the protrusion 13 protrudes in the + x axis direction. The protrusion 13 is formed on the surface 11. Specifically, the protrusion 13 is disposed on the surface 11 of the substrate 10. Specifically, the plurality of protrusions 13 are arranged in the z-axis direction on the surface 11 of the substrate 10.
≪基材10≫
 以下に、基材10の構成について図2を参照して説明する。
≪Base material 10≫
Below, the structure of the base material 10 is demonstrated with reference to FIG.
 基材10は、板形状である。板形状は、シート形状およびフィルム形状を含んでいる。基材10は、面11と、x軸方向において面11とは反対側である面12を含んでいる。面11は採光部材1の+x軸方向側に配置されている。面12は採光部材1の-x軸方向側に配置されている。面11は、例えば、平面である。面12は、例えば、平面である。面11及び面12は互いに対向している。面11と面12とは、例えば、平行に配置されている。 The base material 10 has a plate shape. The plate shape includes a sheet shape and a film shape. The base material 10 includes a surface 11 and a surface 12 that is opposite to the surface 11 in the x-axis direction. The surface 11 is disposed on the + x axis direction side of the daylighting member 1. The surface 12 is disposed on the −x axis direction side of the daylighting member 1. The surface 11 is a flat surface, for example. The surface 12 is a flat surface, for example. The surface 11 and the surface 12 are opposed to each other. For example, the surface 11 and the surface 12 are arranged in parallel.
 基材10は、x軸方向に厚みを持ち、y軸方向及びz軸方向に延在する。基材10は光を透過する材料で形成される。したがって、基材10は光を透過させる。 The base material 10 has a thickness in the x-axis direction and extends in the y-axis direction and the z-axis direction. The substrate 10 is formed of a material that transmits light. Therefore, the base material 10 transmits light.
 基材10は、例えば、熱可塑性ポリマー、熱硬化性樹脂又は光重合性樹脂などを用いた樹脂フィルムで形成されてもよい。樹脂フィルムとしては、アクリル系ポリマー、オレフィン系ポリマー、ビニル系ポリマー、セルロース系ポリマー、アミド系ポリマー、フッ素系ポリマー、ウレタン系ポリマー、シリコーン系ポリマー又はイミド系ポリマーなどを用いることができる。 The base material 10 may be formed of a resin film using, for example, a thermoplastic polymer, a thermosetting resin, a photopolymerizable resin, or the like. As the resin film, acrylic polymer, olefin polymer, vinyl polymer, cellulose polymer, amide polymer, fluorine polymer, urethane polymer, silicone polymer, imide polymer, or the like can be used.
 実施の形態1では、基材10の材料の一例として、ポリメタクリル酸メチル(PMMA)を用いている。 In Embodiment 1, polymethyl methacrylate (PMMA) is used as an example of the material of the base material 10.
≪突起部13≫ 以下に、突起部13について図3から図13を参照して説明する。 << Protrusion 13 >> Hereinafter, the protrusion 13 will be described with reference to FIGS.
 以下の突起部13の説明は、説明を簡単にするために、z-x平面上で行う。そのため、例えば、「入射面14と反射面15との仮想的に交わる点」のように、2つの面の交わる部分を「点」として説明している。しかし、このように説明した場合でも、実際に3次元の形状では、この「点」はy軸方向に延びる線である。 The following description of the protrusion 13 will be made on the zx plane for the sake of simplicity. Therefore, for example, a portion where two surfaces intersect is described as a “point” such as “a point where the incident surface 14 and the reflecting surface 15 virtually intersect”. However, even in the case described above, in the actual three-dimensional shape, this “point” is a line extending in the y-axis direction.
 突起部13は入射面14及び入射面14に入射した光を反射する反射面15を含む。突起部13の先端部Pは、入射面14と反射面15との交わる部分である。ただし、入射面14と反射面15との境界は、曲面でもよい。先端部Pは、z-x平面において入射面14と反射面15とが仮想的に交わる点である。 The protrusion 13 includes an incident surface 14 and a reflecting surface 15 that reflects light incident on the incident surface 14. The tip portion P of the protrusion 13 is a portion where the incident surface 14 and the reflecting surface 15 intersect. However, the boundary between the incident surface 14 and the reflecting surface 15 may be a curved surface. The tip portion P is a point where the incident surface 14 and the reflecting surface 15 virtually intersect in the zx plane.
 突起部13はさらに、谷部V及び谷部Vを含む。突起部13の谷部Vは、入射面14の基材10側の端部である。突起部13の谷部Vは、反射面15の基材10側の端部である。 The protrusion 13 further includes a valley V 1 and a valley V 2 . The valley portion V 1 of the protrusion 13 is an end portion of the incident surface 14 on the base material 10 side. Valleys V 2 of the protruding portion 13 is an end portion of the base material 10 side of the reflecting surface 15.
 入射面14は、光が入射する面である。光は、入射面14から突起部13内に入射する。入射面14に入射した光線Lは、反射面15に到達する。反射面15に到達した光線Lは、反射面15で反射される。反射面15に到達した光線Lは、例えば、反射面15で全反射される。図4に示すように、反射面15で反射された光線Lは、面11に到達する。図5及び図6に示すように、面11に到達した光線Lは、基材10内を進行する。基材10内を進行した光線Lは、面12に到達する。面12に到達した光線Lは、面12から出射される。図6に示すように、面12から出射された光は、光LOUTである。光LOUTを光線LOUT又は出射光LOUTとも呼ぶ。 The incident surface 14 is a surface on which light is incident. Light enters the protrusion 13 from the incident surface 14. The light beam L 1 incident on the incident surface 14 reaches the reflecting surface 15. The light beam L 1 that has reached the reflecting surface 15 is reflected by the reflecting surface 15. For example, the light beam L 1 that has reached the reflecting surface 15 is totally reflected by the reflecting surface 15. As shown in FIG. 4, the light beam L 2 reflected by the reflecting surface 15 reaches the surface 11. As shown in FIGS. 5 and 6, the light beam L 2 that has reached the surface 11 travels in the substrate 10. The light beam L 2 that has traveled through the substrate 10 reaches the surface 12. The light beam L 2 that has reached the surface 12 is emitted from the surface 12. As shown in FIG. 6, the light emitted from the surface 12 is light L OUT . The light L OUT is also called a light ray L OUT or an outgoing light L OUT .
 入射面14は、基材10からx軸方向(具体的には、+x軸方向)に延在する。入射面14は、光学面である。光学面は、光が反射、屈折又は透過するために、波面の乱れ及び散乱を抑える面である。具体的には、光学面は、滑らかな面である。これによって、入射面14に入射した光は散乱光とはならない。 The incident surface 14 extends from the base material 10 in the x-axis direction (specifically, the + x-axis direction). The incident surface 14 is an optical surface. The optical surface is a surface that suppresses wavefront disturbance and scattering because light is reflected, refracted, or transmitted. Specifically, the optical surface is a smooth surface. Thereby, the light incident on the incident surface 14 does not become scattered light.
 突起部13は、焦点を持っている。具体的には、点f(第1の点とも称する)が、突起部13の焦点である。図5に示すように、例えば、点fを通り入射面14に到達する光線LIN1の到達点を点Iとする。点fは、谷部Vと谷部Vとを含む平面と平行で、先端部Pを含む平面上の点である。言い換えると、点fは、基材10からの光線が反射面15で反射されて反射面15からの反射光線が集光する焦点である。この場合、基材10からの光線は、基材10から突起部13に入射する光線であり、突起部13に入射する光線は、平行光線(例えば、図5における光線Lに平行な光線)である。光線LIN1の反射面15上の到達点を点Rとする。同様に、点fを通り入射面14に到達する光線LIN2の到達点を点Iとする。光線LIN2の反射面15上の到達点を点Rとする。入射面14のx軸方向(具体的には、+x軸方向)における端部Eから点Iまでの距離が端部Eから点Iまでの距離よりも短い場合には、反射面15のx軸方向(具体的には、+x軸方向)における端部Eから点Rまでの距離は端部Eから点Rまでの距離よりも短い。 The protrusion 13 has a focal point. Specifically, the point f (also referred to as the first point) is the focal point of the protrusion 13. As shown in FIG. 5, for example, the arrival point of the light beam L IN1 to reach the point f as the incident surface 14 and the point I 1. The point f is a point on a plane that is parallel to the plane including the valley portion V 1 and the valley portion V 2 and includes the tip portion P. In other words, the point f is a focal point where the light beam from the base material 10 is reflected by the reflecting surface 15 and the reflected light beam from the reflecting surface 15 is collected. In this case, light from the substrate 10 is a light ray incident from the substrate 10 to the projection 13, light rays incident on the projecting portion 13, parallel rays (e.g., rays parallel to the beam L 2 in FIG. 5) It is. The goal of the reflecting surface 15 of the light beam L IN1 and the point R 1. Similarly, the arrival point of the light beam L IN2 to reach the point f as the incident surface 14 and the point I 2. The goal of the reflecting surface 15 of the light beam L IN2 to the point R 2. When the distance from the end E 1 to the point I 1 in the x-axis direction (specifically, the + x-axis direction) of the incident surface 14 is shorter than the distance from the end E 1 to the point I 2 , the reflecting surface The distance from the end E 2 to the point R 1 in 15 x-axis directions (specifically, the + x-axis direction) is shorter than the distance from the end E 2 to the point R 2 .
 z-x平面上において、端部Eから光線Lの入射面14への入射位置(すなわち、点I)までの入射面14上の距離を距離Din(第1の距離とも称する)とし、端部Eから光線Lの反射位置(すなわち、点R)までの反射面15上の距離を距離Dref(第2の距離とも称する)とする。距離Dinが連続的に変化した場合に、距離Drefは距離Dinと1対1で連続的に変化する。また、距離Dinと距離Drefとは、増減の方向が同じである。つまり、距離Dinが増加するにつれて距離Drefが増加し、距離Dinが減少するにつれて距離Drefが減少する。z-x平面上において端部E及び端部Eは、先端部Pに一致するので、上述の距離Dinと距離Drefとの間の関係は、端部E及び端部Eを先端部Pと置き換えても成立する。 On the zx plane, the distance on the incident surface 14 from the end E 1 to the incident position of the light beam L 1 on the incident surface 14 (that is, the point I 1 ) is the distance D in (also referred to as a first distance). A distance on the reflection surface 15 from the end E 2 to the reflection position of the light beam L 1 (that is, the point R 1 ) is a distance D ref (also referred to as a second distance). When the distance D in changes continuously, the distance D ref changes continuously with the distance D in on a one-to-one basis. The distance D in and the distance D ref have the same increase / decrease direction. In other words, the distance D in is increased the distance D ref with increasing distance D in the distance D ref decreases as decreases. Since the end E 1 and the end E 2 coincide with the tip end P on the zx plane, the relationship between the distance D in and the distance D ref described above is the end E 1 and the end E 2. Even if is replaced with the tip portion P, it is established.
 これによって、例えば、端部Eから谷部Vまでの入射面14の形状を設定した場合に、後述の式(1)を用いて、端部Eから谷部Vまで反射面15の形状を設定することができる。 Thus, for example, when the shape of the incident surface 14 from the end E 1 to the valley V 1 is set, the reflection surface 15 from the end E 2 to the valley V 2 using the formula (1) described later. Can be set.
 入射面14は、例えば、平面である。ただし、入射面14は、例えば、x軸方向(すなわち、面11に垂直な方向)に曲率を有するシリンドリカル形状でもよい。なお、曲率の符号は問わない。すなわち、入射面14は、平面以外でもよい。例えば、入射面14は、反射面15に対して凸形状となるシリンドリカル形状、すなわち+z方向に膨らみを有する形状となるシリンドリカル形状でもよい。さらに、入射面14は、反射面15に対して凹形状となるシリンドリカル形状、すなわち-z方向に膨らみを有する形状となるシリンドリカル形状でもよい。 The incident surface 14 is, for example, a flat surface. However, the incident surface 14 may be, for example, a cylindrical shape having a curvature in the x-axis direction (that is, a direction perpendicular to the surface 11). In addition, the sign of curvature is not ask | required. That is, the incident surface 14 may be other than a plane. For example, the incident surface 14 may have a cylindrical shape that is convex with respect to the reflecting surface 15, that is, a cylindrical shape that has a bulge in the + z direction. Further, the incident surface 14 may have a cylindrical shape that is concave with respect to the reflecting surface 15, that is, a cylindrical shape that has a bulge in the −z direction.
 反射面15は、入射面14から離れる方向に湾曲した曲面を有する。言い換えると、反射面15は、入射面14から離れる方向に突出した曲面を有する。具体的には、反射面15は、x軸方向(すなわち、面11に垂直な方向)に曲率を有している。反射面15は、y軸方向に曲率を有していない。つまり、反射面15はシリンドリカル形状をしている。「シリンドリカル形状」は、一つの方向(例えば、第1の方向)に曲率を有し、その方向(すなわち、第1の方向)に垂直な方向(例えば、第2の方向)に曲率を有さない面形状である。シリンドリカル形状は、円筒形状には限られない。本実施の形態では、反射面15は、入射面14に対して凸形状となるシリンドリカル形状、すなわち-z方向に膨らみを有する形状となるシリンドリカル形状である。 The reflection surface 15 has a curved surface that is curved away from the incident surface 14. In other words, the reflecting surface 15 has a curved surface protruding in a direction away from the incident surface 14. Specifically, the reflecting surface 15 has a curvature in the x-axis direction (that is, the direction perpendicular to the surface 11). The reflective surface 15 does not have a curvature in the y-axis direction. That is, the reflecting surface 15 has a cylindrical shape. A “cylindrical shape” has a curvature in one direction (eg, the first direction) and a curvature in a direction (eg, the second direction) perpendicular to that direction (ie, the first direction). There is no surface shape. The cylindrical shape is not limited to a cylindrical shape. In the present embodiment, the reflecting surface 15 has a cylindrical shape that is convex with respect to the incident surface 14, that is, a cylindrical shape that has a bulge in the −z direction.
 突起部13には、例えば、アクリル樹脂、エポキシ樹脂又はシリコーン樹脂などの材料を採用できる。すなわち、突起部13は、アクリル樹脂、エポキシ樹脂又はシリコーン樹脂を含む材料で形成することができる。これらの材料は、光を透過する性質と感光性とを有する有機材料である。「感光性」とは、物質が光の照射によって化学変化を起こす性質である。また、これらの有機材料に、重合開始剤、カップリング剤、モノマー又は有機溶媒等を混合したものを用いることができる。さらに、重合開始剤は、各種の添加成分を含んでいてもよい。各種の添加成分は、例えば、安定剤、禁止剤、可塑剤、蛍光増白剤、離型剤、連鎖移動剤又は他の光重合性単量体などである。 The protrusion 13 can be made of, for example, a material such as acrylic resin, epoxy resin, or silicone resin. That is, the protrusion 13 can be formed of a material including an acrylic resin, an epoxy resin, or a silicone resin. These materials are organic materials having a property of transmitting light and photosensitivity. “Photosensitivity” is a property in which a substance undergoes a chemical change when irradiated with light. Moreover, what mixed the polymerization initiator, the coupling agent, the monomer, the organic solvent, etc. can be used for these organic materials. Furthermore, the polymerization initiator may contain various additive components. The various additive components are, for example, a stabilizer, an inhibitor, a plasticizer, an optical brightener, a release agent, a chain transfer agent, or other photopolymerizable monomer.
 実施の形態1では、突起部13の一例として、ポリメタクリル酸メチル(PMMA)が用いられている。 In the first embodiment, polymethyl methacrylate (PMMA) is used as an example of the protrusion 13.
 突起部13は、基材10と一体に形成されてもよい。この場合、面11は、例えば、谷部V及び谷部Vを通る面である。また、突起部13は、基材10とは別体で形成された後、基材10と一体化されてもよい。しかし、突起部13は、基材10と同じ材料で形成されることが望ましい。これによって、突起部13と基材10との界面における不要な屈折及び反射を避けることができる。 The protruding portion 13 may be formed integrally with the base material 10. In this case, the surface 11 is, for example, a plane passing through the valley V 1 and valleys V 2. Further, the protrusion 13 may be formed separately from the base material 10 and then integrated with the base material 10. However, it is desirable that the protrusion 13 is formed of the same material as the base material 10. Thereby, unnecessary refraction and reflection at the interface between the protrusion 13 and the substrate 10 can be avoided.
 図5に示す例では、点fは、谷部Vと谷部Vとを含む平面と平行で、先端部Pを含む平面上にある。言い換えると、点fは、入射面14に対して反射面15と反対側に位置しy軸方向に平行な線上の点である。具体的には、点fは、z-x平面において、突起部13のx軸方向(具体的には、+x軸方向)における先端部Pを通る直線であって且つz軸方向と平行な直線上に位置する。ここで、谷部Vと谷部Vとを含む平面は、例えば、基材10の面11である。入射面14に入射した光線Lの少なくとも一部は、点fを通る。点fを通って入射面14から突起部13内に入射した光線を光線L(例えば、第1の光線)とする。光線Lが反射面15で反射された光線を光線L(例えば、第2の光線)とする。 In the example shown in FIG. 5, the point f is parallel to the plane including the valley part V 1 and the valley part V 2 and is on the plane including the tip part P. In other words, the point f is a point on a line that is located on the opposite side of the reflecting surface 15 with respect to the incident surface 14 and is parallel to the y-axis direction. Specifically, the point f is a straight line passing through the tip P in the x-axis direction (specifically, the + x-axis direction) of the protrusion 13 and parallel to the z-axis direction in the zx plane. Located on the top. Here, the plane including the valley portion V 1 and the valley portion V 2 is, for example, the surface 11 of the base material 10. At least a portion of the light beam L 1 incident on the incident surface 14, passes through the point f. A light ray that has entered the protrusion 13 from the incident surface 14 through the point f is defined as a light ray L 1 (for example, a first light ray). The light beam L 1 reflected by the reflecting surface 15 is referred to as a light beam L 2 (for example, a second light beam).
 図4に示すように、z-x平面において、入射面14に入射した光線Lの屈折角を角度θとし、反射面15で反射した光線Lと入射面14とがなす角度を角度θとする。光線Lが反射面15と交わる点Ptにおける接平面TPと入射面14とがなす角度φは以下の式(1)で定義される。点Ptは、光線Lが反射面15で反射する点である。接平面TPは、反射面15のうちの曲面に接する平面である。なお、角度θ、角度θ及び角度φはz-x平面上の角度である。z-x平面は、反射面15が曲率を有しない方向(すなわち、y軸方向)に垂直な平面である。
  φ=((π/2)-θ+θ)/2 ・・・(1)
 入射面14に入射した全ての光線が上記式(1)を満たさなくてもよい。すなわち、入射面14に入射した光線のうちの少なくとも一部に対して上記式(1)が成立すればよい。この場合、入射面14に入射した光線のうちの少なくとも一部は、例えば、上述の光線Lである。
As shown in FIG. 4, in the zx plane, the refraction angle of the light ray L 1 incident on the incident surface 14 is an angle θ 1, and the angle formed by the light ray L 2 reflected by the reflective surface 15 and the incident surface 14 is an angle. and θ 2. Light L 1 is the angle φ formed by the tangent plane TP and the incident surface 14 of the Pt point of intersection with the reflecting surface 15 is defined by the following equation (1). The point Pt is a point where the light beam L 1 is reflected by the reflecting surface 15. The tangent plane TP is a plane in contact with the curved surface of the reflecting surface 15. Note that the angle θ 1 , the angle θ 2, and the angle φ are angles on the zx plane. The zx plane is a plane perpendicular to the direction in which the reflecting surface 15 has no curvature (that is, the y-axis direction).
φ = ((π / 2) −θ 1 + θ 2 ) / 2 (1)
All the light rays incident on the incident surface 14 do not have to satisfy the above formula (1). That is, the above equation (1) may be established for at least a part of the light rays incident on the incident surface 14. In this case, at least some of the light incident on the incident surface 14, for example, a light L 1 described above.
 入射面14における光線Lの屈折角θを変数とする。入射面14に対する光線Lのなす角度θを設定する。ここで、角度θは、屋内に進行する光線Lの角度である。式(1)に基づいて角度φを設定すると、角度θで光線Lを反射する反射面15を設計することができる。 The refraction angle θ 1 of the light beam L 1 on the incident surface 14 is a variable. An angle θ 2 formed by the light ray L 2 with respect to the incident surface 14 is set. Here, the angle θ 2 is an angle of the light beam L 2 traveling indoors. When the angle φ is set based on the equation (1), the reflecting surface 15 that reflects the light beam L 1 at the angle θ 2 can be designed.
 光線Lのなす角度θは、角度θに対して一定となるように設定されてもよい。角度θは変数である。例えば、角度θは定数(すなわち、一定の値)である。式(1)を基に設計された反射面15は、角度θに依らず一定の角度θで光線Lを反射する。 The angle θ 2 formed by the light beam L 2 may be set to be constant with respect to the angle θ 1 . The angle θ 1 is a variable. For example, the angle θ 2 is a constant (that is, a constant value). The reflecting surface 15 designed based on the expression (1) reflects the light beam L 1 at a constant angle θ 2 regardless of the angle θ 1 .
 角度θは、角度θに対して変化するように設定されてもよい。また、角度θは、角度θの角度範囲に対して変化するように設定されてもよい。 The angle θ 2 may be set so as to change with respect to the angle θ 1 . Further, the angle θ 2 may be set so as to change with respect to the angle range of the angle θ 1 .
 また、式(1)で定義される角度φと角度θとの関係を式(2)に示す。角度φ及び角度θが式(2)の関係を満たす場合には、反射面15における反射は全反射となる。角度θは、突起部13と空気との界面における臨界角を表す。すなわち、反射面15で全反射が生じるとき、反射面15で反射する光線の臨界角をθとする。なお、「臨界角」とは、屈折率が大きいところから小さいところに光が向かうときに、全反射が起きる最も小さな入射角のことである。
  φ+θ≧θ ・・・(2)
Further, the relationship between the angle φ and the angle θ 1 defined by the equation (1) is shown in the equation (2). When the angle φ and the angle θ 1 satisfy the relationship of the expression (2), the reflection on the reflection surface 15 is total reflection. The angle θ T represents a critical angle at the interface between the protrusion 13 and air. That is, when the total reflection occurs at the reflective surface 15, the critical angle of the light beam reflected by the reflecting surface 15 and theta T. The “critical angle” is the smallest incident angle at which total reflection occurs when light travels from a high refractive index to a small one.
φ + θ 1 ≧ θ T (2)
 これによって、反射面15をミラー面とする必要がなくなる。ミラー面は、例えば、反射面15に金属の膜又は誘電体の膜をコーティングして形成される。これらの膜は、反射面15において全反射条件を満たさない光の透過を低減している。 This eliminates the need for the reflecting surface 15 to be a mirror surface. The mirror surface is formed, for example, by coating the reflective surface 15 with a metal film or a dielectric film. These films reduce the transmission of light that does not satisfy the total reflection condition on the reflection surface 15.
 実施の形態1では、光線Lのなす角度θは、角度θの角度範囲に対して一定となるように設定される。例えば、入射面14に対して複数の光線Lの各々がなす角度θは互いに同じである。したがって、図5に示す例では、複数の光線Lは、互いに平行である。ここでは、例えば、図5に示す角度θINが20°≦θIN≦90°の範囲である。角度θは角度θINと1対1で対応している。なお、図5において、角度θは、式(3)で表される。
  θ=β-α ・・・(3)
In the first embodiment, the angle θ 2 formed by the light beam L 2 is set to be constant with respect to the angle range of the angle θ 1 . For example, the angle θ 2 formed by each of the plurality of light beams L 2 with respect to the incident surface 14 is the same. Thus, in the example shown in FIG. 5, a plurality of light beams L 2 are parallel to each other. Here, for example, the angle θ IN shown in FIG. 5 is in the range of 20 ° ≦ θ IN ≦ 90 °. The angle θ 1 has a one-to-one correspondence with the angle θ IN . In FIG. 5, the angle θ 2 is expressed by Expression (3).
θ 2 = β−α (3)
 例えば、z-x平面において、突起部13の屈折率をn、x軸に対する入射面14の傾き角をα度とすると、角度θと角度θINとは、以下の式(*)で関係付けられる。
  θ=arcsin〔1/n{sin(90°-θIN-α)}〕 ・・・(*)
 すなわち、角度θは、突起部13に入射した光線Lの突起部13への入射角θINに応じて変化する。
For example, assuming that the refractive index of the protrusion 13 is n and the inclination angle of the incident surface 14 with respect to the x axis is α degrees in the zx plane, the angle θ 1 and the angle θ IN are related by the following formula (*). Attached.
θ 1 = arcsin [1 / n {sin (90 ° −θ IN −α)}] (*)
That is, the angle θ 1 changes according to the incident angle θ IN of the light beam L 1 incident on the protrusion 13 to the protrusion 13.
 光線Lのなす角度θがある角度範囲の角度θに対して一定となるとき、点fは突起部13の焦点として振る舞う。したがって、この場合、点fを、突起部13の焦点f又は単に焦点fとも呼ぶ。突起部13の焦点fは、入射面14に対して反射面15と反対側に位置している。また、焦点fは、y軸に平行な線上の点である。なお、y軸は、反射面15が曲率を有さない方向に平行である。 When the angle θ 2 formed by the light beam L 2 becomes constant with respect to the angle θ 1 in a certain angle range, the point f behaves as the focal point of the protrusion 13. Therefore, in this case, the point f is also referred to as the focal point f of the protrusion 13 or simply as the focal point f. The focal point f of the protrusion 13 is located on the opposite side of the reflecting surface 15 with respect to the incident surface 14. The focal point f is a point on a line parallel to the y axis. The y axis is parallel to the direction in which the reflecting surface 15 has no curvature.
 角度θの角度範囲のうちの一部の角度範囲において、角度θが一定でもよい。ただし、角度θの角度範囲のうちのすべての角度範囲において、角度θが一定でもよい。角度θの角度範囲のうちの一部の角度範囲において角度θが一定である場合、角度θの角度範囲を、採光部材1の設置場所における太陽高度の範囲に対応するように定めてもよい。この場合、角度θINの角度範囲を、採光部材1の設置場所における太陽高度の最小値から最大値に対応するように設定する。例えば、日本における冬至の太陽南中高度が31°であり且つ夏至の太陽南中高度が77°であるとき、角度θINの角度範囲を、太陽高度の最小値から最大値に対応するように、31°≦θIN≦77°として定める。太陽高度の最小値31°及び最大値77°の一の位を四捨五入し、角度θINの角度範囲を、30°≦θIN≦80°として定めてもよい。上述のように、角度θは上記式(*)から算出され、得られた角度θ、すなわち、太陽高度の最小値から最大値に対応する角度θの角度範囲において角度θが一定となるようにしてもよい。なお、地面からの照り返し等を考慮して角度θINの下限をさらに小さくしてもよい。 In some angular range of the angle theta 1 of the angular range, the angle theta 2 may be constant. However, in all the angular range of the angle theta 1 of the angular range, the angle theta 2 may be constant. If in some angular range of the angle theta 1 of the angular range angle theta 2 is constant, the angle theta 1 of the angular range, determined to cover a range of solar altitude at the installation location of the lighting member 1 Also good. In this case, the angle range of the angle theta IN, is set to correspond to the maximum value from the minimum value of the solar altitude at the installation location of the lighting member 1. For example, when the solar south-middle altitude of the winter solstice in Japan is 31 ° and the solar south-middle altitude of the summer solstice is 77 °, the angle range of the angle θ IN corresponds to the minimum value of the solar altitude. 31 ° ≦ θ IN ≦ 77 °. The range of the angle θ IN may be determined as 30 ° ≦ θ IN ≦ 80 ° by rounding off the decimal place of the minimum value 31 ° and the maximum value 77 ° of the solar altitude. As described above, the angle θ 1 is calculated from the above formula (*), and the obtained angle θ 1 , that is, the angle θ 2 is constant in the angle range of the angle θ 1 corresponding to the minimum value to the maximum value of the solar altitude. You may make it become. It is also possible to further reduce the lower limit of the angle theta IN considering the like glare from the ground.
 図5に示す例では、焦点fは、z-x平面において、突起部13のx軸方向(具体的には、+x軸方向)における先端部Pを通る直線であって且つz軸方向と平行な直線上に位置する。図5に示すように、光線LINは、焦点fを通って採光部材1の突起部13の入射面14に到達する。光線LINを、入射光LINとも呼ぶ。光線LINは、例えば、角度θINで入射面14に到達する。入射面14に到達した光線LINは、空気と入射面14との界面において屈折される。 In the example shown in FIG. 5, the focal point f is a straight line passing through the tip portion P in the x-axis direction (specifically, the + x-axis direction) of the protrusion 13 in the zx plane, and is parallel to the z-axis direction. Located on a straight line. As shown in FIG. 5, light L IN reaches the incident surface 14 of the projection 13 of the lighting member 1 through the focal point f. The light L IN, also referred to as the incident light L IN. The light beam L IN reaches the incident surface 14 at an angle θ IN , for example. Light L IN reaching the entrance surface 14 is refracted at the interface between air and the incident surface 14.
 図6に示されるように、突起部13に入射する光の角度θINは、光線LINのz-x平面上におけるx軸に対する傾きで定義される。角度θINは、+x軸方向を0°とし、+x軸方向から+z軸方向への回転方向を正(+)とし、+x軸方向から-z軸方向への回転方向を負(-)とする。 As shown in FIG. 6, the angle θ IN of the light incident on the protrusion 13 is defined by the inclination of the light ray L IN with respect to the x axis on the zx plane. Angle theta IN is + a x-axis direction is 0 °, + direction of rotation from the x-axis direction to the + z-axis direction is positive (+), negative direction of rotation of the -z axis direction from the + x-axis direction (-) to .
 入射面14で屈折された光線Lは突起部13内に入射する。光線Lは、反射面15に向かって進む。 The light beam L 1 refracted by the incident surface 14 enters the protrusion 13. The light ray L 1 travels toward the reflecting surface 15.
 図5及び図6に示すように、反射面15に到達した光線Lは、反射面15で反射される。反射面15での反射は、例えば、突起部13と空気との界面における全反射である。反射面15で反射された光線Lは、面11に向かって進む。光線Lとx軸とのなす角度を角度βとする。 As shown in FIGS. 5 and 6, the light beam L 1 that has reached the reflecting surface 15 is reflected by the reflecting surface 15. The reflection at the reflection surface 15 is total reflection at the interface between the protrusion 13 and air, for example. The light beam L 2 reflected by the reflecting surface 15 travels toward the surface 11. The angle between the ray L 2 and the x-axis and the angle beta.
 図5に示すように、入射面14は、x軸に対して正の方向に傾き角αで傾いている。入射面14の傾き角αの範囲は、以下の式(4)で定められる。  α≧β ・・・(4) As shown in FIG. 5, the incident surface 14 is inclined at an inclination angle α in the positive direction with respect to the x-axis. The range of the inclination angle α of the incident surface 14 is determined by the following equation (4). Α ≧ β (4)
 また、入射面14の傾き角αは、以下の式(5)の範囲であることが望ましい。  β≦α≦60°・・・(5) Further, the inclination angle α of the incident surface 14 is preferably within the range of the following formula (5). Β ≦ α ≦ 60 ° (5)
 入射面14の傾き角αは、反射面15で反射された光線Lが再度入射面14に到達することを避けるために設けられる。つまり、反射面15で反射された光線Lの角度βが傾き角αよりも大きいと、反射面15で反射された光の一部の光線Lは入射面14で反射される。そのため、入射面14で反射された光線Lは、採光部材1から出射角θOUTで出射されない。式(4)の条件を満たすことによって、採光部材1から出射される光LOUTの指向性を向上することができる。 The inclination angle α of the incident surface 14, light rays L 2 reflected by the reflecting surface 15 is provided in order to avoid reaching the entrance surface 14 again. That is, when the angle β of the light beam L 2 reflected by the reflecting surface 15 is larger than the inclination angle α, a part of the light beam L 2 reflected by the reflecting surface 15 is reflected by the incident surface 14. Therefore, the light beam L 2 reflected by the incident surface 14 is not emitted from the lighting member 1 at the emission angle θ OUT . By satisfying the condition of Expression (4), the directivity of the light L OUT emitted from the daylighting member 1 can be improved.
 採光部材1の材料は、例えば、PMMAである。空気からPMMAへの光の入射角が60度を超えるとPMMAの表面での光の反射率は10%を超える。そのため、入射面14における光利用効率の低下を抑えるために、入射面14への光の入射角は60度以下とすることが望ましい。 The material of the lighting member 1 is, for example, PMMA. When the incident angle of light from air to PMMA exceeds 60 degrees, the reflectance of light on the surface of PMMA exceeds 10%. Therefore, in order to suppress a decrease in light utilization efficiency on the incident surface 14, the incident angle of light on the incident surface 14 is desirably 60 degrees or less.
 角度αが大きい場合には、角度θINが大きい光線LINの入射角が大きくなる。角度θINが最も大きい場合は90度である。角度θINが90度のとき、入射面14への入射角は、角度αとなる。角度αを60度以下とすることで、入射面14における光利用効率の低下を抑えることができる。 When the angle α is large, the incident angle of the light ray L IN having a large angle θ IN becomes large. When the angle θ IN is the largest, it is 90 degrees. When the angle θ IN is 90 degrees, the incident angle to the incident surface 14 is the angle α. By setting the angle α to 60 degrees or less, it is possible to suppress a decrease in light utilization efficiency on the incident surface 14.
 角度αが小さい場合には、角度θINが小さい光線LINの入射角が大きくなる。角度θINが最も小さい場合は20度である。角度θINが20度のとき、入射面14への入射角は、(70度-α)となる。角度βは、外光を入射させる部屋の大きさにも関係する。角度βは、例えば、5度から10度の範囲で設定される。式(4)より、角度αは角度β以上で設定されるため、角度αは5度から10度以上の値となる。角度αと角度βとを同じ角度とした場合でも、入射面14への光の入射角は60度に近い値となる。また、角度βを10度以上で設定することで、入射面14への光の入射角は60度以下となる。そのため、入射面14における光利用効率の低下を抑えることができる。 When the angle α is small, the incident angle of the light ray L IN having a small angle θ IN is large. When the angle θ IN is the smallest, it is 20 degrees. When the angle θ IN is 20 degrees, the incident angle to the incident surface 14 is (70 degrees−α). The angle β is also related to the size of the room where the external light is incident. For example, the angle β is set in a range of 5 degrees to 10 degrees. From equation (4), the angle α is set to be equal to or greater than the angle β, and therefore the angle α is a value of 5 degrees to 10 degrees or more. Even when the angle α and the angle β are the same, the incident angle of the light on the incident surface 14 is a value close to 60 degrees. In addition, by setting the angle β to 10 degrees or more, the incident angle of light on the incident surface 14 is 60 degrees or less. Therefore, it is possible to suppress a decrease in light utilization efficiency at the incident surface 14.
 実施の形態1において、基材10と突起部13とはどちらもPMMAで形成されている。このため、図5に示すように突起部13と基材10との界面において光線Lは直進する。 In Embodiment 1, both the base material 10 and the protrusion 13 are formed of PMMA. For this reason, as shown in FIG. 5, the light beam L < b > 2 goes straight at the interface between the protruding portion 13 and the base material 10.
 図6に示すように、突起部13と基材10との界面を直進した光線Lは、面12に到達する。面12に到達した光線Lは、面12から-x軸方向に出射される。ここで、面12から出射された光線は、光線LOUTである。光線Lは、面12で屈折されて光線LOUTとなる。光線Lは、面12と空気との界面において屈折される。光線LOUTの出射角は、出射角θOUTである。採光部材1からの光線LOUTは、例えば、屋内に進行する。 As shown in FIG. 6, the light beam L 2 that has traveled straight through the interface between the protrusion 13 and the substrate 10 reaches the surface 12. The light beam L 2 that has reached the surface 12 is emitted from the surface 12 in the −x-axis direction. Here, the light beam emitted from the surface 12 is the light beam L OUT . Ray L 2 is a light ray L OUT is refracted by the surface 12. Ray L 2 is refracted at the interface between the surface 12 and the air. The exit angle of the light beam L OUT is the exit angle θ OUT . The light beam L OUT from the daylighting member 1 travels indoors, for example.
 ここで、採光部材1から出射される光の角度θOUTは、光線LOUTのz-x平面上におけるx軸に対する傾きで定義される。角度θOUTは、-x軸方向を0°とし、-x軸方向から+z軸方向への回転方向を正(+)とし、-x軸方向から-z軸方向への回転方向を負(-)とする。 Here, the angle θ OUT of the light emitted from the lighting member 1 is defined by the inclination of the light ray L OUT with respect to the x axis on the zx plane. The angle θ OUT is 0 ° in the −x-axis direction, the rotation direction from the −x-axis direction to the + z-axis direction is positive (+), and the rotation direction from the −x-axis direction to the −z-axis direction is negative (− ).
 図7を用いて、突起部13の反射面15上の任意の点の座標の定義について説明する。 The definition of the coordinates of an arbitrary point on the reflection surface 15 of the protrusion 13 will be described with reference to FIG.
 図7ではx’y’座標を用いて説明する。図7に示すx’y’座標では、焦点fをx’y’座標における原点とする。x’軸は、他の図に示すxyz座標のx軸に対応している。+x’軸方向は、xyz座標の-x軸方向に対応している。y’軸は、xyz座標のz軸に対応している。+y’軸方向は、xyz座標の+z軸方向に対応している。 FIG. 7 will be described using x′y ′ coordinates. In the x′y ′ coordinate shown in FIG. 7, the focal point f is the origin in the x′y ′ coordinate. The x ′ axis corresponds to the x axis of the xyz coordinates shown in other figures. The + x′-axis direction corresponds to the −x-axis direction of the xyz coordinate. The y ′ axis corresponds to the z axis of the xyz coordinate. The + y′-axis direction corresponds to the + z-axis direction of the xyz coordinate.
 図7に示すように、x’軸とy’軸との交点(原点)を焦点fとしている。光線LINとy’軸とのなす角は、角度θiである。光線Lとx’軸とのなす角は、角度βiである。入射面14とx’軸とのなす角は、角度αである。 As shown in FIG. 7, the intersection (origin) of the x ′ axis and the y ′ axis is the focal point f. The angle between the light beam LIN and the y ′ axis is the angle θ i . The angle between the ray L 2 and x 'axis, an angle beta i. The angle formed by the incident surface 14 and the x ′ axis is an angle α.
 x’y’座標系を基に突起部13における反射面15の形状を説明する。 Based on the x′y ′ coordinate system, the shape of the reflecting surface 15 in the protrusion 13 will be described.
 光線Lθiは、x’y’座標系の原点(すなわち、焦点f)から角度θiで出射される。原点(焦点f)から角度θiで出射された光線LINを光線Lθiとする。光線Lθiと入射面14との交点の座標は、(Δx’i,Δy’i)である。 The light ray L θi is emitted at an angle θ i from the origin of the x′y ′ coordinate system (that is, the focal point f). The light L IN from the origin (the focus f) emitted at an angle theta i and beam L .theta.i. The coordinates of the intersection of the light beam L θi and the incident surface 14 are (Δx ′ i , Δy ′ i ).
 角度θi-1は、角度θiよりも小さい角度である。原点(焦点f)から角度θi-1で出射された光線LINを光線Lθi-1とする。 The angle θ i−1 is an angle smaller than the angle θ i . The light L IN emitted from the origin (the focus f) at an angle theta i-1 and light beam L θi-1.
 光線Lθ’iは、入射面14で屈折して突起部13に入射した光線である。光線Lθ’iとy’軸とのなす角は、角度θ’iである。光線Lθ’iと反射面15との交点の座標は、(x’i,y’i)である。反射面15で反射された光線Lθ’iは、光線Lβiである。 The light beam L θ′i is a light beam that is refracted at the incident surface 14 and is incident on the protrusion 13. The angle formed between the light beam L θ′i and the y ′ axis is an angle θ ′ i . The coordinates of the intersection of the light ray Lθ′i and the reflecting surface 15 are (x ′ i , y ′ i ). Rays L Shita'i reflected by the reflecting surface 15 is a ray L .beta.i.
 光線Lθ’i-1は、入射面14で屈折して突起部13に入射した光線である。光線Lθ’i-1とy’軸とのなす角は、角度θ’i-1である。光線Lθ’i-1と反射面15との交点の座標は、(x’i-1,y’i-1)である。反射面15で反射された光線Lθ’i-1は、光線Lβi-1である。 The light beam L θ′i−1 is a light beam that is refracted at the incident surface 14 and is incident on the protrusion 13. The angle formed between the light beam L θ′i−1 and the y ′ axis is an angle θ ′ i−1 . The coordinates of the intersection of the light beam L θ′i−1 and the reflecting surface 15 are (x ′ i−1 , y ′ i−1 ). Light L θ'i-1 reflected by the reflection surface 15 is a ray L βi-1.
 点(x’i-1,y’i-1)における反射面15の接線とx’軸とのなす角を傾き角γi-1とする。 The angle between the tangent line of the reflecting surface 15 at the point (x ′ i−1 , y ′ i−1 ) and the x ′ axis is defined as an inclination angle γ i−1 .
 このとき、角度θiで原点(焦点f)から出射される光線Lθiが達する反射面15上の点(x’i,y’i)は、以下の式(6a)と式(6b)との連立方程式の解となる。  y’i=y’i-1+(x’i-x’i-1)×tan(γi-1) ・・・(6a)  y’i=Δy’i+(x’i-Δx’i)×tan(90-θ’i) ・・・(6b) At this time, the point (x ′ i , y ′ i ) on the reflecting surface 15 where the light beam L θi emitted from the origin (focal point f) at the angle θ i reaches is expressed by the following equations (6a) and (6b): This is the solution of the simultaneous equations. y ′ i = y ′ i−1 + (x ′ i −x ′ i−1 ) × tan (γ i−1 ) (6a) y ′ i = Δy ′ i + (x ′ i −Δx ′) i ) × tan (90−θ ′ i ) (6b)
 このとき、γi-1は以下の式(7)、式(8a)及び式(8b)の連立方程式の解であらわされる。  0=sin(θ’i-1+γi-1)-sin((90-βi-1)+γi-1) ・・・(7) At this time, γ i-1 is expressed as a solution of simultaneous equations of the following equations (7), (8a), and (8b). 0 = sin (θ ′ i−1 + γ i−1 ) −sin ((90−β i−1 ) + γ i−1 ) (7)
 ただし、角度θ’i-1及びθ’iは以下の式であらわされる。  θ’i-1=arcsin(sin(θi-1)/n)+α ・・・(8a)  θ’i=arcsin(sin(θi)/n)+α ・・・(8b) However, the angles θ ′ i−1 and θ ′ i are expressed by the following equations. θ ′ i−1 = arcsin (sin (θ i−1 ) / n) + α (8a) θ ′ i = arcsin (sin (θ i ) / n) + α (8b)
 このとき、nは突起部13の屈折率である。 At this time, n is the refractive index of the protrusion 13.
 また、Δx’i及びΔy’iは以下の式(9a)及び式(9b)であらわされる。  Δx’i=y’×tan(θi)/(1+tan(α)×tan(θi)) ・・・(9a)  Δy’i=y’-Δx’i×tan(α) ・・・(9b) Δx ′ i and Δy ′ i are expressed by the following equations (9a) and (9b). Δx ′ i = y ′ 0 × tan (θ i ) / (1 + tan (α) × tan (θ i )) (9a) Δy ′ i = y ′ 0 −Δx ′ i × tan (α)・ (9b)
 ただしy’iの初期値y’は任意の値であり、y’に応じて突起部のスケールが変更可能である。 However, the initial value y ′ 0 of y ′ i is an arbitrary value, and the scale of the protrusion can be changed according to y ′ 0 .
 上記の式(9a)及び式(9b)によって定義される、点(x’i,y’i)を0°≦θi≦70°の範囲において変化させてできる曲線が反射面15となる。 The reflection surface 15 is a curve formed by changing the point (x ′ i , y ′ i ) in the range of 0 ° ≦ θ i ≦ 70 °, which is defined by the above equations (9a) and (9b).
 角度θiの刻み幅θi-θi-1を限りなく0(ゼロ)に近づけると、反射面15は曲面になる。角度θiの刻み幅θi-θi-1を大きくすると、反射面15は多面体となる。 When the step size θ i −θ i−1 of the angle θ i is as close to 0 (zero) as possible, the reflecting surface 15 becomes a curved surface. When the step size θ i −θ i−1 of the angle θ i is increased, the reflecting surface 15 becomes a polyhedron.
 上記の通り、反射面15は、x’y’座標系の原点から角度θiで出射される光線Lθiを出射角βiの光線Lβiに変換する面である。このとき、x’y’座標系の原点は突起部13の焦点fである。このため、突起部13の焦点fを通過して突起部13に入射する光(光線Lθi)は、角度θINに依らず反射面15において角度βで反射される。 As described above, the reflecting surface 15 is a surface that converts the light beam L .theta.i emitted at an angle theta i from the origin of the x'y 'coordinate system on the ray L .beta.i output angle beta i. At this time, the origin of the x′y ′ coordinate system is the focal point f of the protrusion 13. Therefore, light that passes through the focal point f of the projection 13 enters the projection 13 (ray L .theta.i) is reflected at an angle β in the reflecting surface 15 irrespective of the angle theta IN.
 ただし、角度θINは角度θiと以下の式(10)の関係を満たす。
  θIN=90-θi[°] ・・・(10)
However, the angle theta IN satisfies a relation of the following formula as the angle θ i (10).
θ IN = 90−θ i [°] (10)
 そのため、角度範囲0°≦θi≦70°においては、入射角θINは、以下の式(11)を満たす。  20°≦θIN≦90° ・・・(11) Therefore, in the angle range 0 ° ≦ θ i ≦ 70 °, the incident angle θ IN satisfies the following formula (11). 20 ° ≦ θ IN ≦ 90 ° (11)
 反射面15において角度βで反射された光線Lは、面12により屈折され、角度θOUTで採光部材1から出射される。 The light beam L 2 reflected at the reflection surface 15 at the angle β is refracted by the surface 12 and is emitted from the daylighting member 1 at the angle θ OUT .
 ここで、角度θOUTは、角度βと突起部13の屈折率nを用いて以下の式(12)で表される。
  θOUT=arcsin(n×sin(β)) ・・・(12)
Here, the angle θ OUT is expressed by the following formula (12) using the angle β and the refractive index n of the protrusion 13.
θ OUT = arcsin (n × sin (β)) (12)
 例えば、図8に示すように、入射光LINが太陽光である場合には、太陽の高度範囲Sは、式(11)で示す角度θINの範囲となる。採光部材1を用いることによって、太陽の高度によらず、焦点fを通過する光(光線Lθi)は、図6に示すように、出射角θOUTで採光部材1から出射される。 For example, as shown in FIG. 8, when the incident light LIN is sunlight, the solar altitude range S is a range of the angle θ IN represented by Expression (11). By using the lighting member 1, regardless of the altitude of the sun, the light passing through the focal point f (beam L .theta.i), as shown in FIG. 6, is emitted from the lighting member 1 at the exit angle theta OUT.
 出射角θOUTの変化を低減することで、太陽高度の変化に依らず、一定割合の光が室内に取り込まれる。つまり、季節の変化及び時間の変化に依らず、一定の割合の光が室内に取り込まれる。室内に取り込まれた光は、例えば、天井へ照射される。室内に取り込まれた光は、例えば、室内にある照明装置等に取り込まれてもよい。すなわち、採光部材1を、照明装置等の器具における光源のパワーを補うために用いることが可能であり、照明装置等の器具における光源の代わりとして用いることも可能である。実施の形態1に示す採光部材1は、1年を通じて安定した採光を可能とする。 By reducing the change in the emission angle θ OUT , a certain percentage of light is taken into the room regardless of the change in solar altitude. In other words, a certain proportion of light is taken into the room regardless of seasonal changes and time changes. The light taken into the room is irradiated to the ceiling, for example. The light taken into the room may be taken into a lighting device or the like in the room, for example. In other words, the daylighting member 1 can be used to supplement the power of the light source in an instrument such as a lighting device, and can also be used as a substitute for the light source in an instrument such as a lighting device. The daylighting member 1 shown in Embodiment 1 enables stable daylight throughout the year.
 図10に示す例では、突起部13の先端が切断されている。すなわち、図10に示すように、突起部13の先端部Pが切断されている。この場合には、先端部Pは、z-x平面上において入射面14及び反射面15の延長線の交点である。図10では、先端部Pは、例えば、y-z平面に平行に切断されている。なお、突起部13は、焦点fを通り入射面14の先端部P側の端部Eから入射する光よりも入射面14に入射する際の入射角が小さい光を取り込むことはできない。つまり、採光効率の低下が発生する。なお、端部Eは、反射面15の先端部P側の端部である。 In the example shown in FIG. 10, the tip of the protrusion 13 is cut. That is, as shown in FIG. 10, the tip end portion P of the protruding portion 13 is cut. In this case, the tip P is an intersection of the extension lines of the incident surface 14 and the reflecting surface 15 on the zx plane. In FIG. 10, the distal end portion P is cut, for example, in parallel to the yz plane. Note that the protrusion 13 cannot capture light having a smaller incident angle when entering the incident surface 14 than light entering from the end E 1 on the distal end portion P side of the incident surface 14 through the focal point f. That is, the lighting efficiency is reduced. The end portion E 2 is an end portion of the distal portion P side of the reflecting surface 15.
 また、焦点fをy-z平面に平行な切断面上に配置することもできる。つまり、端部Eを含みy-z平面に平行な面上に焦点fを配置することもできる。この場合には、例えば、図5に示す突起部13の反射面15を-z軸方向に移動させて、反射面15の形状を、入射光に合わせて調整した構成と同等となる。なお、この場合には、z軸に平行な光を入射することができる。このために、上述のような採光効率の低下は発生しない。 Further, the focal point f can be arranged on a cutting plane parallel to the yz plane. In other words, it is also possible to place the focal point f on a plane parallel to the y-z plane includes an end portion E 1. In this case, for example, the reflection surface 15 of the protrusion 13 shown in FIG. 5 is moved in the −z-axis direction so that the shape of the reflection surface 15 is adjusted to match the incident light. In this case, light parallel to the z-axis can be incident. For this reason, the reduction of the lighting efficiency as described above does not occur.
 なお、図5に示すように入射面14及び反射面15が先端部Pまで延びている場合には、端部Eは先端部Pと一致する。 As shown in FIG. 5, when the incident surface 14 and the reflecting surface 15 extend to the tip portion P, the end portion E 1 coincides with the tip portion P.
 図11に示す例では、焦点fは、x軸方向において、先端部Pよりも-x軸方向に位置している。つまり、焦点fは、基材10の厚さ方向において、先端部Pよりも基材10側に位置している。なお、採光部材1の配置される状況から、焦点fの-x軸方向側から焦点fに入射する光の量は少ない。つまり、基材10の厚さ方向において、焦点fよりも基材10側から焦点fに入射する光の量は少ない。そのため、焦点fを含みy-z平面に平行な平面よりも+x軸方向側に位置する突起部13の部分では、採光の効果は少ない。 In the example shown in FIG. 11, the focal point f is located in the −x-axis direction with respect to the tip portion P in the x-axis direction. That is, the focal point f is located closer to the base material 10 than the front end portion P in the thickness direction of the base material 10. Note that the amount of light incident on the focal point f from the −x-axis direction side of the focal point f is small due to the situation where the daylighting member 1 is disposed. That is, the amount of light incident on the focal point f from the base material 10 side is smaller than the focal point f in the thickness direction of the base material 10. Therefore, the effect of the daylighting is small in the portion of the protrusion 13 that is located on the + x axis direction side from the plane that includes the focal point f and is parallel to the yz plane.
 図12に示す例では、焦点fは、x軸方向において、先端部Pよりも+x軸方向に位置している。つまり、焦点fは、基材10の厚さ方向において、先端部Pに対して基材10と反対側に位置している。なお、突起部13は、焦点fを通り先端部Pに入射する光よりも入射面14に入射する際の入射角が小さい光を取り込むことはできない。 In the example shown in FIG. 12, the focal point f is located in the + x-axis direction with respect to the tip portion P in the x-axis direction. That is, the focal point f is located on the opposite side of the base material 10 with respect to the distal end portion P in the thickness direction of the base material 10. Note that the protrusion 13 cannot capture light having a smaller incident angle when entering the incident surface 14 than light entering the tip P through the focal point f.
 以上のことから、例えば、垂直に配置されたガラス窓に採光部材1が取り付けられた場合には、図5に示す突起部13が最も効率的に外光を取り込むことができる。なお、図5に示す突起部13の焦点fは、先端部Pを含み基材10の面11に平行な平面上に位置している。 From the above, for example, when the daylighting member 1 is attached to a vertically arranged glass window, the projection 13 shown in FIG. 5 can take in external light most efficiently. The focal point f of the protrusion 13 shown in FIG. 5 is located on a plane that includes the tip P and is parallel to the surface 11 of the substrate 10.
 図2に示すように、互いに隣接する突起部13の先端部P間の距離Dと、入射光LINが照射される入射面14上の幅Wの関係は以下の式(13)で表される。距離Dは、互いに隣接する突起部13の先端部P間のz-x平面上の長さである。幅Wは、入射光LINが照射される入射面14のz-x平面上の長さである。言い換えると、幅Wは、入射面14における入射光LINの照射される幅である。
  W=D/(cos(α)×tan(θIN)) ・・・(13)
As shown in FIG. 2, the relationship between the distance D between the tip portions P of the protrusions 13 adjacent to each other and the width W on the incident surface 14 irradiated with the incident light LIN is expressed by the following equation (13). The The distance D is the length on the zx plane between the tips P of the protrusions 13 adjacent to each other. Width W is the length of the z-x plane of the incident surface 14 of the incident light L IN is irradiated. In other words, the width W is irradiated by the width of the incident light L IN at the incident surface 14.
W = D / (cos (α) × tan (θ IN )) (13)
 式(13)より、距離Dが小さいほど幅Wは小さくなる。その結果、反射面15において入射光LINが照射される幅も小さくなる。つまり、距離Dが小さいほど焦点fを通らずに突起部13に入射する入射光LINの光量は抑制される。そのため、採光部材1から出射される光LOUTの角度θOUTのばらつきも抑制される。つまり、採光部材1から出射される光LOUTの指向性が向上する。 From equation (13), the smaller the distance D, the smaller the width W. As a result, the width of the incident light LIN irradiated on the reflecting surface 15 is also reduced. In other words, the distance D the amount of incident light L IN entering the projection 13 without passing through the smaller the focal point f is suppressed. Therefore, variation in the angle θ OUT of the light L OUT emitted from the daylighting member 1 is also suppressed. That is, the directivity of the light L OUT emitted from the daylighting member 1 is improved.
 なお、採光部材1の形状をz-x平面上で均等に拡大又は縮小しても、採光部材1から出射される光LOUTの指向性は変化しない。なお、「均等に」とは、拡大及び縮小の比率がx方向とz方向とで同じであることを示している。 Note that even if the shape of the daylighting member 1 is uniformly enlarged or reduced on the zx plane, the directivity of the light L OUT emitted from the daylighting member 1 does not change. Note that “equally” indicates that the ratio of enlargement and reduction is the same in the x and z directions.
 突起部13をz軸方向に間隔を広く空けて並べるよりも密に並べる方が、採光部材1から出射される光LOUTの指向性は向上する。つまり、突起部13をz軸方向に間隔を広くおいて配置するのではなく、突起部13を密に配置することによって、採光部材1から出射される光LOUTの指向性が向上する。 The directivity of the light L OUT emitted from the daylighting member 1 is improved by arranging the protrusions 13 densely rather than arranging the protrusions 13 in the z-axis direction with a large interval. That is, the directivity of the light L OUT emitted from the daylighting member 1 is improved by arranging the projections 13 densely, rather than arranging the projections 13 with a wide interval in the z-axis direction.
 最も突起部13が密に並んだ形状は、ある突起部13の谷部Vと隣接する突起部13の谷部Vとが接続された形状である。言い換えると、最も突起部13が密に並んだ形状は、ある突起部13の谷部Vと隣接する突起部13の谷部Vとがz軸方向において一致する形状である。つまり、「密に並んだ形状」とは、突起部13が連続して配置された形状である。なお、「密に並んだ形状」とは、並んだ突起部13の間に基材10の面11が現れていない形状を示している。そのため、「密に並んだ形状」は、例えば、成形性などを考慮して、隣接する突起部13の谷部V及びVを曲面で繋いだ形状を含んでいる。また、「連続する」とは、切れ目なく続くことである。 The most projecting portion 13 but closely lined shape, a shape in which the valley portion V 2 of the protruding portion 13 is connected adjacent to the valleys V 1 of the protrusion 13 with. In other words, the most protruding part 13 is arranged closely the shape, a shape in which the valley portion V 1 of the certain projection 13 and the valleys V 2 of the adjacent protrusions 13 coincide in the z-axis direction. That is, the “closely arranged shape” is a shape in which the protrusions 13 are continuously arranged. The “closely arranged shape” indicates a shape in which the surface 11 of the base material 10 does not appear between the protruding portions 13 arranged. Therefore, the “closely arranged shape” includes, for example, a shape in which the valleys V 1 and V 2 of the adjacent protrusions 13 are connected by curved surfaces in consideration of formability and the like. Further, “continuous” means to continue without a break.
≪採光部材1による採光の効果≫ 図9は、出射光の角度θOUTに対する出射光の強度分布のシミュレーション結果を示す図である。図9では、採光部材1からの距離Iの範囲内における出射光の強度分布が示される。図9では、春分の正午(θIN=56°)、夏至の正午(θIN=77°)及び冬至の正午(θIN=31°)における直達光が採光部材1に入射した場合を示している。 << Effect of Daylighting by the Daylighting Member 1 >> FIG. 9 is a diagram showing a simulation result of the intensity distribution of the outgoing light with respect to the angle θOUT of the outgoing light. In FIG. 9, the intensity distribution of the emitted light within the range of the distance I from the daylighting member 1 is shown. FIG. 9 shows the case where direct light at noon (θ IN = 56 °) in spring equinox, noon on the summer solstice (θ IN = 77 °) and noon on the winter solstice (θ IN = 31 °) is incident on the daylighting member 1. Yes.
 ここで直達光とは、拡散光を含まない太陽光を意味し、一般的にいうところの直射日光である。太陽光には直達光と散乱光とが含まれている。直達光は太陽から直接受ける光である。散乱光は太陽光が何かで反射、屈折又は散乱した光である。 Here, direct light means sunlight that does not contain diffuse light, and is generally direct sunlight. Sunlight includes direct light and scattered light. Direct light is light received directly from the sun. Scattered light is light reflected, refracted or scattered by something sunlight.
 ここで直達光は平行光として扱う。 Here, direct light is treated as parallel light.
 角度θOUTがゼロよりも大きい(θOUT>0)光が天井に向かう光となる。このため、角度θOUTがゼロよりも大きい範囲(θOUT>0)に出射されるエネルギーの割合が高い。採光部材1は、例えば、光を天井に向けて照射することが望まれている。 Light whose angle θ OUT is greater than zero (θ OUT > 0) becomes light that travels toward the ceiling. For this reason, the ratio of the energy emitted in the range where the angle θ OUT is larger than zero (θ OUT > 0) is high. For example, the daylighting member 1 is desired to emit light toward the ceiling.
 また、角度θOUTがゼロよりも小さい(θOUT<0)光は床方向に向かう光である。床方向に向かう光は、室内の人間に眩しさを感じさせるグレア光になる。このため、床方向に向かう光は、抑制されることが望ましい。 In addition, light having an angle θ OUT smaller than zero (θ OUT <0) is light directed toward the floor. The light toward the floor becomes glare light that makes a person in the room feel dazzling. For this reason, it is desirable to suppress the light which goes to a floor direction.
 図9に示すように、出射光(光線LOUT)の全エネルギーの内、天井側(θOUT>0)に向かうエネルギーの割合は、次の通りである。春分(θIN=56°)では、天井側に向かうエネルギーの割合は79%である。夏至(θIN=77°)では、天井側に向かうエネルギーの割合は93%である。冬至(θIN=31°)では、天井側に向かうエネルギーの割合は73%である。季節(太陽高度)に依らず、相対的に多くの光が天井へ照射されることがわかる。 As shown in FIG. 9, the ratio of the energy toward the ceiling side (θ OUT > 0) out of the total energy of the emitted light (light ray L OUT ) is as follows. In the equinox (θ IN = 56 °), the ratio of energy toward the ceiling is 79%. In the summer solstice (θ IN = 77 °), the ratio of energy toward the ceiling is 93%. In the winter solstice (θ IN = 31 °), the ratio of energy toward the ceiling is 73%. It can be seen that a relatively large amount of light is applied to the ceiling regardless of the season (solar altitude).
 入射光(光線LIN)のうち、焦点fを通過した光は、その角度θINに依らず一定の角度θOUTで出射される。しかし、焦点fを通過せずに突起部13に入射する光もある。このため、図9に示すように、出射光(すなわち、光線LOUT)は角度分布を有する。 Of the incident light (light ray L IN ), the light passing through the focal point f is emitted at a constant angle θ OUT regardless of the angle θ IN . However, there is also light that enters the protrusion 13 without passing through the focal point f. For this reason, as shown in FIG. 9, the emitted light (that is, the light beam L OUT ) has an angular distribution.
 出射光(すなわち、光線LOUT)の強度が最大となる出射角θは、次の通りである。春分では、出射角θは23.5°である。夏至では、出射角θは19.5°である。冬至では、出射角θは10.5°である。季節変化による入射光(すなわち、光線LIN)の角度変化に対して、出射光(すなわち、光線LOUT)の角度変化は小さく抑えられている。  The outgoing angle θ P at which the intensity of the outgoing light (that is, the light beam L OUT ) is maximum is as follows. In spring equinox, the emission angle θ P is 23.5 °. In the summer solstice, the emission angle θ P is 19.5 °. In the winter solstice, the emission angle θ P is 10.5 °. The change in the angle of the outgoing light (that is, the light beam L OUT ) is suppressed to be smaller than the change in the angle of the incident light (that is, the light beam L IN ) due to the seasonal change.
上記のように、採光部材1によれば、入射面14への入射光LINの入射角が変化した場合でも、採光部材1からの出射光LOUTの出射角θOUTの変化を抑制することができる。 As described above, according to the lighting member 1, even if the incident angle of the incident light L IN to the incident surface 14 is changed, suppressing the change of the emission angle theta OUT of the output light L OUT from the lighting member 1 Can do.
実施の形態2. 以下、実施の形態2について、図13から図16を用いて説明する。各図面においては、構成要素によって寸法の縮尺が異なることがある。 Embodiment 2. FIG. Hereinafter, Embodiment 2 will be described with reference to FIGS. In each drawing, the scale of a dimension may differ with components.
 実施の形態2では、遮光部21を用いて、床に照射される光を低減している。 In Embodiment 2, the light that is irradiated onto the floor is reduced by using the light shielding portion 21.
 図13に、角度θINが互いに異なる入射光(すなわち、光線LIN)が、反射面15上の同一の場所で反射される場合の光線の挙動を示す。角度β,β’,及びβ”は、x軸に対する角度である。 FIG. 13 shows the behavior of light rays when incident lights having different angles θ IN (that is, light rays L IN ) are reflected at the same location on the reflecting surface 15. The angles β, β ′, and β ″ are angles with respect to the x axis.
 z-x平面において、反射面15上の同一の場所で反射される場合には、入射光(すなわち、光線LIN)の角度θINが大きいほど反射光(すなわち、光線L)の角度βは大きくなる。一方、入射光(すなわち、光線L)の角度θINが小さいほど反射光(すなわち、光線L)の角度βは小さくなる。 When the light is reflected at the same place on the reflecting surface 15 in the zx plane, the angle β IN of the reflected light (ie, light ray L 2 ) increases as the angle θ IN of the incident light (ie, light ray L IN ) increases. Becomes bigger. On the other hand, the smaller the angle θ IN of the incident light (ie, the light beam L 2 ), the smaller the angle β of the reflected light (ie, the light beam L 2 ).
 まず、角度θ’INが角度θINよりも大きい場合を示す。焦点fを通る光線を光線Lとする。焦点fを通らない光線を光線L’とする。光線Lの入射する角度を角度θINとする。光線L’の入射する角度を角度θ’INとする。光線Lの反射光の角度を角度βとする。光線L’の反射光の角度を角度β’とする。焦点fを通り角度θINで突起部13に入射する光線Lが到達する反射面15上の点を点Rとする。光線L’が点Rで反射される場合には、角度θ’INが角度θINよりも大きいと、角度β’は角度βよりも大きくなる。角度βは通常0(ゼロ)より大きな値を持つ。このため、角度β’も0(ゼロ)より大きくなる。そして、光線L’の反射光は、例えば、天井に照射される。 First, a case where the angle θ ′ IN is larger than the angle θ IN is shown. A light ray passing through the focal point f is a light ray L. A light ray that does not pass through the focal point f is defined as a light ray L ′. The angle at which the light beam L is incident is defined as an angle θ IN . The angle at which the light beam L ′ is incident is defined as an angle θ ′ IN . The angle of the reflected light of the light beam L is defined as an angle β. The angle of the reflected light of the light ray L ′ is defined as an angle β ′. Light L incident on the projection 13 of the focal point f in street angle theta IN is a point R the point on the reflecting surface 15 to reach. When the light ray L ′ is reflected at the point R, if the angle θ ′ IN is larger than the angle θ IN , the angle β ′ becomes larger than the angle β. The angle β usually has a value larger than 0 (zero). For this reason, the angle β ′ is also larger than 0 (zero). Then, the reflected light of the light beam L ′ is applied to the ceiling, for example.
 次に、角度θ”INが角度θINよりも小さい場合を示す。焦点fを通らない光線を光線L”とする。光線L”の入射する角度を角度θ”INとする。光線L”の反射光の角度を角度β”とする。光線L”が点Rで反射される場合には、角度θ”INが角度θINよりも小さいと、角度β”は角度βよりも小さくなる。角度β”が0(ゼロ)より大きい場合には、例えば、光線L”は天井に照射される。角度β”が0(ゼロ)より小さい場合には、例えば、光線L”は床に照射される。または、光線L”はグレア光になる。 Next, "the light that does not pass through the IN indicates smaller than the angle theta IN. Focal f beam L" angle theta to. The angle at which the light beam L ″ is incident is defined as an angle θ ″ IN . The angle of the reflected light of the light beam L ″ is defined as an angle β ″. When ray L ″ is reflected at point R, if angle θ ″ IN is smaller than angle θ IN , angle β ″ is smaller than angle β. If angle β ″ is greater than 0 (zero). For example, the light beam L ″ is applied to the ceiling. If the angle β ″ is smaller than 0 (zero), for example, the light beam L ″ is applied to the floor. .
 実施の形態1に示すように、採光部材1では、角度β”が0(ゼロ)より小さい光は抑制されている。しかし、角度β”が0(ゼロ)より小さい光は少ないほどよい。 As shown in the first embodiment, in the daylighting member 1, light with an angle β ″ smaller than 0 (zero) is suppressed. However, the light with the angle β ″ smaller than 0 (zero) is better.
 角度θ’INが角度θINよりも大きい場合には、光線L’は、焦点fと先端部Pを含む平面上において焦点fよりも+z軸方向側に位置する点を通って入射面14に入射する。 When the angle θ ′ IN is larger than the angle θ IN , the light ray L ′ passes through the point located on the + z-axis direction side with respect to the focal point f on the plane including the focal point f and the tip P, and enters the incident surface 14. Incident.
 一方、角度θ”INが角度θINよりも小さい場合には、光線L”は、焦点fと先端部Pを含む平面上において焦点fよりも-z軸方向側に位置する点を通って入射面14に入射する。 On the other hand, the angle theta "If IN is less than the angle theta IN is light L" passes through the point located -z axis direction side than the focal point f on the plane including the focal point f and the tip portion P incident Incident on the surface 14.
 つまり、図14に示すように、焦点fと先端部Pとを含む平面を通過して入射面14から入射する光を遮光部21によって遮断する。遮光部21は、例えば、遮光部材20に備えられている。これによって、グレアの発生を抑制することができる。 That is, as shown in FIG. 14, light that passes through the plane including the focal point f and the tip portion P and enters from the incident surface 14 is blocked by the light blocking portion 21. The light shielding unit 21 is provided in the light shielding member 20, for example. Thereby, the occurrence of glare can be suppressed.
 実施の形態2に係る採光部材2は、実施の形態1で説明した基材10及び突起部13に加えて、遮光部材20を備える。遮光部材20は、少なくとも1つの遮光部21と基材22とを備える。遮光部21は、基材22の-x軸方向側の表面又は内部に備えられている。 The daylighting member 2 according to the second embodiment includes a light shielding member 20 in addition to the base material 10 and the protrusions 13 described in the first embodiment. The light shielding member 20 includes at least one light shielding portion 21 and a base material 22. The light shielding portion 21 is provided on the surface or inside of the base material 22 on the −x axis direction side.
 基材22は、光を透過する材料で形成される。 The base material 22 is formed of a material that transmits light.
 基材22は、例えば、熱可塑性ポリマー、熱硬化性樹脂又は光重合性樹脂などを用いた樹脂フィルムから形成されてもよい。また、樹脂フィルムとしては、アクリル系ポリマー、オレフィン系ポリマー、ビニル系ポリマー、セルロース系ポリマー、アミド系ポリマー、フッ素系ポリマー、ウレタン系ポリマー、シリコーン系ポリマー又はイミド系ポリマーなどを用いることができる。 The base material 22 may be formed from a resin film using, for example, a thermoplastic polymer, a thermosetting resin, a photopolymerizable resin, or the like. As the resin film, an acrylic polymer, an olefin polymer, a vinyl polymer, a cellulose polymer, an amide polymer, a fluorine polymer, a urethane polymer, a silicone polymer, an imide polymer, or the like can be used.
 実施の形態2では、基材22の材料の一例として、ポリメタクリル酸メチル(PMMA)を用いている。 In the second embodiment, polymethyl methacrylate (PMMA) is used as an example of the material of the base material 22.
 図14に示すように、遮光部21は、入射面14への光の入射範囲を調整する。遮光部21は、例えば、焦点fと先端部Pとを含む面上に形成されている。遮光部21は、入射面14のx軸方向(具体的には、+x軸方向)における先端部Pからz軸方向に延在する。言い換えると、遮光部21は、焦点fから先端部Pまでの範囲に形成されている。つまり、遮光部21は、帯状に形成されている。複数の遮光部21が基材22上に形成されている。複数の遮光部21は基材22上に互いに平行に配置されている。隣り合う遮光部21の間隔は、隣り合う突起部13の先端部P同士の間隔と同等である。 As shown in FIG. 14, the light shielding unit 21 adjusts the incident range of light on the incident surface 14. The light shielding part 21 is formed on a surface including the focal point f and the tip part P, for example. The light shielding portion 21 extends in the z-axis direction from the tip portion P in the x-axis direction (specifically, the + x-axis direction) of the incident surface 14. In other words, the light shielding part 21 is formed in the range from the focal point f to the tip part P. That is, the light shielding part 21 is formed in a band shape. A plurality of light shielding portions 21 are formed on the base material 22. The plurality of light shielding portions 21 are arranged in parallel to each other on the base material 22. The interval between the adjacent light shielding portions 21 is equal to the interval between the tip portions P of the adjacent protruding portions 13.
 ただし、焦点fを通る光が入射面14へ入射するように遮光部21を配置してもよい。この場合、実施の形態1で説明した採光部材1の効果も得られる。 However, the light shielding portion 21 may be arranged so that light passing through the focal point f is incident on the incident surface 14. In this case, the effect of the daylighting member 1 described in the first embodiment is also obtained.
 遮光部21は、例えば、黒色顔料で形成された膜である。例えば、遮光部21は、黒色顔料の印刷膜である。遮光部21は、白色顔料で形成された膜でもよい。この場合、遮光部21は、例えば、白色顔料の印刷膜であってもよい。実施の形態2では、例えば、遮光部21は黒色顔料の印刷膜である。 The light shielding part 21 is a film formed of, for example, a black pigment. For example, the light shielding portion 21 is a black pigment printing film. The light shielding part 21 may be a film formed of a white pigment. In this case, the light shielding unit 21 may be, for example, a white pigment printing film. In the second embodiment, for example, the light shielding portion 21 is a black pigment printing film.
 図15に示すように、突起部13の先端部Pの付近をy-z平面と平行な平面で切断することにより切断面24を形成し、その切断面24で遮光部材20を突起部13に固定してもよい。 As shown in FIG. 15, a cutting surface 24 is formed by cutting the vicinity of the tip portion P of the protruding portion 13 along a plane parallel to the yz plane, and the light shielding member 20 is formed on the protruding portion 13 by the cutting surface 24. It may be fixed.
 図16では、採光部材2からの距離Iの範囲内における出射光の強度分布が示される。図16に示すように、出射光の全エネルギーの内、天井側(θOUT>0)に向かうエネルギーの割合は、春分(θIN=56°)、夏至(θIN=77°)及び冬至(θIN=31°)のすべてで100%となる。そして、季節(すなわち、太陽高度)に依らず、出射光のすべてが天井へ照射される。そして、グレアの原因となる床側(θOUT≦0)に向かう光は抑制される。 In FIG. 16, the intensity distribution of the emitted light within the range of the distance I from the daylighting member 2 is shown. As shown in FIG. 16, the ratio of the energy toward the ceiling side (θ OUT > 0) in the total energy of the emitted light is as follows: equinox (θ IN = 56 °), summer solstice (θ IN = 77 °), and winter solstice ( All of θ IN = 31 °) is 100%. And all the emitted light is irradiated to a ceiling irrespective of a season (namely, solar altitude). And the light which goes to the floor side ((theta) OUT <= 0) which causes a glare is suppressed.
 出射光において強度が最大となる出射角θは、次の通りである。春分では、出射角θは23.5°である。夏至では、出射角θは19.5°である。冬至では、出射角θは10.5°である。季節変化による入射光の角度変化に対して、出射光の角度変化が小さく抑えられている。 The outgoing angle θ P at which the intensity of the outgoing light is maximum is as follows. In spring equinox, the emission angle θ P is 23.5 °. In the summer solstice, the emission angle θ P is 19.5 °. In the winter solstice, the emission angle θ P is 10.5 °. The change in the angle of the outgoing light is suppressed to be smaller than the change in the angle of the incident light due to the seasonal change.
 以上のように本発明の実施の形態について説明したが、本発明はこれらの実施の形態に限るものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。 As described above, the embodiments of the present invention have been described. However, the present invention is not limited to these embodiments, and the components can be modified and embodied without departing from the scope of the invention in the implementation stage. The features in the embodiments described above and the features in the modifications can be appropriately combined with each other.
 なお、上述の各実施の形態においては、「平行」または「垂直」などの部品間の位置関係もしくは部品の形状を示す用語を用いている場合がある。これらは、製造上の公差や組立て上のばらつきなどを考慮した範囲を含むことを表している。このため、請求の範囲に部品間の位置関係もしくは部品の形状を示す記載をした場合には、製造上の公差又は組立て上のばらつき等を考慮した範囲を含むことを示している。 In each of the above-described embodiments, there are cases where terms such as “parallel” or “vertical” indicating the positional relationship between parts or the shape of the part are used. These represent that a range that takes into account manufacturing tolerances and assembly variations is included. For this reason, when the description showing the positional relationship between the parts or the shape of the part is included in the scope of claims, it indicates that the range including a manufacturing tolerance or a variation in assembling is included.
 以上の各実施の形態を基にして、以下に発明の内容を付記(1)及び付記(2)として記載する。付記(1)と付記(2)とは、各々独立して符号を付している。そのため、例えば、付記(1)と付記(2)との両方に、「付記1」が存在する。 Based on the above embodiments, the contents of the invention will be described as supplementary notes (1) and supplementary notes (2) below. The supplementary note (1) and the supplementary note (2) are each independently labeled. Therefore, for example, “Appendix 1” exists in both appendices (1) and (2).
 また、付記(1)の特徴と付記(2)の特徴とを組み合わせることができる。 Also, the feature of supplementary note (1) and the feature of supplementary note (2) can be combined.
<付記(1)>
<付記1>
 光を透過させ、第1の方向に厚みを持ち、前記第1の方向と直交する第2の方向に延在する基材と、
 前記基材から前記第1の方向に突出しており、前記第2の方向に延在する少なくとも1つの突起部と
を備え、
 前記少なくとも1つの突起部は、光が入射する入射面と前記入射面に入射した前記光を反射する反射面とを含み、
 前記入射面は、前記基材から前記第1の方向に延在しており、
 前記反射面は、前記入射面から離れる方向に湾曲した曲面を有し、
 前記第2の方向と直交する平面において、前記入射面に入射した光線の屈折角をθとし、前記反射面で反射した前記光線と前記入射面とがなす角をθとし、前記光線が前記反射面で反射する点における接平面と前記入射面とがなす角をφとしたとき、
 φ=((π/2)-θ+θ)/2
 を満たす採光部材。
<Appendix (1)>
<Appendix 1>
A base material that transmits light, has a thickness in a first direction, and extends in a second direction orthogonal to the first direction;
Projecting from the base material in the first direction and including at least one protrusion extending in the second direction;
The at least one protrusion includes an incident surface on which light is incident and a reflecting surface that reflects the light incident on the incident surface;
The incident surface extends from the substrate in the first direction;
The reflective surface has a curved surface curved in a direction away from the incident surface,
In a plane perpendicular to the second direction, the refraction angle of the light beam incident on the incident surface is θ 1 , the angle formed by the light beam reflected by the reflection surface and the incident surface is θ 2 , and the light beam is When the angle between the tangent plane at the point reflected by the reflecting surface and the incident surface is φ,
φ = ((π / 2) −θ 1 + θ 2 ) / 2
A daylighting member that meets the requirements.
<付記2>
 前記入射面は平面である付記1に記載の採光部材。
<Appendix 2>
The daylighting member according to claim 1, wherein the incident surface is a flat surface.
<付記3>
 前記少なくとも1つの突起部の焦点は、前記入射面に面する位置にある付記1又は2に記載の採光部材。
<Appendix 3>
The daylighting member according to appendix 1 or 2, wherein a focal point of the at least one protrusion is located at a position facing the incident surface.
<付記4>
 前記焦点は、前記第2の方向と直交する平面において、前記少なくとも1つの突起部の前記第1の方向における先端部を通る直線であって且つ前記第1の方向及び前記第2の方向に直交する第3の方向と平行な直線上に位置する付記3に記載の採光部材。
<Appendix 4>
The focal point is a straight line passing through a tip portion of the at least one protrusion in the first direction on a plane orthogonal to the second direction, and is orthogonal to the first direction and the second direction. The daylighting member according to attachment 3, which is located on a straight line parallel to the third direction.
<付記5>
 前記反射面で全反射が生じるとき、前記反射面で反射する前記光線の臨界角をθとすると、
 φ+θ1≧θ
 を満たす付記1から4のいずれか1つに記載の採光部材。
<Appendix 5>
When the total reflection occurs at said reflecting surface, when the critical angle of the light beam reflected by the reflecting surface and theta T,
φ + θ1 ≧ θ T
The lighting member according to any one of supplementary notes 1 to 4, which satisfies:
<付記6>
 前記少なくとも1つの突起部は、複数の突起部を含み、
 前記複数の突起部は、前記第1の方向及び前記第2の方向と直交する第3の方向に配列されている付記1から5のいずれか1つに記載の採光部材。
<Appendix 6>
The at least one protrusion includes a plurality of protrusions;
The daylighting member according to any one of supplementary notes 1 to 5, wherein the plurality of protrusions are arranged in a third direction orthogonal to the first direction and the second direction.
<付記7>
 前記第2の方向と直交する平面において、前記入射面の前記第1の方向における端部から前記入射面への前記光線の入射位置までの距離をDinとし、前記反射面の前記第1の方向における端部から前記反射面での前記光線の反射位置までの距離をDrefとすると、前記距離Dinが増加するにつれて前記距離Drefが増加し、前記距離Dinが減少するにつれて前記距離Drefが減少する付記1から6のいずれか1つに記載の採光部材。
<Appendix 7>
In a plane orthogonal to the second direction, the distance from the end of the incident surface in the first direction to the incident position of the light beam on the incident surface is D in, and the first surface of the reflective surface is said distance as when the distance from the end to the reflection position of the light beam at said reflecting surface and D ref in the direction, the distance the distance D ref increases as D in increases, the distance D in is reduced The lighting member according to any one of supplementary notes 1 to 6, wherein D ref decreases.
<付記8>
 前記基材は、板形状である付記1から7のいずれか1つに記載の採光部材。
<Appendix 8>
The daylighting member according to any one of appendices 1 to 7, wherein the base material has a plate shape.
<付記9>
 前記基材は、樹脂フィルムで形成されている付記1から8のいずれか1つに記載の採光部材。
<Appendix 9>
The said base material is a lighting member as described in any one of the additional remarks 1-8 currently formed with the resin film.
<付記10>
 前記少なくとも1つの突起部は、アクリル樹脂、エポキシ樹脂又はシリコーン樹脂を含む材料で形成されている付記1から9のいずれか1つに記載の採光部材。
<Appendix 10>
The daylighting member according to any one of appendices 1 to 9, wherein the at least one protrusion is formed of a material including an acrylic resin, an epoxy resin, or a silicone resin.
<付記11>
 前記入射面への光の入射範囲を調整する遮光部をさらに備え、
 前記遮光部は、前記入射面の前記第1の方向における先端部から前記第1の方向及び前記第2の方向と直交する第3の方向に延在する
 付記1から10のいずれか1つに記載の採光部材。
<Appendix 11>
A light-shielding part that adjusts an incident range of light on the incident surface;
The light shielding portion extends from a tip portion of the incident surface in the first direction in a third direction orthogonal to the first direction and the second direction. The daylighting member of description.
<付記12>
 前記遮光部は、黒色顔料で形成された膜である付記11に記載の採光部材。
<Appendix 12>
The daylighting member according to supplementary note 11, wherein the light shielding portion is a film formed of a black pigment.
<付記13>
 前記遮光部は、白色顔料で形成された膜である付記11に記載の採光部材。
<Appendix 13>
The daylighting member according to supplementary note 11, wherein the light shielding portion is a film formed of a white pigment.
<付記(2)>
<付記1>
 光を透過する板形状の基材と、
 前記基材の1つの面上から突出して形成される突起部と
を備え、
 前記突起部は、光を入射する入射面と入射した前記光を反射する反射面とを含み、
 前記入射面は、前記面から伸びて配置され、
 前記反射面は、前記面から伸びて配置され、前記面に垂直な第1の方向に曲率を有するシリンドリカル形状であり、
 前記シリンドリカル形状の曲率を有しない方向を第2の方向とし、前記第1の方向および前記第2の方向に垂直な方向を第3の方向とし、
 前記入射面に対して前記反射面と反対側に位置し前記第2の方向に平行な線上の点を第1の点とし、前記第1の点を通り前記入射面から入射した光線を第1の光線とし、前記第1の光線が前記反射面で反射された光線を第2の光線とし、
 前記第2の方向に垂直な平面を第1の平面とし、
 前記入射面における前記第1の光線の屈折角の前記第1の平面上の角度を角度θとし、前記入射面に対する前記第2の光線のなす角の前記第1の平面上の角度を角度θとし、
 前記入射面の前記面と反対側の端部を第1の端部とし、前記反射面の前記面と反対側の端部を第2の端部とすると、
 前記第1の平面上において、前記第1の端部から前記第1の光線の入射位置までの前記入射面上の長さを第1の長さとし、前記第2の端部から前記第1の光線の反射位置までの前記反射面上の長さを第2の長さとすると、
 前記第1の長さが連続的に変化した場合に、前記第2の長さは前記第1の長さと1対1で連続的に変化し、前記第1の長さと前記第2の長さとは、増減の方向が同じであり、
 前記第1の光線が前記反射面と交わる第2の点における前記反射面の接平面が前記入射面とのなす角の前記第1の平面上の角度φは、
  φ=((π/2)-θ+θ)/2
を満たす採光部材。
<Appendix (2)>
<Appendix 1>
A plate-shaped substrate that transmits light;
A protrusion formed so as to protrude from one surface of the base material,
The protrusion includes a light incident surface and a reflective surface that reflects the incident light.
The incident surface is arranged extending from the surface,
The reflective surface is arranged extending from the surface and has a cylindrical shape having a curvature in a first direction perpendicular to the surface;
The direction having no cylindrical curvature is the second direction, the first direction and the direction perpendicular to the second direction is the third direction,
A point on a line parallel to the second direction that is located on the opposite side of the reflecting surface with respect to the incident surface is defined as a first point, and a light ray that has entered the incident surface through the first point is defined as a first point. And the first light beam reflected by the reflecting surface is the second light beam,
The plane perpendicular to the second direction is the first plane,
The angle on the first plane of the refraction angle of the first light beam at the incident surface and the angle theta 1, the angle the angle on the first plane of the angle of the second light flux to the incident surface θ 2
When the end of the incident surface opposite to the surface is the first end, and the end of the reflecting surface opposite to the surface is the second end,
On the first plane, the length on the incident surface from the first end to the incident position of the first light beam is a first length, and the first end is the first length from the second end. When the length on the reflecting surface to the reflection position of the light beam is the second length,
When the first length continuously changes, the second length continuously changes 1: 1 with the first length, and the first length and the second length Has the same direction of increase and decrease,
The angle φ on the first plane of the angle formed by the tangent plane of the reflective surface at the second point where the first light ray intersects the reflective surface and the incident surface is:
φ = ((π / 2) −θ 1 + θ 2 ) / 2
A daylighting member that meets the requirements.
<付記2>
 前記第1の光線の前記反射面に対する臨界角の前記第1の平面上の角度を角度θとすると、
 前記角度φおよび前記角度θは、
  φ+θ≧θ
を満たす付記1に記載の採光部材。
<Appendix 2>
When the angle on the first plane of the critical angle with respect to the reflecting surface of the first light beam and the angle theta T,
The angle φ and the angle θ 1 are
φ + θ 1 ≧ θ T
The daylighting member according to Supplementary Note 1, wherein
<付記3>
 前記入射面から入射する光線を遮光することで、前記反射面で前記第2の点に対して前記入射面と反対側に反射される光線の入射を防ぐ遮光部を備え、
 前記遮光部が前記端部から前記反射面と反対側に向けて配置される付記1または2に記載の採光部材。
<Appendix 3>
A light-shielding portion that prevents light incident on the side opposite to the incident surface with respect to the second point by the reflective surface by shielding light incident from the incident surface;
The daylighting member according to supplementary note 1 or 2, wherein the light-shielding portion is arranged from the end portion toward the side opposite to the reflecting surface.
<付記4>
 前記第1と前記第2の端部を結ぶ直線に平行な二つの面と前記第2の端部から前記基材の備える一面へ向かう方向と反対方向に厚みを備え、前記第1の端部と前記第3の端部を結ぶ直線と並行な方向に延びる遮光部を備える付記1または2に記載の採光部材。
<Appendix 4>
Two surfaces parallel to a straight line connecting the first and second ends and a thickness in a direction opposite to a direction from the second end toward one surface of the base material, the first end The lighting member according to appendix 1 or 2, further comprising a light-shielding portion extending in a direction parallel to a straight line connecting the first end portion and the third end portion.
<付記5>
 前記遮光部が前記突起部側の一面に遮光部を備える付記3から4のいずれか1つに記載の採光部材。
<Appendix 5>
The daylighting member according to any one of supplementary notes 3 to 4, wherein the light shielding portion includes a light shielding portion on one surface of the protrusion portion.
<付記6>
 前記遮光部の幅が前記突起部の備える第2の端部と前記第2の端部を通り、前記基材の1つの面に平行な直線上で、前記入射面に対して前記反射面と反対側に位置する点とを結ぶ直線の長さに等しい付記3から5のいずれか1つに記載の採光部材。
<Appendix 6>
The light-shielding portion has a width that passes through the second end portion and the second end portion of the protrusion, and is parallel to one surface of the base material. The lighting member according to any one of supplementary notes 3 to 5, which is equal in length to a straight line connecting a point located on the opposite side.
<付記7>
 前記遮光部の幅が前記突起部の備える第2の端部と前記第2の端部を通り、前記基材の1つの面に平行な直線上で、前記入射面に対して前記反射面と反対側に位置する点とを結ぶ直線の長さに等しい付記3から6のいずれか1つに記載の採光部材。
<Appendix 7>
The light-shielding portion has a width that passes through the second end portion and the second end portion of the protrusion, and is parallel to one surface of the base material. The lighting member according to any one of supplementary notes 3 to 6, which is equal to a length of a straight line connecting a point located on the opposite side.
<付記8>
 前記採光部材と前記遮光部とが、前記採光部材の備える複数の前記突起部の一部を接着層で埋めて貼合された付記3から7のいずれか1つに記載の採光部材。
<Appendix 8>
The daylighting member according to any one of appendices 3 to 7, wherein the daylighting member and the light-shielding portion are bonded together by filling a part of the plurality of protrusions included in the daylighting member with an adhesive layer.
<付記9>
 前記採光部材と前記遮光部とが、前記採光部材の備える複数の前記突起部の前記第2の端部付近を前記基材の1つの面に平行な面で切断した切断面で貼合された付記3から8のいずれか1つに記載の採光部材。
<Appendix 9>
The said lighting member and the said light-shielding part were bonded by the cut surface which cut | disconnected the said 2nd edge part vicinity of the several projection part with which the said lighting member is equipped with the surface parallel to one surface of the said base material. The lighting member according to any one of appendices 3 to 8.
<付記10>
 前記突起部は、前記第3の方向に並べて配置されている付記1から9のいずれか1つに記載の採光部材。
<Appendix 10>
The daylighting member according to any one of supplementary notes 1 to 9, wherein the protrusion is arranged side by side in the third direction.
<付記11>
 前記突起部は、前記第3の方向に連続して配置されている付記1から10のいずれか1つに記載の採光部材。
<Appendix 11>
The daylighting member according to any one of supplementary notes 1 to 10, wherein the protrusion is continuously arranged in the third direction.
<付記12>
 前記反射面は、前記第1の光線に対して凹面形状である付記1から11のいずれか1つに記載の採光部材。
<Appendix 12>
The daylighting member according to any one of appendices 1 to 11, wherein the reflecting surface has a concave shape with respect to the first light beam.
<付記(3)>
<付記1>
 光を透過させ、第1の方向に厚みを持ち、前記第1の方向と直交する第2の方向に延在する基材と、
 前記基材から前記第1の方向に突出しており、前記第2の方向に延在する突起部と
を備え、
 前記突起部は、光が入射する入射面と前記入射面に入射した前記光を反射する反射面とを含み、
 前記入射面は、前記基材から前記第1の方向に延在しており、
 前記反射面は、前記入射面から離れる方向に湾曲した曲面を有し、
 前記第2の方向と直交する平面において、前記入射面に入射した光線の屈折角をθとし、前記反射面で反射した前記光線と前記入射面とがなす角度をθとし、前記光線が前記反射面で反射する点における接平面と前記入射面とがなす角度をφとしたとき、前記入射面に入射した光線の少なくとも一部に対して、
 φ=((π/2)-θ+θ)/2
 を満たす採光部材。
<Appendix (3)>
<Appendix 1>
A base material that transmits light, has a thickness in a first direction, and extends in a second direction orthogonal to the first direction;
Projecting from the base material in the first direction and extending in the second direction; and
The protrusion includes an incident surface on which light is incident and a reflecting surface that reflects the light incident on the incident surface,
The incident surface extends from the substrate in the first direction;
The reflective surface has a curved surface curved in a direction away from the incident surface,
In a plane orthogonal to the second direction, the refraction angle of the light beam incident on the incident surface is θ 1 , the angle formed by the light beam reflected by the reflection surface and the incident surface is θ 2 , and the light beam is When the angle between the tangential plane at the point reflected by the reflecting surface and the incident surface is φ, at least a part of the light incident on the incident surface,
φ = ((π / 2) −θ 1 + θ 2 ) / 2
A daylighting member that meets the requirements.
<付記2>
 前記入射面は平面である付記1に記載の採光部材。
<Appendix 2>
The daylighting member according to claim 1, wherein the incident surface is a flat surface.
<付記3>
 前記反射面は、前記第1の方向に曲率を有するシリンドリカル形状であり、
 前記入射面に入射した光線の少なくとも一部は、前記入射面に対して前記反射面と反対側に位置し前記第2の方向に平行な線上の点である第1の点を通る
 付記1又は2に記載の採光部材。
<Appendix 3>
The reflective surface is a cylindrical shape having a curvature in the first direction;
At least a part of the light beam incident on the incident surface passes through a first point which is a point on a line parallel to the second direction and located on the opposite side of the reflecting surface with respect to the incident surface. The daylighting member according to 2.
<付記4>
 前記突起部は焦点を持っており、
 前記突起部の焦点は、前記基材からの光線が前記反射面で反射されて前記反射面からの反射光線が集光する焦点であり、
 前記基材からの光線は、前記基材から前記突起部に入射する光線であり、
 前記突起部に入射する光線は、平行光線である
 付記1から3のいずれか1項に記載の採光部材。
<Appendix 4>
The protrusion has a focal point;
The focal point of the protrusion is a focal point where the light beam from the base material is reflected by the reflective surface and the reflected light beam from the reflective surface is collected,
The light beam from the base material is a light beam incident on the protrusion from the base material,
The daylighting member according to any one of appendices 1 to 3, wherein the light beam incident on the protrusion is a parallel light beam.
<付記5>
 前記屈折角θは、前記突起部に入射した光線の前記突起部への入射角θINに応じて変化し、
 前記入射角θINは、20°≦θIN≦90°を満たす
 付記3又は4に記載の採光部材。
<Appendix 5>
The refraction angle θ 1 changes according to the incident angle θ IN of the light beam incident on the protrusion to the protrusion,
The daylighting member according to Supplementary Note 3 or 4, wherein the incident angle θ IN satisfies 20 ° ≦ θ IN ≦ 90 °.
<付記6>
 前記屈折角θは、前記突起部に入射した光線の前記突起部への入射角θINに応じて変化し、
 前記入射角θINの角度範囲は、前記採光部材の設置場所における太陽高度の最小値から最大値に対応している
 付記3又は4に記載の採光部材。
<Appendix 6>
The refraction angle θ 1 changes according to the incident angle θ IN of the light beam incident on the protrusion to the protrusion,
The angular range of the incident angle theta IN is lighting member according to Appendix 3 or 4 corresponds to the maximum value from the minimum value of the solar altitude at the installation location of the lighting member.
<付記7>
 前記屈折角θの角度範囲のうちの一部の角度範囲において、前記角度θが一定である付記3から6のいずれか1項に記載の採光部材。
<Appendix 7>
Some of the angular range, the lighting member according to any one of the angle theta 2 is constant Appendix 3 to 6 of the angular range of the refraction angle theta 1.
<付記8>
 前記屈折角θの角度範囲のうちのすべての角度範囲において、前記角度θが一定である付記3から6のいずれか1項に記載の採光部材。
<Appendix 8>
All the angular range, the lighting member according to any one of the angle theta 2 is constant Appendix 3 to 6 of the angular range of the refraction angle theta 1.
<付記9>
 前記突起部の焦点は、前記第2の方向と直交する平面において、当該突起部の前記第1の方向における先端部を通る直線であって且つ前記第1の方向及び前記第2の方向に直交する第3の方向と平行な直線上に位置する付記4から8のいずれか1項に記載の採光部材。
<Appendix 9>
The focal point of the protrusion is a straight line passing through the tip of the protrusion in the first direction on a plane orthogonal to the second direction, and orthogonal to the first direction and the second direction. The lighting member according to any one of supplementary notes 4 to 8, which is located on a straight line parallel to the third direction.
<付記10>
 前記第2の方向と直交する前記平面において、前記突起部の先端部から、前記入射面に入射した前記光線の前記入射面への入射位置までの前記入射面上の距離を第1の距離とし、前記突起部の前記先端部から、前記入射面に入射した前記光線の反射位置までの前記反射面上の距離を第2の距離としたとき、
 前記第1の距離が増加するにつれて前記第2の距離が増加し、前記第1の距離が減少するにつれて前記第2の距離が減少する
 付記3から9のいずれか1項に記載の採光部材。
<Appendix 10>
In the plane orthogonal to the second direction, the distance on the incident surface from the tip of the protrusion to the incident position of the light beam incident on the incident surface is defined as a first distance. When the distance on the reflection surface from the tip of the projection to the reflection position of the light beam incident on the incident surface is a second distance,
The daylighting member according to any one of appendices 3 to 9, wherein the second distance increases as the first distance increases, and the second distance decreases as the first distance decreases.
<付記11>
 前記反射面で反射する前記光線の臨界角をθとすると、
 φ+θ≧θ
 を満たす付記1から10のいずれか1項に記載の採光部材。
<Appendix 11>
When the critical angle of the light beam reflected by the reflecting surface and theta T,
φ + θ 1 ≧ θ T
The lighting member according to any one of supplementary notes 1 to 10, wherein:
<付記12>
 複数の前記突起部を備え、
 前記複数の突起部は、前記第1の方向及び前記第2の方向と直交する第3の方向に配列されている付記1から11のいずれか1項に記載の採光部材。
<Appendix 12>
A plurality of the protrusions;
The lighting member according to any one of supplementary notes 1 to 11, wherein the plurality of protrusions are arranged in a third direction orthogonal to the first direction and the second direction.
<付記13>
 前記基材は、板形状である付記1から12のいずれか1項に記載の採光部材。
<Appendix 13>
The daylighting member according to any one of appendices 1 to 12, wherein the base material has a plate shape.
<付記14>
 前記入射面への光の入射範囲を調整する遮光部をさらに備え、
 前記遮光部は、前記入射面の前記第1の方向における先端部から前記第1の方向及び前記第2の方向と直交する第3の方向に延在する
 付記1から13のいずれか1項に記載の採光部材。
<Appendix 14>
A light-shielding part that adjusts an incident range of light on the incident surface;
The said light-shielding part extends in the 3rd direction orthogonal to the said 1st direction and the said 2nd direction from the front-end | tip part in the said 1st direction of the said incident surface. The daylighting member of description.
 1,2 採光部材、 10 基材、 11,12 平面、 13 突起部、 14 入射面、 15 反射面、 P 先端部、 V1,V2 谷部、 L,L,LIN,LOUT,Lθi,Lθ’i,Lβi, 光線、 θ,θ,φ,θIN,θOUT,α,β 角度、 f 焦点、 20 遮光部材、 21 遮光部、 22 基材、 24 切断面。 1, 2 Daylighting Member, 10 Base Material, 11, 12 Plane, 13 Projection, 14 Incident Surface, 15 Reflecting Surface, P Tip, V1, V2 Valley, L 1 , L 2 , L IN , L OUT , L θi, L θ'i, L βi, rays, θ 1, θ 2, φ , θ IN, θ OUT, α, β angle, f focal, 20 light shielding member, 21 light-shielding portion, 22 substrate, 24 cut surface.

Claims (14)

  1.  光を透過させ、第1の方向に厚みを持ち、前記第1の方向と直交する第2の方向に延在する基材と、
     前記基材から前記第1の方向に突出しており、前記第2の方向に延在する突起部と
    を備え、
     前記突起部は、光が入射する入射面と前記入射面に入射した前記光を反射する反射面とを含み、
     前記入射面は、前記基材から前記第1の方向に延在しており、
     前記反射面は、前記入射面から離れる方向に湾曲した曲面を有し、
     前記第2の方向と直交する平面において、前記入射面に入射した光線の屈折角をθとし、前記反射面で反射した前記光線と前記入射面とがなす角度をθとし、前記光線が前記反射面で反射する点における接平面と前記入射面とがなす角度をφとしたとき、前記入射面に入射した光線の少なくとも一部に対して、
     φ=((π/2)-θ+θ)/2
     を満たす採光部材。
    A base material that transmits light, has a thickness in a first direction, and extends in a second direction orthogonal to the first direction;
    Projecting from the base material in the first direction and extending in the second direction; and
    The protrusion includes an incident surface on which light is incident and a reflecting surface that reflects the light incident on the incident surface,
    The incident surface extends from the substrate in the first direction;
    The reflective surface has a curved surface curved in a direction away from the incident surface,
    In a plane orthogonal to the second direction, the refraction angle of the light beam incident on the incident surface is θ 1 , the angle formed by the light beam reflected by the reflection surface and the incident surface is θ 2 , and the light beam is When the angle between the tangential plane at the point reflected by the reflecting surface and the incident surface is φ, at least a part of the light incident on the incident surface,
    φ = ((π / 2) −θ 1 + θ 2 ) / 2
    A daylighting member that meets the requirements.
  2.  前記入射面は平面である請求項1に記載の採光部材。 The daylighting member according to claim 1, wherein the incident surface is a flat surface.
  3.  前記反射面は、前記第1の方向に曲率を有するシリンドリカル形状であり、
     前記入射面に入射した光線の少なくとも一部は、前記入射面に対して前記反射面と反対側に位置し前記第2の方向に平行な線上の点である第1の点を通る
     請求項1又は2に記載の採光部材。
    The reflective surface is a cylindrical shape having a curvature in the first direction;
    The at least part of the light beam incident on the incident surface passes through a first point that is a point on a line parallel to the second direction and located on the opposite side of the reflecting surface with respect to the incident surface. Or the lighting member of 2.
  4.  前記突起部は焦点を持っており、
     前記突起部の焦点は、前記基材からの光線が前記反射面で反射されて前記反射面からの反射光線が集光する焦点であり、
     前記基材からの光線は、前記基材から前記突起部に入射する光線であり、
     前記突起部に入射する光線は、平行光線である
     請求項1から3のいずれか1項に記載の採光部材。
    The protrusion has a focal point;
    The focal point of the protrusion is a focal point where the light beam from the base material is reflected by the reflective surface and the reflected light beam from the reflective surface is collected,
    The light beam from the base material is a light beam incident on the protrusion from the base material,
    The daylighting member according to any one of claims 1 to 3, wherein a light beam incident on the protrusion is a parallel light beam.
  5.  前記屈折角θは、前記突起部に入射した光線の前記突起部への入射角θINに応じて変化し、
     前記入射角θINは、20°≦θIN≦90°を満たす
     請求項3又は4に記載の採光部材。
    The refraction angle θ 1 changes according to the incident angle θ IN of the light beam incident on the protrusion to the protrusion,
    The daylighting member according to claim 3, wherein the incident angle θ IN satisfies 20 ° ≦ θ IN ≦ 90 °.
  6.  前記屈折角θは、前記突起部に入射した光線の前記突起部への入射角θINに応じて変化し、
     前記入射角θINの角度範囲は、前記採光部材の設置場所における太陽高度の最小値から最大値に対応している
     請求項3又は4に記載の採光部材。
    The refraction angle θ 1 changes according to the incident angle θ IN of the light beam incident on the protrusion to the protrusion,
    The angular range of the incident angle theta IN is lighting member according to claim 3 or 4 corresponds to the maximum value from the minimum value of the solar altitude at the installation location of the lighting member.
  7.  前記屈折角θの角度範囲のうちの一部の角度範囲において、前記角度θが一定である請求項3から6のいずれか1項に記載の採光部材。 Some of the angular range, the lighting member according to any one of claims 3 to 6 wherein the angle theta 2 is constant among the angle range of the refraction angle theta 1.
  8.  前記屈折角θの角度範囲のうちのすべての角度範囲において、前記角度θが一定である請求項3から6のいずれか1項に記載の採光部材。 All the angular range, the lighting member according to any one of claims 3 to 6 wherein the angle theta 2 is constant among the angle range of the refraction angle theta 1.
  9.  前記突起部の焦点は、前記第2の方向と直交する平面において、当該突起部の前記第1の方向における先端部を通る直線であって且つ前記第1の方向及び前記第2の方向に直交する第3の方向と平行な直線上に位置する請求項4から8のいずれか1項に記載の採光部材。 The focal point of the protrusion is a straight line passing through the tip of the protrusion in the first direction on a plane orthogonal to the second direction, and orthogonal to the first direction and the second direction. The daylighting member according to any one of claims 4 to 8, which is located on a straight line parallel to the third direction.
  10.  前記第2の方向と直交する前記平面において、前記突起部の先端部から、前記入射面に入射した前記光線の前記入射面への入射位置までの前記入射面上の距離を第1の距離とし、前記突起部の前記先端部から、前記入射面に入射した前記光線の反射位置までの前記反射面上の距離を第2の距離としたとき、
     前記第1の距離が増加するにつれて前記第2の距離が増加し、前記第1の距離が減少するにつれて前記第2の距離が減少する
     請求項3から9のいずれか1項に記載の採光部材。
    In the plane orthogonal to the second direction, the distance on the incident surface from the tip of the protrusion to the incident position of the light beam incident on the incident surface is defined as a first distance. When the distance on the reflection surface from the tip of the projection to the reflection position of the light beam incident on the incident surface is a second distance,
    The daylighting member according to any one of claims 3 to 9, wherein the second distance increases as the first distance increases, and the second distance decreases as the first distance decreases. .
  11.  前記反射面で反射する前記光線の臨界角をθとすると、
     φ+θ≧θ
     を満たす請求項1から10のいずれか1項に記載の採光部材。
    When the critical angle of the light beam reflected by the reflecting surface and theta T,
    φ + θ 1 ≧ θ T
    The daylighting member according to any one of claims 1 to 10, wherein:
  12.  複数の前記突起部を備え、
     前記複数の突起部は、前記第1の方向及び前記第2の方向と直交する第3の方向に配列されている請求項1から11のいずれか1項に記載の採光部材。
    A plurality of the protrusions;
    The daylighting member according to any one of claims 1 to 11, wherein the plurality of protrusions are arranged in a third direction orthogonal to the first direction and the second direction.
  13.  前記基材は、板形状である請求項1から12のいずれか1項に記載の採光部材。 The daylighting member according to any one of claims 1 to 12, wherein the base material has a plate shape.
  14.  前記入射面への光の入射範囲を調整する遮光部をさらに備え、
     前記遮光部は、前記入射面の前記第1の方向における先端部から前記第1の方向及び前記第2の方向と直交する第3の方向に延在する
     請求項1から13のいずれか1項に記載の採光部材。
    A light-shielding part that adjusts an incident range of light on the incident surface;
    The said light-shielding part extends in the 3rd direction orthogonal to the said 1st direction and the said 2nd direction from the front-end | tip part in the said 1st direction of the said incident surface. A daylighting member according to claim 1.
PCT/JP2019/008331 2018-03-20 2019-03-04 Daylighting member WO2019181450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-052024 2018-03-20
JP2018052024 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181450A1 true WO2019181450A1 (en) 2019-09-26

Family

ID=67986515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008331 WO2019181450A1 (en) 2018-03-20 2019-03-04 Daylighting member

Country Status (1)

Country Link
WO (1) WO2019181450A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031276A1 (en) * 1996-02-21 1997-08-28 Milner Peter J A light-diverting optical element
JP2012189280A (en) * 2011-03-11 2012-10-04 Hitachi Maxell Ltd Light-condensing device, converging device and lens sheet
WO2015098940A1 (en) * 2013-12-25 2015-07-02 シャープ株式会社 Daylight-admitting member, window glass, shade, and daylight-admitting louver
JP2016091941A (en) * 2014-11-10 2016-05-23 シャープ株式会社 Daylighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031276A1 (en) * 1996-02-21 1997-08-28 Milner Peter J A light-diverting optical element
JP2012189280A (en) * 2011-03-11 2012-10-04 Hitachi Maxell Ltd Light-condensing device, converging device and lens sheet
WO2015098940A1 (en) * 2013-12-25 2015-07-02 シャープ株式会社 Daylight-admitting member, window glass, shade, and daylight-admitting louver
JP2016091941A (en) * 2014-11-10 2016-05-23 シャープ株式会社 Daylighting device

Similar Documents

Publication Publication Date Title
JP4170677B2 (en) Light source device and display
US8469552B2 (en) Street lighting device
US7806547B2 (en) Brightness-enhancing film
US11313526B2 (en) Lighting unit and lighting fixture
CN101430072B (en) Assembled uniform surface light source
US9857044B2 (en) Lighting apparatus and automobile having lighting apparatus mounted therein
US6697042B1 (en) Backlight assembly for collimated illumination
JP2009099604A (en) Light control member, luminous flux control member, light-emitting device, and lighting device
CN110955106B (en) Projection screen and projection system
CN109388012B (en) Projection screen and projection system
JP2009117352A (en) Luminaire with light reflecting structure having high lighting efficiency
JP3582544B2 (en) Lens sheet, surface light source and display device
US10444616B2 (en) Rear projection screen
US11719413B2 (en) Lighting arrangements for targeted illumination patterns
US20130176727A1 (en) Segmented spotlight having narrow beam size and high lumen output
JP2000193809A (en) Light distribution control panel and apparatus using it
CN110291327B (en) Surface light source device and display device
WO2019181450A1 (en) Daylighting member
CN106560739B (en) Display device
US20210364149A1 (en) Light-reflective-type profile surface for light diffusion and concentration, and surface-emitting lighting and light concentration apparatus using same
EP3358246A1 (en) Optical element and led lighting device
CN110646972A (en) Backlight device
KR102249867B1 (en) Optical device and lighting device using the same
JP7142780B2 (en) Lighting device and lighting system
CN115202137A (en) Projection optical system, projection optical module and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP