WO2019180871A1 - Fluid device and system - Google Patents

Fluid device and system Download PDF

Info

Publication number
WO2019180871A1
WO2019180871A1 PCT/JP2018/011393 JP2018011393W WO2019180871A1 WO 2019180871 A1 WO2019180871 A1 WO 2019180871A1 JP 2018011393 W JP2018011393 W JP 2018011393W WO 2019180871 A1 WO2019180871 A1 WO 2019180871A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
base material
boundary
flow path
fluid
Prior art date
Application number
PCT/JP2018/011393
Other languages
French (fr)
Japanese (ja)
Inventor
直也 石澤
遼 小林
太郎 上野
哲臣 高崎
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2018/011393 priority Critical patent/WO2019180871A1/en
Publication of WO2019180871A1 publication Critical patent/WO2019180871A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a fluid device and a system.
  • ⁇ -TAS is superior to conventional inspection devices in that it can be measured and analyzed with a small amount of sample, can be carried, and can be disposable at low cost. Furthermore, in the case of using an expensive reagent or in the case of testing a small amount of a large number of specimens, the method is attracting attention as a highly useful method.
  • Non-Patent Document 1 A device including a flow path and a pump disposed on the flow path as a component of ⁇ -TAS has been reported (Non-Patent Document 1).
  • a plurality of solutions are injected into the channel, and the pump is operated to mix the plurality of solutions in the channel.
  • the first base material and the second base material joined at the joining surface are provided, and the second base material includes the first base material and the second base material at the joining surface.
  • a fluid device including a housing portion in which a substance is housed.
  • the energy light is irradiated to the welding region via the fluid device according to the first aspect of the present invention and the first base material laminated on the second base material. And an irradiation apparatus.
  • FIG. 1 is a schematic configuration diagram of a fluidic device and system according to an embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is a perspective view of the fluid device of one embodiment. It is a disassembled perspective view of the fluid device of one embodiment. It is a top view of the fluid device of one embodiment.
  • FIG. 7 is a cross-sectional view of the fluidic device taken along line IV-IV in FIG. 6. It is a top view of the 2nd substrate of one embodiment.
  • FIG. 3 is a cross-sectional view of a main part of the fluidic device according to one embodiment.
  • FIG. 1 is a schematic configuration diagram of a fluidic device and system according to an embodiment.
  • the system SYS of this embodiment includes a fluid device 1, an irradiation device 80, a placement unit ST, and a driving device 90.
  • the fluidic device 1 of the present embodiment includes a device that detects a sample substance that is a detection target included in a specimen sample by an immune reaction, an enzyme reaction, or the like.
  • the sample substance is, for example, a biomolecule such as nucleic acid, DNA, RNA, peptide, protein, extracellular vesicle.
  • the fluid device 1 includes a base material 2.
  • the base material 2 includes a first substrate (first base material, top plate) 10 and a second substrate (second base material, middle plate) 20.
  • the first substrate 10 and the second substrate 20 are stacked in the thickness direction.
  • first substrate 10 and the second substrate 20 are arranged along a horizontal plane, and the first substrate 10 is arranged above the second substrate 20.
  • the first substrate 10 and the second substrate 20 have a lower surface 1b of the first substrate 10 (referred to as a bonding surface 10b as appropriate) and an upper surface 20a of the second substrate 20 (referred to as a bonding surface 20a as appropriate) as bonding surfaces. They are welded together by welding means.
  • the welding means is laser welding.
  • the first substrate 10 and the second substrate 20 are made of a resin material.
  • the first substrate 10 is made of a transparent resin material, and has a high transmittance for laser light (energy light) L described later.
  • substrate 20 is comprised from the non-transparent resin material, the transmittance
  • substrate 20 are formed with hard materials, such as a polypropylene and a polycarbonate, as an example.
  • the second substrate 20 has a groove on the bonding surface 20a that forms the flow path 50 by bonding both substrates.
  • the second substrate 20 has a flow path 50 that opens to the bonding surface 20 a with the first substrate 10.
  • the channel 50 is, for example, a groove having a rectangular cross section (referred to as the groove 50 as appropriate) having a width or depth of about several ⁇ m to several hundred mm.
  • the second substrate 20 has a welding area WA arranged in a range from the first boundary 50a with the groove 50 to the second boundary 50b at a predetermined distance on the bonding surface 20a. That is, in the second base material 20, the welding area WA is arranged in a range from the one edge of the groove 50 to a position separated by a predetermined distance on the joint surface. In the welding area WA, the flat surfaces of the first substrate and the second substrate are welded together.
  • the welding area WA is disposed so as to surround the entire circumference of the groove 50.
  • the width of the welding area WA is the distance from the edge of the groove 50 to the edge of the accommodating portion 95 described later, and is the distance between the first boundary 50a and the second boundary 50b.
  • the width of the welding area WA is, for example, several hundred ⁇ m or more and several tens mm or less.
  • the width of the welding area WA is preferably 100 ⁇ m or more and 2 mm or less.
  • the width of the welded area WA is less than 100 ⁇ m, it may be difficult to mold the welded area WA due to poor filling during injection molding.
  • the width of the welding area WA exceeds 2 mm and the area becomes wide, a large amount of energy is required such as slowing the scanning speed (details will be described later) of the second substrate 20 with respect to the laser light L or increasing the energy density of the laser light L And productivity may be reduced.
  • substrate 20 has the accommodating part 95 on the opposite side to the welding area
  • the accommodating part 95 is a dent opened to the joint surface 20a side.
  • the second base material 20 has a receiving portion 95 formed on the joining surface at a position away from one edge of the groove 50 by a predetermined distance so as to open to the joining surface side.
  • the accommodating part 95 is formed with the same depth as the groove
  • the accommodating part 95 accommodates a substance having a thermal conductivity smaller than that of the first substrate 10 and the second substrate 20. As an example, air is accommodated in the accommodating portion 95 in the present embodiment.
  • the thermal conductivity of the first substrate 10 and the second substrate 20 is 0.17 to 0.19 (W ⁇ m ⁇ 1 ⁇ K ⁇ 1 ).
  • the thermal conductivity of air is at ambient temperature 0.026 (W ⁇ m -1 ⁇ K -1).
  • the width of the accommodating portion 95 (length from the second boundary 50b) is set in consideration of the presence or absence of surrounding structures. When another structure is disposed in the vicinity of the accommodating portion 95, the width is set so as not to interfere with the structure. Further, in the case where no structure is arranged around the accommodating portion 95, it can be set to be approximately equal to the width of the flow path 50 or larger than the width of the flow path 50. For example, when the depth of the accommodating portion 95 is the same as the depth of the flow path 50, it is preferable to increase the width of the accommodating portion 95 as much as possible from the viewpoint of making the second substrate 20 have a uniform thickness.
  • the width of the accommodating portion 95 is, for example, 100 ⁇ m or more, and preferably 300 ⁇ m or more in consideration of formability.
  • the irradiation device 80 irradiates the fluid device 1 with energy light.
  • the energy light is laser light L as an example.
  • the light source of the laser beam L is not particularly limited.
  • a laser beam such as a semiconductor laser (wavelength: 635 to 940 nm), an Nd: YAG laser (wavelength: 1060 nm), a CO 2 laser (wavelength: 9600, 10600 nm) is used. Examples thereof include an oscillator.
  • the substrate 2 is placed on the upper surface of the placement unit ST.
  • the placement unit ST supports the lower surface 20b of the second substrate 20 from below.
  • the placement unit ST is movable in a two-dimensional direction along a plane (horizontal plane) orthogonal to the optical axis of the laser beam L.
  • the drive unit 90 moves the placement unit ST in a two-dimensional direction along the horizontal plane.
  • the driving unit 90 moves the welding area WA of the second substrate 20 to the irradiation area of the laser light L via the mounting part ST.
  • the laser beam L is irradiated from the irradiation device 80 to the welding area WA.
  • the laser light L passes through the first substrate 10 and reaches the welding area WA of the second substrate 20 that is not transparent to the laser light L.
  • the second substrate 20 absorbs the laser light L and generates heat.
  • the heat generated in the second substrate 20 propagates to the first substrate 10 in contact with the welding area WA, so that the first substrate 10 and the second substrate 20 are melted.
  • the molten resin is cooled and solidified to form a resolidified phase.
  • region where the laser beam L was irradiated are welded.
  • the laser beam L is irradiated to the welding area WA along the flow path 50 by moving the welding area WA of the second substrate 20 relative to the laser light L via the mounting portion ST by the driving unit 90. This is done by scanning.
  • the first scanning (one pass) with respect to the welding area WA is performed.
  • the irradiation region of the laser beam L is smaller than the width of the welding region WA
  • the irradiation of the laser beam L to the welding region WA is the width of the welding region WA. Repeated multiple times while changing the position of the direction (multiple passes).
  • Part of the heat generated in the second substrate 20 propagates along the interface between the first substrate 10 and the second substrate 20 (interface between the lower surface 10b and the upper surface 20a).
  • the accommodating portion 95 is not disposed on the opposite side to the welding area WA of the second boundary 50b and is the resin material of the second substrate 20, of the heat propagated from the irradiation area of the laser light L
  • the heat reaching the second boundary 50b further propagates in a direction away from the welding area WA and does not contribute to the welding of the first substrate 10 and the second substrate 20 in the welding area WA. In other words, even if a predetermined amount of energy is applied to the welding area WA by irradiation with the laser light L, a part of the energy may be consumed without contributing to the welding.
  • the accommodating portion 95 is disposed on the opposite side of the second boundary 50b from the welding area WA, and air having a lower thermal conductivity than the second substrate 20 is accommodated in the accommodating portion 95. Most of the heat reaching the boundary 50b is transmitted to the first substrate 10 in contact with the welding area WA, not to the air accommodated in the accommodating portion 95, and contributes to the welding between the first substrate 10 and the second substrate 20.
  • the first substrate 10 and the second substrate 20 are welded at a position away from the assumed distance with respect to the first boundary 50a. It is assumed that In this case, a wide non-welded portion is formed between the boundary where the first substrate 10 and the second substrate 20 are welded and the first boundary 50a, and the solution in the flow channel 50 enters the non-welded portion and the liquid remains. May occur.
  • the fluid device 1 of this embodiment has a thermal conductivity smaller than the thermal conductivity of the 1st board
  • the fluid device 1 of the present embodiment it is possible to suppress problems such as a solution entering the non-welded portion between the first substrate 10 and the second substrate 20 and causing a liquid residue, and the laser beam L
  • the first substrate 10 and the second substrate 20 can be reduced by reducing factors that cause a decrease in the manufacturing efficiency of the fluidic device 1, such as high-precision control of the amount of light and high-precision alignment between the first substrate 10 and the second substrate 20. And efficient welding.
  • FIG. 2 is a plan view of a main part of the fluid device 1.
  • 3 is a cross-sectional view taken along line AA in FIG. 2 and 3, the placement unit ST and the drive unit 90 are not shown.
  • the fluid device 1 has a valve V that adjusts the flow of the solution in the flow path 50 by deformation in the middle of the flow path 50.
  • the valve V is provided in the through hole 11 that penetrates the first substrate 10 in the thickness direction.
  • Examples of the elastic material that can be used for the valve V include rubber and elastomer resin.
  • a protruding portion 12 protruding in a hemispherical shape is provided on the lower surface of the valve V.
  • the second substrate 20 has a recess 14 at a position facing the valve V.
  • the recess 14 has a contact surface 15 with which the protrusion 12 of the valve V contacts when the valve V is deformed.
  • the contact surface 15 is formed of a hemispherical depression.
  • a flow path (groove) 50 is opened in the contact surface 15.
  • the bottom surface of the channel 50 opens at a position higher than the lowest position of the contact surface 15. That is, a part of the contact surface 15 is formed closer to the bonding surface 20 a than the bottom surface of the flow path 50.
  • the solution flows from one side of the flow channel 50 sandwiching the valve V to the other side of the flow channel 50 via the recess 14 between the protrusion 12 and the contact surface 15.
  • the recess 14 constitutes a part of the flow path 50.
  • the second substrate 20 has a welding region WB arranged on the bonding surface 20a in a range from the third boundary 50c with the valve V (through hole 11) to a fourth boundary 50d that is a predetermined distance away.
  • the welding region WB is disposed around the recess 14 (contact surface 15) as long as it does not interfere with the flow path 50.
  • the accommodating part 95 in this embodiment is arrange
  • the accommodating part 95 accommodates air as a substance having a thermal conductivity smaller than the thermal conductivities of the first substrate 10 and the second substrate 20 as in the first embodiment.
  • the valve V that adjusts the flow of the solution in the flow path 50 abuts.
  • the first substrate 10 and the second substrate can be efficiently welded also around the contact surface 15.
  • FIG. 4 is a perspective view of the fluidic device 1 of the present embodiment.
  • FIG. 5 is an exploded perspective view of the fluidic device 1.
  • FIG. 6 is a plan view of the fluidic device 1.
  • the fluidic device 1 of the present embodiment includes a device that detects a sample substance that is a detection target included in a specimen sample by an immune reaction, an enzyme reaction, or the like.
  • the sample substance is, for example, a biomolecule such as nucleic acid, DNA, RNA, peptide, protein, extracellular vesicle.
  • the fluid device 1 includes a base material 2 and a processing substrate 4. Further, as will be described later, the base member 2 is provided with a seal portion 5 (see FIG. 7). That is, the fluid device 1 includes the seal portion 5.
  • the processing substrate 4 includes a substrate body 40 and a processing unit 41.
  • the board body 40 is a rigid board provided with a circuit pattern (not shown).
  • the substrate body 40 is made of, for example, glass epoxy.
  • the processing unit 41 is mounted on the substrate body 40.
  • the processing unit 41 is, for example, a GMR sensor (Giant Magneto Resistive Sensor).
  • GMR sensor Green Magneto Resistive Sensor
  • an antibody that captures an antigen to be detected is fixed on the surface of each element of the GMR sensor.
  • Each element of the GMR sensor detects magnetic particles associated with the antigen to be detected. That is, in this embodiment, the GMR sensor as the processing unit 41 captures and detects the specimen in the solution.
  • Each element of the GMR sensor is connected to the circuit pattern of the substrate body 40.
  • the function of the processing unit 41 is not limited as long as the processing unit 41 is in contact with the solution flowing through the flow path 50 provided in the substrate 2 and performs some processing on the solution.
  • Examples of the process performed by the processing unit 41 on the solution include a capture process, a detection process, and a heating process.
  • Examples of the processing unit 41 include a DNA array chip, an electric field sensor, a heater, and an element for performing chromatography.
  • the base material 2 includes the first substrate 10, the second substrate 20, and the third substrate (substrate, bottom plate) 30 described above. That is, the base material 2 has three substrates.
  • the first substrate 10, the second substrate 20, and the third substrate 30 are stacked in the thickness direction.
  • the first substrate 10 and the second substrate 20 are welded together by laser welding.
  • the second substrate 20 and the third substrate 30 are welded to each other by welding means such as laser welding or ultrasonic welding.
  • the first substrate 10, the second substrate 20, and the third substrate 30 are made of a resin material.
  • the first substrate 10 and the third substrate 30 are made of a translucent resin material that transmits light.
  • the second substrate 20 is made of a black resin material that absorbs light.
  • the resin material used for the first substrate 10, the second substrate 20, and the third substrate 30, the hard material described above can be used.
  • the first substrate 10, the second substrate 20, and the third substrate 30 are stacked in this order. That is, the second substrate 20 is disposed between the first substrate 10 and the third substrate 30. Further, the processing substrate 4 is disposed between the second substrate 20 and the third substrate 30. Therefore, a part of the processing substrate 4 is accommodated in the base material 2.
  • the processing substrate 4, the first substrate 10, the second substrate 20, and the third substrate 30 are plate members that extend in parallel along one plane.
  • the processing substrate 4, the first substrate 10, the second substrate 20, and the third substrate 30 are described as being disposed along a horizontal plane for convenience of description.
  • the vertical direction is defined on the assumption that the first substrate 10, the second substrate 20, the processing substrate 4, and the third substrate 30 are sequentially stacked from the upper side. That is, the vertical direction in this specification is the stacking direction and the thickness direction of the first substrate 10, the second substrate 20, the processing substrate 4, and the third substrate 30.
  • FIG. 7 is a cross-sectional view of the fluidic device 1 taken along line IV-IV in FIG.
  • the processing substrate 4, the first substrate 10, the second substrate 20, and the third substrate 30 each have an upper surface that faces the upper side (one side in the stacking direction) and a lower surface that faces the lower side (the other side in the stacking direction). More specifically, the first substrate 10 has an upper surface 10a and a lower surface 10b.
  • the second substrate 20 has an upper surface 20a and a lower surface (first opposing surface) 20b.
  • the third substrate 30 has an upper surface (third opposing surface) 30a and a lower surface 30b. That is, the base material 2 has upper surfaces 10a, 20a, and 30a and lower surfaces 10b, 20b, and 30b.
  • the processing substrate 4 has an upper surface (second opposing surface) 4a and a lower surface 4b.
  • the lower surface 10b of the first substrate 10 and the upper surface 20a of the second substrate 20 face each other in the vertical direction.
  • the lower surface 20b of the second substrate 20 and the upper surface 30a of the third substrate 30 face each other in the vertical direction.
  • a part of the upper surface 4 a of the processing substrate 4 faces a part of the lower surface 20 b of the second substrate 20 in the vertical direction.
  • a part of the lower surface 4 b of the processing substrate 4 faces a part of the upper surface 30 a of the third substrate 30 in the vertical direction.
  • a first accommodation recess (accommodation recess) 21 is provided on the lower surface 20 b of the second substrate 20.
  • the first accommodation recess 21 accommodates the processing substrate 4.
  • the bottom surface 21 a of the first housing recess 21 is in contact with the top surface 4 a of the processing substrate 4.
  • a part of the area of the lower surface 20b of the second substrate 20 excluding the first receiving recess 21 and the upper surface 30a of the third substrate 30 are in contact with each other.
  • the base material 2 sandwiches the processing substrate 4 between the lower surface 20b of the second substrate 20 and the upper surface 10a of the first substrate 10. That is, the base material 2 has a pair of substrates (second substrate 20 and third substrate 30) that sandwich the processing substrate 4 therebetween.
  • the base material 2 is provided with a reservoir 60 for storing the solution, a flow path 50 through which the solution flows, an injection hole 71, a supply hole 74, a waste liquid tank 72, a discharge hole 75, and an air hole 73. ing.
  • the reservoir 60 is provided between the second substrate 20 and the third substrate 30.
  • the reservoir 60 is a space formed in a tube shape or a cylindrical shape surrounded by the inner wall surface of the groove portion 22 provided on the lower surface 20 b of the second substrate 20 and the upper surface 30 a of the third substrate 30.
  • the substrate 2 of the present embodiment is provided with a plurality of reservoirs 60.
  • the reservoir 60 stores a solution.
  • the plurality of reservoirs 60 store solutions independently of each other.
  • the reservoir 60 of this embodiment is a flow path type reservoir.
  • One end of the reservoir 60 in the length direction is connected to the injection hole 71.
  • the supply hole 74 is connected to the other end of the reservoir 60 in the length direction.
  • the solution is injected into the reservoir 60 from the injection hole 71.
  • the reservoir 60 supplies the stored solution to the flow path 50 via the supply hole 74.
  • the flow path 50 is provided between the first substrate 10 and the second substrate 20.
  • a part of the flow path 50 is configured as a space surrounded by the groove 13 provided on the lower surface 10 b of the first substrate 10 and the upper surface 20 a of the second substrate 20.
  • a part of the flow path 50 is configured as a space surrounded by the lower surface 10 b of the first substrate 10 and the groove portion 23 provided on the upper surface 20 a of the second substrate 20.
  • a part of the flow path 50 is configured as a space surrounded by the groove 13 provided on the lower surface 10 b of the first substrate 10 and the groove 23 provided on the upper surface 20 a of the second substrate 20.
  • the flow path 50 is a space formed in a tube shape or a cylindrical shape.
  • the solution is supplied from the reservoir 60 to the channel 50.
  • the solution flows in the flow path 50.
  • Each part of the flow path 50 will be described in detail later with reference to FIG.
  • the injection hole 71 penetrates the first substrate 10 and the second substrate 20 in the plate thickness direction.
  • the injection hole 71 is connected to the reservoir 60 located at the boundary between the second substrate 20 and the third substrate 30.
  • the injection hole 71 connects the reservoir 60 to the outside.
  • One injection hole 71 is provided for one reservoir 60.
  • a septum 71 a is provided at the opening of the injection hole 71.
  • An operator (or an injection device) performs an operation of injecting the solution into the reservoir 60 using, for example, a syringe filled with the solution. The operator injects the solution into the reservoir 60 by piercing the septum 71 a with a hollow needle attached to the sesyringe.
  • the supply hole 74 is provided in the second substrate 20.
  • the supply hole 74 penetrates the second substrate 20 in the plate thickness direction.
  • the supply hole 74 connects the reservoir 60 and the flow path 50.
  • the solution stored in the reservoir 60 is supplied to the flow path 50 through the supply hole 74.
  • the waste liquid tank 72 is provided on the base material 2 in order to discard the solution in the flow path 50.
  • the waste liquid tank 72 is connected to the flow path 50 through the discharge hole 75.
  • the waste liquid tank 72 is configured in a space surrounded by the waste liquid recess 25 provided on the lower surface 20 b of the second substrate 20 and the upper surface 30 a of the third substrate 30.
  • the waste liquid tank 72 is filled with an absorbent material 79 that absorbs the waste liquid.
  • the discharge hole 75 penetrates the second substrate 20 in the plate thickness direction.
  • the discharge hole 75 connects the flow path 50 and the waste liquid tank 72.
  • the solution in the flow path 50 is discharged to the waste liquid tank 72 through the discharge hole 75.
  • the air hole 73 penetrates the first substrate 10 and the second substrate 20 in the plate thickness direction.
  • the air hole 73 is located immediately above the waste liquid tank 72.
  • the air hole 73 connects the waste liquid tank 72 to the outside. That is, the waste liquid tank 72 is opened to the outside through the air hole 73.
  • FIG. 8 is a plan view of the second substrate 20.
  • a part of the channel 50 is complemented and displayed by a two-dot chain line or a broken line.
  • the circulation flow path 51 which is a part of the flow path 50 is highlighted with a dot pattern.
  • the flow path 50 includes a circulation flow path 51, a plurality of introduction flow paths 52, and a plurality of discharge flow paths 53.
  • the circulation channel 51 is configured in a loop shape when viewed from the stacking direction.
  • a pump P is disposed in the path of the circulation channel 51.
  • the pump P is composed of three element pumps Pe arranged side by side in the flow path.
  • the element pump Pe is a so-called valve pump.
  • the pump P can convey the liquid in the circulation channel by sequentially opening and closing the three element pumps Pe.
  • the number of element pumps Pe constituting the pump P may be four or more.
  • a plurality (three in this embodiment) of metering valves V are provided in the circulation channel 51.
  • the plurality of metering valves V partitions the circulation channel 51 into a plurality of metering sections.
  • the plurality of metering valves V are arranged so that each metering section has a predetermined volume.
  • An introduction channel 52 is connected to one end of each quantitative section.
  • a discharge channel 53 is connected to the other end of the quantitative section.
  • the introduction flow path 52 is a flow path for introducing the solution into the quantitative section of the circulation flow path 51. At least one introduction channel 52 is provided in one metering section. The introduction flow path 52 is connected to the supply hole 74 on one end side. The introduction flow path 52 is connected to the circulation flow path 51 on the other end side. An introduction valve Vi and an initial close valve Va are provided in the route of the introduction flow path 52.
  • the initial closing valve Va is a valve that is closed only in the initial state when the fluid device 1 is shipped.
  • the introduction valve Vi is opened when the solution is introduced from the reservoir 60 into the flow path 50, and is closed in another state.
  • the discharge channel 53 is a channel for discharging the solution in the circulation channel 51 to the waste liquid tank 72.
  • the discharge channel 53 is connected to the waste liquid tank 72 on one end side. Further, the discharge channel 53 is connected to the circulation channel 51 on the other end side.
  • a discharge valve Vo is provided in the path of the discharge channel 53.
  • the discharge valve Vo is opened when the solution is discharged from the flow path 50 to the waste liquid tank 72, and is closed in another state.
  • the processing channel 55 is included in the circulation channel 51.
  • the solution in the circulation channel 51 passes through the processing space 55 during circulation.
  • the processing unit 41 of the processing substrate 4 is arranged. That is, the processing unit 41 is located inside the processing space 55.
  • the processing unit 41 is provided on the upper surface 4 a of the processing substrate 4.
  • the processing unit 41 contacts the solution in the processing space 55 to process the solution.
  • the fluidic device 1 introduces the solutions in the plurality of reservoirs 60 into different quantification sections of the circulation channel 51, and quantifies the solution.
  • the fluidic device 1 opens the metering valve V and activates the pump P.
  • the solution quantified in each quantification section in the circulation channel 51 is circulated and mixed.
  • the sample in the solution for example, antigen is captured
  • the solution in the circulation channel 51 is discharged to the waste liquid tank 72.
  • a solution containing magnetic particles is supplied into the circulation channel 51. Accordingly, the magnetic particles are bound to the antigen captured by the processing unit 41. Further, the processing unit 41 detects the magnetic particles.
  • the first substrate 10 and the second substrate 20 are welded using the hole 75 as a part of the flow path as the above-mentioned welding area WA from the boundary of each hole.
  • the first substrate 10 and the first substrate 10 are defined as a predetermined distance from the boundary of the metering valve V, the initial closing valve Va, the introduction valve Vi, the discharge valve Vo, and the element pump Pe as valves.
  • Two substrates 20 are welded. Furthermore, the 1st board
  • Heat that is smaller than the thermal conductivity of the first substrate 10 and the second substrate 20 is present on the boundary opposite to the flow paths in the welding area WA and on the boundary opposite to the valves in the welding area WB.
  • An accommodating portion in which air having conductivity is accommodated is disposed.
  • an accommodating portion with both the welding areas WA and WB as a boundary is disposed.
  • accommodating portions 95A to 95N indicated by hatching are arranged.
  • the fluidic device 1 accommodating portions 95A to 95N in which air having a thermal conductivity smaller than the thermal conductivity of the first substrate 10 and the second substrate 20 is accommodated at the boundary between the welding areas WA and WB. Therefore, it is possible to suppress problems such as that the solution enters the non-welded portion between the first substrate 10 and the second substrate 20 and the liquid residue is generated, and also the first control of the light quantity of the laser light L is highly accurate. Factors that reduce the manufacturing efficiency of the fluidic device 1 such as highly accurate alignment between the substrate 10 and the second substrate 20 are reduced, and the first substrate 10 and the second substrate 20 can be efficiently welded. .
  • the configuration in which air is accommodated in the accommodating portion as a substance having a thermal conductivity smaller than the thermal conductivity of the first substrate 10 and the second substrate 20 is not limited to this configuration.
  • substrate 20 may be sufficient.
  • other flow paths (grooves) that are arranged side by side with the flow path 50 and through which a solution (fluid) having a thermal conductivity smaller than that of the first substrate 10 and the second substrate 20 flows.
  • the accommodating part 95 may be sufficient.
  • the configuration in which the welding area WA and the accommodating portion 95 are arranged on one side in the width direction of the flow path 50 is exemplified, but the configuration is not limited thereto.
  • a configuration in which the accommodating portions 95 are disposed on both sides in the width direction of the flow path 50 may be employed. That is, you may further provide the accommodating part 95 formed in the position away from the boundary different from the 1st boundary 50a of the groove
  • the welding of the first substrate 10 and the second substrate 20 has been described.
  • the third substrate 30 is formed of a material transparent to the laser light L, and the second substrate 20 and the second substrate 20 are formed.
  • the present invention can also be applied when welding the three substrates 30.
  • a predetermined distance from the boundary with the reservoir is set in the welding region, and the thermal conductivity is smaller than the thermal conductivity of the second substrate 20 and the third substrate 30 at the boundary opposite to the reservoir in the welding region. What is necessary is just to arrange

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The purpose of the present invention is to provide a fluid device in which a first substrate and a second substrate forming a flow path can be efficiently welded. The fluid device is provided with a first substrate and a second substrate bonded at a bonding surface. The second substrate comprises: a groove in the bonding surface for forming a flow path by the first substrate and the second substrate being bonded together; a welding region which is disposed in an area from a first boundary with the groove to a second boundary a prescribed distance away; a containment unit which, on the side of the second boundary opposite of the welding region, is formed opening toward the bonding surface side, and which, when the first substrate and the second substrate are bonded, contains a substance that has a lower thermal conductivity than that of the first substrate and the second substrate.

Description

流体デバイス及びシステムFluidic device and system
 本発明は、流体デバイス及びシステムに関するものである。 The present invention relates to a fluid device and a system.
 近年、体外診断分野における試験の高速化、高効率化、および集積化、又は、検査機器の超小型化を目指したμ-TAS(Micro-Total Analysis Systems)の開発などが注目を浴びており、世界的に活発な研究が進められている。 In recent years, the development of μ-TAS (Micro-Total Analysis Systems) aimed at speeding up, increasing efficiency and integration of tests in the field of in-vitro diagnosis, or ultra-miniaturization of test equipment has attracted attention. Active research is ongoing worldwide.
 μ-TASは、少量の試料で測定、分析が可能なこと、持ち運びが可能となること、低コストで使い捨て可能なこと等、従来の検査機器に比べて優れている。
 更に、高価な試薬を使用する場合や少量多検体を検査する場合において、有用性が高い方法として注目されている。
μ-TAS is superior to conventional inspection devices in that it can be measured and analyzed with a small amount of sample, can be carried, and can be disposable at low cost.
Furthermore, in the case of using an expensive reagent or in the case of testing a small amount of a large number of specimens, the method is attracting attention as a highly useful method.
 μ-TASの構成要素として、流路と、該流路上に配置されるポンプとを備えたデバイスが報告されている(非特許文献1)。このようなデバイスでは、該流路へ複数の溶液を注入し、ポンプを作動させることで、複数の溶液を流路内で混合する。 A device including a flow path and a pump disposed on the flow path as a component of μ-TAS has been reported (Non-Patent Document 1). In such a device, a plurality of solutions are injected into the channel, and the pump is operated to mix the plurality of solutions in the channel.
 本発明の第1の態様に従えば、接合面で接合された第1基材及び第2基材を備え、前記第2基材は、前記接合面において、前記第1基材及び前記第2基材を接合することにより流路を形成する溝と、前記溝との第1境界から所定距離離れた第2境界までの範囲に配置される溶着領域と、前記第2境界の前記溶着領域とは逆側に、前記接合面側に開口して形成され、前記第1基材及び前記第2基材を溶着する際、前記第1基材及び前記第2基材よりも熱伝導率が小さい物質が収容される収容部と、を備える流体デバイスが提供される。 According to the first aspect of the present invention, the first base material and the second base material joined at the joining surface are provided, and the second base material includes the first base material and the second base material at the joining surface. A groove that forms a flow path by bonding the base material, a welding region that is disposed in a range from the first boundary with the groove to a second boundary that is a predetermined distance away, and the welding region at the second boundary; Is formed on the opposite side and opened on the joining surface side, and has a lower thermal conductivity than the first base material and the second base material when welding the first base material and the second base material. There is provided a fluid device including a housing portion in which a substance is housed.
 本発明の第2の態様に従えば、本発明の第1の態様の流体デバイスと、前記第2基材に積層された前記第1基材を介して前記溶着領域に前記エネルギー光を照射する照射装置と、を備えるシステムが提供される。 According to the second aspect of the present invention, the energy light is irradiated to the welding region via the fluid device according to the first aspect of the present invention and the first base material laminated on the second base material. And an irradiation apparatus.
一実施形態の流体デバイス及びシステムの概略構成図。1 is a schematic configuration diagram of a fluidic device and system according to an embodiment. 一実施形態の流体デバイスの要部平面図。The principal part top view of the fluid device of one Embodiment. 図2におけるA-A線視断面図。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 一実施形態の流体デバイスの斜視図であるIt is a perspective view of the fluid device of one embodiment. 一実施形態の流体デバイスの分解斜視図である。It is a disassembled perspective view of the fluid device of one embodiment. 一実施形態の流体デバイスの平面図である。It is a top view of the fluid device of one embodiment. 図6のIV-IV線に沿う流体デバイスの断面図である。FIG. 7 is a cross-sectional view of the fluidic device taken along line IV-IV in FIG. 6. 一実施形態の第2基板の平面図である。It is a top view of the 2nd substrate of one embodiment. 一実施形態の流体デバイスの要部断面図。FIG. 3 is a cross-sectional view of a main part of the fluidic device according to one embodiment.
 以下、流体デバイス及びシステム実施の形態を、図面を参照して説明する。 Hereinafter, fluid device and system embodiments will be described with reference to the drawings.
[第1実施形態]
 図1は、一実施形態の流体デバイス及びシステムの概略構成図である。
 図1に示すように、本実施形態のシステムSYSは、流体デバイス1、照射装置80、載置部ST及び駆動装置90を備えている。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a fluidic device and system according to an embodiment.
As shown in FIG. 1, the system SYS of this embodiment includes a fluid device 1, an irradiation device 80, a placement unit ST, and a driving device 90.
 本実施形態の流体デバイス1は、検体試料に含まれる検出対象である試料物質を免疫反応および酵素反応などにより検出するデバイスを含む。試料物質は、例えば、核酸、DNA、RNA、ペプチド、タンパク質、細胞外小胞体などの生体分子である。 The fluidic device 1 of the present embodiment includes a device that detects a sample substance that is a detection target included in a specimen sample by an immune reaction, an enzyme reaction, or the like. The sample substance is, for example, a biomolecule such as nucleic acid, DNA, RNA, peptide, protein, extracellular vesicle.
 流体デバイス1は、基材2を備えている。基材2は、第1基板(第1基材、トッププレート)10と、第2基板(第2基材、ミドルプレート)20とを有する。第1基板10及び第2基板20は、厚さ方向に積層されている。 The fluid device 1 includes a base material 2. The base material 2 includes a first substrate (first base material, top plate) 10 and a second substrate (second base material, middle plate) 20. The first substrate 10 and the second substrate 20 are stacked in the thickness direction.
 なお、以下の説明においては、第1基板10及び第2基板20は水平面に沿って配置され、第1基板10は第2基板20の上側に配置されるものとして説明する。ただし、これは、説明の便宜のために水平方向および上下方向を定義したに過ぎず、本実施形態に係る流体デバイス1及びシステムSYSの使用時の向きを限定しない。 In the following description, it is assumed that the first substrate 10 and the second substrate 20 are arranged along a horizontal plane, and the first substrate 10 is arranged above the second substrate 20. However, this only defines the horizontal direction and the vertical direction for convenience of explanation, and does not limit the orientation when the fluidic device 1 and the system SYS according to the present embodiment are used.
 第1基板10と第2基板20とは、第1基板10の下面1b(適宜、接合面10bと称する)と第2基板20の上面20a(適宜、接合面20aと称する)とを接合面として溶着手段によって互いに溶着される。溶着手段は、レーザー溶着である。 The first substrate 10 and the second substrate 20 have a lower surface 1b of the first substrate 10 (referred to as a bonding surface 10b as appropriate) and an upper surface 20a of the second substrate 20 (referred to as a bonding surface 20a as appropriate) as bonding surfaces. They are welded together by welding means. The welding means is laser welding.
 第1基板10及び第2基板20は、樹脂材料から構成される。第1基板10は、透明な樹脂材料から構成され、後述するレーザー光(エネルギー光)Lの透過率が高い。一方で、第2基板20は、非透明な樹脂材料から構成され、レーザー光Lの透過率が低く、レーザー光Lの光吸収率が高い。第1基板10及び第2基板20は、一例として、ポリプロピレン、ポリカーボネイト等の硬質材で形成されている。第2基板20については、上記の硬質材に黒色等の着色剤を含有している。 The first substrate 10 and the second substrate 20 are made of a resin material. The first substrate 10 is made of a transparent resin material, and has a high transmittance for laser light (energy light) L described later. On the other hand, the 2nd board | substrate 20 is comprised from the non-transparent resin material, the transmittance | permeability of the laser beam L is low, and the light absorption rate of the laser beam L is high. The 1st board | substrate 10 and the 2nd board | substrate 20 are formed with hard materials, such as a polypropylene and a polycarbonate, as an example. About the 2nd board | substrate 20, coloring agents, such as black, are contained in said hard material.
 第2基板20は、両基板を接合することにより流路50を形成する溝を接合面20aに有する。本実施形態においては、第2基板20は、第1基板10との接合面20aに開口する流路50を有している。流路50は、一例として、数μmから数百mm程度の幅又は深さを有した断面矩形の溝(適宜、溝50と称する)である。 The second substrate 20 has a groove on the bonding surface 20a that forms the flow path 50 by bonding both substrates. In the present embodiment, the second substrate 20 has a flow path 50 that opens to the bonding surface 20 a with the first substrate 10. The channel 50 is, for example, a groove having a rectangular cross section (referred to as the groove 50 as appropriate) having a width or depth of about several μm to several hundred mm.
 第2基板20は、接合面20aにおいて、溝50との第1境界50aから所定距離離れた第2境界50bまでの範囲に溶着領域WAが配置されている。すなわち、前記第2基材20は、前記接合面において、溝50の一方の縁から所定距離離れた位置までの範囲に溶着領域WAが配置されている。溶着領域WAにおいて、第1基板及び第2基板の平坦な表面同士が溶着されている。溶着領域WAは、溝50の周囲を全周に亘って取り囲んで配置されている。溶着領域WAの幅は、溝50の縁から後述する収容部95の縁までの間の距離であり、第1境界50aと第2境界50bとの距離である。 The second substrate 20 has a welding area WA arranged in a range from the first boundary 50a with the groove 50 to the second boundary 50b at a predetermined distance on the bonding surface 20a. That is, in the second base material 20, the welding area WA is arranged in a range from the one edge of the groove 50 to a position separated by a predetermined distance on the joint surface. In the welding area WA, the flat surfaces of the first substrate and the second substrate are welded together. The welding area WA is disposed so as to surround the entire circumference of the groove 50. The width of the welding area WA is the distance from the edge of the groove 50 to the edge of the accommodating portion 95 described later, and is the distance between the first boundary 50a and the second boundary 50b.
 溶着領域WAの幅は、一例として、数百μm以上、数十mm以下である。溶着領域WAの幅は、100μm以上、2mm以下であることが好ましい。溶着領域WAの幅が100μm未満の場合、射出成形時に充填不良により溶着領域WAを成形することが困難になる可能性がある。溶着領域WAの幅が2mmを超え面積が広くなると、レーザー光Lに対する第2基板20の走査速度(詳細は後述)を遅くする、あるいはレーザー光Lのエネルギー密度を高める等、多くのエネルギーが必要になり生産性が低下する可能性がある。 The width of the welding area WA is, for example, several hundred μm or more and several tens mm or less. The width of the welding area WA is preferably 100 μm or more and 2 mm or less. When the width of the welded area WA is less than 100 μm, it may be difficult to mold the welded area WA due to poor filling during injection molding. When the width of the welding area WA exceeds 2 mm and the area becomes wide, a large amount of energy is required such as slowing the scanning speed (details will be described later) of the second substrate 20 with respect to the laser light L or increasing the energy density of the laser light L And productivity may be reduced.
 第2基板20は、第2境界50bの溶着領域WAとは逆側に収容部95を有している。収容部95は、接合面20a側に開口する窪みである。すなわち、前記第2基材20は、前記接合面において、前記溝50の一方の縁から所定距離離れた位置に、前記接合面側に開口して形成された収容部95を有する。収容部95は、例えば、溝50と同一深さで形成されている。収容部95は、第1基板10及び第2基板20の熱伝導率よりも小さな熱伝導率を有する物質を収容する。本実施形態における収容部95には、一例として、空気が収容されている。例えば、第1基板10及び第2基板20が上述した硬質材で形成されている場合、第1基板10及び第2基板20の熱伝導率は、0.17~0.19(W・m-1・K-1)である。空気の熱伝導率は、常温で0.026(W・m-1・K-1)である。 The 2nd board | substrate 20 has the accommodating part 95 on the opposite side to the welding area | region WA of the 2nd boundary 50b. The accommodating part 95 is a dent opened to the joint surface 20a side. In other words, the second base material 20 has a receiving portion 95 formed on the joining surface at a position away from one edge of the groove 50 by a predetermined distance so as to open to the joining surface side. The accommodating part 95 is formed with the same depth as the groove | channel 50, for example. The accommodating part 95 accommodates a substance having a thermal conductivity smaller than that of the first substrate 10 and the second substrate 20. As an example, air is accommodated in the accommodating portion 95 in the present embodiment. For example, when the first substrate 10 and the second substrate 20 are formed of the hard material described above, the thermal conductivity of the first substrate 10 and the second substrate 20 is 0.17 to 0.19 (W · m − 1 · K −1 ). The thermal conductivity of air is at ambient temperature 0.026 (W · m -1 · K -1).
 収容部95の幅(第2境界50bからの長さ)は、周囲の構造物の有無を考慮して設定される。収容部95の近傍に他の構造物が配置されている場合、当該構造物と干渉しない幅に設定される。また、収容部95の周囲に構造物が配置されていない場合は、流路50の幅と同程度または流路50の幅以上に設定することができる。例えば、収容部95の深さが流路50の深さと同一である場合、第2基板20を均一の厚さとする観点では、収容部95の幅を可能な範囲で広げることが好ましい。第2基板20を均一の厚さとすることにより、第2基板20を射出成形する際の冷却特性がより均一になり、ヒケ等の成形不良を低減できる。収容部95の幅は、一例として、100μm以上であり、成形性を考慮すると300μm以上であることが好ましい。 The width of the accommodating portion 95 (length from the second boundary 50b) is set in consideration of the presence or absence of surrounding structures. When another structure is disposed in the vicinity of the accommodating portion 95, the width is set so as not to interfere with the structure. Further, in the case where no structure is arranged around the accommodating portion 95, it can be set to be approximately equal to the width of the flow path 50 or larger than the width of the flow path 50. For example, when the depth of the accommodating portion 95 is the same as the depth of the flow path 50, it is preferable to increase the width of the accommodating portion 95 as much as possible from the viewpoint of making the second substrate 20 have a uniform thickness. By setting the second substrate 20 to a uniform thickness, the cooling characteristics when the second substrate 20 is injection-molded become more uniform, and molding defects such as sink marks can be reduced. The width of the accommodating portion 95 is, for example, 100 μm or more, and preferably 300 μm or more in consideration of formability.
 照射装置80は、流体デバイス1に向けてエネルギー光を照射する。エネルギー光は、一例として、レーザー光Lである。レーザー光Lの光源としては、特に限定されないが、例えば、半導体レーザー(波長:635~940nm)、Nd:YAGレーザー(波長:1060nm)、COレーザー(波長:9600、10600nm)等のレーザー光を発生する発振器等が挙げられる。 The irradiation device 80 irradiates the fluid device 1 with energy light. The energy light is laser light L as an example. The light source of the laser beam L is not particularly limited. For example, a laser beam such as a semiconductor laser (wavelength: 635 to 940 nm), an Nd: YAG laser (wavelength: 1060 nm), a CO 2 laser (wavelength: 9600, 10600 nm) is used. Examples thereof include an oscillator.
 載置部STは、上面に基材2が載置される。載置部STは、下方から第2基板20の下面20bを支持する。載置部STは、レーザー光Lの光軸と直交する平面(水平面)に沿った二次元方向に移動可能である。駆動部90は、載置部STを水平面に沿った二次元方向に移動させる。 The substrate 2 is placed on the upper surface of the placement unit ST. The placement unit ST supports the lower surface 20b of the second substrate 20 from below. The placement unit ST is movable in a two-dimensional direction along a plane (horizontal plane) orthogonal to the optical axis of the laser beam L. The drive unit 90 moves the placement unit ST in a two-dimensional direction along the horizontal plane.
 次に、上記の第1基板10と第2基板20とを溶着する手順について説明する。なお、第1基板10及び第2基板20は予め位置合わせされているものとする。第1基板10及び/又は第2基板20(第1基板10と第2基板20の少なくとも一方)は、位置合わせのためのアライメントマークを有していてもよい。
 まず、駆動部90により載置部STを介して第2基板20の溶着領域WAをレーザ光Lの照射領域に移動させる。
Next, a procedure for welding the first substrate 10 and the second substrate 20 will be described. In addition, the 1st board | substrate 10 and the 2nd board | substrate 20 shall be aligned previously. The first substrate 10 and / or the second substrate 20 (at least one of the first substrate 10 and the second substrate 20) may have an alignment mark for alignment.
First, the driving unit 90 moves the welding area WA of the second substrate 20 to the irradiation area of the laser light L via the mounting part ST.
 第2基板20の溶着領域WAがレーザ光Lの照射領域に位置決めされると、照射装置80からレーザー光Lを溶着領域WAに照射する。レーザー光Lは、第1基板10を透過し、レーザー光Lに非透明である第2基板20の溶着領域WAに到達する。溶着領域WAにおいて第2基板20は、レーザー光Lを吸収し発熱する。第2基板20で生じた熱が溶着領域WAと接する第1基板10に伝播することにより、第1基板10及び第2基板20が溶融する。 When the welding area WA of the second substrate 20 is positioned in the irradiation area of the laser beam L, the laser beam L is irradiated from the irradiation device 80 to the welding area WA. The laser light L passes through the first substrate 10 and reaches the welding area WA of the second substrate 20 that is not transparent to the laser light L. In the welding area WA, the second substrate 20 absorbs the laser light L and generates heat. The heat generated in the second substrate 20 propagates to the first substrate 10 in contact with the welding area WA, so that the first substrate 10 and the second substrate 20 are melted.
 この後、当該溶着領域WAに対してレーザー光Lが相対移動する、あるいはレーザー光Lの照射が停止することにより、溶融樹脂が冷却・固化され再固化相が形成される。これにより、レーザー光Lが照射された領域の第1基板10及び第2基板20が溶着される。 Thereafter, when the laser beam L moves relative to the welding area WA or the irradiation of the laser beam L is stopped, the molten resin is cooled and solidified to form a resolidified phase. Thereby, the 1st board | substrate 10 and the 2nd board | substrate 20 of the area | region where the laser beam L was irradiated are welded.
 溶着領域WAへのレーザー光Lの照射は、駆動部90により載置部STを介して第2基板20の溶着領域WAをレーザ光Lに対して相対移動させることにより、流路50に沿って走査して行われる。 The laser beam L is irradiated to the welding area WA along the flow path 50 by moving the welding area WA of the second substrate 20 relative to the laser light L via the mounting portion ST by the driving unit 90. This is done by scanning.
 溶着領域WAの幅に対してレーザー光Lの照射領域(実質的に第2基板20の溶融に寄与できるスポット径)が十分な場合は、溶着領域WAに対する一回の走査(1パス)で第1基板10及び第2基板20が溶着されるが、溶着領域WAの幅に対してレーザー光Lの照射領域が小さい場合には、溶着領域WAへのレーザー光Lの照射は溶着領域WAの幅方向の位置を変えながら複数回繰り返して行われる(複数パス)。 When the irradiation area of the laser beam L (spot diameter that can substantially contribute to melting of the second substrate 20) is sufficient with respect to the width of the welding area WA, the first scanning (one pass) with respect to the welding area WA is performed. When the first substrate 10 and the second substrate 20 are welded, but the irradiation region of the laser beam L is smaller than the width of the welding region WA, the irradiation of the laser beam L to the welding region WA is the width of the welding region WA. Repeated multiple times while changing the position of the direction (multiple passes).
 第2基板20で生じた熱の一部は、第1基板10と第2基板20との界面(下面10bと上面20aとの界面)に沿って伝播する。ここで、第2境界50bの溶着領域WAとは逆側に収容部95が配置されておらず、第2基板20の樹脂材であった場合、レーザ光Lの照射領域から伝播した熱のうち、第2境界50bに達した熱は、さらに、溶着領域WAから離れる方向に伝播し、溶着領域WAにおける第1基板10と第2基板20との溶着に寄与しない。換言すると、レーザ光Lの照射により溶着領域WAに所定量のエネルギーを付与してもエネルギーの一部が溶着に寄与することなく費消される可能性がある。 Part of the heat generated in the second substrate 20 propagates along the interface between the first substrate 10 and the second substrate 20 (interface between the lower surface 10b and the upper surface 20a). Here, in the case where the accommodating portion 95 is not disposed on the opposite side to the welding area WA of the second boundary 50b and is the resin material of the second substrate 20, of the heat propagated from the irradiation area of the laser light L The heat reaching the second boundary 50b further propagates in a direction away from the welding area WA and does not contribute to the welding of the first substrate 10 and the second substrate 20 in the welding area WA. In other words, even if a predetermined amount of energy is applied to the welding area WA by irradiation with the laser light L, a part of the energy may be consumed without contributing to the welding.
 本実施形態では、第2境界50bの溶着領域WAとは逆側に収容部95が配置され、収容部95に第2基板20よりも熱伝導率が小さい空気が収容されているため、第2境界50bに達した熱の多くは、収容部95に収容された空気ではなく溶着領域WAと接する第1基板10に伝播し、第1基板10と第2基板20との溶着に寄与する。 In the present embodiment, the accommodating portion 95 is disposed on the opposite side of the second boundary 50b from the welding area WA, and air having a lower thermal conductivity than the second substrate 20 is accommodated in the accommodating portion 95. Most of the heat reaching the boundary 50b is transmitted to the first substrate 10 in contact with the welding area WA, not to the air accommodated in the accommodating portion 95, and contributes to the welding between the first substrate 10 and the second substrate 20.
 例えば、溶着領域WAにおいて、第1境界50aの間際まで第1基板10と第2基板20とを溶着するために必要なエネルギーを付与可能な光量でレーザー光Lを溶着領域WAに照射した場合、第2境界50bに達した熱が溶着に寄与することなく費消されると、第1境界50aに対して想定した距離よりも離れた位置で第1基板10と第2基板20とが溶着されることが想定される。この場合、第1基板10と第2基板20とが溶着された境界と第1境界50aとの間に幅広の非溶着部が形成され、当該非溶着部に流路50の溶液が入り込み液残りが生じる可能性がある。 For example, in the welding area WA, when the laser beam L is irradiated to the welding area WA with a light quantity capable of applying energy necessary for welding the first substrate 10 and the second substrate 20 until just before the first boundary 50a, When the heat that has reached the second boundary 50b is consumed without contributing to the welding, the first substrate 10 and the second substrate 20 are welded at a position away from the assumed distance with respect to the first boundary 50a. It is assumed that In this case, a wide non-welded portion is formed between the boundary where the first substrate 10 and the second substrate 20 are welded and the first boundary 50a, and the solution in the flow channel 50 enters the non-welded portion and the liquid remains. May occur.
 また、溶着に寄与することなく費消される熱を考慮した光量でレーザー光Lを溶着領域WAに照射することも考えられるが、溶着に寄与することなく費消される熱は、周囲の構造物の有無等によって変動する。そのため、この変動を流路50の位置と対応させて予め求めておき、流路50の位置及び上記変動に応じた光量でレーザー光Lを照射すると、上記変動の算出、光量の高精度な制御、第1基板10と第2基板20との高精度な位置合わせが必要になる。 In addition, it is conceivable to irradiate the welding area WA with the light amount in consideration of the heat consumed without contributing to the welding, but the heat consumed without contributing to the welding is caused by the surrounding structure. It varies depending on the presence or absence. Therefore, when the fluctuation is determined in advance in correspondence with the position of the flow path 50 and the laser light L is irradiated with the light quantity corresponding to the position of the flow path 50 and the fluctuation, the fluctuation is calculated and the light quantity is controlled with high accuracy. Therefore, highly accurate alignment between the first substrate 10 and the second substrate 20 is required.
 これに対して、本実施形態の流体デバイス1においては、第2境界50bの溶着領域WAとは逆側に、第1基板10及び第2基板20の熱伝導率よりも小さな熱伝導率を有する空気が収容された収容部95が配置されているため、レーザ光Lの照射により付与されたエネルギーの多くを溶着に寄与させることができる。そのため、本実施形態の流体デバイス1においては、溶着領域WAの幅に応じて付与されたエネルギーの多くが溶着に寄与することになり、例えば、第1境界50aの間際まで第1基板10と第2基板20とを溶着することが可能になる。そのため、本実施形態の流体デバイス1においては、第1基板10と第2基板20との間の非溶着部に溶液が入り込み液残りが生じる等の不具合を抑制することができるとともに、レーザー光Lの光量の高精度な制御、第1基板10と第2基板20との高精度な位置合わせ等、流体デバイス1の製造効率低下を招く要因を低減して、第1基板10と第2基板20との効率的な溶着が可能になる。 On the other hand, in the fluid device 1 of this embodiment, it has a thermal conductivity smaller than the thermal conductivity of the 1st board | substrate 10 and the 2nd board | substrate 20 on the opposite side to the welding area | region WA of the 2nd boundary 50b. Since the accommodating part 95 in which air is accommodated is arranged, much of the energy applied by the irradiation with the laser light L can be contributed to the welding. Therefore, in the fluid device 1 of the present embodiment, much of the energy applied according to the width of the welding area WA contributes to the welding. For example, the first substrate 10 and the first energy up to the middle of the first boundary 50a. The two substrates 20 can be welded. Therefore, in the fluid device 1 of the present embodiment, it is possible to suppress problems such as a solution entering the non-welded portion between the first substrate 10 and the second substrate 20 and causing a liquid residue, and the laser beam L The first substrate 10 and the second substrate 20 can be reduced by reducing factors that cause a decrease in the manufacturing efficiency of the fluidic device 1, such as high-precision control of the amount of light and high-precision alignment between the first substrate 10 and the second substrate 20. And efficient welding.
[第2実施形態]
 次に、流体デバイス1及びシステムSYSの第2実施形態について、図2及び図3を参照して説明する。
 図2は、流体デバイス1の要部平面図である。図3は、図2におけるA-A線視断面図である。なお、図2及び図3においては、載置部ST、駆動部90の図示を省略している。
[Second Embodiment]
Next, a second embodiment of the fluid device 1 and the system SYS will be described with reference to FIGS.
FIG. 2 is a plan view of a main part of the fluid device 1. 3 is a cross-sectional view taken along line AA in FIG. 2 and 3, the placement unit ST and the drive unit 90 are not shown.
 図2及び図3に示すように、流体デバイス1は、流路50の中途に、変形により流路50中の溶液の流れを調整するバルブVを有している。バルブVは、第1基板10を厚さ方向に貫通する貫通孔11に設けられている。バルブVに採用可能な弾性材料としては、ゴム、エラストマー樹脂などが例示される。バルブVの下面には、半球状に突出する突出部12が設けられている。 2 and 3, the fluid device 1 has a valve V that adjusts the flow of the solution in the flow path 50 by deformation in the middle of the flow path 50. The valve V is provided in the through hole 11 that penetrates the first substrate 10 in the thickness direction. Examples of the elastic material that can be used for the valve V include rubber and elastomer resin. On the lower surface of the valve V, a protruding portion 12 protruding in a hemispherical shape is provided.
 第2基板20は、バルブVと対向する位置に凹部14を有している。凹部14は、バルブVが変形した際にバルブVの突出部12が当接する当接面15を有している。当接面15は、半球状の窪みで形成されている。図3に示すように、当接面15には、流路(溝)50が開口している。流路50の底面は、当接面15の最も低い位置よりも高い位置で開口している。すなわち、当接面15の一部は、流路50の底面よりも接合面20a側に形成されている。 The second substrate 20 has a recess 14 at a position facing the valve V. The recess 14 has a contact surface 15 with which the protrusion 12 of the valve V contacts when the valve V is deformed. The contact surface 15 is formed of a hemispherical depression. As shown in FIG. 3, a flow path (groove) 50 is opened in the contact surface 15. The bottom surface of the channel 50 opens at a position higher than the lowest position of the contact surface 15. That is, a part of the contact surface 15 is formed closer to the bonding surface 20 a than the bottom surface of the flow path 50.
 バルブVが変形していない際に、バルブVを挟んだ流路50の一方側から、突出部12と当接面15との間の凹部14を介して流路50の他方側に溶液が流動する。すなわち、凹部14は、流路50の一部を構成する。バルブVが変形して突出部12が当接面15に当接することで流路50中の溶液は流動が阻止される。すなわち、バルブVは、変形により流路50を閉じる。 When the valve V is not deformed, the solution flows from one side of the flow channel 50 sandwiching the valve V to the other side of the flow channel 50 via the recess 14 between the protrusion 12 and the contact surface 15. To do. That is, the recess 14 constitutes a part of the flow path 50. As the valve V is deformed and the protrusion 12 comes into contact with the contact surface 15, the solution in the flow path 50 is prevented from flowing. That is, the valve V closes the flow path 50 by deformation.
 第2基板20は、接合面20aにおいて、バルブV(貫通孔11)との第3境界50cから所定距離離れた第4境界50dまでの範囲に溶着領域WBが配置されている。溶着領域WBは、流路50と干渉しない範囲で凹部14(当接面15)の周囲に配置されている。 The second substrate 20 has a welding region WB arranged on the bonding surface 20a in a range from the third boundary 50c with the valve V (through hole 11) to a fourth boundary 50d that is a predetermined distance away. The welding region WB is disposed around the recess 14 (contact surface 15) as long as it does not interfere with the flow path 50.
 本実施形態における収容部95は、第4境界50dの溶着領域WBとは逆側に配置されている。収容部95は、第1実施形態と同様に、第1基板10及び第2基板20の熱伝導率よりも小さな熱伝導率を有する物質として空気を収容している。 The accommodating part 95 in this embodiment is arrange | positioned on the opposite side to the welding area | region WB of the 4th boundary 50d. The accommodating part 95 accommodates air as a substance having a thermal conductivity smaller than the thermal conductivities of the first substrate 10 and the second substrate 20 as in the first embodiment.
 本実施形態の流体デバイス1及びシステムSYSにおいては、上述した第1実施形態と同様の作用・効果が得られることに加えて、流路50中の溶液の流れを調整するバルブVが当接する当接面15の周囲についても、第1基板10と第2基板とを効率的に溶着することが可能となる。 In the fluid device 1 and the system SYS of the present embodiment, in addition to obtaining the same operations and effects as those of the first embodiment described above, the valve V that adjusts the flow of the solution in the flow path 50 abuts. The first substrate 10 and the second substrate can be efficiently welded also around the contact surface 15.
[流体デバイス1の実施例]
 次に、流体デバイス1の実施例について、図4乃至図8を参照して説明する。
[Example of fluidic device 1]
Next, an embodiment of the fluid device 1 will be described with reference to FIGS. 4 to 8.
 図4は、本実施形態の流体デバイス1の斜視図である。図5は、流体デバイス1の分解斜視図である。図6は、流体デバイス1の平面図である。 FIG. 4 is a perspective view of the fluidic device 1 of the present embodiment. FIG. 5 is an exploded perspective view of the fluidic device 1. FIG. 6 is a plan view of the fluidic device 1.
 本実施形態の流体デバイス1は、検体試料に含まれる検出対象である試料物質を免疫反応および酵素反応などにより検出するデバイスを含む。試料物質は、例えば、核酸、DNA、RNA、ペプチド、タンパク質、細胞外小胞体などの生体分子である。 The fluidic device 1 of the present embodiment includes a device that detects a sample substance that is a detection target included in a specimen sample by an immune reaction, an enzyme reaction, or the like. The sample substance is, for example, a biomolecule such as nucleic acid, DNA, RNA, peptide, protein, extracellular vesicle.
 図5に示すように、流体デバイス1は、基材2と処理基板4とを備える。また、後段において説明するように、基材2には、シール部5が設けられる(図7参照)。すなわち、流体デバイス1は、シール部5を備える。 As shown in FIG. 5, the fluid device 1 includes a base material 2 and a processing substrate 4. Further, as will be described later, the base member 2 is provided with a seal portion 5 (see FIG. 7). That is, the fluid device 1 includes the seal portion 5.
 処理基板4は、基板本体40と、処理部41と、を有する。 The processing substrate 4 includes a substrate body 40 and a processing unit 41.
 基板本体40は、回路パターン(図示略)が設けられたリジット基板である。基板本体40は、例えばガラスエポキシから構成される。 The board body 40 is a rigid board provided with a circuit pattern (not shown). The substrate body 40 is made of, for example, glass epoxy.
 処理部41は、基板本体40に実装される。処理部41は、例えば、GMRセンサ(Giant Magneto Resistive Sensor)である。GMRセンサの各素子の表面には、例えば、検出対象である抗原を捕捉する抗体が固定されている。また、GMRセンサの各素子は、検出対象である抗原と結びついた磁性粒子を検出する。すなわち、本実施形態において、処理部41としてのGMRセンサは、溶液中の検体を捕捉し、検出する。GMRセンサの各素子は、基板本体40の回路パターンに接続されている。 The processing unit 41 is mounted on the substrate body 40. The processing unit 41 is, for example, a GMR sensor (Giant Magneto Resistive Sensor). For example, an antibody that captures an antigen to be detected is fixed on the surface of each element of the GMR sensor. Each element of the GMR sensor detects magnetic particles associated with the antigen to be detected. That is, in this embodiment, the GMR sensor as the processing unit 41 captures and detects the specimen in the solution. Each element of the GMR sensor is connected to the circuit pattern of the substrate body 40.
 処理部41は基材2に設けられた流路50を流れる溶液に接触して、溶液に対して何らかの処理を施すものであればその機能は限定されない。処理部41が溶液に施す処理としては、捕捉処理、検出処理、加熱処理などが例示できる。処理部41としては、DNAアレイチップ、電界センサ、加熱ヒータ、クロマトグラフィーを行う素子などが例示できる。 The function of the processing unit 41 is not limited as long as the processing unit 41 is in contact with the solution flowing through the flow path 50 provided in the substrate 2 and performs some processing on the solution. Examples of the process performed by the processing unit 41 on the solution include a capture process, a detection process, and a heating process. Examples of the processing unit 41 include a DNA array chip, an electric field sensor, a heater, and an element for performing chromatography.
 基材2は、上述した第1基板10と、第2基板20と、第3基板(基板、ボトムプレート)30と、を有する。すなわち、基材2は、3つの基板を有する。第1基板10、第2基板20および第3基板30は、厚さ方向に積層される。第1基板10と第2基板20とは、レーザー溶着によって互いに溶着される。同様に、第2基板20と第3基板30とは、レーザー溶着、超音波溶着などの溶着手段によって互いに溶着される。 The base material 2 includes the first substrate 10, the second substrate 20, and the third substrate (substrate, bottom plate) 30 described above. That is, the base material 2 has three substrates. The first substrate 10, the second substrate 20, and the third substrate 30 are stacked in the thickness direction. The first substrate 10 and the second substrate 20 are welded together by laser welding. Similarly, the second substrate 20 and the third substrate 30 are welded to each other by welding means such as laser welding or ultrasonic welding.
 第1基板10、第2基板20および第3基板30は、樹脂材料から構成される。第1基板10および第3基板30は、光を透過する透光性の樹脂材料から構成される。一方で、第2基板20は、光を吸収する黒色の樹脂材料から構成される。第1基板10、第2基板20および第3基板30に用いられる樹脂材料として、上述した硬質材を用いることができる。 The first substrate 10, the second substrate 20, and the third substrate 30 are made of a resin material. The first substrate 10 and the third substrate 30 are made of a translucent resin material that transmits light. On the other hand, the second substrate 20 is made of a black resin material that absorbs light. As the resin material used for the first substrate 10, the second substrate 20, and the third substrate 30, the hard material described above can be used.
 第1基板10、第2基板20および第3基板30は、この順で積層される。すなわち、第2基板20は、第1基板10と第3基板30との間に配置される。また、第2基板20と第3基板30との間には、処理基板4が配置される。したがって、処理基板4の一部は基材2の内部に収容される。 The first substrate 10, the second substrate 20, and the third substrate 30 are stacked in this order. That is, the second substrate 20 is disposed between the first substrate 10 and the third substrate 30. Further, the processing substrate 4 is disposed between the second substrate 20 and the third substrate 30. Therefore, a part of the processing substrate 4 is accommodated in the base material 2.
 処理基板4、第1基板10、第2基板20および第3基板30は、1つの平面に沿って平行に延びる板材である。以下の説明においては、処理基板4、第1基板10、第2基板20および第3基板30が配置は、説明の便宜のため、水平面に沿って配置されるものとして説明する。また、以下の説明において、上側から順に第1基板10、第2基板20、処理基板4および第3基板30が、順に積層されるとして、上下方向を規定する。すなわち、本明細書における上下方向は、第1基板10、第2基板20、処理基板4および第3基板30の積層方向および厚さ方向である。
 ただし、これは、説明の便宜のために水平方向および上下方向を定義したに過ぎず、本実施形態に係る流体デバイス1の使用時の向きを限定しない。
The processing substrate 4, the first substrate 10, the second substrate 20, and the third substrate 30 are plate members that extend in parallel along one plane. In the following description, the processing substrate 4, the first substrate 10, the second substrate 20, and the third substrate 30 are described as being disposed along a horizontal plane for convenience of description. In the following description, the vertical direction is defined on the assumption that the first substrate 10, the second substrate 20, the processing substrate 4, and the third substrate 30 are sequentially stacked from the upper side. That is, the vertical direction in this specification is the stacking direction and the thickness direction of the first substrate 10, the second substrate 20, the processing substrate 4, and the third substrate 30.
However, this only defines the horizontal direction and the vertical direction for convenience of explanation, and does not limit the orientation when the fluidic device 1 according to the present embodiment is used.
 図7は、図6のIV-IV線に沿う流体デバイス1の断面図である。
 処理基板4、第1基板10、第2基板20および第3基板30は、それぞれ上側(積層方向一方側)を向く上面と、下側(積層方向他方側)を向く下面と、を有する。より具体的には、第1基板10は、上面10aと下面10bとを有する。第2基板20は、上面20aと下面(第1対向面)20bとを有する。第3基板30は、上面(第3対向面)30aと下面30bとを有する。すなわち、基材2は、上面10a、20a、30aと、下面10b、20b、30bと、を有する。また、処理基板4は、上面(第2対向面)4aと下面4bと、を有する。
FIG. 7 is a cross-sectional view of the fluidic device 1 taken along line IV-IV in FIG.
The processing substrate 4, the first substrate 10, the second substrate 20, and the third substrate 30 each have an upper surface that faces the upper side (one side in the stacking direction) and a lower surface that faces the lower side (the other side in the stacking direction). More specifically, the first substrate 10 has an upper surface 10a and a lower surface 10b. The second substrate 20 has an upper surface 20a and a lower surface (first opposing surface) 20b. The third substrate 30 has an upper surface (third opposing surface) 30a and a lower surface 30b. That is, the base material 2 has upper surfaces 10a, 20a, and 30a and lower surfaces 10b, 20b, and 30b. Further, the processing substrate 4 has an upper surface (second opposing surface) 4a and a lower surface 4b.
 第1基板10の下面10bと第2基板20の上面20aとは、上下方向に対向する。第2基板20の下面20bと第3基板30の上面30aとは、上下方向に対向する。処理基板4の上面4aの一部は、第2基板20の下面20bの一部と上下方向に対向する。処理基板4の下面4bの一部は、第3基板30の上面30aの一部と上下方向に対向する。 The lower surface 10b of the first substrate 10 and the upper surface 20a of the second substrate 20 face each other in the vertical direction. The lower surface 20b of the second substrate 20 and the upper surface 30a of the third substrate 30 face each other in the vertical direction. A part of the upper surface 4 a of the processing substrate 4 faces a part of the lower surface 20 b of the second substrate 20 in the vertical direction. A part of the lower surface 4 b of the processing substrate 4 faces a part of the upper surface 30 a of the third substrate 30 in the vertical direction.
 第2基板20の下面20bには、第1収容凹部(収容凹部)21が設けられる。第1収容凹部21は、処理基板4を収容する。第1収容凹部21の底面21aは、処理基板4の上面4aと接触する。また、第2基板20の下面20bの第1収容凹部21を除く領域の一部と、第3基板30の上面30aとは、互いに接触する。これにより、基材2は、第2基板20の下面20bと第1基板10の上面10aとの間で、処理基板4を挟み込む。すなわち、基材2は、処理基板4を挟み込む一対の基板(第2基板20および第3基板30)を有する。 A first accommodation recess (accommodation recess) 21 is provided on the lower surface 20 b of the second substrate 20. The first accommodation recess 21 accommodates the processing substrate 4. The bottom surface 21 a of the first housing recess 21 is in contact with the top surface 4 a of the processing substrate 4. In addition, a part of the area of the lower surface 20b of the second substrate 20 excluding the first receiving recess 21 and the upper surface 30a of the third substrate 30 are in contact with each other. Thereby, the base material 2 sandwiches the processing substrate 4 between the lower surface 20b of the second substrate 20 and the upper surface 10a of the first substrate 10. That is, the base material 2 has a pair of substrates (second substrate 20 and third substrate 30) that sandwich the processing substrate 4 therebetween.
 基材2には、溶液を貯留するリザーバー60と、溶液が流れる流路50と、注入孔71と、供給孔74と、廃液槽72と、排出孔75と、空気孔73と、が設けられている。 The base material 2 is provided with a reservoir 60 for storing the solution, a flow path 50 through which the solution flows, an injection hole 71, a supply hole 74, a waste liquid tank 72, a discharge hole 75, and an air hole 73. ing.
 リザーバー60は、第2基板20と第3基板30との間に設けられる。リザーバー60は、第2基板20の下面20bに設けられた溝部22の内壁面と第3基板30の上面30aとによって囲まれたチューブ状、あるいは筒状に形成された空間である。本実施形態の基材2には、複数のリザーバー60が設けられる。リザーバー60には、溶液が収容される。複数のリザーバー60は、互いに独立して溶液を収容する。本実施形態のリザーバー60は、流路型のリザーバーである。リザーバー60の長さ方向の一端は、注入孔71に接続される。また、リザーバー60の長さ方向の他端は、供給孔74が接続される。流体デバイス1の製造過程において、リザーバー60には、注入孔71から溶液が注入される。また、流体デバイス1の使用時において、リザーバー60は、収容した溶液を供給孔74を介し流路50に供給する。 The reservoir 60 is provided between the second substrate 20 and the third substrate 30. The reservoir 60 is a space formed in a tube shape or a cylindrical shape surrounded by the inner wall surface of the groove portion 22 provided on the lower surface 20 b of the second substrate 20 and the upper surface 30 a of the third substrate 30. The substrate 2 of the present embodiment is provided with a plurality of reservoirs 60. The reservoir 60 stores a solution. The plurality of reservoirs 60 store solutions independently of each other. The reservoir 60 of this embodiment is a flow path type reservoir. One end of the reservoir 60 in the length direction is connected to the injection hole 71. Further, the supply hole 74 is connected to the other end of the reservoir 60 in the length direction. In the process of manufacturing the fluid device 1, the solution is injected into the reservoir 60 from the injection hole 71. In addition, when the fluidic device 1 is used, the reservoir 60 supplies the stored solution to the flow path 50 via the supply hole 74.
 流路50は、第1基板10と第2基板20との間に設けられる。流路50の一部は、第1基板10の下面10bに設けられた溝部13と第2基板20の上面20aとによって囲まれた空間として構成される。また、流路50の一部は、第1基板10の下面10bと第2基板20の上面20aに設けられた溝部23とによって囲まれた空間として構成される。さらに、流路50の一部は、第1基板10の下面10bに設けられた溝部13と第2基板20の上面20aに設けられた溝部23とによって囲まれた空間として構成される。流路50は、チューブ状、あるいは筒状に形成された空間である。流路50には、リザーバー60から溶液が供給される。溶液は、流路50内を流れる。
 流路50の各部に関しては、図8を基にして後段において詳細に説明する。
The flow path 50 is provided between the first substrate 10 and the second substrate 20. A part of the flow path 50 is configured as a space surrounded by the groove 13 provided on the lower surface 10 b of the first substrate 10 and the upper surface 20 a of the second substrate 20. A part of the flow path 50 is configured as a space surrounded by the lower surface 10 b of the first substrate 10 and the groove portion 23 provided on the upper surface 20 a of the second substrate 20. Furthermore, a part of the flow path 50 is configured as a space surrounded by the groove 13 provided on the lower surface 10 b of the first substrate 10 and the groove 23 provided on the upper surface 20 a of the second substrate 20. The flow path 50 is a space formed in a tube shape or a cylindrical shape. The solution is supplied from the reservoir 60 to the channel 50. The solution flows in the flow path 50.
Each part of the flow path 50 will be described in detail later with reference to FIG.
 注入孔71は、第1基板10および第2基板20を板厚方向に貫通する。注入孔71は、第2基板20と第3基板30との境界部に位置するリザーバー60に繋がる。注入孔71は、リザーバー60を外部に繋げる。注入孔71は、1つのリザーバー60に対して1つ設けられる。 The injection hole 71 penetrates the first substrate 10 and the second substrate 20 in the plate thickness direction. The injection hole 71 is connected to the reservoir 60 located at the boundary between the second substrate 20 and the third substrate 30. The injection hole 71 connects the reservoir 60 to the outside. One injection hole 71 is provided for one reservoir 60.
 注入孔71の開口には、セプタム71aが設けられる。作業者(または注入装置)は、例えば、溶液が充填されたシリンジを用いてリザーバー60への溶液の注入作業を行う。作業者は、セシリンジに取り付けられた中空針をセプタム71aに突刺してリザーバー60に溶液を注入する。 A septum 71 a is provided at the opening of the injection hole 71. An operator (or an injection device) performs an operation of injecting the solution into the reservoir 60 using, for example, a syringe filled with the solution. The operator injects the solution into the reservoir 60 by piercing the septum 71 a with a hollow needle attached to the sesyringe.
 供給孔74は、第2基板20に設けられる。供給孔74は、第2基板20を板厚方向に貫通する。供給孔74は、リザーバー60と流路50とを繋ぐ。リザーバー60に貯留された溶液は、供給孔74を介して流路50に供給される。 The supply hole 74 is provided in the second substrate 20. The supply hole 74 penetrates the second substrate 20 in the plate thickness direction. The supply hole 74 connects the reservoir 60 and the flow path 50. The solution stored in the reservoir 60 is supplied to the flow path 50 through the supply hole 74.
 廃液槽72は、流路50中の溶液を廃棄する為に基材2に設けられる。廃液槽72は、排出孔75を介して流路50に接続される。廃液槽72は、第2基板20の下面20bに設けられた廃液用凹部25と、第3基板30の上面30aに囲まれた空間に構成される。廃液槽72には、廃液を吸収する吸収材79が充填される。 The waste liquid tank 72 is provided on the base material 2 in order to discard the solution in the flow path 50. The waste liquid tank 72 is connected to the flow path 50 through the discharge hole 75. The waste liquid tank 72 is configured in a space surrounded by the waste liquid recess 25 provided on the lower surface 20 b of the second substrate 20 and the upper surface 30 a of the third substrate 30. The waste liquid tank 72 is filled with an absorbent material 79 that absorbs the waste liquid.
 排出孔75は、第2基板20を板厚方向に貫通する。排出孔75は、流路50と廃液槽72とを繋ぐ。流路50内の溶液は、排出孔75を介して廃液槽72に排出される。 The discharge hole 75 penetrates the second substrate 20 in the plate thickness direction. The discharge hole 75 connects the flow path 50 and the waste liquid tank 72. The solution in the flow path 50 is discharged to the waste liquid tank 72 through the discharge hole 75.
 空気孔73は、第1基板10および第2基板20を板厚方向に貫通する。空気孔73は、廃液槽72の直上に位置する。空気孔73は、廃液槽72を外部に繋げる。すなわち、廃液槽72は、空気孔73を介して外部に開放される。 The air hole 73 penetrates the first substrate 10 and the second substrate 20 in the plate thickness direction. The air hole 73 is located immediately above the waste liquid tank 72. The air hole 73 connects the waste liquid tank 72 to the outside. That is, the waste liquid tank 72 is opened to the outside through the air hole 73.
 次に、流路50について、より具体的に説明する。
 図8は、第2基板20の平面図である。
 なお、図8において、流路50の一部を二点鎖線又は破線により補完して表示する。また、図8において、流路50の一部である循環流路51には、ドット模様により強調して表示する。
Next, the flow path 50 will be described more specifically.
FIG. 8 is a plan view of the second substrate 20.
In FIG. 8, a part of the channel 50 is complemented and displayed by a two-dot chain line or a broken line. In FIG. 8, the circulation flow path 51 which is a part of the flow path 50 is highlighted with a dot pattern.
 流路50は、循環流路51と、複数の導入流路52と、複数の排出流路53と、を含む。 The flow path 50 includes a circulation flow path 51, a plurality of introduction flow paths 52, and a plurality of discharge flow paths 53.
 循環流路51は、積層方向から見て、ループ状に構成される。循環流路51の経路中には、ポンプPが配置されている。ポンプPは、流路中に並んで配置された3つの要素ポンプPeから構成されている。要素ポンプPeは、いわゆるバルブポンプである。ポンプPは、3つの要素ポンプPeを順次開閉することにより、循環流路内において液体を搬送することができる。ポンプPを構成する要素ポンプPeの数は、4以上であってもよい。 The circulation channel 51 is configured in a loop shape when viewed from the stacking direction. A pump P is disposed in the path of the circulation channel 51. The pump P is composed of three element pumps Pe arranged side by side in the flow path. The element pump Pe is a so-called valve pump. The pump P can convey the liquid in the circulation channel by sequentially opening and closing the three element pumps Pe. The number of element pumps Pe constituting the pump P may be four or more.
 循環流路51の経路中には、複数(本実施形態では3つ)の定量バルブVが設けられる。複数の定量バルブVは、循環流路51を複数の定量区画に区画する。複数の定量バルブVは、それぞれの定量区画が所定の体積となるように配置されている。それぞれの定量区画の一端には、導入流路52が接続される。また、定量区画の他端には、排出流路53が接続される。 A plurality (three in this embodiment) of metering valves V are provided in the circulation channel 51. The plurality of metering valves V partitions the circulation channel 51 into a plurality of metering sections. The plurality of metering valves V are arranged so that each metering section has a predetermined volume. An introduction channel 52 is connected to one end of each quantitative section. In addition, a discharge channel 53 is connected to the other end of the quantitative section.
 導入流路52は、循環流路51の定量区画に溶液を導入するための流路である。導入流路52は、1つの定量区画に少なくとも1つ設けられる。導入流路52は、一端側において供給孔74に接続される。また、導入流路52は、他端側において、循環流路51に接続される。導入流路52の経路中には、導入バルブViと初期クローズバルブVaとが設けられる。 The introduction flow path 52 is a flow path for introducing the solution into the quantitative section of the circulation flow path 51. At least one introduction channel 52 is provided in one metering section. The introduction flow path 52 is connected to the supply hole 74 on one end side. The introduction flow path 52 is connected to the circulation flow path 51 on the other end side. An introduction valve Vi and an initial close valve Va are provided in the route of the introduction flow path 52.
 初期クローズバルブVaは、流体デバイス1の出荷時の初期状態においてのみ閉塞するバルブである。初期クローズバルブVaが設けられることで、出荷から使用までの輸送中等において、リザーバー60内の溶液が、流路50に流入することを抑制できる。
 導入バルブViは、リザーバー60から流路50に溶液を導入する際に開放され、他の状態において閉塞される。
The initial closing valve Va is a valve that is closed only in the initial state when the fluid device 1 is shipped. By providing the initial close valve Va, the solution in the reservoir 60 can be prevented from flowing into the flow path 50 during transportation from shipment to use.
The introduction valve Vi is opened when the solution is introduced from the reservoir 60 into the flow path 50, and is closed in another state.
 排出流路53は、循環流路51の溶液を廃液槽72に排出するための流路である。排出流路53は、一端側において廃液槽72に接続される。また、排出流路53は、他端側において、循環流路51に接続される。排出流路53の経路中には、排出バルブVoが設けられる。 The discharge channel 53 is a channel for discharging the solution in the circulation channel 51 to the waste liquid tank 72. The discharge channel 53 is connected to the waste liquid tank 72 on one end side. Further, the discharge channel 53 is connected to the circulation channel 51 on the other end side. A discharge valve Vo is provided in the path of the discharge channel 53.
 排出バルブVoは、流路50から廃液槽72に溶液を排出する際に開放され、他の状態において閉塞される。 The discharge valve Vo is opened when the solution is discharged from the flow path 50 to the waste liquid tank 72, and is closed in another state.
 循環流路51には、処理空間55が含まれる。循環流路51内の溶液は、循環中に処理空間55を通過する。処理空間55には、処理基板4の処理部41が配置される。すなわち、処理部41は、処理空間55の内部に位置する。処理部41は、処理基板4の上面4aに設けられる。処理部41は、処理空間55内の溶液と接触して溶液を処理する。 The processing channel 55 is included in the circulation channel 51. The solution in the circulation channel 51 passes through the processing space 55 during circulation. In the processing space 55, the processing unit 41 of the processing substrate 4 is arranged. That is, the processing unit 41 is located inside the processing space 55. The processing unit 41 is provided on the upper surface 4 a of the processing substrate 4. The processing unit 41 contacts the solution in the processing space 55 to process the solution.
 流体デバイス1による溶液の処理について説明する。
 流体デバイス1は、複数のリザーバー60内の溶液を、それぞれ循環流路51の異なる定量区画に導入して、溶液の定量を行う。次いで、流体デバイス1は、定量バルブVを開放するとともに、ポンプPを作動させる。これにより、循環流路51においてそれぞれの定量区画で定量した溶液を循環させて混合する。また、処理部41において溶液内の検体(例えば抗原を捕捉する。次いで、循環流路51内の溶液を廃液槽72に排出する。ついで、磁性粒子を含む溶液を循環流路51内に供給するとともに、循環させる。これにより、処理部41に捕捉された抗原に磁性粒子を結び付ける。さらに、処理部41において磁性粒子を検出する。
Processing of the solution by the fluid device 1 will be described.
The fluidic device 1 introduces the solutions in the plurality of reservoirs 60 into different quantification sections of the circulation channel 51, and quantifies the solution. Next, the fluidic device 1 opens the metering valve V and activates the pump P. Thereby, the solution quantified in each quantification section in the circulation channel 51 is circulated and mixed. Further, the sample in the solution (for example, antigen is captured) in the processing unit 41. Next, the solution in the circulation channel 51 is discharged to the waste liquid tank 72. Next, a solution containing magnetic particles is supplied into the circulation channel 51. Accordingly, the magnetic particles are bound to the antigen captured by the processing unit 41. Further, the processing unit 41 detects the magnetic particles.
 上記の流体デバイス1においては、流路類としての循環流路51、導入流路52、排出流路53との境界、及び流路類としての注入孔71、空気孔73、供給孔74、排出孔75を流路の一部として、各孔の境界から所定距離を上述した溶着領域WAとして第1基板10と第2基板20とが溶着される。また、流体デバイス1においては、バルブ類としての定量バルブV、初期クローズバルブVa、導入バルブVi、排出バルブVo、要素ポンプPeの境界から所定距離を上述した溶着領域WBとして第1基板10と第2基板20とが溶着される。さらに、第1基板10と第2基板20とは、外周部において溶着される。 In the fluid device 1 described above, the boundary with the circulation flow channel 51, the introduction flow channel 52, and the discharge flow channel 53 as flow channels, and the injection hole 71, the air hole 73, the supply hole 74, and the discharge as flow channels. The first substrate 10 and the second substrate 20 are welded using the hole 75 as a part of the flow path as the above-mentioned welding area WA from the boundary of each hole. Further, in the fluid device 1, the first substrate 10 and the first substrate 10 are defined as a predetermined distance from the boundary of the metering valve V, the initial closing valve Va, the introduction valve Vi, the discharge valve Vo, and the element pump Pe as valves. Two substrates 20 are welded. Furthermore, the 1st board | substrate 10 and the 2nd board | substrate 20 are welded in an outer peripheral part.
 上記の溶着領域WAの流路類とは逆側の境界、及び溶着領域WBのバルブ類のとは逆側の境界には、第1基板10及び第2基板20の熱伝導率よりも小さな熱伝導率を有する空気が収容された収容部が配置されている。なお、流路類とバルブ類とが近接した領域においては、溶着領域WA、WBの双方を境界とした収容部が配置される。図8においては、ハッチングで示される収容部95A~95Nが配置されている。 Heat that is smaller than the thermal conductivity of the first substrate 10 and the second substrate 20 is present on the boundary opposite to the flow paths in the welding area WA and on the boundary opposite to the valves in the welding area WB. An accommodating portion in which air having conductivity is accommodated is disposed. In the area where the flow paths and valves are close to each other, an accommodating portion with both the welding areas WA and WB as a boundary is disposed. In FIG. 8, accommodating portions 95A to 95N indicated by hatching are arranged.
 流体デバイス1においては、溶着領域WA、WBの境界に第1基板10及び第2基板20の熱伝導率よりも小さな熱伝導率を有する空気が収容された収容部95A~95Nが配置されているため、第1基板10と第2基板20との間の非溶着部に溶液が入り込み液残りが生じる等の不具合を抑制することができるとともに、レーザー光Lの光量の高精度な制御、第1基板10と第2基板20との高精度な位置合わせ等、流体デバイス1の製造効率低下を招く要因を低減して、第1基板10と第2基板20との効率的な溶着が可能になる。 In the fluidic device 1, accommodating portions 95A to 95N in which air having a thermal conductivity smaller than the thermal conductivity of the first substrate 10 and the second substrate 20 is accommodated at the boundary between the welding areas WA and WB. Therefore, it is possible to suppress problems such as that the solution enters the non-welded portion between the first substrate 10 and the second substrate 20 and the liquid residue is generated, and also the first control of the light quantity of the laser light L is highly accurate. Factors that reduce the manufacturing efficiency of the fluidic device 1 such as highly accurate alignment between the substrate 10 and the second substrate 20 are reduced, and the first substrate 10 and the second substrate 20 can be efficiently welded. .
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 例えば、上記実施形態では、第1基板10及び第2基板20の熱伝導率よりも小さな熱伝導率を有する物質として空気を収容部に収容する構成を例示したが、この構成に限定されず、第1基板10及び第2基板20の熱伝導率よりも小さな熱伝導率を有する他の物質(気体、液体、固体)を収容する構成であってもよい。この場合、例えば、当該流路50と並んで配置され、第1基板10及び第2基板20の熱伝導率よりも小さな熱伝導率を有する溶液(流体)が流れる他の流路(溝)が収容部95であってもよい。 For example, in the above-described embodiment, the configuration in which air is accommodated in the accommodating portion as a substance having a thermal conductivity smaller than the thermal conductivity of the first substrate 10 and the second substrate 20 is not limited to this configuration. The structure which accommodates another substance (gas, liquid, solid) which has thermal conductivity smaller than the thermal conductivity of the 1st board | substrate 10 and the 2nd board | substrate 20 may be sufficient. In this case, for example, other flow paths (grooves) that are arranged side by side with the flow path 50 and through which a solution (fluid) having a thermal conductivity smaller than that of the first substrate 10 and the second substrate 20 flows. The accommodating part 95 may be sufficient.
 また、上記実施形態では、流路50の幅方向の一方側に溶着領域WA及び収容部95が配置される構成を例示したが、この構成に限定されない。例えば、図9に示すように、流路50の幅方向の両側に収容部95が配置される構成であってもよい。すなわち溝50の第1境界50aとは異なる境界から所定距離離れた位置に形成される収容部95を更に備えてもよい。この構成を採ることにより、第1基板10と第2基板20との溶着効率をさらに向上させることが可能になる。 In the above embodiment, the configuration in which the welding area WA and the accommodating portion 95 are arranged on one side in the width direction of the flow path 50 is exemplified, but the configuration is not limited thereto. For example, as illustrated in FIG. 9, a configuration in which the accommodating portions 95 are disposed on both sides in the width direction of the flow path 50 may be employed. That is, you may further provide the accommodating part 95 formed in the position away from the boundary different from the 1st boundary 50a of the groove | channel 50 by predetermined distance. By adopting this configuration, the welding efficiency between the first substrate 10 and the second substrate 20 can be further improved.
 また、上記実施形態では、第1基板10と第2基板20との溶着に関して説明したが、例えば、第3基板30をレーザー光Lに対して透明な材料で形成し、第2基板20と第3基板30とを溶着する際にも適用可能である。この場合、リザーバーとの境界から所定距離を溶着領域に設定し、溶着領域のリザーバーとは逆側の境界に、第2基板20と第3基板30の熱伝導率よりも小さな熱伝導率を有する物質を収容する収容部を配置すればよい。 In the above embodiment, the welding of the first substrate 10 and the second substrate 20 has been described. For example, the third substrate 30 is formed of a material transparent to the laser light L, and the second substrate 20 and the second substrate 20 are formed. The present invention can also be applied when welding the three substrates 30. In this case, a predetermined distance from the boundary with the reservoir is set in the welding region, and the thermal conductivity is smaller than the thermal conductivity of the second substrate 20 and the third substrate 30 at the boundary opposite to the reservoir in the welding region. What is necessary is just to arrange | position the accommodating part which accommodates a substance.
 また、上記実施形態では、第1基板10と第2基板20とをレーザー溶着で接合する構成を例示したが、この構成に限定されず、熱溶着、超音波溶着等の他の溶着手段、又は接着材による接着で接合する構成であってもよい。 Moreover, in the said embodiment, although the structure which joined the 1st board | substrate 10 and the 2nd board | substrate 20 by laser welding was illustrated, it is not limited to this structure, Other welding means, such as heat welding and ultrasonic welding, or The structure joined by adhesion | attachment by an adhesive material may be sufficient.
 1…流体デバイス、 10…第1基板(第1基材、トッププレート)、 10b…下面(接合面)、 14…凹部、 15…当接面、 20…第2基板(第2基材、ミドルプレート)、 20a…上面(接合面)、 50…流路(溝)、 50a…第1境界、 50b…第2境界、 50c…第3境界、 50d…第4境界、 90…駆動部、 95…収容部、 L…レーザー光(エネルギー光)、 ST…載置部、 SYS…システム、 V…バルブ、 WA、WB…溶着領域 DESCRIPTION OF SYMBOLS 1 ... Fluid device, 10 ... 1st board | substrate (1st base material, top plate), 10b ... Lower surface (joining surface), 14 ... Recessed part, 15 ... Contact surface, 20 ... 2nd board | substrate (2nd base material, middle) Plate), 20a ... upper surface (joint surface), 50 ... flow path (groove), 50a ... first boundary, 50b ... second boundary, 50c ... third boundary, 50d ... fourth boundary, 90 ... drive unit, 95 ... Container, L ... Laser light (energy light), ST ... Place, SYS ... System, V ... Valve, WA, WB ... Welding area

Claims (12)

  1.  接合面で接合された第1基材及び第2基材を備え、
     前記第2基材は、前記接合面において、
     前記第1基材及び前記第2基材を接合することにより流路を形成する溝と、
     前記溝との第1境界から所定距離離れた第2境界までの範囲に配置される溶着領域と、
     前記第2境界の前記溶着領域とは逆側に、前記接合面側に開口して形成され、前記第1基材及び前記第2基材を溶着する際、前記第1基材及び前記第2基材よりも熱伝導率が小さい物質が収容される収容部と、を備える流体デバイス。
    A first base material and a second base material joined at the joining surface;
    In the joining surface, the second substrate is
    A groove that forms a flow path by joining the first base material and the second base material;
    A welding region disposed in a range from a first boundary with the groove to a second boundary separated by a predetermined distance;
    When the first base material and the second base material are welded, the first base material and the second base material are formed on the side opposite to the welding region of the second boundary and open to the joint surface side. A fluid device, comprising: a housing portion that houses a substance having a lower thermal conductivity than the base material.
  2.  前記物質は、空気である、請求項1に記載の流体デバイス。 The fluidic device according to claim 1, wherein the substance is air.
  3.  前記収容部は、流体が流れる流路としても使用される、請求項1に記載の流体デバイス。 The fluid device according to claim 1, wherein the accommodating portion is also used as a flow path through which a fluid flows.
  4.  前記溝の前記第1境界とは異なる境界から所定距離離れた位置に形成される収容部を更に備える、請求項1から3のいずれか一項に記載の流体デバイス。 The fluidic device according to any one of claims 1 to 3, further comprising a housing portion formed at a position away from a boundary different from the first boundary of the groove by a predetermined distance.
  5.  前記収容部は、前記溝と略平行に形成されている、請求項1から4のいずれか一項に記載の流体デバイス。 The fluid device according to any one of claims 1 to 4, wherein the housing portion is formed substantially parallel to the groove.
  6.  前記第1基材と前記第2基材とは、一方が透光性の高い材料であり、一方が光吸収特性を有する材料である、請求項1から5のいずれか一項に記載の流体デバイス。 The fluid according to any one of claims 1 to 5, wherein one of the first base material and the second base material is a material having high translucency and one is a material having light absorption characteristics. device.
  7.  前記第1基材は、変形により前記流路中の流体の流れを調整するバルブを有する、請求項1から6のいずれか一項に記載の流体デバイス。 The fluid device according to any one of claims 1 to 6, wherein the first base member has a valve that adjusts a flow of fluid in the flow path by deformation.
  8.  前記第2基材は、前記接合面側に開口し変形した前記バルブに当接する当接面が形成され前記流路の一部を構成する凹部を有する、請求項7に記載の流体デバイス。 The fluidic device according to claim 7, wherein the second base material has a concave portion that is formed on a contact surface that is open to the joint surface side and contacts the deformed valve, and forms a part of the flow path.
  9.  前記当接面は、一部が前記溝の底面よりも開口側に配置されている、請求項8に記載の流体デバイス。 The fluid device according to claim 8, wherein a part of the contact surface is disposed on an opening side with respect to a bottom surface of the groove.
  10.  前記溶着領域は、前記凹部または前記バルブとの第3境界から所定距離離れた第4境界までの範囲に配置されている、請求項8または9に記載の流体デバイス。 The fluid device according to claim 8 or 9, wherein the welding region is arranged in a range from a third boundary with the concave portion or the valve to a fourth boundary that is a predetermined distance away.
  11.  請求項1から10のいずれか一項に記載の流体デバイスと、
     前記第2基材に積層された前記第1基材を介して前記溶着領域に前記エネルギー光を照射する照射装置と、
     を備えるシステム。
    A fluidic device according to any one of claims 1 to 10,
    An irradiation device for irradiating the welding region with the energy light through the first base material laminated on the second base material;
    A system comprising:
  12.  前記流体デバイスが載置される載置部と、
     前記載置部を前記エネルギー光の光軸と直交する平面に沿って移動させる駆動装置と、を備える、請求項11に記載のシステム。
    A mounting section on which the fluidic device is mounted;
    The system of Claim 11 provided with the drive device which moves the said mounting part along the plane orthogonal to the optical axis of the said energy light.
PCT/JP2018/011393 2018-03-22 2018-03-22 Fluid device and system WO2019180871A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011393 WO2019180871A1 (en) 2018-03-22 2018-03-22 Fluid device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011393 WO2019180871A1 (en) 2018-03-22 2018-03-22 Fluid device and system

Publications (1)

Publication Number Publication Date
WO2019180871A1 true WO2019180871A1 (en) 2019-09-26

Family

ID=67986909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011393 WO2019180871A1 (en) 2018-03-22 2018-03-22 Fluid device and system

Country Status (1)

Country Link
WO (1) WO2019180871A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283965A (en) * 2005-03-10 2006-10-19 Nagano Keiki Co Ltd Fluid control structure of micro flow passage, blocking member, microchip, manufacturing method for microchip, device applying fluid control structure, and blocking member operation device
WO2010109934A1 (en) * 2009-03-23 2010-09-30 株式会社 東芝 Microchannel device
JP2017029941A (en) * 2015-08-04 2017-02-09 パナソニックIpマネジメント株式会社 Microchip laser welded structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283965A (en) * 2005-03-10 2006-10-19 Nagano Keiki Co Ltd Fluid control structure of micro flow passage, blocking member, microchip, manufacturing method for microchip, device applying fluid control structure, and blocking member operation device
WO2010109934A1 (en) * 2009-03-23 2010-09-30 株式会社 東芝 Microchannel device
JP2017029941A (en) * 2015-08-04 2017-02-09 パナソニックIpマネジメント株式会社 Microchip laser welded structure

Similar Documents

Publication Publication Date Title
JP3798011B2 (en) Fluid flow method in capillary chip
WO2013134744A2 (en) Microfluidic assay assemblies and methods of manufacture
US11642818B2 (en) Fluidic device, method of manufacturing fluidic device, and valve for fluidic device
JPWO2009054493A1 (en) Reaction chip and manufacturing method thereof
WO2019180871A1 (en) Fluid device and system
JP2010025854A (en) Micro inspection chip
JP5720695B2 (en) Mold and microchip manufacturing equipment
JP5768228B2 (en) Microchip, microchip mold, and manufacturing apparatus for manufacturing microchip
US10549480B2 (en) Ultrasonic welding of a microfluidic device
JP6881671B2 (en) Fluid device
WO2009131043A1 (en) Microchip
JP2012095583A (en) Microchip and method for manufacturing the same
JP2021518259A (en) Fluid device
JP6017793B2 (en) Microchip
JP7036126B2 (en) Fluid device and flow path supply system
JP5973350B2 (en) Microchip
JP2012100580A (en) Microchip and method for manufacturing the same
JP7220441B2 (en) MICROCHIP MANUFACTURING METHOD AND CHIP MEMBER
JP5294200B2 (en) Microchip
CA3133974A1 (en) Apparatus and methods for bubble traps in fluidic devices
JP2012220204A (en) Fluid handling device and fluid handling system
JP5951219B2 (en) Microchip with built-in liquid reagent
JP2011185765A (en) Chip for biochemical reaction and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP