WO2019179472A1 - 使用惯性飞轮结构的前后轮平衡车 - Google Patents

使用惯性飞轮结构的前后轮平衡车 Download PDF

Info

Publication number
WO2019179472A1
WO2019179472A1 PCT/CN2019/078906 CN2019078906W WO2019179472A1 WO 2019179472 A1 WO2019179472 A1 WO 2019179472A1 CN 2019078906 W CN2019078906 W CN 2019078906W WO 2019179472 A1 WO2019179472 A1 WO 2019179472A1
Authority
WO
WIPO (PCT)
Prior art keywords
flywheel
inertia flywheel
inertia
motor
rear wheel
Prior art date
Application number
PCT/CN2019/078906
Other languages
English (en)
French (fr)
Inventor
洪定生
Original Assignee
洪定生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810237617.3A external-priority patent/CN110155192A/zh
Application filed by 洪定生 filed Critical 洪定生
Publication of WO2019179472A1 publication Critical patent/WO2019179472A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/04Stabilising vehicle bodies without controlling suspension arrangements by means of movable masses
    • B62D37/06Stabilising vehicle bodies without controlling suspension arrangements by means of movable masses using gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels

Definitions

  • the invention relates to the field of balance vehicles, and in particular to a front and rear wheel balancer using an inertial flywheel structure.
  • the two-wheeled balance car in the prior art mainly realizes the balance adjustment through the gyro system.
  • the common practice is the Chinese utility model patent with the authorization announcement number CN204095952U, which discloses an electric two-wheeled vehicle, including the frame and the frame.
  • the coupled gyro device maintains the balance of the two-wheeled vehicle body by controlling the angular velocity of the gyro flywheel through the control system.
  • the above solution is to adopt a torque gyro structure balance car, which uses a gyro with two opposite rotation directions, the gyro has a large inertia, and the axial stability is generated by the high-speed rotation of the gyro.
  • the controller adjusts the lateral balance of the body by controlling the front and rear yaw of the gyro.
  • the traditional torque gyro should offset the momentum brought by its own rotation, so it must be installed in pairs.
  • the common installation method is that the front and rear two gyros rotate in opposite directions, the installation direction is vertical installation, and the gyro is generally more than 5000 rpm.
  • the speed operation requires extremely high precision and strength of the mechanical structure, so the balance maintenance effect is poor in actual operation.
  • the present invention provides a front and rear wheel balancer using an inertial flywheel structure to compensate for the insufficiency of the mechanical structure performance precision and the high speed of the conventional balance car using the torque gyro mode.
  • a front and rear wheel balancer using an inertial flywheel structure including a front and rear wheels on the frame and the frame, and an inertial flywheel structure between the front and rear wheels, including: a fixed support frame, an inertia flywheel, a bearing, a motor, and a deceleration
  • the fixed support frame is mounted on the frame, the mounting axis of the inertia flywheel is along the traveling direction of the vehicle body, the outer ring or the inner ring is processed with a ring gear, and the bearing is mounted on the fixed support frame through the bearing shaft.
  • the bearing is distributed in contact with the inertia flywheel and supports and fixes the inertia flywheel.
  • the motor is fixedly connected with the reducer, and the output shaft of the reducer meshes with the ring gear of the inertia flywheel through the gear, the inertia flywheel
  • the outer side or the inner side passes through the bearing and rotates along the outer side of the inertia flywheel or the inner side track respectively;
  • the drive structure of the inertia flywheel can also be replaced by the following:
  • the outer rotor brushless motor is used.
  • the flywheel is made of magnetic material and directly acts as the rotor of the motor.
  • the coil is used inside the flywheel, and the variable current is generated to generate the same rotating magnetic field as the speed of the flywheel to drive the flywheel to rotate;
  • the motor drive there is a synchronous wheel on the outside of the flywheel, and the matching synchronous wheel is also mounted on the motor side, and the flywheel is rotated by the synchronous wheel synchronous belt drive.
  • control system comprising: an MCU, a motor driver and a corresponding sensor; the sensor collects a body posture parameter and a flywheel state parameter of the balance vehicle, and the MCU real-time according to the body posture parameter and the flywheel state parameter data transmitted by the sensor Calculating the tilting torque of the system and outputting a control command to the motor driver, the motor driver executing the MCU control command for driving the motor in the inertia flywheel structure, and acting on the inertia flywheel to generate a specific direction and magnitude of acceleration to generate a reverse torque, thereby To make the body self-balancing.
  • the senor includes a posture sensing module and a flywheel state sensing module
  • the attitude sensing module passes the data signals measured by the gyroscope and the gravity accelerometer, and the data fusion algorithm processes the inclination angle of the vehicle body and the angular velocity of the vehicle body.
  • the attitude parameter, the flywheel state sensing module can calculate the position of the flywheel and the speed of the flywheel by rotating the encoder signal.
  • the frame is mounted with a driver's seat, and the inertia flywheel structure is mounted behind the driver's seat.
  • control system introduces the rotational speed feedback of the flywheel under the premise of ensuring the balance of the vehicle body, and adds the feedback information of the rotational speed while calculating the torque required by the motor to reduce the rotational speed of the inertia flywheel.
  • the maximum self-balancing range of the front and rear wheel balancer using the inertia flywheel structure is 30 degrees of the vehicle body inclination angle, and when the vehicle body inclination angle is greater than 30 degrees, the range of the vehicle body self-stability is exceeded, and the parking alarm is timely to ensure the user. Security.
  • the bearings supporting and fixedly supporting the inertia flywheel may be three sets or a plurality of sets.
  • the weight of the body to be m, and the height of the center of gravity of the car is l.
  • the inner diameter of the inertia flywheel is defined as d, and the outer diameter of the D flywheel is h,
  • the density of the flywheel material is ⁇ ,
  • the attitude sensor module transmits the measured angle information of the vehicle body and the angular velocity information of the vehicle body to the main controller MCU through the communication bus by reading the measured gyroscope data and the acceleration data and through the attitude fusion algorithm.
  • the main controller MCU can detect the attitude of the vehicle body in real time through the sensor information. When detecting the angular velocity of the vehicle body in a certain direction, it indicates that the vehicle body is subjected to external interference.
  • the main controller MCU detects the magnitude and direction of the sensor angle and angular velocity in real time, and calculates The value is converted into the torque value required to control the motor, and the control command is transmitted to the driver of the motor through the bus.
  • the driver executes the corresponding control command, and the motor generates torque to ensure the balance of the vehicle body.
  • the dynamic adjustment process is real-time.
  • the controller uses the 10Hz control frequency for real-time control, that is, the sampling frequency of the sensor and the transmission frequency of the motor control command, including the instruction execution speed of the motor, are higher than 10Hz.
  • the body When the body is subjected to a lateral impact, the body produces a lateral angular acceleration
  • the design weight m of the vehicle body is 100 kG
  • the height of the center of gravity of the vehicle body is 500 mm
  • the flywheel state sensor can collect the speed information and angle information of the flywheel in real time and transmit it to the main controller at a sampling frequency of 200 Hz.
  • the data has two functions. First, the main controller can detect the speed of the flywheel and avoid the flywheel. Because the speed is too high, the body is out of control. Secondly, under the premise of ensuring the balance of the vehicle body, the speed feedback of the flywheel is introduced. When the torque required by the motor is calculated, the feedback information of the speed is added, which can suppress the speed of the flywheel. Too high a problem, which can reduce the speed of the inertia flywheel, not only improve the reliability of the control, but also reduce the power consumption of the control system.
  • the safety auxiliary wheel bracket hidden on both sides of the vehicle body will be opened in time, and the control system sends a motor stop rotation command to ensure that the stability of the vehicle body does not roll over.
  • Embodiments of the present invention provide a front and rear wheel balancer that uses an inertial flywheel structure. It has the following beneficial effects:
  • the inertial flywheel balancing principle used in the present invention is substantially different from the prior art gyro moment balancing method.
  • the present invention uses the principle of momentum conservation to install the inertial flywheel with the same axis of travel direction, and is yawed on the left and right sides of the vehicle body.
  • the angular acceleration of the flywheel is controlled to cause the body system to generate a reverse acting torque to achieve balance control of the vehicle body, and the inertia flywheel structure can be installed in any number; in terms of mechanical structure, the strength of the mechanical structure is low due to the low speed of the flywheel And assembly accuracy requirements are very low, and vibration and noise during operation are easy to control.
  • FIG. 1 is a schematic overall view of a balance car using an inertial flywheel structure
  • Embodiment 2 is a schematic structural view of an inertia flywheel in Embodiment 1;
  • Figure 3 is a schematic diagram showing the definition of related variables of the present invention.
  • FIG. 5 is a structural diagram of the electronic system of the present invention.
  • Figure 6 is a schematic view of the inertia flywheel of Embodiment 2.
  • Figure 7 is a schematic view of the inertia flywheel of Embodiment 3.
  • Fig. 8 is a schematic view showing another structure of the inertia flywheel structure using gear transmission.
  • the balance car uses an inertial flywheel structure, and is equipped with an attitude sensing module and a flywheel state sensing module.
  • the attitude sensing module obtains two attitude parameters of the inclination angle of the vehicle body and the angular velocity of the vehicle body through the data fusion algorithm through the data signals measured by the gyroscope and the gravity accelerometer; the flywheel state sensing module can calculate the flywheel by rotating the encoder signal. Position and speed of the flywheel.
  • the main controller MCU uses the designed attitude control parameter and the flywheel state parameter to calculate the tilting moment of the system according to the tilt state of the vehicle body and the speed change state of the flywheel in real time, and the control motor acts on the flywheel to generate a specific direction.
  • the main controller MCU can know the speed information of the flywheel through the state parameters of the flywheel, and the additional feedback can reduce the speed of the flywheel as much as possible while maintaining the stability of the system, so as to reduce the power consumption and improve the reliability and stability of the structure. effect.
  • the chassis 4 of the frame is provided with a driver seat 5, and the rear of the driver seat 5 is mounted with inertia.
  • the flywheel structure 6, the mounting axis of the inertia flywheel structure 6 is in the direction of travel of the vehicle body.
  • FIG. 2 is a schematic view showing the structure of the inertia flywheel structure adopting the gear transmission in the present invention.
  • the following is a detailed description of the assembly of the mechanical structure part.
  • the outer ring of the inertia flywheel 7 is processed with a ring gear 8, and the bearing 9-1 and the bearing 9- 2 is mounted on the fixed support frame 10 through the bearing shaft, and then the inertia flywheel 7 is mounted on the fixed support frame 10.
  • the bearings 9-1, 9-2 are tangentially supported by the inertia flywheel 7, ensuring that the inertia flywheel 7 is symmetrically mounted on the front, rear, left and right sides.
  • the bearing 9-3 and the bearing 9-4 are mounted on the inertia flywheel fixed support frame 10 through the bearing shaft, and at the same time, the fixed inertia flywheel 7 is activated.
  • the four bearings are activated to fix and support the inertia flywheel 7, and also assist the inertia flywheel 7 to rotate, and the bearings 9-1, 9-2, 9-3, and 9-4 are fixed by bearings.
  • the washer 11 and the screw are fixedly mounted on the inertia flywheel fixed support frame 10; the motor 12 and the speed reducer 13 are fixed together by screws, the output shaft of the reducer 13 is fixedly connected with the gear 14, and the outer ring of the gear 14 is also external to the inertia flywheel 7.
  • the ring gear of the same modulus is processed, and finally the motor 12 and the speed reducer 13 are accurately mounted on the chassis 4 of the vehicle through the motor mounting plate, so that the gear assembly 14 and the inertia flywheel 7 are assembled and matched to meet the required requirements;
  • the gear 14 and the inertia flywheel 7 are connected in a geared manner.
  • the above-described bearings that support the inertia flywheel 7 may be three or more.
  • FIG. 8 is another schematic structural view of the inertia flywheel structure adopting gear transmission.
  • the outer ring of the gear 14 is also the same as the inner ring of the inertia flywheel 7, and the ring gear of the same modulus is processed to facilitate meshing and fixedly supporting the inertia flywheel.
  • the bearings of 7 can be three groups or multiple groups.
  • Figure 3 is a schematic illustration of the definition of related variables in the present invention. Because the car body only involves lateral balance, it is possible to make all the faces in the plane of the vertical car traveling direction, establish a two-dimensional xy plane rectangular coordinate system, define the inclination angle of the car body as ⁇ , and the angular velocity of the car body is The angle of the flywheel is ⁇ , and the angular velocity of the flywheel is
  • FIG. 4 is a flow chart of the program of the balance vehicle control algorithm.
  • the system After the balance car is started, the system first performs a self-test to check the working status of the electromechanical system, and then initializes and corrects the sensor of the system. After the initialization work is completed, the control system starts to read the sensor data, knows the system status, and obtains the torque required to maintain the balance through the MCU operation, thereby controlling the hub motor to balance the vehicle body.
  • the inclination angle of the vehicle body is greater than 30 degrees, it exceeds the range of self-stabilization of the vehicle body, and the parking alarm is timely to ensure the safety of the user.
  • the balance car electronic system is divided into two parts: the total control system and the control system.
  • the control system is the core of the balance car electronic system, and the control system consists of an MCU, a motor driver and corresponding sensors.
  • the MCU processes the sensor data in real time and calculates the output torque and outputs the control command to the motor driver.
  • the motor driver can execute the MCU's control commands for driving the flywheel motor.
  • the sensor includes an attitude sensing module and a flywheel state sensing module.
  • the attitude sensing module can obtain the two attitude parameters of the inclination angle of the vehicle body and the angular velocity of the vehicle body through the data fusion algorithm through the data signals measured by the gyroscope and the gravity accelerometer; the flywheel state sensing module can calculate the flywheel by rotating the encoder signal. The angle and angular velocity of the flywheel.
  • the master control system is the backbone of the entire balance car electronic system, responsible for the power distribution and power detection of the entire electronic system, interactive display with the user, and control of the hub motor and real-time communication with the control module, the transmission of relevant data and real-time control system Monitoring.
  • the control module estimates the tilting moment of the system according to the attitude state of the vehicle and the state parameters of the flywheel in real time according to the tilt state of the vehicle body and the speed change state of the flywheel, and controls the motor to act on the flywheel to generate a specific direction and magnitude of acceleration to generate a reverse torque. In order to achieve self-balancing of the body.
  • control module can know the speed information of the flywheel through the state parameters of the flywheel. With additional feedback, the speed of the flywheel can be reduced as much as possible while maintaining the stability of the system, so as to reduce the power consumption and improve the reliability and stability of the structure.
  • the controller is controlled by versus Reduce the speed of the flywheel in the opposite direction to reduce the body energy consumption.
  • the system controls the motor through the attitude parameter of the vehicle and the state parameter of the flywheel to generate a balance torque of the flywheel to stabilize the vehicle body.
  • the stability of the vehicle body is controlled by real-time calculation of the speed of the vehicle in combination with the attitude parameters of the vehicle body to meet the centripetal force conditions required for the turning of the vehicle, so that the vehicle remains stable and safe during the turning process.
  • the inertia flywheel 7 has a synchronous wheel 15 on the outer side, and the motor 12 side is also equipped with a matching synchronous wheel 16, and the motor 12 is driven by the synchronous wheel synchronous belt 17, so that the inertia flywheel 7 rotation.
  • the difference between this embodiment and the first embodiment is that, as shown in FIG. 7, an outer rotor brushless motor is used, and the inertia flywheel 7 is made of a magnetic material, directly serving as the rotor 18 of the motor, and the coil is used inside the flywheel to generate a variable current generating inertia flywheel. a rotating magnetic field of the same rotational speed that propels the flywheel to rotate;

Abstract

一种使用惯性飞轮结构的前后轮平衡车,包括车架(1)和车架上的前后轮(2, 3)、惯性飞轮结构(6)和控制系统,控制系统包括MCU、电机驱动器和传感器,传感器用于采集平衡车的车身姿态参数和飞轮状态参数,MCU实时根据传感器传输的数据推算系统的倾斜力矩并将控制指令输出到电机驱动器,电机驱动器执行MCU的控制指令用于驱动惯性飞轮结构中的电机(12),作用于惯性飞轮(7)产生特定方向和大小的反向力矩,从而使车身达到自平衡。其中惯性飞轮结构可以任意数目安装。该平衡车弥补了采用力矩陀螺模式带来的机械结构性能加工精度和转速极高的不足,由于飞轮转速较低,对机械结构的强度和装配精度要求很低,运行时的转动和噪音都易于控制。

Description

使用惯性飞轮结构的前后轮平衡车 技术领域
本发明涉及平衡车领域,具体涉及一种使用惯性飞轮结构的前后轮平衡车。
背景技术
现有技术中的两轮平衡车主要通过陀螺系统来实现平衡调节,常见的做法如授权公告号为CN204095952U的中国实用新型专利,其公开了一种电动两轮汽车,包括车架以及与车架联接的陀螺装置,其通过控制系统控制陀螺飞轮的运动角速度来维持两轮汽车车身的平衡。
上述方案即为采用力矩陀螺结构平衡车,其通过使用两个相反旋转方向的陀螺,陀螺具有较大的惯量,通过陀螺的高速旋转,产生轴向的稳定性。在车身左右偏摆的时候,由于旋转陀螺的特性,陀螺会产生前后摆动的力矩,控制器通过控制陀螺的前后偏摆来调节车身的侧向平衡。
在结构方面,传统的力矩陀螺要抵消自身旋转带来的动量,所以要成对安装,常见的安装方式为前后两个陀螺相向旋转,安装方向为竖向安装,且陀螺一般要以大于5000转的速度运行,对机械结构的精度和强度的要求极高,因此在实际操作中平衡维持效果较差。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种使用惯性飞轮结构的前后轮平衡车,以弥补传统的平衡车采用力矩陀螺模式带来的机械结构性能加工精度和转速极高的不足。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
一种使用惯性飞轮结构的前后轮平衡车,包括车架和车架上的前后轮,还具有:位于前后轮之间的惯性飞轮结构,包括:固定支撑架、惯性飞轮、轴承、电机和减速器,所述固定支撑架安装在车架上,所述惯性飞轮的安装轴线为沿车身行驶方向,其外圈或内圈加工有齿圈,所述轴承通过轴承轴安装在固定支撑架上,该轴承分布在惯性飞轮周围与其相切接触并对惯性飞轮起到支撑、固定作用,所述电机与减速器固定连接,所述减速器的输出轴通过齿轮与惯性飞轮的齿圈啮合,惯性飞轮外侧或者内侧通过轴承,分别沿着惯性飞轮外侧或者内侧轨道旋转;
惯性飞轮的驱动结构还可采用如下方式代替:
使用外转子无刷电机,飞轮为磁性材料,直接作为电机转子,飞轮内侧使用线圈,通交变电流产生与飞轮转速相同的旋转磁场,推动飞轮旋转;
使用电机驱动,飞轮外侧有同步轮,电机侧也装有配套同步轮,通过同步轮同步带传动,使飞轮旋转。
在控制方面,具有控制系统,包括:MCU、电机驱动器和相应的传感器;所述传感器采集平衡车的车身姿态参数和飞轮状态参数,所述MCU实时根据传感器传输的车身姿态参数和飞轮状态参数数据推算系统的倾斜力矩并将控制指令输出到电机驱动器,所述电机驱动器执行MCU的控制指令用于驱动惯性飞轮结构中的电机,作用于惯性飞轮产生特定方向和大小的加速度产生反向力矩,从而来使车身达到自平衡。
具体地,所述传感器包括姿态传感模块和飞轮状态传感模块,姿态传感模块通过陀螺仪和重力加速度计测得的数据信号,经过数据融合算法处理得到车身的倾角和车身的角速度两个姿态参数,飞轮状态传感模块可以通过旋转编码器信号,计算得到飞轮的位置和飞轮的转速。
较为优选的,所述车架上安装有司机座椅,所述惯性飞轮结构安 装在司机座椅的后方。
较为优选的,所述控制系统在保证车身平衡的前提下,引入了飞轮的转速反馈,在计算电机所需要的扭矩的同时加入转速的反馈信息,用以降低惯性飞轮的转速。
较为优选的,所述使用惯性飞轮结构的前后轮平衡车的自平衡范围最大值为车身倾角30度,在车身倾角大于30度时,超过车身自稳的范围,及时停车报警,以保证使用者的安全。
具体地,支撑、固定支承惯性飞轮的轴承可以是3组,也可以是多组。
为了方便描述,作出如下定义:
定义车身的重量为m,车的重心高度为l,
可以得到车身的转动惯量为Jm=m*l^2
定义惯性飞轮的的内径尺寸为d外径尺寸为D飞轮的厚度为h,
可以得到飞轮的体积为V=pi*D^2/4-pi*d^2/4
飞轮材料的密度为ρ,
可以计算得出飞轮的质量为M=h*ρ*V
此外,通过公式JM=M*(D^2/4+d^2/4)/2可以计算得出飞轮的转动惯量
由于角动量守恒可得出,在JM和Jm匹配的前提下(惯量相差不超过10倍,否则会由于飞轮转速过高导致失控),车身的摆动可以通过飞轮的反向旋转来平衡,具体实现方案如下。
在控制系统工作之后,姿态传感器模块通过读取测得的陀螺仪数据和加速度数据并通过姿态融合算法将最终得出的车身的角度信息和车身的角速度信息通过通信总线传输给主控制器MCU。主控制器MCU通过传感器信息可以实时检测车身的姿态,当检测到车身产生某一方向的角速度时,说明车身受到外界干扰,主控制器MCU通过实时检测传感器角度和角速度的大小和方向,通过计算,将该数值转换为控制电机所需要的力矩值,并通过总线将控制指令传送到电机的驱动器, 驱动器执行相应的控制指令,电机产生扭矩,来保证车身的平衡,该动态调节过程是实时的,为了保证系统的即时响应,控制器采用10Hz的控制频率进行实时控制,即传感器的采样频率和电机控制指令的发送频率包括电机的指令执行速度都要高于10Hz。
当车身受到侧向冲击之后,车身产生一个侧向的角加速度
Figure PCTCN2019078906-appb-000001
由此可得出车身的所需的平衡力矩为,
Figure PCTCN2019078906-appb-000002
由力矩平衡可以得出飞轮产生相应扭矩所产生的反向角加速度
Figure PCTCN2019078906-appb-000003
在本发明的一个实施方案中,车身的设计重量m为100kG,车身的重心高度l为500mm,车身的转动惯量为Jm=m*l^2=25kG*m^2
飞轮的设计外径D为500mm,内径d为400mm,厚度h为200mm,飞轮的体积V=pi*D^2/4-pi*d^2/4=0.07m^3
飞轮的材料密度为ρ=7.93g/cm^3,
可以计算得出飞轮的质量为M=h*ρ*V=112kG
此外,通过公式JM=M*(D^2/4+d^2/4)/2可以计算得出飞轮的转动惯量JM=5.75kG*m^2。
此外,飞轮的状态传感器可以实时采集飞轮的转速信息和角度信息,并以200Hz的采样频率传输到主控制器,该数据有两方面的作用,首先,主控制器可以检测飞轮的转速,避免飞轮因转速过高而导致车身的失控,其次控制器在保证车身平衡的前提下,引入了飞轮的转速反馈,在计算电机所需要的扭矩的同时加入转速的反馈信息,可以很好的抑制飞轮转速过高的问题,这样可以降低惯性飞轮的转速,不仅提高控制的可靠性,还可以降低控制系统的功耗。
为了保护使用者的安全,在车身倾斜角度大于30°的时候,隐藏在车身两侧的安全辅助轮支架会及时打开,并且控制系统发送电机停转指令,保证车身的稳定不会侧翻。
(三)有益效果
本发明实施例提供了一种使用惯性飞轮结构的前后轮平衡车。具 备以下有益效果:
本发明使用的惯性飞轮平衡原理,与现有技术中的陀螺力矩平衡的方式有本质的区别,本发明使用动量守恒的原理,通过安装与行进方向轴线相同的惯性飞轮,在车身左右偏摆的时候,控制飞轮的角加速度,使车身系统产生反向作用力矩,来实现车身的平衡控制,而惯性飞轮结构可以任意数目安装;在机械结构方面,由于飞轮转速较低,所以对机械结构的强度和装配精度要求很低,且在运行时的振动和噪音都很容易控制。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是采用惯性飞轮结构的平衡车整体示意图;
图2是实施例1中惯性飞轮的结构示意图;
图3是本发明相关变量的定义示意图;
图4是本发明控制算法的程序流程图;
图5是本发明电子系统的组成结构图;
图6是实施例2中惯性飞轮的示意图;
图7是实施例3中惯性飞轮的示意图;
图8是惯性飞轮结构采用齿轮传动的另一结构示意图。
附图标记如下:
1.车架、2.前轮、3.后轮、4.底盘、5.司机座椅、6.惯性飞轮结构、7.惯性飞轮、8.齿圈、9.轴承、10.固定支撑架、11.固定垫圈、12.电机、13.减速器、14.齿轮、15.同步轮、16.配套同步轮、17.同步带、18.电机转子。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本方案的实现原理为:该平衡车使用惯性飞轮结构,上配置有姿态传感模块和飞轮状态传感模块。姿态传感模块通过陀螺仪和重力加速度计测得的数据信号,通过数据融合算法得到车身的倾角和车身的角速度两个姿态参数;飞轮状态传感模块可以通过旋转编码器信号,计算得到飞轮的位置和飞轮的转速。主控制器MCU通过得到的车身的姿态参数和飞轮的状态参数,使用设计的反馈控制算法来实时根据车身的倾斜状态和飞轮的速度变化状态计算系统的倾斜力矩,控制电机作用于飞轮产生特定方向和大小的加速度产生反向力矩,从而来使车身达到自平衡。同时,主控制器MCU通过飞轮的状态参数可以获知飞轮的速度信息,通过附加的反馈可以在保持系统稳定的前提下尽可能降低飞轮的转速,以达到降低功耗提高结构可靠性和稳定性的效果。
实施例1
图1为采用惯性飞轮结构的平衡车,包括车架1和车架上的前轮2、后轮3,车架的底盘4上设有司机座椅5,司机座椅5的后方安装有惯性飞轮结构6,该惯性飞轮结构6的安装轴线为沿车身行驶方向。
图2为本发明中惯性飞轮结构采用齿轮传动的结构示意图,以下对机械结构部分的组装进行详细说明,惯性飞轮7外圈加工有齿圈8,首先将分别将轴承9-1,轴承9-2通过轴承轴安装在固定支撑架10上面,然后将惯性飞轮7安装在固定支撑架10上,轴承9-1,9-2相切支撑着惯性飞轮7,保证惯性飞轮7前后左右对称安装在固定支撑架10 上的时候,将轴承9-3,轴承9-4通过轴承轴安装在惯性飞轮固定支撑架10上的同时,同时也启到固定惯性飞轮7的作用。这个时候,4个轴承即启到了对惯性飞轮7的固定、支撑作用,同时也对惯性飞轮7旋转启到辅助作用,轴承9-1,9-2,9-3,9-4通过轴承固定垫圈11和螺钉使其固定安装在惯性飞轮固定支撑架10上;电机12和减速器13通过螺钉固定在一起,减速器13输出轴和齿轮14固定连接,齿轮14外圈也和惯性飞轮7外圈一样,加工有相同模数的齿圈,最后电机12和减速器13通过电机安装板精准安装在汽车底盘4上,使其齿轮14和惯性飞轮7安装配合精度达到所需要求;
齿轮14和惯性飞轮7连接方式用齿轮齿轮连接。以上固定支承惯性飞轮7的轴承可以是3组,也可以是多组。
图8为惯性飞轮结构采用齿轮传动的另一结构示意图,在该种方式中,齿轮14外圈也和惯性飞轮7内圈一样,加工有相同模数的齿圈,方便啮合,固定支承惯性飞轮7的轴承可以是3组,也可以是多组。
图3是本发明中相关变量的定义示意图。因为车身只涉及侧向的平衡,因此,可以以垂直车行进方向的平面做一切面,建立二维的xy平面直角坐标系,定义车身的倾角为θ,车身的角速度为
Figure PCTCN2019078906-appb-000004
飞轮的角度为α,飞轮的角速度为
Figure PCTCN2019078906-appb-000005
图4是该平衡车控制算法的程序流程图。在平衡车启动之后,系统首先进行自检,来排查机电系统的工作状况,接着对系统的传感器进行初始化,并进行校正。在初始化工作完成之后,控制系统开始读取传感器数据,获知系统状态,并经过MCU运算得到维持平衡需要的力矩,从而控制轮毂电机使车身平衡。此外,在车身倾角大于30度,超过车身自稳的范围,及时停车报警,以保证使用者的安全。
以下结合附图5对电子部分的组成进行详细说明。
该平衡车电子系统分为总控系统和控制系统两大部分。
其中控制系统是平衡车电子系统的核心,控制系统由MCU、电机驱动器和相应的传感器组成。
其中,MCU实时对传感器的数据进行处理并计算输出力矩并将控制指令输出到电机驱动器。电机驱动器可以执行MCU的控制指令用于驱动飞轮电机。
传感器包括姿态传感模块和飞轮状态传感模块。姿态传感模块可以通过陀螺仪和重力加速度计测得的数据信号,通过数据融合算法得到车身的倾角和车身的角速度两个姿态参数;飞轮状态传感模块可以通过旋转编码器信号,计算得到飞轮的角度和飞轮的角速度。
总控系统是整个平衡车电子系统的主干,负责整个电子系统的电力分配和电量检测,与用户的交互显示,以及控制轮毂电机并与控制模块进行实时通信,相关数据的传输和对控制系统实时的监控。
以下对平衡的原理进行详细说明。
控制模块通过得到的车的姿态参数和和飞轮的状态参数,实时根据车身的倾斜状态和飞轮的速度变化状态推算系统的倾斜力矩,控制电机作用于飞轮产生特定方向和大小的加速度产生反向力矩,从而来使车身达到自平衡。
同时,控制模块通过飞轮的状态参数可以获知飞轮的速度信息,通过附加的反馈可以在保持系统稳定的前提下尽可能降低飞轮的转速,以达到降低功耗提高结构可靠性和稳定性的效果。
在车辆运行静态,θ和
Figure PCTCN2019078906-appb-000006
均为零,控制器通过控制使
Figure PCTCN2019078906-appb-000007
Figure PCTCN2019078906-appb-000008
为反方向来减小飞轮的转速从而降低车身能耗。
在车辆正常行驶时,θ和
Figure PCTCN2019078906-appb-000009
均为零,系统处于运行状态,控制器时刻监控车身的状态以便及时作出调整。
无论车处于上述静态还是运行动态状态中,在车辆遇到扰动或者受到冲击时,系统通过车的姿态参数和和飞轮的状态参数来控制电机使飞轮产生平衡力矩来使车身达到稳定。
在车辆转弯时,通过实时计算车的速度结合车身的姿态参数来控制保持车身倾斜角的稳定,满足车转弯所需要的向心力条件,使车在转弯过程中保持稳定与安全。
实施例2:
本实施例与实施例1的区别在于,如图6所示,惯性飞轮7外侧有同步轮15,电机12侧也装有配套同步轮16,电机12通过同步轮同步带17传动,使惯性飞轮7旋转。
实施例3:
本实施例与实施例1的区别在于,如图7所示,采用外转子无刷电机,惯性飞轮7为磁性材料,直接作为电机转子18,飞轮内侧使用线圈,通交变电流产生与惯性飞轮转速相同的旋转磁场,推动飞轮旋转;
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种使用惯性飞轮结构的前后轮平衡车,包括车架和车架上的前后轮,其特征在于,还具有:
    位于前后轮之间的惯性飞轮结构,包括:固定支撑架、惯性飞轮、轴承、电机和减速器,所述固定支撑架安装在车架上,所述惯性飞轮的安装轴线为沿车身行驶方向,其外圈或内圈加工有齿圈,所述轴承通过轴承轴安装在固定支撑架上,该轴承分布在惯性飞轮周围与其相切接触并对惯性飞轮起到支撑、固定作用,支撑、固定支承惯性飞轮的轴承是3组或多组,所述电机与减速器固定连接,所述减速器的输出轴通过齿轮与惯性飞轮的齿圈啮合;
    控制系统,包括:MCU、电机驱动器和相应的传感器;
    所述传感器采集平衡车的车身姿态参数和飞轮状态参数,所述MCU实时根据传感器传输的车身姿态参数和飞轮状态参数数据推算系统的倾斜力矩并将控制指令输出到电机驱动器,所述电机驱动器执行MCU的控制指令用于驱动惯性飞轮结构中的电机,作用于惯性飞轮产生特定方向和大小的加速度产生反向力矩,从而来使车身达到自平衡。
  2. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在于,所述传感器包括姿态传感模块和飞轮状态传感模块,姿态传感模块通过陀螺仪和重力加速度计测得的数据信号,经过数据融合算法处理得到车身的倾角和车身的角速度两个姿态参数,飞轮状态传感模块可以通过旋转编码器信号,计算得到飞轮的位置和飞轮的转速。
  3. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在于,所述车架上还安装有司机座椅,惯性飞轮结构应用在前后轮平衡车中为1个、2个或2个以上,当为1个时,安装在司机座椅的后方或前方;当为2个或2个以上时,安装在司机座椅的左右两侧和、或前后两侧。
  4. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在 于,惯性飞轮的安装轴线为沿车身行驶方向,飞轮俯仰角的倾斜度在-45°到+45°角之间。
  5. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在于,所述控制系统在保证车身平衡的前提下,引入飞轮的转速反馈,在计算电机所需要的扭矩的同时加入转速的反馈信息,用以降低惯性飞轮的转速。
  6. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在于,惯性飞轮驱动结构还设置为如下方式:
    惯性飞轮外侧有同步轮,电机侧也装有配套同步轮,电机通过同步轮同步带传动,使惯性飞轮旋转。
  7. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在于,惯性飞轮的驱动结构还设置为如下方式:使用外转子无刷电机,惯性飞轮为磁性材料,直接作为电机转子,惯性飞轮内侧使用线圈,通交变电流产生与惯性飞轮转速相同的旋转磁场,推动惯性飞轮旋转。
  8. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在于,所述MCU采用10Hz及以上的控制频率进行实时控制,即传感器的采样频率和电机控制指令的发送频率包括电机的指令执行速度都要高于10Hz。
  9. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在于,所述使用惯性飞轮结构的前后轮平衡车的自平衡范围最大值为左右方向上的车身倾角30度,在车身倾角大于30度时,判断为超过车身自稳的范围,及时自行停车报警。
  10. 如权利要求1所述的使用惯性飞轮结构的前后轮平衡车,其特征在于,所述惯性飞轮结构还应用于船只的船体平衡。
PCT/CN2019/078906 2018-03-22 2019-03-20 使用惯性飞轮结构的前后轮平衡车 WO2019179472A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810237617.3A CN110155192A (zh) 2018-03-22 2018-03-22 使用惯性飞轮结构的前后轮平衡车
CN201820389583 2018-03-22
CN201810237617.3 2018-03-22
CN201820389583.5 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019179472A1 true WO2019179472A1 (zh) 2019-09-26

Family

ID=67988237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078906 WO2019179472A1 (zh) 2018-03-22 2019-03-20 使用惯性飞轮结构的前后轮平衡车

Country Status (1)

Country Link
WO (1) WO2019179472A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112693553A (zh) * 2021-01-25 2021-04-23 苏州诺雅电动车有限公司 蓄能飞轮平衡驱动式滑板车
CN114084263A (zh) * 2021-11-19 2022-02-25 广州城市理工学院 一种双平衡系统平衡车及其平衡控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643026A (zh) * 2009-05-07 2010-02-10 许子龙 电动车飞轮驱动控制系统
CN202728379U (zh) * 2012-08-30 2013-02-13 张济安 一种两轮轿车
CN104246431A (zh) * 2012-02-27 2014-12-24 Lit汽车公司 两轮车中的陀螺仪稳定
JP2015511551A (ja) * 2012-02-27 2015-04-20 リット モーターズ コーポレイション 車両制御システム
CN104583063A (zh) * 2012-08-27 2015-04-29 Lit汽车公司 车辆悬架中的陀螺仪系统
CN105365914A (zh) * 2014-08-19 2016-03-02 北京凌云智能科技有限公司 一种电动两轮汽车
CN106184542A (zh) * 2015-04-29 2016-12-07 徐伟科 一种无轮距车辆控制系统和控制方法
CN106800049A (zh) * 2017-02-20 2017-06-06 戴亦飞 自平衡的两轮电动车
CN207141272U (zh) * 2017-08-15 2018-03-27 洪定生 一种双轮平衡电动车

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643026A (zh) * 2009-05-07 2010-02-10 许子龙 电动车飞轮驱动控制系统
CN104246431A (zh) * 2012-02-27 2014-12-24 Lit汽车公司 两轮车中的陀螺仪稳定
JP2015511551A (ja) * 2012-02-27 2015-04-20 リット モーターズ コーポレイション 車両制御システム
CN104583063A (zh) * 2012-08-27 2015-04-29 Lit汽车公司 车辆悬架中的陀螺仪系统
CN202728379U (zh) * 2012-08-30 2013-02-13 张济安 一种两轮轿车
CN105365914A (zh) * 2014-08-19 2016-03-02 北京凌云智能科技有限公司 一种电动两轮汽车
CN106184542A (zh) * 2015-04-29 2016-12-07 徐伟科 一种无轮距车辆控制系统和控制方法
CN106800049A (zh) * 2017-02-20 2017-06-06 戴亦飞 自平衡的两轮电动车
CN207141272U (zh) * 2017-08-15 2018-03-27 洪定生 一种双轮平衡电动车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112693553A (zh) * 2021-01-25 2021-04-23 苏州诺雅电动车有限公司 蓄能飞轮平衡驱动式滑板车
CN114084263A (zh) * 2021-11-19 2022-02-25 广州城市理工学院 一种双平衡系统平衡车及其平衡控制方法

Similar Documents

Publication Publication Date Title
CN107728635B (zh) 一种摩托车型机器人的自动平衡装置及方法
WO2016026356A1 (zh) 一种电动两轮汽车
CN101708778B (zh) 一种磁悬浮陀螺飞轮
CN109178285A (zh) 一种用于水下机器人的推进装置和水下机器人
WO2019179472A1 (zh) 使用惯性飞轮结构的前后轮平衡车
WO2010032493A1 (ja) 転倒防止制御装置及びコンピュータプログラム
CN101269683A (zh) 基于姿态控制的平衡式独轮小车
CN106184542B (zh) 一种无轮距车辆控制系统和控制方法
JP2008143390A (ja) 姿勢制御装置
CN106882341A (zh) 一种水上自平衡车装置
CN106627894A (zh) 一种纵向两轮自平衡机器人及控制系统
WO2014005429A1 (zh) 一种自平衡单轮电动车装置和控制方法
CN204095952U (zh) 一种电动两轮汽车
CN105302148B (zh) 可实现自平衡的陀螺式独轮车机器人系统
TR201811331T4 (tr) Deni̇z araçlari i̇çi̇n ji̇roskopi̇k yalpa dengeleyi̇ci̇ düzenleme ve bunun yöntemi̇.
CN209290651U (zh) 一种用于水下机器人的推进装置和水下机器人
CN108639164B (zh) 一种基于双陀螺稳定器的汽车防侧翻装置及方法
CN102101533B (zh) 基于液体回路的陀螺力矩产生装置及卫星姿态控制方法
CN106080036A (zh) 一种带舵轮控制的机器人结构
CN105947041B (zh) 一种双轮自平衡车及其方法
CN105302142B (zh) 可实现全方位运动解耦的独轮车装置
CN201338690Y (zh) 一种电动车
CN111391991A (zh) 船舱结构及船艇
JP2005069897A (ja) 入力検出装置、及び、試験車両
JP2005065411A (ja) 車載用フライホイール式電力貯蔵装置、及び車両の車体姿勢制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772227

Country of ref document: EP

Kind code of ref document: A1