WO2019179095A1 - 模式转换装置及信号传输系统 - Google Patents

模式转换装置及信号传输系统 Download PDF

Info

Publication number
WO2019179095A1
WO2019179095A1 PCT/CN2018/111488 CN2018111488W WO2019179095A1 WO 2019179095 A1 WO2019179095 A1 WO 2019179095A1 CN 2018111488 W CN2018111488 W CN 2018111488W WO 2019179095 A1 WO2019179095 A1 WO 2019179095A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
signal
tapered structures
cable
hole
Prior art date
Application number
PCT/CN2018/111488
Other languages
English (en)
French (fr)
Inventor
文玥
方李明
罗昕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019179095A1 publication Critical patent/WO2019179095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion

Definitions

  • the present application relates to the field of communications, and in particular, to a mode switching device and a signal transmission system.
  • the Surface Wave (SW) is an electromagnetic wave transmitted in the Transverse Magnetic (TM) mode along the surface of a solid medium.
  • the surface wave transmission method is a signal transmission method for transmitting signals in the form of surface waves.
  • the surface wave transmission mode has good directivity, is not easy to diffuse, and can reduce radiation loss;
  • the surface wave transmission method has less conductor loss. Therefore, the surface wave transmission method has a large bandwidth and low loss transmission characteristics.
  • the related art provides a communication method for realizing surface wave transmission by using a power line, and a surface wave exciter is disposed at a transmitting end of the signal, and a signal sent from the transmitting end is converted from a Transverse Electric Magnetic (TEM) mode to a TM mode.
  • TEM Transverse Electric Magnetic
  • TM Transverse Electric Magnetic
  • DAS distributed antenna systems
  • signals can be transmitted from the antenna on the current support structure to wireless receiving devices such as mobile phones.
  • signals can be transmitted along the power line to the antenna on the next support structure without separately setting between the antennas.
  • the surface waves are generally propagated along a straight line.
  • the surface wave transmission is realized by using a high-altitude power line arranged in a straight line. Therefore, the surface wave transmission method is used in the related art for signal transmission.
  • the present application provides a mode conversion device and a signal transmission system, which can solve the problem that the surface wave transmission mode uses a certain limitation in the related art.
  • the technical solution is as follows:
  • the present application provides a mode conversion device including a bending member and two tapered structures.
  • the two tapered structures are symmetrically disposed at two ends of the bending member, and two ends of the bending member are respectively connected to the top ends of the two tapered structures, and the bottoms of the two tapered structures support or oppose;
  • the two tapered structures are respectively provided with a first through hole connecting the top end and the bottom, and the bending member is internally provided with a second through hole extending along the extending direction of the bending member, and the first through hole
  • the hole and the second through hole communicate with each other, and the first through hole and the second through hole are used for a cable for transmitting a signal.
  • the two tapered structures include a first tapered structure capable of converting a signal transmitted in a TM mode on a cable into a signal of a TEM mode, and a second tapered structure, in a TEM mode
  • the electric field generated by the signal can be limited by the bending structure, so that the dispersion and leakage of the mode can be effectively suppressed, thereby reducing the bending transmission loss;
  • the second tapered structure can convert the signal from the TEM mode to the TM mode, and the signal continues to be transmitted on the cable in the TM mode.
  • the bending member and the outer walls of the two tapered structures are made of a metal material.
  • the bending member and the inside of the two tapered structures are respectively provided with a filling medium, and the first through hole is formed in the filling medium of the two tapered structures, and the bending part is The second through hole is formed in the filling medium, and the filling medium is made of a non-metal material.
  • the bending part and the two tapered structures are hollow structures, and a bottom of the two tapered structures is respectively provided with a non-metal buckle cover, and each of the non-metal buckle covers is disposed There is the first through hole.
  • the first through hole is disposed in a central area of the non-metal buckle cover, and the diameter of the first through hole is the same as the wire diameter of the cable.
  • the bending member and the two tapered structures are made of a non-metal material.
  • the bending component is composed of a plurality of bending structures connected end to end, and the bending angle of the bending component is equal to a sum of bending angles of the plurality of bending structures.
  • the bending part is formed by fastening two sub-bending parts, the fastening surfaces of the two sub-bending parts are parallel to the extending direction of the bending part, and each of the tapered structures is composed of two a semi-tapered structure is formed, the fastening faces of the two semi-conical structures are parallel to the height direction of the tapered structure, the engaging faces of the two sub-bending members and the two half-cones
  • the fastening surface of the structure is coplanar.
  • the bending component and the structure on the same side of the fastening surface of the two tapered structures are an integral structure
  • the bending member and the structure of the two tapered structures on the same side of the fastening surface are detachably connected.
  • the height of each of the tapered structures is 1 to 2 times the wavelength of the signal.
  • a bottom surface dimension of each of the tapered structures is negatively correlated with a frequency of the signal, and the bottom surface dimension is positively correlated with a wire diameter of the cable.
  • the tapered structure is a conical structure or a pyramidal structure.
  • the non-metal material comprises at least one of Teflon, polyvinyl chloride, a resin material, and a plastic.
  • the signal transmitted by the cable is a signal transmitted in a transverse magnetic field mode.
  • the present application provides a signal transmission system, the system comprising: a cable and at least one mode conversion device, the mode conversion device comprising the device of any of the first aspects, the at least one mode a conversion device is sleeved on the cable for the cable to pass,
  • the cable is used to transmit signals transmitted in a transverse magnetic field mode.
  • the system further includes: a signal exciter,
  • the signal exciter is operative to generate a signal transmitted in a transverse magnetic field mode to cause the signal to be transmitted along the cable.
  • the mode conversion device and the signal transmission system provided by the present application may be disposed at a bend of a cable for transmitting a signal, transmit a signal in a TEM mode at a bend of the cable, and limit dispersion and leakage of the mode by the bending member, thereby It achieves the effect of reducing the bending transmission loss when transmitting signals by surface wave transmission, enriching the way of transmitting signals by using surface wave transmission direction, and ensuring the reliability of signal transmission.
  • 1 is a schematic diagram of transmission of surface waves on a cable provided by the related art
  • FIG. 2 is a schematic structural view of a surface wave exciter in the related art
  • FIG. 3 is a schematic diagram of electric field distribution when a surface wave is linearly propagated according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of loss when a surface wave of different frequencies is linearly propagated according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of electric field distribution when a surface wave is bent and propagated according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of loss at the time of surface wave bending propagation of different frequencies according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a mode conversion apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another mode conversion apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of electric field distribution during signal transmission after a mode switching device shown in FIG. 8 is disposed at a bent position of a cable according to an embodiment of the present application;
  • FIG. 10 is a schematic diagram of loss during signal bending transmission of different frequencies after the mode switching device shown in FIG. 8 is disposed at a bent position of the cable according to an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of still another mode conversion apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another mode conversion apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of electric field distribution during signal transmission after the mode switching device shown in FIG. 12 is disposed at a bent position of the cable according to an embodiment of the present application;
  • FIG. 14 is a schematic diagram of loss during signal bending transmission of different frequencies after the mode switching device shown in FIG. 12 is disposed at a bent position of the cable according to an embodiment of the present application;
  • FIG. 15 is a schematic structural view of a bending member provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of still another mode switching device according to an embodiment of the present application.
  • 17 is a diagram showing changes in the relationship between field radii on a cable with a surface wave diameter of 15 mm at different frequencies according to an embodiment of the present application;
  • FIG. 18 is a diagram showing changes in the relationship between field radius when transmitting on a cable having a surface wave diameter of 1 mm at different frequencies according to an embodiment of the present application.
  • the surface wave is an electromagnetic wave formed by the electromagnetic field E being transmitted in a ring shape along the cable L in the air outside the cable L.
  • This transmission mode is TM mode.
  • the cable only plays the role of guiding the electromagnetic field transmission, and there is no current transmission inside the cable. Therefore, compared with the traditional wireless transmission method, the surface wave transmission mode has good directivity, is not easy to diffuse, and can reduce radiation loss; compared with the coaxial transmission mode or the metal cavity waveguide transmission mode, the surface wave transmission mode conductor loss Smaller.
  • Surface wave transmission has the characteristics of large bandwidth and low loss transmission. For example, studies have shown that a 10 megahertz (GHz) surface wave with a 2 cm diameter cable travels in a straight line with a loss of only 0.2 decibels (dB) per 100 feet (about 30.48 meters).
  • the wire diameter of the cable refers to the diameter of the cable.
  • the spatially distributed electromagnetic waves are generally electromagnetic waves of the TEM mode
  • the surface waves are electromagnetic waves of the TM mode
  • the electromagnetic waves are converted from the TEM mode to the TM mode by the surface wave exciter.
  • the TEM mode refers to a waveguide mode in which no electromagnetic field component and magnetic field component exist in the propagation direction of the electromagnetic wave, that is, in the TEM mode, the electric field and the magnetic field of the electromagnetic wave are in a plane perpendicular to the propagation direction
  • the TM mode refers to the propagation direction of the electromagnetic wave.
  • the waveguide mode in which the electric field component has no magnetic field component that is, the TM mode refers to a propagation mode in which the longitudinal component of the magnetic field is zero and the longitudinal component of the electric field is not zero.
  • FIG. 2 is a schematic structural view of a surface wave exciter in the related art.
  • the surface wave exciter is a conical structure, and electromagnetic waves of the TEM mode propagate from the top D of the conical structure to the conical structure.
  • the electromagnetic wave propagates in the cone structure, it gradually changes from the original TEM mode to the TM mode, and finally the electromagnetic wave propagating outward from the bottom B of the cone structure propagates in the TM mode.
  • Electromagnetic waves Electromagnetic waves.
  • HFSS high-frequency structure simulation
  • FIG. 3 is a schematic diagram of electric field distribution when a surface wave propagates in a straight line
  • FIG. 4 is a schematic diagram of loss when a surface wave of different frequencies is linearly propagated
  • FIG. 5 is a schematic diagram of electric field distribution when a surface wave is curved
  • FIG. 6 is a surface wave of different frequencies.
  • the abscissa in FIGS. 4 and 6 represents the frequency F of the surface wave, the unit is GHZ, and the ordinate represents the transmission loss in dB.
  • the transmission loss of the surface wave in both figures includes the loss of the surface wave exciter. Among them, the transmission loss of the surface wave in FIGS. 4 and 6 is a result obtained by simulation when the transmission length is 20 cm in the simulation process.
  • the surface wave bending propagation causes linear dispersion and leakage compared to the surface wave, that is, the electric field distribution region will spread outward; correspondingly, as shown in Fig. 4 and Fig. 6, the surface Wave bending propagation results in additional transmission loss compared to the straight-line propagation of surface waves.
  • the loss of surface wave bending propagation at a frequency of 20 GHz is higher than the loss of linear propagation by 5 to 6 dB.
  • the additional losses are different.
  • the embodiments of the present application respectively test the surface waves of the frequencies of 1 GHz, 5 GHz, 10 GHz, 15 GHz, and 20 GHz with an additional loss caused by bending at a bending angle of 45 degrees, 90 degrees, and 135 degrees, and the test results are shown in Table 1.
  • the extra loss refers to the difference between the loss of the bending propagation and the loss of the linear propagation.
  • the embodiment of the present application provides a mode conversion device.
  • FIG. 7 is a schematic structural diagram of a mode conversion device according to an embodiment of the present application. As shown in FIG. 7, the mode conversion device includes a bending member 01 and two tapered structures 02.
  • Two tapered structures 02 are symmetrically disposed at both ends of the bending member 01, and both ends of the bending member 01 are respectively connected to the top ends of the two tapered structures 02, and the bottoms of the two tapered structures 02 are turned back.
  • the two tapered structures 02 are respectively provided with a first through hole T1 connecting the top end and the bottom portion, and the bending member 01 is internally provided with a second through hole T2 extending along the extending direction of the bending member 01, and the first through hole T1 and The second through holes T2 are in communication with each other, and the first through holes T1 and the second through holes T2 are used for the passage of the cable L for transmitting signals.
  • the signal transmitted by the cable is a signal transmitted in a transverse magnetic field mode, that is, the signal is transmitted on the cable in the form of a surface wave.
  • the two tapered structures 02 include a first tapered structure 02a and a second tapered structure 02b, which can be transmitted in the TM mode on the cable L.
  • the signal is converted into a signal of the TEM mode.
  • the electric field generated by the signal can be restricted by the bending structure 01, thereby effectively suppressing the dispersion and leakage of the mode, thereby reducing the bending transmission. Loss; when the signal is transmitted to the second tapered structure 02b in the TEM mode, the second tapered structure 02b is capable of converting the signal from the TEM mode to the TM mode, and the signal continues to be transmitted on the cable L in the TM mode.
  • the arrow in Fig. 7 points to the transmission direction of the signal.
  • the principle of the conversion of the tapered structure to the signal mode can be referred to the working principle of the surface wave exciter in the related art, and will not be described herein.
  • the specific structure of the mode conversion device provided by the embodiment of the present application may be various, and the following three examples are used as an example:
  • the first structure as shown in FIG. 8, the bending member 01 and the outer walls of the two tapered structures 02 are made of a metal material, and the inside of the bending member 01 and the two tapered structures 02 are provided with a filling medium.
  • a first through hole T1 is formed in the filling medium 03 of the two tapered structures 02, and a second through hole is formed in the filling medium 03 of the bending member 01, and the filling medium is made of a non-metal material.
  • the diameter of the first through hole and/or the second through hole is the same as the wire diameter of the cable, so as to ensure that the cable and the mode conversion device are concentrically arranged to avoid generating electromagnetic waves of other modes.
  • a filling medium is provided inside the bending part and the two tapered structures to facilitate the fixed installation in practical applications.
  • FIG. 9 is a schematic diagram of electric field distribution when signal transmission is performed after the mode switching device shown in FIG. 8 is disposed at a bent position of the cable. Since the signal is transmitted in the TEM mode at the bending position, as shown in FIG. The folding member can limit the electric field generated by the signal. Compared with FIG. 5, the dispersion and leakage of the mode are obviously suppressed; correspondingly, FIG. 10 is a different frequency after the mode switching device is set at the bending position of the cable.
  • the loss diagram of the signal bending transmission as shown in Fig. 10 and Fig. 6, after the mode switching device is set, the loss during signal bending transmission is significantly reduced. For example, after setting the mode switching device, the loss of surface wave bending propagation at a frequency of 20 GHz can be reduced by about 4 dB, that is, the additional loss of 70% to 80% can be reduced.
  • the second structure as shown in FIG. 11, the outer part of the bending part 01 and the two tapered structures 02 are made of a metal material, and the bending part 01 and the two tapered structures 02 are both hollow structures, two A non-metallic buckle cover 04 is disposed on the bottom of each of the tapered structures 02, and each of the non-metallic buckle covers 04 is provided with a first through hole T1.
  • the first through hole is disposed in a central area of the non-metal buckle cover, and the diameter of the first through hole is the same as the wire diameter of the cable.
  • the central area refers to the area containing the center point.
  • the non-metallic buckle cover is a circular buckle cover
  • the central area is the area containing the center of the circle.
  • the first through hole is disposed in a central area of the non-metal buckle cover, and the diameter of the first through hole is the same as the wire diameter of the cable, so as to ensure that the cable and the mode conversion device are concentrically arranged to avoid generating electromagnetic waves of other modes.
  • the provision of the filling medium inside the bent part and the two tapered structures causes additional dielectric loss
  • the bent part and the two tapered structures are both For the cavity structure, the bending transmission loss can be further reduced.
  • the bending member 01 and the two tapered structures 02 are all made of a non-metal material, and the first through hole T1 is disposed in a non-metal material.
  • the third structure is not provided with an outer wall made of a metal material on the outer surfaces of the bent member and the two tapered structures as compared with the first structure.
  • FIG. 13 is a schematic diagram of electric field distribution when signal transmission is performed after the mode switching device shown in FIG. 12 is disposed at the bent position of the cable. Since the signal is transmitted in the TEM mode at the bending position, as shown in FIG. The folding member can limit the electric field generated by the signal. Compared with FIG. 5, the dispersion and leakage of the mode are obviously suppressed; correspondingly, FIG. 14 is a different frequency after the mode switching device is set at the bending position of the cable.
  • the loss diagram of the signal bending transmission as shown in Fig. 14 and Fig. 6, after the mode switching device is set, the loss during signal bending transmission is significantly reduced. For example, after the mode switching device is set, the loss of surface wave bending propagation at a frequency of 20 GHz can be reduced by about 2 to 3 dB, that is, an additional loss of about 50% can be reduced.
  • the bending component may be a unitary structure; or, as shown in FIG. 15, the bending component 01 may be composed of a plurality of bending structures 01a end to end, and the bending angle of the bending component 01 is equal to a plurality of bending structures. The sum of the bending angles of 01a.
  • the bending member is applied to a cable with a bending angle of 90 degrees, it is possible to directly use a bending member having a bending angle of 90 degrees or a bending structure having three bending angles of 30 degrees.
  • the three bending structures are connected end to end to form a bending member having a bending angle of 90 degrees, which is not limited in the embodiment of the present application.
  • a plurality of bending structures with different bending angles may be used to form the bending members to flexibly realize the bending members with different bending angles.
  • the bending component may be formed by the two sub-bending components, the fastening surfaces of the two sub-bending components are parallel to the extending direction of the bending component, and each tapered structure is engaged by two semi-tapered structures.
  • the engaging faces of the two semi-tapered structures are parallel to the height direction of the tapered structure, and the engaging faces of the two sub-bending members are coplanar with the engaging faces of the two semi-tapered structures.
  • the mode switching device may be composed of two sub-sections, each sub-section including a sub-bending member 011 and two semi-tapered structures, the two semi-conical structures including the first semi-cone a shape structure 021a and a second semi-tapered structure 021b, wherein the two sub-bend members 011 are fastened to form a bending member, and the two first semi-tapered structures 021a are fastened to form a first tapered structure, and the second second half
  • the tapered structure 021b is fastened to form a second tapered structure, and the engaging surface of the sub-bending member 011, the engaging surface of the first semi-tapered structure 021a, and the engaging surface of the second semi-tapered structure 021b are all coplanar.
  • first sub-through hole T1a is disposed on the fastening surface of each semi-conical structure, and the two first sub-through holes T1a can form a first through hole, and each sub-bending component
  • the second sub-through hole T2a is disposed on the fastening surface, and the two second sub-through holes T2a can form a second through hole after the two sub-bending members are engaged.
  • the bending component and the structure on the same side of the fastening surface of the two tapered structures may be an integral structure; or the bending component and the structure of the two tapered structures on the same side of the fastening surface are detachably connected, This is not limited.
  • each non-metal buckle cover may also be formed by fastening two half-slip covers. It should be noted that the bent part and the two tapered structures are all fastening structures, which are convenient for installation and use in engineering applications.
  • the size of the mode conversion device can be designed according to the wire diameter of the cable and the frequency of the signal.
  • the height of the tapered structure needs to reach at least half of the wavelength of the signal.
  • the height of each tapered structure may be 1 to 2 times the wavelength of the signal.
  • the size of the bottom surface of each tapered structure designed can be The frequency of the signal is negatively correlated and the size of the bottom surface can be positively correlated with the wire diameter of the cable.
  • the tapered structure may be a conical structure or a pyramidal structure.
  • the bottom surface dimension is the bottom diameter length; when the conical structure is a pyramidal structure, the bottom surface dimension is the bottom surface. The diameter of the circumcircle of the circle.
  • FIG. 17 and FIG. 18 are schematic diagrams showing the sizes of field radii on a cable with different surface acoustic wave diameters of 15 mm and 1 mm, respectively, provided by the embodiments of the present application, wherein the abscissa indicates the frequency of the surface wave.
  • F the unit is GHz
  • the ordinate indicates the size of the field radius R in centimeters (cm).
  • Embodiments of the present application provide dimensions of a mode conversion device having a wire diameter of 1 mm and 15 mm, respectively, and a signal frequency band corresponding to 1 to 5 GHz and 5 to 20 GHz, respectively (including the size of the tapered structure and the cross-sectional dimension of the bent part) ),As shown in table 2:
  • the cross sectional dimension refers to the diameter length of the cross section; when the cross section of the bending component is polygonal, the cross sectional dimension refers to the diameter length of the circumcircle of the cross section. It should be noted that the size of the mode conversion device provided in Table 2 is only for illustrative purposes, and may be adjusted according to requirements in practical applications, which is not limited thereto.
  • the non-metal material may include at least one of Teflon, polyvinyl chloride, a resin material, and a plastic material, and may also be other non-metal materials, which is not limited thereto.
  • the cable used for signal transmission may be a conductor cable or a non-conductor cable.
  • the mode conversion device provided by the embodiment of the present application may be disposed at a bend of a cable for transmitting a signal, transmit a signal in a TEM mode at a bend of the cable, and limit the dispersion of the mode by the bending member. Leakage, thereby achieving the effect of reducing bending transmission loss when transmitting signals by surface wave transmission, enriching the way of transmitting signals by using surface wave transmission direction, and ensuring the reliability of signal transmission.
  • the embodiment of the present application provides a signal transmission system, including: a cable and at least one mode conversion device, where the mode conversion device includes the device shown in FIG. 7, FIG. 8, FIG. 11, FIG. 12 or FIG. At least one mode conversion device is sleeved on the cable for the cable to pass,
  • the cable is used to transmit signals transmitted in a transverse magnetic field mode.
  • the system further comprises: a signal exciter for generating a signal transmitted in a transverse magnetic field mode to transmit the signal along the cable.
  • the signal exciter can be a surface wave exciter as shown in FIG.
  • the signal transmission system provided by the embodiment of the present application can set a mode conversion device at a bend of a cable for transmitting signals, transmit a signal in a TEM mode at a bend of the cable, and restrict the mode by a bending component.
  • the dispersion and leakage thereby achieving the effect of reducing the bending transmission loss when transmitting signals by surface wave transmission, enriching the way of transmitting signals by using the surface wave transmission direction while ensuring the reliability of signal transmission.

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本申请公开了一种模式转换装置及信号传输系统,属于通信领域。所述模式转换装置包括弯折部件以及两个锥形结构,所述两个锥形结构对称设置在所述弯折部件的两端,且所述弯折部件的两端分别与所述两个锥形结构的顶端连接,所述两个锥形结构的底部向背;所述两个锥形结构上均设置有连通顶端和底部的第一通孔,所述弯折部件内部设置有沿所述弯折部件延伸方向延伸的第二通孔,且所述第一通孔和所述第二通孔相互连通,所述第一通孔和所述第二通孔用于供传输信号的线缆通过。本申请解决了相关技术中采用表面波传输方式进行信号传输时存在一定的局限性的问题。本申请用于信号传输。

Description

模式转换装置及信号传输系统
本申请要求于2018年03月22日提交的申请号为201810241365.1、发明名称为“模式转换装置及信号传输系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种模式转换装置及信号传输系统。
背景技术
表面波(Surface Wave,SW)是一种沿固体介质表面以横磁场(Transverse Magnetic,TM)模式传输的电磁波。表面波传输方式是一种以表面波的形式传输信号的信号传输方式,与传统的无线传输方式相比,表面波传输方式的方向性好,不易扩散,可以减小辐射损耗;与同轴传输方式或金属腔波导传输方式相比,表面波传输方式的导体损耗较小。因此,表面波传输方式具有大带宽和低损耗的传输特点。
相关技术中提供了一种利用电力线实现表面波传输的通信方式,在信号的发射端设置表面波激励器,将发射端发出的信号从横电磁(Transverse Electric Magnetic,TEM)模式转换为TM模式,利用现有的高空电力线通过表面波传输方式传输信号,并在用于支撑电力线的多个支撑结构(例如电线杆)上布放分布式天线系统(Distribution Antenna System,DAS),每个支撑结构上都设置有天线,一方面信号可以从当前的支撑结构上的天线发射至手机等无线接收设备,另一方面信号可以沿着电力线传输至下一个支撑结构上的天线,无需在天线之间单独设置光纤来传输信号,即可实现增加无线网络信号的覆盖区域,节约了信号传输的成本。
在实现本申请的过程中,发明人发现现有技术至少存在以下问题:
相关技术中采用表面波传输方式传输信号时,一般都是引导表面波沿直线传播的,例如利用直线排布的高空电力线实现表面波传输,因此相关技术中采用表面波传输方式进行信号传输时存在一定的局限性。
发明内容
本申请提供了一种模式转换装置及信号传输系统,可以解决相关技术中采用表面波传输方式进行信号传输时存在一定的局限性的问题。所述技术方案如下:
第一方面,本申请提供了一种模式转换装置,所述模式转换装置包括弯折部件以及两个锥形结构,
所述两个锥形结构对称设置在所述弯折部件的两端,且所述弯折部件的两端分别与所述两个锥形结构的顶端连接,所述两个锥形结构的底部向背;
所述两个锥形结构上均设置有连通顶端和底部的第一通孔,所述弯折部件内部设置有沿所述弯折部件延伸方向延伸的第二通孔,且所述第一通孔和所述第二通孔相互连通,所述第一通孔和所述第二通孔用于供传输信号的线缆通过。
需要说明的是,两个锥形结构包括第一锥形结构和第二锥形结构,第一锥形结构能够将在线缆上以TM模式传输的信号转换为TEM模式的信号,TEM模式的信号在弯折部件中传输时,信号所产生的电场能够被弯折结构限制,从而可以有效抑制模式的色散和泄露,从而减小了弯曲传输损耗;当信号以TEM模式传输至第二锥形结构时,第二锥形结构能够将信号从TEM模式转换为TM模式,信号以TM模式在线缆上继续传输。
可选的,所述弯折部件以及所述两个锥形结构的外壁均由金属材质制成。
可选的,所述弯折部件以及所述两个锥形结构的内部均设置有填充介质,所述两个锥形结构的填充介质中形成所述第一通孔,所述弯折部件的填充介质中形成所述第二通孔,所述填充介质由非金属材质制成。
可选的,所述弯折部件以及所述两个锥形结构均为空腔结构,所述两个锥形结构的底部分别设置一非金属扣盖,每个所述非金属扣盖上设置有所述第一通孔。
可选的,所述第一通孔设置在所述非金属扣盖的中心区域,且所述第一通孔的口径与所述线缆的线径相同。
可选的,所述弯折部件以及所述两个锥形结构均由非金属材质制成。
可选的,所述弯折部件由多个弯折结构首尾相连组成,所述弯折部件的弯折角度等于所述多个弯折结构的弯折角度之和。
可选的,所述弯折部件由两个子弯折部件扣合形成,所述两个子弯折部件的扣合面平行于所述弯折部件的延伸方向,每个所述锥形结构由两个半锥形结构扣合形成,所述两个半锥形结构的扣合面平行于所述锥形结构的高度方向,所述两个子弯折部件的扣合面与所述两个半锥形结构的扣合面共面。
可选的,所述弯折部件以及所述两个锥形结构中位于扣合面同一侧的结构为一体结构;
或者,所述弯折部件以及所述两个锥形结构中位于扣合面同一侧的结构可拆卸连接。
可选的,每个所述锥形结构的高度为所述信号的波长的1~2倍。
可选的,每个所述锥形结构的底面尺寸与所述信号的频率负相关,且所述底面尺寸与所述线缆的线径正相关。
可选的,所述锥形结构为圆锥形结构或棱锥形结构。
可选的,所述非金属材质包括特氟龙、聚氯乙烯、树脂材料和塑料中的至少一种。
可选的,所述线缆传输的信号为以横磁场模式传输的信号。
第二方面,本申请提供了一种信号传输系统,所述系统包括:线缆和至少一个模式转换装置,所述模式转换装置包括如第一方面任一所述的装置,所述至少一个模式转换装置套接在所述线缆上以供所述线缆通过,
所述线缆用于传输以横磁场模式传输的信号。
可选的,所述系统还包括:信号激励器,
所述信号激励器用于产生以横磁场模式传输的信号,以使所述信号沿所述线缆传输。
本申请实施例提供的技术方案带来的有益效果是:
本申请提供的模式转换装置及信号传输系统,可以设置在用于传输信号的线缆的弯曲处,在线缆的弯曲处以TEM模式传输信号,并通过弯折部件限制模式的色散和泄露,从而达到了采用表面波传输方式传输信号时减小弯曲传输损耗的效果,丰富了采用表面波传输方向传输信号的方式的同时,保证了信号传输的可靠性。
附图说明
图1是相关技术提供的表面波在线缆上的传输示意图;
图2是相关技术中的一种表面波激励器的结构示意图;
图3是本申请实施例提供的表面波直线传播时的电场分布示意图;
图4是本申请实施例提供的不同频率的表面波直线传播时的损耗示意图;
图5是本申请实施例提供的表面波弯曲传播时的电场分布示意图;
图6是本申请实施例提供的不同频率的表面波弯曲传播时的损耗示意图;
图7是本申请实施例提供的一种模式转换装置的结构示意图;
图8是本申请实施例提供的另一种模式转换装置的结构示意图;
图9是本申请实施例提供的一种在线缆的弯曲位置设置如图8所示的模式转换装置后信号传输时的电场分布示意图;
图10是本申请实施例提供的一种在线缆的弯曲位置设置如图8所示的模式转换装置后不同频率的信号弯曲传输时的损耗示意图;
图11是本申请实施例提供的又一种模式转换装置的结构示意图;
图12是本申请实施例提供的再一种模式转换装置的结构示意图;
图13是本申请实施例提供的一种在线缆的弯曲位置设置如图12所示的模式转换装置后信号传输时的电场分布示意图;
图14是本申请实施例提供的一种在线缆的弯曲位置设置如图12所示的模式转换装置后不同频率的信号弯曲传输时的损耗示意图;
图15是本申请实施例提供的一种弯折部件的结构示意图;
图16是本申请实施例提供的还一种模式转换装置的结构示意图;
图17是本申请实施例提供的不同频率的表面波在线径为15毫米的线缆上传输时场半径的关系变化图;
图18是本申请实施例提供的不同频率的表面波在线径为1毫米的线缆上传输时场半径的关系变化图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是相关技术提供的表面波在线缆上的传输示意图,如图1所示,表面波是电磁场E沿线缆L在线缆L外部的空气中呈圈状传输形成的一种电磁波,这种传输模式为TM模式。其中,线缆仅起到引导电磁场传输的作用,线缆内部并无电流传输。因此,与传统的无线传输方式相比,表面波传输方式的方向性好,不易扩散,可以减小辐射损耗;与同轴传输方式或金属腔波导传输方式相比,表面波传输方式的导体损耗较小。表面波传输方式具有大带宽和低损耗的传输特点。示例的,研究表明,频率为10千兆赫兹(GHz)的表面波在线径为2厘米的线缆上沿直线传输时,每100英尺(约30.48米)的损耗仅为0.2分贝(dB)。
需要说明的是,在本申请实施例中,线缆的线径均指线缆的直径。
由于空间分布的电磁波一般都是TEM模式的电磁波,而表面波是一种TM模式的电磁波,因此采用表面波传输方式传输信号时,需要通过表面波激励器将电磁波由TEM模式转 换为TM模式。其中,TEM模式指电磁波的传播方向上没有电场分量和磁场分量的波导模式,即在TEM模式中,电磁波的电场和磁场都在垂直于传播方向的平面上;TM模式指电磁波的传播方向上有电场分量而没有磁场分量的波导模式,即TM模式指在波导中,磁场的纵向分量为零,而电场的纵向分量不为零的传播模式。
图2是相关技术中的一种表面波激励器的结构示意图,如图2所示,该表面波激励器为一锥形体结构,TEM模式的电磁波从锥形体结构的顶端D传播至锥形体结构中,根据锥形体结构的渐张作用,电磁波在锥形体结构中传播时,逐渐由原来的TEM模式转变为TM模式,最终从锥形体结构的底部B向外传播的电磁波为以TM模式传播的电磁波。
相关技术中在采用表面波传输方式传输信号时,一般都是引导表面波沿直线传播的,表面波直线传播时损耗较小,但是相关技术中并未研究表面波弯曲传播时的损耗。本申请实施例中,使用高频结构仿真(High Frequency Structure Simulator,HFSS)软件,对表面波直线传播和弯曲传播的损耗进行了对比,参见下图4和图6。
图3是表面波直线传播时的电场分布示意图,图4是不同频率的表面波直线传播时的损耗示意图;图5是表面波弯曲传播时的电场分布示意图,图6是不同频率的表面波以90度的弯曲角度传播时的损耗示意图。其中,图4和图6中的横坐标表示表面波的频率F,单位是GHZ,纵坐标表示传输损耗,单位是dB,两个图中表面波的传输损耗均包括表面波激励器的损耗。其中,图4和图6中表面波的传输损耗是在仿真过程中以传输长度为20厘米时仿真得到的结果。
如图3和图5所示,表面波弯曲传播相较于表面波直线传播会造成模式的色散和泄露,即电场分布区域会向外扩散;相应的,如图4和图6所示,表面波弯曲传播与表面波直线传播相比,会导致额外的传输损耗。例如,频率为20GHz的表面波弯曲传播的损耗高于直线传播的损耗5~6dB。
需要说明的是,不同频率的表面波以不同的弯曲角度传播时,造成的额外损耗不同。示例的,本申请实施例分别对频率为1GHz、5GHz、10GHz、15GHz和20GHz的表面波以弯曲角度为45度、90度和135度弯曲传播时造成的额外损耗进行测试,测试结果如表1所示,其中,额外损耗指弯曲传播的损耗与直线传播的损耗的差值。
表1
Figure PCTCN2018111488-appb-000001
从表1中的测试结果可以看出,表面波弯曲传输时造成的额外损耗较高,为了减小表面波弯曲传输的损耗,本申请实施例提供了一种模式转换装置。
图7是本申请实施例提供的一种模式转换装置的结构示意图,如图7所示,模式转换 装置包括弯折部件01以及两个锥形结构02。
两个锥形结构02对称设置在弯折部件01的两端,且弯折部件01的两端分别与两个锥形结构02的顶端连接,两个锥形结构02的底部向背。
两个锥形结构02上均设置有连通顶端和底部的第一通孔T1,弯折部件01内部设置有沿弯折部件01延伸方向延伸的第二通孔T2,且第一通孔T1和第二通孔T2相互连通,第一通孔T1和第二通孔T2用于供传输信号的线缆L通过。
其中,线缆传输的信号为以横磁场模式传输的信号,也即是信号是以表面波的形式在线缆上传输的。
需要说明的是,如图7所示,两个锥形结构02包括第一锥形结构02a和第二锥形结构02b,第一锥形结构02a能够将在线缆L上以TM模式传输的信号转换为TEM模式的信号,TEM模式的信号在弯折部件01中传输时,信号所产生的电场能够被弯折结构01限制,从而可以有效抑制模式的色散和泄露,从而减小了弯曲传输损耗;当信号以TEM模式传输至第二锥形结构02b时,第二锥形结构02b能够将信号从TEM模式转换为TM模式,信号以TM模式在线缆L上继续传输。其中,图7中的箭头指向为信号的传输方向。锥形结构对信号模式的转换原理可参考相关技术中的表面波激励器的工作原理,在此不做赘述。
可选的,本申请实施例提供的模式转换装置的具体结构可以有多种,以以下三种为例进行说明:
第一种结构,如图8所示,弯折部件01以及两个锥形结构02的外壁均由金属材质制成,且弯折部件01以及两个锥形结构02的内部均设置有填充介质03,两个锥形结构02的填充介质03中形成第一通孔T1,弯折部件01的填充介质03中形成第二通孔,填充介质由非金属材质制成。
可选的,第一通孔和/或第二通孔的口径与线缆的线径相同,以保证线缆与模式转换装置同心设置,避免产生其他模式的电磁波。
需要说明的是,在弯折部件以及两个锥形结构的内部均设置填充介质,以便于实际应用中的固定安装。
示例的,图9是在线缆的弯曲位置设置如图8所示的模式转换装置后信号传输时的电场分布示意图,由于信号在弯曲位置是以TEM模式传输的,如图9所示,弯折部件能够对信号所产生的电场起到限制作用,与图5相比,模式的色散和泄露得到明显的抑制;相应的,图10是在线缆的弯曲位置设置模式转换装置后不同频率的信号弯曲传输时的损耗示意图,如图10和图6所示,设置模式转换装置后,信号弯曲传输时的损耗明显减少。例如,设置模式转换装置后,频率为20GHz的表面波弯曲传播的损耗可以减少4dB左右,也即是,可以减少70%~80%的额外损耗。
第二种结构,如图11所示,弯折部件01以及两个锥形结构02的外壁均由金属材质制成,且弯折部件01以及两个锥形结构02均为空腔结构,两个锥形结构02的底部分别设置一非金属扣盖04,每个非金属扣盖04上设置有第一通孔T1。
可选的,第一通孔设置在非金属扣盖的中心区域,且第一通孔的口径与线缆的线径相同。中心区域即指包含中心点的区域,例如非金属扣盖为圆形扣盖时,中心区域即为包含圆心的区域。将第一通孔设置在非金属扣盖的中心区域,且使第一通孔的口径与线缆的线径相同,以保证线缆与模式转换装置同心设置,避免产生其他模式的电磁波。
需要说明的是,在第一种结构中,在弯折部件以及两个锥形结构的内部设置填充介质会导致额外的介质损耗,第二种结构中,弯折部件以及两个锥形结构均为空腔结构,可以进一步减小弯曲传输损耗。
第三种结构,如图12所示,弯折部件01以及两个锥形结构02均由非金属材质制成,第一通孔T1设置在非金属材质内。
需要说明的是,第三种结构与第一种结构相比,未在弯折部件以及两个锥形结构的外表面上设置由金属材质制成的外壁。
示例的,图13是在线缆的弯曲位置设置如图12所示的模式转换装置后信号传输时的电场分布示意图,由于信号在弯曲位置是以TEM模式传输的,如图13所示,弯折部件能够对信号所产生的电场起到限制作用,与图5相比,模式的色散和泄露得到明显的抑制;相应的,图14是在线缆的弯曲位置设置模式转换装置后不同频率的信号弯曲传输时的损耗示意图,如图14和图6所示,设置模式转换装置后,信号弯曲传输时的损耗明显减少。例如,设置模式转换装置后,频率为20GHz的表面波弯曲传播的损耗可以减少2~3dB左右,也即是,可以减少约50%的额外损耗。
可选的,弯折部件可以为一体结构;或者,如图15所示,弯折部件01可以由多个弯折结构01a首尾相连组成,弯折部件01的弯折角度等于多个弯折结构01a的弯折角度之和。
示例的,假设弯折部件应用于弯折角度为90度的线缆,则既可以直接使用弯折角度为90度的弯折部件,又可以使用3个弯折角度为30度的弯折结构,将3个弯折结构首尾相连,组成弯折角度为90度的弯折部件,本申请实施例对此不做限定。实际应用中还可以采用不同弯折角度的多个弯折结构组成弯折部件,以灵活地实现不同弯折角度的弯折部件。
可选的,弯折部件可以由两个子弯折部件扣合形成,两个子弯折部件的扣合面平行于弯折部件的延伸方向,每个锥形结构由两个半锥形结构扣合形成,两个半锥形结构的扣合面平行于锥形结构的高度方向,两个子弯折部件的扣合面与两个半锥形结构的扣合面共面。
示例的,如图16所示,模式转换装置可以由两个分部组成,每个分部包括一个子弯折部件011和两个半锥形结构,两个半锥形结构包括第一半锥形结构021a和第二半锥形结构021b,其中,两个子弯折部件011扣合形成弯折部件,两个第一半锥形结构021a扣合形成第一锥形结构,两个第二半锥形结构021b扣合形成第二锥形结构,子弯折部件011的扣合面、第一半锥形结构021a的扣合面以及第二半锥形结构021b的扣合面均共面,且每个半锥形结构的扣合面上设置有第一子通孔T1a,两个半锥形结构扣合后两个第一子通孔T1a能够形成第一通孔,每个子弯折部件的扣合面上设置有第二子通孔T2a,两个子弯折部件扣合后两个第二子通孔T2a能够形成第二通孔。
其中,弯折部件以及两个锥形结构中位于扣合面同一侧的结构可以为一体结构;或者,弯折部件以及两个锥形结构中位于扣合面同一侧的结构可拆卸连接,对此不做限定。
可选的,在如图11所示的模式转换装置中,每个非金属扣盖也可以由两个半扣盖扣合而成。需要说明的是,弯折部件和两个锥形结构都是扣合结构,便于工程应用中的安装使用。
可选的,模式转换装置的尺寸可以根据线缆的线径和信号的频率等进行设计。为了减小锥形结构对信号的反射损耗,锥形结构的高度需至少达到信号的半个波长,可选的,每个锥形结构的高度可以为信号的波长的1~2倍。
需要说明的是,信号的频率越大,表面波的辐射场半径越小;线缆的线径越大,表面波的辐射场半径越大,因此设计的每个锥形结构的底面尺寸可以与信号的频率负相关,且底面尺寸可以与线缆的线径正相关。
可选的,锥形结构可以为圆锥形结构或棱锥形结构,当锥形结构为圆锥形结构时,底面尺寸即为底面直径长度;当锥形结构为棱锥形结构时,底面尺寸即为底面的外接圆的直径长度。
示例的,图17和图18是本申请实施例提供的不同频率的表面波在线径分别为15毫米和1毫米的线缆上传输时场半径的大小示意图,其中,横坐标表示表面波的频率F,单位是GHz,纵坐标表示场半径R的大小,单位是厘米(cm)。
本申请实施例提供了线径分别为1毫米和15毫米、信号的频段分别为1~5GHz和5~20GHz对应的模式转换装置的尺寸(包括锥形结构的尺寸和弯折部件的横截面尺寸),如表2所示:
表2
Figure PCTCN2018111488-appb-000002
其中,当弯折部件的横截面呈圆形时,横截面尺寸指横截面的直径长度;当弯折部件的横截面呈多边形时,横截面尺寸指横截面的外接圆的直径长度。需要说明的是,表2中提供的模式转换装置的尺寸仅做示例性说明,实际应用中可根据需求进行调整,对此不做限定。
可选的,在本申请实施例中,非金属材质可以包括特氟龙、聚氯乙烯、树脂材料和塑料中的至少一种,也可以为其他非金属材质,对此不做限定。用于信号传输的线缆可以是导体线缆,也可以是非导体线缆。
综上所述,本申请实施例提供的模式转换装置,可以设置在用于传输信号的线缆的弯曲处,在线缆的弯曲处以TEM模式传输信号,并通过弯折部件限制模式的色散和泄露,从而达到了采用表面波传输方式传输信号时减小弯曲传输损耗的效果,丰富了采用表面波传输方向传输信号的方式的同时,保证了信号传输的可靠性。
本申请实施例提供了一种信号传输系统,该系统包括:线缆和至少一个模式转换装置,模式转换装置包括如图7、图8、图11、图12或图16所示的装置,该至少一个模式转换装置套接在线缆上以供线缆通过,
线缆用于传输以横磁场模式传输的信号。
可选的,系统还包括:信号激励器,信号激励器用于产生以横磁场模式传输的信号, 以使信号沿线缆传输。
示例的,信号激励器可以为如图2所示的表面波激励器。
综上所述,本申请实施例提供的信号传输系统,可以在用于传输信号的线缆的弯曲处设置模式转换装置,在线缆的弯曲处以TEM模式传输信号,并通过弯折部件限制模式的色散和泄露,从而达到了采用表面波传输方式传输信号时减小弯曲传输损耗的效果,丰富了采用表面波传输方向传输信号的方式的同时,保证了信号传输的可靠性。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种模式转换装置,其特征在于,所述模式转换装置包括弯折部件以及两个锥形结构,
    所述两个锥形结构对称设置在所述弯折部件的两端,且所述弯折部件的两端分别与所述两个锥形结构的顶端连接,所述两个锥形结构的底部向背;
    所述两个锥形结构上均设置有连通顶端和底部的第一通孔,所述弯折部件内部设置有沿所述弯折部件延伸方向延伸的第二通孔,且所述第一通孔和所述第二通孔相互连通,所述第一通孔和所述第二通孔用于供传输信号的线缆通过。
  2. 根据权利要求1所述的装置,其特征在于,
    所述弯折部件以及所述两个锥形结构的外壁均由金属材质制成。
  3. 根据权利要求2所述的装置,其特征在于,
    所述弯折部件以及所述两个锥形结构的内部均设置有填充介质,所述两个锥形结构的填充介质中形成所述第一通孔,所述弯折部件的填充介质中形成所述第二通孔,所述填充介质由非金属材质制成。
  4. 根据权利要求2所述的装置,其特征在于
    所述弯折部件以及所述两个锥形结构均为空腔结构,所述两个锥形结构的底部分别设置一非金属扣盖,每个所述非金属扣盖上设置有所述第一通孔。
  5. 根据权利要求4所述的装置,其特征在于,
    所述第一通孔设置在所述非金属扣盖的中心区域,且所述第一通孔的口径与所述线缆的线径相同。
  6. 根据权利要求1所述的装置,其特征在于,
    所述弯折部件以及所述两个锥形结构均由非金属材质制成。
  7. 根据权利要求1所述的装置,其特征在于,
    所述弯折部件由多个弯折结构首尾相连组成,所述弯折部件的弯折角度等于所述多个弯折结构的弯折角度之和。
  8. 根据权利要求1至7任一所述的装置,其特征在于,
    所述弯折部件由两个子弯折部件扣合形成,所述两个子弯折部件的扣合面平行于所述弯折部件的延伸方向,每个所述锥形结构由两个半锥形结构扣合形成,所述两个半锥形结构的扣合面平行于所述锥形结构的高度方向,所述两个子弯折部件的扣合面与所述两个半锥形结构的扣合面共面。
  9. 根据权利要求8所述的装置,其特征在于,
    所述弯折部件以及所述两个锥形结构中位于扣合面同一侧的结构为一体结构;
    或者,所述弯折部件以及所述两个锥形结构中位于扣合面同一侧的结构可拆卸连接。
  10. 根据权利要求1到7任一所述的装置,其特征在于,
    每个所述锥形结构的高度为所述信号的波长的1~2倍。
  11. 根据权利要求1至7任一所述的装置,其特征在于,
    每个所述锥形结构的底面尺寸与所述信号的频率负相关,且所述底面尺寸与所述线缆的线径正相关。
  12. 根据权利要求1至7任一所述的装置,其特征在于,
    所述锥形结构为圆锥形结构或棱锥形结构。
  13. 根据权利要求3或6所述的装置,其特征在于,
    所述非金属材质包括特氟龙、聚氯乙烯、树脂材料和塑料中的至少一种。
  14. 根据权利要求1所述的装置,其特征在于,
    所述线缆传输的信号为以横磁场模式传输的信号。
  15. 一种信号传输系统,其特征在于,所述系统包括:线缆和至少一个模式转换装置,所述模式转换装置包括如权利要求1至14任一所述的装置,所述至少一个模式转换装置套接在所述线缆上以供所述线缆通过,
    所述线缆用于传输以横磁场模式传输的信号。
  16. 根据权利要求15所述的系统,其特征在于,所述系统还包括:信号激励器,
    所述信号激励器用于产生以横磁场模式传输的信号,以使所述信号沿所述线缆传输。
PCT/CN2018/111488 2018-03-22 2018-10-23 模式转换装置及信号传输系统 WO2019179095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810241365.1A CN110299583B (zh) 2018-03-22 2018-03-22 模式转换装置及信号传输系统
CN201810241365.1 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019179095A1 true WO2019179095A1 (zh) 2019-09-26

Family

ID=67986668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111488 WO2019179095A1 (zh) 2018-03-22 2018-10-23 模式转换装置及信号传输系统

Country Status (2)

Country Link
CN (1) CN110299583B (zh)
WO (1) WO2019179095A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158504A (zh) * 1995-11-13 1997-09-03 松下电器产业株式会社 圆极化波/线极化波变换器
CN2370572Y (zh) * 1999-04-19 2000-03-22 中国科学院紫金山天文台 组装式弯波导
CN103457009A (zh) * 2013-08-16 2013-12-18 上海理工大学 太赫兹低损耗弯曲波导
US20170077581A1 (en) * 2014-05-28 2017-03-16 Spinner Gmbh Flexible, bendable and twistable terahertz waveguide
CN107069153A (zh) * 2017-04-12 2017-08-18 北京大学 一种基于表面等离子激元弯波导模式转换器及其实现方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3387018B2 (ja) * 1999-03-09 2003-03-17 シャープ株式会社 直交2偏波導波管入力装置および当該直交2偏波導波管入力装置を用いた衛星放送受信用のコンバータ
ATE555514T1 (de) * 2002-12-09 2012-05-15 Corridor Systems Inc Verfahren und vorrichtung zum einspeisen einer oberflächenwelle auf eine einzelleiter- übertragungsleitung
WO2007092748A2 (en) * 2006-02-06 2007-08-16 Ems Technologies, Inc. Circular waveguide e-bend
TWI365571B (en) * 2008-11-20 2012-06-01 Nat Univ Tsing Hua A mode transducer and a waveguide rotating joint with the mode transducer
CN105829933B (zh) * 2013-12-25 2019-04-12 华为技术有限公司 波导偏振分离和偏振转换器
CN105845532B (zh) * 2016-03-31 2017-11-14 电子科技大学 一种回旋行波管的横向输出装置
CN206947476U (zh) * 2017-08-08 2018-01-30 西南交通大学 圆波导模式转换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158504A (zh) * 1995-11-13 1997-09-03 松下电器产业株式会社 圆极化波/线极化波变换器
CN2370572Y (zh) * 1999-04-19 2000-03-22 中国科学院紫金山天文台 组装式弯波导
CN103457009A (zh) * 2013-08-16 2013-12-18 上海理工大学 太赫兹低损耗弯曲波导
US20170077581A1 (en) * 2014-05-28 2017-03-16 Spinner Gmbh Flexible, bendable and twistable terahertz waveguide
CN107069153A (zh) * 2017-04-12 2017-08-18 北京大学 一种基于表面等离子激元弯波导模式转换器及其实现方法

Also Published As

Publication number Publication date
CN110299583B (zh) 2020-10-09
CN110299583A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
JP4017084B2 (ja) マイクロ波伝送装置
US9601819B2 (en) Dielectric waveguide with extending connector and affixed deformable material
US9711837B2 (en) Dielectric waveguide ribbon core member arranged orthogonal to adjacent member
US2797392A (en) Electrical conductor comprising multiplicity of insulated filaments
CN104518370A (zh) 连接器、天线及电子装置
JP2015501097A (ja) スロット状増強アンテナ
US3150333A (en) Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
US10199735B2 (en) TEM line to double-ridged waveguide launcher
US6603438B2 (en) High power broadband feed
WO2019179095A1 (zh) 模式转换装置及信号传输系统
WO2020056546A1 (zh) 表面波激励装置和印制线路板
JP2011024176A (ja) 誘電体導波路の電磁波伝達部
JP2021141360A (ja) 無線アンテナ、無線通信システム
WO2019095934A1 (zh) 一种表面波激励装置
EP3121900B1 (en) Power feeder
US2938179A (en) Variable tapered waveguide transition section
US2721309A (en) Directional couplers for microwave transmission systems
WO2020041968A1 (zh) 表面波转换耦合装置和表面波通信系统
US20210266040A1 (en) Coupling device, surface wave coupling method and open wire surface wave wireless coverage system
CN211320322U (zh) 一种5gnr频段的吸顶天线单元
US20150024679A1 (en) Communication System
WO2020118550A1 (zh) 一种介质传输线及网络设备
JP2012222439A (ja) 同軸導波管変換器
CN113097724B (zh) 一种介质谐振天线
JP7147536B2 (ja) 電波伝送ケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910455

Country of ref document: EP

Kind code of ref document: A1