WO2019178906A1 - 一种液晶显示器及移动终端 - Google Patents

一种液晶显示器及移动终端 Download PDF

Info

Publication number
WO2019178906A1
WO2019178906A1 PCT/CN2018/083307 CN2018083307W WO2019178906A1 WO 2019178906 A1 WO2019178906 A1 WO 2019178906A1 CN 2018083307 W CN2018083307 W CN 2018083307W WO 2019178906 A1 WO2019178906 A1 WO 2019178906A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wave plate
quarter
plate layer
liquid crystal
Prior art date
Application number
PCT/CN2018/083307
Other languages
English (en)
French (fr)
Inventor
海博
Original Assignee
惠州市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市华星光电技术有限公司 filed Critical 惠州市华星光电技术有限公司
Priority to US15/989,599 priority Critical patent/US20190293996A1/en
Publication of WO2019178906A1 publication Critical patent/WO2019178906A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a liquid crystal display and a mobile terminal.
  • liquid crystal display technology users are increasingly demanding liquid crystal displays.
  • users are pursuing the appearance of a liquid crystal display that is light, thin, and stylish.
  • a narrow-framed, borderless liquid crystal display can make the TV screen have a wider field of view, and has a narrow border and no border compared with the same size liquid crystal display.
  • LCD monitors look bigger and are favored by users.
  • high-resolution liquid crystal displays have excellent display effects and become a research hotspot.
  • the number of metal lines in the corresponding display panel also increases exponentially.
  • the reflection is also multiplied, and the circular polarizer is directly attached to the outer side of the upper polarizer (the polarizer in the array substrate).
  • the inventors of the present application found that the existing high-resolution liquid crystal display has a problem of a decrease in transmittance in the process of reducing reflected light.
  • the technical problem to be solved by the present invention is to provide a liquid crystal display and a mobile terminal capable of improving the transmittance while reducing the reflected light of the liquid crystal display.
  • one technical solution adopted by the present invention is to provide a liquid crystal display.
  • liquid crystal display comprises:
  • An upper polarizing layer disposed on the first quarter wave plate layer
  • a lower polarizing layer disposed on the color filter substrate, wherein an absorption axis of the lower polarizing layer and an absorption axis of the upper polarizing layer are perpendicular to each other;
  • a second quarter-wave plate layer is further disposed between the lower polarizing layer and the color filter substrate, and an optical axis of the second quarter-wave plate layer and the first quarter-wave plate The optical axes of the layers are perpendicular to each other.
  • one technical solution adopted by the present invention is to provide a liquid crystal display.
  • liquid crystal display comprises:
  • An upper polarizing layer disposed on the first quarter wave plate layer
  • a lower polarizing layer disposed on the color filter substrate, wherein an absorption axis of the lower polarizing layer and an absorption axis of the upper polarizing layer are perpendicular to each other;
  • a second quarter-wave plate layer is further disposed between the lower polarizing layer and the color filter substrate, and an optical axis of the second quarter-wave plate layer and the first quarter-wave plate The optical axes of the layers are perpendicular to each other;
  • the array substrate further includes a metal wire, the metal wire is made of aluminum or copper;
  • the material of the first quarter wave plate layer comprises cellulose triacetate and a cyclic olefin polymer and the material of the second quarter wave plate layer comprises cellulose triacetate and a cyclic olefin polymer.
  • a technical solution adopted by the present invention is to provide a mobile terminal.
  • the mobile terminal includes a liquid crystal display, and the liquid crystal display includes:
  • An upper polarizing layer disposed on the first quarter wave plate layer
  • a lower polarizing layer disposed on the color filter substrate, wherein an absorption axis of the lower polarizing layer and an absorption axis of the upper polarizing layer are perpendicular to each other;
  • a second quarter-wave plate layer is further disposed between the lower polarizing layer and the color filter substrate, and an optical axis of the second quarter-wave plate layer and the first quarter-wave plate The optical axes of the layers are perpendicular to each other;
  • the array substrate further includes a metal wire, the metal wire is made of aluminum or copper;
  • the material of the first quarter wave plate layer comprises cellulose triacetate and a cyclic olefin polymer and the material of the second quarter wave plate layer comprises cellulose triacetate and a cyclic olefin polymer.
  • an advantageous effect of the present invention is that, in the case of the prior art, the present invention provides an upper polarizing layer on one side of the array substrate to convert incident ambient light into first linearly polarized light through the upper polarizing layer.
  • the first linearly polarized light is converted into the first circularly polarized light after passing through the first quarter-wave plate layer, and the first circularly polarized light is reflected back to the first quarter-wave plate layer through the interface, and the light is
  • the direction of propagation is perpendicular to the optical axis direction of the upper polarizing layer, which effectively reduces the problem of reflection; at the same time, the second quarter-wave layer is disposed on the side of the color film substrate facing away from the user, and the backlight passes through the lower polarized light.
  • FIG. 1 is a schematic structural view of an embodiment of a liquid crystal display according to the present invention.
  • Figure 2 is a schematic view of the reflected light path of the ambient light of Figure 1;
  • FIG. 3 is a schematic view showing an optical path of a backlight penetration process of FIG. 1;
  • FIG. 4 is a schematic structural view of another embodiment of a liquid crystal display according to the present invention.
  • Figure 5 is a schematic view showing the structure of a third embodiment of the liquid crystal display of the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a liquid crystal display according to the present invention, the liquid crystal display comprising:
  • the array substrate 100; the color filter substrate 200 is disposed opposite to the array substrate 100; the liquid crystal layer 300 is interposed between the array substrate 100 and the color filter substrate 200; and the first quarter-wave layer 110,
  • the upper polarizing layer 120 is disposed on the first quarter wave plate layer 110; the lower polarizing layer 220 is disposed on the color film substrate 200, and the lower polarizing layer 220 is disposed on the array substrate 100.
  • the absorption axis is perpendicular to the absorption axis of the upper polarizing layer 120; wherein a second quarter wave plate layer 210 is further disposed between the lower polarizing layer 220 and the color filter substrate 200, and the second The optical axis of the 1/4 wave plate layer 210 and the optical axis of the first quarter wave plate layer 110 are perpendicular to each other.
  • the upper polarizing layer is disposed on one side of the array substrate, and the incident ambient light is converted into the first linearly polarized light through the upper polarizing layer, and the first linearly polarized light passes through the first 1/1
  • the 4 wave plate layer is converted into the first circularly polarized light
  • the first circularly polarized light is reflected back to the first quarter wave plate layer through the interface, the light propagation direction and the optical axis direction of the upper polarizing layer Vertically, the reflective problem is effectively reduced;
  • the second quarter-wave plate layer is disposed on a side of the color film substrate facing away from the user, and the backlight is converted into second linearly polarized light through the lower polarizing layer, the second line
  • the polarized light passes through the first quarter-wave plate layer and the second quarter-wave plate layer perpendicular to each other in the optical axis direction, and the optical axis direction of the obtained light is perpendicular to the optical axis direction of the lower polarizing layer.
  • the absorption axis direction of the upper polarizing layer is perpendicular to the absorption axis direction of the lower polarizing layer, so that the passing through the first quarter wave plate layer and the second quarter wave plate layer can be obtained.
  • Light rays completely pass through the upper polarizing layer to increase the transmittance of light; therefore, the technique of the present invention In the case can be reduced while the reflection of light, to improve the transmittance.
  • the liquid crystal display is a thin film transistor liquid crystal display and is a borderless high definition liquid crystal display.
  • the array substrate of the liquid crystal display is facing the viewer. Since the size of the array substrate is slightly larger than the color filter substrate, the scan line driver and the data line driver can be blocked by the array substrate, so as to achieve No border display effect.
  • the optical axis of the first quarter-wave plate layer is 45°, and the optical axis of the second quarter-wave plate layer is 135°; the first quarter-wave plate The optical axis of the layer is 135° and the optical axis of the second quarter-wave layer is 45°.
  • the optical axis of the first quarter wave plate layer and the optical axis of the second quarter wave plate layer The direction of light propagation through the first quarter wave plate layer and the second quarter wave plate layer can be changed by 90°.
  • the optical axis of the first quarter wave plate layer and the optical axis of the second quarter wave plate layer may have a certain angular deviation, for example, ⁇ 1°, ⁇ 2°, ⁇ 3 °, ⁇ 4° or ⁇ 5°; although the optical axis of the first quarter-wave plate layer and the optical axis of the second quarter-wave plate layer have a certain angular deviation, as long as the angular deviation Within the range, the first quarter wave plate layer and the second quarter wave plate layer The change in the direction of light propagation can meet the requirements.
  • the absorption axis of the upper polarizing layer is 0°
  • the absorption axis of the lower polarizing layer is 90°
  • the absorption axis of the upper polarizing layer is 90°
  • the absorption axis of the lower polarizing layer is 0°.
  • An absorption axis of the lower polarizing layer and an absorption axis of the upper polarizing layer are perpendicular to each other, such that light passing through the lower polarizing layer and the first quarter wave plate layer and the second quarter wave plate layer
  • the direction is perpendicular to the optical axis direction of the lower polarizing layer, that is, the optical axis direction of the upper polarizing layer is the same, and can be completely penetrated, thereby achieving the purpose of improving the transmittance, thereby improving the display effect.
  • the absorption axis of the upper polarizing layer and the absorption axis direction of the lower polarizing layer may have a certain angular deviation, such as ⁇ 0.2°, ⁇ 0.4°, ⁇ 0.6°, ⁇ 0.8° or ⁇ 1°.
  • a certain angular deviation between the absorption axis of the upper polarizing layer and the absorption axis direction of the lower polarizing layer as long as the angular deviation is within the range, the upper polarizing layer and the lower polarizing layer control the light Can meet the requirements.
  • FIG. 2 is a schematic diagram of the reflected light path of the ambient light in FIG. 1 , wherein the optical axis direction of the upper polarizing layer 120 is 90°, and the first quarter-wave layer
  • the optical axis of 110 is 45°
  • the optical axis of the second quarter-wave plate layer 210 is 135°
  • the optical axis direction of the lower polarizing layer 220 is 0°.
  • the upper polarizing layer 120 in which the ambient light passes through the optical axis direction of 90° becomes linearly polarized light 1 in the 90° direction
  • the first quarter wave of the linearly polarized light 1 in the 90° direction is 45° on the optical axis.
  • the sheet layer 110 is then converted into the first circularly polarized light 2 in the 45° direction, and the first circularly polarized light 2 in the 45° direction is reflected on the metal line in the array substrate 100 to be reflected.
  • the direction of propagation of the light becomes 0°, and cannot be emitted from the upper polarizing layer 120. The effect of effectively reducing the reflected light is achieved.
  • FIG. 3 is a schematic diagram of an optical path of a process of penetrating the backlight of FIG. 1 , wherein the optical axis direction of the upper polarizing layer 120 is 90°, and the first quarter-wave layer 110 is The optical axis is 45°, the optical axis of the second quarter-wave plate layer 210 is 135°, and the optical axis direction of the lower polarizing layer 220 is 0°.
  • the lower polarizing layer 220 whose backlight passes through the optical axis direction of 0° is converted into linearly polarized light 11 in the 0° direction, and the linearly polarized light 11 passes through the second quarter wave plate layer having an optical axis direction of 135°.
  • the second circularly polarized light 22 in the 135° direction is after the first quarter-wave plate layer 110 having an optical axis of 45°.
  • the direction of propagation of the light ray 33 is 90°, which is the same as the absorption axis direction of the upper polarizing layer, and can be completely transmitted. Therefore, the transmittance is high.
  • the technical solution of the present invention can improve the transmittance of light under the premise of reducing reflected light, and is advantageous for obtaining a better display effect.
  • the array substrate further includes a metal wire, and the metal wire is made of aluminum or copper.
  • the metal wire is a metal wire in the array substrate, and the aluminum exhibits a silver-white color, and the reflectance of the whole wavelength band of visible light is more than 90%, so that it is required for green light having a wavelength range of 500-600 nm.
  • the first quarter wave plate layer and the second quarter wave plate layer are designed.
  • the pass wavelength range is When the green light between 540-560 nm is designed to design the first quarter wave plate layer and the second quarter wave plate layer, the in-plane phase difference of the first quarter wave plate layer The 135 nm to 145 nm, that is, the in-plane phase difference of the first quarter-wave plate layer is 135 nm to 145 nm, and the in-plane phase difference of the second quarter-wave plate layer is 135 nm to 145 nm.
  • the copper since copper has low reflection on the blue band and high reflection in the red and green bands, the copper appears yellow; therefore, for copper wires, it is necessary to use a yellow light with a wavelength range of 550-650 nm.
  • the first quarter wave plate layer and the second quarter wave plate layer are designed.
  • the in-plane phase difference of the first quarter-wave plate layer is 137.5 nm-162.5 nm
  • the in-plane phase difference of the second quarter-wave plate layer is 137.5 nm-162.5 nm.
  • the wavelength range is When the green light between 580-600 nm is designed to design the first quarter wave plate layer and the second quarter wave plate layer, the in-plane phase difference of the first quarter wave plate layer It is 145 nm to 150 nm, that is, the in-plane phase difference of the first quarter-wave plate layer is 145 nm to 150 nm, and the in-plane phase difference of the second quarter-wave plate layer is 145 nm to 150 nm.
  • the materials of the first quarter wave plate layer and the second quarter wave plate layer are the same or different; the material of the first quarter wave plate layer comprises cellulose triacetate.
  • the material of the cycloolefin polymer and the second quarter wave plate layer includes cellulose triacetate and a cyclic olefin polymer.
  • the materials of the first quarter wave plate layer and the second quarter wave plate layer are the same, the material of the first quarter wave plate layer and the second 1
  • the material of the /4 wave plate layer is a cycloolefin polymer, and the first material of the first quarter wave plate layer and the second quarter wave plate layer are used to better control the polarization direction of the circularly polarized light. For better display.
  • FIG. 4 is a schematic structural diagram of another embodiment of a liquid crystal display according to the present invention, wherein the liquid crystal display further includes a first compensation layer 130 and/or a second compensation layer 230, a first compensation layer 130 is disposed between the first quarter-wave plate layer 110 and the array substrate 100 or the first compensation layer 130 is disposed on the first quarter-wave layer 110 and the Between the polarizing layers 120; the second compensation layer 230 is disposed between the second quarter wave plate layer 210 and the color filter substrate 200 or the second compensation layer 230 is disposed at the second 1/
  • the 4-wave plate layer 210 is between the lower polarizing layer 220 and the lower polarizing layer 220.
  • the lower polarizing layer and the second quarter-wave layer may be directly connected, or may be connected by a second compensation layer disposed therebetween, as long as the backlight passes through the lower polarizing layer first. Then pass through the second quarter wave plate layer.
  • the upper polarizing layer and the first quarter wave layer may be directly connected, or may be connected by a first compensation layer disposed therebetween, as long as the ambient light passes through the upper polarizing layer first. Then pass through the second quarter wave plate layer.
  • FIG. 5 is a schematic structural diagram of a liquid crystal display device according to a third embodiment of the present invention, wherein the liquid crystal display device includes: an array substrate 100; and a color set opposite to the array substrate 100 a film substrate 200; a liquid crystal layer 300 interposed between the array substrate 100 and the color filter substrate 200; a first PSA conductive paste layer 140 sequentially disposed on the array substrate 100, the first 1/ a wave plate layer 110, the first compensation layer 130, the upper polarizing layer 120, the first protective layer 150 and the AG surface treatment layer 160; the color film substrate 200 is sequentially provided with a second PSA conductive adhesive layer 240, The second quarter-wave layer 210, the second compensation layer 230, the lower polarizing layer 220 and the second protective layer 250, the first protective layer 150 is disposed on the upper polarizing layer 120 away from the The second protective layer 250 is disposed on the lower polarizing layer 220 away from the side of the color filter substrate 200.
  • the structure of the first TAC protective layer, the second TAC protective layer, and the AG surface treatment layer is added to enable the liquid crystal display to obtain a better display effect, while avoiding impurities such as moisture, dust, and the like.
  • the influence of the display improves the stability of the performance of the liquid crystal display and helps to extend its service life.
  • the present invention discloses a liquid crystal display, wherein the liquid crystal display includes: an array substrate; a color filter substrate disposed opposite to the array substrate; a liquid crystal layer interposed on the array substrate and the Between the color filter substrates; a first quarter wave plate layer disposed on the array substrate; an upper polarizing layer disposed on the first quarter wave plate layer; and a lower polarizing layer disposed on the color plate
  • an absorption axis of the lower polarizing layer and an absorption axis of the upper polarizing layer are perpendicular to each other; wherein a second quarter wave plate layer is further disposed between the lower polarizing layer and the color filter substrate
  • the optical axis of the second quarter-wave plate layer and the optical axis of the first quarter-wave plate layer are perpendicular to each other.
  • the upper polarizing layer disposed on one side of the array substrate of the present invention can convert incident ambient light into first linearly polarized light through the upper polarizing layer, and the first linearly polarized light passes through the first 1/1 After the 4 wave plate layer is converted into the first circularly polarized light, after the first circularly polarized light is reflected back to the first quarter wave plate layer through the interface, the light propagation direction and the optical axis direction of the upper polarizing layer Vertically, the reflective problem is effectively reduced; at the same time, the second quarter-wave plate layer is disposed on a side of the color film substrate facing away from the user, and the backlight is converted into second linearly polarized light through the lower polarizing layer, the second line The polarized light passes through the first quarter-wave plate layer and the second quarter-wave plate layer perpendicular to each other in the optical axis direction, and the optical axis direction of the obtained light is perpendicular to the optical axis direction of the lower polarizing layer.
  • the absorption axis direction of the upper polarizing layer is perpendicular to the absorption axis direction of the lower polarizing layer, so that the passing through the first quarter wave plate layer and the second quarter wave plate layer can be obtained.
  • Light rays completely pass through the upper polarizing layer to increase the transmittance of light; therefore, the technique of the present invention In the case can be reduced while the reflection of light, to improve the transmittance.
  • the mobile terminal includes a liquid crystal display, and the liquid crystal display includes: an array substrate; a color filter substrate, a liquid crystal layer is disposed opposite to the array substrate, and is disposed between the array substrate and the color filter substrate; a 1/4 wave layer disposed on the array substrate; an upper polarizing layer disposed on the first quarter wave plate layer; a lower polarizing layer disposed on the color film substrate, the lower portion
  • the absorption axis of the polarizing layer and the absorption axis of the upper polarizing layer are perpendicular to each other; wherein a second quarter wave plate layer is further disposed between the lower polarizing layer and the color filter substrate, and the second 1/1
  • the optical axis of the 4 wave plate layer and the optical axis of the first quarter wave plate layer are perpendicular to each other;
  • the array substrate further includes a metal wire, the metal wire is made of aluminum or copper;
  • the technical solution in any embodiment of the present invention can also be used to improve the light leakage problem of the liquid crystal display, for the frameless liquid crystal display of the array substrate facing the user, the array substrate facing the user high definition liquid crystal display or the ordinary liquid crystal display. Helps to get a better display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示器及移动终端,该液晶显示器包括:阵列基板(100),彩膜基板(200),液晶层(300);第一1/4波片层(110),设置在所述阵列基板(100)上;上偏光层(120),设置在所述第一1/4波片层上(110);下偏光层(220),设置在所述彩膜基板(200)上,所述下偏光层(220)的吸收轴与所述上偏光层的吸收轴互相垂直;其中,所述下偏光层(220)和所述彩膜基板(200)之间还设有第二1/4波片层(210),所述第二1/4波片层(210)的光轴与所述第一1/4波片层(110)的光轴互相垂直。通过上述方式,能够在降低液晶显示器的反射光的同时,提高穿透率。

Description

一种液晶显示器及移动终端
【技术领域】
本发明涉及液晶显示技术领域,特别是涉及一种液晶显示器及移动终端。
【背景技术】
随着液晶显示技术的不断发展,用户对液晶显示器的要求也越来越高。最初,用户追求的是液晶显示器的外观轻、薄,时尚美观,尤其是窄边框、无边框液晶显示器能够使电视画面视野更为广阔,且与相同尺寸的液晶显示器相比,窄边框、无边框液晶显示器看起来更大,备受用户青睐。而目前,高分辨率的液晶显示器具有优异的显示效果,成为研究的热点。
现有技术中,随着液晶显示器分辨率的增加,相应显示面板中的金属线的数量也在成倍的增加。而对于阵列基板朝向用户的液晶显示器,由于所述金属线没有被黑矩阵遮挡,反光也在成倍的增加,采用直接在上偏光片(阵列基板中的偏光片)外侧贴附圆偏光片的方式虽然可以有效的降低反射,但是会导致穿透率降低的问题。
本申请的发明人在长期的研发过程中,发现现有的高分辨率液晶显示器在降低反射光的过程中会带来穿透率下降的问题。
【发明内容】
本发明主要解决的技术问题是提供一种液晶显示器及移动终端,能够在降低液晶显示器的反射光的同时,提高穿透率。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种液晶显示器。
其中,所述液晶显示器包括:
阵列基板;
彩膜基板,与所述阵列基板相对设置;
液晶层,夹设在所述阵列基板和所述彩膜基板之间;
第一1/4波片层,设置在所述阵列基板上;
上偏光层,设置在所述第一1/4波片层上;
下偏光层,设置在所述彩膜基板上,所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直;
其中,所述下偏光层和所述彩膜基板之间还设有第二1/4波片层,所述第二1/4波片层的光轴与所述第一1/4波片层的光轴互相垂直。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种液晶显示器。
其中,所述液晶显示器包括:
阵列基板;
彩膜基板,与所述阵列基板相对设置;
液晶层,夹设在所述阵列基板和所述彩膜基板之间;
第一1/4波片层,设置在所述阵列基板上;
上偏光层,设置在所述第一1/4波片层上;
下偏光层,设置在所述彩膜基板上,所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直;
其中,所述下偏光层和所述彩膜基板之间还设有第二1/4波片层,所述第二1/4波片层的光轴与所述第一1/4波片层的光轴互相垂直;
所述阵列基板中还包括金属线,所述金属线的材质为铝或铜;
所述第一1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物和所述第二1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种移动终端。
其中,所述移动终端包括液晶显示器,所述液晶显示器包括:
阵列基板;
彩膜基板,与所述阵列基板相对设置;
液晶层,夹设在所述阵列基板和所述彩膜基板之间;
第一1/4波片层,设置在所述阵列基板上;
上偏光层,设置在所述第一1/4波片层上;
下偏光层,设置在所述彩膜基板上,所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直;
其中,所述下偏光层和所述彩膜基板之间还设有第二1/4波片层,所述第二1/4波片层的光轴与所述第一1/4波片层的光轴互相垂直;
所述阵列基板中还包括金属线,所述金属线的材质为铝或铜;
所述第一1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物和所述第二1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物。
本发明的有益效果是:区别于现有技术的情况,本发明在所述阵列基板一侧设置上偏光层能够使入射的环境光经过所述上偏光层转化为第一线偏振光,所述第一线偏振光经过所述第一1/4波片层后转化为第一圆偏振光,所述第一圆偏振光经过界面反射回所述第一1/4波片层后,光线的传播方向与所述上偏光层的光轴方向垂直,有效减少了反光问题;同时,在背对用户的彩膜基板一侧设置所述第二1/4波片层,背光经过所述下偏光层转化为第二线偏振光,所述第二线偏振光经过光轴方向互相垂直的所述第一1/4波片层和所述第二1/4波片层,得到的光线的光轴方向与所述下偏光层的光轴方向垂直,而所述上偏光层的吸收轴方向与所述下偏光层的吸收轴方向垂直,这样,经过能够使经过所述第一1/4波片层和所述第二1/4波片层得到的光线完全穿过所述上偏光层,提高光线的穿透率;因此,本发明的技术方案能够在减少反射光线的同时,提高穿透率。
【附图说明】
图1是本发明液晶显示器一实施方式的结构示意图;
图2是图1中环境光的反射光路示意图;
图3是图1中背光的穿透过程的光路示意图;
图4是本发明液晶显示器另一实施方式的结构示意图;
图5是本发明液晶显示器第三实施方式的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图1,图1是本发明液晶显示器一实施方式的结构示意图,该液晶显示器包括:
阵列基板100;彩膜基板200,与所述阵列基板100相对设置;液晶层300,夹设在所述阵列基板100和所述彩膜基板200之间;第一1/4波片层110,设置在所述阵列基板100上;上偏光层120,设置在所述第一1/4波片层110上;下偏光层220,设置在所述彩膜基板200上,所述下偏光层220的吸收轴与所述上偏光层120的吸收轴互相垂直;其中,所述下偏光层220和所述彩膜基板200之间还设有第二1/4波片层210,所述第二1/4波片层210的光轴与所述第一1/4波片层110的光轴互相垂直。
在本实施方式中,所述阵列基板一侧设置上偏光层能够使入射的环境光经过所述上偏光层转化为第一线偏振光,所述第一线偏振光经过所述第一1/4波片层后转化为第一圆偏振光,所述第一圆偏振光经过界面反射回所述第一1/4波片层后,光线的传播方向与所述上偏光层的光轴方向垂直,有效减少了反光问题;同时,在背对用户的彩膜基板一侧设置所述第二1/4波片层,背光经过所述下偏光层转化为第二线偏振光,所述第二线偏振光经过光轴方向互相垂直的所述第一1/4波片层和所述第二1/4波片层,得到的光线的光轴方向与所述下偏光层的光轴方向垂直,而所述上偏光层的吸收轴方向与所述下偏光层的吸收轴方向垂直,这样,经过能够使经过所述第一1/4波片层和所述第二1/4波片层得到的光线完全穿过所述上偏光层,提高光线的穿透率;因此,本发明的技术方案能够在减少反射光线的同时,提高穿透率。
在一个实施方式中,所述液晶显示器为薄膜晶体管液晶显示器,且为无边框高清晰度液晶显示器。本实施方式中所述液晶显示器的阵列基板朝向观众,由于所述阵列基板的尺寸略大于所述彩膜基板,所述的扫描线驱动器和数据线驱动器可以被所述阵列基板遮挡住,以为实现无边框的显示效果。
在另一个实施方式中,所述第一1/4波片层的光轴为45°,所述第二1/4波片层的光轴为135°;所述第一1/4波片层的光轴为135°,所述第二1/4波片层的光轴为45°。在本实施方式中,所述第一1/4波片层的光轴和所述第二1/4波片层的光轴 ,能够使经过所述第一1/4波片层和所述第二1/4波片层的光线传播方向改变90°。
进一步的,所述第一1/4波片层的光轴和所述第二1/4波片层的光轴在可以有一定的角度偏差,如,±1°、±2°、±3°、±4°或±5°;虽然所述第一1/4波片层的光轴和所述第二1/4波片层的光轴存在一定的角度偏差,但只要所述角度偏差范围内,所述第一1/4波片层和所述第二1/4波片层 对光线传播方向的改变能够满足要求即可。
进一步的,所述上偏光层的吸收轴为0°,所述下偏光层的吸收轴为90°;所述上偏光层的吸收轴为90°,所述下偏光层的吸收轴为0°。所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直,这样,经过下偏光层及所述第一1/4波片层和所述第二1/4波片层的光线的方向与所述下偏光层的光轴方向垂直,即与所述上偏光层的光轴方向相同,能够完全穿透,达到提高穿透率的目的,进而提高显示效果。
进一步的,所述上偏光层的吸收轴和所述下偏光层的吸收轴方向可以有一定的角度偏差,如,±0.2°、±0.4°、±0.6°、±0.8°或±1°。虽然所述上偏光层的吸收轴和所述下偏光层的吸收轴方向存在一定的角度偏差,但只要所述角度偏差范围内,所述上偏光层和所述下偏光层对光线的控制作用能够满足要求即可。
在一个实施方式中,请参考图2,图2是图1中环境光的反射光路示意图,其中,所述上偏光层120的光轴方向为90°,所述第一1/4波片层110的光轴为45°,所述第二1/4波片层210的光轴为135°,所述下偏光层220的光轴方向为0°。环境光经过光轴方向为90°的所述上偏光层120变成90°方向线偏振光1,所述90°方向线偏振光1经过光轴为45°的所述第一1/4波片层110后转化为45°方向的所述第一圆偏振光2,45°方向的所述第一圆偏振光2在所述在阵列基板100中的所述金属线上发生反射,得到反射后的光线3,所述反射后的光线3再次经过所述第一1/4波片层110后,光线的传播方向变成0°方向,无法从所述上偏光层120中出射,也就达到了有效降低反射光的作用。
请参考图3,图3是图1中背光的穿透过程的光路示意图,其中,其中,所述上偏光层120的光轴方向为90°,所述第一1/4波片层110的光轴为45°,所述第二1/4波片层210的光轴为135°,所述下偏光层220的光轴方向为0°。背光经过光轴方向为0°的所述下偏光层220转化为0°方向的线偏振光11,所述线偏振光11经过光轴方向为135°的所述第二1/4波片层210后转化为135°方向的所述第二圆偏振光22,135°方向的所述第二圆偏振光22在经过光轴为45°的所述第一1/4波片层110后的光线33的传播方向为90°方向,与所述上偏光层的吸收轴方向相同,能够完全透射出去,因此,穿透率较高。结合图2和图3可以知道,本发明的技术方案能够在降低反射光线的前提下,提高光线的穿透率,有利于获得更好的显示效果。
在一个实施方式中,所述阵列基板中还包括金属线,所述金属线的材质为铝或铜。所述金属线即为所述阵列基板中的金属线,铝呈现银白色,其对可见光的全波段的反射率都在90%以上,因此需要针对波长范围在500-600nm之间的绿光来对所述第一1/4波片层和所述第二1/4波片层进行设计。由Ro=(Nx-Ny)*d(式1),其中,Ro为1/4波片层的面内位相差,Nx为所述1/4波片层的面内最大折射率处的轴向折射率,Ny为与所述轴向正交处的折射率,d为所述1/4波片层的厚度。可知,对于铝制金属线,所述1/4波片层的面内位相差为125nm-150nm,也即,所述第一1/4波片层的面内位相差为125nm-150nm,所述第二1/4波片层的面内位相差为125nm-150nm。在一个实施方式中,对于铝制金属线,通过波长范围在 540-560nm之间的绿光来对所述第一1/4波片层和所述第二1/4波片层进行设计时,所述第一1/4波片层的面内位相差为135nm-145nm,也即,所述第一1/4波片层的面内位相差为135nm-145nm,所述第二1/4波片层的面内位相差为135nm-145nm。
同理,由于铜对蓝色波段反光低,红光和绿光波段反光高,所述铜呈现为黄色;因此,对于铜制金属线,需要针对波长范围在550-650nm之间的黄光来对所述第一1/4波片层和所述第二1/4波片层进行设计。相应的,所述第一1/4波片层的面内位相差为137.5nm-162.5nm,所述第二1/4波片层的面内位相差为137.5nm-162.5nm。在一个实施方式中,对于铜制金属线,通过波长范围在 580-600nm之间的绿光来对所述第一1/4波片层和所述第二1/4波片层进行设计时,所述第一1/4波片层的面内位相差为145nm-150nm,也即,所述第一1/4波片层的面内位相差为145nm-150nm,所述第二1/4波片层的面内位相差为145nm-150nm。
在一个实施方式中,所述第一1/4波片层和所述第二1/4波片层的材质相同或不同;所述第一1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物和所述第二1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物。在另一个实施方式中,所述第一1/4波片层和所述第二1/4波片层的材质相同,所述第一1/4波片层的材质和所述第二1/4波片层的材质均为环烯烃聚合物,所述第一1/4波片层和所述第二1/4波片层采用相同的材质有利于更好的控制圆偏光的偏振方向,获得更好的显示效果。
在一个实施方式中,请参考图4,图4是本发明液晶显示器另一实施方式的结构示意图,其中,所述液晶显示器还包括第一补偿层130和/或第二补偿层230,所述第一补偿层130设置在所述第一1/4波片层110和所述阵列基板100之间或所述第一补偿层130设置在所述第一1/4波片层110与所述上偏光层120之间;所述第二补偿层230设置在所述第二1/4波片层210和所述彩膜基板200之间或所述第二补偿层230设置在所述第二1/4波片层210与所述下偏光层220之间。也就是说,所述下偏光层与所述第二1/4波片层可以直接相连,也可以通过设置在二者之间的第二补偿层相连,只要保证背光先经过所述下偏光层再经过所述第二1/4波片层即可。同理,所述上偏光层与所述第一1/4波片层可以直接相连,也可以通过设置在二者之间的第一补偿层相连,只要保证环境光先经过所述上偏光层再经过所述第二1/4波片层即可。
在另一个实施方式中,请参考图5,图5是本发明液晶显示器第三实施方式的结构示意图,其中,所述液晶显示装置包括:阵列基板100;与所述阵列基板100相对设置的彩膜基板200;夹设在所述阵列基板100和所述彩膜基板200之间的液晶层300;在所述阵列基板100上依次设置的第一PSA导电胶层140,所述第一1/4波片层110,所述第一补偿层130,上偏光层120,第一保护层150和AG表面处理层160;所述彩膜基板200上依次设置有第二PSA导电胶层240,所述第二1/4波片层210,所述第二补偿层230,所述下偏光层220和第二保护层250,所述第一保护层150设置在所述上偏光层120上远离所述阵列基板100一侧;所述第二保护层250设置在所述下偏光层220上远离所述彩膜基板200一侧。增加了所述第一TAC保护层、所述第二TAC保护层及所述AG表面处理层等结构能够使所述液晶显示器获得更好显示效果的同时,避免水汽、灰尘等杂质对所述液晶显示器的影响,提高所述液晶显示器性能的稳定性并有利于延长其使用寿命。
综上所述,本发明公开了一种液晶显示器,其中,所述液晶显示器包括:阵列基板;彩膜基板,与所述阵列基板相对设置;液晶层,夹设在所述阵列基板和所述彩膜基板之间;第一1/4波片层,设置在所述阵列基板上;上偏光层,设置在所述第一1/4波片层上;下偏光层,设置在所述彩膜基板上,所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直;其中,所述下偏光层和所述彩膜基板之间还设有第二1/4波片层,所述第二1/4波片层的光轴与所述第一1/4波片层的光轴互相垂直。这样,本发明在所述阵列基板一侧设置的上偏光层能够使入射的环境光经过所述上偏光层转化为第一线偏振光,所述第一线偏振光经过所述第一1/4波片层后转化为第一圆偏振光,所述第一圆偏振光经过界面反射回所述第一1/4波片层后,光线的传播方向与所述上偏光层的光轴方向垂直,有效减少了反光问题;同时,在背对用户的彩膜基板一侧设置所述第二1/4波片层,背光经过所述下偏光层转化为第二线偏振光,所述第二线偏振光经过光轴方向互相垂直的所述第一1/4波片层和所述第二1/4波片层,得到的光线的光轴方向与所述下偏光层的光轴方向垂直,而所述上偏光层的吸收轴方向与所述下偏光层的吸收轴方向垂直,这样,经过能够使经过所述第一1/4波片层和所述第二1/4波片层得到的光线完全穿过所述上偏光层,提高光线的穿透率;因此,本发明的技术方案能够在减少反射光线的同时,提高穿透率。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种移动终端。其中,所述移动终端包括液晶显示器,所述液晶显示器包括:阵列基板;彩膜基板,与所述阵列基板相对设置液晶层,夹设在所述阵列基板和所述彩膜基板之间;第一1/4波片层,设置在所述阵列基板上;上偏光层,设置在所述第一1/4波片层上;下偏光层,设置在所述彩膜基板上,所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直;其中,所述下偏光层和所述彩膜基板之间还设有第二1/4波片层,所述第二1/4波片层的光轴与所述第一1/4波片层的光轴互相垂直;所述阵列基板中还包括金属线,所述金属线的材质为铝或铜;所述第一1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物和所述第二1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物。
此外,针对阵列基板背对用户的无边框液晶显示器、阵列基板背对用户高清晰度液晶显示器或普通液晶显示器,本发明任一实施方式中的技术方案还可以用于改善液晶显示器的漏光问题,有利于获得更好的显示效果。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种液晶显示器,其中,所述液晶显示器包括:
    阵列基板;
    彩膜基板,与所述阵列基板相对设置;
    液晶层,夹设在所述阵列基板和所述彩膜基板之间;
    第一1/4波片层,设置在所述阵列基板上;
    上偏光层,设置在所述第一1/4波片层上;
    下偏光层,设置在所述彩膜基板上,所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直;
    其中,所述下偏光层和所述彩膜基板之间还设有第二1/4波片层,所述第二1/4波片层的光轴与所述第一1/4波片层的光轴互相垂直;
    所述阵列基板中还包括金属线,所述金属线的材质为铝或铜;
    所述第一1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物和所述第二1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物。
  2. 根据权利要求1所述的液晶显示器,其中,所述第一1/4波片层的光轴为45°,所述第二1/4波片层的光轴为135°;或所述第一1/4波片层的光轴为135°,所述第二1/4波片层的光轴为45°。
  3. 根据权利要求2所述的液晶显示器,其中,所述上偏光层的吸收轴为0°,所述下偏光层的吸收轴为90°;或所述上偏光层的吸收轴为90°,所述下偏光层的吸收轴为0°。
  4. 根据权利要求1所述的液晶显示器,其中,所述第一1/4波片层的面内位相差为125nm-150nm,所述第二1/4波片层的面内位相差为125nm-150nm;或所述第一1/4波片层的面内位相差为137.5nm-162.5nm,所述第二1/4波片层的面内位相差为137.5nm-162.5nm。
  5. 根据权利要求4所述的液晶显示器,其中,所述第一1/4波片层的面内位相差为135nm-145nm,所述第二1/4波片层的面内位相差为135nm-145nm;或所述第一1/4波片层的面内位相差为145nm-150nm,所述第二1/4波片层的面内位相差为145nm-150nm。
  6. 根据权利要求1所述的液晶显示器,其中,所述第一1/4波片层和所述第二1/4波片层的材质相同。
  7. 根据权利要求1所述的液晶显示器,其中,所述第一1/4波片层和所述第二1/4波片层的材质不同。
  8. 根据权利要求1所述的液晶显示器,其中,所述液晶显示器还包括第一补偿层和/或第二补偿层,所述第一补偿层设置在所述第一1/4波片层和所述阵列基板之间或所述第一补偿层设置在所述第一1/4波片层与所述上偏光层之间;所述第二补偿层设置在所述第二1/4波片层和所述彩膜基板之间或所述第二补偿层设置在所述第二1/4波片层与所述下偏光层之间。
  9. 根据权利要求1所述的液晶显示器,其中,所述液晶显示器还包括:
    第一保护层,设置在所述上偏光层上远离所述阵列基板一侧;
    第二保护层,设置在所述下偏光层上远离所述彩膜基板一侧。
  10. 一种液晶显示器,其中,所述液晶显示器包括:
    阵列基板;
    彩膜基板,与所述阵列基板相对设置;
    液晶层,夹设在所述阵列基板和所述彩膜基板之间;
    第一1/4波片层,设置在所述阵列基板上;
    上偏光层,设置在所述第一1/4波片层上;
    下偏光层,设置在所述彩膜基板上,所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直;
    其中,所述下偏光层和所述彩膜基板之间还设有第二1/4波片层,所述第二1/4波片层的光轴与所述第一1/4波片层的光轴互相垂直。
  11. 根据权利要求10所述的液晶显示器,其中,所述第一1/4波片层的光轴为45°,所述第二1/4波片层的光轴为135°;或所述第一1/4波片层的光轴为135°,所述第二1/4波片层的光轴为45°。
  12. 根据权利要求11所述的液晶显示器,其中,所述上偏光层的吸收轴为0°,所述下偏光层的吸收轴为90°;或所述上偏光层的吸收轴为90°,所述下偏光层的吸收轴为0°。
  13. 根据权利要求10所述的液晶显示器,其中,所述阵列基板中还包括金属线,所述金属线的材质为铝或铜。
  14. 根据权利要求10所述的液晶显示器,其中,所述第一1/4波片层的面内位相差为125nm-150nm,所述第二1/4波片层的面内位相差为125nm-150nm;或所述第一1/4波片层的面内位相差为137.5nm-162.5nm,所述第二1/4波片层的面内位相差为137.5nm-162.5nm。
  15. 根据权利要求14所述的液晶显示器,其中,所述第一1/4波片层的面内位相差为135nm-145nm,所述第二1/4波片层的面内位相差为135nm-145nm;或所述第一1/4波片层的面内位相差为145nm-150nm,所述第二1/4波片层的面内位相差为145nm-150nm。
  16. 根据权利要求10所述的液晶显示器,其中,所述第一1/4波片层和所述第二1/4波片层的材质相同。
  17. 根据权利要求10所述的液晶显示器,其中,所述第一1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物和所述第二1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物。
  18. 根据权利要求10所述的液晶显示器,其中,所述液晶显示器还包括第一补偿层和/或第二补偿层,所述第一补偿层设置在所述第一1/4波片层和所述阵列基板之间或所述第一补偿层设置在所述第一1/4波片层与所述上偏光层之间;所述第二补偿层设置在所述第二1/4波片层和所述彩膜基板之间或所述第二补偿层设置在所述第二1/4波片层与所述下偏光层之间。
  19. 根据权利要求10所述的液晶显示器,其中,所述液晶显示器还包括:
    第一保护层,设置在所述上偏光层上远离所述阵列基板一侧;
    第二保护层,设置在所述下偏光层上远离所述彩膜基板一侧。
  20. 一种移动终端,其中,包括液晶显示器,所述液晶显示器包括:
    阵列基板;
    彩膜基板,与所述阵列基板相对设置;
    液晶层,夹设在所述阵列基板和所述彩膜基板之间;
    第一1/4波片层,设置在所述阵列基板上;
    上偏光层,设置在所述第一1/4波片层上;
    下偏光层,设置在所述彩膜基板上,所述下偏光层的吸收轴与所述上偏光层的吸收轴互相垂直;
    其中,所述下偏光层和所述彩膜基板之间还设有第二1/4波片层,所述第二1/4波片层的光轴与所述第一1/4波片层的光轴互相垂直;
    所述阵列基板中还包括金属线,所述金属线的材质为铝或铜;
    所述第一1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物和所述第二1/4波片层的材质包括三醋酸纤维素和环烯烃聚合物。
PCT/CN2018/083307 2018-03-20 2018-04-17 一种液晶显示器及移动终端 WO2019178906A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/989,599 US20190293996A1 (en) 2018-03-20 2018-05-25 Liquid crystal display and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810229791.3 2018-03-20
CN201810229791.3A CN108490675A (zh) 2018-03-20 2018-03-20 一种液晶显示器及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/989,599 Continuation US20190293996A1 (en) 2018-03-20 2018-05-25 Liquid crystal display and mobile terminal

Publications (1)

Publication Number Publication Date
WO2019178906A1 true WO2019178906A1 (zh) 2019-09-26

Family

ID=63318635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083307 WO2019178906A1 (zh) 2018-03-20 2018-04-17 一种液晶显示器及移动终端

Country Status (2)

Country Link
CN (1) CN108490675A (zh)
WO (1) WO2019178906A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407391B (zh) * 2018-12-25 2020-12-08 深圳市华星光电半导体显示技术有限公司 透明液晶显示装置
CN110231731B (zh) * 2019-05-16 2021-07-23 武汉华星光电技术有限公司 薄膜晶体管液晶显示器及其制造方法
CN111025741A (zh) * 2019-12-31 2020-04-17 上海天马微电子有限公司 显示模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339321A (zh) * 2007-07-06 2009-01-07 深圳Tcl工业研究院有限公司 液晶显示装置
CN102654678A (zh) * 2011-10-18 2012-09-05 京东方科技集团股份有限公司 彩膜基板及其制造方法和3d液晶显示器
CN102998840A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 显示面板以及具有该显示面板的显示装置
CN104730613A (zh) * 2015-03-30 2015-06-24 京东方科技集团股份有限公司 一种偏光片、显示面板及液晶显示装置
CN104834147A (zh) * 2015-05-28 2015-08-12 京东方科技集团股份有限公司 一种反射式显示基板及反射式显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345978A (en) * 1999-01-23 2000-07-26 Sharp Kk Diffractive spatial light modulator
BRPI0923744A2 (pt) * 2009-01-27 2019-09-24 Sharp Kk "dispositivo de display de cristal líquido"
RU2473942C1 (ru) * 2009-05-27 2013-01-27 Шарп Кабусики Кайся Устройство жидкокристаллического дисплея

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339321A (zh) * 2007-07-06 2009-01-07 深圳Tcl工业研究院有限公司 液晶显示装置
CN102654678A (zh) * 2011-10-18 2012-09-05 京东方科技集团股份有限公司 彩膜基板及其制造方法和3d液晶显示器
CN102998840A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 显示面板以及具有该显示面板的显示装置
CN104730613A (zh) * 2015-03-30 2015-06-24 京东方科技集团股份有限公司 一种偏光片、显示面板及液晶显示装置
CN104834147A (zh) * 2015-05-28 2015-08-12 京东方科技集团股份有限公司 一种反射式显示基板及反射式显示装置

Also Published As

Publication number Publication date
CN108490675A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019178906A1 (zh) 一种液晶显示器及移动终端
WO2012070808A2 (ko) 반사 방지용 편광판 및 이를 포함하는 화상표시장치
CN108983515B (zh) 一种液晶显示器件及其制备方法和显示装置
WO2014187019A1 (zh) 一种偏光器件、液晶显示装置及其制造方法
US20210080782A1 (en) Liquid crystal display panel and display device
WO2017152446A1 (zh) 一种液晶显示面板及装置
WO2017015993A1 (zh) 液晶显示器及其液晶面板
WO2013174020A1 (zh) 液晶显示面板及其应用的显示装置
WO2019135535A1 (ko) 액정 표시 장치 및 이의 제조방법
WO2019203560A1 (ko) 타원 편광판 및 유기발광장치
JP2012208212A (ja) 表示装置および電子機器
WO2014032323A1 (zh) 液晶显示器
WO2017101162A1 (zh) 显示装置、反射式显示面板及其反射单元
WO2023151419A1 (zh) 膜片、显示屏和电子设备
WO2016095266A1 (zh) 一种透反式液晶显示器及其制造方法
WO2017181463A1 (zh) 阵列基板及其制造方法、液晶显示器
WO2016074256A1 (zh) 透明显示面板及其彩色滤光片基板
US11333930B2 (en) Liquid crystal display panel and display device
WO2016041216A1 (zh) 一种液晶显示面板
US10078165B2 (en) Polarizing unit and organic light emitting diode display including the same
WO2012174774A1 (zh) 显示面板及其应用的显示装置
WO2018205365A1 (zh) 彩膜基板和液晶显示器
WO2013174012A1 (zh) 液晶显示面板及其应用的显示装置
WO2019203561A1 (ko) 타원 편광판 및 유기발광장치
WO2013152498A1 (zh) 一种背光模组及液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910779

Country of ref document: EP

Kind code of ref document: A1