WO2019176886A1 - Cable and wiring harness - Google Patents

Cable and wiring harness Download PDF

Info

Publication number
WO2019176886A1
WO2019176886A1 PCT/JP2019/009824 JP2019009824W WO2019176886A1 WO 2019176886 A1 WO2019176886 A1 WO 2019176886A1 JP 2019009824 W JP2019009824 W JP 2019009824W WO 2019176886 A1 WO2019176886 A1 WO 2019176886A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
insulating layer
layer
cable
case
Prior art date
Application number
PCT/JP2019/009824
Other languages
French (fr)
Japanese (ja)
Inventor
亮 渡部
成一 平
学 佐々木
中村 詳一郎
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2020506528A priority Critical patent/JPWO2019176886A1/en
Publication of WO2019176886A1 publication Critical patent/WO2019176886A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present invention relates to a cable and a wire harness.
  • the cable has a transmission medium made of a conductor or an optical fiber and an insulating layer covering the transmission medium, and a flame retardant resin composition may be used for the insulating layer.
  • a flame retardant resin composition may be used for the insulating layer.
  • an insulating layer calcium carbonate particles blended at a ratio of 10 parts by mass or more with respect to 100 parts by mass of the base resin, a silicone compound blended at a ratio of more than 1 part by mass, A cable using a flame retardant resin composition containing a fatty acid-containing compound blended at a ratio of more than 3 parts by mass is disclosed. In this cable, the insulating layer has excellent flame retardancy.
  • the cable described in Patent Document 1 since the cable described in Patent Document 1 has an insulating layer having excellent flame retardancy, the cable as a whole has excellent flame retardancy, but wear resistance of the cable when the insulating layer is exposed. There was room for improvement.
  • This invention is made
  • the present inventors first considered dividing the insulating layer into an outermost layer and an inner layer in the cable described in Patent Document 1. And, as a result of intensive studies, the present inventors have found that the outermost layer is a base resin and at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles as a flame retardant, a silicone compound. In addition, it has been found that it is effective in solving the cable wear resistance that the cross-sectional area ratio of the outermost layer in the insulating layer is within a specific range in the cross section of the cable after adding the fatty acid-containing compound. It was. Thus, the present inventors have completed the present invention.
  • the present invention includes a transmission medium composed of a conductor or an optical fiber, and an insulating layer that covers the transmission medium, and the insulating layer includes an outermost layer and an inner layer provided inside the outermost layer.
  • the outermost layer contains a base resin and a flame retardant, and the flame retardant comprises at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, and a silicone compound, And a fatty acid-containing compound, wherein the cross-sectional area ratio of the outermost layer in the insulating layer is 0.5% or more and less than 86%.
  • the cable of the present invention has excellent wear resistance while maintaining good flame retardancy.
  • the outermost layer containing inorganic particles, silicone compound and fatty acid-containing compound that can form a barrier layer on the surface of the base resin during combustion has a cross-sectional area ratio of 0.5% or more and less than 86%. If so, the cable can maintain good flame retardancy.
  • the outermost layer has the above-mentioned cross-sectional area ratio, so in the inner layer, the blending ratio of the flame retardant can be reduced from the blending ratio of the flame retardant in the outermost layer. Further, the wear resistance of the inner layer can be further improved. As a result, it is possible to improve the wear resistance of the entire insulating layer, and the wear resistance of the entire cable can be improved. For this reason, the present inventors speculate that the above-mentioned effect may be obtained.
  • the cross-sectional area ratio of the outermost layer in the insulating layer is preferably 50% or less.
  • the content of the inorganic particles in the insulating layer is 0.03 to 7.00% by mass, and the content of the silicone compound in the insulating layer is 0.01 to 4.30% by mass.
  • the content of the fatty acid-containing compound in the insulating layer is preferably 0.02 to 7.50% by mass.
  • the flame retardancy of the cable can be further improved as compared with the case where the content of the inorganic particles in the insulating layer is less than 0.03% by mass. Moreover, compared with the case where the content rate of the inorganic particle in an insulating layer exceeds 7.00 mass%, the abrasion resistance of a cable can be improved more. Moreover, the flame retardance of a cable can be improved more compared with the case where the content rate of the silicone type compound in an insulating layer is less than 0.01 mass%. In addition, when the content of the silicone compound is within the above range, the abrasion resistance of the cable can be further improved compared to the case where the content of the silicone compound in the insulating layer exceeds 4.30% by mass. it can.
  • the flame retardancy of the cable can be further improved as compared with the case where the content of the fatty acid-containing compound in the insulating layer is less than 0.02% by mass. Moreover, compared with the case where the content rate of the fatty-acid containing compound in an insulating layer exceeds 7.50 mass%, the abrasion resistance of a cable can be improved more.
  • the outermost layer preferably has a thickness of 0.008 to 0.400 mm.
  • the flame retardancy of the cable can be further improved as compared with the case where the thickness of the outermost layer is less than 0.008 mm. Moreover, compared with the case where the thickness of outermost layer exceeds 0.400 mm, a cable can be reduced in weight and diameter, and the abrasion resistance and lead-out workability of the cable can be further improved.
  • the specific gravity of the insulating layer is preferably 0.84 to 1.04.
  • the flame retardancy of the cable can be further improved as compared with the case where the specific gravity of the insulating layer is less than 0.84.
  • the cable can be reduced in weight and the wear resistance of the cable can be further improved as compared with the case where the specific gravity of the insulating layer exceeds 1.04.
  • the blending ratio of the inorganic particles with respect to 100 parts by weight of the base resin is 6 to 20 parts by weight, and the blending ratio of the silicone compound with respect to 100 parts by weight of the base resin is 1.5. It is preferable that the blending ratio of the fatty acid-containing compound to 100 parts by mass of the base resin is 3 to 20 parts by mass.
  • the flame retardancy of the cable can be further improved as compared with the case where the blending ratio of the inorganic particles to 100 parts by mass of the base resin is less than 6 parts by mass.
  • the abrasion resistance of a cable can be improved more compared with the case where the inorganic particle with respect to 100 mass parts of base resins exceeds 20 mass parts.
  • the flame retardance of a cable can be improved more compared with the case where the compounding ratio of the silicone compound with respect to 100 parts by mass of the base resin is less than 1.5 parts by mass.
  • the bloom of the silicone compound is less likely to occur, and the wear resistance of the cable can be further improved.
  • the flame retardance of the cable can be further improved as compared with the case where the blending ratio of the fatty acid-containing compound to 100 parts by mass of the base resin is less than 3 parts by mass.
  • the abrasion resistance of a cable can be improved more compared with the case where the mixture ratio of the fatty acid-containing compound with respect to 100 parts by mass of the base resin exceeds 20 parts by mass.
  • the base resin preferably contains a polyolefin resin.
  • the inner layer is composed of a resin composition containing a base resin, the content of the propylene-based resin in the base resin is greater than 80% by mass, and the resin composition has a temperature of 230 ° C. and 2.16 kg weight.
  • the MFR is preferably 1.0 g / 10 min or more and less than 15.0 g / 10 min.
  • the abrasion resistance of the cable is further improved as compared with the case where the content of the propylene resin in the base resin of the inner layer is 80% by mass or less. Further, the appearance of the cable is more excellent as compared with the case where the MFR of the resin composition is less than 1.0 g / 10 minutes. Moreover, the abrasion resistance of a cable improves more compared with the case where MFR of a resin composition is 15.0 g / 10min or more.
  • the conductor is preferably aluminum or an aluminum alloy.
  • the weight of the cable can be reduced as compared with the case where copper or the like is used as the conductor.
  • the cable may further include a covering layer that covers the insulating layer described above.
  • This cable has excellent wear resistance while maintaining good flame resistance while maintaining good flame resistance even if it does not have a coating layer, and has excellent wear resistance while maintaining good flame resistance Is possible.
  • the present invention is a wire harness having the cable described above.
  • the wire harness of the present invention has a cable having excellent wear resistance while maintaining good flame retardancy, it is possible to have excellent wear resistance while maintaining good flame resistance. Become.
  • a cable and a wire harness having excellent wear resistance while maintaining good flame retardancy are provided.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is sectional drawing which shows one Embodiment of the wire harness of this invention.
  • FIG. 1 is a partial side view showing an embodiment of a cable according to the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the cable 10 includes an insulated wire 4 and a coating layer 3 that covers the insulated wire 4.
  • the insulated wire 4 has the conductor 1 as a transmission medium which transmits a signal, and the insulating layer 2 which coat
  • FIG. The insulating layer 2 includes an outermost layer 2B and an inner layer 2A provided inside the outermost layer 2B.
  • the outermost layer 2B of the insulating layer 2 includes a base resin and a flame retardant, and the flame retardant includes at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, and silicone.
  • the flame retardant includes at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, and silicone.
  • the cross-sectional area ratio (R) of the outermost layer 2B in the insulating layer 2 is 0.5% or more and less than 86%.
  • the insulated wire 4 has excellent wear resistance while maintaining good flame retardancy.
  • the cable 10 can also have excellent wear resistance while maintaining good flame retardancy.
  • the conductor 1 may be configured by only one strand, or may be configured by bundling a plurality of strands.
  • the material of the conductor 1 is not particularly limited, but is preferably aluminum or an aluminum alloy. In this case, compared with the case where copper etc. are used as the conductor 1, the insulated wire 4 and by extension, the cable 10 can be reduced in weight.
  • the cross-sectional area of the conductor 1 is not particularly limited, in view of the small-diameter and weight of the cable 10, preferably less than 5 mm 2, and more preferably 3 mm 2 or less . However, from the viewpoint of the strength and conductivity of the conductor 1, the cross-sectional area of the conductor 1 is preferably 0.13 mm 2 or more.
  • the insulating layer 2 is composed of the outermost layer 2 ⁇ / b> B and the inner layer 2 ⁇ / b> A provided inside the outermost layer 2.
  • the insulating layer 2 includes a base resin and a flame retardant, and the flame retardant includes at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, a silicone compound, and a fatty acid-containing compound. including.
  • the content of inorganic particles in the insulating layer 2 is preferably 0.03 to 7.00 mass%.
  • the flame retardancy of the insulated wire 4 can be further improved.
  • the abrasion resistance of the insulated wire 4 can be improved more.
  • the content of the inorganic particles in the insulating layer 2 is preferably 0.20 to 5.50% by mass, and more preferably 0.40 to 4.00% by mass.
  • the content of the silicone compound in the insulating layer 2 is preferably 0.01 to 4.30% by mass. In this case, compared with the case where the content rate of the silicone type compound in the insulating layer 2 is less than 0.01 mass%, the flame retardance of the insulated wire 4 can be improved more. Moreover, when the content rate of a silicone type compound exists in the said range, compared with the case where the content rate of the silicone type compound in the insulating layer 2 exceeds 4.30 mass%, the abrasion resistance of the insulated wire 4 and an insulated wire. 4 can be further improved in peel resistance (hereinafter referred to as “internal peel resistance”).
  • the content of the silicone compound in the insulating layer 2 is preferably 0.04 to 2.80% by mass, and more preferably 0.08 to 2.10% by mass.
  • the content of the fatty acid-containing compound in the insulating layer 2 is preferably 0.02 to 7.50% by mass.
  • the flame retardance of the insulated wire 4 can be further improved as compared with the case where the content of the fatty acid-containing compound in the insulating layer 2 is less than 0.02% by mass.
  • the abrasion resistance and internal peeling resistance of the insulated wire 4 can be improved more.
  • the content of the fatty acid-containing compound in the insulating layer 2 is preferably 0.07 to 4.00% by mass, and more preferably 0.16 to 2.10% by mass.
  • the general formula of the mass percentage of the silicone compound and the fatty acid-containing compound in the outermost layer 2B can be calculated as follows.
  • L, A 1 to A 3 , B 1 to B 3 , S A , S B , ⁇ A and ⁇ B are as follows.
  • a 1 Content of inorganic particles in inner layer 2A (mass%)
  • a 2 Content of silicone compound in inner layer 2A (% by mass)
  • a 3 Content of fatty acid-containing compound in the inner layer 2A (% by mass)
  • B 1 Content (% by mass) of inorganic particles in the outermost layer 2B
  • B 2 Content of silicone compound in outermost layer 2B (% by mass)
  • B 3 Content of fatty acid-containing compound in outermost layer 2B (% by mass)
  • S A sectional area of inner layer 2A (mm 2 )
  • S B Cross-sectional area of outermost layer 2B (mm 2 ) ⁇
  • the specific gravity of the insulating layer 2 is not particularly limited, but is preferably 0.84 to 1.04. In this case, compared with the case where the specific gravity of the insulating layer 2 is less than 0.84, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where the specific gravity of the insulating layer 2 exceeds 1.04, the insulated wire 4 can be reduced in weight and the wear resistance of the insulated wire 4 can be further improved.
  • the specific gravity of the insulating layer 2 is more preferably 0.99 or less. In this case, since the insulating layer 2 can float in water, the insulating layer 2 peeled off from the insulated wire 4 can be easily floated on the water and collected, and the efficiency of the recycling work can be improved. Furthermore, the specific gravity of the insulating layer 2 is preferably less than 0.97. In this case, since the insulating layer 2 is further reduced in weight, the insulated wire 4 is also reduced in weight. Moreover, when the insulating layer 2 peeled off from the insulated wire 4 is poured into water, the ascending speed becomes very fast, and the efficiency of the recycling work can be further increased. In particular, the specific gravity of the insulating layer 2 is preferably less than 0.95. In this case, the wear resistance of the cable 10 can be further improved as compared with the case where the specific gravity of the insulating layer 2 is 0.95 or more.
  • the insulating layer 2 does not have voids inside due to foaming or the like. In this case, the insulated wire 4 can obtain excellent mechanical properties.
  • the base resin in the insulating layer 2 should just be comprised with resin, and polyolefin resin, polyamide resin, polyester resin, styrene resin etc. are mentioned as resin. These can be used alone or in admixture of two or more.
  • the resin includes rubber and elastomer.
  • the resin should just be comprised by at least 1 sort (s) selected from polyolefin resin etc., rubber
  • the base resin may or may not contain a polyolefin resin, but preferably contains a polyolefin resin. In this case, compared with the case where base resin does not contain polyolefin resin, a flame retardance and abrasion resistance can be improved more.
  • polystyrene resin examples include non-polar group-containing polyolefins such as polyethylene (PE), propylene resin, polybutene, and polymethylpentene, polar group-containing polyolefins, and olefin-based thermoplastic elastomers. These can be used alone or in combination of two or more.
  • the polyolefin resin is preferably PE or a propylene resin from the viewpoint of cost and specific gravity, and is preferably a propylene resin from the viewpoint of heat resistance and wear resistance.
  • the propylene-based resin is a resin containing propylene as a structural unit, and examples of the propylene-based resin include homopolypropylene, propylene block copolymer, and propylene random copolymer. These can be used alone or in combination of two or more. Among these, a propylene block copolymer is preferable from the viewpoint of impact resistance and low temperature brittleness.
  • the polar group-containing polyolefin is a polyolefin containing a polar group.
  • Examples of the polar group of the polar group-containing polyolefin include a maleic acid group, a methacrylic acid group, a fumaric anhydride group, a maleic anhydride group, a hydroxyl group, and a carboxyl group.
  • a maleic anhydride group is preferable.
  • the wear resistance of the insulating layer 2 can be further improved. For this reason, the deterioration of the mechanical properties of the insulating layer 2 can be more sufficiently suppressed.
  • Examples of the polar group-containing polyolefin include ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), ethylene-butyl acrylate copolymer (EBA), their maleic anhydride-modified polymers, Examples thereof include maleic anhydride-modified polypropylene and ethylene- ⁇ -olefin copolymers modified with an unsaturated carboxylic acid such as maleic acid and maleic anhydride.
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • EBA ethylene-butyl acrylate copolymer
  • maleic anhydride-modified polymers examples thereof include maleic anhydride-modified polypropylene and ethylene- ⁇ -olefin copolymers modified with an unsaturated carboxylic acid such as maleic acid and maleic anhydride.
  • the content of the polar group-containing polyolefin in the polyolefin resin is not particularly limited, but is preferably 1 to 10% by mass.
  • the compatibility between the polyolefin resin and the flame retardant is further increased. The occurrence of bloom can be more sufficiently suppressed, and the wear resistance of the insulating layer 2 can be further improved.
  • the content of the polar group-containing polyolefin in the polyolefin resin is more preferably 2 to 5% by mass.
  • the base resin may be cross-linked or not cross-linked, but is preferably cross-linked.
  • the crosslinking include silane crosslinking, electron beam crosslinking, and peroxide crosslinking. Of these, silane crosslinking is preferred.
  • Silane cross-linking does not require sophisticated equipment as compared with electron beam cross-linking, and can sufficiently cross-link the base resin even if the inner layer 2A or the outermost layer 2B is thick. Silane cross-linking can sufficiently suppress the occurrence of scorch during extrusion compared to peroxide cross-linking.
  • the inorganic particles in the insulating layer 2 are intended to improve the flame retardancy of the insulated wire 4 by forming a barrier layer against the base resin together with the silicone compound and the fatty acid-containing compound when the insulated wire 4 is burned.
  • Inorganic particles include calcium carbonate particles and silicate compound particles. These can be used alone or in admixture of two or more. Use of calcium carbonate particles, silicate compound particles, or a mixture thereof as inorganic particles can effectively improve the flame retardancy in a small amount compared to metal hydroxides such as magnesium hydroxide. It is possible to reduce the weight of the layer 2 and hence the insulated wire 4.
  • the calcium carbonate particles may be either heavy calcium carbonate or light calcium carbonate.
  • Examples of the silicate compound particles include talc particles and clay particles.
  • the average particle diameter of the inorganic particles is not particularly limited, but is preferably 0.7 ⁇ m or more. In this case, more excellent flame retardancy can be obtained as compared with the case where the average particle size of the inorganic particles is less than 0.7 ⁇ m. However, the average particle size of the inorganic particles is preferably 1.8 ⁇ m or less. In this case, the wear resistance of the insulating layer 2 and the coating layer 3 can be improved as compared with the case where the average particle size of the inorganic particles exceeds 1.8 ⁇ m.
  • the silicone compound in the insulating layer 2 functions as a flame retardant, and examples of the silicone compound include polyorganosiloxane.
  • the polyorganosiloxane has a siloxane bond as a main chain and an organic group in a side chain.
  • the organic group include alkyl groups such as a methyl group, an ethyl group, and a propyl group; a vinyl group; and an aryl group such as a phenyl group.
  • the polyorganosiloxane examples include dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, and methyl (3,3,3-trifluoropropyl) polysiloxane. Is mentioned.
  • the polyorganosiloxane include silicone powder, silicone oil, silicone gum, and silicone resin. Among these, silicone gum is preferable. In this case, compared to the case where the silicone compound is a silicone compound other than silicone gum, blooming is less likely to occur in the insulating layer 2 and the flame retardancy of the insulating layer 2 can be further improved.
  • the silicone compound may be attached in advance to the surface of the inorganic particles.
  • a silicone compound is added to and mixed with calcium carbonate particles to obtain a mixture, and then the mixture is dried at 40 to 75 ° C. for 10 to 40 minutes. And a method of pulverizing the dried mixture with a Henschel mixer, an atomizer or the like.
  • the fatty acid-containing compound in the insulating layer 2 functions as a flame retardant.
  • the fatty acid-containing compound refers to a fatty acid or a metal salt thereof.
  • a fatty acid having 12 to 28 carbon atoms is used as the fatty acid.
  • examples of such fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, tuberculostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid.
  • stearic acid is preferable as the fatty acid. In this case, compared with the case where fatty acids other than stearic acid are used, the flame retardance of the insulating layer 2 can be further improved.
  • the metal constituting the fatty acid metal salt examples include magnesium, calcium, zinc and lead.
  • the fatty acid metal salt magnesium stearate or zinc stearate is preferable. In this case, compared with the case where fatty acid metal salts other than magnesium stearate or zinc stearate are used, the flame retardance of the insulating layer 2 can be further improved with a smaller addition amount.
  • magnesium stearate is particularly preferred.
  • the inner layer 2A contains a base resin.
  • the inner layer 2A may further contain at least one of inorganic particles consisting of at least one selected from the group consisting of calcium carbonate particles and silicate compound particles, a silicone-based compound, and a fatty acid-containing compound. It does not have to be.
  • the inner layer 2A may be a single layer or a multilayer body composed of two or more layers.
  • the blending ratio (F1) of the fatty acid-containing compound in the inner layer 2A with respect to 100 parts by weight of the base resin is preferably smaller than the blending ratio (F2) of the fatty acid-containing compound in the outermost layer 2B with respect to 100 parts by weight of the base resin.
  • F1 is F2 or more
  • not only the separation between the inner layer 2A and the conductor 1 but also the separation between the inner layer 2A and the outermost layer 2B can be more sufficiently suppressed. That is, the internal peel resistance of the insulated wire 4 can be further improved.
  • F2-F1 is not particularly limited as long as it is larger than 0 parts by mass, but it is preferably 3.0 parts by mass or more. In this case, the internal peel resistance of the insulated wire 4 can be more effectively improved as compared with the case where F2-F1 is less than 3.0 parts by mass.
  • F2-F1 is more preferably 5.0 parts by mass or more.
  • F2-F1 is more preferably 20.0 parts by mass or less.
  • the internal peel resistance of the insulated wire 4 can be further improved as compared with the case where F2-F1 exceeds 20.0 parts by mass. More preferably, F2-F1 is 10 parts by mass or less. In this case, the internal peel resistance can be further improved.
  • F1 is not particularly limited, but is preferably less than 3.0 parts by mass. In this case, compared with the case where F1 is 3.0 parts by mass or more, the internal peel resistance of the insulated wire 4 can be further improved. However, F1 is more preferably 2.0 parts by mass or less.
  • the blending ratio (C1) of the inorganic particles in the inner layer 2A with respect to 100 parts by mass of the base resin may be less than the blending ratio (C2) of the inorganic particles in the outermost layer 2B with respect to 100 parts by mass of the base resin or C2 or more.
  • C1 is preferably less than C2. In this case, compared with the case where C1 is C2 or more, the abrasion resistance in the insulated wire 4 can be improved more sufficiently.
  • C2-C1 is not particularly limited, but is preferably 6.0 parts by mass or more. In this case, compared with the case where C2-C1 is less than 6.0 mass parts, the flame retardance in the insulated wire 4 can be improved more fully.
  • C2-C1 is more preferably 8.0 parts by mass or more.
  • C2-C1 is more preferably 20.0 parts by mass or less. In this case, the wear resistance of the insulated wire 4 can be more sufficiently improved than when C2-C1 exceeds 20.0 parts by mass.
  • C1 is not particularly limited, but is preferably 8.0 parts by mass or less. In this case, compared with the case where C1 exceeds 8.0 mass parts, the abrasion resistance in the insulated wire 4 can be improved more fully. However, C1 is more preferably 3.0 parts by mass or less.
  • the blending ratio (S1) of the silicone compound in the inner layer 2A with respect to 100 parts by weight of the base resin is at least S2 or less than the blending ratio (S2) of the silicone compound in the outermost layer 2B with respect to 100 parts by weight of the base resin.
  • S1 is less than S2.
  • the internal peel resistance of the insulated wire 4 can be more sufficiently improved.
  • S2-S1 is not particularly limited, but is preferably 1.5 parts by mass or more. In this case, compared to the case where S2-S1 is less than 1.5 parts by mass, the internal peel resistance and flame retardancy of the insulated wire 4 can be improved more effectively.
  • S2-S1 is more preferably 3.0 parts by mass or more. However, S2-S1 is more preferably 10.0 parts by mass or less. In this case, the internal peel resistance of the insulated wire 4 can be more sufficiently improved than when S2-S1 exceeds 10.0 parts by mass.
  • S1 is not particularly limited, but is preferably 2.5 parts by mass or less. In this case, compared to the case where S1 exceeds 2.5 parts by mass, the bloom of the silicone compound is less likely to occur, and the internal peel resistance of the insulated wire 4 can be more sufficiently improved. However, S1 is more preferably 1.5 parts by mass or less.
  • the base resin is not particularly limited, but is preferably a base resin in which the content of the propylene-based resin is larger than 80% by mass.
  • the wear resistance of the insulated wire 4 can be further improved as compared with the case where the content of the propylene-based resin in the base resin is 80% by mass or less.
  • the MFR at 230 ° C. and 2.16 kg weight of the resin composition constituting the inner layer 2A is 1.0 g / 10 It is preferable that it is 15.0 g / 10 min or more. In this case, the appearance of the insulated wire 4 is more excellent as compared with the case where the MFR of the resin composition is less than 1.0 g / 10 minutes. Moreover, abrasion resistance improves more compared with the case where MFR of a resin composition is 15.0 g / 10min or more. However, the MFR of the resin composition is more preferably 3.0 g / 10 min or more and less than 10.0 g / 10 min.
  • the inner layer 2A may further contain a filler such as an antioxidant, a metal deactivator, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, and carbon black as necessary.
  • a filler such as an antioxidant, a metal deactivator, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, and carbon black as necessary.
  • the outermost layer 2B includes a base resin and a flame retardant, and the flame retardant includes at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, a silicone compound, and a fatty acid-containing compound. including.
  • the compounding ratio F2 of the fatty acid-containing compound with respect to 100 parts by mass of the base resin is not particularly limited, but is preferably 3 to 20 parts by mass. In this case, compared with the case where F2 is less than 3 mass parts, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where F2 exceeds 20 mass parts, the abrasion resistance of the insulated wire 4 can be improved more. F2 is more preferably 4.0 parts by mass or more and less than 14.0 parts by mass, and particularly preferably 5.0 parts by mass or more and less than 8.0 parts by mass.
  • the mixing ratio (C2) of the inorganic particles with respect to 100 parts by mass of the base resin is not particularly limited, but is preferably 6 to 20 parts by mass. In this case, compared with the case where C2 is less than 6 mass parts, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where C2 exceeds 20 mass parts, the abrasion resistance of the insulated wire 4 can be improved more.
  • C2 is more preferably 7.0 parts by mass or more and less than 17.0 parts by mass, and particularly preferably 8.0 parts by mass or more and less than 15 parts by mass.
  • the blending ratio (S2) of the silicone compound with respect to 100 parts by mass of the base resin is not particularly limited, but is preferably 1.5 to 10 parts by mass. In this case, compared with the case where S2 is less than 1.5 mass parts, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where S2 exceeds 10 mass parts, the bloom of a silicone type compound becomes difficult to occur and the wear resistance of the insulated wire 4 can be further improved. S2 is more preferably 3.0 parts by mass or more and less than 9.0 parts by mass, and particularly preferably 4.0 parts by mass or more and less than 7.0 parts by mass.
  • the cross-sectional area ratio (R) of the outermost layer 2B in the insulating layer 2 is 0.5% or more and less than 86%.
  • the flame retardance of the insulated wire 4 can be further improved.
  • the cost of the insulated wire 4 can be reduced more and the insulated wire 4 can be reduced in weight. .
  • the cross-sectional area ratio R is calculated using the following equation.
  • R 100 ⁇ (2r + 2t2 + t1) ⁇ t1 / (2r + t2 + t1) ⁇ (t2 + t1) (In the above formula, r represents the radius of the conductor 1, t2 represents the thickness of the inner layer 2A, and t1 represents the thickness of the outermost layer 2B.)
  • the cross-sectional area ratio R is more preferably 50% or less, and even more preferably 30% or less. In this case, compared with the case where the cross-sectional area ratio R exceeds 50%, the wear resistance or lead processability of the cable 10 can be further improved.
  • the cross-sectional area ratio R is more preferably 1% or more, and even more preferably 2.5% or more. In this case, the cable 10 can have more excellent flame retardancy.
  • the thickness t1 of the outermost layer 2B is not particularly limited, but is preferably 0.008 to 0.400 mm. In this case, compared with the case where thickness t1 is less than 0.008 mm, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where thickness t1 exceeds 0.400 mm, while the insulated wire 4 can be reduced in weight and diameter, the abrasion resistance and lead-out workability of the insulated wire 4 can be improved more.
  • the thickness t1 of the outermost layer 2B is more preferably 0.010 to 0.200 mm, and particularly preferably 0.020 to 0.100 mm.
  • the insulated wire 4 can be further reduced in weight and the wear resistance can be further improved.
  • the flame retardance of the insulated wire 4 can be improved more compared with the case where the thickness t1 of the outermost layer 2B is less than 0.010 mm.
  • the outermost layer 2B may further contain a filler such as an antioxidant, a metal deactivator, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, and carbon black as necessary.
  • a filler such as an antioxidant, a metal deactivator, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, and carbon black as necessary.
  • the covering layer 3 protects the insulating layer 2 from physical or chemical damage.
  • the thickness of the coating layer 3 is not particularly limited, but is preferably less than 2.0 mm. In this case, the weight of the cable 10 can be further reduced as compared with the case where the thickness of the covering layer 3 is 2.0 mm or more.
  • the thickness of the coating layer 3 is more preferably 1.0 mm or less, and further preferably 0.5 mm or less. However, from the viewpoint of wear resistance, the thickness of the coating layer 3 is preferably 0.2 mm or more.
  • conductor 1 is prepared.
  • the insulated wire 4 is obtained by covering the conductor 1 with the insulating layer 2.
  • the insulating layer 2 may be formed by simultaneously forming the inner layer 2A and the outermost layer 2B, or by forming the outermost layer 2B on the inner layer 2A after forming the inner layer 2A. Also good.
  • the inner layer 2A and the outermost layer 2B may be formed by preparing an inner layer resin composition for forming the inner layer 2A and an outermost layer resin composition for forming the outermost layer 2B, respectively, and extruding them. it can.
  • Examples of the method for forming the insulating layer 2 on the conductor 1 include three methods: a co-extrusion method, a tandem extrusion method, and a separate extrusion method.
  • the inner layer resin composition discharged from the crosshead is coated on the conductor 1 to form the inner layer 2A, and immediately after obtaining the inner layer coated electric wire, the outermost layer resin composition is continued in the same crosshead.
  • the outermost layer 2B is formed by extruding and coating on the inner-layer coated electric wire.
  • the inner layer resin composition discharged from the cross head is coated on the conductor 1 to form the inner layer 2A, and after obtaining the inner layer covered electric wire, the inner layer resin wire is discharged from another cross head on the same extrusion line.
  • the outermost layer 2B is formed by coating the outermost layer resin composition on the inner-layer coated electric wire.
  • the inner layer resin composition discharged from the crosshead is coated on the conductor 1 to form the inner layer 2A, the inner layer covered electric wire is obtained, wound once on the bobbin, and then wound up.
  • the outermost layer resin composition discharged from the same crosshead or another crosshead is coated on the inner coated wire to form the outermost layer.
  • a co-extrusion method and a tandem extrusion method are preferable because continuous production is possible.
  • the coextrusion method is particularly preferable.
  • the adhesion between the inner layer 2A and the outermost layer 2B is increased, and the peeling between the inner layer 2A and the outermost layer 2 is further improved. It can be suppressed sufficiently.
  • the coating layer 3 can also be formed by preparing a coating layer resin composition for forming the coating layer 3 and extruding it using an extruder.
  • the cable 10 is obtained as described above.
  • the present invention is not limited to the above embodiment.
  • the cable 10 has one insulated wire 4 in the above embodiment
  • the cable of the present invention may have two or more insulated wires 4 inside the coating layer 3.
  • the cable 10 has the covering layer 3, but the covering layer 3 may be omitted.
  • the cable 10 whose transmission medium is the conductor 1 is used in the above embodiment, the cable of the present invention may be an optical fiber cable in which the transmission medium is replaced from the conductor 1 to the optical fiber in the cable 10. Good.
  • the covering layer 3 may be omitted.
  • FIG. 3 is a cross-sectional view showing an embodiment of the wire harness of the present invention.
  • the wire harness 20 includes a tape 21 that bundles a plurality of (four in FIG. 3) insulated wires 4 as cables.
  • the tape 21 does not need to cover the plurality of insulated wires 4 entirely along the length direction, and partially covers the plurality of insulated wires 4 at a necessary position along the length direction. If you do.
  • this wire harness 20 has the insulated wire 4 having excellent wear resistance while maintaining good flame resistance, it is possible to have excellent wear resistance while maintaining good flame resistance. It becomes.
  • the wire harness 20 includes a plurality of insulated wires 4 as cables, but may include only one insulated wire 4.
  • the cable 10 can be used instead of the insulated wire 4.
  • the wire harness 20 includes only the insulated wire 4 as a cable inside the tape 21, but may include two types of the insulated wire 4 and the cable 10.
  • the wire harness 20 includes a tape 21, but the wire harness 20 may use a binding band, a corrugated tube, or the like instead of the tape 21.
  • Example 1 to 113 and Comparative Examples 1 to 23 ⁇ Outermost layer resin composition> Base resin, silicone masterbatch (silicone MB), fatty acid-containing compound, inorganic particles and magnesium hydroxide were blended in the blending amounts shown in Tables 1 to 15 and a twin-screw extruder (manufactured by Nippon Steel Works, cylinder diameter 32 mm) Kneaded to obtain an outermost resin composition.
  • Tables 1 to 15 the unit of the blending amount of each blending component is part by mass.
  • the silicone MB also contains a resin. If the blending amount in the column of the base resin and the blending amount of the resin in the silicone MB are summed, the sum is 100 parts by mass.
  • ⁇ Inner layer resin composition Base resin, silicone masterbatch (silicone MB), fatty acid-containing compound, inorganic particles and magnesium hydroxide were blended in the blending amounts shown in Tables 1 to 15 and a twin-screw extruder (manufactured by Nippon Steel Works, cylinder diameter 32 mm) Were kneaded to obtain an inner layer resin composition.
  • Tables 1 to 15 the unit of the blending amount of each blending component is part by mass.
  • the silicone MB also contains a resin.
  • the sum is 100 parts by mass.
  • MFRs at 230 ° C. and 2.16 kg weight are shown in Tables 1 to 15.
  • “ ⁇ ” in the MFR column indicates that the inner layer resin composition did not flow at 230 ° C. and MFR measurement could not be performed.
  • base resin silicone MB
  • fatty acid-containing compound fatty acid-containing compound
  • inorganic particles inorganic particles
  • magnesium hydroxide magnesium hydroxide
  • Silicone MB Silicone MB1 Contains 50% by weight silicone gum and 50% by weight low density polyethylene (LLDPE) (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Silicone MB2 Contains 50% by weight silicone gum and 50% by weight propylene resin (PP) (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Calcium carbonate particles 1 Average particle size 1.7 ⁇ m, paraffin surface treatment (manufactured by Nitto Flour Chemical Co., Ltd.)
  • Calcium carbonate particles 2 Average particle size 1.7 ⁇ m, stearic acid surface treatment (manufactured by Nitto Flourishing Co., Ltd.)
  • Clay particles average particle size 1.5 ⁇ m (manufactured by Takehara Chemical Industries)
  • Talc particles average particle size 2.5 ⁇ m (made by Nippon Talc Co., Ltd.)
  • the insulated electric wire as a cable was produced as follows according to the kind of the following electric wire.
  • Electric wire 1 ... Thick wall 0.5 sq (mm 2 )
  • Electric wire 2 ... Ultra thin 0.5sq
  • Electric wire 3 ... Ultra thin 1.5sq
  • Electric wire 4 ... Thick wall 100sq
  • the kind of the said electric wire is based on JASO D611. “0.5”, “100”, and “1.5” indicate the cross-sectional area of the conductor, and “thick” and “ultra-thin” indicate the thickness of the insulating layer. However, the thickness of the insulating layer may differ depending on the conductor cross-sectional area even if the same “thick” notation is used.
  • the electric wires 1 to 4 are as follows. Electric wire 1 ... conductor cross-sectional area 0.5 mm 2 , insulation layer thickness 0.50 mm Electric wire 2 ... conductor cross-sectional area 0.5 mm 2 , insulation layer thickness 0.20 mm Electric wire 3: conductor cross-sectional area 1.5 mm 2 , insulation layer thickness 0.20 mm Electric wire 4 ...
  • the inner layer resin composition prepared as described above was pushed out by a single screw extruder (manufactured by Mars Seiki Co., Ltd., cylinder outer diameter: 25 mm), discharged from the crosshead, and placed on the conductors as shown in Tables 1 to 3.
  • the inner layer was formed by coating so as to have a thickness shown in FIG. 15, and the obtained inner layer covered electric wire was wound around a bobbin, and then the wound inner layer covered electric wire was sent out.
  • the outermost layer resin composition prepared as described above is extruded by a single-screw extruder (made by Mars Seiki Co., Ltd., cylinder outer diameter 25 mm), discharged from the crosshead, and displayed on the fed inner layer covered electric wire.
  • the outermost layer was formed by coating so as to have a thickness shown in 1 to 15.
  • an insulated wire as a cable was produced.
  • the electric wire 4 produced the insulated electric wire similarly to the above except having used the single screw extruder (made by Mars Seiki Co., Ltd.) whose cylinder outer diameter is 60 mm as a single screw extruder.
  • the wire design of the insulated wire produced as described above that is, the outer diameter of the conductor, the outer diameter of the wire, the thickness of the inner layer, the thickness of the outermost layer, and the cross-sectional area ratio of the outermost layer in the insulating layer As shown in 1-15.
  • the specific gravity of the insulating layer of the insulated wire produced as described above was measured as follows. That is, the insulating layer is peeled off from the insulated wire, the insulating layer is melt-kneaded to produce a uniform sheet having a thickness of 2 mm, and the insulating layer is measured with an electronic hydrometer (manufactured by Alpha Mirage) based on the Archimedes method. The specific gravity of was measured. The results are shown in Tables 1-15.
  • ⁇ Abrasion resistance> The abrasion resistance was determined by performing a scrape wear test on the insulated wires of Examples 1 to 113 and Comparative Examples 1 to 23 according to the test method described in JASO D618. As the index. And about the insulated wire, it ranked as follows according to the kind, and evaluated. The results are shown in Tables 1-15.
  • the acceptance criteria for wear resistance were as follows. For Examples 96 to 100 and Comparative Example 9, in order to show that better wear resistance can be obtained when the cross-sectional area ratio of the outermost layer in the insulating layer is 50% or less, the evaluation rank Table 16 shows the corresponding values of the number of scrape wear.
  • x, ⁇ , ⁇ and ⁇ are as follows.
  • X means that the number of scrape wear is less than the JASO standard value.
  • means that the number of scrape wear is equal to or greater than the JASO standard value, but there is a margin.
  • the conductor is eccentric to some extent due to manufacturing variations. Further, since the discharge amount at the time of extrusion also varies, the thickness of the insulating layer also varies to some extent when viewed as a long length. For this reason, a thick part and a thin part inevitably occur in the insulating layer of the cable.
  • “O” means that the cable can be used in a normal environment (an environment in which wear is relatively difficult at a normal vibration level) where the number of scrape wear is equal to or higher than the JASO standard value and the tolerance is high.
  • means that the scrape wear frequency is more than the JASO standard value and has a higher tolerance, and the cable can be used even in harsh environments (for example, in the vicinity of automobile engines where vibrations are high and there is a high risk of wear). .
  • the evaluation rank is ⁇ , the cable can be used even around the engine, which is difficult to be used with ⁇ , ⁇ , and ⁇ , and is easily rubbed and worn by intense vibration.
  • X means that when connecting the conductor of the cable that has been led out and the connection terminal, the beard is likely to enter between the conductor and the connection terminal to cause contact failure.
  • is suitable for the outer diameter of the insulating layer and the outer diameter of the conductor, although it is unlikely that whisker will enter between the conductor and the connecting terminal when connecting the conductor of the leaded cable and the connecting terminal. This means that it is necessary to perform the lead processing in consideration of the variation (conductor eccentricity) at the time of normal manufacturing while using a dedicated lead processing blade.
  • is suitable for the outer diameter of the insulating layer and the outer diameter of the conductor, although when connecting the conductor of the cable and the connection terminal, the possibility that a whisker will enter between the conductor and the connection terminal and contact failure is low
  • indicates that when connecting the conductor of the leaded cable and the connection terminal, it is unlikely that whiskers will enter between the conductor and the connection terminal, resulting in poor contact.
  • the cable of the present invention has excellent wear resistance while maintaining good flame retardancy.
  • the cable of the present invention has excellent wear resistance while maintaining good flame retardancy, so that it is an insulated wire for automobiles, industrial wires, automotive cables, industrial cables, communication cables, coaxial cables, and electronic wires. It can be applied to various uses such as.
  • the cable of the present invention can also be applied to an optical fiber cable in which the transmission medium is replaced with an optical fiber from a conductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Insulated Conductors (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)

Abstract

This cable comprises: a transmission medium which is composed of a conductor or an optical fiber; and an insulating layer which covers the transmission medium. The insulating layer comprises an outermost layer and an inner layer that is provided inside the outermost layer; and the outermost layer contains a base resin and a flame retardant. The flame retardant contains: inorganic particles, which are composed of at least one kind of particles selected from the group consisting of calcium carbonate particles and silicate compound particles; a silicone compound; and a fatty acid-containing compound. The cross-sectional area ratio of the outermost layer in the insulating layer is 0.5% or more but less than 86%.

Description

ケーブル及びワイヤハーネスCable and wire harness
 本発明は、ケーブル及びワイヤハーネスに関する。 The present invention relates to a cable and a wire harness.
 ケーブルは、導体又は光ファイバからなる伝送媒体と、伝送媒体を被覆する絶縁層とを有するものであり、絶縁層には難燃性樹脂組成物が使用されることがある。例えば下記特許文献1には、絶縁層として、ベース樹脂100質量部に対して10質量部以上の割合で配合される炭酸カルシウム粒子と、1質量部より大きい割合で配合されるシリコーン系化合物と、3質量部より大きい割合で配合される脂肪酸含有化合物とを含む難燃性樹脂組成物が使用されたケーブルが開示されている。このケーブルにおいては、絶縁層が優れた難燃性を有する。 The cable has a transmission medium made of a conductor or an optical fiber and an insulating layer covering the transmission medium, and a flame retardant resin composition may be used for the insulating layer. For example, in Patent Document 1 below, as an insulating layer, calcium carbonate particles blended at a ratio of 10 parts by mass or more with respect to 100 parts by mass of the base resin, a silicone compound blended at a ratio of more than 1 part by mass, A cable using a flame retardant resin composition containing a fatty acid-containing compound blended at a ratio of more than 3 parts by mass is disclosed. In this cable, the insulating layer has excellent flame retardancy.
特開2014-94969号公報JP 2014-94969 A
 しかし、上記特許文献1に記載のケーブルは以下の課題を有していた。 However, the cable described in Patent Document 1 has the following problems.
 すなわち、上記特許文献1に記載のケーブルは、優れた難燃性を有する絶縁層を有するため、ケーブル全体としても優れた難燃性を有するものの、絶縁層が露出したときのケーブルの耐摩耗性の点で改善の余地を有していた。 That is, since the cable described in Patent Document 1 has an insulating layer having excellent flame retardancy, the cable as a whole has excellent flame retardancy, but wear resistance of the cable when the insulating layer is exposed. There was room for improvement.
 本発明は、上記事情に鑑みてなされたものであり、良好な難燃性を維持しつつ、優れた耐摩耗性を有するケーブル及びワイヤハーネスを提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the cable and wire harness which have the outstanding abrasion resistance, maintaining favorable flame retardance.
 本発明者らは上記課題を解決するため、まず特許文献1に記載のケーブルにおいて、絶縁層を最外層と内層に分けることを考えた。そして、本発明者らは鋭意研究を重ねた結果、最外層にベース樹脂と、難燃剤として炭酸カルシウム粒子及びケイ酸塩化合物粒子からなる群より選ばれる少なくとも1種からなる無機粒子、シリコーン系化合物及び脂肪酸含有化合物を含有させた上で、ケーブルの断面において、絶縁層における最外層の断面積比率を特定の範囲にすることが、ケーブルの耐摩耗性を解決する上で有効であることを見出した。こうして、本発明者らは本発明を完成するに至った。 In order to solve the above problems, the present inventors first considered dividing the insulating layer into an outermost layer and an inner layer in the cable described in Patent Document 1. And, as a result of intensive studies, the present inventors have found that the outermost layer is a base resin and at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles as a flame retardant, a silicone compound In addition, it has been found that it is effective in solving the cable wear resistance that the cross-sectional area ratio of the outermost layer in the insulating layer is within a specific range in the cross section of the cable after adding the fatty acid-containing compound. It was. Thus, the present inventors have completed the present invention.
 すなわち本発明は、導体又は光ファイバで構成される伝送媒体と、前記伝送媒体を被覆する絶縁層とを有し、前記絶縁層が、最外層と、前記最外層の内側に設けられる内層とを有し、前記最外層が、ベース樹脂及び難燃剤を含み、前記難燃剤が、炭酸カルシウム粒子及びケイ酸塩化合物粒子からなる群より選ばれる少なくとも1種からなる無機粒子と、シリコーン系化合物と、脂肪酸含有化合物とを含み、前記絶縁層における前記最外層の断面積比率が0.5%以上86%未満であるケーブルである。 That is, the present invention includes a transmission medium composed of a conductor or an optical fiber, and an insulating layer that covers the transmission medium, and the insulating layer includes an outermost layer and an inner layer provided inside the outermost layer. And the outermost layer contains a base resin and a flame retardant, and the flame retardant comprises at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, and a silicone compound, And a fatty acid-containing compound, wherein the cross-sectional area ratio of the outermost layer in the insulating layer is 0.5% or more and less than 86%.
 本発明のケーブルは、良好な難燃性を維持しつつ、優れた耐摩耗性を有する。 The cable of the present invention has excellent wear resistance while maintaining good flame retardancy.
 なお、上記効果が得られる理由について、本発明者らは以下のように推察している。 In addition, the present inventors infer the reason why the above effect is obtained as follows.
 すなわち、絶縁層において、燃焼時にベース樹脂の表面にバリア層を形成し得る無機粒子、シリコーン系化合物及び脂肪酸含有化合物を含む最外層が0.5%以上86%未満の断面積比率を有していれば、ケーブルが良好な難燃性を維持できる。一方、最外層が上記断面積比率を有することによりケーブルが良好な難燃性を維持できるため、内層においては、難燃剤の配合割合を最外層における難燃剤の配合割合よりも低減させることができ、内層の耐摩耗性をより向上させることができる。その結果、絶縁層全体としての耐摩耗性を向上させることも可能となり、ケーブル全体としての耐摩耗性を向上させることができる。このため、上記効果が得られるのではないかと本発明者らは推察している。 That is, in the insulating layer, the outermost layer containing inorganic particles, silicone compound and fatty acid-containing compound that can form a barrier layer on the surface of the base resin during combustion has a cross-sectional area ratio of 0.5% or more and less than 86%. If so, the cable can maintain good flame retardancy. On the other hand, since the outermost layer has the above-mentioned cross-sectional area ratio, the cable can maintain good flame retardancy, so in the inner layer, the blending ratio of the flame retardant can be reduced from the blending ratio of the flame retardant in the outermost layer. Further, the wear resistance of the inner layer can be further improved. As a result, it is possible to improve the wear resistance of the entire insulating layer, and the wear resistance of the entire cable can be improved. For this reason, the present inventors speculate that the above-mentioned effect may be obtained.
 上記ケーブルにおいては、前記絶縁層における前記最外層の断面積比率が50%以下であることが好ましい。 In the cable, the cross-sectional area ratio of the outermost layer in the insulating layer is preferably 50% or less.
 この場合、絶縁層における最外層の断面積比率が50%を超える場合に比べて、耐摩耗性又は口出し加工性をより向上させることができる。 In this case, compared to the case where the cross-sectional area ratio of the outermost layer in the insulating layer exceeds 50%, it is possible to further improve the wear resistance or lead processability.
 上記ケーブルにおいては、前記絶縁層中の前記無機粒子の含有率が0.03~7.00質量%であり、前記絶縁層中の前記シリコーン系化合物の含有率が0.01~4.30質量%であり、前記絶縁層中の前記脂肪酸含有化合物の含有率が0.02~7.50質量%であることが好ましい。 In the cable, the content of the inorganic particles in the insulating layer is 0.03 to 7.00% by mass, and the content of the silicone compound in the insulating layer is 0.01 to 4.30% by mass. The content of the fatty acid-containing compound in the insulating layer is preferably 0.02 to 7.50% by mass.
 この場合、絶縁層中の無機粒子の含有率が0.03質量%未満である場合に比べて、ケーブルの難燃性をより向上させることができる。また、絶縁層中の無機粒子の含有率が7.00質量%を超える場合に比べて、ケーブルの耐摩耗性をより向上させることができる。また、絶縁層中のシリコーン系化合物の含有率が0.01質量%未満である場合に比べて、ケーブルの難燃性をより向上させることができる。また、シリコーン系化合物の含有率が上記範囲内にあると、絶縁層中のシリコーン系化合物の含有率が4.30質量%を超える場合に比べて、ケーブルの耐摩耗性をより向上させることができる。さらに、この場合、絶縁層中の脂肪酸含有化合物の含有率が0.02質量%未満である場合に比べて、ケーブルの難燃性をより向上させることができる。また、絶縁層中の脂肪酸含有化合物の含有率が7.50質量%を超える場合に比べて、ケーブルの耐摩耗性をより向上させることができる。 In this case, the flame retardancy of the cable can be further improved as compared with the case where the content of the inorganic particles in the insulating layer is less than 0.03% by mass. Moreover, compared with the case where the content rate of the inorganic particle in an insulating layer exceeds 7.00 mass%, the abrasion resistance of a cable can be improved more. Moreover, the flame retardance of a cable can be improved more compared with the case where the content rate of the silicone type compound in an insulating layer is less than 0.01 mass%. In addition, when the content of the silicone compound is within the above range, the abrasion resistance of the cable can be further improved compared to the case where the content of the silicone compound in the insulating layer exceeds 4.30% by mass. it can. Furthermore, in this case, the flame retardancy of the cable can be further improved as compared with the case where the content of the fatty acid-containing compound in the insulating layer is less than 0.02% by mass. Moreover, compared with the case where the content rate of the fatty-acid containing compound in an insulating layer exceeds 7.50 mass%, the abrasion resistance of a cable can be improved more.
 上記ケーブルにおいては、前記最外層の厚さが0.008~0.400mmであることが好ましい。 In the cable, the outermost layer preferably has a thickness of 0.008 to 0.400 mm.
 この場合、最外層の厚さが0.008mm未満である場合に比べて、ケーブルの難燃性をより向上させることができる。また、最外層の厚さが0.400mmを超える場合に比べて、ケーブルをより軽量化及び細径化できるとともに、ケーブルの耐摩耗性及び口出し加工性をより向上させることができる。 In this case, the flame retardancy of the cable can be further improved as compared with the case where the thickness of the outermost layer is less than 0.008 mm. Moreover, compared with the case where the thickness of outermost layer exceeds 0.400 mm, a cable can be reduced in weight and diameter, and the abrasion resistance and lead-out workability of the cable can be further improved.
 上記ケーブルにおいては、前記絶縁層の比重が0.84~1.04であることが好ましい。 In the cable, the specific gravity of the insulating layer is preferably 0.84 to 1.04.
 この場合、絶縁層の比重が0.84未満である場合に比べて、ケーブルの難燃性をより向上させることができる。また、絶縁層の比重が1.04を超える場合に比べて、ケーブルをより軽量化できるとともにケーブルの耐摩耗性をより向上させることができる。 In this case, the flame retardancy of the cable can be further improved as compared with the case where the specific gravity of the insulating layer is less than 0.84. In addition, the cable can be reduced in weight and the wear resistance of the cable can be further improved as compared with the case where the specific gravity of the insulating layer exceeds 1.04.
 上記ケーブルにおいては、前記最外層において、前記ベース樹脂100質量部に対する前記無機粒子の配合割合が6~20質量部であり、前記ベース樹脂100質量部に対する前記シリコーン系化合物の配合割合が1.5~10質量部であり、前記ベース樹脂100質量部に対する前記脂肪酸含有化合物の配合割合が3~20質量部であることが好ましい。 In the cable, in the outermost layer, the blending ratio of the inorganic particles with respect to 100 parts by weight of the base resin is 6 to 20 parts by weight, and the blending ratio of the silicone compound with respect to 100 parts by weight of the base resin is 1.5. It is preferable that the blending ratio of the fatty acid-containing compound to 100 parts by mass of the base resin is 3 to 20 parts by mass.
 この場合、ベース樹脂100質量部に対する無機粒子の配合割合が6質量部未満である場合に比べて、ケーブルの難燃性をより向上させることができる。また、ベース樹脂100質量部に対する無機粒子が20質量部を超える場合に比べて、ケーブルの耐摩耗性をより向上させることができる。また、ベース樹脂100質量部に対するシリコーン系化合物の配合割合が1.5質量部未満である場合に比べて、ケーブルの難燃性をより向上させることができる。また、ベース樹脂100質量部に対するシリコーン系化合物の配合割合が10質量部を超える場合に比べて、シリコーン系化合物のブルームが起こりにくくなるとともにケーブルの耐摩耗性をより向上させることができる。さらに、ベース樹脂100質量部に対する脂肪酸含有化合物の配合割合が3質量部未満である場合に比べて、ケーブルの難燃性をより向上させることができる。また、ベース樹脂100質量部に対する脂肪酸含有化合物の配合割合が20質量部を超える場合に比べて、ケーブルの耐摩耗性をより向上させることができる。 In this case, the flame retardancy of the cable can be further improved as compared with the case where the blending ratio of the inorganic particles to 100 parts by mass of the base resin is less than 6 parts by mass. Moreover, the abrasion resistance of a cable can be improved more compared with the case where the inorganic particle with respect to 100 mass parts of base resins exceeds 20 mass parts. Moreover, the flame retardance of a cable can be improved more compared with the case where the compounding ratio of the silicone compound with respect to 100 parts by mass of the base resin is less than 1.5 parts by mass. Moreover, compared with the case where the compounding ratio of the silicone compound with respect to 100 parts by mass of the base resin exceeds 10 parts by mass, the bloom of the silicone compound is less likely to occur, and the wear resistance of the cable can be further improved. Furthermore, the flame retardance of the cable can be further improved as compared with the case where the blending ratio of the fatty acid-containing compound to 100 parts by mass of the base resin is less than 3 parts by mass. Moreover, the abrasion resistance of a cable can be improved more compared with the case where the mixture ratio of the fatty acid-containing compound with respect to 100 parts by mass of the base resin exceeds 20 parts by mass.
 上記ケーブルにおいては、前記ベース樹脂がポリオレフィン樹脂を含むことが好ましい。 In the cable, the base resin preferably contains a polyolefin resin.
 この場合、ベース樹脂がポリオレフィン樹脂を含まない場合に比べて、難燃性及び耐摩耗性をより向上させることができる。 In this case, compared with the case where the base resin does not contain a polyolefin resin, flame retardancy and wear resistance can be further improved.
 上記ケーブルにおいては、前記内層が、ベース樹脂を含む樹脂組成物で構成され、前記ベース樹脂中のプロピレン系樹脂の含有率が80質量%より大きく、前記樹脂組成物の230℃、2.16kg重でのMFRが1.0g/10分以上15.0g/10分未満であることが好ましい。 In the cable, the inner layer is composed of a resin composition containing a base resin, the content of the propylene-based resin in the base resin is greater than 80% by mass, and the resin composition has a temperature of 230 ° C. and 2.16 kg weight. The MFR is preferably 1.0 g / 10 min or more and less than 15.0 g / 10 min.
 この場合、内層のベース樹脂におけるプロピレン系樹脂の含有率が80質量%以下である場合に比べてケーブルの耐摩耗性がより向上する。また、樹脂組成物のMFRが1.0g/10分未満である場合と比較して、ケーブルの外観がより優れる。また、樹脂組成物のMFRが15.0g/10分以上である場合に比べてケーブルの耐摩耗性がより向上する。 In this case, the abrasion resistance of the cable is further improved as compared with the case where the content of the propylene resin in the base resin of the inner layer is 80% by mass or less. Further, the appearance of the cable is more excellent as compared with the case where the MFR of the resin composition is less than 1.0 g / 10 minutes. Moreover, the abrasion resistance of a cable improves more compared with the case where MFR of a resin composition is 15.0 g / 10min or more.
 上記ケーブルにおいては、前記導体がアルミニウム又はアルミニウム合金であることが好ましい。この場合、導体として銅などを用いる場合に比べて、ケーブルをより軽量化できる。 In the cable, the conductor is preferably aluminum or an aluminum alloy. In this case, the weight of the cable can be reduced as compared with the case where copper or the like is used as the conductor.
 上記ケーブルは、上述した絶縁層を被覆する被覆層をさらに備えていてもよい。 The cable may further include a covering layer that covers the insulating layer described above.
 このケーブルは、被覆層を有していなくても良好な難燃性を維持しつつ、優れた耐摩耗性を有するので、良好な難燃性を維持しつつ、優れた耐摩耗性を有することが可能となる。 This cable has excellent wear resistance while maintaining good flame resistance while maintaining good flame resistance even if it does not have a coating layer, and has excellent wear resistance while maintaining good flame resistance Is possible.
 また本発明は、上述したケーブルを有するワイヤハーネスである。 Also, the present invention is a wire harness having the cable described above.
 本発明のワイヤハーネスは、良好な難燃性を維持しつつ、優れた耐摩耗性を有するケーブルを有するので、良好な難燃性を維持しつつ、優れた耐摩耗性を有することが可能となる。 Since the wire harness of the present invention has a cable having excellent wear resistance while maintaining good flame retardancy, it is possible to have excellent wear resistance while maintaining good flame resistance. Become.
 本発明によれば、良好な難燃性を維持しつつ、優れた耐摩耗性を有するケーブル及びワイヤハーネスが提供される。 According to the present invention, a cable and a wire harness having excellent wear resistance while maintaining good flame retardancy are provided.
本発明のケーブルの一実施形態を示す部分側面図である。It is a partial side view which shows one Embodiment of the cable of this invention. 図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 本発明のワイヤハーネスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the wire harness of this invention.
 以下、本発明の実施形態について図1及び図2を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2.
 [ケーブル]
 図1は、本発明に係るケーブルの一実施形態を示す部分側面図である。図2は、図1のII-II線に沿った断面図である。図1及び図2に示すように、ケーブル10は、絶縁電線4と、絶縁電線4を被覆する被覆層3とを備えている。そして、絶縁電線4は、信号を伝送する伝送媒体としての導体1と、導体1を被覆する絶縁層2とを有している。絶縁層2は、最外層2Bと、最外層2Bの内側に設けられる内層2Aとで構成されている。
[cable]
FIG. 1 is a partial side view showing an embodiment of a cable according to the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. As shown in FIGS. 1 and 2, the cable 10 includes an insulated wire 4 and a coating layer 3 that covers the insulated wire 4. And the insulated wire 4 has the conductor 1 as a transmission medium which transmits a signal, and the insulating layer 2 which coat | covers the conductor 1. FIG. The insulating layer 2 includes an outermost layer 2B and an inner layer 2A provided inside the outermost layer 2B.
 ここで、絶縁層2のうち最外層2Bは、ベース樹脂及び難燃剤を含み、難燃剤が、炭酸カルシウム粒子及びケイ酸塩化合物粒子からなる群より選ばれる少なくとも1種からなる無機粒子と、シリコーン系化合物と、脂肪酸含有化合物とを含んでいる。絶縁層2における最外層2Bの断面積比率(R)は0.5%以上86%未満である。 Here, the outermost layer 2B of the insulating layer 2 includes a base resin and a flame retardant, and the flame retardant includes at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, and silicone. A system compound and a fatty acid-containing compound. The cross-sectional area ratio (R) of the outermost layer 2B in the insulating layer 2 is 0.5% or more and less than 86%.
 絶縁電線4は、良好な難燃性を維持しつつ、優れた耐摩耗性を有する。このため、ケーブル10も良好な難燃性を維持しつつ、優れた耐摩耗性を有することが可能となる。 The insulated wire 4 has excellent wear resistance while maintaining good flame retardancy. For this reason, the cable 10 can also have excellent wear resistance while maintaining good flame retardancy.
 以下、導体1、絶縁層2及び被覆層3について詳細に説明する。 Hereinafter, the conductor 1, the insulating layer 2, and the covering layer 3 will be described in detail.
 ≪導体≫
 導体1は、1本の素線のみで構成されてもよく、複数本の素線を束ねて構成されたものであってもよい。導体1の材質は特に限定されるものではないが、アルミニウム又はアルミニウム合金であることが好ましい。この場合、導体1として銅などを用いる場合に比べて、絶縁電線4、ひいてはケーブル10をより軽量化できる。また、導体1の断面積についても、特に限定されるものではないが、ケーブル10の細径化や軽量化の観点から、5mm未満であることが好ましく、3mm以下であることがより好ましい。但し、導体1の強度及び導電率の観点からは、導体1の断面積は0.13mm以上であることが好ましい。
≪Conductor≫
The conductor 1 may be configured by only one strand, or may be configured by bundling a plurality of strands. The material of the conductor 1 is not particularly limited, but is preferably aluminum or an aluminum alloy. In this case, compared with the case where copper etc. are used as the conductor 1, the insulated wire 4 and by extension, the cable 10 can be reduced in weight. As for the cross-sectional area of the conductor 1, is not particularly limited, in view of the small-diameter and weight of the cable 10, preferably less than 5 mm 2, and more preferably 3 mm 2 or less . However, from the viewpoint of the strength and conductivity of the conductor 1, the cross-sectional area of the conductor 1 is preferably 0.13 mm 2 or more.
 ≪絶縁層≫
 絶縁層2は、上述したように、最外層2Bと、最外層2の内側に設けられる内層2Aとで構成されている。絶縁層2は、ベース樹脂及び難燃剤を含み、難燃剤は、炭酸カルシウム粒子及びケイ酸塩化合物粒子からなる群より選ばれる少なくとも1種からなる無機粒子と、シリコーン系化合物と、脂肪酸含有化合物とを含む。
≪Insulating layer≫
As described above, the insulating layer 2 is composed of the outermost layer 2 </ b> B and the inner layer 2 </ b> A provided inside the outermost layer 2. The insulating layer 2 includes a base resin and a flame retardant, and the flame retardant includes at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, a silicone compound, and a fatty acid-containing compound. including.
 (絶縁層中の難燃剤の含有率)
 絶縁層2中の無機粒子の含有率は0.03~7.00質量%であることが好ましい。この場合、絶縁層2中の無機粒子の含有率が0.03質量%未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、絶縁層2中の無機粒子の含有率が7.00質量%を超える場合に比べて、絶縁電線4の耐摩耗性をより向上させることができる。
(Content of flame retardant in the insulation layer)
The content of inorganic particles in the insulating layer 2 is preferably 0.03 to 7.00 mass%. In this case, compared with the case where the content rate of the inorganic particles in the insulating layer 2 is less than 0.03% by mass, the flame retardancy of the insulated wire 4 can be further improved. Moreover, compared with the case where the content rate of the inorganic particle in the insulating layer 2 exceeds 7.00 mass%, the abrasion resistance of the insulated wire 4 can be improved more.
 絶縁層2中の無機粒子の含有率は0.20~5.50質量%であることが好ましく、0.40~4.00質量%であることがより好ましい。 The content of the inorganic particles in the insulating layer 2 is preferably 0.20 to 5.50% by mass, and more preferably 0.40 to 4.00% by mass.
 絶縁層2中のシリコーン系化合物の含有率は0.01~4.30質量%であることが好ましい。この場合、絶縁層2中のシリコーン系化合物の含有率が0.01質量%未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、シリコーン系化合物の含有率が上記範囲内にあると、絶縁層2中のシリコーン系化合物の含有率が4.30質量%を超える場合に比べて、絶縁電線4の耐摩耗性及び絶縁電線4の内部における耐剥離性(以下、「耐内部剥離性」と呼ぶ)をより向上させることができる。 The content of the silicone compound in the insulating layer 2 is preferably 0.01 to 4.30% by mass. In this case, compared with the case where the content rate of the silicone type compound in the insulating layer 2 is less than 0.01 mass%, the flame retardance of the insulated wire 4 can be improved more. Moreover, when the content rate of a silicone type compound exists in the said range, compared with the case where the content rate of the silicone type compound in the insulating layer 2 exceeds 4.30 mass%, the abrasion resistance of the insulated wire 4 and an insulated wire. 4 can be further improved in peel resistance (hereinafter referred to as “internal peel resistance”).
 絶縁層2中のシリコーン系化合物の含有率は0.04~2.80質量%であることが好ましく、0.08~2.10質量%であることがより好ましい。 The content of the silicone compound in the insulating layer 2 is preferably 0.04 to 2.80% by mass, and more preferably 0.08 to 2.10% by mass.
 絶縁層2中の脂肪酸含有化合物の含有率は0.02~7.50質量%であることが好ましい。この場合、絶縁層2中の脂肪酸含有化合物の含有率が0.02質量%未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、絶縁層2中の脂肪酸含有化合物の含有率が7.50質量%を超える場合に比べて、絶縁電線4の耐摩耗性及び耐内部剥離性をより向上させることができる。 The content of the fatty acid-containing compound in the insulating layer 2 is preferably 0.02 to 7.50% by mass. In this case, the flame retardance of the insulated wire 4 can be further improved as compared with the case where the content of the fatty acid-containing compound in the insulating layer 2 is less than 0.02% by mass. Moreover, compared with the case where the content rate of the fatty-acid containing compound in the insulating layer 2 exceeds 7.50 mass%, the abrasion resistance and internal peeling resistance of the insulated wire 4 can be improved more.
 絶縁層2中の脂肪酸含有化合物の含有率は0.07~4.00質量%であることが好ましく、0.16~2.10質量%であることがより好ましい。 The content of the fatty acid-containing compound in the insulating layer 2 is preferably 0.07 to 4.00% by mass, and more preferably 0.16 to 2.10% by mass.
 (絶縁層中の難燃剤の含有率の算出方法)
 絶縁層2中の難燃剤の含有率は次のようにして算出することができる。
絶縁層2中の無機粒子の質量百分率(質量%)
=100×{ρ×S×L×A/100+ρ×S×L×B/100}/(ρ×S×L+ρ×S×L)
={ρ×S×A+ρ×S×B}/(ρ×S+ρ×S
同様に、最外層2B中のシリコーン系化合物及び脂肪酸含有化合物の質量百分率の一般式は下記のように計算できる。
絶縁層2中のシリコーン系化合物の質量百分率(質量%)
={ρ×S×A+ρ×S×B}/(ρ×S+ρ×S
絶縁層2中の脂肪酸含有化合物の質量百分率(質量%)
={ρ×S×A+ρ×S×B}/(ρ×S+ρ×S
(Calculation method of flame retardant content in insulating layer)
The content of the flame retardant in the insulating layer 2 can be calculated as follows.
Mass percentage of inorganic particles in the insulating layer 2 (mass%)
= 100 × {ρ A × S A × L × A 1/100 + ρ B × S B × L × B 1/100} / (ρ A × S A × L + ρ B × S B × L)
= {Ρ A × S A × A 1 + ρ B × S B × B 1 } / (ρ A × S A + ρ B × S B )
Similarly, the general formula of the mass percentage of the silicone compound and the fatty acid-containing compound in the outermost layer 2B can be calculated as follows.
Mass percentage (mass%) of silicone compound in insulating layer 2
= {Ρ A × S A × A 2 + ρ B × S B × B 2 } / (ρ A × S A + ρ B × S B )
Mass percentage (mass%) of fatty acid-containing compound in the insulating layer 2
= {Ρ A × S A × A 3 + ρ B × S B × B 3 } / (ρ A × S A + ρ B × S B )
 上記式において、L、A~A、B~B、S、S、ρ及びρは以下の通りである。
L:ケーブル10の長さ
:内層2A中の無機粒子の含有率(質量%)
:内層2A中のシリコーン系化合物の含有率(質量%)
:内層2A中の脂肪酸含有化合物の含有率(質量%)
:最外層2B中の無機粒子の含有率(質量%)
:最外層2B中のシリコーン系化合物の含有率(質量%)
:最外層2B中の脂肪酸含有化合物の含有率(質量%)
:内層2Aの断面積(mm
:最外層2Bの断面積(mm
ρ:内層2Aの比重
ρ:最外層2Bの比重
In the above formula, L, A 1 to A 3 , B 1 to B 3 , S A , S B , ρ A and ρ B are as follows.
L: Length of cable 10 A 1 : Content of inorganic particles in inner layer 2A (mass%)
A 2 : Content of silicone compound in inner layer 2A (% by mass)
A 3 : Content of fatty acid-containing compound in the inner layer 2A (% by mass)
B 1 : Content (% by mass) of inorganic particles in the outermost layer 2B
B 2 : Content of silicone compound in outermost layer 2B (% by mass)
B 3 : Content of fatty acid-containing compound in outermost layer 2B (% by mass)
S A : sectional area of inner layer 2A (mm 2 )
S B : Cross-sectional area of outermost layer 2B (mm 2 )
ρ A : Specific gravity of the inner layer 2A ρ B : Specific gravity of the outermost layer 2B
 (絶縁層の比重)
 絶縁層2の比重は特に制限されるものではないが、0.84~1.04であることが好ましい。この場合、絶縁層2の比重が0.84未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、絶縁層2の比重が1.04を超える場合に比べて、絶縁電線4をより軽量化できるとともに絶縁電線4の耐摩耗性をより向上させることができる。
(Specific gravity of insulating layer)
The specific gravity of the insulating layer 2 is not particularly limited, but is preferably 0.84 to 1.04. In this case, compared with the case where the specific gravity of the insulating layer 2 is less than 0.84, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where the specific gravity of the insulating layer 2 exceeds 1.04, the insulated wire 4 can be reduced in weight and the wear resistance of the insulated wire 4 can be further improved.
 絶縁層2の比重は0.99以下であることがより好ましい。この場合、絶縁層2が水に浮くことが可能となるので、絶縁電線4から剥ぎ取った絶縁層2を水に浮かべて回収することが容易となり、リサイクル作業の効率を高めることができる。さらに、絶縁層2の比重は0.97未満であることが好ましい。この場合、絶縁層2がより軽量化されるので、絶縁電線4も軽量化される。また、絶縁電線4から剥ぎ取った絶縁層2を水に投入した場合における浮上速度が非常に早くなり、リサイクル作業の効率をより高めることができる。特に、絶縁層2の比重は0.95未満であることが好ましい。この場合、絶縁層2の比重が0.95以上である場合に比べて、ケーブル10の耐摩耗性をより向上させることができる。 The specific gravity of the insulating layer 2 is more preferably 0.99 or less. In this case, since the insulating layer 2 can float in water, the insulating layer 2 peeled off from the insulated wire 4 can be easily floated on the water and collected, and the efficiency of the recycling work can be improved. Furthermore, the specific gravity of the insulating layer 2 is preferably less than 0.97. In this case, since the insulating layer 2 is further reduced in weight, the insulated wire 4 is also reduced in weight. Moreover, when the insulating layer 2 peeled off from the insulated wire 4 is poured into water, the ascending speed becomes very fast, and the efficiency of the recycling work can be further increased. In particular, the specific gravity of the insulating layer 2 is preferably less than 0.95. In this case, the wear resistance of the cable 10 can be further improved as compared with the case where the specific gravity of the insulating layer 2 is 0.95 or more.
 (その他)
 絶縁層2は発泡などにより内部に空隙を有さないことがより好ましい。この場合、絶縁電線4は優れた機械特性を得ることができる。
(Other)
More preferably, the insulating layer 2 does not have voids inside due to foaming or the like. In this case, the insulated wire 4 can obtain excellent mechanical properties.
 (絶縁層中のベース樹脂)
 絶縁層2中のベース樹脂は樹脂で構成されていればよく、樹脂としては、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂及びスチレン系樹脂などが挙げられる。これらは単独で又は2種以上を混合して用いることができる。ここで、樹脂には、ゴム及びエラストマーも含まれるものとする。樹脂は、ポリオレフィン樹脂等、ゴム、エラストマーなどから選択される少なくとも1種で構成されていればよい。ベース樹脂はポリオレフィン樹脂を含んでいても含んでいなくてもよいが、ポリオレフィン樹脂を含んでいることが好ましい。この場合、ベース樹脂がポリオレフィン樹脂を含まない場合に比べて、難燃性及び耐摩耗性をより向上させることができる。
(Base resin in insulating layer)
The base resin in the insulating layer 2 should just be comprised with resin, and polyolefin resin, polyamide resin, polyester resin, styrene resin etc. are mentioned as resin. These can be used alone or in admixture of two or more. Here, the resin includes rubber and elastomer. The resin should just be comprised by at least 1 sort (s) selected from polyolefin resin etc., rubber | gum, an elastomer, etc. The base resin may or may not contain a polyolefin resin, but preferably contains a polyolefin resin. In this case, compared with the case where base resin does not contain polyolefin resin, a flame retardance and abrasion resistance can be improved more.
 ポリオレフィン樹脂としては、例えばポリエチレン(PE)、プロピレン系樹脂、ポリブテン、ポリメチルペンテンなどの極性基非含有ポリオレフィン、極性基含有ポリオレフィン及びオレフィン系熱可塑性エラストマーなどが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。 Examples of the polyolefin resin include non-polar group-containing polyolefins such as polyethylene (PE), propylene resin, polybutene, and polymethylpentene, polar group-containing polyolefins, and olefin-based thermoplastic elastomers. These can be used alone or in combination of two or more.
 ポリオレフィン樹脂としては、コスト及び比重の観点からは、PE又はプロピレン系樹脂が好ましく、耐熱性及び耐摩耗性の観点からは、プロピレン系樹脂が好ましい。 The polyolefin resin is preferably PE or a propylene resin from the viewpoint of cost and specific gravity, and is preferably a propylene resin from the viewpoint of heat resistance and wear resistance.
 プロピレン系樹脂は、プロピレンを構成単位として含む樹脂であり、プロピレン系樹脂としては、例えばホモポリプロピレン、プロピレンブロックコポリマー及びプロピレンランダムコポリマーが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。これらの中でも、プロピレンブロックコポリマーが、耐衝撃性及び低温脆性の観点から好ましい。 The propylene-based resin is a resin containing propylene as a structural unit, and examples of the propylene-based resin include homopolypropylene, propylene block copolymer, and propylene random copolymer. These can be used alone or in combination of two or more. Among these, a propylene block copolymer is preferable from the viewpoint of impact resistance and low temperature brittleness.
 極性基含有ポリオレフィンは、極性基を含有するポリオレフィンである。 The polar group-containing polyolefin is a polyolefin containing a polar group.
 極性基含有ポリオレフィンの極性基としては、例えばマレイン酸基、メタクリル酸基、無水フマル酸基、無水マレイン酸基、ヒドロキシル基及びカルボキシル基などが挙げられる。中でも、極性基としては、無水マレイン酸基が好ましい。この場合、ベース樹脂中のポリオレフィンの含有率が少量でもベース樹脂と、上記無機粒子、シリコーン系化合物及び脂肪酸含有化合物を含む難燃剤との相溶性がより高まり、ブルームの発生をより十分に抑制できるとともに、絶縁層2の耐摩耗性をより向上させることができる。このため、絶縁層2の機械的特性の低下をより十分に抑制できる。 Examples of the polar group of the polar group-containing polyolefin include a maleic acid group, a methacrylic acid group, a fumaric anhydride group, a maleic anhydride group, a hydroxyl group, and a carboxyl group. Among these, as the polar group, a maleic anhydride group is preferable. In this case, even if the polyolefin content in the base resin is small, the compatibility between the base resin and the flame retardant containing the inorganic particles, the silicone-based compound, and the fatty acid-containing compound is further increased, and the generation of bloom can be more sufficiently suppressed. In addition, the wear resistance of the insulating layer 2 can be further improved. For this reason, the deterioration of the mechanical properties of the insulating layer 2 can be more sufficiently suppressed.
 極性基含有ポリオレフィンとしては、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-アクリル酸ブチル共重合体(EBA)、それらの無水マレイン酸変性ポリマー、無水マレイン酸変性ポリプロピレン、および、マレイン酸、無水マレイン酸などの不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体などが挙げられる。 Examples of the polar group-containing polyolefin include ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), ethylene-butyl acrylate copolymer (EBA), their maleic anhydride-modified polymers, Examples thereof include maleic anhydride-modified polypropylene and ethylene-α-olefin copolymers modified with an unsaturated carboxylic acid such as maleic acid and maleic anhydride.
 ここで、ポリオレフィン樹脂中の極性基含有ポリオレフィンの含有率は特に制限されるものではないが、1~10質量%であることが好ましい。この場合、ポリオレフィン樹脂中の極性基含有ポリオレフィンの含有率が1質量%未満である場合と比べて、ポリオレフィン樹脂と難燃剤(無機粒子、シリコーン系化合物及び脂肪酸含有化合物)との相溶性がより高まり、ブルームの発生をより十分に抑制できるとともに、絶縁層2の耐摩耗性をより向上させることができる。一方、ポリオレフィン樹脂中の極性基含有ポリオレフィンの含有率が10質量%を超える場合と比べて、コストの上昇をより十分に抑えることができる。ポリオレフィン樹脂中の極性基含有ポリオレフィンの含有率は2~5質量%であることがより好ましい。 Here, the content of the polar group-containing polyolefin in the polyolefin resin is not particularly limited, but is preferably 1 to 10% by mass. In this case, compared with the case where the content of the polar group-containing polyolefin in the polyolefin resin is less than 1% by mass, the compatibility between the polyolefin resin and the flame retardant (inorganic particles, silicone compound and fatty acid-containing compound) is further increased. The occurrence of bloom can be more sufficiently suppressed, and the wear resistance of the insulating layer 2 can be further improved. On the other hand, compared with the case where the content of the polar group-containing polyolefin in the polyolefin resin exceeds 10% by mass, an increase in cost can be suppressed more sufficiently. The content of the polar group-containing polyolefin in the polyolefin resin is more preferably 2 to 5% by mass.
 ベース樹脂は架橋されていてもよく、架橋されていなくてもよいが、架橋されていることが好ましい。ベース樹脂が架橋されている場合、内層2A又は最外層2Bの耐熱性及び耐摩耗性をより向上させることができる。ここで、架橋としては、シラン架橋、電子線架橋および過酸化物架橋が挙げられる。中でも、シラン架橋が好ましい。シラン架橋は、電子線架橋と比べて、高度な設備が不要であり、内層2A又は最外層2Bの厚さが大きくても十分にベース樹脂を架橋できる。また、シラン架橋は、過酸化物架橋に比べて、押出時のスコーチの発生を十分に抑制することができる。 The base resin may be cross-linked or not cross-linked, but is preferably cross-linked. When the base resin is cross-linked, the heat resistance and wear resistance of the inner layer 2A or the outermost layer 2B can be further improved. Here, examples of the crosslinking include silane crosslinking, electron beam crosslinking, and peroxide crosslinking. Of these, silane crosslinking is preferred. Silane cross-linking does not require sophisticated equipment as compared with electron beam cross-linking, and can sufficiently cross-link the base resin even if the inner layer 2A or the outermost layer 2B is thick. Silane cross-linking can sufficiently suppress the occurrence of scorch during extrusion compared to peroxide cross-linking.
 (絶縁層中の無機粒子)
 絶縁層2中の無機粒子は、絶縁電線4の燃焼時にシリコーン系化合物及び脂肪酸含有化合物とともにベース樹脂に対するバリア層を形成して絶縁電線4の難燃性を向上させるためのものである。無機粒子としては炭酸カルシウム粒子及びケイ酸塩化合物粒子が挙げられる。これらは単独で又は2種以上を混合して用いることができる。無機粒子として炭酸カルシウム粒子、ケイ酸塩化合物粒子又はこれらの混合物を用いると、水酸化マグネシウムなどの金属水酸化物に比べて、少量で効果的に難燃性を向上させることができるため、絶縁層2の軽量化、ひいては絶縁電線4の軽量化を図ることができる。炭酸カルシウム粒子は、重質炭酸カルシウム又は軽質炭酸カルシウムのいずれでもよい。また、ケイ酸塩化合物粒子としてはタルク粒子及びクレー粒子などが挙げられる。
(Inorganic particles in the insulating layer)
The inorganic particles in the insulating layer 2 are intended to improve the flame retardancy of the insulated wire 4 by forming a barrier layer against the base resin together with the silicone compound and the fatty acid-containing compound when the insulated wire 4 is burned. Inorganic particles include calcium carbonate particles and silicate compound particles. These can be used alone or in admixture of two or more. Use of calcium carbonate particles, silicate compound particles, or a mixture thereof as inorganic particles can effectively improve the flame retardancy in a small amount compared to metal hydroxides such as magnesium hydroxide. It is possible to reduce the weight of the layer 2 and hence the insulated wire 4. The calcium carbonate particles may be either heavy calcium carbonate or light calcium carbonate. Examples of the silicate compound particles include talc particles and clay particles.
 無機粒子の平均粒径は、特に制限されるものではないが、0.7μm以上であることが好ましい。この場合、無機粒子の平均粒径が0.7μm未満である場合と比べて、より優れた難燃性が得られる。但し、無機粒子の平均粒径は、1.8μm以下であることが好ましい。この場合、無機粒子の平均粒径が1.8μmを超える場合に比べて、絶縁層2及び被覆層3において耐摩耗性を向上させることができる。 The average particle diameter of the inorganic particles is not particularly limited, but is preferably 0.7 μm or more. In this case, more excellent flame retardancy can be obtained as compared with the case where the average particle size of the inorganic particles is less than 0.7 μm. However, the average particle size of the inorganic particles is preferably 1.8 μm or less. In this case, the wear resistance of the insulating layer 2 and the coating layer 3 can be improved as compared with the case where the average particle size of the inorganic particles exceeds 1.8 μm.
 (絶縁層中のシリコーン系化合物)
 絶縁層2中のシリコーン系化合物は、難燃剤として機能するものであり、シリコーン系化合物としては、ポリオルガノシロキサンなどが挙げられる。ここで、ポリオルガノシロキサンは、シロキサン結合を主鎖とし側鎖に有機基を有する。有機基としては、例えばメチル基、エチル基、プロピル基などのアルキル基;ビニル基;及びフェニル基などのアリール基などが挙げられる。具体的にはポリオルガノシロキサンとしては、例えばジメチルポリシロキサン、メチルエチルポリシロキサン、メチルオクチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサン、メチル(3,3,3-トリフルオロプロピル)ポリシロキサンなどが挙げられる。ポリオルガノシロキサンとして、シリコーンパウダー、シリコーンオイル、シリコーンガム及びシリコーンレジンが挙げられる。中でも、シリコーンガムが好ましい。この場合、シリコーン系化合物がシリコーンガム以外のシリコーン系化合物である場合に比べて、絶縁層2においてブルームが起こりにくくなるとともに絶縁層2の難燃性をより向上させることができる。
(Silicone compound in insulating layer)
The silicone compound in the insulating layer 2 functions as a flame retardant, and examples of the silicone compound include polyorganosiloxane. Here, the polyorganosiloxane has a siloxane bond as a main chain and an organic group in a side chain. Examples of the organic group include alkyl groups such as a methyl group, an ethyl group, and a propyl group; a vinyl group; and an aryl group such as a phenyl group. Specific examples of the polyorganosiloxane include dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, and methyl (3,3,3-trifluoropropyl) polysiloxane. Is mentioned. Examples of the polyorganosiloxane include silicone powder, silicone oil, silicone gum, and silicone resin. Among these, silicone gum is preferable. In this case, compared to the case where the silicone compound is a silicone compound other than silicone gum, blooming is less likely to occur in the insulating layer 2 and the flame retardancy of the insulating layer 2 can be further improved.
 シリコーン系化合物は、無機粒子の表面に予め付着させておいてもよい。 The silicone compound may be attached in advance to the surface of the inorganic particles.
 無機粒子の表面にシリコーン系化合物を付着させる方法としては、例えば炭酸カルシウム粒子にシリコーン系化合物を添加して混合し、混合物を得た後、この混合物を40~75℃にて10~40分乾燥し、乾燥した混合物をヘンシェルミキサ、アトマイザなどにより粉砕する方法が挙げられる。 As a method for attaching the silicone compound to the surface of the inorganic particles, for example, a silicone compound is added to and mixed with calcium carbonate particles to obtain a mixture, and then the mixture is dried at 40 to 75 ° C. for 10 to 40 minutes. And a method of pulverizing the dried mixture with a Henschel mixer, an atomizer or the like.
 (絶縁層中の脂肪酸含有化合物)
 絶縁層2中の脂肪酸含有化合物は、難燃剤として機能するものである。脂肪酸含有化合物とは、脂肪酸又はその金属塩を言う。ここで、脂肪酸としては、例えば炭素原子数が12~28である脂肪酸が用いられる。このような脂肪酸としては、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ツベルクロステアリン酸、オレイン酸、リノール酸、アラキドン酸、ベヘン酸及びモンタン酸が挙げられる。中でも、脂肪酸としては、ステアリン酸が好ましい。この場合、ステアリン酸以外の脂肪酸を用いる場合に比べて、絶縁層2の難燃性をより向上させることができる。
(Fatty acid-containing compound in the insulating layer)
The fatty acid-containing compound in the insulating layer 2 functions as a flame retardant. The fatty acid-containing compound refers to a fatty acid or a metal salt thereof. Here, as the fatty acid, for example, a fatty acid having 12 to 28 carbon atoms is used. Examples of such fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, tuberculostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid. Among these, stearic acid is preferable as the fatty acid. In this case, compared with the case where fatty acids other than stearic acid are used, the flame retardance of the insulating layer 2 can be further improved.
 脂肪酸の金属塩を構成する金属としては、マグネシウム、カルシウム、亜鉛及び鉛などが挙げられる。脂肪酸の金属塩としては、ステアリン酸マグネシウム又はステアリン酸亜鉛が好ましい。この場合、ステアリン酸マグネシウム又はステアリン酸亜鉛以外の脂肪酸金属塩を用いる場合に比べて、より少ない添加量で絶縁層2の難燃性をより向上させることができる。脂肪酸の金属塩としては、ステアリン酸マグネシウムが特に好ましい。 Examples of the metal constituting the fatty acid metal salt include magnesium, calcium, zinc and lead. As the fatty acid metal salt, magnesium stearate or zinc stearate is preferable. In this case, compared with the case where fatty acid metal salts other than magnesium stearate or zinc stearate are used, the flame retardance of the insulating layer 2 can be further improved with a smaller addition amount. As the fatty acid metal salt, magnesium stearate is particularly preferred.
 <内層>
 内層2Aはベース樹脂を含む。内層2Aは、炭酸カルシウム粒子及びケイ酸塩化合物粒子からなる群より選ばれる少なくとも1種からなる無機粒子、シリコーン系化合物及び脂肪酸含有化合物のうちの少なくとも1種をさらに含んでもよいが、含んでいなくてもよい。
<Inner layer>
The inner layer 2A contains a base resin. The inner layer 2A may further contain at least one of inorganic particles consisting of at least one selected from the group consisting of calcium carbonate particles and silicate compound particles, a silicone-based compound, and a fatty acid-containing compound. It does not have to be.
 また、内層2Aは単層でも2層以上の層からなる多層体でもあってもよい。 Further, the inner layer 2A may be a single layer or a multilayer body composed of two or more layers.
 内層2A中の脂肪酸含有化合物のベース樹脂100質量部に対する配合割合(F1)は、最外層2B中の脂肪酸含有化合物のベース樹脂100質量部に対する配合割合(F2)より少ないことが好ましい。この場合、F1がF2以上である場合に比べて、内層2Aと導体1との間だけでなく、内層2Aと最外層2Bとの間における剥離をより十分に抑制できる。すなわち、絶縁電線4における耐内部剥離性をより向上させることができる。 The blending ratio (F1) of the fatty acid-containing compound in the inner layer 2A with respect to 100 parts by weight of the base resin is preferably smaller than the blending ratio (F2) of the fatty acid-containing compound in the outermost layer 2B with respect to 100 parts by weight of the base resin. In this case, as compared with the case where F1 is F2 or more, not only the separation between the inner layer 2A and the conductor 1 but also the separation between the inner layer 2A and the outermost layer 2B can be more sufficiently suppressed. That is, the internal peel resistance of the insulated wire 4 can be further improved.
 F2-F1は0質量部よりも大きければ特に制限されないが、3.0質量部以上であることが好ましい。この場合、F2-F1が3.0質量部未満である場合に比べて、絶縁電線4における耐内部剥離性をより効果的に向上させることができる。F2-F1は5.0質量部以上であることがより好ましい。但し、F2-F1は20.0質量部以下であることがより好ましい。この場合、F2-F1が20.0質量部を超える場合に比べて、絶縁電線4における耐内部剥離性をより向上させることができる。F2-F1は10質量部以下であることがより一層好ましい。この場合、耐内部剥離性をさらに向上させることができる。 F2-F1 is not particularly limited as long as it is larger than 0 parts by mass, but it is preferably 3.0 parts by mass or more. In this case, the internal peel resistance of the insulated wire 4 can be more effectively improved as compared with the case where F2-F1 is less than 3.0 parts by mass. F2-F1 is more preferably 5.0 parts by mass or more. However, F2-F1 is more preferably 20.0 parts by mass or less. In this case, the internal peel resistance of the insulated wire 4 can be further improved as compared with the case where F2-F1 exceeds 20.0 parts by mass. More preferably, F2-F1 is 10 parts by mass or less. In this case, the internal peel resistance can be further improved.
 F1は特に制限されるものではないが、3.0質量部未満であることが好ましい。この場合、F1が3.0質量部以上である場合に比べて、絶縁電線4における耐内部剥離性をより向上させることができる。但し、F1は2.0質量部以下であることがより好ましい。 F1 is not particularly limited, but is preferably less than 3.0 parts by mass. In this case, compared with the case where F1 is 3.0 parts by mass or more, the internal peel resistance of the insulated wire 4 can be further improved. However, F1 is more preferably 2.0 parts by mass or less.
 内層2A中の無機粒子のベース樹脂100質量部に対する配合割合(C1)は、最外層2B中の無機粒子のベース樹脂100質量部に対する配合割合(C2)より少なくてもC2以上であってもよいが、C1はC2よりも少ないことが好ましい。この場合、C1がC2以上である場合に比べて、絶縁電線4における耐摩耗性をより十分に向上させることができる。 The blending ratio (C1) of the inorganic particles in the inner layer 2A with respect to 100 parts by mass of the base resin may be less than the blending ratio (C2) of the inorganic particles in the outermost layer 2B with respect to 100 parts by mass of the base resin or C2 or more. However, C1 is preferably less than C2. In this case, compared with the case where C1 is C2 or more, the abrasion resistance in the insulated wire 4 can be improved more sufficiently.
 C2-C1が0質量部よりも大きい場合、C2-C1は特に制限されないが、6.0質量部以上であることが好ましい。この場合、C2-C1が6.0質量部未満である場合に比べて、絶縁電線4における難燃性をより十分に向上させることができる。C2-C1は8.0質量部以上であることがより好ましい。但し、C2-C1は20.0質量部以下であることがより好ましい。この場合、C2-C1が20.0質量部を超える場合に比べて、絶縁電線4における耐摩耗性をより十分に向上させることができる。 When C2-C1 is larger than 0 parts by mass, C2-C1 is not particularly limited, but is preferably 6.0 parts by mass or more. In this case, compared with the case where C2-C1 is less than 6.0 mass parts, the flame retardance in the insulated wire 4 can be improved more fully. C2-C1 is more preferably 8.0 parts by mass or more. However, C2-C1 is more preferably 20.0 parts by mass or less. In this case, the wear resistance of the insulated wire 4 can be more sufficiently improved than when C2-C1 exceeds 20.0 parts by mass.
 C1は特に制限されるものではないが、8.0質量部以下であることが好ましい。この場合、C1が8.0質量部を超える場合に比べて、絶縁電線4における耐摩耗性をより十分に向上させることができる。但し、C1は3.0質量部以下であることがより好ましい。 C1 is not particularly limited, but is preferably 8.0 parts by mass or less. In this case, compared with the case where C1 exceeds 8.0 mass parts, the abrasion resistance in the insulated wire 4 can be improved more fully. However, C1 is more preferably 3.0 parts by mass or less.
 内層2A中のシリコーン系化合物のベース樹脂100質量部に対する配合割合(S1)は、最外層2B中のシリコーン系化合物のベース樹脂100質量部に対する配合割合(S2)より少なくてもS2以上であってもよいが、S1はS2よりも少ないことが好ましい。この場合、S1がS2以上である場合に比べて、絶縁電線4における耐内部剥離性をより十分に向上させることができる。 The blending ratio (S1) of the silicone compound in the inner layer 2A with respect to 100 parts by weight of the base resin is at least S2 or less than the blending ratio (S2) of the silicone compound in the outermost layer 2B with respect to 100 parts by weight of the base resin. However, it is preferable that S1 is less than S2. In this case, compared with the case where S1 is S2 or more, the internal peel resistance of the insulated wire 4 can be more sufficiently improved.
 S2-S1が0質量部よりも大きい場合、S2-S1は特に制限されないが、1.5質量部以上であることが好ましい。この場合、S2-S1が1.5質量部未満である場合に比べて、絶縁電線4における耐内部剥離性及び難燃性をより効果的に向上させることができる。S2-S1は3.0質量部以上であることがより好ましい。但し、S2-S1は10.0質量部以下であることがより好ましい。この場合、S2-S1が10.0質量部を超える場合に比べて、絶縁電線4における耐内部剥離性をより十分に向上させることができる。 When S2-S1 is larger than 0 parts by mass, S2-S1 is not particularly limited, but is preferably 1.5 parts by mass or more. In this case, compared to the case where S2-S1 is less than 1.5 parts by mass, the internal peel resistance and flame retardancy of the insulated wire 4 can be improved more effectively. S2-S1 is more preferably 3.0 parts by mass or more. However, S2-S1 is more preferably 10.0 parts by mass or less. In this case, the internal peel resistance of the insulated wire 4 can be more sufficiently improved than when S2-S1 exceeds 10.0 parts by mass.
 S1は特に制限されるものではないが、2.5質量部以下であることが好ましい。この場合、S1が2.5質量部を超える場合に比べて、シリコーン系化合物のブルームが起こりにくくなるとともに、絶縁電線4における耐内部剥離性をより十分に向上させることができる。但し、S1は1.5質量部以下であることがより好ましい。 S1 is not particularly limited, but is preferably 2.5 parts by mass or less. In this case, compared to the case where S1 exceeds 2.5 parts by mass, the bloom of the silicone compound is less likely to occur, and the internal peel resistance of the insulated wire 4 can be more sufficiently improved. However, S1 is more preferably 1.5 parts by mass or less.
 内層2Aにおいてベース樹脂は特に制限されるものではないが、プロピレン系樹脂の含有率が80質量%よりも大きいベース樹脂であることが好ましい。 In the inner layer 2A, the base resin is not particularly limited, but is preferably a base resin in which the content of the propylene-based resin is larger than 80% by mass.
 この場合、ベース樹脂中のプロピレン系樹脂の含有率が80質量%以下である場合に比べて絶縁電線4の耐摩耗性をより向上させることができる。 In this case, the wear resistance of the insulated wire 4 can be further improved as compared with the case where the content of the propylene-based resin in the base resin is 80% by mass or less.
 内層2Aにおいてベース樹脂が、プロピレン系樹脂の含有率が80質量%よりも大きいベース樹脂である場合、内層2Aを構成する樹脂組成物の230℃、2.16kg重におけるMFRは1.0g/10分以上15.0g/10分未満であることが好ましい。この場合、樹脂組成物のMFRが1.0g/10分未満の場合と比較して、絶縁電線4の外観がより優れる。また、樹脂組成物のMFRが15.0g/10分以上である場合に比べて耐摩耗性がより向上する。但し、樹脂組成物のMFRは3.0g/10分以上10.0g/10分未満であることがより好ましい。 When the base resin in the inner layer 2A is a base resin having a propylene resin content greater than 80% by mass, the MFR at 230 ° C. and 2.16 kg weight of the resin composition constituting the inner layer 2A is 1.0 g / 10 It is preferable that it is 15.0 g / 10 min or more. In this case, the appearance of the insulated wire 4 is more excellent as compared with the case where the MFR of the resin composition is less than 1.0 g / 10 minutes. Moreover, abrasion resistance improves more compared with the case where MFR of a resin composition is 15.0 g / 10min or more. However, the MFR of the resin composition is more preferably 3.0 g / 10 min or more and less than 10.0 g / 10 min.
 なお、内層2Aは、酸化防止剤、金属不活性化剤、紫外線劣化防止剤、加工助剤、着色顔料、滑剤、カーボンブラックなどの充填剤を必要に応じてさらに含んでもよい。 The inner layer 2A may further contain a filler such as an antioxidant, a metal deactivator, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, and carbon black as necessary.
 <最外層>
 最外層2Bは、ベース樹脂及び難燃剤を含み、難燃剤は、炭酸カルシウム粒子及びケイ酸塩化合物粒子からなる群より選ばれる少なくとも1種からなる無機粒子と、シリコーン系化合物と、脂肪酸含有化合物とを含む。
<Outermost layer>
The outermost layer 2B includes a base resin and a flame retardant, and the flame retardant includes at least one inorganic particle selected from the group consisting of calcium carbonate particles and silicate compound particles, a silicone compound, and a fatty acid-containing compound. including.
 ベース樹脂100質量部に対する脂肪酸含有化合物の配合割合F2は特に制限されるものではないが、3~20質量部であることが好ましい。この場合、F2が3質量部未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、F2が20質量部を超える場合に比べて、絶縁電線4の耐摩耗性をより向上させることができる。F2は4.0質量部以上14.0質量部未満であることがより好ましく、5.0質量部以上8.0質量部未満であることが特に好ましい。 The compounding ratio F2 of the fatty acid-containing compound with respect to 100 parts by mass of the base resin is not particularly limited, but is preferably 3 to 20 parts by mass. In this case, compared with the case where F2 is less than 3 mass parts, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where F2 exceeds 20 mass parts, the abrasion resistance of the insulated wire 4 can be improved more. F2 is more preferably 4.0 parts by mass or more and less than 14.0 parts by mass, and particularly preferably 5.0 parts by mass or more and less than 8.0 parts by mass.
 ベース樹脂100質量部に対する無機粒子の配合割合(C2)は特に制限されるものではないが、6~20質量部であることが好ましい。この場合、C2が6質量部未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、C2が20質量部を超える場合に比べて、絶縁電線4の耐摩耗性をより向上させることができる。C2は7.0質量部以上17.0質量部未満であることがより好ましく8.0質量部以上15質量部未満であることが特に好ましい。 The mixing ratio (C2) of the inorganic particles with respect to 100 parts by mass of the base resin is not particularly limited, but is preferably 6 to 20 parts by mass. In this case, compared with the case where C2 is less than 6 mass parts, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where C2 exceeds 20 mass parts, the abrasion resistance of the insulated wire 4 can be improved more. C2 is more preferably 7.0 parts by mass or more and less than 17.0 parts by mass, and particularly preferably 8.0 parts by mass or more and less than 15 parts by mass.
 ベース樹脂100質量部に対するシリコーン系化合物の配合割合(S2)は特に制限されるものではないが、1.5~10質量部であることが好ましい。この場合、S2が1.5質量部未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、S2が10質量部を超える場合に比べて、シリコーン系化合物のブルームが起こりにくくなるとともに絶縁電線4の耐摩耗性をより向上させることができる。S2は3.0質量部以上9.0質量部未満であることがより好ましく、4.0質量部以上7.0質量部未満であることが特に好ましい。 The blending ratio (S2) of the silicone compound with respect to 100 parts by mass of the base resin is not particularly limited, but is preferably 1.5 to 10 parts by mass. In this case, compared with the case where S2 is less than 1.5 mass parts, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where S2 exceeds 10 mass parts, the bloom of a silicone type compound becomes difficult to occur and the wear resistance of the insulated wire 4 can be further improved. S2 is more preferably 3.0 parts by mass or more and less than 9.0 parts by mass, and particularly preferably 4.0 parts by mass or more and less than 7.0 parts by mass.
 絶縁層2における最外層2Bの断面積比率(R)は0.5%以上86%未満である。この場合、断面積比率Rが0.5%未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、断面積比率Rが86%を超える場合に比べて、絶縁電線4の耐摩耗性をより向上させることができるとともに、絶縁電線4のコストをより低下させ且つ絶縁電線4をより軽量化できる。 The cross-sectional area ratio (R) of the outermost layer 2B in the insulating layer 2 is 0.5% or more and less than 86%. In this case, compared with the case where the cross-sectional area ratio R is less than 0.5%, the flame retardance of the insulated wire 4 can be further improved. Moreover, compared with the case where cross-sectional area ratio R exceeds 86%, while being able to improve the abrasion resistance of the insulated wire 4, the cost of the insulated wire 4 can be reduced more and the insulated wire 4 can be reduced in weight. .
 ここで、断面積比率Rは、下記式を用いて算出される。
R=100×(2r+2t2+t1)×t1/(2r+t2+t1)×(t2+t1)
(上記式中、rは導体1の半径、t2は内層2Aの厚さ、t1は最外層2Bの厚さを表す。)
Here, the cross-sectional area ratio R is calculated using the following equation.
R = 100 × (2r + 2t2 + t1) × t1 / (2r + t2 + t1) × (t2 + t1)
(In the above formula, r represents the radius of the conductor 1, t2 represents the thickness of the inner layer 2A, and t1 represents the thickness of the outermost layer 2B.)
 断面積比率Rは50%以下であることがより好ましく、30%以下であることがより一層好ましい。この場合、断面積比率Rが50%を超える場合に比べて、ケーブル10の耐摩耗性又は口出し加工性をより向上させることができる。 The cross-sectional area ratio R is more preferably 50% or less, and even more preferably 30% or less. In this case, compared with the case where the cross-sectional area ratio R exceeds 50%, the wear resistance or lead processability of the cable 10 can be further improved.
 断面積比率Rは1%以上であることがより好ましく、2.5%以上であることがより一層好ましい。この場合、ケーブル10がより優れた難燃性を有することが可能となる。 The cross-sectional area ratio R is more preferably 1% or more, and even more preferably 2.5% or more. In this case, the cable 10 can have more excellent flame retardancy.
 最外層2Bの厚さt1は特に制限されるものではないが、0.008~0.400mmであることが好ましい。この場合、厚さt1が0.008mm未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、厚さt1が0.400mmを超える場合に比べて、絶縁電線4をより軽量化及び細径化できるとともに、絶縁電線4の耐摩耗性及び口出し加工性をより向上させることができる。 The thickness t1 of the outermost layer 2B is not particularly limited, but is preferably 0.008 to 0.400 mm. In this case, compared with the case where thickness t1 is less than 0.008 mm, the flame retardance of the insulated wire 4 can be improved more. Moreover, compared with the case where thickness t1 exceeds 0.400 mm, while the insulated wire 4 can be reduced in weight and diameter, the abrasion resistance and lead-out workability of the insulated wire 4 can be improved more.
 最外層2Bの厚さt1は、0.010~0.200mmであることがより好ましく、0.020~0.100mmが特に好ましい。この場合、最外層2Bの厚さt1が0.200mmを超える場合に比べて、絶縁電線4をより軽量化できるとともに耐摩耗性をより向上させることができる。また、最外層2Bの厚さt1が0.010mm未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。 The thickness t1 of the outermost layer 2B is more preferably 0.010 to 0.200 mm, and particularly preferably 0.020 to 0.100 mm. In this case, compared to the case where the thickness t1 of the outermost layer 2B exceeds 0.200 mm, the insulated wire 4 can be further reduced in weight and the wear resistance can be further improved. Moreover, the flame retardance of the insulated wire 4 can be improved more compared with the case where the thickness t1 of the outermost layer 2B is less than 0.010 mm.
 なお、最外層2Bは、酸化防止剤、金属不活性化剤、紫外線劣化防止剤、加工助剤、着色顔料、滑剤、カーボンブラックなどの充填剤を必要に応じてさらに含んでもよい。 The outermost layer 2B may further contain a filler such as an antioxidant, a metal deactivator, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, and carbon black as necessary.
 ≪被覆層≫
 被覆層3は、絶縁層2を物理的又は化学的な損傷から保護するものである。
≪Coating layer≫
The covering layer 3 protects the insulating layer 2 from physical or chemical damage.
 被覆層3の厚さは、特に限定されるものではないが、2.0mm未満であることが好ましい。この場合、被覆層3の厚さが2.0mm以上である場合に比べて、ケーブル10をより軽量化できる。被覆層3の厚さは1.0mm以下であることがより好ましく、0.5mm以下であることがさらに好ましい。但し、耐摩耗性の観点から、被覆層3の厚さは、0.2mm以上であることが好ましい。 The thickness of the coating layer 3 is not particularly limited, but is preferably less than 2.0 mm. In this case, the weight of the cable 10 can be further reduced as compared with the case where the thickness of the covering layer 3 is 2.0 mm or more. The thickness of the coating layer 3 is more preferably 1.0 mm or less, and further preferably 0.5 mm or less. However, from the viewpoint of wear resistance, the thickness of the coating layer 3 is preferably 0.2 mm or more.
 [ケーブルの製造方法]
次に、上述したケーブル10の製造方法について説明する。
[Cable manufacturing method]
Next, a method for manufacturing the cable 10 described above will be described.
 まず導体1を準備する。 First, conductor 1 is prepared.
 次に、導体1を絶縁層2で被覆して絶縁電線4を得る。このとき、絶縁層2は、内層2A及び最外層2Bを同時に形成することにより形成してもよいし、内層2Aを形成した後、内層2Aの上に最外層2Bを形成することによって形成してもよい。 Next, the insulated wire 4 is obtained by covering the conductor 1 with the insulating layer 2. At this time, the insulating layer 2 may be formed by simultaneously forming the inner layer 2A and the outermost layer 2B, or by forming the outermost layer 2B on the inner layer 2A after forming the inner layer 2A. Also good.
 内層2A及び最外層2Bは、内層2Aを形成するための内層樹脂組成物及び最外層2Bを形成するための最外層樹脂組成物をそれぞれ用意し、これらを、押出成形することによって形成することができる。 The inner layer 2A and the outermost layer 2B may be formed by preparing an inner layer resin composition for forming the inner layer 2A and an outermost layer resin composition for forming the outermost layer 2B, respectively, and extruding them. it can.
 導体1への絶縁層2の形成方法としては、共押出法、タンデム押出法および別押出法の3通りの方法が挙げられる。 Examples of the method for forming the insulating layer 2 on the conductor 1 include three methods: a co-extrusion method, a tandem extrusion method, and a separate extrusion method.
 共押出法とは、クロスヘッドから排出した内層樹脂組成物を導体1上に被覆して内層2Aを形成し、内層被覆電線を得た直後に、同じクロスヘッド内で続けて最外層樹脂組成物を押し出して内層被覆電線上に被覆して最外層2Bを形成する方法である。 In the coextrusion method, the inner layer resin composition discharged from the crosshead is coated on the conductor 1 to form the inner layer 2A, and immediately after obtaining the inner layer coated electric wire, the outermost layer resin composition is continued in the same crosshead. The outermost layer 2B is formed by extruding and coating on the inner-layer coated electric wire.
 タンデム押出法とは、クロスヘッドから排出した内層樹脂組成物を導体1上に被覆して内層2Aを形成し、内層被覆電線を得た後に、同じ押出ライン上で、別のクロスヘッドから排出した最外層樹脂組成物を内層被覆電線上に被覆して最外層2Bを形成する方法である。 In the tandem extrusion method, the inner layer resin composition discharged from the cross head is coated on the conductor 1 to form the inner layer 2A, and after obtaining the inner layer covered electric wire, the inner layer resin wire is discharged from another cross head on the same extrusion line. In this method, the outermost layer 2B is formed by coating the outermost layer resin composition on the inner-layer coated electric wire.
 別押出法とは、クロスヘッドから排出した内層樹脂組成物を導体1上に被覆して内層2Aを形成し、内層被覆電線を得てから一度ボビンに巻き取った後、巻き取った内層被覆電線を送り出して同じクロスヘッド又は別のクロスヘッドから排出した最外層樹脂組成物を内層被覆電線上に被覆して最外層を形成する方法である。 In another extrusion method, the inner layer resin composition discharged from the crosshead is coated on the conductor 1 to form the inner layer 2A, the inner layer covered electric wire is obtained, wound once on the bobbin, and then wound up. The outermost layer resin composition discharged from the same crosshead or another crosshead is coated on the inner coated wire to form the outermost layer.
 上記方法の中でも、連続生産が可能であることから、共押出法及びタンデム押出法が好ましい。特に共押出法が好ましい。この場合、内層樹脂組成物と最外層樹脂組成物とが溶融状態で接触することで内層2Aと最外層2Bとの間の密着力が高まり、内層2Aと最外層2との間の剥離をより十分に抑制できる。 Among the above methods, a co-extrusion method and a tandem extrusion method are preferable because continuous production is possible. The coextrusion method is particularly preferable. In this case, when the inner layer resin composition and the outermost layer resin composition are in contact with each other in a molten state, the adhesion between the inner layer 2A and the outermost layer 2B is increased, and the peeling between the inner layer 2A and the outermost layer 2 is further improved. It can be suppressed sufficiently.
 最後に、上記のようにして得られた絶縁電線4を1本用意し、この絶縁電線4を被覆層3で被覆する。被覆層3も、被覆層3を形成するための被覆層樹脂組成物を用意し、これを、押出機を用いて押出成形することによって形成することができる。 Finally, one insulated wire 4 obtained as described above is prepared, and this insulated wire 4 is covered with the coating layer 3. The coating layer 3 can also be formed by preparing a coating layer resin composition for forming the coating layer 3 and extruding it using an extruder.
 以上のようにしてケーブル10が得られる。 The cable 10 is obtained as described above.
 本発明は、上記実施形態に限定されるものではない。例えば上記実施形態ではケーブル10は1本の絶縁電線4を有しているが、本発明のケーブルは被覆層3の内側に絶縁電線4を2本以上有していてもよい。 The present invention is not limited to the above embodiment. For example, although the cable 10 has one insulated wire 4 in the above embodiment, the cable of the present invention may have two or more insulated wires 4 inside the coating layer 3.
 また、上記実施形態では、ケーブル10が被覆層3を有しているが、被覆層3は省略してもよい。 In the above embodiment, the cable 10 has the covering layer 3, but the covering layer 3 may be omitted.
 さらに、上記実施形態では、伝送媒体が導体1であるケーブル10が使用されているが、本発明のケーブルは、ケーブル10において伝送媒体を導体1から光ファイバに置き換えた光ファイバケーブルであってもよい。なお、この光ファイバケーブルにおいても被覆層3は省略してもよい。 Furthermore, although the cable 10 whose transmission medium is the conductor 1 is used in the above embodiment, the cable of the present invention may be an optical fiber cable in which the transmission medium is replaced from the conductor 1 to the optical fiber in the cable 10. Good. In this optical fiber cable, the covering layer 3 may be omitted.
 [ワイヤハーネス]
図3は、本発明のワイヤハーネスの一実施形態を示す断面図である。図3に示すように、ワイヤハーネス20は、ケーブルとしての複数本(図3では4本)の絶縁電線4を束ねるテープ21とを備える。テープ21は、複数本の絶縁電線4をその長さ方向に沿って全体的に被覆している必要はなく、複数の絶縁電線4をその長さ方向に沿って必要な箇所で部分的に被覆していればよい。
[Wire harness]
FIG. 3 is a cross-sectional view showing an embodiment of the wire harness of the present invention. As shown in FIG. 3, the wire harness 20 includes a tape 21 that bundles a plurality of (four in FIG. 3) insulated wires 4 as cables. The tape 21 does not need to cover the plurality of insulated wires 4 entirely along the length direction, and partially covers the plurality of insulated wires 4 at a necessary position along the length direction. If you do.
 このワイヤハーネス20は、良好な難燃性を維持しつつ、優れた耐摩耗性を有する絶縁電線4を有するので、良好な難燃性を維持しつつ、優れた耐摩耗性を有することが可能となる。 Since this wire harness 20 has the insulated wire 4 having excellent wear resistance while maintaining good flame resistance, it is possible to have excellent wear resistance while maintaining good flame resistance. It becomes.
 上記ワイヤハーネス20は、ケーブルとしての絶縁電線4を複数本備えているが、絶縁電線4を1本のみ備えていてもよい。また、上記ワイヤハーネス20においては、絶縁電線4の代わりにケーブル10を用いることもできる。上記ワイヤハーネス20は、テープ21の内側にケーブルとしての絶縁電線4のみを備えているが、絶縁電線4及びケーブル10の2種類を備えていてもよい。 The wire harness 20 includes a plurality of insulated wires 4 as cables, but may include only one insulated wire 4. In the wire harness 20, the cable 10 can be used instead of the insulated wire 4. The wire harness 20 includes only the insulated wire 4 as a cable inside the tape 21, but may include two types of the insulated wire 4 and the cable 10.
 また、上記ワイヤハーネス20は、テープ21を備えているが、ワイヤハーネス20はテープ21の代わりに結束帯、コルゲートチューブ等を用いることもできる。 The wire harness 20 includes a tape 21, but the wire harness 20 may use a binding band, a corrugated tube, or the like instead of the tape 21.
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1~113及び比較例1~23)
<最外層樹脂組成物>
 ベース樹脂、シリコーンマスターバッチ(シリコーンMB)、脂肪酸含有化合物、無機粒子及び水酸化マグネシウムを、表1~15に示す配合量で配合し、2軸押出機(日本製鋼所社製、シリンダ径32mm)によって混練し、最外層樹脂組成物を得た。なお、表1~15において、各配合成分の配合量の単位は質量部である。また表1~15において、ベース樹脂の欄の配合量が100質量部となっていない実施例又は比較例があるが、これらの実施例又は比較例においてはシリコーンMB中にも樹脂が含まれており、ベース樹脂の欄の配合量とシリコーンMB中の樹脂の配合量とを合計すれば、その合計は100質量部となる。
(Examples 1 to 113 and Comparative Examples 1 to 23)
<Outermost layer resin composition>
Base resin, silicone masterbatch (silicone MB), fatty acid-containing compound, inorganic particles and magnesium hydroxide were blended in the blending amounts shown in Tables 1 to 15 and a twin-screw extruder (manufactured by Nippon Steel Works, cylinder diameter 32 mm) Kneaded to obtain an outermost resin composition. In Tables 1 to 15, the unit of the blending amount of each blending component is part by mass. In Tables 1 to 15, there are examples or comparative examples in which the compounding amount in the base resin column is not 100 parts by mass. In these examples or comparative examples, the silicone MB also contains a resin. If the blending amount in the column of the base resin and the blending amount of the resin in the silicone MB are summed, the sum is 100 parts by mass.
 <内層樹脂組成物>
 ベース樹脂、シリコーンマスターバッチ(シリコーンMB)、脂肪酸含有化合物、無機粒子及び水酸化マグネシウムを、表1~15に示す配合量で配合し、2軸押出機(日本製鋼所社製、シリンダ径32mm)によって混練し、内層樹脂組成物を得た。なお、表1~15において、各配合成分の配合量の単位は質量部である。また表1~15において、ベース樹脂の欄の配合量が100質量部となっていない実施例又は比較例があるが、これらの実施例又は比較例においてはシリコーンMB中にも樹脂が含まれており、ベース樹脂の欄の配合量とシリコーンMB中の樹脂の配合量とを合計すれば、その合計は100質量部となる。また、内層樹脂組成物については、230℃、2.16kg重でのMFRを表1~15に示した。表1~15中、MFRの欄における「-」は、内層樹脂組成物が230℃では流動せずに、MFRの測定ができなかったことを示す。
<Inner layer resin composition>
Base resin, silicone masterbatch (silicone MB), fatty acid-containing compound, inorganic particles and magnesium hydroxide were blended in the blending amounts shown in Tables 1 to 15 and a twin-screw extruder (manufactured by Nippon Steel Works, cylinder diameter 32 mm) Were kneaded to obtain an inner layer resin composition. In Tables 1 to 15, the unit of the blending amount of each blending component is part by mass. In Tables 1 to 15, there are examples or comparative examples in which the compounding amount in the base resin column is not 100 parts by mass. In these examples or comparative examples, the silicone MB also contains a resin. If the blending amount in the column of the base resin and the blending amount of the resin in the silicone MB are summed, the sum is 100 parts by mass. For the inner layer resin composition, MFRs at 230 ° C. and 2.16 kg weight are shown in Tables 1 to 15. In Tables 1 to 15, “−” in the MFR column indicates that the inner layer resin composition did not flow at 230 ° C. and MFR measurement could not be performed.
 上記ベース樹脂、シリコーンMB、脂肪酸含有化合物、無機粒子及び水酸化マグネシウムとしては、具体的には下記のものを用いた。 Specific examples of the base resin, silicone MB, fatty acid-containing compound, inorganic particles, and magnesium hydroxide are as follows.
 (1)ベース樹脂
(プロピレン系樹脂)
プロピレンブロックコポリマー:MFR(230℃、2.16kg重)9.0g/10分(プライムポリマー社製)
プロピレンランダムコポリマー:MFR(230℃、2.16kg重)7.0g/10分(日本ポリプロ社製)
ホモポリプロピレン:MFR(230℃、2.16kg重)0.5g/10分(サンアロマー社製)
(ポリエチレン)
直鎖状低密度ポリエチレン(LLDPE):MFR(230℃、2.16kg重)7.4g/10分、密度0.937g/cm(宇部丸善ポリエチレン社製)
低密度ポリエチレン(LDPE):MFR(190℃、2.16kg重)10.0g/10分密度0.917g/cm(宇部丸善ポリエチレン社製)
(ポリブテン)
1-ポリブテン(三井化学社製)
(ポリメチルペンテン)
ポリメチルペンテン(三井化学社製)
(ポリオレフィン系エラストマ)
ポリプロピレン(PP)-エチレンプロピレン(EP)エラストマ(エクソンモービル社製)
ポリプロピレン系エラストマ(三井化学社製)
(変性ポリオレフィン)
無水マレイン酸変性ポリプロピレン(プロピレン系、三井化学社製)
無水マレイン酸変性直鎖状低密度ポリエチレン(ポリエチレン系、デュポン社製)
無水マレイン酸変性エチレンブチルアクリレート(エチレンブチルアクリレート系、デュポン社製)
(1) Base resin (propylene resin)
Propylene block copolymer: MFR (230 ° C., 2.16 kg weight) 9.0 g / 10 min (manufactured by Prime Polymer)
Propylene random copolymer: MFR (230 ° C., 2.16 kg weight) 7.0 g / 10 min (manufactured by Nippon Polypro)
Homopolypropylene: MFR (230 ° C., 2.16 kg weight) 0.5 g / 10 min (manufactured by Sun Allomer)
(polyethylene)
Linear low density polyethylene (LLDPE): MFR (230 ° C., 2.16 kg weight) 7.4 g / 10 min, density 0.937 g / cm 3 (manufactured by Ube Maruzen Polyethylene)
Low density polyethylene (LDPE): MFR (190 ° C., 2.16 kg weight) 10.0 g / 10 min density 0.917 g / cm 3 (manufactured by Ube Maruzen Polyethylene)
(Polybutene)
1-Polybutene (Mitsui Chemicals)
(Polymethylpentene)
Polymethylpentene (Mitsui Chemicals)
(Polyolefin elastomer)
Polypropylene (PP) -ethylene propylene (EP) elastomer (manufactured by ExxonMobil)
Polypropylene elastomer (Mitsui Chemicals)
(Modified polyolefin)
Maleic anhydride-modified polypropylene (propylene, manufactured by Mitsui Chemicals)
Maleic anhydride modified linear low density polyethylene (polyethylene, DuPont)
Maleic anhydride modified ethylene butyl acrylate (ethylene butyl acrylate, DuPont)
 (2)シリコーンMB
シリコーンMB1: 
50質量%シリコーンガムと50質量%低密度ポリエチレン(LLDPE)とを含有(信越化学社製)
シリコーンMB2: 
50質量%シリコーンガムと50質量%プロピレン系樹脂(PP)とを含有(信越化学社製)
(2) Silicone MB
Silicone MB1:
Contains 50% by weight silicone gum and 50% by weight low density polyethylene (LLDPE) (manufactured by Shin-Etsu Chemical Co., Ltd.)
Silicone MB2:
Contains 50% by weight silicone gum and 50% by weight propylene resin (PP) (manufactured by Shin-Etsu Chemical Co., Ltd.)
 (3)脂肪酸含有化合物
ステアリン酸Mg(ADEKA社製)
ステアリン酸Zn(日東化成工業社製)
ステアリン酸(日油社製)
(3) Fatty acid-containing compound Mg stearate (manufactured by ADEKA)
Zn stearate (Nitto Kasei Kogyo Co., Ltd.)
Stearic acid (manufactured by NOF Corporation)
 (4)無機粒子
炭酸カルシウム粒子1:平均粒径1.7μm、パラフィン表面処理(日東粉化社製)
炭酸カルシウム粒子2:平均粒径1.7μm、ステアリン酸表面処理(日東粉化社製)
クレイ粒子:平均粒径1.5μm(竹原化学工業社製)
タルク粒子:平均粒径2.5μm(日本タルク社製)
(4) Inorganic particles Calcium carbonate particles 1: Average particle size 1.7 μm, paraffin surface treatment (manufactured by Nitto Flour Chemical Co., Ltd.)
Calcium carbonate particles 2: Average particle size 1.7 μm, stearic acid surface treatment (manufactured by Nitto Flourishing Co., Ltd.)
Clay particles: average particle size 1.5 μm (manufactured by Takehara Chemical Industries)
Talc particles: average particle size 2.5 μm (made by Nippon Talc Co., Ltd.)
 (5)水酸化マグネシウム
平均粒径1.1μm、高級脂肪酸表面処理(神島化学社製)
(5) Magnesium hydroxide average particle size 1.1 μm, higher fatty acid surface treatment (manufactured by Kamishima Chemical Co., Ltd.)
 <絶縁電線の作製>
 ケーブルとしての絶縁電線は、下記の電線の種類に応じて以下のようにして作製した。
 
電線1・・・厚肉0.5sq(mm
電線2・・・超薄肉0.5sq
電線3・・・超薄肉1.5sq
電線4・・・厚肉100sq
 
 なお、上記電線の種類はJASO D611に準拠している。「0.5」、「100」及び「1.5」は導体の断面積を示し、「厚肉」および「超薄肉」は絶縁層の厚さを示す。但し、同じ「厚肉」の表記であっても導体断面積により絶縁層の厚さは異なる場合がある。すなわち、電線1~4は言い換えると以下の通りとなる。
 
電線1・・・導体断面積0.5mm、絶縁層の厚さ0.50mm
電線2・・・導体断面積0.5mm、絶縁層の厚さ0.20mm
電線3・・・導体断面積1.5mm、絶縁層の厚さ0.20mm
電線4・・・導体断面積100mm、絶縁層の厚さ2.00mm
 
(電線1~3)
 電線1~3は、単軸押出機(マース精機社製、シリンダ外径25mm)にて上記のようにして準備した内層樹脂組成物を押し出し、クロスヘッドから排出させて、導体上に表1~15に示す厚さを有するように被覆して内層を形成し、得られた内層被覆電線をボビンに巻き取った後、巻き取った内層被覆電線を送り出した。一方、単軸押出機(マース精機社製、シリンダ外径25mm)にて上記のようにして準備した最外層樹脂組成物を押し出し、クロスヘッドから排出させて、送り出された内層被覆電線上に表1~15に示す厚さを有するように被覆して最外層を形成した。こうして、ケーブルとしての絶縁電線を作製した。
(電線4)
 電線4は、単軸押出機として、シリンダ外径が60mmの単軸押出機(マース精機社製)を使用したこと以外は上記と同様にして絶縁電線を作製した。
<Production of insulated wires>
The insulated electric wire as a cable was produced as follows according to the kind of the following electric wire.

Electric wire 1 ... Thick wall 0.5 sq (mm 2 )
Electric wire 2 ... Ultra thin 0.5sq
Electric wire 3 ... Ultra thin 1.5sq
Electric wire 4 ... Thick wall 100sq

In addition, the kind of the said electric wire is based on JASO D611. “0.5”, “100”, and “1.5” indicate the cross-sectional area of the conductor, and “thick” and “ultra-thin” indicate the thickness of the insulating layer. However, the thickness of the insulating layer may differ depending on the conductor cross-sectional area even if the same “thick” notation is used. That is, the electric wires 1 to 4 are as follows.

Electric wire 1 ... conductor cross-sectional area 0.5 mm 2 , insulation layer thickness 0.50 mm
Electric wire 2 ... conductor cross-sectional area 0.5 mm 2 , insulation layer thickness 0.20 mm
Electric wire 3: conductor cross-sectional area 1.5 mm 2 , insulation layer thickness 0.20 mm
Electric wire 4 ... conductor cross-sectional area 100 mm 2 , insulation layer thickness 2.00 mm

(Wires 1 to 3)
For the electric wires 1 to 3, the inner layer resin composition prepared as described above was pushed out by a single screw extruder (manufactured by Mars Seiki Co., Ltd., cylinder outer diameter: 25 mm), discharged from the crosshead, and placed on the conductors as shown in Tables 1 to 3. The inner layer was formed by coating so as to have a thickness shown in FIG. 15, and the obtained inner layer covered electric wire was wound around a bobbin, and then the wound inner layer covered electric wire was sent out. On the other hand, the outermost layer resin composition prepared as described above is extruded by a single-screw extruder (made by Mars Seiki Co., Ltd., cylinder outer diameter 25 mm), discharged from the crosshead, and displayed on the fed inner layer covered electric wire. The outermost layer was formed by coating so as to have a thickness shown in 1 to 15. Thus, an insulated wire as a cable was produced.
(Wire 4)
The electric wire 4 produced the insulated electric wire similarly to the above except having used the single screw extruder (made by Mars Seiki Co., Ltd.) whose cylinder outer diameter is 60 mm as a single screw extruder.
 上記のようにして作製した絶縁電線の電線設計、すなわち、導体の外径、電線の外径、内層の厚さ、最外層の厚さ、及び、絶縁層に占める最外層の断面積比率は表1~15に示す通りである。 The wire design of the insulated wire produced as described above, that is, the outer diameter of the conductor, the outer diameter of the wire, the thickness of the inner layer, the thickness of the outermost layer, and the cross-sectional area ratio of the outermost layer in the insulating layer As shown in 1-15.
 (絶縁層の比重)
 上記のようにして作製した絶縁電線の絶縁層の比重は以下のようにして測定した。すなわち、絶縁電線から絶縁層を剥ぎ取り、この絶縁層を溶融混練して、厚さ2mmの均一なシートを作製し、アルキメデス法に基づいて、電子比重計(アルファミラージュ社製)にて絶縁層の比重を測定した。結果を表1~15に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
(Specific gravity of insulating layer)
The specific gravity of the insulating layer of the insulated wire produced as described above was measured as follows. That is, the insulating layer is peeled off from the insulated wire, the insulating layer is melt-kneaded to produce a uniform sheet having a thickness of 2 mm, and the insulating layer is measured with an electronic hydrometer (manufactured by Alpha Mirage) based on the Archimedes method. The specific gravity of was measured. The results are shown in Tables 1-15.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 <特性評価>
 上記のようにして得られた実施例1~113及び比較例1~23の絶縁電線について、以下のようにして難燃性、耐摩耗性、耐内部剥離性及び口出し加工性の評価を行った。
<Characteristic evaluation>
The insulated wires of Examples 1 to 113 and Comparative Examples 1 to 23 obtained as described above were evaluated for flame retardancy, wear resistance, internal peel resistance and lead processability as follows. .
 <難燃性>
 上記実施例1~113及び比較例1~23の絶縁電線について、JASO D618に記載の試験方法で水平燃焼試験を行った。水平燃焼試験では、絶縁層が燃焼するまで接炎し、離炎後、消火するまでの残炎時間を測定した。そして、以下の残炎時間ごとに以下のようにしてランク付けして評価した。結果を表1~15に示す。難燃性の合格基準は下記の通りとした。
(評価ランク)
◎・・・残炎時間が15秒未満
○・・・残炎時間が15秒以上25秒未満
△・・・残炎時間が25秒以上30秒以下
×・・・残炎時間が30秒超又は全焼
(合格基準)評価ランクが◎、〇又は△であること
<Flame retardance>
With respect to the insulated wires of Examples 1 to 113 and Comparative Examples 1 to 23, a horizontal combustion test was performed by the test method described in JASO D618. In the horizontal combustion test, the flame was contacted until the insulating layer burned, and the afterflame time until the fire was extinguished after the flame was removed was measured. And it ranked and evaluated as follows for every following after flame time. The results are shown in Tables 1-15. The acceptance criteria for flame retardancy were as follows.
(Evaluation rank)
◎ ・ ・ ・ After flame time is less than 15 seconds ○ ・ ・ ・ After flame time is 15 seconds or more and less than 25 seconds Δ ・ ・ ・ After flame time is 25 seconds or more and 30 seconds or less × ・ ・ ・ After flame time is more than 30 seconds Or the total burn (acceptance criteria) evaluation rank is ◎, ○ or △
 <耐摩耗性>
 耐摩耗性は、上記実施例1~113及び比較例1~23の絶縁電線について、JASO D618に記載の試験方法にてスクレープ摩耗試験を行い、このとき測定される「導通するまでのスクレープ摩耗回数」の最小値を指標とした。そして、絶縁電線について、その種類に応じて以下のようにしてランク付けを行って評価した。結果を表1~15に示す。耐摩耗性の合格基準は下記の通りとした。なお、実施例96~100及び比較例9については、絶縁層に占める最外層の断面積比率が50%以下であると、より優れた耐摩耗性が得られることを示すために、評価ランクに対応するスクレープ摩耗回数の値を表16に示す。
(電線2)
(評価ランク)
◎・・・スクレープ摩耗回数が300回以上
○・・・スクレープ摩耗回数が200回以上300回未満
△・・・スクレープ摩耗回数が150回以上200回未満
×・・・スクレープ摩耗回数が150回未満
(合格基準)評価ランクが◎、〇又は△であること(JASO規格値:150回以上)
(電線1、3及び4)
(評価ランク)
◎・・・スクレープ摩耗回数が2000回以上
○・・・スクレープ摩耗回数が500回以上2000回未満
△・・・スクレープ摩耗回数が150回以上500回未満
×・・・スクレープ摩耗回数が150回未満
(合格基準)評価ランクが◎、〇又は△であること(JASO規格値:150回以上)
<Abrasion resistance>
The abrasion resistance was determined by performing a scrape wear test on the insulated wires of Examples 1 to 113 and Comparative Examples 1 to 23 according to the test method described in JASO D618. As the index. And about the insulated wire, it ranked as follows according to the kind, and evaluated. The results are shown in Tables 1-15. The acceptance criteria for wear resistance were as follows. For Examples 96 to 100 and Comparative Example 9, in order to show that better wear resistance can be obtained when the cross-sectional area ratio of the outermost layer in the insulating layer is 50% or less, the evaluation rank Table 16 shows the corresponding values of the number of scrape wear.
(Wire 2)
(Evaluation rank)
◎ ・ ・ ・ Scrape wear frequency is 300 times or more ○ ・ ・ ・ Scrape wear frequency is 200 times or more and less than 300 times Δ ・ ・ ・ Scrape wear frequency is 150 times or more and less than 200 times × ・ ・ ・ Scrape wear frequency is less than 150 times (Acceptance criteria) Evaluation rank is ◎, ○ or △ (JASO standard value: 150 times or more)
( Wires 1, 3, and 4)
(Evaluation rank)
◎ ・ ・ ・ Scrape wear frequency is 2000 times or more ○ ・ ・ ・ Scrape wear frequency is 500 times or more and less than 2000 times Δ ・ ・ ・ Scrape wear frequency is 150 times or more and less than 500 times × ・ ・ ・ Scrape wear frequency is less than 150 times (Acceptance criteria) Evaluation rank is ◎, ○ or △ (JASO standard value: 150 times or more)
 上記×、△、〇及び◎の意義は以下の通りである。
 ×は、スクレープ摩耗回数がJASO規格値未満であることを意味する。
 △は、スクレープ摩耗回数がJASO規格値以上であるが、裕度があることを意味する。ケーブルにおいては、製造ばらつきにより、導体がある程度偏心する。また、押し出し時の吐出量にもばらつきがあるため、絶縁層の厚さも長尺でみるとある程度変動する。このため、ケーブルの絶縁層において厚い部分と薄い部分とがどうしても発生する。実験上は、スクレープ摩耗回数がJASO規格を満たしていたとしても、実際上は、偏心や長尺での外径変動により絶縁層の薄い部分ではスクレープ摩耗回数がJASO規格を満たさなくなったり、満たしたりすることがある。このとき、偏心により絶縁層の薄い部分においてスクレープ摩耗回数がJASO規格を満たさないケーブルは、裕度がなく、スクレープ摩耗回数がJASO規格を満たすケーブルは、裕度があることになる。すなわち、裕度とは、製造ばらつき(偏心)に対する許容度のことであり、スクレープ摩耗回数が多いほど、裕度が高くなる。
 〇は、スクレープ摩耗回数がJASO規格値以上で且つ裕度が高く、通常の環境(通常の振動レベルで摩耗が比較的しにくい環境)であればケーブルが使用可能であることを意味する。
 ◎は、スクレープ摩耗回数がJASO規格値以上で且つ裕度がより高く、厳しい環境(例えば自動車のエンジン近傍などの振動が激しく摩耗のおそれが高い環境)でもケーブルが使用可能であることを意味する。このため、評価ランクが◎であれば、×、△及び〇では使用することが困難な、激しい振動により互いにこすれて摩耗しやすくなるエンジン回りでもケーブルを使用可能となる。
The meanings of the above x, Δ, ◯ and ◎ are as follows.
X means that the number of scrape wear is less than the JASO standard value.
Δ means that the number of scrape wear is equal to or greater than the JASO standard value, but there is a margin. In the cable, the conductor is eccentric to some extent due to manufacturing variations. Further, since the discharge amount at the time of extrusion also varies, the thickness of the insulating layer also varies to some extent when viewed as a long length. For this reason, a thick part and a thin part inevitably occur in the insulating layer of the cable. In the experiment, even if the number of scrape wears meets the JASO standard, the number of scrape wears does not meet the JASO standard in the thin part of the insulating layer due to eccentricity or long outer diameter fluctuation in practice. There are things to do. At this time, a cable whose scrape wear frequency does not satisfy the JASO standard in a portion where the insulating layer is thin due to eccentricity has no tolerance, and a cable whose scrape wear frequency satisfies the JASO standard has tolerance. That is, the tolerance is an allowance for manufacturing variations (eccentricity), and the tolerance increases as the number of scrape wears increases.
“O” means that the cable can be used in a normal environment (an environment in which wear is relatively difficult at a normal vibration level) where the number of scrape wear is equal to or higher than the JASO standard value and the tolerance is high.
◎ means that the scrape wear frequency is more than the JASO standard value and has a higher tolerance, and the cable can be used even in harsh environments (for example, in the vicinity of automobile engines where vibrations are high and there is a high risk of wear). . For this reason, if the evaluation rank is ◎, the cable can be used even around the engine, which is difficult to be used with ×, △, and ◯, and is easily rubbed and worn by intense vibration.
 <耐内部剥離性>
 耐内部剥離性の評価は、上記実施例1~113及び比較例1~23の絶縁電線を長さ350mmに切断し、150℃の恒温槽に6時間投入した後に取り出し、電線外径の1.5倍の直径を有するマンドレルに巻き付けた後、光学顕微鏡で絶縁電線の端部において導体と内層との間、内層と最外層との間における剥離の有無を観察し、以下のようにランク付けすることによって行った。結果を表1~15に示す。
(評価ランク)
〇・・・剥離なし
×・・・剥離あり
<Internal peel resistance>
Internal peel resistance was evaluated by cutting the insulated wires of Examples 1 to 113 and Comparative Examples 1 to 23 into a length of 350 mm, putting them in a thermostatic bath at 150 ° C. for 6 hours, and taking them out. After winding around a mandrel having a diameter of 5 times, an optical microscope is used to observe the presence or absence of delamination between the conductor and the inner layer and between the inner layer and the outermost layer at the end of the insulated wire, and rank as follows: Was done by. The results are shown in Tables 1-15.
(Evaluation rank)
〇 ・ ・ ・ No peeling × ・ ・ ・ With peeling
 <口出し加工性>
 上記実施例1~113及び比較例1~23で得られた10本の絶縁電線について、ストリップ長を10mmに設定して端末ストリップを行った。そして、端末ストリップ後の絶縁電線端部をマイクロスコープで観察してヒゲの長さを測定し、このヒゲの長さを口出し加工性の指標とした。そして、以下のようにしてランク付けを行って口出し加工性を評価した。結果を表1~15に示す。なお、実施例77~84については、絶縁層に占める最外層の断面積比率が50%以下であると、より優れた口出し加工性が得られることを示すために、評価ランクに対応するヒゲ長さの値を表17に示す。
(評価ランク)
◎・・・・ヒゲ長さ0.3mm未満
○・・・・ヒゲ長さ0.3mm以上0.4mm未満
△・・・・ヒゲ長さ0.4mm以上0.5mm未満
×・・・・ヒゲ長さ0.5mm以上0.6mm未満
××・・・ヒゲ長さ0.6mm以上
 上記××、×、△、〇及び◎の意義は以下の通りである。
 ××は、口出ししたケーブルの導体と接続端子を接続する際に、ヒゲが導体と接続端子の間に入り込んで接触不良が起こる可能性が非常に高いことを意味する。
 ×は、口出ししたケーブルの導体と接続端子を接続する際に、ヒゲが導体と接続端子の間に入り込んで接触不良が起こる可能性が高いことを意味する。
 △は、口出ししたケーブルの導体と接続端子を接続する際に、ヒゲが導体と接続端子の間に入り込んで接触不良が起こる可能性は低いが、絶縁層の外径及び導体の外径に適した専用の口出し加工用の刃を使用しつつ通常製造時のばらつき(導体の偏心)を考慮して口出し加工を行う必要があることを意味する。
 〇は、口出ししたケーブルの導体と接続端子を接続する際に、ヒゲが導体と接続端子の間に入り込んで接触不良が起こる可能性は低いが、絶縁層の外径及び導体の外径に適した専用の口出し加工用の刃を使用しつつ通常製造時のばらつき(導体の偏心)を考慮しないで口出し加工を行うことができることを意味する。
 ◎は、口出ししたケーブルの導体と接続端子を接続する際に、ヒゲが導体と接続端子の間に入り込んで接触不良が起こる可能性は低いが、口出し加工用の刃を、絶縁層の外径及び導体の外径のある程度異なるケーブルに兼用して使用することができ、通常製造時のばらつき(導体の偏心)を考慮しないで口出し加工を行うことができることを意味する。この場合、絶縁層の外径及び導体の外径が異なるケーブルごとに刃を交換する頻度が少なくなり、刃の管理が容易になる。
<Outgoing processability>
The 10 insulated wires obtained in Examples 1 to 113 and Comparative Examples 1 to 23 were subjected to terminal strips with the strip length set to 10 mm. Then, the end of the insulated wire after the terminal strip was observed with a microscope, the length of the beard was measured, and the length of the beard was used as an index of the lead processability. And ranking was performed as follows and the lead processability was evaluated. The results are shown in Tables 1-15. In Examples 77 to 84, the beard length corresponding to the evaluation rank is shown in order to show that excellent lead processability is obtained when the cross-sectional area ratio of the outermost layer in the insulating layer is 50% or less. Table 17 shows the values.
(Evaluation rank)
◎ ・ ・ ・ ・ Beard length less than 0.3mm ○ ・ ・ ・ ・ Beard length of 0.3mm or more and less than 0.4mm Δ ・ ・ ・ ・ Beard length of 0.4mm or more and less than 0.5mm × ··· Beard Length 0.5 mm or more and less than 0.6 mm XX ... Beard length 0.6 mm or more The meanings of the above xx, x, Δ, ◯ and ◎ are as follows.
XX means that when connecting the conductor of the cable that has been led out and the connection terminal, the possibility that a beard enters between the conductor and the connection terminal to cause a contact failure is very high.
X means that when connecting the conductor of the cable that has been led out and the connection terminal, the beard is likely to enter between the conductor and the connection terminal to cause contact failure.
△ is suitable for the outer diameter of the insulating layer and the outer diameter of the conductor, although it is unlikely that whisker will enter between the conductor and the connecting terminal when connecting the conductor of the leaded cable and the connecting terminal. This means that it is necessary to perform the lead processing in consideration of the variation (conductor eccentricity) at the time of normal manufacturing while using a dedicated lead processing blade.
○ is suitable for the outer diameter of the insulating layer and the outer diameter of the conductor, although when connecting the conductor of the cable and the connection terminal, the possibility that a whisker will enter between the conductor and the connection terminal and contact failure is low In addition, it means that it is possible to perform the squeezing process without taking into account the variation during manufacture (concentration of the conductor) while using a dedicated squeezing blade.
◎ indicates that when connecting the conductor of the leaded cable and the connection terminal, it is unlikely that whiskers will enter between the conductor and the connection terminal, resulting in poor contact. It can also be used as a cable with a somewhat different outer diameter of the conductor, which means that the lead-out process can be performed without taking into account variations during manufacture (conductor eccentricity). In this case, the frequency of replacing the blade for each cable having a different outer diameter of the insulating layer and the outer diameter of the conductor is reduced, and management of the blade is facilitated.
 以上のことから、本発明のケーブルによれば、良好な難燃性を維持しつつ、優れた耐摩耗性を有することが確認された。 From the above, it was confirmed that the cable of the present invention has excellent wear resistance while maintaining good flame retardancy.
 本発明のケーブルは、良好な難燃性を維持しつつ、優れた耐摩耗性を有するため、自動車用絶縁電線、産業用電線、自動車用ケーブル、産業用ケーブル、通信ケーブル、同軸ケーブル、電子ワイヤーなどの種々の用途に適用できる。また、本発明のケーブルは、伝送媒体を、導体から光ファイバに置き換えた光ファイバケーブルに適用することも可能である。 The cable of the present invention has excellent wear resistance while maintaining good flame retardancy, so that it is an insulated wire for automobiles, industrial wires, automotive cables, industrial cables, communication cables, coaxial cables, and electronic wires. It can be applied to various uses such as. The cable of the present invention can also be applied to an optical fiber cable in which the transmission medium is replaced with an optical fiber from a conductor.
 1…導体
 2…絶縁層
 2A…内層
 2B…最外層
 3…被覆層
 4…絶縁電線
 10…ケーブル
 20…ワイヤハーネス
DESCRIPTION OF SYMBOLS 1 ... Conductor 2 ... Insulating layer 2A ... Inner layer 2B ... Outermost layer 3 ... Covering layer 4 ... Insulated electric wire 10 ... Cable 20 ... Wire harness

Claims (11)

  1.  導体又は光ファイバで構成される伝送媒体と、
     前記伝送媒体を被覆する絶縁層とを有し、
     前記絶縁層が、最外層と、前記最外層の内側に設けられる内層とを有し、
     前記最外層が、ベース樹脂及び難燃剤を含み、
     前記難燃剤が、炭酸カルシウム粒子及びケイ酸塩化合物粒子からなる群より選ばれる少なくとも1種からなる無機粒子と、シリコーン系化合物と、脂肪酸含有化合物とを含み、
     前記絶縁層における前記最外層の断面積比率が0.5%以上86%未満である、ケーブル。
    A transmission medium composed of a conductor or an optical fiber;
    An insulating layer covering the transmission medium;
    The insulating layer has an outermost layer and an inner layer provided inside the outermost layer;
    The outermost layer includes a base resin and a flame retardant,
    The flame retardant comprises inorganic particles consisting of at least one selected from the group consisting of calcium carbonate particles and silicate compound particles, a silicone compound, and a fatty acid-containing compound,
    The cable, wherein a cross-sectional area ratio of the outermost layer in the insulating layer is 0.5% or more and less than 86%.
  2.  前記絶縁層における前記最外層の断面積比率が50%以下である、請求項1に記載のケーブル。 The cable according to claim 1, wherein a cross-sectional area ratio of the outermost layer in the insulating layer is 50% or less.
  3.  前記絶縁層中の前記無機粒子の含有率が0.03~7.00質量%であり、
     前記絶縁層中の前記シリコーン系化合物の含有率が0.01~4.30質量%であり、
     前記絶縁層中の前記脂肪酸含有化合物の含有率が0.02~7.50質量%である、請求項1又は2に記載のケーブル。
    The content of the inorganic particles in the insulating layer is 0.03 to 7.00 mass%,
    The content of the silicone compound in the insulating layer is 0.01 to 4.30% by mass,
    The cable according to claim 1 or 2, wherein the content of the fatty acid-containing compound in the insulating layer is 0.02 to 7.50 mass%.
  4.  前記最外層の厚さが0.008~0.400mmである、請求項1~3のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 3, wherein a thickness of the outermost layer is 0.008 to 0.400 mm.
  5.  前記絶縁層の比重が0.84~1.04である、請求項1~4のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 4, wherein the specific gravity of the insulating layer is 0.84 to 1.04.
  6.  前記最外層においては、前記ベース樹脂100質量部に対する前記無機粒子の配合割合が6~20質量部であり、
     前記ベース樹脂100質量部に対する前記シリコーン系化合物の配合割合が1.5~10質量部であり、
     前記ベース樹脂100質量部に対する前記脂肪酸含有化合物の配合割合が3~20質量部である、請求項1~5のいずれか一項に記載のケーブル。
    In the outermost layer, the blending ratio of the inorganic particles with respect to 100 parts by mass of the base resin is 6 to 20 parts by mass.
    The blending ratio of the silicone compound to 100 parts by mass of the base resin is 1.5 to 10 parts by mass,
    The cable according to any one of claims 1 to 5, wherein a blending ratio of the fatty acid-containing compound with respect to 100 parts by mass of the base resin is 3 to 20 parts by mass.
  7.  前記ベース樹脂がポリオレフィン樹脂を含む、請求項1~6のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 6, wherein the base resin includes a polyolefin resin.
  8.  前記内層が、ベース樹脂を含む樹脂組成物で構成され、前記ベース樹脂中のプロピレン系樹脂の含有率が80質量%より大きく、前記樹脂組成物の230℃、2.16kg重でのMFRが1.0g/10分以上15.0g/10分未満である請求項1~7のいずれか一項に記載のケーブル。 The inner layer is composed of a resin composition containing a base resin, the content of propylene resin in the base resin is greater than 80% by mass, and the MFR at 230 ° C. and 2.16 kg weight of the resin composition is 1 The cable according to any one of claims 1 to 7, which has a value of 0.0 g / 10 min or more and less than 15.0 g / 10 min.
  9.  前記導体がアルミニウム又はアルミニウム合金である、請求項1~8のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 8, wherein the conductor is aluminum or an aluminum alloy.
  10.  前記絶縁層を被覆する被覆層をさらに備える請求項1~9のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 9, further comprising a covering layer that covers the insulating layer.
  11.  請求項1~10のいずれか一項に記載のケーブルを有する、ワイヤハーネス。 A wire harness having the cable according to any one of claims 1 to 10.
PCT/JP2019/009824 2018-03-13 2019-03-11 Cable and wiring harness WO2019176886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506528A JPWO2019176886A1 (en) 2018-03-13 2019-03-11 Cable and wire harness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-046066 2018-03-13
JP2018046066 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176886A1 true WO2019176886A1 (en) 2019-09-19

Family

ID=67908304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009824 WO2019176886A1 (en) 2018-03-13 2019-03-11 Cable and wiring harness

Country Status (2)

Country Link
JP (1) JPWO2019176886A1 (en)
WO (1) WO2019176886A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149543A (en) * 2012-01-23 2013-08-01 Yazaki Corp Surface crosslinking wire
JP2014125575A (en) * 2012-12-27 2014-07-07 Fujikura Ltd Flame-retardant resin composition and cable using the same
JP2015046258A (en) * 2013-08-27 2015-03-12 住友電気工業株式会社 Halogen-free flame-retardant insulated wire
JP2015201450A (en) * 2015-04-30 2015-11-12 日立金属株式会社 Non-halogen multilayer insulated wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149543A (en) * 2012-01-23 2013-08-01 Yazaki Corp Surface crosslinking wire
JP2014125575A (en) * 2012-12-27 2014-07-07 Fujikura Ltd Flame-retardant resin composition and cable using the same
JP2015046258A (en) * 2013-08-27 2015-03-12 住友電気工業株式会社 Halogen-free flame-retardant insulated wire
JP2015201450A (en) * 2015-04-30 2015-11-12 日立金属株式会社 Non-halogen multilayer insulated wire

Also Published As

Publication number Publication date
JPWO2019176886A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6050788B2 (en) Insulated wire and cable using halogen-free flame-retardant resin composition
JP6082741B2 (en) Non-halogen flame retardant resin composition and insulated wire / cable having the resin composition
JP5890077B1 (en) Flame-retardant resin composition, cable using the same, and optical fiber cable
JP5282163B1 (en) Flame-retardant resin composition and cable using the same
JP6456722B2 (en) Flame retardant resin composition, and cable and optical fiber cable using the same
JP5858351B2 (en) Insulated wires and cables for railway vehicles using halogen-free flame-retardant resin composition
WO2019181745A1 (en) Flame-retardant resin composition, insulated electrical wire obtained using same, cable, and optical fiber cable
JP5526164B2 (en) Flame retardant wire / cable
JP4198039B2 (en) Non-crosslinked flame retardant resin composition and insulated wire and wire harness using the same
WO2014141567A1 (en) Insulating body composition, and coated electric wire manufactured using same
JPWO2019102920A1 (en) Flame-retardant resin composition, insulated wires, cables, optical fiber cables and molded products using this
WO2019176886A1 (en) Cable and wiring harness
WO2019176887A1 (en) Cable and wiring harness
JP2015021058A (en) Flame-retardant resin composition, and flame-retardant article including flame-retardant resin molded body produced by molding the same
WO2019176885A1 (en) Cable and wiring harness
JP6542058B2 (en) Flame retardant resin composition, cable using the same, and optical fiber cable
JP2019160581A (en) Cable and wire harness
JP2019160580A (en) Cable and wire harness
WO2020158469A1 (en) Cable and wiring harness
JP5848871B2 (en) Heat-resistant non-halogen aluminum wire
JP2021187970A (en) Resin composition, resin coating material, wire harness for automobile, and method for manufacturing wire harness for automobile
WO2020189533A1 (en) Flame-retardant resin composition, and cable and wire harness using same
JP2007329012A (en) Flame-retardant insulated wire and wire harness
JP2021044191A (en) Cable and wire harness
JP2021044190A (en) Cable and wire harness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767407

Country of ref document: EP

Kind code of ref document: A1