WO2020158469A1 - Cable and wiring harness - Google Patents

Cable and wiring harness Download PDF

Info

Publication number
WO2020158469A1
WO2020158469A1 PCT/JP2020/001619 JP2020001619W WO2020158469A1 WO 2020158469 A1 WO2020158469 A1 WO 2020158469A1 JP 2020001619 W JP2020001619 W JP 2020001619W WO 2020158469 A1 WO2020158469 A1 WO 2020158469A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
cable
base resin
layer
Prior art date
Application number
PCT/JP2020/001619
Other languages
French (fr)
Japanese (ja)
Inventor
学 佐々木
亮 渡部
中村 詳一郎
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020158469A1 publication Critical patent/WO2020158469A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present invention relates to a cable and a wire harness.
  • a cable has a transmission medium made of a conductor or an optical fiber and an insulating layer covering the transmission medium, and a flame-retardant resin composition may be used for the insulating layer.
  • a flame-retardant resin composition may be used for the insulating layer.
  • an insulating layer calcium carbonate particles blended in a ratio of 10 parts by mass or more with respect to 100 parts by mass of a base resin, and a silicone compound compounded in a ratio greater than 1 part by mass
  • a cable using a flame-retardant resin composition containing a fatty acid-containing compound mixed in a proportion of more than 3 parts by mass is disclosed. This cable has excellent flame retardancy and terminal processability.
  • a fully automatic terminal crimping machine is often used to attach (terminal) a cable terminal.
  • the fully-automatic terminal crimping machine is a device that performs a cutting operation of a cable with a specified length, a stripping operation of stripping the covering material of the cable end (end processing), and a terminal driving operation of crimping the terminal to the cable.
  • These fully automatic terminal crimping machines perform extremely high-speed operations from the measuring scale to the terminal driving, as compared with the case where the cable terminals are manually driven.
  • the actual length of the cable when the fully automatic terminal crimping machine is used is less likely to vary with respect to the set length of the cable, that is, the measured length of the cable.
  • the set length of the cable that is, the measured length of the cable.
  • the amount of the silicone compound compounded to 100 parts by mass of the base resin is sufficiently small. do it.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cable and a wire harness having excellent scale stability, terminal processability, and flame retardancy.
  • the present inventors first thought of dividing the insulating layer into an outermost layer and an inner layer. Then, the outermost layer contains the base resin and the flame retardant, the inner layer contains the base resin and the silicone compound, the flame retardant in the outermost layer contains the silicone compound, the inorganic particles and the fatty acid-containing compound, and the base layer in the outermost layer.
  • the above problem is solved by setting the blending amount of the silicone compound, the inorganic particles and the fatty acid-containing compound with respect to 100 parts by mass of the resin within a specific range and the blending amount of the silicone compound with respect to 100 parts by mass of the base resin within the specified range in the inner layer. It was found to be effective in doing so.
  • the present inventors have completed the present invention.
  • the present invention has a transmission medium composed of a conductor or an optical fiber, and an insulating layer that covers the transmission medium, the insulating layer includes an outermost layer and an inner layer provided inside the outermost layer.
  • the inner layer contains a base resin and a silicone-based compound, and the compounding ratio of the silicone-based compound is 2.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the base resin, and the outermost layer is a base resin.
  • a flame retardant wherein the flame retardant is more than 0 parts by mass and less than 2.5 parts by mass with respect to 100 parts by mass of the base resin, 1 part by mass or more of inorganic particles, and 1 part by mass or more of 10 parts by mass. It is a cable containing a fatty acid content compound below a mass part.
  • the cable of the present invention has excellent scale stability, terminal processability, and flame retardancy.
  • the sliding friction force on the surface of the cable becomes an appropriate value.
  • the cable is less likely to slip, the actual length of the cable is less likely to vary with respect to the set length of the cable, and the length measurement is stable.
  • the amount of the silicone compound compounded to 100 parts by mass of the base resin was sufficiently small, but in the inner layer, the amount of the silicone compound compounded to 100 parts by mass of the base resin was large.
  • the insulating layer is well removed, and it is sufficiently suppressed that only the surface of the insulating layer is scraped off. Therefore, the end workability of the cable can be improved.
  • the amount of the silicone compound compounded to 100 parts by mass of the base resin was sufficiently small, but in the inner layer, the amount of the silicone compound compounded to 100 parts by mass of the base resin was large. Therefore, the flame retardancy of the entire insulating layer does not become too low.
  • ⁇ S represented by the following formula is preferably 0.1 to 8 parts by mass.
  • ⁇ S S1-S2 (In the formula, S1 represents a blending ratio (parts by mass) of the silicone compound in the inner layer to 100 parts by mass of the base resin, and S2 represents the base resin 100 of the silicone compound in the outermost layer. Represents a blending ratio (parts by mass) relative to parts by mass.)
  • the sliding frictional force of the outermost layer is preferably larger than 3N.
  • the measuring stability of the cable can be further improved.
  • the adhesion of the inner layer to the transmission medium is preferably 50 N/50 mm or less.
  • the end workability of the cable can be further improved, as compared with the case where the adhesion force of the inner layer to the transmission medium exceeds 50 N/50 mm.
  • the base resin of the inner layer contains a propylene resin.
  • the heat resistance and wear resistance of the cable can be further improved as compared with the case where the inner layer base resin does not contain a propylene resin.
  • the inorganic particles contained in the flame retardant in the outermost layer be contained in a ratio of 100 parts by mass or less with respect to 100 parts by mass of the base resin.
  • the wear resistance of the cable can be improved.
  • the inorganic particles contained in the flame retardant in the outermost layer are at least one selected from the group consisting of calcium carbonate and silicate compounds.
  • the present invention is also a wire harness having the above-mentioned cable.
  • the wire harness of the present invention has a cable having excellent scale stability, terminal processability and flame retardancy, it has excellent scale stability, terminal processability and flame retardancy.
  • a cable and a wire harness having excellent scale stability, terminal processability and flame retardancy are provided.
  • FIG. 2 is a sectional view taken along line II-II of FIG. 1. It is sectional drawing which shows one Embodiment of the wire harness of this invention.
  • FIG. 1 is a partial side view showing an embodiment of a cable according to the present invention.
  • FIG. 2 is a sectional view taken along line II-II of FIG.
  • the cable 10 includes an insulated wire 4 and a coating layer 3 that covers the insulated wire 4.
  • the insulated wire 4 has a conductor 1 as a transmission medium that transmits a signal and an insulating layer 2 that covers the conductor 1.
  • the insulating layer 2 has an outermost layer 2B and an inner layer 2A provided inside the outermost layer 2B.
  • the outermost layer 2B contains a base resin and a flame retardant, and the flame retardant contains a silicone compound, inorganic particles, and a fatty acid-containing compound.
  • the flame retardant is greater than 0 parts by mass and less than 2.5 parts by mass with respect to 100 parts by mass of the base resin, 1 part by mass or more of inorganic particles, and 1 part by mass or more of 10 parts by mass or more.
  • a fatty acid-containing compound in an amount not more than part by mass.
  • the inner layer 2A contains a base resin and a silicone compound.
  • the compounding ratio of the silicone-based compound is 2.5 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the base resin.
  • the insulated wire 4 has excellent scale stability, terminal processability, and flame retardancy. Therefore, the cable 10 also has excellent scale stability, terminal processability, and flame retardancy.
  • the conductor 1, the insulating layer 2 and the coating layer 3 will be described in detail below.
  • the conductor 1 may be composed of only one elemental wire, or may be composed of a plurality of elemental wires bundled together.
  • the material of the conductor 1 is not particularly limited, but aluminum or aluminum alloy is preferable.
  • the insulated wire 4 and thus the cable 10 can be made lighter than in the case where copper or the like is used as the conductor 1.
  • the cross-sectional area of the conductor 1 it is not particularly limited, in view of the small-diameter and weight, preferably less than 5 mm 2, and more preferably 3 mm 2 or less.
  • the cross-sectional area of the conductor 1 is preferably 0.13 mm 2 or more.
  • the insulating layer 2 has the outermost layer 2B and the inner layer 2A provided inside the outermost layer 2B.
  • the outermost layer 2B is a layer provided on the outermost side of the insulating layer 2. That is, the outermost layer 2B is a layer arranged in the insulating layer 2 at a position farthest from the conductor 1.
  • the outermost layer 2B contains a base resin and a flame retardant, and the flame retardant contains a silicone compound, inorganic particles, and a fatty acid-containing compound.
  • the inner layer 2A contains a base resin and a silicone compound.
  • the mixing ratio (C2) of the inorganic particles to 100 parts by mass of the base resin is 1 part by mass or more.
  • C2 is preferably 5 parts by mass or more.
  • the flame retardancy of the insulated wire 4 can be further improved as compared with the case where C2 is less than 5 parts by mass.
  • C2 is more preferably 10 parts by mass or more.
  • C2 is preferably 200 parts by mass or less.
  • the wear resistance of the insulated wire 4 can be further improved as compared with the case where C2 exceeds 200 parts by mass. Since C2 further improves the wear resistance of the insulated wire 4, it is more preferably 150 parts by mass or less. From the viewpoint of further improving the abrasion resistance of the insulated wire 4, C2 is more preferably 100 parts by mass or less, and particularly preferably 40 parts by mass or less.
  • the compounding ratio (S2) of the silicone compound to 100 parts by mass of the base resin is more than 0 parts by mass and less than 2.5 parts by mass.
  • the flame retardancy of the insulated wire 4 can be further improved as compared with the case where S2 is 0 parts by mass.
  • the scale stability of the cable 10 can be further improved as compared with the case where S2 is 2.5 parts by mass or more.
  • S2 is preferably 2.3 parts by mass or less, and more preferably 2.1 parts by mass or less.
  • S2 is preferably 0.5 part by mass or more, and more preferably 1.5 parts by mass or more.
  • the mixing ratio (F2) of the fatty acid-containing compound to 100 parts by mass of the base resin is 1 part by mass or more and 10 parts by mass or less.
  • the flame retardancy of the insulated wire 4 can be further improved as compared with the case where F2 is less than 1 part by mass.
  • bloom is more likely to occur than when F2 exceeds 10 parts by mass.
  • F2 is preferably 9 parts by mass or less, and more preferably 8 parts by mass or less.
  • F2 is preferably 2 parts by mass or more, and more preferably 3 parts by mass or more, from the viewpoint of further improving the flame retardancy of the insulated wire 4.
  • the outermost layer 2B may further include an antioxidant, a metal deactivator, an ultraviolet deterioration inhibitor, a processing aid, a color pigment, a lubricant, and a filler, if necessary.
  • the sliding frictional force of the outermost layer 2B is not particularly limited, but is preferably larger than 3N. In this case, the scale stability of the cable 10 can be further improved as compared with the case where the sliding frictional force of the outermost layer 2B is 3N or less.
  • the sliding frictional force of the outermost layer 2B is more preferably 3.5 N or more, and particularly preferably 4 N or more.
  • the sliding friction force of the outermost layer 2B is preferably less than 10N, more preferably 7N or less. In this case, the flame retardancy of the cable 10 is more excellent than when the sliding frictional force of the outermost layer 2B is 10 N or more.
  • the thickness t of the outermost layer 2B is not particularly limited, but is preferably 0.008 to 0.400 mm.
  • the flame retardancy of the cable 10 can be further improved as compared with the case where the thickness t is less than 0.008 mm.
  • the cable 10 can be made lighter in weight and smaller in diameter, and the wear resistance and the terminal processability of the cable 10 can be further improved.
  • the inner layer 2A contains a base resin and a silicone compound.
  • the inner layer 2A may be a single layer or a multi-layer body composed of two or more layers.
  • the mixing ratio (S1) of the silicone compound in the inner layer 2A to 100 parts by mass of the base resin is 2.5 parts by mass or more and 10 parts by mass or less.
  • the terminal processability of the cable 10 can be further improved as compared with the case where S1 is less than 2.5 parts by mass.
  • S1 exceeds 10 mass parts, the adhesive force between the conductor 1 and the inner layer 2A will fall too much.
  • S1 is preferably 8 parts by mass or less, and more preferably 6 parts by mass or less, in order to secure appropriate adhesion between the conductor 1 and the inner layer 2A. Further, S1 is preferably 3 parts by mass or more, and more preferably 3.5 parts by mass or more, from the viewpoint of further improving the terminal processability of the cable 10.
  • S1-S2 ( ⁇ S) is not particularly limited as long as it is larger than 0 parts by mass, but 0.1 to 8 parts by mass is preferable. In this case, as compared with the case where ⁇ S is out of the above range, the flame retardancy and the end workability of the cable 10 can be further improved.
  • S1-S2 is more preferably 0.2 to 6 parts by mass, and particularly preferably 0.3 to 4 parts by mass, from the viewpoint of further improving the flame retardancy and terminal processability of the cable 10. ..
  • the inner layer 2A may further contain a filler such as an antioxidant, a metal deactivator, an ultraviolet deterioration inhibitor, a processing aid, a color pigment, a lubricant, and carbon black, if necessary.
  • a filler such as an antioxidant, a metal deactivator, an ultraviolet deterioration inhibitor, a processing aid, a color pigment, a lubricant, and carbon black, if necessary.
  • the adhesion of the inner layer 2A to the conductor 1 is not particularly limited, but is preferably 50N/50mm or less.
  • the end workability of the cable 10 can be further improved as compared with the case where the adhesion of the inner layer 2A to the conductor 1 exceeds 50 N/50 mm.
  • the adhesion of the inner layer 2A to the conductor 1 is more preferably 40 N/50 mm or less, and particularly preferably 30 N/50 mm or less.
  • the adhesion of the inner layer 2A to the conductor 1 is preferably 5 N/50 mm or more.
  • the thickness of the inner layer 2A is not particularly limited, but is preferably 0.2 to 2.0 mm. In this case, the wear resistance of the cable 10 can be further improved as compared with the case where the thickness is less than 0.2 mm. In addition, the cable 10 can be made lighter in weight and smaller in diameter than when the thickness exceeds 2.0 mm.
  • the base resin may be made of resin, and examples of the resin include polyolefin resin, polyamide resin, polyester resin, and styrene resin. These may be used alone or in combination of two or more.
  • the resin includes rubber and elastomer.
  • the resin may be composed of at least one selected from polyolefin resin, rubber, elastomer and the like.
  • the base resin may or may not contain a polyolefin resin, but preferably contains a polyolefin resin. In this case, as compared with the case where the base resin does not include the polyolefin resin, the flame resistance and wear resistance of the cable 10 can be further improved.
  • polystyrene resin examples include polyethylene (PE), propylene-based resin, non-polar group-containing polyolefin such as polybutene and polymethylpentene, polar group-containing polyolefin, and olefin-based thermoplastic elastomer. These may be used alone or in combination of two or more.
  • the base resin in the inner layer 2A preferably contains a propylene resin as the polyolefin resin.
  • the heat resistance and wear resistance of the cable 10 can be further improved as compared with the case where the base resin does not include a propylene resin as the polyolefin resin.
  • Propylene-based resin is a resin containing propylene as a constituent unit, and examples of the propylene-based resin include homopolypropylene, propylene block copolymer and propylene random copolymer. These may be used alone or in combination of two or more. Among these, a propylene block copolymer is preferable from the viewpoint of impact resistance and low temperature brittleness.
  • a polar group-containing polyolefin is a polyolefin containing a polar group.
  • Examples of the polar group of the polar group-containing polyolefin include maleic acid group, methacrylic acid group, fumaric anhydride group, maleic anhydride group, hydroxyl group and carboxyl group. Among them, the maleic anhydride group is preferable as the polar group. In this case, even if the content of the polyolefin in the base resin is small, the compatibility between the base resin and the flame retardant containing the inorganic particles, the silicone compound and the fatty acid-containing compound is further increased, and the occurrence of bloom can be more sufficiently suppressed. At the same time, the wear resistance of the insulating layer 2 can be further improved. Therefore, the deterioration of the mechanical properties of the insulating layer 2 can be suppressed more sufficiently.
  • polar group-containing polyolefin ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), ethylene-butyl acrylate copolymer (EBA), maleic anhydride modified polymer thereof, Examples thereof include maleic anhydride-modified polypropylene, and ethylene- ⁇ -olefin copolymers modified with unsaturated carboxylic acids such as maleic acid and maleic anhydride.
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • EBA ethylene-butyl acrylate copolymer
  • maleic anhydride modified polymer thereof examples thereof include maleic anhydride-modified polypropylene, and ethylene- ⁇ -olefin copolymers modified with unsaturated carboxylic acids such as maleic acid and maleic anhydride.
  • the content of the polar group-containing polyolefin in the polyolefin resin is not particularly limited, but is preferably 1 to 10% by mass.
  • the compatibility between the polyolefin resin and the flame retardant is further increased. The occurrence of bloom can be suppressed more sufficiently.
  • the wear resistance of the insulating layer 2 can be further improved.
  • the content of the polar group-containing polyolefin in the polyolefin resin exceeds 10% by mass, the cost increase can be suppressed more sufficiently.
  • the content of the polar group-containing polyolefin in the polyolefin resin is more preferably 2-5% by mass.
  • the base resin may or may not be crosslinked, but it is preferably crosslinked.
  • the crosslinking include silane crosslinking, electron beam crosslinking, and peroxide crosslinking.
  • silane crosslinking is preferable. Compared to electron beam crosslinking, silane crosslinking does not require sophisticated equipment and can sufficiently crosslink the base resin even if the inner layer 2A or the outermost layer 2B is thick. Further, silane crosslinking can sufficiently suppress the generation of scorch during extrusion, as compared with peroxide crosslinking.
  • the base resin in the inner layer 2A and the base resin in the outermost layer 2B may be the same as or different from each other.
  • the inorganic particles are a flame retardant for improving the flame retardancy of the cable 10 by forming a barrier layer against the base resin together with the silicone compound and the fatty acid-containing compound when the insulated electric wire 4 burns.
  • the inorganic particles are preferably calcium carbonate, a silicate compound or a mixture thereof.
  • the flame retardancy can be effectively improved with a small amount as compared with a metal hydroxide such as magnesium hydroxide, so that the weight of the insulating layer 2 and the weight of the cable 10 can be reduced. ..
  • the calcium carbonate may be either heavy calcium carbonate or light calcium carbonate. Examples of silicate compounds include talc and clay.
  • the average particle size of the inorganic particles is not particularly limited, but it is preferably 0.7 ⁇ m or more. In this case, more excellent flame retardancy can be obtained as compared with the case where the average particle diameter of the inorganic particles is less than 0.7 ⁇ m. However, the average particle size of the inorganic particles is preferably 1.8 ⁇ m or less. In this case, the abrasion resistance of the insulating layer 2 can be improved as compared with the case where the average particle diameter of the inorganic particles exceeds 1.8 ⁇ m.
  • the silicone compound functions as a flame retardant, and examples of the silicone compound include polyorganosiloxane.
  • the polyorganosiloxane has a siloxane bond as a main chain and an organic group in a side chain.
  • the organic group include an alkyl group such as a methyl group, an ethyl group and a propyl group; a vinyl group; and an aryl group such as a phenyl group.
  • polyorganosiloxane for example, dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, methyl(3,3,3-trifluoropropyl)polysiloxane, etc.
  • Polyorganosiloxanes include silicone powders, silicone oils, silicone gums and silicone resins. Among them, silicone gum is preferable from the viewpoint of making bloom less likely to occur in the insulating layer 2. Further, from the viewpoint of further improving the flame retardancy of the insulating layer 2, silicone oil is preferable.
  • the silicone compound may be attached to the surface of the inorganic particles.
  • the fatty acid-containing compound functions as a flame retardant.
  • the fatty acid-containing compound refers to a compound containing a fatty acid or a metal salt thereof.
  • a fatty acid having 12 to 28 carbon atoms is used as the fatty acid.
  • examples of such fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, tuberculostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid.
  • stearic acid is preferable as the fatty acid.
  • the flame retardancy of the insulating layer 2 can be further improved as compared with the case of using a fatty acid other than stearic acid.
  • the metal constituting the fatty acid metal salt magnesium, calcium, zinc, lead and the like can be mentioned.
  • the fatty acid metal salt magnesium stearate or zinc stearate is preferable.
  • the flame retardancy of the insulating layer 2 can be further improved with a smaller addition amount than in the case of using a fatty acid metal salt other than magnesium stearate or zinc stearate.
  • the metal salt of fatty acid magnesium stearate is particularly preferable.
  • the coating layer 3 protects the insulating layer 2 from physical or chemical damage.
  • the thickness of the coating layer 3 is not particularly limited, but is preferably less than 2.0 mm. In this case, the cable 10 can be made lighter than in the case where the thickness of the coating layer 3 is 2.0 mm or more.
  • the thickness of the coating layer 3 is more preferably 1.0 mm or less, further preferably 0.5 mm or less. However, from the viewpoint of wear resistance, the thickness of the coating layer 3 is preferably 0.2 mm or more.
  • the conductor 1 is covered with the insulating layer 2 to obtain the insulated electric wire 4.
  • the insulating layer 2 may be formed by simultaneously forming the inner layer 2A and the outermost layer 2B, or by forming the inner layer 2A and then forming the outermost layer 2B on the inner layer 2A. Good.
  • the inner layer 2A and the outermost layer 2B may be formed by respectively preparing an inner layer resin composition for forming the inner layer 2A and an outermost layer resin composition for forming the outermost layer 2B, and extruding these. it can.
  • the method for forming the insulating layer 2 on the conductor 1 there are three methods, a co-extrusion method, a tandem extrusion method, and another extrusion method.
  • the coextrusion method is to coat the inner layer resin composition discharged from the crosshead on the conductor 1 to form the inner layer 2A, and immediately after obtaining the inner layer coated electric wire, continuously in the same crosshead to form the outermost layer resin composition. Is extruded to cover the inner-layer-covered electric wire to form the outermost layer 2B.
  • the inner layer resin composition discharged from the crosshead is coated on the conductor 1 to form the inner layer 2A, and the inner layer coated electric wire is obtained, and then discharged from another crosshead on the same extrusion line.
  • This is a method of forming the outermost layer 2B by coating the innermost layer-covered electric wire with the outermost layer resin composition.
  • the other extrusion method is to coat the inner layer resin composition discharged from the crosshead on the conductor 1 to form the inner layer 2A, obtain the inner layer coated electric wire, and once wind it on a bobbin, and then wind the inner layer coated electric wire. And the outermost layer resin composition discharged from the same crosshead or from another crosshead is coated on the inner layer coated electric wire to form the outermost layer.
  • the co-extrusion method and the tandem extrusion method are preferable because continuous production is possible.
  • the coextrusion method is particularly preferable.
  • the inner layer resin composition and the outermost layer resin composition are brought into contact with each other in a molten state, so that the adhesion between the inner layer 2A and the outermost layer 2B is increased, and the peeling between the inner layer 2A and the outermost layer 2 is further improved. Can be suppressed sufficiently.
  • the coating layer 3 can also be formed by preparing a coating layer resin composition for forming the coating layer 3 and subjecting the resin composition to extrusion molding using an extruder.
  • the cable 10 is obtained as described above.
  • the present invention is not limited to the above embodiment.
  • the cable 10 has one insulated wire 4 in the above embodiment
  • the cable of the present invention may have two or more insulated wires 4 inside the coating layer 3.
  • the cable 10 has the coating layer 3, but the coating layer 3 may be omitted.
  • the cable 10 in which the transmission medium is the conductor 1 is used, but the cable of the present invention may be an optical fiber cable in which the transmission medium in the cable 10 is replaced with the optical fiber. Good.
  • the coating layer 3 may be omitted in this optical fiber cable as well.
  • FIG. 3 is a sectional view showing an embodiment of the wire harness of the present invention.
  • the wire harness 20 includes a tape 21 that bundles a plurality of (four in FIG. 3) insulated wires 4 as cables.
  • the tape 21 does not need to entirely cover the plurality of insulated electric wires 4 along the length direction thereof, but partially covers the plurality of insulated electric wires 4 along the length direction at necessary portions. Just do it.
  • this wire harness 20 has the insulated wire 4 having excellent scale stability, end workability, and flame retardancy, it is possible to have excellent scale stability, end workability, and flame retardance. ..
  • the wire harness 20 is provided with a plurality of insulated electric wires 4 as cables, but may be provided with only one insulated electric wire 4. Further, in the wire harness 20, the cable 10 may be used instead of the insulated wire 4.
  • the wire harness 20 includes only the insulated electric wire 4 as a cable inside the tape 21, but may include two types of the insulated electric wire 4 and the cable 10.
  • the wire harness 20 includes the tape 21
  • the wire harness 20 may use a binding band, a corrugated tube, or the like instead of the tape 21.
  • Examples 1 to 21 and Comparative Examples 1 to 6 ⁇ Outermost layer resin composition>
  • the base resin and the flame retardant were blended in the blending amounts shown in Tables 1 to 4 and kneaded with an open roll to obtain an outermost layer resin composition.
  • the unit of the blending amount of each blending component is parts by mass.
  • the compounding amount in the column of base resin is not 100 parts by mass, but in Examples 3 and 15, the resin is also contained in the silicone gum MB, If the compounding amount of the resin column and the compounding amount of the resin in the silicone gum MB are summed, the total becomes 100 parts by mass.
  • ⁇ Inner layer resin composition The base resin and the flame retardant were blended in the blending amounts shown in Tables 1 to 4 and kneaded with an open roll to obtain an inner layer resin composition.
  • the unit of the blending amount of each blending component is parts by mass.
  • the compounding amount in the column of base resin is not 100 parts by mass, but in Examples 3 and 15, the resin is also contained in the silicone gum MB, If the compounding amount of the resin column and the compounding amount of the resin in the silicone gum MB are summed, the total becomes 100 parts by mass.
  • Base resin (1-1) Propylene-based resin Propylene block copolymer (bPP): trade name “J705UG”, MFR (230° C., 2.16 kg weight) 9.0 g/10 minutes, homopolymer made by Prime Polymer Co.
  • hPP Product name “E111G”, MFR (230° C., 2.16 kg weight) 0.5 g/10 min, propylene random copolymer manufactured by Prime Polymer Co.
  • rPP Product name “Wintech WFW4F”, MFR (230° C., 2.16 kg weight) 7.0 g/10 min,
  • LDPE polyethylene linear low density polyethylene
  • LDPE polyethylene linear low density polyethylene
  • HDPE high-density polyethylene
  • MFR 190° C., 2.16 kg weight
  • 0.8 g/10 minutes Density 0.951 g/cm 3 , manufactured by Mitsui Chemicals, Inc.
  • Silicone compound Silicone oil 1 Trade name "KF-96-350cs", Kinematic viscosity: 350 mm 2 /s (25°C), Shin-Etsu Chemical Silicone oil 2: Trade name " KF-96-5,000 cs”, kinematic viscosity: 5000 mm 2 /s (25°C), Shin-Etsu Chemical silicone gum: product name "X-21-3043”, Shin-Etsu Chemical silicone gum MB: product name "X"-22-2101", containing 50% by mass of silicone gum and 50% by mass of propylene-based resin (PP), manufactured by Shin-Etsu Chemical Co., Ltd.
  • PP propylene-based resin
  • fatty acid-containing compound stearic acid Trade name "Stearic acid Sakura”, NOF Magnesium stearate (Mg stearate): trade name “Fcochem MGS, manufactured by ADEKA (2-3) inorganic particles calcium carbonate particles: trade name “NCC-P”, average particle size 1.7 ⁇ m, paraffin surface treatment, Silicate compound particles manufactured by Nitto Koka Kogyo Co., Ltd.: trade name "ST-100", aminosilane surface-treated calcined kaolin particles, average particle size 3.5 ⁇ m, manufactured by Shiraishi Calcium Co., Ltd.
  • the cable (insulated electric wire) was produced as follows.
  • the inner layer resin composition prepared as described above was extruded with a single-screw extruder (manufactured by Mars Seiki Co., Ltd., cylinder outer diameter 25 mm) and discharged from the crosshead to obtain a cross-sectional area of 0.35 sq (mm On the stranded wire conductor of 2 ), an inner layer was formed by coating so as to have a thickness of 0.15 mm, the obtained inner layer-coated electric wire was wound on a bobbin, and then the wound inner layer-coated electric wire was sent out. ..
  • the outermost layer resin composition prepared as described above was extruded by a single-screw extruder (manufactured by Mars Seiki Co., Ltd., cylinder outer diameter: 25 mm), discharged from the crosshead, and discharged onto the inner layer-coated electric wire sent out.
  • the outermost layer was formed by coating so as to have a thickness of 0.05 mm.
  • a cable having an insulating layer formed on the conductor was produced.
  • ⁇ Abrasion resistance> The abrasion resistance was measured by performing a scrape abrasion test on the cables of Examples 1 to 21 and Comparative Examples 1 to 6 by the test method described in JASO D618, and "the number of times of scrape abrasion before conduction" was measured at this time. Was used as the index.
  • the cable of the present invention has excellent scale stability, end workability and flame retardancy.
  • the cable of the present invention has excellent scale stability, terminal processability, and flame retardancy, it can be applied to various applications such as automobile cables, industrial cables, communication cables, coaxial cables, and electronic wires. Further, the cable of the present invention can be applied to an optical fiber cable in which the conductor is replaced with an optical fiber as the transmission medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention discloses a cable which comprises: a transmission medium that is composed of a conductor or an optical fiber; and an insulating layer that covers the transmission medium. The insulating layer has an outermost layer and an inner layer that is provided inside the outermost layer. The inner layer contains a base resin and a silicone compound; and the blending ratio of the silicone compound relative to 100 parts by mass of the base resin is from 2.5 parts by mass to 10 parts by mass (inclusive). The outermost layer contains a base resin and a flame retardant; and the flame retardant contains, relative to 100 parts by mass of the base resin, more than 0 part by mass but less than 2.5 parts by mass of a silicone compound, 1 part by mass or more of inorganic particles, and from 1 part by mass to 10 parts by mass (inclusive) of a fatty acid-containing compound.

Description

ケーブル及びワイヤハーネスCable and wire harness
 本発明は、ケーブル及びワイヤハーネスに関する。 The present invention relates to a cable and a wire harness.
 ケーブルは、導体又は光ファイバからなる伝送媒体と、伝送媒体を被覆する絶縁層とを有するものであり、絶縁層には難燃性樹脂組成物が使用されることがある。例えば下記特許文献1には、絶縁層として、ベース樹脂100質量部に対して10質量部以上の割合で配合される炭酸カルシウム粒子と、1質量部より大きい割合で配合されるシリコーン系化合物と、3質量部より大きい割合で配合される脂肪酸含有化合物とを含む難燃性樹脂組成物が使用されたケーブルが開示されている。このケーブルは優れた難燃性と端末加工性を有する。 A cable has a transmission medium made of a conductor or an optical fiber and an insulating layer covering the transmission medium, and a flame-retardant resin composition may be used for the insulating layer. For example, in Patent Document 1 below, as an insulating layer, calcium carbonate particles blended in a ratio of 10 parts by mass or more with respect to 100 parts by mass of a base resin, and a silicone compound compounded in a ratio greater than 1 part by mass, A cable using a flame-retardant resin composition containing a fatty acid-containing compound mixed in a proportion of more than 3 parts by mass is disclosed. This cable has excellent flame retardancy and terminal processability.
特開2014-84437号公報JP, 2014-84437, A
 しかし、上記特許文献1に記載のケーブルは以下の課題を有していた。 However, the cable described in Patent Document 1 has the following problems.
 すなわち、ワイヤハーネスの量産設備においてケーブルの端子取付け(端子打ち)は、全自動端子圧着機を用いることが多い。全自動端子圧着機とは、指定長でのケーブルの切断動作、ケーブル端末の被覆材を剥ぎ取るストリップ(端末加工)動作、ケーブルに端子を圧着する端子打ち動作を行う装置である。これら全自動端子圧着機は、手作業でケーブル端末の端子打ちを行う場合と比較し、計尺から端子打ちまでをきわめて高速で行う。上記特許文献1に記載のケーブルは、全自動端子圧着機を用いた場合の、ケーブルの実際の長さを、設定したケーブルの長さに対して変動しにくくすること、すなわちケーブルの計尺長の安定性の点で改善の余地があった。ここで、ケーブルの計尺長の安定性を向上させるには、ケーブル表面の摩擦力を大きくする必要があるが、そのためには、ベース樹脂100質量部に対するシリコーン系化合物の配合量を十分に小さくすればよい。しかし、この場合、ケーブルの端末加工性の点で改善の余地が生じた。 In other words, in mass production facilities for wire harnesses, a fully automatic terminal crimping machine is often used to attach (terminal) a cable terminal. The fully-automatic terminal crimping machine is a device that performs a cutting operation of a cable with a specified length, a stripping operation of stripping the covering material of the cable end (end processing), and a terminal driving operation of crimping the terminal to the cable. These fully automatic terminal crimping machines perform extremely high-speed operations from the measuring scale to the terminal driving, as compared with the case where the cable terminals are manually driven. In the cable described in Patent Document 1, the actual length of the cable when the fully automatic terminal crimping machine is used is less likely to vary with respect to the set length of the cable, that is, the measured length of the cable. There was room for improvement in terms of stability. Here, in order to improve the stability of the measured length of the cable, it is necessary to increase the frictional force on the surface of the cable. For that purpose, the amount of the silicone compound compounded to 100 parts by mass of the base resin is sufficiently small. do it. However, in this case, there is room for improvement in terms of the cable end workability.
 そのため、優れた計尺安定性、端末加工性及び難燃性を有するケーブルが求められていた。  Therefore, there was a need for a cable with excellent scale stability, terminal processability, and flame retardancy.
 本発明は、上記事情に鑑みてなされたものであり、優れた計尺安定性、端末加工性および難燃性を有するケーブル及びワイヤハーネスを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cable and a wire harness having excellent scale stability, terminal processability, and flame retardancy.
 本発明者らは上記課題を解決するため鋭意研究を重ねた結果、まず絶縁層を最外層と内層とに分けることを考えた。そして、最外層にはベース樹脂と難燃剤を含め、内層にベース樹脂及びシリコーン系化合物を含め、最外層中の難燃剤にはシリコーン系化合物、無機粒子及び脂肪酸含有化合物を含め、最外層においてベース樹脂100質量部に対するシリコーン系化合物、無機粒子及び脂肪酸含有化合物の配合量を特定の範囲とし、内層においてベース樹脂100質量部に対するシリコーン系化合物の配合量を特定の範囲とすることが上記課題を解決する上で有効であることを見出した。こうして、本発明者らは本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors first thought of dividing the insulating layer into an outermost layer and an inner layer. Then, the outermost layer contains the base resin and the flame retardant, the inner layer contains the base resin and the silicone compound, the flame retardant in the outermost layer contains the silicone compound, the inorganic particles and the fatty acid-containing compound, and the base layer in the outermost layer. The above problem is solved by setting the blending amount of the silicone compound, the inorganic particles and the fatty acid-containing compound with respect to 100 parts by mass of the resin within a specific range and the blending amount of the silicone compound with respect to 100 parts by mass of the base resin within the specified range in the inner layer. It was found to be effective in doing so. Thus, the present inventors have completed the present invention.
 すなわち本発明は、導体又は光ファイバで構成される伝送媒体と、前記伝送媒体を被覆する絶縁層とを有し、前記絶縁層が、最外層と、前記最外層の内側に設けられる内層とを有し、前記内層が、ベース樹脂及びシリコーン系化合物を含み、前記ベース樹脂100質量部に対するシリコーン系化合物の配合割合が2.5質量部以上10質量部以下であり、前記最外層が、ベース樹脂及び難燃剤を含み、前記難燃剤が、ベース樹脂100質量部に対して0質量部より多く2.5質量部未満のシリコーン系化合物と、1質量部以上の無機粒子と、1質量部以上10質量部以下の脂肪酸含有化合物とを含むケーブルである。 That is, the present invention has a transmission medium composed of a conductor or an optical fiber, and an insulating layer that covers the transmission medium, the insulating layer includes an outermost layer and an inner layer provided inside the outermost layer. The inner layer contains a base resin and a silicone-based compound, and the compounding ratio of the silicone-based compound is 2.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the base resin, and the outermost layer is a base resin. And a flame retardant, wherein the flame retardant is more than 0 parts by mass and less than 2.5 parts by mass with respect to 100 parts by mass of the base resin, 1 part by mass or more of inorganic particles, and 1 part by mass or more of 10 parts by mass. It is a cable containing a fatty acid content compound below a mass part.
 本発明のケーブルは、優れた計尺安定性、端末加工性及び難燃性を有する。 The cable of the present invention has excellent scale stability, terminal processability, and flame retardancy.
 上記効果が得られる理由について本発明者らは以下のように考えている。 The present inventors consider the reason why the above effect is obtained as follows.
 すなわち、ケーブルの量産設備において、ケーブルの端子取付けに、ケーブルを把持するためのクランプを有する全自動端子圧着機が用いられる場合、ケーブルの表面の滑り摩擦力が適切な値となるため、クランプの間にケーブルを挟む場合にケーブルが滑りにくくなり、ケーブルの実際の長さが、設定したケーブルの長さに対して変動しにくくなり、計尺長が安定する。また、絶縁層の最外層においてはベース樹脂100質量部に対するシリコーン系化合物の配合量が十分に少ないが、内層においてはベース樹脂100質量部に対するシリコーン系化合物の配合量が多くなっている。このため、ケーブルの表面の滑り摩擦力を大きくしつつ、導体に対する絶縁層の密着力を小さくすることができる。このため、ケーブルの端末加工が行われる際、絶縁層がうまく除去され、絶縁層の表面のみ削り取られることが十分に抑制される。このため、ケーブルの端末加工性を向上させることができる。また、絶縁層の最外層においてはベース樹脂100質量部に対するシリコーン系化合物の配合量が十分に少ないが、内層においてはベース樹脂100質量部に対するシリコーン系化合物の配合量が多くなっている。このため、絶縁層全体としては難燃性が低くなりすぎることはない。 That is, in a cable mass production facility, when a fully automatic terminal crimping machine having a clamp for gripping the cable is used to attach the terminal of the cable, the sliding friction force on the surface of the cable becomes an appropriate value. When the cable is sandwiched between them, the cable is less likely to slip, the actual length of the cable is less likely to vary with respect to the set length of the cable, and the length measurement is stable. In the outermost layer of the insulating layer, the amount of the silicone compound compounded to 100 parts by mass of the base resin was sufficiently small, but in the inner layer, the amount of the silicone compound compounded to 100 parts by mass of the base resin was large. Therefore, it is possible to increase the sliding frictional force on the surface of the cable and reduce the adhesion of the insulating layer to the conductor. For this reason, when the terminal processing of the cable is performed, the insulating layer is well removed, and it is sufficiently suppressed that only the surface of the insulating layer is scraped off. Therefore, the end workability of the cable can be improved. In the outermost layer of the insulating layer, the amount of the silicone compound compounded to 100 parts by mass of the base resin was sufficiently small, but in the inner layer, the amount of the silicone compound compounded to 100 parts by mass of the base resin was large. Therefore, the flame retardancy of the entire insulating layer does not become too low.
 上記ケーブルにおいては、下記式で表されるΔSが0.1~8質量部であることが好ましい。
ΔS=S1-S2
(前記式中、S1は、前記内層中の前記シリコーン系化合物の前記ベース樹脂100質量部に対する配合割合(質量部)を表し、S2は、前記最外層中の前記シリコーン系化合物の前記ベース樹脂100質量部に対する配合割合(質量部)を表す。)
In the above cable, ΔS represented by the following formula is preferably 0.1 to 8 parts by mass.
ΔS=S1-S2
(In the formula, S1 represents a blending ratio (parts by mass) of the silicone compound in the inner layer to 100 parts by mass of the base resin, and S2 represents the base resin 100 of the silicone compound in the outermost layer. Represents a blending ratio (parts by mass) relative to parts by mass.)
 この場合、ΔSが上記範囲を外れる場合に比べて、ケーブルの難燃性及び端末加工性をより向上させることができる。 In this case, it is possible to further improve the flame retardancy and end workability of the cable, compared to the case where ΔS is out of the above range.
 上記ケーブルにおいては、前記最外層の滑り摩擦力が3Nより大きいことが好ましい。 In the above cable, the sliding frictional force of the outermost layer is preferably larger than 3N.
 この場合、最外層の滑り摩擦力が3N以下である場合に比べて、ケーブルの計尺安定性をより向上させることができる。 In this case, compared to the case where the sliding frictional force of the outermost layer is 3N or less, the measuring stability of the cable can be further improved.
 また、上記ケーブルにおいては、前記内層の前記伝送媒体に対する密着力が50N/50mm以下であることが好ましい。 Also, in the above cable, the adhesion of the inner layer to the transmission medium is preferably 50 N/50 mm or less.
 この場合、内層の伝送媒体に対する密着力が50N/50mmを超える場合に比べて、ケーブルの端末加工性をより向上させることができる。 In this case, the end workability of the cable can be further improved, as compared with the case where the adhesion force of the inner layer to the transmission medium exceeds 50 N/50 mm.
 上記ケーブルにおいては、前記内層の前記ベース樹脂がプロピレン系樹脂を含むことが好ましい。 In the above cable, it is preferable that the base resin of the inner layer contains a propylene resin.
 この場合、内層のベース樹脂がプロピレン系樹脂を含まない場合に比べて、ケーブルの耐熱性及び耐摩耗性をより向上させることができる。 In this case, the heat resistance and wear resistance of the cable can be further improved as compared with the case where the inner layer base resin does not contain a propylene resin.
 上記ケーブルにおいては、前記最外層の前記難燃剤に含まれる前記無機粒子が、前記ベース樹脂100質量部に対して100質量部以下の割合で含まれることが好ましい。 In the above cable, it is preferable that the inorganic particles contained in the flame retardant in the outermost layer be contained in a ratio of 100 parts by mass or less with respect to 100 parts by mass of the base resin.
 この場合、ケーブルの耐摩耗性を向上させることができる。 In this case, the wear resistance of the cable can be improved.
 上記ケーブルにおいては、前記最外層の前記難燃剤に含まれる前記無機粒子が、炭酸カルシウム及びケイ酸塩化合物からなる群より選ばれる少なくとも1種からなることが好ましい。 In the above cable, it is preferable that the inorganic particles contained in the flame retardant in the outermost layer are at least one selected from the group consisting of calcium carbonate and silicate compounds.
 この場合、水酸化マグネシウムなどの金属水酸化物に比べて、少量で効果的に難燃性を向上させることができる。このため、絶縁層の軽量化、ひいてはケーブルの軽量化を図ることができる。 In this case, it is possible to effectively improve the flame retardancy with a small amount compared to metal hydroxide such as magnesium hydroxide. Therefore, the weight of the insulating layer and the weight of the cable can be reduced.
 また本発明は、上述したケーブルを有するワイヤハーネスである。 The present invention is also a wire harness having the above-mentioned cable.
 本発明のワイヤハーネスは、優れた計尺安定性、端末加工性及び難燃性を有するケーブルを有するので、優れた計尺安定性、端末加工性及び難燃性を有する。 Since the wire harness of the present invention has a cable having excellent scale stability, terminal processability and flame retardancy, it has excellent scale stability, terminal processability and flame retardancy.
 本発明によれば、優れた計尺安定性、端末加工性及び難燃性を有するケーブル及びワイヤハーネスが提供される。 According to the present invention, a cable and a wire harness having excellent scale stability, terminal processability and flame retardancy are provided.
本発明のケーブルの一実施形態を示す部分側面図である。It is a partial side view which shows one Embodiment of the cable of this invention. 図1のII-II線に沿った断面図である。FIG. 2 is a sectional view taken along line II-II of FIG. 1. 本発明のワイヤハーネスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the wire harness of this invention.
 以下、本発明の実施形態について図1及び図2を用いて詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.
 [ケーブル]
 図1は、本発明に係るケーブルの一実施形態を示す部分側面図である。図2は、図1のII-II線に沿った断面図である。図1及び図2に示すように、ケーブル10は、絶縁電線4と、絶縁電線4を被覆する被覆層3とを備えている。そして、絶縁電線4は、信号を伝送する伝送媒体としての導体1と、導体1を被覆する絶縁層2とを有している。絶縁層2は、最外層2Bと、最外層2Bの内側に設けられる内層2Aとを有している。
[cable]
FIG. 1 is a partial side view showing an embodiment of a cable according to the present invention. FIG. 2 is a sectional view taken along line II-II of FIG. As shown in FIGS. 1 and 2, the cable 10 includes an insulated wire 4 and a coating layer 3 that covers the insulated wire 4. The insulated wire 4 has a conductor 1 as a transmission medium that transmits a signal and an insulating layer 2 that covers the conductor 1. The insulating layer 2 has an outermost layer 2B and an inner layer 2A provided inside the outermost layer 2B.
 最外層2Bは、ベース樹脂及び難燃剤を含んでおり、難燃剤は、シリコーン系化合物と、無機粒子と、脂肪酸含有化合物とを含んでいる。最外層2Bにおいては、難燃剤は、ベース樹脂100質量部に対して、0質量部より多く2.5質量部未満のシリコーン系化合物と、1質量部以上の無機粒子と、1質量部以上10質量部以下の脂肪酸含有化合物とを含む。 The outermost layer 2B contains a base resin and a flame retardant, and the flame retardant contains a silicone compound, inorganic particles, and a fatty acid-containing compound. In the outermost layer 2B, the flame retardant is greater than 0 parts by mass and less than 2.5 parts by mass with respect to 100 parts by mass of the base resin, 1 part by mass or more of inorganic particles, and 1 part by mass or more of 10 parts by mass or more. And a fatty acid-containing compound in an amount not more than part by mass.
 一方、内層2Aは、ベース樹脂及びシリコーン系化合物を含んでいる。内層2Aにおいては、ベース樹脂100質量部に対するシリコーン系化合物の配合割合が2.5質量部以上10質量部以下となっている。 On the other hand, the inner layer 2A contains a base resin and a silicone compound. In the inner layer 2A, the compounding ratio of the silicone-based compound is 2.5 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the base resin.
 絶縁電線4は、優れた計尺安定性、端末加工性及び難燃性を有する。このため、ケーブル10も優れた計尺安定性、端末加工性及び難燃性を有する。 The insulated wire 4 has excellent scale stability, terminal processability, and flame retardancy. Therefore, the cable 10 also has excellent scale stability, terminal processability, and flame retardancy.
 以下、導体1、絶縁層2及び被覆層3について詳細に説明する。 The conductor 1, the insulating layer 2 and the coating layer 3 will be described in detail below.
 ≪導体≫
 導体1は、1本の素線のみで構成されてもよく、複数本の素線を束ねて構成されたものであってもよい。導体1の材質は特に限定されるものではないが、アルミニウム又はアルミニウム合金であることが好ましい。この場合、導体1として銅などを用いる場合に比べて、絶縁電線4、ひいてはケーブル10をより軽量化できる。また、導体1の断面積についても、特に限定されるものではないが、細径化や軽量化の観点から、5mm未満であることが好ましく、3mm以下であることがより好ましい。但し、導体1の強度及び導電率の観点からは、導体1の断面積は0.13mm以上であることが好ましい。
<< conductor >>
The conductor 1 may be composed of only one elemental wire, or may be composed of a plurality of elemental wires bundled together. The material of the conductor 1 is not particularly limited, but aluminum or aluminum alloy is preferable. In this case, the insulated wire 4 and thus the cable 10 can be made lighter than in the case where copper or the like is used as the conductor 1. As for the cross-sectional area of the conductor 1, it is not particularly limited, in view of the small-diameter and weight, preferably less than 5 mm 2, and more preferably 3 mm 2 or less. However, from the viewpoint of the strength and the conductivity of the conductor 1, the cross-sectional area of the conductor 1 is preferably 0.13 mm 2 or more.
 ≪絶縁層≫
 絶縁層2は、上述したように、最外層2Bと、最外層2Bの内側に設けられる内層2Aとを有している。最外層2Bは絶縁層2において最も外側に設けられる層である。すなわち、最外層2Bは絶縁層2において最も導体1から離れた位置に配置される層である。最外層2Bは、ベース樹脂及び難燃剤を含んでおり、難燃剤は、シリコーン系化合物と、無機粒子と、脂肪酸含有化合物とを含んでいる。一方、内層2Aは、ベース樹脂及びシリコーン系化合物を含んでいる。
<<Insulation layer>>
As described above, the insulating layer 2 has the outermost layer 2B and the inner layer 2A provided inside the outermost layer 2B. The outermost layer 2B is a layer provided on the outermost side of the insulating layer 2. That is, the outermost layer 2B is a layer arranged in the insulating layer 2 at a position farthest from the conductor 1. The outermost layer 2B contains a base resin and a flame retardant, and the flame retardant contains a silicone compound, inorganic particles, and a fatty acid-containing compound. On the other hand, the inner layer 2A contains a base resin and a silicone compound.
 <最外層>
 ベース樹脂100質量部に対する無機粒子の配合割合(C2)は1質量部以上である。この場合、C2が1質量部未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。C2は5質量部以上であることが好ましい。この場合、C2が5質量部未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。C2は、絶縁電線4の難燃性をより向上させる観点からは、10質量部以上であることがより好ましい。またC2は200質量部以下であることが好ましい。この場合、C2が200質量部を超える場合に比べて、絶縁電線4の耐摩耗性をより向上させることができる。C2は、絶縁電線4の耐摩耗性をより向上させるからは、150質量部以下であることがより好ましい。C2は、絶縁電線4の耐摩耗性をより一層向上させるからは、100質量部以下であることが一層好ましく、40質量部以下であることが特に好ましい。
<Outermost layer>
The mixing ratio (C2) of the inorganic particles to 100 parts by mass of the base resin is 1 part by mass or more. In this case, the flame retardancy of the insulated wire 4 can be further improved as compared with the case where C2 is less than 1 part by mass. C2 is preferably 5 parts by mass or more. In this case, the flame retardancy of the insulated wire 4 can be further improved as compared with the case where C2 is less than 5 parts by mass. From the viewpoint of further improving the flame retardancy of the insulated wire 4, C2 is more preferably 10 parts by mass or more. Further, C2 is preferably 200 parts by mass or less. In this case, the wear resistance of the insulated wire 4 can be further improved as compared with the case where C2 exceeds 200 parts by mass. Since C2 further improves the wear resistance of the insulated wire 4, it is more preferably 150 parts by mass or less. From the viewpoint of further improving the abrasion resistance of the insulated wire 4, C2 is more preferably 100 parts by mass or less, and particularly preferably 40 parts by mass or less.
 ベース樹脂100質量部に対するシリコーン系化合物の配合割合(S2)は0質量部より多く2.5質量部未満である。この場合、S2が0質量部である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、S2が2.5質量部以上である場合に比べて、ケーブル10の計尺安定性をより向上させることができる。S2は、ケーブル10の計尺安定性をより向上させる観点からは、2.3質量部以下であることが好ましく、2.1質量部以下であることがより好ましい。またS2は、絶縁電線4の難燃性をより向上させる観点からは、0.5質量部以上であることが好ましく、1.5質量部以上であることがより好ましい。 The compounding ratio (S2) of the silicone compound to 100 parts by mass of the base resin is more than 0 parts by mass and less than 2.5 parts by mass. In this case, the flame retardancy of the insulated wire 4 can be further improved as compared with the case where S2 is 0 parts by mass. Further, the scale stability of the cable 10 can be further improved as compared with the case where S2 is 2.5 parts by mass or more. From the viewpoint of further improving the scale stability of the cable 10, S2 is preferably 2.3 parts by mass or less, and more preferably 2.1 parts by mass or less. From the viewpoint of further improving the flame retardancy of the insulated wire 4, S2 is preferably 0.5 part by mass or more, and more preferably 1.5 parts by mass or more.
 ベース樹脂100質量部に対する脂肪酸含有化合物の配合割合(F2)は1質量部以上10質量部以下である。この場合、F2が1質量部未満である場合に比べて、絶縁電線4の難燃性をより向上させることができる。また、F2が10質量部を超える場合に比べて、ブルームが発生しやすくなる。F2は、ブルームの発生を抑制する観点からは、9質量部以下であることが好ましく、8質量部以下であることがより好ましい。またF2は、絶縁電線4の難燃性をより向上させる観点からは、2質量部以上であることが好ましく、3質量部以上であることがより好ましい。 The mixing ratio (F2) of the fatty acid-containing compound to 100 parts by mass of the base resin is 1 part by mass or more and 10 parts by mass or less. In this case, the flame retardancy of the insulated wire 4 can be further improved as compared with the case where F2 is less than 1 part by mass. In addition, bloom is more likely to occur than when F2 exceeds 10 parts by mass. From the viewpoint of suppressing bloom generation, F2 is preferably 9 parts by mass or less, and more preferably 8 parts by mass or less. Further, F2 is preferably 2 parts by mass or more, and more preferably 3 parts by mass or more, from the viewpoint of further improving the flame retardancy of the insulated wire 4.
 最外層2Bは、酸化防止剤、金属不活性化剤、紫外線劣化防止剤、加工助剤、着色顔料、滑剤、充填剤を必要に応じてさらに含んでもよい。 The outermost layer 2B may further include an antioxidant, a metal deactivator, an ultraviolet deterioration inhibitor, a processing aid, a color pigment, a lubricant, and a filler, if necessary.
 最外層2Bの滑り摩擦力は特に制限されるものではないが、3Nより大きいことが好ましい。この場合、最外層2Bの滑り摩擦力が3N以下である場合に比べて、ケーブル10の計尺安定性をより向上させることができる。最外層2Bの滑り摩擦力はより好ましくは3.5N以上であり、特に好ましくは4N以上である。最外層2Bの滑り摩擦力は、10N未満であることが好ましく、7N以下であることがより好ましい。この場合、最外層2Bの滑り摩擦力が10N以上である場合に比べて、ケーブル10の難燃性がより優れる。 The sliding frictional force of the outermost layer 2B is not particularly limited, but is preferably larger than 3N. In this case, the scale stability of the cable 10 can be further improved as compared with the case where the sliding frictional force of the outermost layer 2B is 3N or less. The sliding frictional force of the outermost layer 2B is more preferably 3.5 N or more, and particularly preferably 4 N or more. The sliding friction force of the outermost layer 2B is preferably less than 10N, more preferably 7N or less. In this case, the flame retardancy of the cable 10 is more excellent than when the sliding frictional force of the outermost layer 2B is 10 N or more.
 最外層2Bの厚さtは特に制限されるものではないが、0.008~0.400mmであることが好ましい。この場合、厚さtが0.008mm未満である場合に比べて、ケーブル10の難燃性をより向上させることができる。また、厚さtが0.400mmを超える場合に比べて、ケーブル10をより軽量化及び細径化できるとともに、ケーブル10の耐摩耗性及び端末加工性をより向上させることができる。 The thickness t of the outermost layer 2B is not particularly limited, but is preferably 0.008 to 0.400 mm. In this case, the flame retardancy of the cable 10 can be further improved as compared with the case where the thickness t is less than 0.008 mm. Further, as compared with the case where the thickness t exceeds 0.400 mm, the cable 10 can be made lighter in weight and smaller in diameter, and the wear resistance and the terminal processability of the cable 10 can be further improved.
 <内層>
 内層2Aは、ベース樹脂及びシリコーン系化合物を含んでいる。
<Inner layer>
The inner layer 2A contains a base resin and a silicone compound.
 また、内層2Aは単層でも2層以上の層からなる多層体でもあってもよい。 The inner layer 2A may be a single layer or a multi-layer body composed of two or more layers.
 内層2A中のシリコーン系化合物のベース樹脂100質量部に対する配合割合(S1)は、2.5質量部以上10質量部以下である。この場合、S1が2.5質量部未満である場合に比べて、ケーブル10の端末加工性をより向上させることができる。また、S1が10質量部を超える場合、導体1と内層2Aとの間の密着力が低下しすぎてしまう。 The mixing ratio (S1) of the silicone compound in the inner layer 2A to 100 parts by mass of the base resin is 2.5 parts by mass or more and 10 parts by mass or less. In this case, the terminal processability of the cable 10 can be further improved as compared with the case where S1 is less than 2.5 parts by mass. Moreover, when S1 exceeds 10 mass parts, the adhesive force between the conductor 1 and the inner layer 2A will fall too much.
 S1は、導体1と内層2Aとの間で適度な密着性を確保するためには、8質量部以下であることが好ましく、6質量部以下であることがより好ましい。またS1は、ケーブル10の端末加工性をより向上させる観点からは、3質量部以上であることが好ましく、3.5質量部以上であることがより好ましい。 S1 is preferably 8 parts by mass or less, and more preferably 6 parts by mass or less, in order to secure appropriate adhesion between the conductor 1 and the inner layer 2A. Further, S1 is preferably 3 parts by mass or more, and more preferably 3.5 parts by mass or more, from the viewpoint of further improving the terminal processability of the cable 10.
 またS1-S2(ΔS)は、0質量部より大きければ特に制限されないが、0.1~8質量部であることが好ましい。この場合、ΔSが上記範囲を外れる場合に比べて、ケーブル10の難燃性及び端末加工性をより向上させることができる。S1-S2は、ケーブル10の難燃性及び端末加工性をより向上させる観点からは、0.2~6質量部であることがより好ましく、0.3~4質量部であることが特に好ましい。 Further, S1-S2 (ΔS) is not particularly limited as long as it is larger than 0 parts by mass, but 0.1 to 8 parts by mass is preferable. In this case, as compared with the case where ΔS is out of the above range, the flame retardancy and the end workability of the cable 10 can be further improved. S1-S2 is more preferably 0.2 to 6 parts by mass, and particularly preferably 0.3 to 4 parts by mass, from the viewpoint of further improving the flame retardancy and terminal processability of the cable 10. ..
 なお、内層2Aは、酸化防止剤、金属不活性化剤、紫外線劣化防止剤、加工助剤、着色顔料、滑剤、カーボンブラックなどの充填剤を必要に応じてさらに含んでもよい。 The inner layer 2A may further contain a filler such as an antioxidant, a metal deactivator, an ultraviolet deterioration inhibitor, a processing aid, a color pigment, a lubricant, and carbon black, if necessary.
 最外層2Bの滑り摩擦力が3Nより大きい場合、内層2Aの導体1に対する密着力は特に制限されるものではないが、50N/50mm以下であることが好ましい。 When the sliding frictional force of the outermost layer 2B is larger than 3N, the adhesion of the inner layer 2A to the conductor 1 is not particularly limited, but is preferably 50N/50mm or less.
 この場合、内層2Aの導体1に対する密着力が50N/50mmを超える場合に比べて、ケーブル10の端末加工性をより向上させることができる。内層2Aの導体1に対する密着力は、より好ましくは40N/50mm以下であり、特に好ましくは30N/50mm以下である。但し、内層2Aの導体1に対する密着力は5N/50mm以上であることが好ましい。 In this case, the end workability of the cable 10 can be further improved as compared with the case where the adhesion of the inner layer 2A to the conductor 1 exceeds 50 N/50 mm. The adhesion of the inner layer 2A to the conductor 1 is more preferably 40 N/50 mm or less, and particularly preferably 30 N/50 mm or less. However, the adhesion of the inner layer 2A to the conductor 1 is preferably 5 N/50 mm or more.
 内層2Aの厚さは特に制限されるものではないが、0.2~2.0mmであることが好ましい。この場合、厚さが0.2mm未満である場合に比べて、ケーブル10の耐摩耗性をより向上させることができる。また、厚さが2.0mmを超える場合に比べて、ケーブル10をより軽量化及び細径化できる。 The thickness of the inner layer 2A is not particularly limited, but is preferably 0.2 to 2.0 mm. In this case, the wear resistance of the cable 10 can be further improved as compared with the case where the thickness is less than 0.2 mm. In addition, the cable 10 can be made lighter in weight and smaller in diameter than when the thickness exceeds 2.0 mm.
 (ベース樹脂)
 ベース樹脂は樹脂で構成されていればよく、樹脂としては、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂及びスチレン系樹脂などが挙げられる。これらは単独で又は2種以上を混合して用いることができる。ここで、樹脂には、ゴム及びエラストマーも含まれるものとする。樹脂は、ポリオレフィン樹脂等、ゴム、エラストマーなどから選択される少なくとも1種で構成されていればよい。ベース樹脂はポリオレフィン樹脂を含んでいても含んでいなくてもよいが、ポリオレフィン樹脂を含んでいることが好ましい。この場合、ベース樹脂がポリオレフィン樹脂を含まない場合に比べて、ケーブル10の難燃性及び耐摩耗性をより向上させることができる。
(Base resin)
The base resin may be made of resin, and examples of the resin include polyolefin resin, polyamide resin, polyester resin, and styrene resin. These may be used alone or in combination of two or more. Here, the resin includes rubber and elastomer. The resin may be composed of at least one selected from polyolefin resin, rubber, elastomer and the like. The base resin may or may not contain a polyolefin resin, but preferably contains a polyolefin resin. In this case, as compared with the case where the base resin does not include the polyolefin resin, the flame resistance and wear resistance of the cable 10 can be further improved.
 ポリオレフィン樹脂としては、例えばポリエチレン(PE)、プロピレン系樹脂、ポリブテン、ポリメチルペンテンなどの極性基非含有ポリオレフィン、極性基含有ポリオレフィン及びオレフィン系熱可塑性エラストマーなどが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。 Examples of the polyolefin resin include polyethylene (PE), propylene-based resin, non-polar group-containing polyolefin such as polybutene and polymethylpentene, polar group-containing polyolefin, and olefin-based thermoplastic elastomer. These may be used alone or in combination of two or more.
 ポリオレフィン樹脂としては、コスト及び比重の観点からは、PE、プロピレン系樹脂が好ましく、耐熱性及び耐摩耗性の観点からは、プロピレン系樹脂が好ましい。特に内層2A中のベース樹脂はポリオレフィン樹脂としてプロピレン系樹脂を含むことが好ましい。この場合、ベース樹脂がポリオレフィン樹脂としてプロピレン系樹脂を含まない場合に比べて、ケーブル10の耐熱性及び耐摩耗性をより向上させることができる。 As the polyolefin resin, PE and propylene resin are preferable from the viewpoint of cost and specific gravity, and propylene resin is preferable from the viewpoint of heat resistance and abrasion resistance. In particular, the base resin in the inner layer 2A preferably contains a propylene resin as the polyolefin resin. In this case, the heat resistance and wear resistance of the cable 10 can be further improved as compared with the case where the base resin does not include a propylene resin as the polyolefin resin.
 プロピレン系樹脂は、プロピレンを構成単位として含む樹脂であり、プロピレン系樹脂としては、例えばホモポリプロピレン、プロピレンブロックコポリマー及びプロピレンランダムコポリマーが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。これらの中でも、プロピレンブロックコポリマーが、耐衝撃性及び低温脆性の観点から好ましい。 Propylene-based resin is a resin containing propylene as a constituent unit, and examples of the propylene-based resin include homopolypropylene, propylene block copolymer and propylene random copolymer. These may be used alone or in combination of two or more. Among these, a propylene block copolymer is preferable from the viewpoint of impact resistance and low temperature brittleness.
 極性基含有ポリオレフィンは、極性基を含有するポリオレフィンである。 A polar group-containing polyolefin is a polyolefin containing a polar group.
 極性基含有ポリオレフィンの極性基としては、例えばマレイン酸基、メタクリル酸基、無水フマル酸基、無水マレイン酸基、ヒドロキシル基及びカルボキシル基などが挙げられる。中でも、極性基としては、無水マレイン酸基が好ましい。この場合、ベース樹脂中のポリオレフィンの含有率が少量でもベース樹脂と、上記無機粒子、シリコーン系化合物及び脂肪酸含有化合物を含む難燃剤との相溶性がより高まり、ブルームの発生をより十分に抑制できるとともに、絶縁層2の耐摩耗性をより向上させることができる。このため、絶縁層2の機械的特性の低下をより十分に抑制できる。 Examples of the polar group of the polar group-containing polyolefin include maleic acid group, methacrylic acid group, fumaric anhydride group, maleic anhydride group, hydroxyl group and carboxyl group. Among them, the maleic anhydride group is preferable as the polar group. In this case, even if the content of the polyolefin in the base resin is small, the compatibility between the base resin and the flame retardant containing the inorganic particles, the silicone compound and the fatty acid-containing compound is further increased, and the occurrence of bloom can be more sufficiently suppressed. At the same time, the wear resistance of the insulating layer 2 can be further improved. Therefore, the deterioration of the mechanical properties of the insulating layer 2 can be suppressed more sufficiently.
 極性基含有ポリオレフィンとしては、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-アクリル酸ブチル共重合体(EBA)、それらの無水マレイン酸変性ポリマー、無水マレイン酸変性ポリプロピレン、および、マレイン酸、無水マレイン酸などの不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体、などが挙げられる。 As the polar group-containing polyolefin, ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), ethylene-butyl acrylate copolymer (EBA), maleic anhydride modified polymer thereof, Examples thereof include maleic anhydride-modified polypropylene, and ethylene-α-olefin copolymers modified with unsaturated carboxylic acids such as maleic acid and maleic anhydride.
 ここで、ポリオレフィン樹脂中の極性基含有ポリオレフィンの含有率は特に制限されるものではないが、1~10質量%であることが好ましい。この場合、ポリオレフィン樹脂中の極性基含有ポリオレフィンの含有率が1質量%未満である場合と比べて、ポリオレフィン樹脂と難燃剤(無機粒子、シリコーン系化合物及び脂肪酸含有化合物)との相溶性がより高まり、ブルームの発生をより十分に抑制できる。また、絶縁層2の耐摩耗性をより向上させることができる。一方、ポリオレフィン樹脂中の極性基含有ポリオレフィンの含有率が10質量%を超える場合と比べて、コストの上昇をより十分に抑えることができる。ポリオレフィン樹脂中の極性基含有ポリオレフィンの含有率は2~5質量%であることがより好ましい。 Here, the content of the polar group-containing polyolefin in the polyolefin resin is not particularly limited, but is preferably 1 to 10% by mass. In this case, compared with the case where the content of the polar group-containing polyolefin in the polyolefin resin is less than 1% by mass, the compatibility between the polyolefin resin and the flame retardant (inorganic particles, silicone compound and fatty acid-containing compound) is further increased. The occurrence of bloom can be suppressed more sufficiently. In addition, the wear resistance of the insulating layer 2 can be further improved. On the other hand, as compared with the case where the content of the polar group-containing polyolefin in the polyolefin resin exceeds 10% by mass, the cost increase can be suppressed more sufficiently. The content of the polar group-containing polyolefin in the polyolefin resin is more preferably 2-5% by mass.
 ベース樹脂は架橋されていてもよく、架橋されていなくてもよいが、架橋されていることが好ましい。ベース樹脂が架橋されている場合、内層2A又は最外層2Bの耐熱性及び耐摩耗性をより向上させることができる。ここで、架橋としては、シラン架橋、電子線架橋および過酸化物架橋が挙げられる。中でも、シラン架橋が好ましい。シラン架橋は、電子線架橋と比べて、高度な設備が不要であり、内層2A又は最外層2Bの厚さが厚くても十分にベース樹脂を架橋できる。また、シラン架橋は、過酸化物架橋に比べて、押出時のスコーチの発生を十分に抑制することができる。 The base resin may or may not be crosslinked, but it is preferably crosslinked. When the base resin is crosslinked, the heat resistance and wear resistance of the inner layer 2A or the outermost layer 2B can be further improved. Here, examples of the crosslinking include silane crosslinking, electron beam crosslinking, and peroxide crosslinking. Of these, silane crosslinking is preferable. Compared to electron beam crosslinking, silane crosslinking does not require sophisticated equipment and can sufficiently crosslink the base resin even if the inner layer 2A or the outermost layer 2B is thick. Further, silane crosslinking can sufficiently suppress the generation of scorch during extrusion, as compared with peroxide crosslinking.
 内層2Aにおけるベース樹脂と最外層2Bにおけるベース樹脂とは互いに同一であっても異なっていてもよい。 The base resin in the inner layer 2A and the base resin in the outermost layer 2B may be the same as or different from each other.
 (無機粒子)
 無機粒子は、絶縁電線4の燃焼時にシリコーン系化合物及び脂肪酸含有化合物とともにベース樹脂に対するバリア層を形成してケーブル10の難燃性を向上させるための難燃剤である。無機粒子としては、炭酸カルシウム、ケイ酸塩化合物又はこれらの混合物が好ましい。この場合、水酸化マグネシウムなどの金属水酸化物に比べて、少量で効果的に難燃性を向上させることができるため、絶縁層2の軽量化、ひいてはケーブル10の軽量化を図ることができる。炭酸カルシウムは、重質炭酸カルシウム又は軽質炭酸カルシウムのいずれでもよい。また、ケイ酸塩化合物としてはタルク及びクレーなどが挙げられる。
(Inorganic particles)
The inorganic particles are a flame retardant for improving the flame retardancy of the cable 10 by forming a barrier layer against the base resin together with the silicone compound and the fatty acid-containing compound when the insulated electric wire 4 burns. The inorganic particles are preferably calcium carbonate, a silicate compound or a mixture thereof. In this case, the flame retardancy can be effectively improved with a small amount as compared with a metal hydroxide such as magnesium hydroxide, so that the weight of the insulating layer 2 and the weight of the cable 10 can be reduced. .. The calcium carbonate may be either heavy calcium carbonate or light calcium carbonate. Examples of silicate compounds include talc and clay.
 無機粒子の平均粒径は、特に制限されるものではないが、0.7μm以上であることが好ましい。この場合、無機粒子の平均粒径が0.7μm未満である場合と比べて、より優れた難燃性が得られる。但し、無機粒子の平均粒径は、1.8μm以下であることが好ましい。この場合、無機粒子の平均粒径が1.8μmを超える場合に比べて、絶縁層2の耐摩耗性を向上させることができる。 The average particle size of the inorganic particles is not particularly limited, but it is preferably 0.7 μm or more. In this case, more excellent flame retardancy can be obtained as compared with the case where the average particle diameter of the inorganic particles is less than 0.7 μm. However, the average particle size of the inorganic particles is preferably 1.8 μm or less. In this case, the abrasion resistance of the insulating layer 2 can be improved as compared with the case where the average particle diameter of the inorganic particles exceeds 1.8 μm.
 (シリコーン系化合物)
 シリコーン系化合物は、難燃剤として機能するものであり、シリコーン系化合物としては、ポリオルガノシロキサンなどが挙げられる。ここで、ポリオルガノシロキサンは、シロキサン結合を主鎖とし側鎖に有機基を有するものである。有機基としては、例えばメチル基、エチル基、プロピル基などのアルキル基;ビニル基;及びフェニル基などのアリール基などが挙げられる。具体的にはポリオルガノシロキサンとしては、例えばジメチルポリシロキサン、メチルエチルポリシロキサン、メチルオクチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサン、メチル(3,3,3-トリフルオロプロピル)ポリシロキサンなどが挙げられる。ポリオルガノシロキサンとして、シリコーンパウダー、シリコーンオイル、シリコーンガム及びシリコーンレジンが挙げられる。中でも、絶縁層2においてブルームを起こりにくくする観点からは、シリコーンガムが好ましい。また、絶縁層2の難燃性をより向上させる観点からは、シリコーンオイルが好ましい。
(Silicone compound)
The silicone compound functions as a flame retardant, and examples of the silicone compound include polyorganosiloxane. Here, the polyorganosiloxane has a siloxane bond as a main chain and an organic group in a side chain. Examples of the organic group include an alkyl group such as a methyl group, an ethyl group and a propyl group; a vinyl group; and an aryl group such as a phenyl group. Specifically, as the polyorganosiloxane, for example, dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, methyl(3,3,3-trifluoropropyl)polysiloxane, etc. Are listed. Polyorganosiloxanes include silicone powders, silicone oils, silicone gums and silicone resins. Among them, silicone gum is preferable from the viewpoint of making bloom less likely to occur in the insulating layer 2. Further, from the viewpoint of further improving the flame retardancy of the insulating layer 2, silicone oil is preferable.
 シリコーン系化合物は、無機粒子の表面に付着されていてもよい。 The silicone compound may be attached to the surface of the inorganic particles.
 (脂肪酸含有化合物)
 脂肪酸含有化合物は、難燃剤として機能するものである。脂肪酸含有化合物とは、脂肪酸又はその金属塩を含有する化合物を言う。ここで、脂肪酸としては、例えば炭素原子数が12~28である脂肪酸が用いられる。このような脂肪酸としては、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ツベルクロステアリン酸、オレイン酸、リノール酸、アラキドン酸、ベヘン酸及びモンタン酸が挙げられる。中でも、脂肪酸としては、ステアリン酸が好ましい。この場合、ステアリン酸以外の脂肪酸を用いる場合に比べて、絶縁層2の難燃性をより向上させることができる。
(Fatty acid-containing compound)
The fatty acid-containing compound functions as a flame retardant. The fatty acid-containing compound refers to a compound containing a fatty acid or a metal salt thereof. Here, as the fatty acid, for example, a fatty acid having 12 to 28 carbon atoms is used. Examples of such fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, tuberculostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid. Among them, stearic acid is preferable as the fatty acid. In this case, the flame retardancy of the insulating layer 2 can be further improved as compared with the case of using a fatty acid other than stearic acid.
 脂肪酸の金属塩を構成する金属としては、マグネシウム、カルシウム、亜鉛及び鉛などが挙げられる。脂肪酸の金属塩としては、ステアリン酸マグネシウム又はステアリン酸亜鉛が好ましい。この場合、ステアリン酸マグネシウム又はステアリン酸亜鉛以外の脂肪酸金属塩を用いる場合に比べて、より少ない添加量で絶縁層2の難燃性をより向上させることができる。脂肪酸の金属塩としては、ステアリン酸マグネシウムが特に好ましい。 As the metal constituting the fatty acid metal salt, magnesium, calcium, zinc, lead and the like can be mentioned. As the fatty acid metal salt, magnesium stearate or zinc stearate is preferable. In this case, the flame retardancy of the insulating layer 2 can be further improved with a smaller addition amount than in the case of using a fatty acid metal salt other than magnesium stearate or zinc stearate. As the metal salt of fatty acid, magnesium stearate is particularly preferable.
 ≪被覆層≫
 被覆層3は、絶縁層2を物理的又は化学的な損傷から保護するものである。
≪Coating layer≫
The coating layer 3 protects the insulating layer 2 from physical or chemical damage.
 被覆層3の厚さは、特に限定されるものではないが、2.0mm未満であることが好ましい。この場合、被覆層3の厚さが2.0mm以上である場合に比べて、ケーブル10をより軽量化できる。被覆層3の厚さは1.0mm以下であることがより好ましく、0.5mm以下であることがさらに好ましい。但し、耐摩耗性の観点から、被覆層3の厚さは、0.2mm以上であることが好ましい。 The thickness of the coating layer 3 is not particularly limited, but is preferably less than 2.0 mm. In this case, the cable 10 can be made lighter than in the case where the thickness of the coating layer 3 is 2.0 mm or more. The thickness of the coating layer 3 is more preferably 1.0 mm or less, further preferably 0.5 mm or less. However, from the viewpoint of wear resistance, the thickness of the coating layer 3 is preferably 0.2 mm or more.
 [ケーブルの製造方法]
 次に、上述したケーブル10の製造方法について説明する。
[Cable manufacturing method]
Next, a method of manufacturing the above-described cable 10 will be described.
 まず導体1を準備する。 First, prepare conductor 1.
 次に、導体1を絶縁層2で被覆して絶縁電線4を得る。このとき、絶縁層2は、内層2A及び最外層2Bを同時に形成することにより形成してもよいし、内層2Aを形成した後、内層2Aの上に最外層2Bを形成することによって形成してもよい。 Next, the conductor 1 is covered with the insulating layer 2 to obtain the insulated electric wire 4. At this time, the insulating layer 2 may be formed by simultaneously forming the inner layer 2A and the outermost layer 2B, or by forming the inner layer 2A and then forming the outermost layer 2B on the inner layer 2A. Good.
 内層2A及び最外層2Bは、内層2Aを形成するための内層樹脂組成物及び最外層2Bを形成するための最外層樹脂組成物をそれぞれ用意し、これらを、押出成形することによって形成することができる。 The inner layer 2A and the outermost layer 2B may be formed by respectively preparing an inner layer resin composition for forming the inner layer 2A and an outermost layer resin composition for forming the outermost layer 2B, and extruding these. it can.
 導体1への絶縁層2の形成方法としては、共押出法、タンデム押出法および別押出法の3通りの方法が挙げられる。 As the method for forming the insulating layer 2 on the conductor 1, there are three methods, a co-extrusion method, a tandem extrusion method, and another extrusion method.
 共押出法とは、クロスヘッドから排出した内層樹脂組成物を導体1上に被覆して内層2Aを形成し、内層被覆電線を得た直後に、同じクロスヘッド内で続けて最外層樹脂組成物を押し出して内層被覆電線上に被覆して最外層2Bを形成する方法である。 The coextrusion method is to coat the inner layer resin composition discharged from the crosshead on the conductor 1 to form the inner layer 2A, and immediately after obtaining the inner layer coated electric wire, continuously in the same crosshead to form the outermost layer resin composition. Is extruded to cover the inner-layer-covered electric wire to form the outermost layer 2B.
 タンデム押出法とは、クロスヘッドから排出した内層樹脂組成物を導体1上に被覆して内層2Aを形成し、内層被覆電線を得た後に、同じ押出ライン上で、別のクロスヘッドから排出した最外層樹脂組成物を内層被覆電線上に被覆して最外層2Bを形成する方法である。 In the tandem extrusion method, the inner layer resin composition discharged from the crosshead is coated on the conductor 1 to form the inner layer 2A, and the inner layer coated electric wire is obtained, and then discharged from another crosshead on the same extrusion line. This is a method of forming the outermost layer 2B by coating the innermost layer-covered electric wire with the outermost layer resin composition.
 別押出法とは、クロスヘッドから排出した内層樹脂組成物を導体1上に被覆して内層2Aを形成し、内層被覆電線を得てから一度ボビンに巻き取った後、巻き取った内層被覆電線を送り出して同じクロスヘッド又は別のクロスヘッドから排出した最外層樹脂組成物を内層被覆電線上に被覆して最外層を形成する方法である。 The other extrusion method is to coat the inner layer resin composition discharged from the crosshead on the conductor 1 to form the inner layer 2A, obtain the inner layer coated electric wire, and once wind it on a bobbin, and then wind the inner layer coated electric wire. And the outermost layer resin composition discharged from the same crosshead or from another crosshead is coated on the inner layer coated electric wire to form the outermost layer.
 上記方法の中でも、連続生産が可能であることから、共押出法及びタンデム押出法が好ましい。特に共押出法が好ましい。この場合、内層樹脂組成物と最外層樹脂組成物とが溶融状態で接触することで内層2Aと最外層2Bとの間の密着力が高まり、内層2Aと最外層2との間の剥離をより十分に抑制できる。 Among the above methods, the co-extrusion method and the tandem extrusion method are preferable because continuous production is possible. The coextrusion method is particularly preferable. In this case, the inner layer resin composition and the outermost layer resin composition are brought into contact with each other in a molten state, so that the adhesion between the inner layer 2A and the outermost layer 2B is increased, and the peeling between the inner layer 2A and the outermost layer 2 is further improved. Can be suppressed sufficiently.
 最後に、上記のようにして得られた絶縁電線4を1本用意し、この絶縁電線4を被覆層3で被覆する。被覆層3も、被覆層3を形成するための被覆層樹脂組成物を用意し、これを、押出機を用いて押出成形することによって形成することができる。 Finally, prepare one insulated wire 4 obtained as described above, and coat this insulated wire 4 with the coating layer 3. The coating layer 3 can also be formed by preparing a coating layer resin composition for forming the coating layer 3 and subjecting the resin composition to extrusion molding using an extruder.
 以上のようにしてケーブル10が得られる。 The cable 10 is obtained as described above.
 本発明は、上記実施形態に限定されるものではない。例えば上記実施形態ではケーブル10は1本の絶縁電線4を有しているが、本発明のケーブルは被覆層3の内側に絶縁電線4を2本以上有していてもよい。 The present invention is not limited to the above embodiment. For example, although the cable 10 has one insulated wire 4 in the above embodiment, the cable of the present invention may have two or more insulated wires 4 inside the coating layer 3.
 また、上記実施形態では、ケーブル10が被覆層3を有しているが、被覆層3は省略してもよい。 Further, in the above embodiment, the cable 10 has the coating layer 3, but the coating layer 3 may be omitted.
 さらに、上記実施形態では、伝送媒体が導体1であるケーブル10が使用されているが、本発明のケーブルは、ケーブル10において伝送媒体を導体1から光ファイバに置き換えた光ファイバケーブルであってもよい。なお、この光ファイバケーブルにおいても被覆層3は省略してもよい。 Further, in the above-described embodiment, the cable 10 in which the transmission medium is the conductor 1 is used, but the cable of the present invention may be an optical fiber cable in which the transmission medium in the cable 10 is replaced with the optical fiber. Good. The coating layer 3 may be omitted in this optical fiber cable as well.
 [ワイヤハーネス]
 図3は、本発明のワイヤハーネスの一実施形態を示す断面図である。図3に示すように、ワイヤハーネス20は、ケーブルとしての複数本(図3では4本)の絶縁電線4を束ねるテープ21とを備える。テープ21は、複数本の絶縁電線4をその長さ方向に沿って全体的に被覆している必要はなく、複数の絶縁電線4をその長さ方向に沿って必要な箇所で部分的に被覆していればよい。
[Wire harness]
FIG. 3 is a sectional view showing an embodiment of the wire harness of the present invention. As shown in FIG. 3, the wire harness 20 includes a tape 21 that bundles a plurality of (four in FIG. 3) insulated wires 4 as cables. The tape 21 does not need to entirely cover the plurality of insulated electric wires 4 along the length direction thereof, but partially covers the plurality of insulated electric wires 4 along the length direction at necessary portions. Just do it.
 このワイヤハーネス20は、優れた計尺安定性、端末加工性及び難燃性を有する絶縁電線4を有するので、優れた計尺安定性、端末加工性及び難燃性を有することが可能となる。 Since this wire harness 20 has the insulated wire 4 having excellent scale stability, end workability, and flame retardancy, it is possible to have excellent scale stability, end workability, and flame retardance. ..
 上記ワイヤハーネス20は、ケーブルとしての絶縁電線4を複数本備えているが、絶縁電線4を1本のみ備えていてもよい。また、上記ワイヤハーネス20においては、絶縁電線4の代わりにケーブル10を用いることもできる。上記ワイヤハーネス20は、テープ21の内側にケーブルとしての絶縁電線4のみを備えているが、絶縁電線4及びケーブル10の2種類を備えていてもよい。 The wire harness 20 is provided with a plurality of insulated electric wires 4 as cables, but may be provided with only one insulated electric wire 4. Further, in the wire harness 20, the cable 10 may be used instead of the insulated wire 4. The wire harness 20 includes only the insulated electric wire 4 as a cable inside the tape 21, but may include two types of the insulated electric wire 4 and the cable 10.
 また、上記ワイヤハーネス20は、テープ21を備えているが、ワイヤハーネス20はテープ21の代わりに結束帯、コルゲートチューブ等を用いることもできる。 Although the wire harness 20 includes the tape 21, the wire harness 20 may use a binding band, a corrugated tube, or the like instead of the tape 21.
 以下、実施例を挙げて本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.
 (実施例1~21及び比較例1~6)
 <最外層樹脂組成物>
 ベース樹脂及び難燃剤を、表1~4に示す配合量で配合し、オープンロールで混練して、最外層樹脂組成物を得た。なお、表1~4において、各配合成分の配合量の単位は質量部である。また、実施例3及び実施例15ではベース樹脂の欄の配合量が100質量部となっていないが、実施例3及び実施例15においてはシリコーンガムMB中にも樹脂が含まれており、ベース樹脂の欄の配合量とシリコーンガムMB中の樹脂の配合量とを合計すれば、その合計は100質量部となる。
(Examples 1 to 21 and Comparative Examples 1 to 6)
<Outermost layer resin composition>
The base resin and the flame retardant were blended in the blending amounts shown in Tables 1 to 4 and kneaded with an open roll to obtain an outermost layer resin composition. In Tables 1 to 4, the unit of the blending amount of each blending component is parts by mass. In addition, in Examples 3 and 15, the compounding amount in the column of base resin is not 100 parts by mass, but in Examples 3 and 15, the resin is also contained in the silicone gum MB, If the compounding amount of the resin column and the compounding amount of the resin in the silicone gum MB are summed, the total becomes 100 parts by mass.
 <内層樹脂組成物>
 ベース樹脂及び難燃剤を、表1~4に示す配合量で配合し、オープンロールで混練して、内層樹脂組成物を得た。なお、表1~4において、各配合成分の配合量の単位は質量部である。また、実施例3及び実施例15ではベース樹脂の欄の配合量が100質量部となっていないが、実施例3及び実施例15においてはシリコーンガムMB中にも樹脂が含まれており、ベース樹脂の欄の配合量とシリコーンガムMB中の樹脂の配合量とを合計すれば、その合計は100質量部となる。
<Inner layer resin composition>
The base resin and the flame retardant were blended in the blending amounts shown in Tables 1 to 4 and kneaded with an open roll to obtain an inner layer resin composition. In Tables 1 to 4, the unit of the blending amount of each blending component is parts by mass. In addition, in Examples 3 and 15, the compounding amount in the column of base resin is not 100 parts by mass, but in Examples 3 and 15, the resin is also contained in the silicone gum MB, If the compounding amount of the resin column and the compounding amount of the resin in the silicone gum MB are summed, the total becomes 100 parts by mass.
 上記ベース樹脂、シリコーン系化合物、脂肪酸含有化合物及び無機粒子としては、具体的には下記のものを用いた。 The following were specifically used as the above-mentioned base resin, silicone compound, fatty acid-containing compound and inorganic particles.
 (1)ベース樹脂
(1-1)プロピレン系樹脂
プロピレンブロックコポリマー(bPP):商品名「J705UG」、MFR(230℃、2.16kg重)9.0g/10分、プライムポリマー社製
ホモポリプロピレン(hPP):商品名「E111G」、MFR(230℃、2.16kg重)0.5g/10分、プライムポリマー社製
プロピレンランダムコポリマー(rPP):商品名「ウィンテックWFW4F」、MFR(230℃、2.16kg重)7.0g/10分、日本ポリプロ社製
(1-2)ポリエチレン
直鎖状低密度ポリエチレン(LDPE):商品名「ユメリット4040F」、MFR(230℃、2.16kg重)4.0g/10分、密度0.937g/cm、宇部丸善ポリエチレン社製
高密度ポリエチレン(HDPE):商品名「ハイゼックス5305E」、MFR(190℃、2.16kg重)0.8g/10分、密度0.951g/cm、三井化学社製
(1) Base resin (1-1) Propylene-based resin Propylene block copolymer (bPP): trade name “J705UG”, MFR (230° C., 2.16 kg weight) 9.0 g/10 minutes, homopolymer made by Prime Polymer Co. ( hPP): Product name “E111G”, MFR (230° C., 2.16 kg weight) 0.5 g/10 min, propylene random copolymer manufactured by Prime Polymer Co. (rPP): Product name “Wintech WFW4F”, MFR (230° C., 2.16 kg weight) 7.0 g/10 min, (1-2) polyethylene linear low density polyethylene (LDPE) manufactured by Japan Polypro Co., Ltd.: trade name “Yumerit 4040F”, MFR (230° C., 2.16 kg weight) 4 0.0 g/10 minutes, density 0.937 g/cm 3 , high-density polyethylene (HDPE) manufactured by Ube Maruzen Polyethylene Co., Ltd.: trade name “HIZEX 5305E”, MFR (190° C., 2.16 kg weight) 0.8 g/10 minutes, Density 0.951 g/cm 3 , manufactured by Mitsui Chemicals, Inc.
 (2)難燃剤
(2-1)シリコーン系化合物
シリコーンオイル1:商品名「KF-96-350cs」、動粘度:350mm/s(25℃)、信越化学社製
シリコーンオイル2:商品名「KF-96-5,000cs」、動粘度:5000mm/s(25℃)、信越化学社製
シリコーンガム:商品名「X-21-3043」、信越化学社製
シリコーンガムMB:商品名「X-22-2101」、50質量%シリコーンガムと50質量%プロピレン系樹脂(PP)とを含有、信越化学社製
(2-2)脂肪酸含有化合物
ステアリン酸:商品名「ステアリン酸さくら」、日油社製
ステアリン酸マグネシウム(ステアリン酸Mg):商品名「エフコケムMGS、ADEKA社製
(2-3)無機粒子
炭酸カルシウム粒子:商品名「NCC-P」、平均粒径1.7μm、パラフィン表面処理、日東粉化工業社製
ケイ酸塩化合物粒子:商品名「ST-100」、アミノシラン表面処理焼成カオリン粒子、平均粒径3.5μm、白石カルシウム社製
(2) Flame retardant (2-1) Silicone compound Silicone oil 1: Trade name "KF-96-350cs", Kinematic viscosity: 350 mm 2 /s (25°C), Shin-Etsu Chemical Silicone oil 2: Trade name " KF-96-5,000 cs", kinematic viscosity: 5000 mm 2 /s (25°C), Shin-Etsu Chemical silicone gum: product name "X-21-3043", Shin-Etsu Chemical silicone gum MB: product name "X"-22-2101", containing 50% by mass of silicone gum and 50% by mass of propylene-based resin (PP), manufactured by Shin-Etsu Chemical Co., Ltd. (2-2) fatty acid-containing compound stearic acid: Trade name "Stearic acid Sakura", NOF Magnesium stearate (Mg stearate): trade name “Fcochem MGS, manufactured by ADEKA (2-3) inorganic particles calcium carbonate particles: trade name “NCC-P”, average particle size 1.7 μm, paraffin surface treatment, Silicate compound particles manufactured by Nitto Koka Kogyo Co., Ltd.: trade name "ST-100", aminosilane surface-treated calcined kaolin particles, average particle size 3.5 μm, manufactured by Shiraishi Calcium Co., Ltd.
 <ケーブルの作製>
 ケーブル(絶縁電線)は以下のようにして作製した。
<Cable production>
The cable (insulated electric wire) was produced as follows.
 すなわち、ケーブルは、単軸押出機(マース精機社製、シリンダ外径25mm)にて上記のようにして準備した内層樹脂組成物を押し出し、クロスヘッドから排出させて、断面積0.35sq(mm)の撚り線導体上に、0.15mmの厚さを有するように被覆して内層を形成し、得られた内層被覆電線をボビンに巻き取った後、巻き取った内層被覆電線を送り出した。一方、単軸押出機(マース精機社製、シリンダ外径25mm)にて上記のようにして準備した最外層樹脂組成物を押し出し、クロスヘッドから排出させて、送り出された内層被覆電線上に0.05mmの厚さを有するように被覆して最外層を形成した。こうして、導体上に絶縁層を形成してなるケーブルを作製した。

 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
That is, for the cable, the inner layer resin composition prepared as described above was extruded with a single-screw extruder (manufactured by Mars Seiki Co., Ltd., cylinder outer diameter 25 mm) and discharged from the crosshead to obtain a cross-sectional area of 0.35 sq (mm On the stranded wire conductor of 2 ), an inner layer was formed by coating so as to have a thickness of 0.15 mm, the obtained inner layer-coated electric wire was wound on a bobbin, and then the wound inner layer-coated electric wire was sent out. .. On the other hand, the outermost layer resin composition prepared as described above was extruded by a single-screw extruder (manufactured by Mars Seiki Co., Ltd., cylinder outer diameter: 25 mm), discharged from the crosshead, and discharged onto the inner layer-coated electric wire sent out. The outermost layer was formed by coating so as to have a thickness of 0.05 mm. Thus, a cable having an insulating layer formed on the conductor was produced.


Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 <特性評価>
 上記のようにして得られた実施例1~21及び比較例1~6のケーブルについて、以下のようにして、最外層の滑り摩擦力、導体に対する内層の密着力、計尺安定性、端末加工性、難燃性及び耐摩耗性の評価を行った。
<Characteristic evaluation>
With respect to the cables of Examples 1 to 21 and Comparative Examples 1 to 6 obtained as described above, the sliding frictional force of the outermost layer, the adhesion force of the inner layer to the conductor, the stability of the scale, and the terminal processing are performed as follows. The properties, flame retardancy and abrasion resistance were evaluated.
 <最外層の滑り摩擦力>
 上記実施例1~21及び比較例1~6で得られたケーブルを2枚のステンレスからなる金属平板で挟み、ケーブルに1.6kgの荷重をかけた状態でケーブル20cmを引き抜くのに必要な力の最大値を「最外層の滑り摩擦力」として測定した。結果を表1~4に示す。なお、最外層の滑り摩擦力が3N以上であれば、全自動端子圧着機による計尺時における計尺長のズレが生じない。
<Sliding frictional force of the outermost layer>
The force required to pull out the cable 20 cm while sandwiching the cables obtained in Examples 1 to 21 and Comparative Examples 1 to 6 between two metal flat plates made of stainless steel and applying a load of 1.6 kg to the cables. Was measured as the "sliding frictional force of the outermost layer". The results are shown in Tables 1 to 4. When the sliding frictional force of the outermost layer is 3 N or more, the measuring length is not displaced when measuring with the fully automatic terminal crimping machine.
 <導体に対する内層の密着力>
 上記実施例1~21及び比較例1~6で得られたケーブルを75mmの長さに切断し、片端25mmを、片刃を用いて口出しし、試験サンプルを得た。次いで、導体の外径+0.1~導体外径+0.2mm程度の内径の穴を有する銅からなる平板の穴に、試験サンプルの露出した導体を通して、導体と平板とを反対方向に引張試験機で引っ張り、そのときの最大張力(ケーブル50mmあたりの密着力)を「導体に対する内層の密着力」として測定した。なお、このときの引張速度は250mm/分とした。結果を表1~4に示す。
<Adhesion of inner layer to conductor>
The cables obtained in Examples 1 to 21 and Comparative Examples 1 to 6 were cut into a length of 75 mm, and one end of 25 mm was cut out with a single blade to obtain a test sample. Then, pass the exposed conductor of the test sample through the hole of the flat plate made of copper having the inner diameter of the outer diameter of the conductor + 0.1 to the outer diameter of the conductor + 0.2 mm, and pull the conductor and the flat plate in opposite directions. The maximum tension at that time (adhesion force per 50 mm of cable) was measured as "adhesion force of inner layer to conductor". The tensile speed at this time was 250 mm/min. The results are shown in Tables 1 to 4.
 <計尺安定性>
 上記実施例1~21及び比較例1~6で得られたケーブルについて、上記全自動端子圧着機にてケーブルの計尺、端末ストリップ加工(ストリップ長:10mm)、及び、端子取付け(端子打ち)の一連の工程を行った。そして、ケーブルの計尺長を測定し、その測定値が設定値(=100cm)に対してどの程度のズレを生じるか調べた。そして、ズレが設定値に対して-1%~+1%の範囲であれば合格として「〇」と表示し、-1%~+1%の範囲を外れれば不合格として「×」と表示した。結果を表1~4に示す。
<Measurement stability>
With respect to the cables obtained in Examples 1 to 21 and Comparative Examples 1 to 6, the scale of the cable, the terminal strip processing (strip length: 10 mm), and the terminal mounting (terminal striking) were performed by the fully automatic terminal crimping machine. Was performed. Then, the measuring length of the cable was measured, and it was examined how much the measured value deviated from the set value (=100 cm). Then, if the deviation is in the range of -1% to +1% with respect to the set value, it is indicated as "O" as a pass, and if it is out of the range of -1% to +1%, it is indicated as "Fail" in "Fail". The results are shown in Tables 1 to 4.
 <端末加工性>
 上記全自動端子圧着機にてケーブルの計尺、端末ストリップ加工(口出し)、及び、端子取付け(端子打ち)の一連の工程を行った。そして、端末ストリップ加工後のケーブルの端部をマイクロスコープで観察してヒゲの長さを測定し、このヒゲの長さを端末加工性の指標とした。そして、以下のようにしてランク付けを行って端末加工性を評価した。結果を表1~4に示す。なお、ヒゲとは、300μm以上の長さの突出部を言うものとした。
(評価ランク)
○・・・・ヒゲあり
×・・・・ヒゲなし
<Terminal processability>
The above-mentioned fully automatic terminal crimping machine was used to perform a series of steps of measuring the length of the cable, processing the terminal strip (leading out), and mounting the terminal (terminal punching). Then, the length of the beard was measured by observing the end portion of the cable after processing the terminal strip with a microscope, and the length of the beard was used as an index of the terminal processability. Then, the terminal processability was evaluated by ranking as follows. The results are shown in Tables 1 to 4. The whiskers are projections with a length of 300 μm or more.
(Evaluation rank)
○・・・・Bearded ×・・・・No beard
 <難燃性>
 上記実施例1~21及び比較例1~6のケーブルについて、JASO D618に記載の試験方法で水平燃焼試験を行った。水平燃焼試験では、絶縁層が燃焼するまで接炎し、離炎後、消火するまでの残炎時間を測定した。そして、以下の残炎時間ごとに以下のようにしてランク付けして評価した。結果を表1~4に示す。難燃性の合格基準は下記の通りとした。なお、表1~4においては、残炎時間は、評価ランクの隣に括弧書きで示してある。
(評価ランク)
◎・・・残炎時間が11秒以下
○・・・残炎時間が11秒より長く30秒以下
×・・・残炎時間が30秒より長い
(合格基準)評価ランクが◎又は〇であること
<Flame resistance>
The cables of Examples 1 to 21 and Comparative Examples 1 to 6 were subjected to a horizontal combustion test by the test method described in JASO D618. In the horizontal combustion test, the afterflame time was measured until the insulating layer burned and the flame was extinguished after the flame was released. Then, each of the following afterflame times was ranked and evaluated as follows. The results are shown in Tables 1 to 4. The criteria for passing flame retardancy were as follows. In Tables 1 to 4, the afterflame time is shown in parentheses next to the evaluation rank.
(Evaluation rank)
◎・・・Afterflame time is 11 seconds or less ○・・・Afterflame time is longer than 11 seconds and 30 seconds or less ×・・・Afterflame time is longer than 30 seconds (pass criterion) Evaluation rank is ◎ or ◯ thing
 <耐摩耗性>
 耐摩耗性は、上記実施例1~21及び比較例1~6のケーブルについて、JASO D618に記載の試験方法にてスクレープ摩耗試験を行い、このとき測定される「導通するまでのスクレープ摩耗回数」の最小値を指標とした。
<Abrasion resistance>
The abrasion resistance was measured by performing a scrape abrasion test on the cables of Examples 1 to 21 and Comparative Examples 1 to 6 by the test method described in JASO D618, and "the number of times of scrape abrasion before conduction" was measured at this time. Was used as the index.
 以上のことから、本発明のケーブルによれば、優れた計尺安定性、端末加工性及び難燃性を有することが確認された。 From the above, it was confirmed that the cable of the present invention has excellent scale stability, end workability and flame retardancy.
 本発明のケーブルは、優れた計尺安定性、端末加工性及び難燃性を有するため、自動車用ケーブル、産業用ケーブル、通信ケーブル、同軸ケーブル、電子ワイヤーなどの種々の用途に適用できる。また、本発明のケーブルは、伝送媒体を、導体から光ファイバに置き換えた光ファイバケーブルに適用することも可能である。 Since the cable of the present invention has excellent scale stability, terminal processability, and flame retardancy, it can be applied to various applications such as automobile cables, industrial cables, communication cables, coaxial cables, and electronic wires. Further, the cable of the present invention can be applied to an optical fiber cable in which the conductor is replaced with an optical fiber as the transmission medium.
 1…導体
 2…絶縁層
 2A…内層
 2B…最外層
 3…被覆層
 4…絶縁電線
 10…ケーブル
 20…ワイヤハーネス
DESCRIPTION OF SYMBOLS 1... Conductor 2... Insulating layer 2A... Inner layer 2B... Outermost layer 3... Covering layer 4... Insulated electric wire 10... Cable 20... Wire harness

Claims (8)

  1.  導体又は光ファイバで構成される伝送媒体と、
     前記伝送媒体を被覆する絶縁層とを有し、
     前記絶縁層が、最外層と、前記最外層の内側に設けられる内層とを有し、
     前記内層が、ベース樹脂及びシリコーン系化合物を含み、前記ベース樹脂100質量部に対するシリコーン系化合物の配合割合が2.5質量部以上10質量部以下であり、
     前記最外層が、ベース樹脂及び難燃剤を含み、
     前記難燃剤が、前記ベース樹脂100質量部に対して0質量部より多く2.5質量部未満のシリコーン系化合物と、1質量部以上の無機粒子と、1質量部以上10質量部以下の脂肪含有化合物とを含む、ケーブル。
    A transmission medium composed of a conductor or an optical fiber,
    An insulating layer covering the transmission medium,
    The insulating layer has an outermost layer and an inner layer provided inside the outermost layer,
    The inner layer contains a base resin and a silicone-based compound, and the mixing ratio of the silicone-based compound is 2.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the base resin,
    The outermost layer contains a base resin and a flame retardant,
    The flame retardant is more than 0 parts by mass and less than 2.5 parts by mass with respect to 100 parts by mass of the base resin, 1 part by mass or more of inorganic particles, and 1 part by mass or more and 10 parts by mass or less of fat. A cable including a contained compound.
  2.  下記式で表されるΔSが0.1~8質量部である、請求項1に記載のケーブル。
    ΔS=S1-S2
    (前記式中、S1は、前記内層中の前記シリコーン系化合物の前記ベース樹脂100質量部に対する配合割合(質量部)を表し、S2は、前記最外層中の前記シリコーン系化合物の前記ベース樹脂100質量部に対する配合割合(質量部)を表す。)
    The cable according to claim 1, wherein ΔS represented by the following formula is 0.1 to 8 parts by mass.
    ΔS=S1-S2
    (In the formula, S1 represents a blending ratio (parts by mass) of the silicone compound in the inner layer to 100 parts by mass of the base resin, and S2 represents the base resin 100 of the silicone compound in the outermost layer. Represents a blending ratio (parts by mass) relative to parts by mass.)
  3.  前記最外層の摩擦力が3Nより大きい、請求項1又は2に記載のケーブル。 The cable according to claim 1 or 2, wherein the frictional force of the outermost layer is larger than 3N.
  4.  前記内層の前記伝送媒体に対する密着力が50N/50mm以下である、請求項1~3のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 3, wherein the adhesion of the inner layer to the transmission medium is 50 N/50 mm or less.
  5.  前記内層の前記ベース樹脂がプロピレン系樹脂を含む、請求項1~4のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 4, wherein the base resin of the inner layer contains a propylene resin.
  6.  前記最外層の前記難燃剤に含まれる前記無機粒子が、前記ベース樹脂100質量部に対して100質量部以下の割合で含まれる、請求項1~5のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 5, wherein the inorganic particles contained in the flame retardant in the outermost layer are contained in a ratio of 100 parts by mass or less based on 100 parts by mass of the base resin.
  7.  前記最外層の前記難燃剤に含まれる前記無機粒子が、炭酸カルシウム及びケイ酸塩化合物からなる群より選ばれる少なくとも1種である請求項1~6のいずれか一項に記載のケーブル。 The cable according to any one of claims 1 to 6, wherein the inorganic particles contained in the flame retardant in the outermost layer are at least one selected from the group consisting of calcium carbonate and silicate compounds.
  8.  請求項1~7のいずれか一項に記載のケーブルを有するワイヤハーネス。 A wire harness having the cable according to any one of claims 1 to 7.
PCT/JP2020/001619 2019-01-29 2020-01-17 Cable and wiring harness WO2020158469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019013578 2019-01-29
JP2019-013578 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020158469A1 true WO2020158469A1 (en) 2020-08-06

Family

ID=71841757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001619 WO2020158469A1 (en) 2019-01-29 2020-01-17 Cable and wiring harness

Country Status (1)

Country Link
WO (1) WO2020158469A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094922A (en) * 2006-10-10 2008-04-24 Furukawa Electric Co Ltd:The Resin molded article, insulated electric cable, and optical fiber cable
JP2018039902A (en) * 2016-09-07 2018-03-15 株式会社フジクラ Flame-retardant resin composition, and electric insulated wire, metal cable, optical fiber cable, wire harness for automobile and molded article using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094922A (en) * 2006-10-10 2008-04-24 Furukawa Electric Co Ltd:The Resin molded article, insulated electric cable, and optical fiber cable
JP2018039902A (en) * 2016-09-07 2018-03-15 株式会社フジクラ Flame-retardant resin composition, and electric insulated wire, metal cable, optical fiber cable, wire harness for automobile and molded article using the same

Similar Documents

Publication Publication Date Title
JP6050788B2 (en) Insulated wire and cable using halogen-free flame-retardant resin composition
JP5282163B1 (en) Flame-retardant resin composition and cable using the same
JP6082741B2 (en) Non-halogen flame retardant resin composition and insulated wire / cable having the resin composition
WO2016031789A1 (en) Flame-retardant resin composition, cable using same, and optical fiber cable
WO2006068309A1 (en) Flame-retardant resin composition and molded body using same
JP5858351B2 (en) Insulated wires and cables for railway vehicles using halogen-free flame-retardant resin composition
JP5889252B2 (en) Flame retardant resin composition and flame retardant article including flame retardant resin molded article formed by molding the same
WO2020158469A1 (en) Cable and wiring harness
JP2016050287A (en) Composition for wire covering material, insulated wire and wire harness
WO2019102920A1 (en) Flame retardant resin composition, insulated wire using this, cable, optical fiber cable, and molded article
JP5449245B2 (en) Flame retardant resin composition and molded article using the same
JP6542058B2 (en) Flame retardant resin composition, cable using the same, and optical fiber cable
JP2014227447A (en) Flame-retardant resin composition and flame-retardant object including flame-retardant resin molding obtained by molding the same
JP2018039902A (en) Flame-retardant resin composition, and electric insulated wire, metal cable, optical fiber cable, wire harness for automobile and molded article using the same
WO2019176887A1 (en) Cable and wiring harness
JP2017179044A (en) Flame retardant composition, insulation wire and cable
WO2019176886A1 (en) Cable and wiring harness
WO2019176885A1 (en) Cable and wiring harness
JP2011219662A (en) Flame-retardant resin composition and molded article using the same
WO2020189533A1 (en) Flame-retardant resin composition, and cable and wire harness using same
JP2019089983A (en) Flame-retardant resin composition, and insulated electric wire, metal cable, optical fiber cable and molding using the same
JP2021044190A (en) Cable and wire harness
CN111138746A (en) Flame-retardant insulated wire and flame-retardant cable
JP6753636B2 (en) Flame-retardant resin composition, cables and wire harnesses using it
JP2019160580A (en) Cable and wire harness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP