WO2019176861A1 - Solar panel - Google Patents

Solar panel Download PDF

Info

Publication number
WO2019176861A1
WO2019176861A1 PCT/JP2019/009716 JP2019009716W WO2019176861A1 WO 2019176861 A1 WO2019176861 A1 WO 2019176861A1 JP 2019009716 W JP2019009716 W JP 2019009716W WO 2019176861 A1 WO2019176861 A1 WO 2019176861A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
glass
layer
glass plate
cell panel
Prior art date
Application number
PCT/JP2019/009716
Other languages
French (fr)
Japanese (ja)
Inventor
智子 道原
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2020506511A priority Critical patent/JPWO2019176861A1/en
Publication of WO2019176861A1 publication Critical patent/WO2019176861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell panel.
  • the present invention has been made to solve this problem, and an object thereof is to provide a solar cell panel capable of reducing an energy load.
  • a solar cell module having at least one glass plate and solar cells; A glass body having at least one glass plate; A spacer that is disposed between the solar cell module and the glass body and forms a void layer therebetween; With The visible light transmittance of the solar cell module is 0.5 to 50%, The heat transmissivity is 1.5 to 2.9 W / m 2 K; A solar cell panel, wherein a solar heat gain rate measured by making incident light incident from the solar cell module side is 0.1 to 0.5.
  • Item 2 The solar cell panel according to claim 1, having a visible light transmittance of 0.5 to 50%.
  • Item 3 The visible light reflectance measured by making incident light incident from the solar cell module side is 3 to 10%, Item 3.
  • Item 4. The solar cell panel according to any one of Items 1 to 3, wherein the solar cell module includes a first Low-E film formed on a surface on the gap layer side.
  • Item 5 The solar cell panel according to Item 4, wherein the first Low-E film contains a transparent conductive oxide layer.
  • Item 6 The solar cell panel according to Item 4, wherein the first Low-E film includes a silver layer mainly composed of silver.
  • Item 7. The solar cell panel according to Item 4, wherein the first Low-E film is formed by laminating two silver layers mainly composed of silver.
  • Item 8 The solar cell panel according to any one of Items 1 to 7, wherein the glass body includes a second Low-E film formed on a surface on the gap layer side.
  • Item 9 The solar cell panel according to Item 8, wherein the second Low-E film contains a transparent conductive oxide layer.
  • Item 10 The solar cell panel according to Item 8, wherein the second Low-E film includes a silver layer mainly composed of silver.
  • Item 11 The solar cell panel according to Item 8, wherein the second Low-E film is formed by laminating two silver layers mainly composed of silver.
  • the solar cell module is A first glass plate; A second glass plate; An intermediate film disposed between the first glass plate and the second glass plate; The solar battery cell disposed so as to be in contact with the intermediate film; Item 12.
  • the solar cell panel according to any one of Items 1 to 11, further comprising:
  • the solar cell module includes one glass plate and the solar cell supported by the glass plate, Item 12.
  • the solar cell panel according to any one of Items 1 to 11, wherein the solar cell is disposed to face the gap layer side.
  • Item 14 The solar cell panel according to any one of Items 1 to 13, wherein the glass body is configured by a single glass plate.
  • the glass body is made of laminated glass,
  • the laminated glass is A first glass plate; A second glass plate; An intermediate film disposed between the first glass plate and the second glass plate;
  • Item 14 The solar cell panel according to any one of Items 1 to 13, comprising:
  • the energy load can be reduced.
  • the solar cell panel according to the present embodiment includes a solar cell module 10 having substantially the same rectangular outer shape and a glass body 3, and these are arranged at the peripheral edge thereof.
  • the spacers 4 are connected to each other.
  • a first gap layer 5 is formed between the solar cell module and the glass body 2.
  • the first gap layer 5 is hermetically sealed by a sealing material disposed outside the spacer 4.
  • each member will be described.
  • Solar cell module can take various configurations, here, two solar cell modules, that is, the first solar cell module 1 and the second solar cell module 2 will be described.
  • the first solar cell module 1 includes a first glass plate 11, a second glass plate 12, a transparent intermediate film 13 composed of a plurality of layers disposed therebetween, and a layer of the intermediate film 13
  • positioned between is provided.
  • a Low-E film can be laminated on the surface of the second glass plate 12 facing the first gap layer 5 as necessary.
  • the 1st glass plate 11 and the 2nd glass plate 12 are not specifically limited, A well-known glass plate can be used.
  • various glass plates such as heat ray absorbing glass, clear glass, high transmittance glass, green glass, UV green glass, and soda lime glass can be used.
  • the opposing glass plate is preferably a clear glass or a high transmittance glass. It is because the electric power generation amount in a photovoltaic cell increases by using those preferable glass.
  • the thickness of the glass plate is not particularly limited, but is preferably 2 to 15 mm, for example, and more preferably 2.5 to 8 mm.
  • the solar battery cell 14 converts light energy into electrical energy.
  • the solar battery cell 14 is not particularly limited.
  • a silicon system crystal system, thin film system
  • a compound system CIGS, GaAS, CdTe, etc.
  • an organic system die sensitization, an organic thin film, a perovskite, etc.
  • the first solar cell module 1 it is preferable to use silicon-based, particularly crystalline solar cells. This is because the wafer shape can be handled independently, and the degree of freedom of arrangement and electrical connection in the solar cell module is high.
  • a plurality of solar cells 14 are provided, and are connected in series or in parallel by a conductive wire 18.
  • the shape of each photovoltaic cell is not specifically limited, It can form in various shapes, such as a rectangular shape and a circular shape.
  • the intermediate film 13 has a plurality of layers formed of a transparent resin, and the above-described solar battery cell is sealed between any two layers.
  • the material which comprises each layer is not specifically limited, For example, it can form with a polyvinyl butyral resin (PVB), ethylene vinyl acetate resin (EVA), an olefin resin, an ionomer resin, a silicone resin, etc.
  • the total thickness of the intermediate film 13 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred.
  • the thickness of each layer is preferably 0.1 to 2.0 mm, more preferably 0.1 to 0.6 mm, and particularly preferably 0.1 to 1.0 mm.
  • Low-E membrane> The configuration of the Low-E film (low emission film) is not particularly limited, and a known Low-E film can be applied.
  • the Low-E film is a film including a metal layer such as an Ag layer, for example.
  • This film has, for example, a structure in which a dielectric layer / metal layer / sacrificial layer / dielectric layer are laminated in order from the main plane side of the glass plate.
  • the Low-E film sandwiches the metal layer, the sacrificial layer disposed in contact with the metal layer on the surface of the metal layer opposite to the main plane side, and the metal layer and the sacrificial layer.
  • this Low-E film may include two or more metal layers, thereby enabling a design to further reduce the U value (thermal conductivity) of the solar cell module.
  • the Low-E film has, for example, a structure in which a dielectric layer / metal layer / sacrificial layer / dielectric layer / metal layer / sacrificial layer / dielectric layer are stacked in this order from the main plane side of the glass plate. Yes. That is, the Low-E film may have a first laminated structure of two or more metals. In this case, the dielectric layer sandwiched between the sacrificial layer and the metal layer is composed of two first laminated structures. Can be shared.
  • Each layer of the dielectric layer, the metal layer, and the sacrificial layer may be a single layer made of one material or a laminate of two or more layers made of different materials.
  • the pair of dielectric layers sandwiching the metal layer and the sacrificial layer in the first laminated structure may be made of the same material or different materials.
  • a Low-E film including a metal layer is generally composed of 2n + 1 or more layers since the number of dielectric layers sandwiching the metal layer is n + 1 or more when the number of the metal layers is n. ing.
  • the metal layer is, for example, an Ag layer.
  • the Ag layer may be a layer mainly composed of Ag and made of Ag.
  • the “main component” means a component having the largest content in the layer, and the content is usually 50% by weight or more, 70% by weight or more, 80% by weight or more, 90% by weight. % Or more is more preferable.
  • a material obtained by doping Ag with a metal such as palladium, gold, indium, zinc, tin, aluminum, and copper may be used for the metal layer instead of Ag.
  • the total thickness of the metal layers in the Low-E film is, for example, 18 to 34 nm, and preferably 22 to 29 nm.
  • the sacrificial layer is, for example, a layer mainly composed of at least one selected from titanium, zinc, nickel, chromium, zinc / aluminum alloy, niobium, stainless steel, alloys thereof, and oxides thereof.
  • a layer mainly composed of at least one selected from the group consisting of zinc oxide and zinc oxide is preferable.
  • the thickness of the sacrificial layer is, for example, 0.1 to 5 nm, and preferably 0.5 to 3 nm.
  • the dielectric layer is, for example, a layer mainly composed of oxide or nitride, and more specific examples of such a dielectric layer include silicon, aluminum, zinc, tin, titanium, indium, and niobium. It is a layer mainly composed of at least one selected from oxides and nitrides.
  • the thickness of the dielectric layer is, for example, 8 to 120 nm, and preferably 15 to 85 nm.
  • the formation method of the metal layer, the sacrificial layer, and the dielectric layer is not limited, and a known thin film formation method can be used.
  • these layers can be formed by a sputtering method. That is, the Low-E film including the metal layer can be formed by, for example, a sputtering method.
  • the dielectric layer made of oxide or nitride can be formed by reactive sputtering, which is a kind of sputtering method, for example.
  • the sacrificial layer is a layer necessary for forming a dielectric layer on the metal layer by reactive sputtering (a layer that prevents oxidation of the metal layer by oxidizing itself during reactive sputtering). Are well known to those skilled in the art.
  • the Low-E film is a laminated film including a transparent conductive oxide layer.
  • This film has, for example, a second laminated structure in which a base layer / transparent conductive oxide layer is laminated in order from the main plane side of the glass plate.
  • the Low-E film has a second laminated structure including a transparent conductive oxide layer and a base layer that sandwiches the transparent conductive oxide layer.
  • This Low-E film may include two or more transparent conductive oxide layers.
  • Each layer of the base layer and the transparent conductive oxide layer may be a single layer composed of one material or a laminate of two or more layers composed of different materials.
  • the underlayer is, for example, a layer mainly composed of at least one selected from silicon, aluminum, zinc and tin oxides, and is mainly composed of at least one selected from silicon, aluminum and zinc oxides. It can be a layer.
  • the underlayer suppresses alkali metal ions such as sodium ions contained in the glass plate from moving to the transparent conductive oxide layer, thereby suppressing a decrease in the function of the oxide layer.
  • the thickness of the underlayer is, for example, 25 to 90 nm, preferably 35 to 70 nm.
  • the underlayer may be composed of two or more layers having different refractive indexes. In this case, the reflected color of the Low-E film can be made closer to a neutral color by adjusting the thickness of each layer. It is.
  • the transparent conductive oxide layer is mainly composed of at least one selected from, for example, indium tin oxide (ITO), zinc aluminum oxide, antimony-doped tin oxide (SnO: Sb), and fluorine-doped tin oxide (SnO 2 : F). It is a layer.
  • the thickness of the transparent conductive oxide layer is, for example, 100 to 350 nm, and preferably 120 to 260 nm.
  • the transparent conductive oxide layer includes a fluorine-doped tin oxide layer having a thickness of 120 nm or more.
  • the emissivity ⁇ of the second Low-E film is, for example, 0.34 or less.
  • the formation method of a base layer and a transparent conductive oxide layer is not limited, A well-known thin film formation method can be utilized.
  • these layers can be formed by a CVD method. That is, the Low-E film including the transparent conductive oxide layer can be formed by, for example, a CVD method. Formation of a thin film by a CVD method can be performed “on-line” in a glass plate manufacturing process, more specifically, in a glass plate manufacturing process by a float method.
  • the visible light transmittance of the solar cell module 1 can be 0.5 to 50%, preferably 0.3 to 30%, and more preferably 1 to 10%. This visible light transmittance is related to the aperture ratio of the solar cell module 1. Since the solar battery cell 14 has a large light absorption of visible light and exhibits a dark color such as black, the solar battery module 1 does not transmit visible light through the place where the solar battery cell 14 is disposed. Therefore, visible light passes through the region where the solar cells 14 are not arranged and enters the room. Here, the area of the area where the solar cells 14 are not disposed, which occupies the area of the main surface of the first glass plate 11 of the solar battery module 1, becomes the aperture ratio, which affects the visible light transmittance of the entire solar battery module. give.
  • the visible light transmittance has a certain degree of correlation with the solar heat acquisition rate described later, and that the solar heat acquisition rate tends to be low when the visible light transmittance is low.
  • the reflectance of visible light from the outdoor side of the solar cell module 1 is preferably 3 to 10%.
  • the reflectance of visible light from the indoor side of the solar cell module 1 is preferably 5 to 20%.
  • the measuring method of visible light transmittance and visible light reflectance can be based on JIS R3106: 1998.
  • the solar transmittance of the solar cell module 1 can be 0.5 to 50%, preferably 0.5 to 30%, and more preferably 1 to 10%. Further, the reflectance of solar radiation from the outdoor side of the solar cell module 1 is preferably 5 to 20%. On the other hand, the reflectance of solar radiation from the indoor side of the solar cell module 1 is preferably 5 to 40%.
  • the measurement method of solar transmittance and solar reflectance can also be based on JIS R3106: 1998.
  • the second solar cell module 2 includes a glass plate 21 and solar cells 24 arranged on the glass plate.
  • the second solar cell module 2 includes a glass plate 21 and solar cells 24 arranged on the glass plate.
  • each member will be described.
  • the glass plate 21 can be the same as the glass plate described above, and among them, clear glass and high transmittance glass are preferable. It is because the electric power generation amount in a photovoltaic cell increases by using those preferable glass.
  • the solar battery cell 24 converts light energy into electrical energy.
  • the solar battery cell 24 is not particularly limited, but for example, a silicon system (crystal system, thin film system), a compound system (CIGS, GaAS, CdTe, etc.), an organic system (dye sensitization, an organic thin film, a perovskite, etc.), etc. Can be adopted.
  • a thin film type solar cell for example, an amorphous silicon type, a microcrystalline silicon type, an amorphous silicon germanium type, a microcrystalline silicon germanium type, or a compound type solar cell.
  • These thin-film solar cells 24 include a p-type semiconductor layer, an intrinsic semiconductor layer (i layer), if necessary, a photoelectric conversion layer 244 composed of an n-type semiconductor layer, a transparent electrode layer 243 on the light incident side, It can have a structure of being laminated between the back electrode layer 245.
  • the base layers 241 and 242 are formed on the glass plate 21, and the transparent conductive oxide layer 243 is formed thereon.
  • the photoelectric conversion layer 244 described above, that is, the p layer, i layer, and n layer is formed by plasma CVD, and the back electrode layer 245 is selected from Al, Ag, Au, Cu, Pt, and Cr.
  • At least one metal layer can be formed by sputtering or vapor deposition. Then, a part of the formed solar battery cell 24 is removed with a laser or the like, and the glass plate is exposed from the removed portion 29.
  • the solar cells are connected in series or in parallel by conducting wires (not shown).
  • the shape of each photovoltaic cell 24 is not specifically limited, It can form in various shapes, such as a rectangular shape and strip shape.
  • the underlayers 241 and 242 can be the same as the above-described underlayer of the Low-E film.
  • Visible light transmittance, visible light reflectance, solar transmittance, and solar reflectance are the same as those of the first solar cell module 1.
  • the glass body 3 can be formed of a single glass plate, laminated glass, or multilayer glass. Further, a low emission film (Low-E film) can be formed on the glass plate constituting the glass body 3 as necessary. ⁇ 3-1. Glass plate> The glass plate contained in the glass body 3 is not particularly limited, and as described above, the same glass plate used for the solar cell module can be used.
  • the glass body 3 can be formed by the laminated glass using these glass plates besides the said glass plate. As shown in FIG. 4, the laminated glass 1 has a resin intermediate film 33 disposed between two glass plates 31 and 32.
  • the intermediate film 33 can be formed of one layer or a plurality of layers.
  • the material of the single-layer (single layer) intermediate film 13 is a thermoplastic resin, and from the viewpoint of the degree of adhesion to a glass plate when a laminated glass is used, a polyvinyl acetal-based or ethylene-vinyl acetate copolymer thermoplastic resin Can be suitably used. Of these, polyvinyl butyral (PVB) thermoplastic resins are preferred.
  • the intermediate film 13 is obtained by, for example, kneading and molding a thermoplastic resin composition composed of the thermoplastic resin and a known plasticizer. In addition, the intermediate film 13 can also use the commercially available thermoplastic resin film as it is.
  • the intermediate film 33 When the intermediate film 33 is formed of a plurality of layers, for example, the intermediate film can be formed by sandwiching a soft core layer between a pair of hard outer layers.
  • the material which comprises each layer is not specifically limited, For example, it can form with a material in which a core layer becomes soft.
  • the outer layer can be made of polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate.
  • the core layer can be composed of an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin softer than the polyvinyl butyral resin constituting the outer layer.
  • the total thickness of the intermediate film 33 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred.
  • the thickness of the core layer is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.6 mm. This is because if the thickness is smaller than 0.1 mm, the influence of the soft core layer is hardly exerted, and if the thickness is larger than 2.0 mm or 0.6 mm, the total thickness increases and the cost is increased.
  • the thickness of the outer layer is not particularly limited, but is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 1.0 mm.
  • the total thickness of the intermediate film 33 can be made constant, and the thickness of the core layer can be adjusted therein.
  • the method for producing the intermediate film 33 is not particularly limited.
  • the resin component such as the polyvinyl acetal resin described above, a plasticizer, and other additives as necessary are blended and uniformly kneaded, and then each layer is collectively And a method of laminating two or more resin films prepared by this method by a pressing method, a laminating method or the like.
  • the resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure.
  • the visible light transmittance, visible light reflectance, solar light transmittance, and solar light reflectance of the glass body 3 may not be the same as those of the solar cell module 1, and for example, higher transmittance can be achieved.
  • the Low-E film as described above can be laminated on any surface of the glass body 3.
  • the glass body 3 When the glass body 3 is a single glass plate, it can be formed on either the outdoor side (the first gap layer 5 side) or the indoor side. This point is the same for laminated glass, and can be formed on either the outdoor side or the indoor side (first void layer side) of the laminated glass. Therefore, in the case of a single glass plate or laminated glass, the surface on which the Low-E film is formed can be selected from the two surfaces.
  • the first gap layer 5 is formed between the solar cell module 10 and the glass body 3 by arranging the spacer 4 between the solar cell module 10 and the glass body 3.
  • the spacer 4 can use a well-known thing, and can arrange
  • FIG. As a preferable spacer, for example, a spacer in which a desiccant is held in a space inside the spacer can be used. Thereby, the dry state of the gas of the 1st space
  • the first gap layer 5 can be, for example, 4 to 16 mm, and more preferably 6 to 16 mm. In addition to dry air, the first gap layer 5 can be filled with an inert gas such as argon or krypton.
  • Thermal transmittance of the solar cell panel (U value) is preferably 1.5 ⁇ 2.9W / m 2 K, still more preferably 1.6 ⁇ 2.8W / m 2 K.
  • the heat transmissibility is low, the heat insulation performance is high.
  • the heat transmissibility is lower than 1.5, heat is likely to accumulate in the room during cooling, which tends to increase energy consumption, which is not preferable.
  • the heat transmissibility is greater than 2.9, heat is likely to be radiated, and the energy consumption during heating tends to increase, which is not preferable.
  • the heat flow rate can be measured, for example, according to JIS R3107: 1998.
  • the solar heat gain rate of the solar cell panel is preferably 0.1 to 0.5, more preferably 0.3 or less, and even more preferably 0.25 or less.
  • the solar heat gain rate can be measured, for example, according to JIR R3106: 1998.
  • the visible light transmittance of the solar cell panel can be 0.5 to 50%, preferably 0.5 to 30%, and more preferably 1 to 10%.
  • the reflectance of visible light from the outdoor side is preferably 3 to 10%.
  • the reflectance of visible light from the indoor side is preferably 5 to 12%.
  • Comparative Example 1 As Comparative Example 1, float glass (manufactured by Nippon Sheet Glass) made of a single plate having a thickness of 8 mm was used. It is the same as that used for windows and walls of old buildings.
  • Comparative Example 2 As Comparative Example 2, a multilayer glass panel having a first glass body and a second glass body was prepared. A first gap layer having a thickness of 12 mm was formed between both glass bodies by a spacer. The air gap layer is filled with dry air.
  • the first glass body is formed of online coating Low-E glass (made by Nippon Sheet Glass, Energy-Advantage) having a thickness of 6 mm. That is, the first glass body has a single glass plate and a Low-E film laminated on the surface of the glass plate on the first gap layer side.
  • the second glass body was formed of one transparent float glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm.
  • Comparative Example 3 As Comparative Example 3, a multilayer glass panel having a first glass body and a second glass body was prepared. A first gap layer having a thickness of 12 mm was formed between both glass bodies by a spacer. The first gap layer is filled with dry air.
  • the first glass body is formed of sputter-coated Low-E glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm.
  • the first glass body includes a dielectric layer, a layer containing silver as a main component, a dielectric layer, a layer containing silver as a main component, and a dielectric layer on the surface of the glass plate on the first gap layer side. In this order, a thin film (Low-E film) is formed by sputtering. Each of the two layers mainly composed of silver has a thickness of about 10 nm.
  • the second glass body is formed of a single transparent float glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm.
  • Comparative Example 4 As Comparative Example 4, a multilayer glass panel having a first glass body and a second glass body was prepared. A first gap layer having a thickness of 12 mm was formed between both glass bodies by a spacer. The first gap layer is filled with argon gas. The first glass body is formed of online coating Low-E glass (made by Nippon Sheet Glass, Energy-Advantage) having a thickness of 3 mm. That is, the first glass body has a single glass plate and a Low-E film laminated on the surface of the glass plate on the first gap layer side.
  • Low-E glass made by Nippon Sheet Glass, Energy-Advantage
  • the reduced pressure heat insulating multilayer glass has a normal transparent float glass plate 31, a sputter-coated Low-E glass 32, and a spacer 38 having a thickness of 0.2 mm disposed therebetween.
  • the surface on which the Low-E coating was applied was disposed on the spacer 38 side. All the peripheral edges of these two glass plates 31 and 32 are sealed with a sealing agent 35, and a vacuum-evacuated second gap layer 36 is formed between both glass plates 31 and 32. .
  • the sputter-coated Low-E glass 32 is a thin film (Low-E film) comprising a transparent float plate glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm, a dielectric layer, a layer mainly composed of silver, and a dielectric layer in this order. ) By a sputtering method.
  • the layer mainly composed of silver has a thickness of about 10 nm.
  • the second glass body 3 was arranged so that the sputter-coated Low-E glass 32 was on the side opposite to the first glass body.
  • Comparative Example 5 As Comparative Example 5, a multilayer glass panel having a first glass body and a second glass body was prepared. A first gap layer having a thickness of 0.2 mm was formed between both glass bodies by a spacer.
  • the first glass body is formed of online coating Low-E glass (made by Nippon Sheet Glass, Energy-Advantage) having a thickness of 3 mm. That is, the first glass body has a single glass plate and a Low-E film laminated on the surface of the glass plate on the first gap layer side.
  • the second glass body is formed of one transparent float glass (made by Nippon Sheet Glass) having a thickness of 3 mm.
  • the entire periphery of these two glass bodies is sealed with a known sealing material, and the first gap layer is evacuated.
  • the Low-E film of the first glass body is disposed so as to face the first gap layer side.
  • Comparative Example 6 a multilayer glass panel having a first glass body and a second glass body was prepared.
  • This multi-layer glass panel is a reduced pressure heat insulating multi-layer glass as shown in FIG. 5, and includes a normal transparent float plate glass 31, a sputter-coated low-E glass 32, and a spacer having a thickness of 0.2 mm disposed therebetween. 38, and the surface on which the Low-E coating was applied was arranged on the spacer 38 side. All the peripheral edges of these two glass plates 31 and 32 are sealed with a sealing agent 35, and a vacuum-evacuated second gap layer 36 is formed between both glass plates 31 and 32. .
  • Comparative Example 7 is formed of 8 mm thick online coating Low-E glass (Nippon Sheet Glass, Energy-Advantage). That is, Comparative Example 7 has a single glass plate and a Low-E film laminated on the indoor side surface of the glass plate.
  • Low-E glass Natural Sheet Glass, Energy-Advantage
  • Example 1 is a solar cell panel for building materials having the second solar cell module and a glass body, and a first gap layer having a thickness of 12 mm filled with dry air is formed between the two.
  • the second solar cell module was produced as follows. First, a photoelectric conversion layer made of amorphous silicon by a plasma CVD method and a back electrode layer made of Ag by a sputtering method were formed on the entire surface of a float plate glass on which a transparent electrode layer was produced by an online coating method, thereby forming a solar battery cell. And about 1% of the area which a photovoltaic cell occupies on a glass plate, a photovoltaic cell is removed and the glass surface of float plate glass is exposed. On the other hand, a normal transparent float plate glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm was used as the glass body.
  • a normal transparent float plate glass manufactured by Nippon Sheet Glass
  • Example 2 is a solar cell panel similar to Example 1. The difference is the removal area of the solar battery cells. In Example 2, 5% of the solar battery cells were removed.
  • Example 3 is a solar cell panel similar to Example 1. The difference is the removal area of the solar battery cells. In Example 3, 10% of the solar battery cells were removed.
  • Example 4 is a solar cell panel similar to Example 1. The difference is the removal area of the solar battery cells. In Example 2, 30% of the solar battery cells were removed.
  • Example 5 is a solar cell panel similar to Example 1. The difference is the removal area of the solar battery cells. In Example 5, 50% of the solar battery cells were removed.
  • Example 6 is a solar cell panel similar to Example 1. The difference is that the sputter-coated Low-E glass used in Comparative Example 3 was used as the glass body. The glass body Low-E film was disposed so as to face the first void layer.
  • Example 7 is a solar cell panel for building materials having the above first solar cell module and a glass body, and a first gap layer having a thickness of 12 mm filled with dry air is formed between them.
  • the first solar cell module was manufactured as follows. First, two sheets of transparent float glass (manufactured by Nippon Sheet Glass) having a thickness of 3 mm were prepared, and an interlayer film composed of two layers for laminated glass was disposed therebetween. Two single crystal silicon solar cells were disposed between the two layers of the intermediate film. At this time, the ratio of the area occupied by the solar battery cell in the main surface of the float glass was 95%. That is, the aperture ratio was set to 5%. On the other hand, a normal transparent float plate glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm was used as the glass body.
  • Example 8 is a solar cell panel similar to Example 7. The difference is the aperture ratio of the solar cell module. In Example 8, the solar cells were arranged so that the aperture ratio was 10%.
  • Example 9 is a solar cell panel similar to Example 7. The difference is the aperture ratio of the solar cell module. In Example 9, the solar cells were arranged so that the aperture ratio was 30%.
  • Example 10 is a solar cell panel similar to Example 7. The difference is the aperture ratio of the solar cell module. In Example 10, the solar cells were arranged so that the aperture ratio was 50%.
  • Example 11 is a solar cell panel similar to Example 7. The difference is that the sputter-coated Low-E glass used in Comparative Example 2 was used as the glass body. The glass body Low-E film was disposed so as to face the first void layer.
  • the optical characteristic etc. of the glass plate of a comparative example and an Example, a multilayer glass panel, or a solar cell panel are as follows.
  • Table 1 and Table 2 have shown the outdoor side reflectance and the indoor side reflectance, as shown in FIG. 1, this shows that the 1st glass body is the outdoor side, and the 2nd glass body is the outdoor side. It is shown that the incident light was incident from the outdoor side and the indoor side.
  • the primary energy consumption was calculated using HASPEX as software. The primary energy consumption was calculated based on the cooling / heating load of the perimeter zone of the room (frame area 5 m from the wall surface: 500 m 2 ). Moreover, energy load is a ratio when the comparative example 1 is set to 100%.
  • Primary energy consumption ⁇ (various energy consumption x primary energy intensity)
  • Various energy consumption Air conditioning load / Equipment efficiency / Heat generation unit ⁇ Equipment efficiency: Heating 2.7, Air conditioning 3.7 ⁇ Fever unit: 3.6MJ / kWh ⁇ Temporary energy intensity: 9.76 MJ / kWh
  • FIG. 6 is a bubble chart which shows the relationship between the heat flow rate and solar heat acquisition rate which concern on an Example and a comparative example.
  • a marker with a numerical value of 100 represents Comparative Example 1.
  • Examples 1 to 11 show markers whose outer edges are colored. The numerical value in the marker indicates the energy load.
  • the examples all show higher energy loads than the comparative examples.
  • the energy load is 50% or less of Comparative Example 1.
  • the heat transmissibility is too low as in Comparative Examples 4 and 6, heat is accumulated in the room, and the primary energy consumption during cooling is large. Therefore, it is preferable that the heat transmissivity is not too low.
  • the solar heat acquisition rate is low.
  • Comparative Example 3 although the heat transmissibility and the solar heat gain are both low, it is considered that the primary energy consumption is high due to the high visible light transmittance of the first glass body.
  • the energy load can be lowered when the visible light transmittance of the solar cell module is low and both the heat flow rate and the solar heat gain rate are low in a well-balanced manner. Furthermore, in the above, the electric power which a solar cell module produces is not considered. It has been found that the solar cell panel according to the present invention can further reduce the primary energy consumption since the electric power from the solar cell is also effective in reducing the primary energy consumption.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention provides a solar cell panel comprising: a solar cell module (10) having at least one glass plate and solar cell; a glass body (3) having at least one glass plate; and a spacer (4) arranged between the solar cell module (10) and the glass body (3) to form an air gap layer (5) therebetween, wherein visible light transmittance of the solar cell module (10) is 0.5 to 50%, a heat transmission coefficient is 1.5 to 2.9 W/m2K, and a solar heat gain rate measured from the solar cell module (10) side is 0.1 to 0.5.

Description

太陽電池パネルSolar panel
 本発明は、太陽電池パネルに関する。 The present invention relates to a solar cell panel.
 近年、ビルなどの建築物には、太陽電池パネルが窓ガラスとして採用されることが多くなってきている(例えば、特許文献1)。これにより、窓ガラスでの発電を行うことができる。 In recent years, solar panels have been increasingly used as windows for buildings such as buildings (for example, Patent Document 1). Thereby, electric power generation with a window glass can be performed.
特開2017-92242号公報JP 2017-92242 A
 ところで、ビルなどの建築物では、年中に亘って冷房または暖房の空調が稼働しているが、近年のエコ政策を考慮して、これらの空調のエネルギ負荷の低減が求められている。そして、そのようなエネルギ負荷の低減のために、窓ガラスの改良が要望されている。このような要望は、窓ガラスとして用いられる太陽電池パネルにも求められている。本発明は、この問題を解決するためになされたものであり、エネルギ負荷の低減が可能な太陽電池パネルを提供することを目的とする。 By the way, in buildings and other buildings, air conditioning for cooling or heating is in operation throughout the year. However, in consideration of recent ecological policies, reduction of the energy load of these air conditioning is required. And improvement of a window glass is requested | required in order to reduce such an energy load. Such a demand is also demanded for a solar cell panel used as a window glass. The present invention has been made to solve this problem, and an object thereof is to provide a solar cell panel capable of reducing an energy load.
項1.少なくとも1つのガラス板、及び太陽電池セルを有する太陽電池モジュールと、
 少なくとも1つのガラス板を有するガラス体と、
 前記太陽電池モジュールとガラス体との間に配置され、両者の間に空隙層を形成するスペーサと、
を備え、
 前記太陽電池モジュールの可視光透過率が、0.5~50%であり、
 熱貫流率が1.5~2.9W/m2Kであり、
 前記太陽電池モジュール側から入射光を入射させて測定した日射熱取得率が0.1~0.5である、太陽電池パネル。
Item 1. A solar cell module having at least one glass plate and solar cells;
A glass body having at least one glass plate;
A spacer that is disposed between the solar cell module and the glass body and forms a void layer therebetween;
With
The visible light transmittance of the solar cell module is 0.5 to 50%,
The heat transmissivity is 1.5 to 2.9 W / m 2 K;
A solar cell panel, wherein a solar heat gain rate measured by making incident light incident from the solar cell module side is 0.1 to 0.5.
項2.可視光透過率が0.5~50%である、請求項1に記載の太陽電池パネル。 Item 2. The solar cell panel according to claim 1, having a visible light transmittance of 0.5 to 50%.
項3.前記太陽電池モジュール側から入射光を入射させて測定した可視光反射率が3~10%であり、
 前記ガラス体側から入射光を入射させて測定した可視光反射率が5~12%である、項1または2に記載の太陽電池パネル。
Item 3. The visible light reflectance measured by making incident light incident from the solar cell module side is 3 to 10%,
Item 3. The solar cell panel according to Item 1 or 2, wherein the visible light reflectance measured by making incident light incident from the glass body side is 5 to 12%.
項4.前記太陽電池モジュールは、前記空隙層側の面に形成された、第1Low-E膜を備えている、項1から3のいずれかに記載の太陽電池パネル。 Item 4. Item 4. The solar cell panel according to any one of Items 1 to 3, wherein the solar cell module includes a first Low-E film formed on a surface on the gap layer side.
項5.前記第1Low-E膜は、透明導電性酸化物層を含有する、項4に記載の太陽電池パネル。 Item 5. Item 5. The solar cell panel according to Item 4, wherein the first Low-E film contains a transparent conductive oxide layer.
項6.前記第1Low-E膜は、銀を主成分とする銀層を含有する、項4に記載の太陽電池パネル。 Item 6. Item 5. The solar cell panel according to Item 4, wherein the first Low-E film includes a silver layer mainly composed of silver.
項7.前記第1Low-E膜は、銀を主成分とする銀層が2層積層されている、項4に記載の太陽電池パネル。 Item 7. Item 5. The solar cell panel according to Item 4, wherein the first Low-E film is formed by laminating two silver layers mainly composed of silver.
項8.前記ガラス体は、前記空隙層側の面に形成された、第2Low-E膜を備えている、項1から7のいずれかに記載の太陽電池パネル。 Item 8. Item 8. The solar cell panel according to any one of Items 1 to 7, wherein the glass body includes a second Low-E film formed on a surface on the gap layer side.
項9.前記第2Low-E膜は、透明導電性酸化物層を含有する、項8に記載の太陽電池パネル。 Item 9. Item 9. The solar cell panel according to Item 8, wherein the second Low-E film contains a transparent conductive oxide layer.
項10.前記第2Low-E膜は、銀を主成分とする銀層を含有する、項8に記載の太陽電池パネル。 Item 10. Item 9. The solar cell panel according to Item 8, wherein the second Low-E film includes a silver layer mainly composed of silver.
項11.前記第2Low-E膜は、銀を主成分とする銀層が2層積層されている、項8に記載の太陽電池パネル。 Item 11. Item 9. The solar cell panel according to Item 8, wherein the second Low-E film is formed by laminating two silver layers mainly composed of silver.
項12.前記太陽電池モジュールは、
 第1ガラス板と、
 第2ガラス板と、
 前記第1ガラス板及び第2ガラス板の間に配置される中間膜と、
 前記中間膜と接するように配置される前記太陽電池セルと、
を備えている、項1から11のいずれかに記載の太陽電池パネル。
Item 12. The solar cell module is
A first glass plate;
A second glass plate;
An intermediate film disposed between the first glass plate and the second glass plate;
The solar battery cell disposed so as to be in contact with the intermediate film;
Item 12. The solar cell panel according to any one of Items 1 to 11, further comprising:
項13.前記太陽電池モジュールは、一枚の前記ガラス板と、当該ガラス板に支持される前記太陽電池セルと、を備え、
 前記太陽電池セルが、前記空隙層側を向くように配置される、項1から11のいずれかに記載の太陽電池パネル。
Item 13. The solar cell module includes one glass plate and the solar cell supported by the glass plate,
Item 12. The solar cell panel according to any one of Items 1 to 11, wherein the solar cell is disposed to face the gap layer side.
項14.前記ガラス体は、一枚の前記ガラス板により構成されている、項1から13のいずれかに記載の太陽電池パネル。 Item 14. Item 14. The solar cell panel according to any one of Items 1 to 13, wherein the glass body is configured by a single glass plate.
項15.前記ガラス体は、合わせガラスにより構成されており、
 前記合わせガラスは、
 第1ガラス板と、
 第2ガラス板と、
 前記第1ガラス板及び第2ガラス板の間に配置される中間膜と、
を備えている、項1から13のいずれかに記載の太陽電池パネル。
Item 15. The glass body is made of laminated glass,
The laminated glass is
A first glass plate;
A second glass plate;
An intermediate film disposed between the first glass plate and the second glass plate;
Item 14. The solar cell panel according to any one of Items 1 to 13, comprising:
 本発明に係る太陽電池パネルによれば、エネルギ負荷の低減が可能となる。 According to the solar cell panel according to the present invention, the energy load can be reduced.
本発明に係る太陽電池パネルの一例を示す断面図である。It is sectional drawing which shows an example of the solar cell panel which concerns on this invention. 第1太陽電池モジュールの一例を示す断面図である。It is sectional drawing which shows an example of a 1st solar cell module. 第2太陽電池モジュールの一例を示す断面図である。It is sectional drawing which shows an example of a 2nd solar cell module. 太陽電池パネルに用いる合わせガラスの一例を示す断面図である。It is sectional drawing which shows an example of the laminated glass used for a solar cell panel. 比較例に用いた減圧断熱複層ガラスの一例を示す断面図である。It is sectional drawing which shows an example of the pressure-reduced heat insulation multilayer glass used for the comparative example. 本発明の実施例及び比較例のエネルギ負荷の例を示す図である。It is a figure which shows the example of the energy load of the Example and comparative example of this invention.
 <1.太陽電池パネルの概要>
 以下、本発明に係る太陽電池パネルの一実施形態について、説明する。図1に示すように、本実施形態に係る太陽電池パネルは、ほぼ同じ矩形の外形を有する太陽電池モジュール10と、ガラス体3とを有しており、これらは、その周縁部に配置されたスペーサ4によって互いに連結されている。このスペーサ4により、太陽電池モジュールとガラス体2との間には第1空隙層5が形成される。また、図示を省略するが、スペーサ4よりも外側に配置されたシール材により、第1空隙層5は密閉されている。以下、各部材について説明する。
<1. Overview of Solar Panel>
Hereinafter, an embodiment of a solar cell panel according to the present invention will be described. As shown in FIG. 1, the solar cell panel according to the present embodiment includes a solar cell module 10 having substantially the same rectangular outer shape and a glass body 3, and these are arranged at the peripheral edge thereof. The spacers 4 are connected to each other. By the spacer 4, a first gap layer 5 is formed between the solar cell module and the glass body 2. Although not shown, the first gap layer 5 is hermetically sealed by a sealing material disposed outside the spacer 4. Hereinafter, each member will be described.
 <2.太陽電池モジュール>
 太陽電池モジュールは、種々の構成を取ることができるが、ここでは、2つの太陽電池モジュール、つまり第1太陽電池モジュール1及び第2太陽電池モジュール2について説明する。
<2. Solar cell module>
Although the solar cell module can take various configurations, here, two solar cell modules, that is, the first solar cell module 1 and the second solar cell module 2 will be described.
 <2-1.第1太陽電池モジュール>
 図2に示すように、第1太陽電池モジュール1は、第1ガラス板11、第2ガラス板12、これらの間に配置される複数層からなる透明の中間膜13、及び中間膜13の層の間に配置される太陽電池セル14、を備えている。また、第2ガラス板12において、第1空隙層5側を向く面には、必要に応じて、Low-E膜を積層することができる。以下、各部材について説明する。
<2-1. First Solar Cell Module>
As shown in FIG. 2, the first solar cell module 1 includes a first glass plate 11, a second glass plate 12, a transparent intermediate film 13 composed of a plurality of layers disposed therebetween, and a layer of the intermediate film 13 The photovoltaic cell 14 arrange | positioned between is provided. In addition, a Low-E film can be laminated on the surface of the second glass plate 12 facing the first gap layer 5 as necessary. Hereinafter, each member will be described.
 <2-1-1.ガラス板>
 第1ガラス板11及び第2ガラス板12は、特には限定されず、公知のガラス板を用いることができる。例えば、熱線吸収ガラス、クリアガラス、高透過率ガラス、グリーンガラス、UVグリーンガラス、ソーダライムガラスなど種々のガラス板を用いることができるが、太陽電池セルの発電のために光を入射させる側に相対するガラス板は、クリアガラスや高透過率ガラスであることが好ましい。それら好ましいガラスを用いることで、太陽電池セルにおける発電量が増大するからである。ガラス板の厚みは、特には限定されないが、例えば、2~15mmであることが好ましく、2.5~8mmであることがさらに好ましい。
<2-1-1. Glass plate>
The 1st glass plate 11 and the 2nd glass plate 12 are not specifically limited, A well-known glass plate can be used. For example, various glass plates such as heat ray absorbing glass, clear glass, high transmittance glass, green glass, UV green glass, and soda lime glass can be used. The opposing glass plate is preferably a clear glass or a high transmittance glass. It is because the electric power generation amount in a photovoltaic cell increases by using those preferable glass. The thickness of the glass plate is not particularly limited, but is preferably 2 to 15 mm, for example, and more preferably 2.5 to 8 mm.
 <2-1-2.太陽電池セル>
 太陽電池セル14は、光エネルギーを電気エネルギーに変換する。太陽電池セル14は、特には限定されないが、例えば、シリコン系(結晶系、薄膜系)、化合物系(CIGS、GaAS、CdTeなど)、有機系(色素増感、有機薄膜、ペロブスカイトなど)などを採用することができる。そのうち、第1太陽電池モジュール1においては、シリコン系、特に結晶系の太陽電池セルを用いるのが好ましい。それはウェハ形状で単独で取り扱うことができ、太陽電池モジュールでの配置や電気的な接続の自由度が高いからである。また、太陽電池セル14は、複数設けられ、導線18によって直列や並列に接続される。なお、各太陽電池セルの形状は特には限定されず、矩形状、円形状など種々の形状に形成することができる。
<2-1-2. Solar cell>
The solar battery cell 14 converts light energy into electrical energy. The solar battery cell 14 is not particularly limited. For example, a silicon system (crystal system, thin film system), a compound system (CIGS, GaAS, CdTe, etc.), an organic system (dye sensitization, an organic thin film, a perovskite, etc.), etc. Can be adopted. Among them, in the first solar cell module 1, it is preferable to use silicon-based, particularly crystalline solar cells. This is because the wafer shape can be handled independently, and the degree of freedom of arrangement and electrical connection in the solar cell module is high. In addition, a plurality of solar cells 14 are provided, and are connected in series or in parallel by a conductive wire 18. In addition, the shape of each photovoltaic cell is not specifically limited, It can form in various shapes, such as a rectangular shape and a circular shape.
 <2-1-3.中間膜>
 中間膜13は透明の樹脂で形成された複数の層を有しており、いずれか2つの層の間に、上述した太陽電池セルが封止される。各層を構成する材料は、特には限定されないが、例えば、ポリビニルブチラール樹脂(PVB)、エチレンビニルアセテート樹脂(EVA)、オレフィン系樹脂、アイオノマー樹脂、シリコーン樹脂などで形成することができる。
<2-1-3. Interlayer>
The intermediate film 13 has a plurality of layers formed of a transparent resin, and the above-described solar battery cell is sealed between any two layers. Although the material which comprises each layer is not specifically limited, For example, it can form with a polyvinyl butyral resin (PVB), ethylene vinyl acetate resin (EVA), an olefin resin, an ionomer resin, a silicone resin, etc.
 また、中間膜13の総厚は、特に規定されないが、0.3~6.0mmであることが好ましく、0.5~4.0mmであることがさらに好ましく、0.6~2.0mmであることが特に好ましい。各層の厚みは、0.1~2.0mmであることが好ましく、0.1~0.6mmであることがさらに好ましく、0.1~1.0mmであることが特に好ましい。その他、中間膜13の総厚を一定とし、2以上の層からなる中間膜13を用いてもよい。 The total thickness of the intermediate film 13 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred. The thickness of each layer is preferably 0.1 to 2.0 mm, more preferably 0.1 to 0.6 mm, and particularly preferably 0.1 to 1.0 mm. In addition, it is possible to use an intermediate film 13 composed of two or more layers while keeping the total thickness of the intermediate film 13 constant.
 <2-1-4.Low-E膜>
 Low-E膜(低放射膜)の構成は特に限定されず、公知のLow-E膜を適用できる。
<2-1-4. Low-E membrane>
The configuration of the Low-E film (low emission film) is not particularly limited, and a known Low-E film can be applied.
 Low-E膜は、例えば、Ag層のような金属層を含む膜である。この膜は、例えば、ガラス板の主平面側から順に、誘電体層/金属層/犠牲層/誘電体層が積層された構造を有する。換言すれば、このLow-E膜は、金属層と、金属層における上記主平面側とは反対側の面に当該金属層と接して配置された犠牲層と、金属層および犠牲層を挟持する誘電体層のペアとを含む第1積層構造を有する。また、このLow-E膜は2以上の金属層を含んでいてもよく、これにより太陽電池モジュールのU値(熱貫流率)をより小さくする設計が可能となる。この場合、Low-E膜は、例えば、ガラス板の主平面側から順に、誘電体層/金属層/犠牲層/誘電体層/金属層/犠牲層/誘電体層が積層された構造を有しうる。すなわち、Low-E膜は2以上の金属の第1積層構造を有していてもよく、この場合、犠牲層と金属層との間に挟まれた誘電体層を2つの第1積層構造で共有することができる。 The Low-E film is a film including a metal layer such as an Ag layer, for example. This film has, for example, a structure in which a dielectric layer / metal layer / sacrificial layer / dielectric layer are laminated in order from the main plane side of the glass plate. In other words, the Low-E film sandwiches the metal layer, the sacrificial layer disposed in contact with the metal layer on the surface of the metal layer opposite to the main plane side, and the metal layer and the sacrificial layer. A first stacked structure including a pair of dielectric layers; In addition, this Low-E film may include two or more metal layers, thereby enabling a design to further reduce the U value (thermal conductivity) of the solar cell module. In this case, the Low-E film has, for example, a structure in which a dielectric layer / metal layer / sacrificial layer / dielectric layer / metal layer / sacrificial layer / dielectric layer are stacked in this order from the main plane side of the glass plate. Yes. That is, the Low-E film may have a first laminated structure of two or more metals. In this case, the dielectric layer sandwiched between the sacrificial layer and the metal layer is composed of two first laminated structures. Can be shared.
 誘電体層、金属層および犠牲層の各層は、1つの材料から構成される1つの層であっても、互いに異なる材料から構成される2以上の層の積層体であってもよい。 Each layer of the dielectric layer, the metal layer, and the sacrificial layer may be a single layer made of one material or a laminate of two or more layers made of different materials.
 第1積層構造において金属層および犠牲層を挟持する一対の誘電体層は、同じ材料から構成されていても、互いに異なる材料から構成されていてもよい。 The pair of dielectric layers sandwiching the metal layer and the sacrificial layer in the first laminated structure may be made of the same material or different materials.
 金属層を含むLow-E膜は、当該金属層の数をnとすると当該金属層を挟持する誘電体層の数がn+1以上となるため、通常、2n+1またはそれ以上の数の層から構成されている。 A Low-E film including a metal layer is generally composed of 2n + 1 or more layers since the number of dielectric layers sandwiching the metal layer is n + 1 or more when the number of the metal layers is n. ing.
 金属層は、例えば、Ag層である。Ag層は、Agを主成分とする層であってAgからなる層であってもよい。本明細書において「主成分」とは、当該層において最も含有率が大きな成分のことであり、その含有率は、通常50重量%以上であり、70重量%以上、80重量%以上、90重量%以上の順により好ましい。金属層には、Agの代わりに、パラジウム、金、インジウム、亜鉛、スズ、アルミニウムおよび銅などの金属をAgにドープした材料を使用してもよい。 The metal layer is, for example, an Ag layer. The Ag layer may be a layer mainly composed of Ag and made of Ag. In the present specification, the “main component” means a component having the largest content in the layer, and the content is usually 50% by weight or more, 70% by weight or more, 80% by weight or more, 90% by weight. % Or more is more preferable. A material obtained by doping Ag with a metal such as palladium, gold, indium, zinc, tin, aluminum, and copper may be used for the metal layer instead of Ag.
 Low-E膜が金属層を含む場合、Low-E膜における金属層の厚さの合計は、例えば18~34nmであり、好ましくは22~29nmである。 When the Low-E film includes a metal layer, the total thickness of the metal layers in the Low-E film is, for example, 18 to 34 nm, and preferably 22 to 29 nm.
 犠牲層は、例えば、チタン、亜鉛、ニッケル、クロム、亜鉛/アルミニウム合金、ニオブ、ステンレス、これらの合金およびこれらの酸化物から選ばれる少なくとも1種を主成分とする層であり、チタン、チタン酸化物、亜鉛および亜鉛酸化物から選ばれる少なくとも1種を主成分とする層が好ましい。犠牲層の厚さは、例えば0.1~5nmであり、好ましくは0.5~3nmである。 The sacrificial layer is, for example, a layer mainly composed of at least one selected from titanium, zinc, nickel, chromium, zinc / aluminum alloy, niobium, stainless steel, alloys thereof, and oxides thereof. A layer mainly composed of at least one selected from the group consisting of zinc oxide and zinc oxide is preferable. The thickness of the sacrificial layer is, for example, 0.1 to 5 nm, and preferably 0.5 to 3 nm.
 誘電体層は、例えば、酸化物または窒化物を主成分とする層であり、このような誘電体層のより具体的な例は、ケイ素、アルミニウム、亜鉛、錫、チタン、インジウムおよびニオブの各酸化物ならびに各窒化物から選ばれる少なくとも1種を主成分とする層である。誘電体層の厚さは、例えば8~120nmであり、好ましくは15~85nmである。 The dielectric layer is, for example, a layer mainly composed of oxide or nitride, and more specific examples of such a dielectric layer include silicon, aluminum, zinc, tin, titanium, indium, and niobium. It is a layer mainly composed of at least one selected from oxides and nitrides. The thickness of the dielectric layer is, for example, 8 to 120 nm, and preferably 15 to 85 nm.
 金属層、犠牲層および誘電体層の形成方法は限定されず、公知の薄膜形成手法を利用できる。例えば、スパッタリング法によりこれらの層を形成できる。すなわち、金属層を含むLow-E膜は、例えば、スパッタリング法により形成できる。酸化物または窒化物から構成される誘電体層は、例えば、スパッタリング法の一種である反応性スパッタリングにより形成できる。犠牲層は、金属層上に誘電体層を反応性スパッタリングにより形成するために必要な層(反応性スパッタリング時に自らが酸化することによって金属層の酸化を防ぐ層)であり、犠牲層との名称は当業者によく知られている。 The formation method of the metal layer, the sacrificial layer, and the dielectric layer is not limited, and a known thin film formation method can be used. For example, these layers can be formed by a sputtering method. That is, the Low-E film including the metal layer can be formed by, for example, a sputtering method. The dielectric layer made of oxide or nitride can be formed by reactive sputtering, which is a kind of sputtering method, for example. The sacrificial layer is a layer necessary for forming a dielectric layer on the metal layer by reactive sputtering (a layer that prevents oxidation of the metal layer by oxidizing itself during reactive sputtering). Are well known to those skilled in the art.
 Low-E膜の別の一例は、透明導電性酸化物層を含む積層膜である。この膜は、例えば、ガラス板の主平面側から順に、下地層/透明導電性酸化物層が積層された第2積層構造を有する。換言すれば、このLow-E膜は、透明導電性酸化物層と、透明導電性酸化物層を挟持する下地層とを含む第2積層構造を有する。このLow-E膜は、2以上の透明導電性酸化物層を含んでいてもよい。 Another example of the Low-E film is a laminated film including a transparent conductive oxide layer. This film has, for example, a second laminated structure in which a base layer / transparent conductive oxide layer is laminated in order from the main plane side of the glass plate. In other words, the Low-E film has a second laminated structure including a transparent conductive oxide layer and a base layer that sandwiches the transparent conductive oxide layer. This Low-E film may include two or more transparent conductive oxide layers.
 下地層、透明導電性酸化物層の各層は、1つの材料から構成される1つの層であっても、互いに異なる材料から構成される2以上の層の積層体であってもよい。 Each layer of the base layer and the transparent conductive oxide layer may be a single layer composed of one material or a laminate of two or more layers composed of different materials.
 下地層は、例えば、ケイ素、アルミニウム、亜鉛およびスズの各酸化物から選ばれる少なくとも1種を主成分とする層であり、ケイ素、アルミニウムおよび亜鉛の各酸化物から選ばれる少なくとも1種を主成分とする層でありうる。下地層は、ガラス板に含まれるナトリウムイオンなどのアルカリ金属イオンが透明導電性酸化物層に移動することを抑制し、これにより当該酸化物層の機能の低下が抑制される。下地層の厚さは、例えば25~90nmであり、好ましくは35~70nmである。下地層は、屈折率が互いに異なる2以上の層から構成されていてもよく、この場合、各層の厚さを調整することにより、Low-E膜の反射色を中性色に近づけることが可能である。2以上の層、例えば2つの層、から構成される下地層では、ガラス板の主平面側から順に、酸化スズまたは酸化チタンを主成分とする第1の下地層、および酸化ケイ素または酸化アルミニウムを主成分とする第2の下地層とすることが好ましい。 The underlayer is, for example, a layer mainly composed of at least one selected from silicon, aluminum, zinc and tin oxides, and is mainly composed of at least one selected from silicon, aluminum and zinc oxides. It can be a layer. The underlayer suppresses alkali metal ions such as sodium ions contained in the glass plate from moving to the transparent conductive oxide layer, thereby suppressing a decrease in the function of the oxide layer. The thickness of the underlayer is, for example, 25 to 90 nm, preferably 35 to 70 nm. The underlayer may be composed of two or more layers having different refractive indexes. In this case, the reflected color of the Low-E film can be made closer to a neutral color by adjusting the thickness of each layer. It is. In the underlayer composed of two or more layers, for example, two layers, in order from the main plane side of the glass plate, a first underlayer mainly composed of tin oxide or titanium oxide, and silicon oxide or aluminum oxide It is preferable to use the second underlayer as a main component.
 透明導電性酸化物層は、例えば、酸化インジウムスズ(ITO)、酸化亜鉛アルミニウム、アンチモンドープ酸化スズ(SnO:Sb)およびフッ素ドープ酸化スズ(SnO2:F)から選ばれる少なくとも1種を主成分とする層である。透明導電性酸化物層の厚さは、例えば100~350nmであり、好ましくは120~260nmである。 The transparent conductive oxide layer is mainly composed of at least one selected from, for example, indium tin oxide (ITO), zinc aluminum oxide, antimony-doped tin oxide (SnO: Sb), and fluorine-doped tin oxide (SnO 2 : F). It is a layer. The thickness of the transparent conductive oxide layer is, for example, 100 to 350 nm, and preferably 120 to 260 nm.
 第2積層構造の具体的な一例では、透明導電性酸化物層が厚さ120nm以上のフッ素ドープ酸化スズ層を含む。この例において、第2のLow-E膜の放射率εは、例えば0.34以下である。 In a specific example of the second laminated structure, the transparent conductive oxide layer includes a fluorine-doped tin oxide layer having a thickness of 120 nm or more. In this example, the emissivity ε of the second Low-E film is, for example, 0.34 or less.
 下地層、透明導電性酸化物層の形成方法は限定されず、公知の薄膜形成手法を利用できる。例えば、CVD法によりこれらの層を形成できる。すなわち、透明導電性酸化物層を含むLow-E膜は、例えば、CVD法により形成できる。CVD法による薄膜の形成は、ガラス板の製造工程、より具体的な例としてフロート法によるガラス板の製造工程において「オンライン」にて実施可能である。 The formation method of a base layer and a transparent conductive oxide layer is not limited, A well-known thin film formation method can be utilized. For example, these layers can be formed by a CVD method. That is, the Low-E film including the transparent conductive oxide layer can be formed by, for example, a CVD method. Formation of a thin film by a CVD method can be performed “on-line” in a glass plate manufacturing process, more specifically, in a glass plate manufacturing process by a float method.
 <2-1-5.可視光透過率及び可視光反射率>
 太陽電池モジュール1の可視光透過率は、0.5~50%とすることができ、0.3~30%であることが好ましく、1~10%であることがさらに好ましい。この可視光透過率は、太陽電池モジュール1の開口率と関連がある。太陽電池セル14は可視光の光吸収が大きく、黒などの濃色を呈するため、太陽電池モジュール1において、太陽電池セル14が配置されている箇所を可視光は透過しない。したがって、太陽電池セル14が配置されていない領域を可視光が通過し、室内に入射する。ここで、太陽電池モジュール1の第1ガラス板11の主面の面積に占める、太陽電池セル14が配置されていない領域の面積が開口率となり、太陽電池モジュール全体での可視光透過率に影響を与える。
<2-1-5. Visible light transmittance and visible light reflectance>
The visible light transmittance of the solar cell module 1 can be 0.5 to 50%, preferably 0.3 to 30%, and more preferably 1 to 10%. This visible light transmittance is related to the aperture ratio of the solar cell module 1. Since the solar battery cell 14 has a large light absorption of visible light and exhibits a dark color such as black, the solar battery module 1 does not transmit visible light through the place where the solar battery cell 14 is disposed. Therefore, visible light passes through the region where the solar cells 14 are not arranged and enters the room. Here, the area of the area where the solar cells 14 are not disposed, which occupies the area of the main surface of the first glass plate 11 of the solar battery module 1, becomes the aperture ratio, which affects the visible light transmittance of the entire solar battery module. give.
 また、一般に可視光透過率は、後述する日射熱取得率とのある程度の相関があり、可視光透過率が低いと、日射熱取得率も低い傾向があることが知られている。しかし、本発明の太陽電池パネルにおいてはガラス体の可視光透過率よりはむしろ太陽電池モジュールの可視光透過率が低い場合に冷暖房のエネルギー負荷を低減できるという効果を奏する。また、太陽電池モジュール1の室外側からの可視光の反射率は、3~10%であることが好ましい。一方、太陽電池モジュール1の室内側からの可視光の反射率は、5~20%であることが好ましい。可視光透過率及び可視光反射率の測定方法は、JIS R3106:1998に基づくことができる。 Further, it is generally known that the visible light transmittance has a certain degree of correlation with the solar heat acquisition rate described later, and that the solar heat acquisition rate tends to be low when the visible light transmittance is low. However, in the solar cell panel of the present invention, when the visible light transmittance of the solar cell module is low rather than the visible light transmittance of the glass body, there is an effect that the energy load of air conditioning can be reduced. The reflectance of visible light from the outdoor side of the solar cell module 1 is preferably 3 to 10%. On the other hand, the reflectance of visible light from the indoor side of the solar cell module 1 is preferably 5 to 20%. The measuring method of visible light transmittance and visible light reflectance can be based on JIS R3106: 1998.
 <2-1-6.日射透過率及び日射反射率>
 太陽電池モジュール1の日射透過率は、0.5~50%とすることができ、0.5~30%であることが好ましく、1~10%であることがさらに好ましい。また、太陽電池モジュール1の室外側からの日射の反射率は、5~20%であることが好ましい。一方、太陽電池モジュール1の室内側からの日射の反射率は、5~40%であることが好ましい。日射透過率および日射反射率の測定方法もまたJIS R3106:1998に基づくことができる。
<2-1-6. Solar radiation transmittance and solar reflectance>
The solar transmittance of the solar cell module 1 can be 0.5 to 50%, preferably 0.5 to 30%, and more preferably 1 to 10%. Further, the reflectance of solar radiation from the outdoor side of the solar cell module 1 is preferably 5 to 20%. On the other hand, the reflectance of solar radiation from the indoor side of the solar cell module 1 is preferably 5 to 40%. The measurement method of solar transmittance and solar reflectance can also be based on JIS R3106: 1998.
 <2-2.第2太陽電池モジュール>
 図3に示すように、第2太陽電池モジュール2は、ガラス板21及びこのガラス板上に配置される太陽電池セル24、を備えている。以下、各部材について説明する。
<2-2. Second Solar Cell Module>
As shown in FIG. 3, the second solar cell module 2 includes a glass plate 21 and solar cells 24 arranged on the glass plate. Hereinafter, each member will be described.
 <2-2-1.ガラス板>
 ガラス板21は、上述したガラス板と同じものを用いることができるが、その中でもクリアガラスや高透過率ガラスであることが好ましい。それら好ましいガラスを用いることで、太陽電池セルにおける発電量が増大するからである。
<2-2-1. Glass plate>
The glass plate 21 can be the same as the glass plate described above, and among them, clear glass and high transmittance glass are preferable. It is because the electric power generation amount in a photovoltaic cell increases by using those preferable glass.
 <2-2-2.太陽電池セル>
 図3に示すように、太陽電池セル24は、光エネルギーを電気エネルギーに変換する。太陽電池セル24は、特には限定されないが、例えば、シリコン系(結晶系、薄膜系)、化合物系(CIGS、GaAS、CdTeなど)、有機系(色素増感、有機薄膜、ペロブスカイトなど)などを採用することができる。そのうち、第2太陽電池モジュールにおいては、薄膜系、たとえばアモルファスシリコン系、微結晶シリコン系、アモルファスシリコンゲルマニウム系、微結晶シリコンゲルマニウム系、化合物系の太陽電池セルを用いるのが好ましい。
<2-2-2. Solar cell>
As shown in FIG. 3, the solar battery cell 24 converts light energy into electrical energy. The solar battery cell 24 is not particularly limited, but for example, a silicon system (crystal system, thin film system), a compound system (CIGS, GaAS, CdTe, etc.), an organic system (dye sensitization, an organic thin film, a perovskite, etc.), etc. Can be adopted. Among them, in the second solar cell module, it is preferable to use a thin film type solar cell, for example, an amorphous silicon type, a microcrystalline silicon type, an amorphous silicon germanium type, a microcrystalline silicon germanium type, or a compound type solar cell.
 これら薄膜系の太陽電池セル24は、p型半導体層・必要に応じて真性半導体層(i層)・n型半導体層からなる光電変換層244を、光入射側となる透明電極層243と、背面電極層245との間に積層してなる構造を有することができる。例えば、アモルファスシリコン系太陽電池セル24は、ガラス板21の上に下地層241,242を形成し、その上に透明導電酸化物層243を形成する。さらにその上に、プラズマCVD法により上述した光電変換層244、つまり、p層・i層・n層を形成し、さらに背面電極層245としてAl,Ag,Au,Cu,PtおよびCrから選ばれる少なくとも1種の金属層をスパッタリング法や蒸着法で形成することにより形成することができる。そして、形成された太陽電池セル24の一部をレーザーなどで除去し、この除去部分29からガラス板を露出させる。太陽電池セルは、導線(図示省略)によって直列や並列に接続される。なお、各太陽電池セル24の形状は特には限定されず、矩形状、短冊状など種々の形状に形成することができる。また、下地層241,242は、上述したLow-E膜の下地層と同じものとすることができる。 These thin-film solar cells 24 include a p-type semiconductor layer, an intrinsic semiconductor layer (i layer), if necessary, a photoelectric conversion layer 244 composed of an n-type semiconductor layer, a transparent electrode layer 243 on the light incident side, It can have a structure of being laminated between the back electrode layer 245. For example, in the amorphous silicon solar cell 24, the base layers 241 and 242 are formed on the glass plate 21, and the transparent conductive oxide layer 243 is formed thereon. Further, the photoelectric conversion layer 244 described above, that is, the p layer, i layer, and n layer is formed by plasma CVD, and the back electrode layer 245 is selected from Al, Ag, Au, Cu, Pt, and Cr. At least one metal layer can be formed by sputtering or vapor deposition. Then, a part of the formed solar battery cell 24 is removed with a laser or the like, and the glass plate is exposed from the removed portion 29. The solar cells are connected in series or in parallel by conducting wires (not shown). In addition, the shape of each photovoltaic cell 24 is not specifically limited, It can form in various shapes, such as a rectangular shape and strip shape. The underlayers 241 and 242 can be the same as the above-described underlayer of the Low-E film.
 <2-2-3.光学特性>
 可視光透過率、可視光反射率、日射透過率、及び日射反射率は、第1太陽電池モジュール1と同じである。
<2-2-3. Optical properties>
Visible light transmittance, visible light reflectance, solar transmittance, and solar reflectance are the same as those of the first solar cell module 1.
 <3.ガラス体>
 ガラス体3は、一枚のガラス板、合わせガラス、または複層ガラスにより形成することができる。また、ガラス体3を構成するガラス板には、必要に応じて、低放射膜(Low-E膜)を形成することができる。
 <3-1.ガラス板>
 ガラス体3に含まれるガラス板は、特には限定されず、上述したように、太陽電池モジュールに用いられるガラス板と同じものを用いることができる。
<3. Glass body>
The glass body 3 can be formed of a single glass plate, laminated glass, or multilayer glass. Further, a low emission film (Low-E film) can be formed on the glass plate constituting the glass body 3 as necessary.
<3-1. Glass plate>
The glass plate contained in the glass body 3 is not particularly limited, and as described above, the same glass plate used for the solar cell module can be used.
 <3-2.合わせガラス>
 ガラス体3は、上記ガラス板により形成されるほか、これらのガラス板を用いた合わせガラスにより形成することができる。図4に示すように、合わせガラス1は、2枚のガラス板31,32の間に樹脂製の中間膜33を配置したものである。
<3-2. Laminated glass>
The glass body 3 can be formed by the laminated glass using these glass plates besides the said glass plate. As shown in FIG. 4, the laminated glass 1 has a resin intermediate film 33 disposed between two glass plates 31 and 32.
 中間膜33は一層または複数の層で形成することができる。一層(単層)の中間膜13の材料は、熱可塑性樹脂であり、合わせガラスとした際のガラス板との接着度の観点より、ポリビニルアセタール系またはエチレン-酢酸ビニル共重合体系の熱可塑性樹脂を好適に用いることができる。中でもポリビニルブチラール系(PVB系)の熱可塑性樹脂が好ましい。上記熱可塑性樹脂と公知の可塑剤とからなる熱可塑性樹脂組成物を、例えば混練して成形することで、中間膜13が得られる。なお、中間膜13は、市販される熱可塑性樹脂フィルムをそのまま使用することもできる。 The intermediate film 33 can be formed of one layer or a plurality of layers. The material of the single-layer (single layer) intermediate film 13 is a thermoplastic resin, and from the viewpoint of the degree of adhesion to a glass plate when a laminated glass is used, a polyvinyl acetal-based or ethylene-vinyl acetate copolymer thermoplastic resin Can be suitably used. Of these, polyvinyl butyral (PVB) thermoplastic resins are preferred. The intermediate film 13 is obtained by, for example, kneading and molding a thermoplastic resin composition composed of the thermoplastic resin and a known plasticizer. In addition, the intermediate film 13 can also use the commercially available thermoplastic resin film as it is.
 中間膜33を複数層で形成する場合には、例えば、軟質のコア層を硬質の一対のアウター層で挟むことで中間膜を形成することができる。各層を構成する材料は、特には限定されないが、例えば、コア層が軟質となるような材料で形成することができる。例えば、アウター層は、ポリビニルブチラール樹脂(PVB)によって構成することができる。ポリビニルブチラール樹脂は、各ガラス板との接着性や耐貫通性に優れるので好ましい。一方、コア層は、エチレンビニルアセテート樹脂(EVA)、またはアウター層を構成するポリビニルブチラール樹脂よりも軟質なポリビニルアセタール樹脂によって構成することができる。軟質なコア層を間に挟むことにより、単層の樹脂中間膜33と同等の接着性や耐貫通性を保持しながら、遮音性能を大きく向上させることができる。 When the intermediate film 33 is formed of a plurality of layers, for example, the intermediate film can be formed by sandwiching a soft core layer between a pair of hard outer layers. Although the material which comprises each layer is not specifically limited, For example, it can form with a material in which a core layer becomes soft. For example, the outer layer can be made of polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate. On the other hand, the core layer can be composed of an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin softer than the polyvinyl butyral resin constituting the outer layer. By sandwiching the soft core layer between them, the sound insulation performance can be greatly improved while maintaining the same adhesion and penetration resistance as the single-layer resin intermediate film 33.
 また、中間膜33の総厚は、特に規定されないが、0.3~6.0mmであることが好ましく、0.5~4.0mmであることがさらに好ましく、0.6~2.0mmであることが特に好ましい。一方、コア層の厚みは、0.1~2.0mmであることが好ましく、0.1~0.6mmであることがさらに好ましい。0.1mmよりも小さくなると、軟質なコア層の影響が及びにくくなり、また、2.0mmや0.6mmより大きくなると総厚があがりコストアップとなるからである。一方、アウター層の厚みは特に限定されないが、例えば、0.1~2.0mmであることが好ましく、0.1~1.0mmであることがさらに好ましい。その他、中間膜33の総厚を一定とし、この中でコア層の厚みを調整することもできる。 The total thickness of the intermediate film 33 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred. On the other hand, the thickness of the core layer is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.6 mm. This is because if the thickness is smaller than 0.1 mm, the influence of the soft core layer is hardly exerted, and if the thickness is larger than 2.0 mm or 0.6 mm, the total thickness increases and the cost is increased. On the other hand, the thickness of the outer layer is not particularly limited, but is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 1.0 mm. In addition, the total thickness of the intermediate film 33 can be made constant, and the thickness of the core layer can be adjusted therein.
 中間膜33の製造方法は特には限定されないが、例えば、上述したポリビニルアセタール樹脂等の樹脂成分、可塑剤及び必要に応じて他の添加剤を配合し、均一に混練りした後、各層を一括で押出し成型する方法、この方法により作成した2つ以上の樹脂膜をプレス法、ラミネート法等により積層する方法が挙げられる。プレス法、ラミネート法等により積層する方法に用いる積層前の樹脂膜は単層構造でも多層構造でもよい。 The method for producing the intermediate film 33 is not particularly limited. For example, the resin component such as the polyvinyl acetal resin described above, a plasticizer, and other additives as necessary are blended and uniformly kneaded, and then each layer is collectively And a method of laminating two or more resin films prepared by this method by a pressing method, a laminating method or the like. The resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure.
 ガラス体3の可視光透過率、可視光反射率、日射透過率、及び日射反射率については、太陽電池モジュール1と同じでなくてもよく、例えば、より高い透過率にすることができる。 The visible light transmittance, visible light reflectance, solar light transmittance, and solar light reflectance of the glass body 3 may not be the same as those of the solar cell module 1, and for example, higher transmittance can be achieved.
 <3-3.Low-E膜>
 上記のようなLow-E膜は、ガラス体3のいずれの面にも積層することができる。ガラス体3が1枚のガラス板である場合には、屋外側(第1空隙層5側)または屋内側のいずれの面にも形成することができる。この点は、合わせガラスでも同様であり、合わせガラスの屋外側または屋内側(第1空隙層側)のいずれの面にも形成することができる。したがって、一枚のガラス板または合わせガラスの場合には、2つの面からLow-E膜を形成する面を選択することができる。
<3-3. Low-E membrane>
The Low-E film as described above can be laminated on any surface of the glass body 3. When the glass body 3 is a single glass plate, it can be formed on either the outdoor side (the first gap layer 5 side) or the indoor side. This point is the same for laminated glass, and can be formed on either the outdoor side or the indoor side (first void layer side) of the laminated glass. Therefore, in the case of a single glass plate or laminated glass, the surface on which the Low-E film is formed can be selected from the two surfaces.
 <4.第1空隙層>
 第1空隙層5は、太陽電池モジュール10及びガラス体3の間にスペーサ4を配置することで、両者10,3の間に形成されるものである。スペーサ4は、公知のものを利用することができ、両者10,2の周縁に配置することができる。好ましいスペーサとしては、例えば、スペーサ内部の空間に乾燥剤を保持したものをもちいることができる。これにより、第1空隙層3の気体の乾燥状態を長期間にわたって保つことができる。また、スペーサ4よりさらに外側にシール材(図示省略)を配置し、第1空隙層5を気密にすることができる。第1空隙層5は、例えば、4~16mmとすることができ、6~16mmとすることがさらに好ましい。第1空隙層5には、乾燥空気のほか、アルゴン、クリプトンのような不活性ガスを充填することができる。
<4. First void layer>
The first gap layer 5 is formed between the solar cell module 10 and the glass body 3 by arranging the spacer 4 between the solar cell module 10 and the glass body 3. The spacer 4 can use a well-known thing, and can arrange | position to the periphery of both 10 and 2. FIG. As a preferable spacer, for example, a spacer in which a desiccant is held in a space inside the spacer can be used. Thereby, the dry state of the gas of the 1st space | gap layer 3 can be maintained over a long period of time. Further, a sealing material (not shown) can be disposed further outside the spacer 4 to make the first gap layer 5 airtight. The first gap layer 5 can be, for example, 4 to 16 mm, and more preferably 6 to 16 mm. In addition to dry air, the first gap layer 5 can be filled with an inert gas such as argon or krypton.
 <5.太陽電池パネルの物性>
 太陽電池パネルの熱貫流率(U値)は、1.5~2.9W/m2Kであることが好ましく、1.6~2.8W/m2Kであることがさらに好ましい。熱貫流率が低いと断熱性能が高くなる。但し、熱貫流率が1.5よりも低いと、冷房時に室内に熱が溜まりやすくなるため、エネルギ消費量が多くなる傾向にあり、好ましくない。一方、熱貫流率が2.9より大きいと、熱が放射されやすくなり、暖房時のエネルギ消費量が多くなる傾向にあり、好ましくない。熱貫流率は、例えば、JIS R3107:1998により測定することができる。
<5. Physical properties of solar panel>
Thermal transmittance of the solar cell panel (U value) is preferably 1.5 ~ 2.9W / m 2 K, still more preferably 1.6 ~ 2.8W / m 2 K. When the heat transmissibility is low, the heat insulation performance is high. However, if the heat transmissibility is lower than 1.5, heat is likely to accumulate in the room during cooling, which tends to increase energy consumption, which is not preferable. On the other hand, if the heat transmissibility is greater than 2.9, heat is likely to be radiated, and the energy consumption during heating tends to increase, which is not preferable. The heat flow rate can be measured, for example, according to JIS R3107: 1998.
 太陽電池パネルの日射熱取得率は、0.1~0.5であることが好ましく、0.3以下であることがより好ましく、0.25以下であることがさらに好ましい。このように日射熱取得率が低いと、冷暖房の負荷を軽減することができる。日射熱取得率が0.5より大きいと、夏季において入射する日射による冷房への負荷が非常に大きくなり、一方0.1未満だと太陽電池パネルの可視光透過率も非常に小さくなり、屋内から屋外の景色を見通すことが困難で、窓としての機能に劣る。日射熱取得率は、例えば、JIR R3106:1998により測定することができる。 The solar heat gain rate of the solar cell panel is preferably 0.1 to 0.5, more preferably 0.3 or less, and even more preferably 0.25 or less. Thus, when the solar heat acquisition rate is low, the load of air conditioning can be reduced. If the solar heat gain rate is greater than 0.5, the cooling load due to solar radiation incident in the summer will be very large. On the other hand, if it is less than 0.1, the visible light transmittance of the solar cell panel will also be very small. It is difficult to see the outdoor scenery from, and the function as a window is inferior. The solar heat gain rate can be measured, for example, according to JIR R3106: 1998.
 また、太陽電池パネルの可視光透過率は、0.5~50%とすることができ、0.5~30%であることが好ましく、1~10%であることがさらに好ましい。また、室外側からの可視光の反射率は、3~10%であることが好ましい。一方、室内側からの可視光の反射率は、5~12%であることが好ましい。 Further, the visible light transmittance of the solar cell panel can be 0.5 to 50%, preferably 0.5 to 30%, and more preferably 1 to 10%. The reflectance of visible light from the outdoor side is preferably 3 to 10%. On the other hand, the reflectance of visible light from the indoor side is preferably 5 to 12%.
 <6.変形例>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。
<6. Modification>
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning.
 以下、本発明の実施例について説明する。但し、本発明は以下の実施例に限定されない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the following examples.
 <1.実施例及び比較例の準備>
以下の通り、実施例1~11に係る太陽電池パネルと、比較例1~7に係る単板ガラスまたは複層ガラスパネルを準備した。なお、以下の評価では、比較例として、太陽電池パネルではなく、単板ガラスまたは複層ガラスパネルを用いているが、太陽電池セルが設けられていなくても、エネルギ負荷は評価できるため、評価を簡易にするために、このような比較例を用いている。
<1. Preparation of Examples and Comparative Examples>
As described below, solar cell panels according to Examples 1 to 11 and single plate glass or multilayer glass panels according to Comparative Examples 1 to 7 were prepared. In the following evaluation, as a comparative example, a single glass plate or a multi-layer glass panel is used instead of a solar battery panel, but the energy load can be evaluated even if no solar battery cell is provided. For simplicity, such a comparative example is used.
(比較例1)
 比較例1として、厚さ8mmの一枚の単板からなるフロートガラス(日本板硝子製)を用いた。古くからあるビルの窓や壁面に用いられているものと同様である。
(Comparative Example 1)
As Comparative Example 1, float glass (manufactured by Nippon Sheet Glass) made of a single plate having a thickness of 8 mm was used. It is the same as that used for windows and walls of old buildings.
(比較例2)
 比較例2として、第1ガラス体及び第2ガラス体を有する複層ガラスパネルを準備した。両ガラス体の間には、スペーサにより厚さ12mmの第1空隙層を形成した。空隙層には乾燥空気が充填されている。第1ガラス体は、厚みが6mmのオンラインコーティングLow-Eガラス(日本板硝子製、Energy-Advantage)により形成されている。つまり、この第1ガラス体は、一枚のガラス板と、このガラス板の第1空隙層側の面に積層されたLow-E膜とを有している。第2ガラス体は、厚みが6mmの1枚の透明フロートガラス(日本板硝子製)により形成した。
(Comparative Example 2)
As Comparative Example 2, a multilayer glass panel having a first glass body and a second glass body was prepared. A first gap layer having a thickness of 12 mm was formed between both glass bodies by a spacer. The air gap layer is filled with dry air. The first glass body is formed of online coating Low-E glass (made by Nippon Sheet Glass, Energy-Advantage) having a thickness of 6 mm. That is, the first glass body has a single glass plate and a Low-E film laminated on the surface of the glass plate on the first gap layer side. The second glass body was formed of one transparent float glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm.
(比較例3)
 比較例3として、第1ガラス体及び第2ガラス体を有する複層ガラスパネルを準備した。両ガラス体の間には、スペーサにより厚さ12mmの第1空隙層を形成した。第1空隙層には乾燥空気が充填されている。第1ガラス体は、厚みが6mmのスパッタコーティングLow-Eガラス(日本板硝子製)により形成されている。この第1ガラス体は、一枚のガラス板の第1空隙層側の面に、誘電体層、銀を主成分とする層、誘電体層、銀を主成分とする層、及び誘電体層をこの順で含む薄膜(Low-E膜)をスパッタリング法により形成したものである。銀を主成分とする2層は、それぞれが厚さ約10nmである。第2ガラス体は、厚みが6mmの1枚の透明フロートガラス(日本板硝子製)により形成されている。
(Comparative Example 3)
As Comparative Example 3, a multilayer glass panel having a first glass body and a second glass body was prepared. A first gap layer having a thickness of 12 mm was formed between both glass bodies by a spacer. The first gap layer is filled with dry air. The first glass body is formed of sputter-coated Low-E glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm. The first glass body includes a dielectric layer, a layer containing silver as a main component, a dielectric layer, a layer containing silver as a main component, and a dielectric layer on the surface of the glass plate on the first gap layer side. In this order, a thin film (Low-E film) is formed by sputtering. Each of the two layers mainly composed of silver has a thickness of about 10 nm. The second glass body is formed of a single transparent float glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm.
(比較例4)
 比較例4として、第1ガラス体及び第2ガラス体を有する複層ガラスパネルを準備した。両ガラス体の間には、スペーサにより厚さ12mmの第1空隙層を形成した。第1空隙層にはアルゴンガスが充填されている。第1ガラス体は、厚みが3mmのオンラインコーティングLow-Eガラス(日本板硝子製、Energy-Advantage)により形成されている。つまり、この第1ガラス体は、一枚のガラス板と、このガラス板の第1空隙層側の面に積層されたLow-E膜とを有している。
(Comparative Example 4)
As Comparative Example 4, a multilayer glass panel having a first glass body and a second glass body was prepared. A first gap layer having a thickness of 12 mm was formed between both glass bodies by a spacer. The first gap layer is filled with argon gas. The first glass body is formed of online coating Low-E glass (made by Nippon Sheet Glass, Energy-Advantage) having a thickness of 3 mm. That is, the first glass body has a single glass plate and a Low-E film laminated on the surface of the glass plate on the first gap layer side.
 第2ガラス体として、Low-E膜付き減圧断熱複層ガラスを用いた。減圧断熱複層ガラスは、図5で説明すると、通常の透明フロート板ガラス31と、スパッタコーティングLow-Eガラス32と、これらの間に配置される厚さ0.2mmのスペーサ38とを有し、Low-Eコーティングが施された面をスペーサ38側に配置した。これら2枚のガラス板31,32の全周縁部は、封着剤35で封着されており、両ガラス板31,32の間には、真空引きした第2空隙層36が形成されている。スパッタコーティングLow-Eガラス32は、厚さが6mmの透明フロート板ガラス(日本板硝子製)に、誘電体層、銀を主成分とする層、誘電体層をこの順で含む薄膜(Low-E膜)をスパッタリング法により形成したものである。銀を主成分とする層は、厚さが約10nmである。また、この第2ガラス体3は、スパッタコーティングLow-Eガラス32が、第1ガラス体とは反対側になるように配置した。 As the second glass body, a reduced pressure heat insulating double-layer glass with a Low-E film was used. As illustrated in FIG. 5, the reduced pressure heat insulating multilayer glass has a normal transparent float glass plate 31, a sputter-coated Low-E glass 32, and a spacer 38 having a thickness of 0.2 mm disposed therebetween. The surface on which the Low-E coating was applied was disposed on the spacer 38 side. All the peripheral edges of these two glass plates 31 and 32 are sealed with a sealing agent 35, and a vacuum-evacuated second gap layer 36 is formed between both glass plates 31 and 32. . The sputter-coated Low-E glass 32 is a thin film (Low-E film) comprising a transparent float plate glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm, a dielectric layer, a layer mainly composed of silver, and a dielectric layer in this order. ) By a sputtering method. The layer mainly composed of silver has a thickness of about 10 nm. Further, the second glass body 3 was arranged so that the sputter-coated Low-E glass 32 was on the side opposite to the first glass body.
(比較例5)
 比較例5として、第1ガラス体及び第2ガラス体を有する複層ガラスパネルを準備した。両ガラス体の間には、スペーサにより厚さ0.2mmの第1空隙層を形成した。第1ガラス体は、厚みが3mmのオンラインコーティングLow-Eガラス(日本板硝子製、Energy-Advantage)により形成されている。つまり、この第1ガラス体は、一枚のガラス板と、このガラス板の第1空隙層側の面に積層されたLow-E膜とを有している。第2ガラス体は、厚みが3mmの1枚の透明フロートガラス(日本板硝子製)により形成されている。
(Comparative Example 5)
As Comparative Example 5, a multilayer glass panel having a first glass body and a second glass body was prepared. A first gap layer having a thickness of 0.2 mm was formed between both glass bodies by a spacer. The first glass body is formed of online coating Low-E glass (made by Nippon Sheet Glass, Energy-Advantage) having a thickness of 3 mm. That is, the first glass body has a single glass plate and a Low-E film laminated on the surface of the glass plate on the first gap layer side. The second glass body is formed of one transparent float glass (made by Nippon Sheet Glass) having a thickness of 3 mm.
 これら2枚のガラス体の全周縁部は、公知の封着材で封着されており、第1空隙層は、真空引きされている。また、第1ガラス体のLow-E膜は、第1空隙層側を向くように配置されている。 The entire periphery of these two glass bodies is sealed with a known sealing material, and the first gap layer is evacuated. The Low-E film of the first glass body is disposed so as to face the first gap layer side.
(比較例6)
 比較例6として、第1ガラス体及び第2ガラス体を有する複層ガラスパネルを準備した。この複層ガラスパネルは、図5のごとく減圧断熱複層ガラスであり、通常の透明フロート板ガラス31と、スパッタコーティングLow-Eガラス32と、これらの間に配置される厚さ0.2mmのスペーサ38とを有し、Low-Eコーティングが施された面をスペーサ38側に配置した。これら2枚のガラス板31,32の全周縁部は、封着剤35で封着されており、両ガラス板31,32の間には、真空引きした第2空隙層36が形成されている。
(Comparative Example 6)
As Comparative Example 6, a multilayer glass panel having a first glass body and a second glass body was prepared. This multi-layer glass panel is a reduced pressure heat insulating multi-layer glass as shown in FIG. 5, and includes a normal transparent float plate glass 31, a sputter-coated low-E glass 32, and a spacer having a thickness of 0.2 mm disposed therebetween. 38, and the surface on which the Low-E coating was applied was arranged on the spacer 38 side. All the peripheral edges of these two glass plates 31 and 32 are sealed with a sealing agent 35, and a vacuum-evacuated second gap layer 36 is formed between both glass plates 31 and 32. .
(比較例7)
 比較例7は、厚さ8mmのオンラインコーティングLow-Eガラス(日本板硝子製、Energy-Advantage)により形成されている。つまり、比較例7は、一枚のガラス板と、このガラス板の屋内側の面に積層されたLow-E膜とを有している。
(Comparative Example 7)
Comparative Example 7 is formed of 8 mm thick online coating Low-E glass (Nippon Sheet Glass, Energy-Advantage). That is, Comparative Example 7 has a single glass plate and a Low-E film laminated on the indoor side surface of the glass plate.
(実施例1)
 実施例1は、上記第2太陽電池モジュールとガラス体とを有する建材用の太陽電池パネルであり、両者の間に、乾燥空気を充填した厚さ12mmの第1空隙層が形成されている。
Example 1
Example 1 is a solar cell panel for building materials having the second solar cell module and a glass body, and a first gap layer having a thickness of 12 mm filled with dry air is formed between the two.
 第2太陽電池モジュールは、次のように作製した。まず、オンラインコーティング法で透明電極層を作製したフロート板ガラスの全面に、プラズマCVD法でアモルファスシリコンからなる光電変換層、スパッタリング法でAgからなる背面電極層を形成し、太陽電池セルを形成した。そして、ガラス板上で太陽電池セルの占める面積のうち1%について太陽電池セルを除去し、フロート板ガラスのガラス表面を露出させたものである。一方、ガラス体としては、厚さ6mmの通常の透明フロート板ガラス(日本板硝子製)を用いた。 The second solar cell module was produced as follows. First, a photoelectric conversion layer made of amorphous silicon by a plasma CVD method and a back electrode layer made of Ag by a sputtering method were formed on the entire surface of a float plate glass on which a transparent electrode layer was produced by an online coating method, thereby forming a solar battery cell. And about 1% of the area which a photovoltaic cell occupies on a glass plate, a photovoltaic cell is removed and the glass surface of float plate glass is exposed. On the other hand, a normal transparent float plate glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm was used as the glass body.
(実施例2)
 実施例2は、実施例1と同様の太陽電池パネルである。相違点は、太陽電池セルの除去面積であり、実施例2では、5%の太陽電池セルを除去した。
(Example 2)
Example 2 is a solar cell panel similar to Example 1. The difference is the removal area of the solar battery cells. In Example 2, 5% of the solar battery cells were removed.
(実施例3)
 実施例3は、実施例1と同様の太陽電池パネルである。相違点は、太陽電池セルの除去面積であり、実施例3では、10%の太陽電池セルを除去した。
(Example 3)
Example 3 is a solar cell panel similar to Example 1. The difference is the removal area of the solar battery cells. In Example 3, 10% of the solar battery cells were removed.
(実施例4)
 実施例4は、実施例1と同様の太陽電池パネルである。相違点は、太陽電池セルの除去面積であり、実施例2では、30%の太陽電池セルを除去した。
Example 4
Example 4 is a solar cell panel similar to Example 1. The difference is the removal area of the solar battery cells. In Example 2, 30% of the solar battery cells were removed.
(実施例5)
 実施例5は、実施例1と同様の太陽電池パネルである。相違点は、太陽電池セルの除去面積であり、実施例5では、50%の太陽電池セルを除去した。
(Example 5)
Example 5 is a solar cell panel similar to Example 1. The difference is the removal area of the solar battery cells. In Example 5, 50% of the solar battery cells were removed.
(実施例6)
 実施例6は、実施例1と同様の太陽電池パネルである。相違点は、ガラス体として、比較例3で用いたスパッタコーティングLow-Eガラスを用いた点である。そして、ガラス体のLow-E膜は、第1空隙層を向くように配置した。
(Example 6)
Example 6 is a solar cell panel similar to Example 1. The difference is that the sputter-coated Low-E glass used in Comparative Example 3 was used as the glass body. The glass body Low-E film was disposed so as to face the first void layer.
(実施例7)
 実施例7は、上記第1太陽電池モジュールとガラス体とを有する建材用の太陽電池パネルであり、両者の間に、乾燥空気を充填した厚さ12mmの第1空隙層が形成されている。
(Example 7)
Example 7 is a solar cell panel for building materials having the above first solar cell module and a glass body, and a first gap layer having a thickness of 12 mm filled with dry air is formed between them.
 第1太陽電池モジュールは、次のように作製した。まず、厚さ3mmの透明フロートガラス(日本板硝子製)を2枚準備し、その間に合わせガラス用の2層からなる中間膜を配置した。また、この中間膜の2つの層の間には、単結晶シリコン太陽電池セルを2枚配置した。このとき、フロートガラスの主面において、太陽電池セルが占める面積の割合を95%とした。つまり、開口率が5%となるようにした。一方、ガラス体としては、厚さ6mmの通常の透明フロート板ガラス(日本板硝子製)を用いた。 The first solar cell module was manufactured as follows. First, two sheets of transparent float glass (manufactured by Nippon Sheet Glass) having a thickness of 3 mm were prepared, and an interlayer film composed of two layers for laminated glass was disposed therebetween. Two single crystal silicon solar cells were disposed between the two layers of the intermediate film. At this time, the ratio of the area occupied by the solar battery cell in the main surface of the float glass was 95%. That is, the aperture ratio was set to 5%. On the other hand, a normal transparent float plate glass (manufactured by Nippon Sheet Glass) having a thickness of 6 mm was used as the glass body.
(実施例8)
 実施例8は、実施例7と同様の太陽電池パネルである。相違点は、太陽電池モジュールの開口率であり、実施例8では、開口率が10%となるように太陽電池セルを配置した。
(Example 8)
Example 8 is a solar cell panel similar to Example 7. The difference is the aperture ratio of the solar cell module. In Example 8, the solar cells were arranged so that the aperture ratio was 10%.
(実施例9)
 実施例9は、実施例7と同様の太陽電池パネルである。相違点は、太陽電池モジュールの開口率であり、実施例9では、開口率が30%となるように太陽電池セルを配置した。
Example 9
Example 9 is a solar cell panel similar to Example 7. The difference is the aperture ratio of the solar cell module. In Example 9, the solar cells were arranged so that the aperture ratio was 30%.
(実施例10)
 実施例10は、実施例7と同様の太陽電池パネルである。相違点は、太陽電池モジュールの開口率であり、実施例10では、開口率が50%となるように太陽電池セルを配置した。
(実施例11)
 実施例11は、実施例7と同様の太陽電池パネルである。相違点は、ガラス体として、比較例2で用いたスパッタコーティングLow-Eガラスを用いた点である。そして、ガラス体のLow-E膜は、第1空隙層を向くように配置した。
(Example 10)
Example 10 is a solar cell panel similar to Example 7. The difference is the aperture ratio of the solar cell module. In Example 10, the solar cells were arranged so that the aperture ratio was 50%.
(Example 11)
Example 11 is a solar cell panel similar to Example 7. The difference is that the sputter-coated Low-E glass used in Comparative Example 2 was used as the glass body. The glass body Low-E film was disposed so as to face the first void layer.
 上記のように準備した比較例及び実施例の太陽電池モジュール、ガラス板、または複層ガラスパネルの光学特性は、以下の通りである。但し、比較例1,7は、一枚のガラス板により形成されているため、その物性を示している。
Figure JPOXMLDOC01-appb-T000001
The optical characteristics of the solar cell modules, glass plates, or multilayer glass panels of Comparative Examples and Examples prepared as described above are as follows. However, since Comparative Examples 1 and 7 are formed of a single glass plate, their physical properties are shown.
Figure JPOXMLDOC01-appb-T000001
 また、比較例及び実施例のガラス板、複層ガラスパネル、または太陽電池パネルの光学特性等は、以下の通りである。
Figure JPOXMLDOC01-appb-T000002
Moreover, the optical characteristic etc. of the glass plate of a comparative example and an Example, a multilayer glass panel, or a solar cell panel are as follows.
Figure JPOXMLDOC01-appb-T000002
 なお、上記表1及び表2は、室外側反射率及び室内側反射率を示しているが、これは図1に示すように、第1ガラス体を室外側、第2ガラス体を室外側としたときに、室外側及び室内側から入射光を入射させて測定したことを示している。また、次に説明する実施例及び比較例の評価も同じく、図1のように第1ガラス体を室外側、第2ガラス体を室内側とした太陽電池パネル、及び複層ガラスパネルを用いて評価を行った。 In addition, although the said Table 1 and Table 2 have shown the outdoor side reflectance and the indoor side reflectance, as shown in FIG. 1, this shows that the 1st glass body is the outdoor side, and the 2nd glass body is the outdoor side. It is shown that the incident light was incident from the outdoor side and the indoor side. Moreover, the evaluation of the Example and comparative example which are demonstrated next similarly uses the solar cell panel which made the 1st glass body the outdoor side, and the 2nd glass body the indoor side like FIG. 1, and a multilayer glass panel. Evaluation was performed.
<2.実施例及び比較例の評価>
 次に、上記のように準備された実施例及び比較例の評価を行った。以下では、比較例1を用いたビルの1フロアにおける一次エネルギー消費量を100%とし、これに対する比較例2~7、実施例1~11の一次エネルギ消費量をエネルギ負荷としてシミュレーションにより算出した。一次エネルギ消費量及びエネルギ負荷の算出は、以下の通りである。
<2. Evaluation of Examples and Comparative Examples>
Next, the examples and comparative examples prepared as described above were evaluated. In the following, the primary energy consumption in one floor of the building using Comparative Example 1 was assumed to be 100%, and the primary energy consumption for Comparative Examples 2 to 7 and Examples 1 to 11 was calculated by simulation as the energy load. Calculation of primary energy consumption and energy load is as follows.
 (ビルの設定)
 主方位が南、幅40m、奥行20m、高さ3.7mの5階建てのビルの3階の部屋を対象とした。この3階の壁面に対する窓の面積率は、90%とした。
(Building settings)
The room on the 3rd floor of a 5-story building with the main orientation south, width 40m, depth 20m, and height 3.7m was targeted. The area ratio of the windows to the wall on the third floor was 90%.
 (地域)
 岡山県を対象とした。つまり、岡山県の1年の平均の気象データを用いた。
(area)
Targeted Okayama Prefecture. In other words, average weather data for Okayama Prefecture for one year was used.
 (空調設定)
・暖房:設定温度22℃、湿度成り行き
・冷房:設定温度26℃、湿度50%
(Air conditioning setting)
・ Heating: set temperature 22 ℃, humidity result ・ cooling: set temperature 26 ℃, humidity 50%
 (内部発熱)
・部屋の在籍者:0.1人/m2
・照明発熱:20W/m2
・機器発熱:なし
・取入外気量:4m3/m2
(Internal heat generation)
・ Room enrollment: 0.1 people / m 2
・ Lighting heat: 20W / m 2
-Equipment heat generation: None-Intake air volume: 4m 3 / m 2 h
 (計算方法)
 ソフトウエアとしてHASPEXを用い、一次エネルギー消費量の算出を行った。上記部屋のペリメータゾーン(壁面から5mの枠形の領域:500m2)の冷暖房負荷を元に一次エネルギー消費量を算出した。また、エネルギ負荷は、比較例1を100%としたときの割合である。
・一次エネルギ消費量=Σ(各種エネルギー使用量×一次エネルギー原単位)
・各種エネルギー使用量=冷暖房負荷/機器効率/発熱原単位
・機器効率:暖房2.7、冷房3.7
・発熱原単位:3.6MJ/kWh
・一時エネルギ原単位:9.76MJ/kWh
(Method of calculation)
The primary energy consumption was calculated using HASPEX as software. The primary energy consumption was calculated based on the cooling / heating load of the perimeter zone of the room (frame area 5 m from the wall surface: 500 m 2 ). Moreover, energy load is a ratio when the comparative example 1 is set to 100%.
・ Primary energy consumption = Σ (various energy consumption x primary energy intensity)
・ Various energy consumption = Air conditioning load / Equipment efficiency / Heat generation unit ・ Equipment efficiency: Heating 2.7, Air conditioning 3.7
・ Fever unit: 3.6MJ / kWh
・ Temporary energy intensity: 9.76 MJ / kWh
 結果は、以下の通りである。また、図6は、実施例及び比較例に係る熱貫流率と日射熱取得率との関係を示すバブルチャートである。その中で、100の数値が記載されているマーカーが比較例1を表している。また、外縁が着色されているマーカーが実施例1~11を示している。マーカー中の数値は、エネルギ負荷を示している。
Figure JPOXMLDOC01-appb-T000003
The results are as follows. Moreover, FIG. 6 is a bubble chart which shows the relationship between the heat flow rate and solar heat acquisition rate which concern on an Example and a comparative example. Among them, a marker with a numerical value of 100 represents Comparative Example 1. In addition, Examples 1 to 11 show markers whose outer edges are colored. The numerical value in the marker indicates the energy load.
Figure JPOXMLDOC01-appb-T000003
 表1~3及び図6に示すように、実施例は、いずれも比較例よりも高いエネルギ負荷を示してている。特に、実施例1,2,6,11は、エネルギ負荷が、比較例1の50%以下となっている。比較例4,6のように熱貫流率が低すぎると、熱が室内に溜まり、冷房時の一次エネルギー消費量が大きくなっている。したがって、熱貫流率は低すぎないことが好ましい。一方、日射熱取得率は低いことが好ましい。また、比較例3は、熱貫流率及び日射熱取得率がともに低いが、第1ガラス体の可視光透過率が高いことが影響して、一次エネルギー消費量が高くなっていると考えられる。 As shown in Tables 1 to 3 and FIG. 6, the examples all show higher energy loads than the comparative examples. In particular, in Examples 1, 2, 6, and 11, the energy load is 50% or less of Comparative Example 1. When the heat transmissibility is too low as in Comparative Examples 4 and 6, heat is accumulated in the room, and the primary energy consumption during cooling is large. Therefore, it is preferable that the heat transmissivity is not too low. On the other hand, it is preferable that the solar heat acquisition rate is low. In Comparative Example 3, although the heat transmissibility and the solar heat gain are both low, it is considered that the primary energy consumption is high due to the high visible light transmittance of the first glass body.
 これらのことから、太陽電池モジュールの可視光透過率が低く、かつ熱貫流率と日射熱取得率の両者がバランスよく低い場合に、エネルギ負荷を低くすることができることが分かった。さらに、上記においては、太陽電池モジュールが生み出す電力が考慮されていない。太陽電池による電力もまた一次エネルギー消費量を低減することに効果があるので、本発明による太陽電池パネルはさらに一次消費エネルギーを削減することができることが分かった。 From these facts, it was found that the energy load can be lowered when the visible light transmittance of the solar cell module is low and both the heat flow rate and the solar heat gain rate are low in a well-balanced manner. Furthermore, in the above, the electric power which a solar cell module produces is not considered. It has been found that the solar cell panel according to the present invention can further reduce the primary energy consumption since the electric power from the solar cell is also effective in reducing the primary energy consumption.
1 第1太陽電池モジュール
2 第2太陽電池モジュール
3 ガラス体
4 スペーサ
5 第1空隙層
DESCRIPTION OF SYMBOLS 1 1st solar cell module 2 2nd solar cell module 3 Glass body 4 Spacer 5 1st void layer

Claims (15)

  1.  少なくとも1つのガラス板、及び太陽電池セルを有する太陽電池モジュールと、
     少なくとも1つのガラス板を有するガラス体と、
     前記太陽電池モジュールとガラス体との間に配置され、両者の間に空隙層を形成するスペーサと、
    を備え、
     前記太陽電池モジュールの可視光透過率が、0.5~50%であり、
     熱貫流率が1.5~2.9W/m2Kであり、
     前記太陽電池モジュール側から入射光を入射させて測定した日射熱取得率が0.1~0.5である、太陽電池パネル。
    A solar cell module having at least one glass plate and solar cells;
    A glass body having at least one glass plate;
    A spacer that is disposed between the solar cell module and the glass body and forms a void layer therebetween;
    With
    The visible light transmittance of the solar cell module is 0.5 to 50%,
    The heat transmissivity is 1.5 to 2.9 W / m 2 K;
    A solar cell panel, wherein a solar heat gain rate measured by making incident light incident from the solar cell module side is 0.1 to 0.5.
  2.  可視光透過率が0.5~50%である、請求項1に記載の太陽電池パネル。 The solar cell panel according to claim 1, wherein the visible light transmittance is 0.5 to 50%.
  3.  前記太陽電池モジュール側から入射光を入射させて測定した可視光反射率が3~10%であり、
     前記ガラス体側から入射光を入射させて測定した可視光反射率が5~12%である、請求項1または2に記載の太陽電池パネル。
    The visible light reflectance measured by making incident light incident from the solar cell module side is 3 to 10%,
    The solar cell panel according to claim 1 or 2, wherein the visible light reflectance measured by making incident light incident from the glass body side is 5 to 12%.
  4.  前記太陽電池モジュールは、前記空隙層側の面に形成された、第1Low-E膜を備えている、請求項1から3のいずれかに記載の太陽電池パネル。 The solar cell panel according to any one of claims 1 to 3, wherein the solar cell module includes a first Low-E film formed on a surface on the gap layer side.
  5.  前記第1Low-E膜は、透明導電性酸化物層を含有する、請求項4に記載の太陽電池パネル。 The solar cell panel according to claim 4, wherein the first Low-E film contains a transparent conductive oxide layer.
  6.  前記第1Low-E膜は、銀を主成分とする銀層を含有する、請求項4に記載の太陽電池パネル。 The solar cell panel according to claim 4, wherein the first Low-E film includes a silver layer containing silver as a main component.
  7.  前記第1Low-E膜は、銀を主成分とする銀層が2層積層されている、請求項4に記載の太陽電池パネル。 The solar cell panel according to claim 4, wherein the first Low-E film is formed by laminating two silver layers mainly composed of silver.
  8.  前記ガラス体は、前記空隙層側の面に形成された、第2Low-E膜を備えている、請求項1から7のいずれかに記載の太陽電池パネル。 The solar cell panel according to any one of claims 1 to 7, wherein the glass body includes a second Low-E film formed on a surface on the gap layer side.
  9.  前記第2Low-E膜は、透明導電性酸化物層を含有する、請求項8に記載の太陽電池パネル。 The solar cell panel according to claim 8, wherein the second Low-E film contains a transparent conductive oxide layer.
  10.  前記第2Low-E膜は、銀を主成分とする銀層を含有する、請求項8に記載の太陽電池パネル。 The solar cell panel according to claim 8, wherein the second Low-E film includes a silver layer mainly composed of silver.
  11.  前記第2Low-E膜は、銀を主成分とする銀層が2層積層されている、請求項8に記載の太陽電池パネル。 The solar cell panel according to claim 8, wherein the second Low-E film includes two silver layers mainly composed of silver.
  12.  前記太陽電池モジュールは、
     第1ガラス板と、
     第2ガラス板と、
     前記第1ガラス板及び第2ガラス板の間に配置される中間膜と、
     前記中間膜と接するように配置される前記太陽電池セルと、
    を備えている、請求項1から11のいずれかに記載の太陽電池パネル。
    The solar cell module is
    A first glass plate;
    A second glass plate;
    An intermediate film disposed between the first glass plate and the second glass plate;
    The solar battery cell disposed so as to be in contact with the intermediate film;
    The solar cell panel according to claim 1, comprising:
  13.  前記太陽電池モジュールは、一枚の前記ガラス板と、当該ガラス板に支持される前記太陽電池セルと、を備え、
     前記太陽電池セルが、前記空隙層側を向くように配置される、請求項1から11のいずれかに記載の太陽電池パネル。
    The solar cell module includes one glass plate and the solar cell supported by the glass plate,
    The solar cell panel according to any one of claims 1 to 11, wherein the solar cells are arranged so as to face the gap layer side.
  14.  前記ガラス体は、一枚の前記ガラス板により構成されている、請求項1から13のいずれかに記載の太陽電池パネル。 The solar cell panel according to any one of claims 1 to 13, wherein the glass body is constituted by one glass plate.
  15.  前記ガラス体は、合わせガラスにより構成されており、
     前記合わせガラスは、
     第1ガラス板と、
     第2ガラス板と、
     前記第1ガラス板及び第2ガラス板の間に配置される中間膜と、
    を備えている、請求項1から13のいずれかに記載の太陽電池パネル。
    The glass body is made of laminated glass,
    The laminated glass is
    A first glass plate;
    A second glass plate;
    An intermediate film disposed between the first glass plate and the second glass plate;
    The solar cell panel according to claim 1, comprising:
PCT/JP2019/009716 2018-03-11 2019-03-11 Solar panel WO2019176861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506511A JPWO2019176861A1 (en) 2018-03-11 2019-03-11 Solar panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018043679 2018-03-11
JP2018-043679 2018-03-11

Publications (1)

Publication Number Publication Date
WO2019176861A1 true WO2019176861A1 (en) 2019-09-19

Family

ID=67906742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009716 WO2019176861A1 (en) 2018-03-11 2019-03-11 Solar panel

Country Status (2)

Country Link
JP (1) JPWO2019176861A1 (en)
WO (1) WO2019176861A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148279A (en) * 1997-11-18 1999-06-02 Mitsubishi Electric Corp Air flow window having solar cell
JP2001287972A (en) * 2000-04-05 2001-10-16 Nippon Sheet Glass Co Ltd Multifunctional glass
JP2003226560A (en) * 2003-02-13 2003-08-12 Nippon Sheet Glass Co Ltd Double-glazed unit
EP1394130A1 (en) * 2001-05-15 2004-03-03 Nippon Sheet Glass Co., Ltd. Heat insulating and shielding glass panel
JP2010144375A (en) * 2008-12-17 2010-07-01 Ohbayashi Corp Window structure
JP2012186310A (en) * 2011-03-04 2012-09-27 Three M Innovative Properties Co Photovoltaic power generation film
JP2016000664A (en) * 2012-10-17 2016-01-07 旭硝子株式会社 Multiple glass
JP2017001924A (en) * 2015-06-15 2017-01-05 日本板硝子株式会社 Coating film-fitted glass plate
JP2017085750A (en) * 2015-10-27 2017-05-18 株式会社カネカ Window solar cell module and window

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233946A (en) * 1998-11-18 2000-08-29 Nippon Sheet Glass Co Ltd Heat ray reflecting glass and laminated glass using the same
US7063893B2 (en) * 2002-04-29 2006-06-20 Cardinal Cg Company Low-emissivity coating having low solar reflectance
US7138182B2 (en) * 2002-07-31 2006-11-21 Cardinal Cg Compay Temperable high shading performance coatings
JP2012044024A (en) * 2010-08-20 2012-03-01 Mitsubishi Chemicals Corp Solar battery module
JP6546164B2 (en) * 2014-06-11 2019-07-17 日本板硝子株式会社 Double glass unit and glass plate for double glass unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148279A (en) * 1997-11-18 1999-06-02 Mitsubishi Electric Corp Air flow window having solar cell
JP2001287972A (en) * 2000-04-05 2001-10-16 Nippon Sheet Glass Co Ltd Multifunctional glass
EP1394130A1 (en) * 2001-05-15 2004-03-03 Nippon Sheet Glass Co., Ltd. Heat insulating and shielding glass panel
JP2003226560A (en) * 2003-02-13 2003-08-12 Nippon Sheet Glass Co Ltd Double-glazed unit
JP2010144375A (en) * 2008-12-17 2010-07-01 Ohbayashi Corp Window structure
JP2012186310A (en) * 2011-03-04 2012-09-27 Three M Innovative Properties Co Photovoltaic power generation film
JP2016000664A (en) * 2012-10-17 2016-01-07 旭硝子株式会社 Multiple glass
JP2017001924A (en) * 2015-06-15 2017-01-05 日本板硝子株式会社 Coating film-fitted glass plate
JP2017085750A (en) * 2015-10-27 2017-05-18 株式会社カネカ Window solar cell module and window

Also Published As

Publication number Publication date
JPWO2019176861A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US6822157B2 (en) Thin film solar battery module
US10801258B2 (en) Flexible dynamic shade with post-sputtering modified surface, and/or method of making the same
US20210115728A1 (en) Electro-polymeric shade for use at elevated temperature and/or methods of making the same
US20080308145A1 (en) Front electrode including transparent conductive coating on etched glass substrate for use in photovoltaic device and method of making same
EP2276069A2 (en) Front electrode including transparent conductive coating on textured glass substrate for use in photovoltaic device and method of making same
US10871027B2 (en) Electric potentially-driven shade with CIGS solar cell, and/or method of making the same
US11959334B2 (en) Multifunctional glazing unit
EP3818239B1 (en) Insulating glass unit window, method of making the same and method of operating the same
US20130061542A1 (en) Photovoltaic window assembly with solar control properties
EP3794206B1 (en) Electric potentially-driven shade with improved coil strength, methods of making the same and method of operating the same
WO2009073058A2 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US10927592B2 (en) Electric potentially-driven shade with surface-modified polymer, and/or method of making the same
US10858884B2 (en) Electric potentially-driven shade with improved coil strength, and/or method of making the same
JP2016536462A (en) Low radiation coating and functional building materials for joinery including the same
JPH07315889A (en) Heat shielding glass and its composite material
WO2011090468A2 (en) Highly-conductive and textured front transparent electrode for a-si thin-film solar cells, and/or method of making the same
WO2019176861A1 (en) Solar panel
CN110712406B (en) Bulletproof and fireproof glass capable of generating power and preparation process thereof
WO2019176862A1 (en) Insulating glass panel
JP2009280464A (en) Low radiation double glazing
JP2007145689A (en) Near infrared ray-reflective substrate and near infrared ray-reflective laminated glass using the substrate, and near infrared ray-reflective double-glazed unit
KR101894112B1 (en) Low emissivity glass windows and power supply device using power generated from the same
CN220474637U (en) Thin film solar cell module
CN115847955A (en) Hollow glass
CN115706179A (en) Cover glass and hollow glass assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768010

Country of ref document: EP

Kind code of ref document: A1