JPH07315889A - Heat shielding glass and its composite material - Google Patents

Heat shielding glass and its composite material

Info

Publication number
JPH07315889A
JPH07315889A JP7062408A JP6240895A JPH07315889A JP H07315889 A JPH07315889 A JP H07315889A JP 7062408 A JP7062408 A JP 7062408A JP 6240895 A JP6240895 A JP 6240895A JP H07315889 A JPH07315889 A JP H07315889A
Authority
JP
Japan
Prior art keywords
glass
film
visible light
heat
heat ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7062408A
Other languages
Japanese (ja)
Inventor
Etsuo Ogino
悦男 荻野
Terufusa Kunisada
照房 國定
Toshio Sumi
俊雄 角
Kenji Murata
健治 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP7062408A priority Critical patent/JPH07315889A/en
Publication of JPH07315889A publication Critical patent/JPH07315889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

PURPOSE:To produce a heat shielding glass capable of exhibiting a solar radiation screening effect without reducing the transmittance of visible light so remarkably as to cause an obstruct in practical use by making up it from a glass base and a coating film formed on one of the main surfaces. CONSTITUTION:This heat shielding glass is composed of a glass base 1 and a coating film 2 formed on one of the main surfaces 4 and the coating film 2 side is directed toward the room in practical use. The glass base 1 is composed of a colorless soda-lime glass having >=8mm thickness or a soda-lime silica glass containing a very small amount of a coloring agent and having >=8mm thickness and has >=55% transmittance of visible light and >=15% absorbance of solar radiation. The coating film 2 has <=0.3 vertical emissivity. In order to realize this emissivity value, the surface resistance value of this coating film is controlled to <= about 40OMEGA/cm<2> and the coating film is composed of a multi-layer film containing a conductive film of Ag, Al, etc., or a single layer film containing a conductive oxide as the main components. The heat shielding glass is designed so as to have a visible light transmittance value higher than 50% and higher than the take-up of the solar radiation heat from the outdoor, <=70% take-up of the solar radiation heat from the outdoor and <=10% reflectance of visible light from the coating film side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、日射エネルギーの建築
物等内部空間への流入を低減し、特に夏期における冷房
負荷の軽減に有効な熱線遮蔽ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat ray shielding glass which is effective in reducing the inflow of solar energy into the internal space of a building or the like, and particularly in reducing the cooling load in the summer.

【0002】[0002]

【従来の技術】従来、日射エネルギーの室内への流入を
低減するためのガラスとしては、ガラス表面に反射率の
高い、金属(Cr、Ti、SUS等)、金属(Cr、T
i、SUS等)窒化物、金属(Cr、Ti、SUS等)
酸窒化物等を含む薄膜のコーティングを行い、この薄膜
により日射エネルギーの大部分を占める可視光ないし近
赤外光を反射させるいわゆる熱線反射ガラスが一般に知
られている。また、ガラスに微量着色成分を添加し日射
エネルギーをガラス自体に吸収させるいわゆる熱線吸収
ガラスも一般に知られている。
2. Description of the Related Art Conventionally, as a glass for reducing the inflow of solar energy into a room, a metal (Cr, Ti, SUS, etc.) or a metal (Cr, T) having a high reflectance on the glass surface is used.
i, SUS, etc.) Nitride, metal (Cr, Ti, SUS, etc.)
A so-called heat ray-reflecting glass is generally known in which a thin film containing an oxynitride or the like is coated, and the thin film reflects visible light or near-infrared light which occupies most of the solar energy. Further, a so-called heat ray absorbing glass in which a very small amount of a coloring component is added to the glass and the solar energy is absorbed in the glass itself is generally known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、日射エ
ネルギーの大部分を占める可視光ないし近赤外光を単純
に反射または吸収させる上記従来の熱線反射ガラスまた
は熱線吸収ガラスは、日射エネルギーの建築物等内部空
間への流入を一定量削減できるものの、太陽光スペクト
ルの可視光部分の透過率も相当程度低下させるため、室
内が暗くなり快適性を損ねる等の好ましくない結果をも
招いていた。
However, the conventional heat-ray-reflecting glass or heat-absorbing glass which simply reflects or absorbs visible light or near-infrared light, which occupies most of the solar radiation energy, is a building of solar energy. Although it is possible to reduce a certain amount of inflow into the internal space, the transmittance of the visible light portion of the sunlight spectrum is also considerably reduced, which leads to unfavorable results such as darkening the room and impairing comfort.

【0004】本発明は、日射エネルギーの流入を低減し
ながらも上記従来の問題点を解決する熱線遮蔽ガラスを
提供することを目的とする。
It is an object of the present invention to provide a heat ray shielding glass which solves the above-mentioned conventional problems while reducing the inflow of solar energy.

【0005】[0005]

【課題を解決するための手段】本発明に係る熱線遮蔽ガ
ラスは、ガラス基板とその主表面の一方に形成した被膜
とからなり、前記ガラス基板の可視光透過率を55%以
上および日射吸収率を15%以上ならびに前記被膜の垂
直放射率を0.3以下として、可視光透過率が50%以
上であって前記被膜を形成した主表面とは反対側の主表
面からの入射についての日射熱取得率以上およびこの日
射熱取得率が70%以下であることを特徴とする。
A heat ray-shielding glass according to the present invention comprises a glass substrate and a coating film formed on one of its main surfaces, and has a visible light transmittance of 55% or more and a solar radiation absorptivity. Is 15% or more and the vertical emissivity of the coating is 0.3 or less, and the solar light has a visible light transmittance of 50% or more and is incident from a main surface opposite to the main surface on which the coating is formed. It is characterized in that the acquisition rate is not less than 70% and the solar heat acquisition rate is not less than 70%.

【0006】ここで、ガラス基板の主表面とは、ガラス
基板1の主たる表面をいい、ガラス基板1を平面視した
際における正面または背面に位置する表面3、4をい
う。
Here, the main surface of the glass substrate means the main surface of the glass substrate 1, and the surfaces 3 and 4 located on the front surface or the back surface when the glass substrate 1 is seen in a plan view.

【0007】ガラス基板としては、可視光透過率が55
%以上であって日射吸収率が15%以上のものであれば
特に限定することなく使用できるが、建築物用等として
一般に用いられている無色のソーダライムシリカガラス
の場合は、表1に示すように、日射吸収率が15%以上
となるのは厚さが8mm以上の場合である。但し、微量
着色成分を添加して日射遮蔽の効果を高めたソーダライ
ムシリカガラス(ブルー、グレー、ブロンズ、グリーン
等に着色した有色透明の熱線吸収ガラス)の場合は、厚
さが8mm未満でも日射吸収率が15%以上となり(例
えば、厚さ3mmの「グレーペーン」(日本板硝子商品
名)の可視光透過率は72.4%、日射吸収率は18.
5%である。)、本発明に使用できるものがある。ま
た、併せて表1に示すように、網入りまたは線入りとし
て防火性を付与したソーダライムシリカガラスも本発明
のガラス基板として使用できる。
The glass substrate has a visible light transmittance of 55.
%, And if the solar radiation absorption rate is 15% or more, it can be used without particular limitation, but in the case of colorless soda lime silica glass generally used for buildings etc., it is shown in Table 1. As described above, the solar radiation absorption rate is 15% or more when the thickness is 8 mm or more. However, in the case of soda lime silica glass (colored transparent heat ray absorbing glass colored in blue, gray, bronze, green, etc.) that has been added with a minute amount of coloring components to enhance the effect of solar radiation, even if the thickness is less than 8 mm The absorptivity is 15% or more (for example, the visible light transmittance of "Gray Pane" (trade name of Nippon Sheet Glass) having a thickness of 3 mm is 72.4%, and the solar absorptivity is 18.
5%. ), There are some that can be used in the present invention. In addition, as shown in Table 1 together, soda lime silica glass having a fireproof property with a net or a wire can also be used as the glass substrate of the present invention.

【0008】[0008]

【表1】 [Table 1]

【0009】本発明に使用できる被膜の垂直放射率は
0.3以下であり、この条件を満たすためには、概略、
被膜の表面抵抗値を約40Ω/スクエア以下とすればよ
い。例えば、Ag、Au、Cu、Alのうちの少なくと
も一つを主成分とする導電性被膜を含む多層膜または導
電性酸化物を主成分とする単層膜もしくはこの単層膜を
含む多層膜からなるものを使用することができる。
The vertical emissivity of the coating that can be used in the present invention is 0.3 or less.
The surface resistance of the coating may be about 40 Ω / square or less. For example, from a multilayer film including a conductive coating film containing at least one of Ag, Au, Cu, and Al as a main component, a single-layer film containing a conductive oxide as a main component, or a multilayer film including the single-layer film. Can be used.

【0010】本発明に係る熱線遮蔽ガラスは、複層ガラ
ス、合わせガラス等のガラス複合体として用いてもよ
い。すなわち、本発明に係る熱線遮蔽ガラスを含む複数
枚のガラス板を隣接するものどうしが互いに離間し空気
層を確保した状態でこれらのガラス板の周辺を気密にシ
ールして接着一体化した熱線遮蔽複層ガラス、または本
発明に係る熱線遮蔽ガラスを含む複数枚のガラス板をこ
れらのガラス板相互の接合面に配置されたプラスチック
中間膜により接着一体化した熱線遮蔽合わせガラス等と
してもよい。
The heat ray-shielding glass according to the present invention may be used as a glass composite such as a double-glazing or laminated glass. That is, a plurality of glass plates including the heat-shielding glass according to the present invention that are adjacent to each other are airtightly sealed around the periphery of these glass plates in a state where they are separated from each other to secure an air layer It is also possible to use a laminated glass or a heat ray-shielding laminated glass in which a plurality of glass sheets including the heat ray-shielding glass according to the present invention are bonded and integrated by a plastic intermediate film arranged on the joint surface between these glass sheets.

【0011】あるいは、前記複数枚のガラス板が有する
主表面のうちの少なくとも一つに垂直放射率が0.3以
下である被膜を形成し、複層ガラスまたは合わせガラス
のうちの最外側主表面のいずれか一方から入射する日射
エネルギーが前記被膜を形成した主表面のうちのいずれ
か一つに至るまでにこの複層ガラス等を構成するガラス
板に15%以上吸収され、前記被膜を形成しない状態に
おける前記ガラス複合体の可視光透過率を55%以上と
して、可視光透過率が50%以上であって前記日射エネ
ルギーと同方向からの入射についての日射熱取得率以上
およびこの日射熱取得率が70%以下とした熱線遮蔽複
層ガラス、熱線遮蔽合わせガラス等としてもよい。
Alternatively, a coating having a vertical emissivity of 0.3 or less is formed on at least one of the main surfaces of the plurality of glass plates, and the outermost main surface of the double glazing or laminated glass. 15% or more of the solar energy incident from any one of the above will be absorbed by the glass plate constituting the multi-layer glass or the like until it reaches any one of the main surfaces on which the coating is formed, and the coating is not formed. When the visible light transmittance of the glass composite in the state is 55% or more, the visible light transmittance is 50% or more, and the solar heat gain rate or more for the incident from the same direction as the solar energy and the solar heat gain rate. May be 70% or less, and may be heat-ray shielding laminated glass, heat-ray shielding laminated glass, or the like.

【0012】なお、前記プラスチック中間膜としては、
例えば、PVB(ポリビニルブチラール)を使用するこ
とができる。また、このPVB等中間膜を用いる熱線遮
蔽合わせガラスにおいては、前記被膜を、図5のよう
に、中間膜10に接する主表面ではなく大気に接する主
表面34に形成することが好ましい。すなわち、本発明
に係る熱線遮蔽ガラス複合体においては、一般的に、被
膜を形成する主表面を空気層と接する主表面とすること
が本発明の下記作用を奏するための条件となる。
As the plastic intermediate film,
For example, PVB (polyvinyl butyral) can be used. Further, in the heat ray-shielding laminated glass using the intermediate film such as PVB, it is preferable that the coating film is formed not on the main surface in contact with the intermediate film 10 but on the main surface 34 in contact with the atmosphere as shown in FIG. That is, in the heat ray-shielding glass composite according to the present invention, generally, the main surface forming the coating film is the main surface in contact with the air layer, which is a condition for achieving the following effects of the present invention.

【0013】本発明に係る熱線遮蔽ガラスは、被膜を形
成した主表面を室内側にして(被膜を形成しない主表面
を室外側にして)建築物等の開口部に設置することによ
りその特性を生かした熱線遮蔽ガラス窓となる。同様
に、熱線遮蔽複層ガラス、熱線合わせガラス等について
も、本発明の下記作用を奏する被膜を形成した主表面が
室内方向を向くように建築物等の開口部に設置すること
によりその特性を生かした熱線遮蔽複層ガラス窓、熱線
遮蔽合わせガラス窓等の熱線遮蔽ガラス複合体窓とな
る。
The heat ray-shielding glass according to the present invention has its characteristics by being installed in an opening of a building or the like with the main surface on which the film is formed being indoors (the main surface without the film being being outdoors). It will be a heat-shielding glass window that makes good use of it. Similarly, for heat ray shielding double glazing, heat ray laminated glass, etc., the characteristics of the main surface formed with a coating having the following functions of the present invention are set in an opening of a building or the like so that the main surface faces the indoor direction. A heat ray-shielding glass composite window such as a heat ray-shielding laminated glass window or a heat ray-shielding laminated glass window is utilized.

【0014】[0014]

【作用】本発明に係る熱線遮蔽ガラスは、ガラス内部に
吸収され再放射される日射エネルギーについて、ガラス
主表面の一方に形成した垂直放射率の低い被膜によりそ
の一方の主表面方向への日射エネルギーの再放射を抑制
することにより、他方のガラス主表面方向へのみ日射エ
ネルギーが再放射しやすくするとともに、被膜を形成す
るガラス基板としては日射エネルギーを一定以上吸収す
る特性を有するものを使用することにより、上記被膜の
熱線遮蔽効果への寄与を増大させる作用を奏するもので
ある。
The heat-shielding glass according to the present invention is capable of absorbing solar radiation energy absorbed in the glass and re-radiated by a coating having a low vertical emissivity formed on one of the main surfaces of the glass. In order to facilitate the re-radiation of solar radiation energy only to the other glass main surface direction by suppressing the re-radiation of the glass, use a glass substrate that forms a film that has the characteristic of absorbing solar radiation energy above a certain level. Thus, the effect of increasing the contribution of the coating film to the heat ray shielding effect is exerted.

【0015】また、本発明に係る熱線遮蔽ガラスは、ガ
ラスから再放射されるエネルギーの波長域がガラスに吸
収される太陽光の波長域よりも長波長側にシフトして全
体として可視光域からさらに離れていることを利用する
ものであり、所定量以上吸収され長波長側にシフトして
再放射される日射エネルギーを所定値以下の垂直放射率
を有する被膜により反射させて日射熱取得率を低減させ
ても、単に被膜により直接的一次的に可視光域ないし近
赤外域の日射エネルギーを反射させる従来の熱線反射ガ
ラスに比べると、可視光透過率の低下を抑制することが
できるという作用を奏するものである。
Further, the heat ray-shielding glass according to the present invention shifts the wavelength range of energy re-radiated from the glass to the longer wavelength side than the wavelength range of the sunlight absorbed by the glass and shifts the visible light range as a whole. By utilizing the fact that they are further apart, the solar radiation energy absorbed by a predetermined amount or more and shifted to the long wavelength side and re-emitted is reflected by a coating having a vertical emissivity of a predetermined value or less to obtain the solar heat gain rate. Even if it is reduced, it is possible to suppress the decrease in visible light transmittance as compared with the conventional heat ray reflective glass in which the coating film directly and directly reflects the solar energy in the visible light region or the near infrared region. It plays.

【0016】さらに、本発明に係る熱線遮蔽ガラスのガ
ラス基板として無色のソーダライムシリカガラスを使用
する場合には、一定値以上の厚さのものを用いることに
よりさらに好ましい結果を得ることができる。すなわ
ち、ソーダライムシリカガラスの分光透過率曲線は、図
6のように、1μm程度の近赤外域における透過率が特
に減少する。従って、厚さの増加に伴うガラスに吸収さ
れる日射エネルギーの増加の程度は、可視光が吸収され
る増加の程度よりも大きくなる。例えば、厚さが3mm
から8mmに増加した場合、可視光吸収率の増加が約
2.7%であるのに対し、日射吸収率の増加は約9.7
%となる。このように、本発明に係る熱線遮蔽ガラス
は、一定値以上の厚さを有するソーダライムシリカガラ
スの上記特性をも併せて利用しうるものである。
Further, when a colorless soda lime silica glass is used as the glass substrate of the heat ray shielding glass according to the present invention, a more preferable result can be obtained by using a glass having a thickness of a certain value or more. That is, in the spectral transmittance curve of soda lime silica glass, as shown in FIG. 6, the transmittance particularly in the near infrared region of about 1 μm decreases. Therefore, the degree of increase in the solar energy absorbed by the glass as the thickness increases becomes greater than the degree of increase in visible light absorption. For example, the thickness is 3mm
From 8 mm to 8 mm, the increase in visible light absorption is about 2.7%, while the increase in solar radiation absorption is about 9.7.
%. As described above, the heat ray-shielding glass according to the present invention can also utilize the above-mentioned characteristics of soda lime silica glass having a thickness of a certain value or more.

【0017】また、本発明に係る熱線遮蔽ガラスは、い
わゆる複層ガラスまたは合わせガラスとして利用するこ
とにより、断熱性・安全性・防音性・紫外線遮蔽性とい
った建築物等に要求されることの多い諸機能を併せて有
することができる。
Further, the heat ray-shielding glass according to the present invention is often required for a building or the like having heat insulating property, safety, soundproofing property, and ultraviolet ray shielding property by utilizing it as so-called double glazing or laminated glass. It can also have various functions.

【0018】なお、これら複層ガラス等のいわゆるガラ
ス複合体においては、本発明のガラス基板の日射取得率
が15%以上であるという条件に関しては、ガラス複合
体を構成する2枚以上のガラス板が合わせてこの条件を
満たせばよい。例えば、図3のように、ガラス板2枚1
a、1bとスペーサー8、シール剤9等により構成され
る複層ガラスの一方の最外側主表面14に上記低放射率
を有する被膜2を形成し、この被膜を形成した最外側主
表面を室内側に使用する場合には、室外側から入射する
日射エネルギーは前記2枚のガラス板1a、1bを通し
て前記被膜2に到達するため、この2枚のガラス板1
a、1bの日射吸収率が合わせて15%以上あれば、こ
の複層ガラスは、本発明の上記作用を奏することができ
る。従って、本発明に係る熱線遮蔽ガラス複合体に無色
のソーダライムシリカガラスを用いる場合には、必ずし
も厚さ8mm以上のものを組み合わせて使用することが
条件とはされない。
In the so-called glass composites such as these double glazings, two or more glass plates constituting the glass composites are provided under the condition that the solar radiation acquisition rate of the glass substrate of the present invention is 15% or more. Should meet this condition together. For example, as shown in FIG. 3, two glass plates 1
The coating 2 having the above-mentioned low emissivity is formed on one outermost main surface 14 of the double glazing composed of a, 1b, the spacer 8 and the sealant 9, and the outermost main surface on which the coating is formed is formed into a chamber. When used on the inside, the solar energy incident from the outside reaches the coating film 2 through the two glass plates 1a and 1b.
If the total solar absorptance of a and 1b is 15% or more, this double glazing can exert the above-mentioned effect of the present invention. Therefore, when colorless soda lime silica glass is used for the heat ray-shielding glass composite according to the present invention, it is not necessarily a condition that the glass composite having a thickness of 8 mm or more is used in combination.

【0019】[0019]

【実施例】以下、本発明を実施例及び比較例により具体
的に説明する。 (実施例1)厚さ15mmのフロート製法で製造された
無色のソーダライムシリカガラス上に直流マグネトロン
スパッタリング法を用いて、下地誘電体膜、Ag合金膜
またはAg膜、保護誘電体膜をこの順に形成した。下地
誘電体としてはITOを用い、その成膜には酸化物焼結
体ターゲットを用い、酸素を混入したAr雰囲気中で成
膜した。Ag合金膜はPdを15モル%添加した合金タ
ーゲットまたはAg単体のターゲットを用いて成膜し
た。保護誘電体膜としては、Sn金属ターゲットを用い
て酸素による反応性スパッタを行い、酸化錫膜を形成し
た。各被膜の膜厚は、表2に示すように、概略、AgP
d膜またはAg膜は3〜20nm、ITO膜と酸化錫膜
は10〜60nmとなるようにした。成膜した試料の分
光透過率、分光反射率を測定し、それらから日射透過
率、日射吸収率等を算出した。また、赤外分光反射率の
測定を行い半球放射率を算出した。結果を表2にまとめ
て示す(実施例1−1 〜 実施例1−9)。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. Example 1 A base dielectric film, an Ag alloy film or an Ag film, and a protective dielectric film were formed in this order on a colorless soda lime silica glass manufactured by a float manufacturing method with a thickness of 15 mm by using a DC magnetron sputtering method. Formed. ITO was used as the base dielectric, an oxide sintered target was used for the film formation, and the film was formed in an Ar atmosphere containing oxygen. The Ag alloy film was formed by using an alloy target containing 15 mol% of Pd or a target of Ag alone. As the protective dielectric film, reactive sputtering with oxygen was performed using a Sn metal target to form a tin oxide film. The film thickness of each coating is, as shown in Table 2, roughly, AgP
The d film or the Ag film had a thickness of 3 to 20 nm, and the ITO film and the tin oxide film had a thickness of 10 to 60 nm. The spectral transmittance and the spectral reflectance of the formed sample were measured, and the solar transmittance, the solar absorptivity, etc. were calculated from them. In addition, the infrared spectral reflectance was measured to calculate the hemispherical emissivity. The results are summarized in Table 2 (Examples 1-1 to 1-9).

【0020】[0020]

【表2】 [Table 2]

【0021】(比較例)上記実施例と同じ厚さ15mm
の無色のソーダライムシリカガラスの表面に反射率の高
い材料として通常用いられている金属(Cr、SU
S)、金属(Ti)窒化物を含む薄膜を直流マグネトロ
ンスパッタリング法により形成した。各層の膜厚は、可
視光透過率が60%〜70%になるように調整した。得
られた試料の分光透過率、分光反射率を測定し、それら
から日射透過率、日射吸収率等を算出した。また、赤外
分光反射率の測定を行い半球放射率を算出した。結果を
表2にまとめて示す(比較例1〜比較例4)。なお、上
記実施例および比較例における測定値は、被膜を形成し
た主表面を室内側として、室外側からの可視光または日
射の入射に対する特性に関するものである。
(Comparative Example) The same thickness as the above-mentioned Example 15 mm
The metal (Cr, SU) usually used as a material with high reflectance on the surface of colorless soda lime silica glass
A thin film containing S) and a metal (Ti) nitride was formed by a DC magnetron sputtering method. The film thickness of each layer was adjusted so that the visible light transmittance was 60% to 70%. The spectral transmittance and the spectral reflectance of the obtained sample were measured, and the solar transmittance, the solar absorptivity, etc. were calculated from them. In addition, the infrared spectral reflectance was measured to calculate the hemispherical emissivity. The results are summarized in Table 2 (Comparative Examples 1 to 4). The measured values in the above-mentioned Examples and Comparative Examples relate to the characteristics with respect to the incidence of visible light or solar radiation from the outside of the room, with the main surface on which the film is formed as the indoor side.

【0022】表2では、同程度の可視光透過率を有する
実施例と比較例の間で特性を比較すると実施例における
日射熱取得率の測定値が10%程度小さくなっている。
In Table 2, when the characteristics are compared between the example and the comparative example having the same visible light transmittance, the measured value of the solar heat gain rate in the example is reduced by about 10%.

【0023】表2では、すべての実施例について、可視
光透過率が50%以上、日射熱取得率が70%以下(実
施例1−8を除いては60%以下)であり、可視光透過
率が日射熱取得率よりも高くなっている。また、実施例
1−1〜実施例1−5については、日射熱取得率が55
%以下であり、さらに、実施例1−6〜実施例1−9に
ついては、可視光透過率が65%以上である。
In Table 2, the visible light transmittance is 50% or more and the solar heat gain coefficient is 70% or less (60% or less except for Examples 1-8) in all Examples, and the visible light transmission is The rate is higher than the solar heat gain rate. Moreover, about Example 1-1-Example 1-5, a solar radiation heat acquisition rate is 55.
% Or less, and in Examples 1-6 to 1-9, the visible light transmittance is 65% or more.

【0024】これに対し、比較例1〜比較例4について
は、可視光透過率が日射熱取得率を下回っており、ガラ
ス基板(厚さ15mmの無色のソーダライムシリカガラ
ス)のみとした比較例5では、日射熱取得率が70%を
上回っている。
On the other hand, in Comparative Examples 1 to 4, the visible light transmittance was lower than the solar heat gain coefficient, and only the glass substrate (colorless soda lime silica glass having a thickness of 15 mm) was used as a comparative example. In No. 5, the solar heat gain rate exceeds 70%.

【0025】なお、日射エネルギーの室内への侵入の程
度を示す日射熱取得率ηは、JISR 3106に規定
されている下記の式で評価することができる。
The solar heat gain rate η, which indicates the degree of penetration of solar energy into the room, can be evaluated by the following formula defined in JISR 3106.

【0026】[0026]

【式1】 [Formula 1]

【0027】ここで、ガラス面の半球放射率は約0.8
4である。また、被膜面においては、垂直放射率は半球
放射率にほぼ等しく、ガラス面の垂直放射率は約0.8
9である。
Here, the hemispherical emissivity of the glass surface is about 0.8.
It is 4. On the coated surface, the vertical emissivity is almost equal to the hemispherical emissivity, and the vertical emissivity on the glass surface is about 0.8.
It is 9.

【0028】本発明に使用できる被膜としては、上述の
ように、概略、被膜の表面抵抗値を約40Ω/スクエア
以下とすればよいが、この条件を満たす被膜としては、
上記実施例に示したものの他に、例えば、酸化錫を主成
分とする数100nm程度の被膜が挙げられる。この被
膜は、フロート法によるガラス製造ライン上でいわゆる
熱CVD法により連続的に成膜することができるため、
生産性の点からも好ましく耐久性にも優れている。酸化
亜鉛またはITOを主成分とした膜でも表面抵抗値を4
0Ω/スクエア以下とすることができる。
As described above, the film that can be used in the present invention may have a surface resistance of about 40 Ω / square or less.
In addition to those shown in the above-mentioned examples, for example, a coating film containing tin oxide as a main component and having a thickness of about several hundreds nm may be used. This coating can be continuously formed by the so-called thermal CVD method on the glass manufacturing line by the float method,
It is also preferable in terms of productivity and excellent in durability. Even if the film is mainly composed of zinc oxide or ITO, the surface resistance value is 4
It can be set to 0 Ω / square or less.

【0029】なお、被膜耐久性に関しては、上記実施例
1の実施例1−1〜1−8では、Ag膜にPdを添加
し、Ag膜の耐久性を向上させ、被膜が露出するガラス
単板での使用に備えることとしている。
Regarding the film durability, in Examples 1-1 to 1-8 of Example 1 described above, Pd was added to the Ag film to improve the durability of the Ag film, and the glass single film to which the film was exposed was exposed. It will be prepared for use as a board.

【0030】被膜耐久性向上のためにAg膜に添加する
元素はPdに限らず、Pt、Sn、Zn、In、Cr、
Ti、Si、Zr、Nb、Ta等を使用することができ
る。すなわち、Pd、Pt、Sn、Zn、In、Cr、
Ti、Si、Zr、Nb、Taからなる群のうち少なく
とも一つの元素をモル比で5〜20%添加し合金化する
ことにより、Agの擬集が抑制されAg膜の連続性が保
持されて被膜耐久性が向上する。
The element added to the Ag film for improving the film durability is not limited to Pd, but Pt, Sn, Zn, In, Cr,
Ti, Si, Zr, Nb, Ta, etc. can be used. That is, Pd, Pt, Sn, Zn, In, Cr,
By adding at least one element from the group consisting of Ti, Si, Zr, Nb, and Ta in a molar ratio of 5 to 20% to form an alloy, the aggregation of Ag is suppressed and the continuity of the Ag film is maintained. The coating durability is improved.

【0031】また、被膜耐久性向上の観点からは、下地
誘電体膜は多結晶体膜であることが好ましく、具体的に
は、ITOの他、ZnO、In23 、Y23 等を使
用することができる。さらに、同様の観点から、保護誘
電体膜は非晶質体であることが好ましく、具体的には、
SnOX 、TaOX 、TiOX 、ZrBXY 、SiO
X 、SiNX 、SiNXY(ここで、XYは非化学量論比
の場合を含むことを示す。)等を使用することができ
る。
Further, from the viewpoint of improving the film durability, the underlying dielectric film is preferably a polycrystalline film. Specifically, besides ITO, ZnO, In 2 O 3 , Y 2 O 3 etc. Can be used. Further, from the same viewpoint, the protective dielectric film is preferably an amorphous body, and specifically,
SnO X, TaO X, TiO X , ZrB X O Y, SiO
X , SiN X , SiN X O Y (where XY indicates that the case of a non-stoichiometric ratio is included) and the like can be used.

【0032】ところで、ガラス表面に反射率の高い被膜
のコーティングを行う熱線反射ガラスについては、昼間
には反射された太陽光が建築物近隣に反射光障害を及ぼ
すこともあり、夜間には室内照明によりガラスが鏡のよ
うに作用して不快感を生じさせやすいという問題点もあ
る。
By the way, with respect to the heat ray reflective glass having the glass surface coated with a film having a high reflectance, the sunlight reflected in the daytime may cause a reflected light obstacle in the vicinity of the building, so that the interior lighting at night. Therefore, there is also a problem that the glass acts like a mirror and tends to cause discomfort.

【0033】この点、本発明に使用する被膜は、可視光
域ないし近赤外域において高い反射率を有することを必
要とせず放射率が低ければ足りるため、被膜を形成した
主表面の反射率を低く抑えることも可能である。例え
ば、実施例1−2および実施例1−4〜実施例1−9に
ついては、被膜を形成したガラス面の反射率(室内側の
可視光反射率)は10%以下に抑制されている。さら
に、実施例1−2および実施例1−4〜実施例1−9に
ついては、被膜を形成したガラス面の反射率(室内側の
可視光反射率)は6%以下に抑制され、ガラス単板のみ
の反射率を下回っており、いわゆる反射防止効果をも有
している。
In this respect, the coating used in the present invention does not need to have a high reflectance in the visible light region or the near-infrared region, and a low emissivity is sufficient, so that the reflectance of the main surface on which the coating is formed is reduced. It is possible to keep it low. For example, in Example 1-2 and Examples 1-4 to 1-9, the reflectance of the glass surface on which the coating is formed (the visible light reflectance on the indoor side) is suppressed to 10% or less. Furthermore, in Example 1-2 and Example 1-4 to Example 1-9, the reflectance of the glass surface on which the coating was formed (visible light reflectance on the indoor side) was suppressed to 6% or less. It is lower than the reflectance of the plate alone, and has a so-called antireflection effect.

【0034】また、上記実施例1では、室外側可視光反
射率(被膜を形成していない主表面側の可視光反射率)
も12%以下であり、反射光による障害も生じない程度
に抑制されている。
In the first embodiment, the outdoor visible light reflectance (visible light reflectance on the main surface side on which no coating is formed)
Is also 12% or less, which is suppressed to such an extent that no trouble is caused by reflected light.

【0035】(実施例2)板厚15mmの無色フロート
ガラス上に熱CVD法により薄い下地層を介して弗素を
ドープした膜厚200nmの酸化錫膜を形成した。膜の
面積抵抗の値は約20Ω/スクエアであった。このガラ
スの可視光透過率および日射熱取得率を実施例1と同様
にして測定したところそれぞれ75.9%、64.2%
となり、実施例1と同様、可視光透過率が50%以上、
日射熱取得率が70%以下および可視光透過率が日射熱
取得率以上となった。
Example 2 A 200 nm thick tin oxide film doped with fluorine was formed on a colorless float glass having a plate thickness of 15 mm by a thermal CVD method through a thin underlayer. The value of the sheet resistance of the film was about 20 Ω / square. The visible light transmittance and solar heat gain of this glass were measured in the same manner as in Example 1, and were 75.9% and 64.2%, respectively.
In the same manner as in Example 1, the visible light transmittance is 50% or more,
The solar heat gain rate was 70% or less and the visible light transmittance was higher than the solar heat gain rate.

【0036】また、この酸化錫膜の上部に金属Crまた
はSUSの薄膜を直流マグネトロンスパッタリング法に
より形成し、その上に酸化錫薄膜を直流マグネトロンス
パッタリング法により行った。各層の膜厚は、可視光透
過率が60%〜70%になるように調整した。得られた
試料の可視光透過率、日射熱取得率を測定したところ、
可視光透過率と日射熱取得率の差がさらに広がった。
A thin film of metal Cr or SUS was formed on the tin oxide film by the DC magnetron sputtering method, and a tin oxide thin film was formed thereon by the DC magnetron sputtering method. The film thickness of each layer was adjusted so that the visible light transmittance was 60% to 70%. When the visible light transmittance and the solar heat gain of the obtained sample were measured,
The difference between the visible light transmittance and the solar heat gain was further widened.

【0037】(実施例3)Ag単体の膜を含む数種の多
層膜を厚さ15mmの無色のソーダライムシリカガラス
上に直流マグネトロンスパッタリング法を用いて形成し
た。作成した多層膜の構成の例を表3に示す。下地誘電
体層である酸化亜鉛層は、金属Znのターゲットを用
い、酸素100%の雰囲気のもとで反応性の直流マグネ
トロンスパッタリング法を用いて行った。次に、雰囲気
をArガス100%に変えた後、Ag金属ターゲットを
用いた直流マグネトロンスパッタリング法によりAg膜
を厚さ10nmになるように成膜し、連続して金属Zn
を光学特性に影響しない範囲の薄い厚みに成膜した。な
お、この薄い金属層(Zn)は、この上部にさらに形成
する酸化亜鉛膜によるAg層の劣化を抑制する作用を奏
する。次に、再び酸素100%の雰囲気にしてZnO層
を第1層と同様の直流マグネトロンスパッタリング法に
より成膜した。また、表3の実施例3−2に用いた単板
3−2の被膜の各々の層(ZnO、Ag、Zn)の成膜
は膜厚は異なるが単板3−1について記載した方法と同
じ方法で順次成膜した。これらAg単体の膜を含む被膜
を形成したガラス単板の分光透過率、分光反射率および
赤外反射特性の測定を行った。結果を表3に示す。
Example 3 Several kinds of multilayer films including a film of Ag alone were formed on a colorless soda lime silica glass having a thickness of 15 mm by the DC magnetron sputtering method. Table 3 shows an example of the structure of the formed multilayer film. The zinc oxide layer, which is the underlying dielectric layer, was formed by using a metallic Zn target and using a reactive DC magnetron sputtering method in an atmosphere of 100% oxygen. Next, after changing the atmosphere to 100% Ar gas, an Ag film was formed to a thickness of 10 nm by a DC magnetron sputtering method using an Ag metal target, and metal Zn was continuously formed.
Was formed into a thin film having a thickness that does not affect the optical characteristics. The thin metal layer (Zn) has an effect of suppressing deterioration of the Ag layer due to the zinc oxide film further formed on the thin metal layer (Zn). Next, a ZnO layer was formed again in the atmosphere of 100% oxygen by the same DC magnetron sputtering method as the first layer. In addition, although the film thickness of each layer (ZnO, Ag, Zn) of the film of the veneer plate 3-2 used in Example 3-2 in Table 3 is different from the method described for the veneer plate 3-1. The films were sequentially formed by the same method. The spectral transmittance, the spectral reflectance and the infrared reflection characteristic of the glass single plate on which the coating film containing the Ag simple substance film was formed were measured. The results are shown in Table 3.

【0038】[0038]

【表3】 [Table 3]

【0039】また、Ag単板の膜を含む被膜は単板で使
用できるだけの耐久性に欠けるため、被膜を形成した主
表面を室内に向けて室外側ガラス11とし、厚さ3mm
の無色のソーダライムシリカガラスを室内側ガラス12
として厚さ12mmの乾燥空気の層を密封した複層ガラ
ス13を作製した。この複層ガラスの光学特性および日
射熱取得率についても測定した。結果を表3に併せて示
す。
Further, since the coating including the Ag single plate film lacks the durability enough to be used as a single plate, the main surface on which the film is formed faces the room to form the outdoor glass 11, and the thickness is 3 mm.
The colorless soda lime silica glass of the indoor glass 12
As a result, a multi-layer glass 13 having a thickness of 12 mm and a layer of dry air sealed therein was produced. The optical characteristics and solar heat gain of this double glazing were also measured. The results are also shown in Table 3.

【0040】表3には、実施例2による板厚15mmの
無色フロートガラス上に熱CVD法により弗素をドープ
した酸化錫膜をコーティングした熱線遮蔽ガラスおよび
この熱線遮蔽ガラスを図4のように複層化した複層ガラ
スについても特性を示す。
Table 3 shows a heat ray-shielding glass obtained by coating a tin oxide film doped with fluorine by a thermal CVD method on a colorless float glass having a thickness of 15 mm according to Example 2 and the heat ray-shielding glass as shown in FIG. It also shows the properties of the laminated glass.

【0041】表3において、例えば、複層3−2は比較
例5の複層ガラスよりも可視光透過率は10%低下する
ものの日射熱取得率は24%低下している。表3の一番
右側の欄にはガラスに吸収された日射エネルギーが室内
に取り込まれる割合を示す数値である。この数値の比較
によっても各実施例において本発明の効果が顕著に現れ
ていることがわかる。
In Table 3, for example, the multilayer 3-2 has a visible light transmittance of 10% lower than that of the multilayer glass of Comparative Example 5, but the solar heat gain coefficient is 24% lower. The rightmost column of Table 3 is a numerical value indicating the ratio of the solar energy absorbed by the glass taken into the room. The comparison of these numerical values also reveals that the effects of the present invention are remarkably exhibited in each of the examples.

【0042】[0042]

【発明の効果】本発明によれば、可視光透過性を実用上
支障が生じるほど低下させることなく日射熱取得率の低
いガラスを提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a glass having a low solar heat gain rate without deteriorating the visible light transmittance so as to cause a practical problem.

【0043】なお、熱線遮蔽ガラスはビル建築物に多く
使用されるが、高所で使用されるガラスには耐風圧上必
要とされる厚さがあり、一般的には、例えば、地上高3
0mの窓については、3m2 以上のガラス窓には厚さ8
mm以上のガラスが、7m2以上のガラス窓には厚さ1
5mm以上のガラスが必要とされている。従って、本発
明に係る熱線遮蔽ガラスは、特に、高所で使用する際に
必要とされる耐風圧性能をも備えつつ、日射遮蔽効果等
を有するものである。
Heat-shielding glass is often used in building structures, but glass used in high places has a thickness required for wind pressure resistance. Generally, for example, the height above ground is 3
For a 0 m window, a glass window of 3 m 2 or more has a thickness of 8
Glass with a thickness of mm or more, and a glass window with a thickness of 7 m 2 or more has a thickness of 1
A glass of 5 mm or more is required. Therefore, the heat ray-shielding glass according to the present invention has a solar radiation shielding effect and the like while also having the wind pressure resistance performance required when used at a high place.

【0044】[0044]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る熱線遮蔽ガラスの一実施例の模
式的断面図。
FIG. 1 is a schematic cross-sectional view of one embodiment of a heat ray shielding glass according to the present invention.

【図2】 本発明に係る熱線遮蔽ガラスの被膜の一実施
例を示す図。
FIG. 2 is a diagram showing an example of a film of a heat ray shielding glass according to the present invention.

【図3】 本発明に係る熱線遮蔽複層ガラスの一実施例
の模式的断面図。
FIG. 3 is a schematic cross-sectional view of an example of the heat ray-shielding double-layer glass according to the present invention.

【図4】 本発明に係る熱線遮蔽複層ガラスの他の一実
施例の模式的断面図。
FIG. 4 is a schematic cross-sectional view of another embodiment of the heat ray-shielding double glazing according to the present invention.

【図5】 本発明に係る熱線遮蔽合わせガラスの一実施
例の模式的断面図。
FIG. 5 is a schematic cross-sectional view of an embodiment of a heat ray-shielding laminated glass according to the present invention.

【図6】 ソーダライムシリカガラスの分光透過特性を
示す図。
FIG. 6 is a diagram showing spectral transmission characteristics of soda lime silica glass.

【符号の簡単な説明】[Simple explanation of symbols]

1、1a、1b:ガラス基板、2:被膜、3、4、1
4、24、34:ガラス基板の主表面、5:下地誘電体
膜、6:Ag膜、7:保護誘電体膜、8:スペーサー、
9:シール剤、10:中間膜
1, 1a, 1b: glass substrate, 2: coating film, 3, 4, 1
4, 24, 34: main surface of glass substrate, 5: base dielectric film, 6: Ag film, 7: protective dielectric film, 8: spacer,
9: Sealant, 10: Intermediate film

フロントページの続き (72)発明者 村田 健治 大阪市中央区道修町3丁目5番11号 日本 板硝子株式会社内Front page continuation (72) Inventor Kenji Murata 3-5-11 Doshumachi, Chuo-ku, Osaka City Japan Sheet Glass Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板とその主表面の一方に形成し
た被膜とからなり、前記ガラス基板の可視光透過率を5
5%以上および日射吸収率を15%以上ならびに前記被
膜の垂直放射率を0.3以下として、可視光透過率が5
0%以上であって前記被膜を形成した主表面とは反対側
の主表面からの入射についての日射熱取得率以上および
この日射熱取得率が70%以下としたことを特徴とする
熱線遮蔽ガラス。
1. A glass substrate and a coating film formed on one of its main surfaces, the glass substrate having a visible light transmittance of 5
When the visible light transmittance is 5% or more, the solar radiation absorptivity is 15% or more, and the vertical emissivity of the coating is 0.3 or less.
A heat ray-shielding glass which is 0% or more and has a solar radiation heat gain rate of not less than 70% for incident from a main surface opposite to the main surface on which the coating is formed. .
【請求項2】 前記ガラス基板は、厚さ8mm以上のソ
ーダライムシリカガラスからなることを特徴とする請求
項1に記載の熱線遮蔽ガラス。
2. The heat ray shielding glass according to claim 1, wherein the glass substrate is made of soda lime silica glass having a thickness of 8 mm or more.
【請求項3】 前記ガラス基板は、日射吸収成分として
微量着色成分を添加したソーダライムシリカガラスから
なることを特徴とする請求項1または請求項2に記載の
熱線遮蔽ガラス。
3. The heat ray shielding glass according to claim 1, wherein the glass substrate is made of soda lime silica glass to which a trace coloring component is added as a solar radiation absorbing component.
【請求項4】 前記被膜は、表面抵抗値が40Ω/スク
エア以下であることを特徴とする請求項1〜3のいずれ
かに記載の熱線遮蔽ガラス。
4. The heat ray-shielding glass according to claim 1, wherein the coating film has a surface resistance value of 40 Ω / square or less.
【請求項5】 前記被膜は、Ag、Au、Cu、Alの
うちの少なくとも一つを主成分とする導電性被膜を含む
多層膜または導電性酸化物を主成分とする単層膜もしく
はこの単層膜を含む多層膜からなることを特徴とする請
求項1〜4のいずれかに記載の熱線遮蔽ガラス。
5. The coating film is a multilayer film including a conductive coating film containing at least one of Ag, Au, Cu, and Al as a main component, a single layer film containing a conductive oxide as a main component, or a single layer film containing a conductive oxide. The heat ray-shielding glass according to claim 1, wherein the heat ray-shielding glass comprises a multilayer film including a layer film.
【請求項6】 前記被膜を形成した主表面側の可視光反
射率は、10%以下であることを特徴とする請求項1〜
5のいずれかに記載の熱線遮蔽ガラス。
6. The visible light reflectance on the main surface side on which the coating is formed is 10% or less.
The heat ray shielding glass according to any one of 5 above.
【請求項7】 複数枚のガラス板を隣接するものどうし
が互いに離間した状態でこれらのガラス板の周辺を気密
にシールして接着一体化した複層ガラス、または複数枚
のガラス板をこれらのガラス板相互の接合面に配置され
たプラスチック中間膜により接着一体化した合わせガラ
スからなるガラス複合体であって、前記複数枚のガラス
板のうちの少なくとも一枚を、ガラス基板とその主表面
の一方に形成した被膜とからなり、前記ガラス基板の可
視光透過率を55%以上および日射吸収率を15%以上
ならびに前記被膜の垂直放射率を0.3以下として、可
視光透過率が50%以上であって前記被膜を形成した主
表面とは反対側からの入射についての日射熱取得率以上
およびこの日射熱取得率が70%以下である熱線遮蔽ガ
ラスとしたことを特徴とする熱線遮蔽ガラス複合体。
7. A multi-layer glass in which a plurality of glass plates are adjacent to each other and are airtightly sealed and adhered integrally with each other in a state where they are separated from each other, or a plurality of glass plates A glass composite consisting of laminated glass adhered and integrated by a plastic intermediate film arranged on the bonding surface of the glass plates, wherein at least one of the plurality of glass plates comprises a glass substrate and its main surface. The visible light transmittance of the glass substrate is 55% or more, the solar absorptivity is 15% or more, and the vertical emissivity of the film is 0.3 or less, and the visible light transmittance is 50%. The heat ray-shielding glass having the above solar radiation heat gain rate of 70% or less and the solar radiation heat gain rate of incidence from the side opposite to the main surface on which the coating is formed is specified. Heat-shielding glass composite to be used.
【請求項8】 複数枚のガラス板を隣接するものどうし
が互いに離間した状態でこれらのガラス板の周辺を気密
にシールして接着一体化した複層ガラス、または複数枚
のガラス板をこれらのガラス板相互の接合面に配置され
たプラスチック中間膜により接着一体化した合わせガラ
スからなるガラス複合体であって、 前記複数枚のガラス板が有する主表面のうちの少なくと
も一つに垂直放射率が0.3以下である被膜を形成し、
このガラス複合体の最外側主表面のいずれか一方から入
射する日射エネルギーが前記被膜を形成した主表面のう
ちのいずれか一つに至るまでに15%以上吸収され、前
記被膜を形成しない状態における前記ガラス複合体の可
視光透過率を55%以上として、可視光透過率が50%
以上であって前記日射エネルギーと同方向からの入射に
ついての日射熱取得率以上およびこの日射熱取得率が7
0%以下としたことを特徴とする熱線遮蔽ガラス複合
体。
8. A multi-layer glass, or a plurality of glass plates, in which a plurality of glass plates are adjacent to each other and are airtightly sealed and adhered integrally with each other in a state in which adjacent glass plates are separated from each other. A glass composite consisting of laminated glass adhered and integrated by a plastic interlayer disposed on the bonding surface of the glass plates, wherein the vertical emissivity is present on at least one of the main surfaces of the plurality of glass plates. Forming a film of 0.3 or less,
In the state where the solar energy incident from any one of the outermost main surfaces of this glass composite is absorbed by 15% or more before reaching any one of the main surfaces on which the coating film is formed, the solar energy is not formed. When the visible light transmittance of the glass composite is 55% or more, the visible light transmittance is 50%.
The solar heat energy acquisition rate is equal to or more than the solar heat energy acquisition rate for the incident from the same direction as the solar energy and is 7 or more.
A heat ray-shielding glass composite characterized by being 0% or less.
JP7062408A 1994-03-30 1995-03-22 Heat shielding glass and its composite material Pending JPH07315889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7062408A JPH07315889A (en) 1994-03-30 1995-03-22 Heat shielding glass and its composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-60544 1994-03-30
JP6054494 1994-03-30
JP7062408A JPH07315889A (en) 1994-03-30 1995-03-22 Heat shielding glass and its composite material

Publications (1)

Publication Number Publication Date
JPH07315889A true JPH07315889A (en) 1995-12-05

Family

ID=26401618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7062408A Pending JPH07315889A (en) 1994-03-30 1995-03-22 Heat shielding glass and its composite material

Country Status (1)

Country Link
JP (1) JPH07315889A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024294A1 (en) * 1995-12-28 1997-07-10 Nippon Sheet Glass Co., Ltd. Double-glazing unit
JPH10120447A (en) * 1996-10-15 1998-05-12 Nippon Sheet Glass Co Ltd Multiple glass
JP2002533284A (en) * 1998-12-21 2002-10-08 カーディナル アイジー カンパニー Antifouling coating on glass surface
JP2004217432A (en) * 2003-01-09 2004-08-05 Asahi Glass Co Ltd Laminate and structure
WO2004113064A1 (en) * 2003-06-20 2004-12-29 Nippon Sheet Glass Co., Ltd. Member having photocatalytic activity and multilayered glass
JP2008545465A (en) * 2005-05-26 2008-12-18 サン−ゴバン グラス フランス Insulated glazing unit for open-sealed leaves, especially for frozen sealed containers
US7612015B2 (en) 2001-12-21 2009-11-03 Nippon Sheet Glass Company, Limited Member having photocatalytic function and method for manufacture thereof
JP2010513197A (en) * 2006-12-22 2010-04-30 フーテック・ゲー・エム・ベー・ハー Insulating glass material, production method and use thereof
JP2011051879A (en) * 2009-08-07 2011-03-17 Bridgestone Corp Heat ray shielding multilayered glass
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
WO2013191285A1 (en) * 2012-06-21 2013-12-27 日東電工株式会社 Light transmitting substrate with infrared light reflecting function
JP2014508094A (en) * 2011-03-03 2014-04-03 ガーディアン・インダストリーズ・コーポレーション Barrier layer containing Ni-containing ternary alloy, coated article including barrier layer, and production method thereof
CN103787596A (en) * 2014-01-24 2014-05-14 杭州电子科技大学 Heat-insulating double-layered glass with high visible light transmittance
JP2014513028A (en) * 2011-03-03 2014-05-29 ガーディアン・インダストリーズ・コーポレーション Barrier layer containing Ni-containing alloy and / or other metal alloy, double barrier layer, coated article containing double barrier layer, and production method thereof
JP2016504253A (en) * 2012-11-19 2016-02-12 ガーディアン インダストリーズ コーポレイションGuardian Industries Corp. Coated product having a low emissivity coating comprising a tin oxide containing layer with additional metal
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
WO2022071511A1 (en) * 2020-09-30 2022-04-07 国立大学法人京都大学 Heat shield device, heat shield film, and heat shielding composition

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024294A1 (en) * 1995-12-28 1997-07-10 Nippon Sheet Glass Co., Ltd. Double-glazing unit
JPH10120447A (en) * 1996-10-15 1998-05-12 Nippon Sheet Glass Co Ltd Multiple glass
JP2002533284A (en) * 1998-12-21 2002-10-08 カーディナル アイジー カンパニー Antifouling coating on glass surface
US7612015B2 (en) 2001-12-21 2009-11-03 Nippon Sheet Glass Company, Limited Member having photocatalytic function and method for manufacture thereof
JP2004217432A (en) * 2003-01-09 2004-08-05 Asahi Glass Co Ltd Laminate and structure
WO2004113064A1 (en) * 2003-06-20 2004-12-29 Nippon Sheet Glass Co., Ltd. Member having photocatalytic activity and multilayered glass
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
USRE44155E1 (en) 2004-07-12 2013-04-16 Cardinal Cg Company Low-maintenance coatings
JP2008545465A (en) * 2005-05-26 2008-12-18 サン−ゴバン グラス フランス Insulated glazing unit for open-sealed leaves, especially for frozen sealed containers
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
JP2010513197A (en) * 2006-12-22 2010-04-30 フーテック・ゲー・エム・ベー・ハー Insulating glass material, production method and use thereof
JP2011051879A (en) * 2009-08-07 2011-03-17 Bridgestone Corp Heat ray shielding multilayered glass
JP2014513028A (en) * 2011-03-03 2014-05-29 ガーディアン・インダストリーズ・コーポレーション Barrier layer containing Ni-containing alloy and / or other metal alloy, double barrier layer, coated article containing double barrier layer, and production method thereof
US9624127B2 (en) 2011-03-03 2017-04-18 Guardian Industries Corp. Barrier layers comprising Ni-inclusive alloys and/or other metallic alloys, double barrier layers, coated articles including double barrier layers, and methods of making the same
JP2014508094A (en) * 2011-03-03 2014-04-03 ガーディアン・インダストリーズ・コーポレーション Barrier layer containing Ni-containing ternary alloy, coated article including barrier layer, and production method thereof
US9822033B2 (en) 2011-03-03 2017-11-21 Guardian Glass, LLC Barrier layers comprising Ni-inclusive alloys and/or other metallic alloys, double barrier layers, coated articles including double barrier layers, and methods of making the same
US9556067B2 (en) 2011-03-03 2017-01-31 Guardian Industries Corp. Barrier layers comprising Ni-inclusive alloys and/or other metallic alloys, double barrier layers, coated articles including double barrier layers, and methods of making the same
US9302935B2 (en) 2011-03-03 2016-04-05 Guardian Industries Corp. Barrier layers comprising Ni-inclusive alloys and/or other metallic alloys, double barrier layers, coated articles including double barrier layers, and methods of making the same
US9434643B2 (en) 2011-03-03 2016-09-06 Guardian Industries Corp. Barrier layers comprising Ni-inclusive alloys and/or other metallic alloys, double barrier layers, coated articles including double barrier layers, and methods of making the same
JPWO2013191285A1 (en) * 2012-06-21 2016-05-26 日東電工株式会社 Translucent substrate with infrared reflection function
US9477023B2 (en) 2012-06-21 2016-10-25 Nitto Denko Corporation Visible light-transmissive and infrared-reflective substrate
WO2013191285A1 (en) * 2012-06-21 2013-12-27 日東電工株式会社 Light transmitting substrate with infrared light reflecting function
KR20150023769A (en) * 2012-06-21 2015-03-05 닛토덴코 가부시키가이샤 Light transmitting substrate with infrared light reflecting function
JP2016504253A (en) * 2012-11-19 2016-02-12 ガーディアン インダストリーズ コーポレイションGuardian Industries Corp. Coated product having a low emissivity coating comprising a tin oxide containing layer with additional metal
CN103787596A (en) * 2014-01-24 2014-05-14 杭州电子科技大学 Heat-insulating double-layered glass with high visible light transmittance
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11325859B2 (en) 2016-11-17 2022-05-10 Cardinal Cg Company Static-dissipative coating technology
WO2022071511A1 (en) * 2020-09-30 2022-04-07 国立大学法人京都大学 Heat shield device, heat shield film, and heat shielding composition

Similar Documents

Publication Publication Date Title
US11691910B2 (en) Solar control coating with high solar heat gain coefficient
US7887921B2 (en) Anti-reflective, thermally insulated glazing articles
RU2656284C2 (en) Substrate provided with a stack having thermal properties
JPH07315889A (en) Heat shielding glass and its composite material
KR101455201B1 (en) Multiple glazing unit having increased selectivity and use of a substrate for producing such a galzing unit
JP5989802B2 (en) Decompression double-glazed glass panel
US6413643B1 (en) Sunlight shielding translucent glass panel and sunlight shielding translucent multilayer glass panel assembly
KR20110104946A (en) Substrate provided with a multilayer stack having thermal properties and an absorbent layers
WO2012115111A1 (en) Laminate
JP2020514240A (en) Low emissivity coating for glass substrates
JP2000302486A (en) Sunlight screening light transmission plate and sunlight screening multiple layer light transmission plate using the same
JP2882728B2 (en) Thermal barrier glass and double glazing using it
JP2012206920A (en) Double-glazed glass
KR20170105904A (en) Low-emissivity glass
JP5463686B2 (en) Glass laminate for windows
KR20190128917A (en) Clear substrate provided with multilayer coating and insulation glazing unit including the same
RU2733552C2 (en) Substrate, having a thin-layer system with thermal properties, comprising at least one layer of nickel oxide
JPH10236848A (en) Low-emissivity plate glass
KR102433169B1 (en) Functional building material including low-emissivity coat for windows and insulated glazing
US20200317566A1 (en) Solar-control glazing
JP2012036076A (en) Double glazing, and window sash using the same
JP2020055736A (en) Adiabatic three-layered multiple glass for window glass
KR102531278B1 (en) Functional building material including low-emissivity coat for windows and insulated glazing
JP7266020B2 (en) double glazed panel
JP2023108599A (en) glass body