WO2019176631A1 - Cutting machine and cutting method - Google Patents

Cutting machine and cutting method Download PDF

Info

Publication number
WO2019176631A1
WO2019176631A1 PCT/JP2019/008527 JP2019008527W WO2019176631A1 WO 2019176631 A1 WO2019176631 A1 WO 2019176631A1 JP 2019008527 W JP2019008527 W JP 2019008527W WO 2019176631 A1 WO2019176631 A1 WO 2019176631A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
cutting
tool path
machining
radius correction
Prior art date
Application number
PCT/JP2019/008527
Other languages
French (fr)
Japanese (ja)
Inventor
岳大 永山
和宏 菅野
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Priority to JP2020506416A priority Critical patent/JP7129469B2/en
Publication of WO2019176631A1 publication Critical patent/WO2019176631A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the present disclosure relates to a cutting machine such as a laser processing machine and a cutting method for processing a workpiece by irradiating a laser beam.
  • a laser beam machine for processing a workpiece by irradiating a laser beam and manufacturing a product having a predetermined shape is widely used.
  • the laser processing machine cuts a workpiece by tool diameter correction in consideration of a cutting amount by a laser beam so that a product has a predetermined shape.
  • Patent Document 1 describes an example of a laser processing machine that cuts a workpiece by tool diameter correction.
  • the laser beam in a state in which the relative position between a nozzle for emitting a laser beam and a processing table on which a processing target is placed is fixed, the laser beam usually has a circular shape, and thus the cutting trace also has a circular shape. .
  • the cutting trace Even in a machining center provided with a plurality of types of rotary tools, the cutting trace usually has a circular shape when the position coordinates of the rotary tools are fixed.
  • a cutting trace in a state where the position coordinates at which high-pressure water is injected are fixed. Therefore, the tool diameter correction is based on the premise that the cutting trace in a state where the position coordinates of the cutting tool such as the nozzle, the rotary tool, and the high-pressure water are fixed is circular.
  • a cutting machine such as a laser processing machine sets the radius of the cutting trace by the cutting tool or the half width of the cutting trace as the tool radius correction amount, and shifts the workpiece by shifting the tool radius correction amount. Controls the trajectory when cutting.
  • the tool diameter correction does not correspond to a case where the cutting trace is non-circular.
  • Embodiments provide a cutting machine and a cutting method capable of accurately correcting the tool diameter of a cutting tool even if the cutting trace in a state where the position coordinates of the cutting tool are fixed is non-circular.
  • the purpose is to do.
  • the machine includes a processing machine main body that cuts a processing object and an NC device that controls the processing machine main body, and the NC apparatus cuts the processing object.
  • a tool radius correction amount calculation unit that generates radius correction information, and a machining path calculation unit that generates a tool radius correction control signal including a cutting correction condition based on the machining program, the machining condition, and the tool radius correction information
  • a drive control unit that generates a drive control signal for controlling the processing machine main body based on the tool radius correction control signal, and the processing machine main body changes a relative position with respect to the processing object.
  • a machining unit that cuts the workpiece and a tool path control unit that controls a tool path that corresponds to the cutting tool and has a non-circular shape based on the drive control signal.
  • the tool path control information set to control the tool path is included in the processing conditions.
  • the tool radius correction amount calculation unit generates the tool radius correction information for correcting the tool radius of the tool path
  • the processing machine main body is configured to generate the tool to be processed based on the drive control signal.
  • a cutting machine is provided that controls the tool path so that the tool path becomes a target tool diameter at a position corresponding to a corner of the final processed product.
  • Tool radius correction information for correcting a tool radius of a cutting tool for cutting the workpiece is generated, and a tool radius correction control signal is generated based on the machining program, the machining conditions, and the tool radius correction information. And generating a drive control signal based on the tool radius correction control signal, and cutting a portion corresponding to a corner of the final processed product with respect to the processing object according to the processing condition.
  • the tool for correcting the tool radius of the tool path when tool path control information corresponding to the cutting tool and set to control a tool path having a non-circular shape is included.
  • the tool diameter of the cutting tool can be accurately corrected even if the cutting trace in a state where the position coordinates of the cutting tool are fixed is non-circular. it can.
  • FIG. 1 is a diagram illustrating an overall configuration example of a cutting machine according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a tool trajectory.
  • FIG. 3 is a diagram illustrating a configuration example of the tool path control unit.
  • FIG. 4 is a diagram showing the relationship between the corners of the final processed product and the tool trajectory.
  • FIG. 5 is a diagram showing the relationship between the corners of the final processed product and the tool trajectory.
  • FIG. 6 is a diagram showing the relationship between the corners of the final processed product and the tool trajectory.
  • FIG. 7 is a diagram showing the relationship between the corners of the final processed product and the tool trajectory.
  • FIG. 8A is a flowchart illustrating an example of a cutting method according to an embodiment.
  • FIG. 8B is a flowchart illustrating an example of a cutting method according to an embodiment.
  • the cutting machine 1 includes a laser oscillator 10, a machine body 100, and an NC device (numerical control device) 200.
  • the NC device 200 controls the laser oscillator 10 and the processing machine main body 100.
  • the laser oscillator 10 generates and emits a laser beam.
  • the laser beam emitted from the laser oscillator 10 is transmitted to the processing machine main body 100 through the process fiber 11.
  • the processing machine main body 100 cuts the processing target object W by irradiating the processing target object W with the laser beam and changing the relative position between the processing target object W and the beam spot of the laser beam.
  • the laser oscillator 10 a laser oscillator that amplifies excitation light emitted from a laser diode and emits a laser beam having a predetermined wavelength, or a laser oscillator that directly uses a laser beam emitted from the laser diode is preferable.
  • the laser oscillator 10 is, for example, a solid laser oscillator, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator (DDL oscillator).
  • the laser oscillator 10 emits a 1 ⁇ m band laser beam having a wavelength of 900 nm to 1100 nm.
  • the fiber laser oscillator emits a laser beam having a wavelength of 1060 nm to 1080 nm
  • the DDL oscillator emits a laser beam having a wavelength of 910 nm to 950 nm.
  • the processing machine main body 100 includes a processing table 101 on which a workpiece W is mounted, a portal X-axis carriage 102, a Y-axis carriage 103, a processing unit 104, and a tool path control unit 300.
  • the workpiece W is a sheet metal made of stainless steel, for example.
  • the workpiece may be an iron-based sheet metal other than stainless steel, or may be a sheet metal such as aluminum, an aluminum alloy, or copper steel.
  • the laser beam emitted from the laser oscillator 10 is transmitted to the processing unit 104 of the processing machine main body 100 through the process fiber 11.
  • the tool path control unit 300 is accommodated in the machining unit 104.
  • the X-axis carriage 102 is configured to be movable on the processing table 101 in the X-axis direction.
  • the Y-axis carriage 103 is configured to be movable in the Y-axis direction orthogonal to the X-axis on the X-axis carriage 102.
  • the X-axis carriage 102 and the Y-axis carriage 103 move to move the processing unit 104 along the surface of the workpiece W in the X-axis direction, the Y-axis direction, or any combination direction of the X-axis and the Y-axis. Acts as a mechanism.
  • the processing machine body 100 may be configured such that the position of the processing unit 104 is fixed and the workpiece W moves. .
  • the processing machine main body 100 only needs to include a moving mechanism that moves the relative position of the processing unit 104 with respect to the surface of the workpiece W.
  • a nozzle 106 is attached to the processing unit 104.
  • a circular opening 105 is formed at the tip of the nozzle 106.
  • the laser beam transmitted to the processing unit 104 is emitted from the opening 105 of the nozzle 106 and irradiated onto the processing target W.
  • the processing unit 104 is supplied with an assist gas such as nitrogen or air.
  • the assist gas may be oxygen, and the mixing ratio can be arbitrarily set depending on whether the purpose is to suppress oxidation or use heat of oxidation reaction.
  • the workpiece W is irradiated with the laser beam from the opening 105, and the assist gas is sprayed from the opening 105 to the workpiece W.
  • the assist gas discharges the melt within the kerf width in which the workpiece W is melted.
  • the tool trajectory control unit 300 functions as a beam vibration mechanism that vibrates the machining unit 104 and emits a laser beam emitted from the opening 105 with a non-circular vibration pattern.
  • the tool trajectory control unit 300 causes the laser beam to vibrate in a non-circular vibration pattern, so that the processing unit 104 cuts the workpiece W using the non-circular tool trajectory.
  • a specific configuration example of the tool path control unit 300 and a method by which the tool path control unit 300 vibrates the beam spot of the laser beam with a non-circular vibration pattern will be described later.
  • the tool trajectory is a figure drawn by a beam trajectory formed by beam vibration that is vibrated with a non-circular vibration pattern within a predetermined time, and indicates a vibration tool shape.
  • the circular laser beam itself emitted from the nozzle 106 is a cutting tool
  • the beam radius is the tool diameter correction
  • the tool trajectory of the figure drawn with the vibration pattern is referred to as the cutting tool.
  • the cutting trace when the relative position between the nozzle 106 and the machining table 101 is fixed corresponds to the tool trace.
  • a CAD (Computer Aided Design) device 20 generates product shape data (CAD data) SD based on product shape information including dimensions and shapes of a final processed product obtained by cutting the workpiece W.
  • CAM Computer aided manufacturing
  • NC data machining program
  • the CAM device 21 generates a machining program (NC data) PP for the cutting machine 1 to cut the workpiece W based on the product shape data SD, and designates a machining condition CP. That is, the machining program PP and the machining condition CP are set based on product shape information including the size and shape of the final processed product.
  • the machining program PP includes G41 (left tool radius correction) for controlling the locus of the cutting tool by shifting the tool radius correction amount to the left side in the cutting progress direction, or the tool diameter on the right side in the cutting progress direction.
  • G41 left tool radius correction
  • G42 right tool diameter correction
  • the CAM device 21 designates a tool locus corresponding to the cutting tool as the machining condition CP.
  • the tool path has, for example, a non-circular shape.
  • the machining condition CP includes tool path control information in which whether or not to control the tool path when cutting a portion corresponding to the corner portion of the final processed product with respect to the workpiece W is set. Yes.
  • the tool path By controlling the tool path, the tool diameter of the tool path can be changed.
  • a tool path control range and a tool path control ratio are set in the tool path control information.
  • the CAM device 21 can set the tool path control range and the tool path control ratio to arbitrary values, respectively.
  • the tool trajectory control range is a range for controlling the tool trajectory, and is a range from a position where the tool trajectory control is started to a position corresponding to the corner of the final processed product.
  • the tool path control ratio is a ratio for controlling the tool diameter of the tool path. The tool diameter of the tool path is changed according to the tool path control ratio.
  • the processing condition CP includes processing target information in which material parameters such as the material and thickness of the processing target W are specified.
  • the machining conditions CP include machining parameters such as laser beam output, machining speed, diameter (nozzle diameter) of the opening 105 of the nozzle 106, and cutting gas information such as assist gas conditions. That is, the machining condition CP includes tool path control information, machining target information, and cutting information.
  • the CAM device 21 outputs the machining program PP and the machining condition CP to the NC device 200 of the cutting machine 1.
  • the NC device 200 controls the laser oscillator 10 based on the machining program PP and the machining condition CP.
  • the NC device 200 moves the nozzle 106 to a target position by controlling the processing machine main body 100 and driving the X-axis carriage 102 and the Y-axis carriage 103 based on the processing program PP and the processing condition CP.
  • the NC apparatus 200 controls the beam spot locus of the laser beam emitted from the opening 105 of the nozzle 106 by controlling the tool locus control unit 300 based on the machining program PP and the machining condition CP.
  • the beam spot trajectory corresponds to the tool trajectory.
  • the NC device 200 includes a tool radius correction amount calculation unit 201, a machining locus calculation unit 202, and a drive control unit 203.
  • a machining program PP and a machining condition CP are input from the CAM device 21 to the tool radius correction amount computing unit 201 and the machining locus computing unit 202.
  • the tool radius correction amount calculation unit 201 generates tool radius correction information TC for correcting the tool radius of the cutting tool for cutting the workpiece W based on the machining program PP and the machining condition CP.
  • the tool radius correction information TC will be described with reference to FIG.
  • FIG. 2 shows a locus (tool locus) of a beam spot of a laser beam irradiated from the inside of the nozzle 106 to the workpiece W through the opening 105.
  • the tool radius correction amount calculation unit 201 recognizes the tool path TP included in the machining condition CP.
  • the tool radius correction amount calculation unit 201 generates tool radius correction information TC based on the recognized tool trajectory TP, the trajectory NP of the nozzle 106 (hereinafter referred to as the nozzle trajectory NP) and the cutting progress direction DT. .
  • the tool path TP corresponds to a cutting tool for cutting the workpiece W.
  • the shape of the tool trajectory TP corresponds to the shape of the cutting tool.
  • the tool path TP has, for example, a non-circular shape.
  • FIG. 2 indicates a beam spot of a laser beam that moves on the tool trajectory TP.
  • FIG. 2 shows a tool locus TP having a vibration pattern in which the beam spot BS vibrates in the rotation direction as an example of a non-circular shape.
  • the vibration pattern of the tool locus TP may be a free shape including a non-circular shape.
  • the tool trajectory TP corresponds to the trajectory of the beam spot BS of the laser beam.
  • the beam spot BS rotates on the tool trajectory TP.
  • the arrows shown in FIG. 2 indicate the direction of rotation of the beam spot BS.
  • FIG. 2 shows a state in which the beam spot BS rotates in the counterclockwise direction, the beam spot BS may rotate in the clockwise direction.
  • the tool radius correction information TC includes a tool path TP, a control center point CL serving as a reference for controlling the tool path TP, a center point CN of the nozzle 106 in the nozzle path NP (hereinafter referred to as a nozzle center point CN), and including.
  • the control center point CL is the laser beam center in the case of the tool diameter correction in the conventional laser processing.
  • the cutting line is the cutting tool and the product. This is the center position for controlling the cutting tool with respect to the cutting line (cutting position) when the boundary is set.
  • the nozzle locus NP is specifically the locus of the nozzle center point CN.
  • the center point CN of the nozzle 106 is coincident with the center point of the opening 105.
  • FIG. 2 shows a case where the control center point CL and the nozzle center point CN coincide with each other.
  • the tool radius correction information TC includes tool radius correction values MVL and MVR.
  • the tool radius correction values MVL and MVR correspond to the distances from the control center point CL (nozzle center point CN) to the machining surface formation positions MPL and MPR.
  • the machining surface formation positions MPL and MPR are positions where a machining surface is formed on the workpiece W when the tool path TP moves in the cutting progress direction DT. That is, the machining surface formation positions MPL and MPR are positions where the tool diameter is maximum in the tool path TP.
  • the tool radius correction value MVL is a parameter in the left tool radius correction
  • the tool radius correction value MVR is a parameter in the right tool radius correction.
  • the traveling direction DTx indicates a case where the cutting process proceeds in the x direction.
  • the traveling direction DTy indicates a case where the cutting process proceeds in the y direction.
  • Symbols MVLx and MVRx indicate tool radius correction values in the traveling direction DTx.
  • Symbols MVLy and MVRy indicate tool radius correction values in the traveling direction DTy.
  • Symbols MPLx and MPRx indicate machining surface formation positions where a machining surface is formed on the workpiece W when the tool trajectory TP moves in the traveling direction DTx.
  • Symbols MPLy and MPRy indicate positions where a machining surface is formed on the workpiece W when the tool trajectory TP moves in the traveling direction DTy.
  • the tool radius correction values MVLx and MVLy, and the machining surface formation positions MPLx and MPLy are parameters in the left tool radius correction.
  • the tool radius correction values MVRx and MVRy and the machining surface formation positions MPRx and MPRy are parameters in the right tool radius correction.
  • the tool radius correction amount calculation unit 201 outputs tool radius correction information TC including correction information for both the left tool radius correction and the right tool radius correction to the machining locus calculation unit 202.
  • the machining track calculation unit 202 receives the machining program PP and the machining condition CP from the CAM device 21, and receives the tool radius correction information TC from the tool radius correction amount calculation unit 201.
  • the machining locus calculation unit 202 translates the G code included in the machining program PP. Note that the machining program PP may include a robot language or the like instead of the G code.
  • the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction based on the translation result.
  • the machining locus calculation unit 202 generates a tool radius correction control signal TS based on the machining program PP, the machining condition CP, the tool radius correction information TC, and the determined cutting correction condition.
  • the machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203.
  • the drive control unit 203 generates a drive control signal CS for controlling the processing machine body 100 based on the tool radius correction control signal TS.
  • the drive control unit 203 outputs a drive control signal CS to the processing machine body 100.
  • the drive control unit 203 drives based on the nozzle locus NP, the tool locus TP, the control center point CL of the tool locus TP, the tool radius correction value MVL, and the machining surface forming position MPL.
  • a control signal CS is generated.
  • the drive control unit 203 performs drive control based on the nozzle locus NP, the tool locus TP, the control center point CL of the tool locus TP, the tool radius correction value MVR, and the machining surface forming position MPR.
  • a signal CS is generated.
  • the drive control unit 203 controls the tool path control unit 300 of the processing machine main body 100 by the drive control signal CS.
  • the tool locus control unit 300 controls the locus of the beam spot BS of the laser beam emitted from the opening 105 of the nozzle 106 based on the drive control signal CS.
  • the tool path control unit 300 is accommodated in the machining unit 104.
  • the tool locus control unit 300 includes a collimator lens 331, a galvano scanner unit 340, a bend mirror 334, and a focusing lens 335.
  • the collimator lens 331 converts the laser beam emitted from the process fiber 11 into parallel light (collimated light).
  • the galvano scanner unit 340 includes a scan mirror 341 (first scan mirror), a drive unit 342 (first drive unit) that rotationally drives the scan mirror 341, a scan mirror 343 (second scan mirror), and a scan. And a driving unit 344 (second driving unit) that rotationally drives the mirror 343.
  • the driving unit 342 can reciprocate the scan mirror 341 in a predetermined direction (for example, the X direction) in a predetermined angle range under the control of the drive control unit 203.
  • the scan mirror 341 reflects the laser beam converted into parallel light by the collimator lens 321 toward the scan mirror 343.
  • the drive unit 344 can drive the scan mirror 343 to reciprocate in a predetermined angle range in a direction (for example, Y direction) different from the drive direction of the scan mirror 341 under the control of the drive control unit 203.
  • the scan mirror 343 reflects the laser beam reflected by the scan mirror 341 toward the bend mirror 334.
  • the bend mirror 334 reflects the laser beam reflected by the scan mirror 343 downward in the Z-axis direction perpendicular to the X-axis and the Y-axis.
  • the focusing lens 335 focuses the laser beam reflected by the bend mirror 334 and irradiates the workpiece W.
  • the galvano scanner unit 340 can make the tool trajectory TP into various non-circular shapes by reciprocatingly vibrating one or both of the scan mirror 341 and the scan mirror 343 at a high speed of, for example, 1000 Hz or more. That is, by converging (condensing) a laser beam having a certain light intensity or more to a plurality of locations per unit time, the tool shape that is in contact with the workpiece W and substantially contributes to machining can be changed into various non-circular shapes. Can be arbitrarily.
  • 4 to 7 show a case where cutting is performed with the left tool radius correction using the tool locus TP.
  • 4 to 6 show a case where the control center point CL coincides with the nozzle center point CN, and
  • FIG. 7 shows a case where the control center point CL does not coincide with the nozzle center point CN.
  • the machining condition CP includes tool path control information in which whether or not the tool path TP is to be controlled when the part corresponding to the corner of the final processed product is cut with respect to the workpiece W is included. It may or may not be included.
  • the tool path control information set to control the tool path TP includes a tool path TP, a tool path control range, and a tool path control ratio.
  • the tool trajectory control range is a range for controlling the tool trajectory, and is a range from a position where the control of the tool trajectory TP is started to a position corresponding to the corner of the final processed product.
  • the tool path control ratio is a ratio for controlling the tool diameter of the tool path TP. The tool diameter of the tool path TP is changed according to the tool path control ratio.
  • FIG. 4 shows a case where the tool path control information is not included in the machining condition CP, or a case where the tool path control information set so as not to control the tool path TP is included in the machining condition CP. .
  • FIG. 4 shows a state in which the nozzle 106 moves in the X direction and further moves in the Y direction.
  • a symbol NP indicated by a one-dot chain line in FIG. 4 indicates a nozzle locus, and also indicates a locus of the control center point CL of the tool locus TP.
  • the tool radius correction amount calculation unit 201 recognizes whether or not the tool path control information is included in the machining condition CP. When it is recognized that the tool path control information is not included in the machining condition CP, the tool radius correction amount calculation unit 201 fixes the tool path TP. Thereby, the tool radius correction values MVL and MVR corresponding to the tool radius of the tool path TP are fixed. The same applies to the case where tool path control information set so as not to control the tool path TP is included in the machining condition CP.
  • the tool radius correction amount calculation unit 201 generates tool radius correction information TC in which the tool path TP and the tool radius correction values MVL and MVR are fixed.
  • the tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
  • the machining locus calculation unit 202 translates the G code included in the machining program PP. Based on the translation result, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction.
  • the machining locus calculation unit 202 determines the tool radius correction control signal TS in which the tool locus TP and the tool radius correction value MVL are fixed based on the tool radius correction information TC. Is generated.
  • the machining locus calculation unit 202 performs tool radius correction control in which the tool locus TP and the tool radius correction value MVR are fixed based on the tool radius correction information TC. A signal TS is generated.
  • the machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203.
  • the drive control unit 203 generates a drive control signal CS based on the tool radius correction control signal TS.
  • the drive control unit 203 controls the processing machine body 100 with a drive control signal CS.
  • the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 to control the nozzle locus NP1. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
  • 100 controls the tool trajectory TP based on the control center point CL so that the machining surface formation position MPLx or MPLy moves along the outline of the final machining product based on the drive control signal CS.
  • the tool radius of the tool path TP is corrected so that the tool radius correction value MVLx or MVLy becomes constant.
  • the corner of the final processed product is formed by the tool diameter of the fixed tool locus TP. Therefore, an uncut area UA is formed at the corner of the final processed product according to the tool diameter of the tool path TP.
  • the tool radius correction amount calculation unit 201 is configured to provide a tool path TP, a control center point CL in the tool path TP, tool diameter correction values MVL and MVR, and machining surface formation positions MPL and MPR.
  • Tool radius correction information TC including
  • Reference numerals SP1, SP2, and SP3 shown in FIGS. 5, 6, and 7 are positions SP at which the control of the tool trajectory TP is started (hereinafter referred to as control start positions SP (SP1, SP2, and SP3). ).
  • Reference numerals KP1, KP2, and KP3 shown in FIGS. 5, 6, and 7 indicate positions KP corresponding to the corners of the final processed product (hereinafter referred to as corner corresponding positions KP (KP1, KP2, and KP3). ).
  • Symbols CD1, CD2, and CD3 shown in FIGS. 5, 6, and 7 indicate a tool path control range CD that controls the tool path TP.
  • the tool path control range CD1 is a range from the control start position SP1 to the corner corresponding position KP1.
  • the tool path control range CD2 is a range from the control start position SP2 to the corner corresponding position KP2.
  • the tool path control range CD3 is a range from the control start position SP3 to the corner corresponding position KP3.
  • the CAM device 21 can set the tool path control ratio CR to an arbitrary value.
  • a method for controlling the tool path TP will be described as a first embodiment, a second embodiment, and a third embodiment with reference to FIGS. 5, 6, and 7.
  • FIG. 5 shows a state where the nozzle 106 moves in the X direction and further moves in the Y direction.
  • a symbol NP1 indicated by a one-dot chain line in FIG. 5 indicates a nozzle locus, and also indicates a locus of the control center point CL of the tool locus TP.
  • FIG. 5 shows a case where the tool path control range CD1 and the tool path control ratio CR1 are set in the tool path control information.
  • the tool path control ratio CR1 corresponds to the tool path control ratio CR described above.
  • FIG. 5 shows a case where the tool path control ratio CR1 is set to be minimum.
  • the case where the tool path control ratio CR1 is the minimum is a case where the tool diameter TDk of the tool path TP at the corner corresponding position KP1 is the beam diameter of the beam spot BS, specifically, the beam waist diameter of the beam spot BS. .
  • the tool path control ratio CR1 is set to 30%. Note that when the workpiece W is cut with a defocused laser beam, the tool diameter TDk of the tool locus TP is the beam diameter of the defocused laser beam.
  • the tool radius correction amount calculation unit 201 determines the tool at the control start position SP1 based on the tool path control ratio CR1. Tool diameter correction for correcting the tool diameter TD of the tool path TP continuously or stepwise in the tool path control range CD1 so that the tool diameter TDs of the path TP becomes the target tool diameter TDk at the corner corresponding position KP1. Information TC is generated. Further, the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLx and MVRx corresponding to the tool radius TD of the tool path TP continuously or stepwise according to the tool path control ratio CR1. TC is generated.
  • the tool radius correction amount calculation unit 201 sets the tool path so that the tool diameter TDk of the tool path TP becomes the designed tool diameter TDs after the machining surface formation position MPLy of the tool path TP reaches the corner corresponding position KP1.
  • Tool diameter correction information TC for correcting the tool diameter TD of the TP continuously or stepwise is generated. Further, the tool radius correction amount calculation unit 201 generates tool radius correction information TC that changes the tool radius correction values MVLy and MVRy continuously or stepwise in accordance with the tool radius TD of the tool path TP.
  • the tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
  • the machining locus calculation unit 202 translates the G code included in the machining program PP. Based on the translation result, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction.
  • the machining locus calculation unit 202 continuously or steps the tool locus TP and the tool radius correction value MVLx in the tool locus control range CD1 based on the tool radius correction information TC.
  • the tool radius correction control signal TS including the first tool path control information for changing automatically is generated.
  • the machining locus calculation unit 202 changes the tool locus TP and the tool radius correction value MVLy continuously or stepwise after the machining surface forming position MPLy of the tool locus TP reaches the corner corresponding position KP1.
  • the tool radius correction control signal TS including the tool path control information of 2 is generated. That is, the tool radius correction amount calculation unit 201 generates a tool radius correction control signal TS including first and second tool path control information.
  • the machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203.
  • the drive control unit 203 generates a drive control signal CS based on the tool radius correction control signal TS.
  • the drive control unit 203 controls the processing machine body 100 with a drive control signal CS.
  • the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 to control the nozzle locus NP1. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
  • the processing machine main body 100 determines that the processing surface formation position MPLx or MPLy is the final processing based on the drive control signal CS.
  • the tool trajectory TP is controlled based on the control center point CL so as to move along the outline of the product.
  • the tool diameter TD of the tool path TP is corrected so that the tool diameter correction values MVLx and MVLy change continuously or stepwise according to the tool path control ratio CR1 in the tool path control range CD1.
  • the processing machine main body 100 moves the machining surface formation position MPLx or MPLy along the outline of the final processed product based on the drive control signal CS, and at the corner of the final processed product in the workpiece W.
  • the tool path TP is controlled on the basis of the control center point CL so that the tool path TP becomes the target tool diameter TD at the corresponding corner corresponding position KP1.
  • the tool diameter TD of the tool path TP is corrected so that the tool diameter correction value MVLx or MVLy changes continuously or stepwise according to the tool path control ratio CR1.
  • the tool path control ratio CR1 When the tool path control ratio CR1 is set to be the minimum, the tool path TP at the corner corresponding position KP1 becomes a beam spot BS as shown in FIG. Thereby, the corner of the final processed product is formed by the tool trajectory TP having the minimum tool diameter TD. Therefore, the uncut area UA at the corner can be reduced as compared with the case where the tool path TP is not controlled.
  • FIG. 6 shows a state where the nozzle 106 moves in the X direction and further moves in the Y direction.
  • a symbol NP2 indicated by a one-dot chain line in FIG. 6 indicates a nozzle locus, and also indicates a locus of the control center point CL of the tool locus TP.
  • FIG. 6 shows a case where the tool path control range CD2 and the tool path control ratio CR2 are set in the tool path control information.
  • the tool path control ratio CR2 corresponds to the tool path control ratio CR described above.
  • FIG. 6 shows a case where the tool path control ratio CR2 is set to an arbitrary value (g%).
  • the case where the tool path control ratio CR2 is g% is a case where the tool diameter TDk of the tool path TP at the corner corresponding position KP2 is g% of the tool diameter TDs of the tool path TP at the control start position SP2.
  • the tool radius correction amount calculation unit 201 determines the tool at the control start position SP2 based on the tool path control ratio CR2. To continuously or stepwise correct the tool diameter TD of the tool path TP in the tool path control range CD2 so that the tool diameter TDs (design value) of the path TP becomes the target tool diameter TDk at the corner corresponding position KP2. Tool radius correction information TC is generated. Further, the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLx and MVRx corresponding to the tool radius TD of the tool path TP continuously or stepwise according to the tool path control ratio CR2. TC is generated.
  • the tool radius correction amount calculation unit 201 sets the tool path so that the tool diameter TDk of the tool path TP becomes the designed tool diameter TDs after the machining surface formation position MPLy of the tool path TP reaches the corner corresponding position KP2.
  • Tool diameter correction information TC for correcting the tool diameter TD of the TP continuously or stepwise is generated. Further, the tool radius correction amount calculation unit 201 generates tool radius correction information TC that changes the tool radius correction values MVLy and MVRy continuously or stepwise in accordance with the tool radius TD of the tool path TP.
  • the tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
  • the machining locus calculation unit 202 translates the G code included in the machining program PP. Based on the translation result, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction.
  • the machining locus calculation unit 202 continuously or steps the tool locus TP and the tool radius correction value MVLx in the tool locus control range CD2 based on the tool radius correction information TC.
  • a tool radius correction control signal TS including the third tool path control information for changing the position is generated.
  • the machining locus calculation unit 202 changes the tool locus TP and the tool radius correction value MVLy continuously or stepwise after the machining surface forming position MPLy of the tool locus TP reaches the corner corresponding position KP2. 4 generates a tool radius correction control signal TS including the tool path control information. That is, the tool radius correction amount calculation unit 201 generates the tool radius correction control signal TS including the third and fourth tool path control information.
  • the machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203.
  • the drive control unit 203 generates a drive control signal CS based on the tool radius correction control signal TS.
  • the drive control unit 203 controls the processing machine body 100 with a drive control signal CS.
  • the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 to control the nozzle locus NP1. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
  • the processing machine main body 100 determines that the processing surface formation position MPLx or MPLy is the final processing based on the drive control signal CS.
  • the tool trajectory TP is controlled based on the control center point CL so as to move along the outline of the product.
  • the tool diameter TD of the tool path TP is corrected so that the tool diameter correction values MVLx and MVLy change continuously or stepwise in the tool path control range CD2 in accordance with the tool path control ratio CR2.
  • the processing machine main body 100 moves the machining surface formation position MPLx or MPLy along the outline of the final processed product based on the drive control signal CS, and at the corner of the final processed product in the workpiece W.
  • the tool trajectory TP is controlled on the basis of the control center point CL so that the tool trajectory TP becomes the target tool diameter TD at the corresponding corner corresponding position KP2.
  • the tool diameter TD of the tool path TP is corrected so that the tool diameter correction value MVLx or MVLy changes continuously or stepwise according to the tool path control ratio CR2.
  • FIG. 7 shows a state where the nozzle 106 moves in the X direction and further moves in the Y direction.
  • a reference numeral NP3 indicated by a one-dot chain line in FIG. 7 indicates a nozzle locus, and a reference CL3 indicates a locus of the control center point CL of the tool locus TP.
  • FIG. 7 shows a case where the tool path control range CD3 and the tool path control ratio CR3 are set in the tool path control information.
  • the tool path control ratio CR3 corresponds to the tool path control ratio CR described above.
  • FIG. 7 shows a case where the tool path control ratio CR3 is set to be minimum.
  • the case where the tool path control ratio CR3 is the minimum is a case where the tool diameter TDk of the tool path TP at the corner corresponding position KP3 is the beam diameter of the beam spot BS, specifically, the beam waist diameter of the beam spot BS. .
  • the tool path control ratio CR3 is set to 30%.
  • the tool diameter TDk of the tool locus TP is the beam diameter of the defocused laser beam.
  • FIG. 7 shows a case where the control center point CL does not coincide with the nozzle center point CN in the range in which the tool path TP is controlled, including the tool path control range CD3.
  • the tool radius correction amount calculation unit 201 sets the tool diameter of the nozzle 106 to be constant in the tool path control range CD3.
  • Tool radius correction information TC to be generated is generated.
  • the tool diameter correction amount calculation unit 201 determines that the tool diameter TDs of the tool path TP at the control start position SP3 is the target tool diameter TDk at the corner corresponding position KP3 in the tool path control range CD3.
  • the tool radius correction information TC is generated.
  • the tool diameter correction amount calculation unit 201 continuously or stepwise sets the tool diameter TD of the tool path TP in the tool path control range CD3 based on the tool path control ratio CR3 in the tool path control range CD3.
  • Tool radius correction information TC is generated that corrects and moves the control center point CL continuously or stepwise in the cutting direction DT with respect to the nozzle center point CN.
  • the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLx and MVRx corresponding to the tool radius TD of the tool path TP continuously or stepwise according to the tool path control ratio CR3. TC is generated.
  • the tool radius correction amount calculation unit 201 generates tool radius correction information TC that makes the tool radius of the nozzle 106 constant after the machining surface formation position MPLy of the tool trajectory TP reaches the corner corresponding position KP1.
  • the tool radius correction amount calculation unit 201 generates tool radius correction information TC in which the tool radius TDk of the tool trajectory TP becomes the designed tool radius TDs.
  • the tool radius correction amount calculation unit 201 corrects the tool radius TD of the tool trajectory TP continuously or stepwise, and the cutting direction of the control center point CL with respect to the nozzle center point CN.
  • Tool radius correction information TC to be moved continuously or stepwise by DT is generated.
  • the tool radius correction amount calculation unit 201 generates tool radius correction information TC that changes the tool radius correction values MVLy and MVRy continuously or stepwise in accordance with the tool radius TD of the tool path TP.
  • the tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
  • the machining locus calculation unit 202 translates the G code included in the machining program PP. Based on the translation result, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction.
  • the machining locus calculation unit 202 makes the tool radius of the nozzle 106 constant in the tool locus control range CD3 based on the tool radius correction information TC, and the tool locus.
  • a tool radius correction control signal TS including the tool path control information is generated.
  • the machining locus calculation unit 202 makes the tool radius of the nozzle 106 constant after the machining surface formation position MPLy of the tool locus TP reaches the corner corresponding position KP3, and sets the tool locus TP and the tool radius correction value MVly.
  • a diameter correction control signal TS is generated. That is, the tool radius correction amount calculation unit 201 generates a tool radius correction control signal TS including the fifth and sixth tool path control information.
  • the machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203.
  • the drive control unit 203 generates a drive control signal CS based on the tool radius correction control signal TS.
  • the drive control unit 203 controls the processing machine body 100 with a drive control signal CS.
  • the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 to control the nozzle locus NP3. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
  • the processing machine body 100 sets the tool diameter of the nozzle 106 constant based on the drive control signal CS, and The machining surface forming position MPLx or MPLy moves along the outline of the final processed product, and the control center point CL moves continuously or stepwise in the cutting direction DT with respect to the nozzle center point CN.
  • the tool path TP is controlled.
  • the tool diameter TD of the tool path TP is corrected so that the tool diameter correction values MVLx and MVLy change continuously or stepwise in accordance with the tool path control ratio CR3 in the tool path control range CD3.
  • the processing machine main body 100 moves the machining surface formation position MPLx or MPLy along the outline of the final processed product based on the drive control signal CS, and at the corner of the final processed product in the workpiece W.
  • the tool path TP is controlled so that the tool diameter of the nozzle 106 is constant and the tool path TP becomes the target tool diameter TD.
  • the tool diameter TD of the tool path TP is corrected so that the tool diameter correction value MVLx or MVLy changes continuously or stepwise according to the tool path control ratio CR3. That is, in the range in which the tool locus TP is controlled, the nozzle locus MP3 and the locus CL3 of the control center point CL of the tool locus TP are controlled separately.
  • the central axis of the nozzle 106 passing through the nozzle center point CN is the parent axis
  • the optical axis of the laser beam constituting the tool locus TP corresponds to the child axis. That is, in the range where the tool path TP is controlled, the parent axis and the child axis are distributed according to the tool path control ratio CR3.
  • the tool path control ratio CR1 When the tool path control ratio CR1 is set to be minimum, the tool path TP at the corner corresponding position KP3 becomes a beam spot BS as shown in FIG. Thereby, the corner of the final processed product is formed by the tool trajectory TP having the minimum tool diameter TD. Therefore, the uncut area UA at the corner can be reduced as compared with the case where the tool path TP is not controlled.
  • the CAD device 20 generates product shape data SD based on the product shape information including the size and shape of the final processed product in step S1 of the flowchart shown in FIG. 8A. Further, the CAD device 20 outputs the product shape data SD to the CAM device 21.
  • step S2 the CAM device 21 generates a machining program PP (including a G code) for the cutting machine 1 based on the product shape data SD, and designates a machining condition CP. Further, the CAM device 21 outputs the machining program PP and the machining condition CP to the NC device 200 of the cutting machine 1.
  • a machining program PP including a G code
  • step S3 the NC device 200 controls the processing machine main body 100 based on the processing program PP and the processing condition CP to drive the X-axis carriage 102 and the Y-axis carriage 103, thereby setting the target nozzle 106. Move to position. Further, in step S4, the NC device 200 controls the laser oscillator 10 based on the machining program PP and the machining condition CP, thereby emitting a laser beam from the opening 105 of the nozzle 106 to the workpiece W. Irradiate. The timing of step S3 and step S4 is controlled based on the machining program PP and machining conditions CP.
  • step S2 the machining program PP and the machining condition CP are input from the CAM device 21 to the tool diameter correction amount computing unit 201 and the machining locus computing unit 202 of the NC device 200.
  • step S5 the tool radius correction amount calculation unit 201 recognizes whether or not the tool path control information is included in the machining condition CP.
  • the tool trajectory control information determines whether or not to control the tool trajectory TP when cutting a portion corresponding to the corner of the final processed product is set for the workpiece W.
  • a tool path control range CD and a tool path control ratio CR are set.
  • the tool radius correction amount calculation unit 201 recognizes whether or not the tool path control information is set to control the tool path TP. .
  • the tool radius correction amount calculation unit 201 fixes the tool radius of the tool path TP. Thereby, the tool radius correction values MVL and MVR corresponding to the tool radius of the tool path TP are fixed.
  • step S6 the tool radius correction amount calculation unit 201 determines the tool path TP, the control center point CL in the tool path TP, the tool radius correction values MVL and MVR, and the machining surface based on the machining program PP and the machining condition CP.
  • Tool radius correction information TC including the formation positions MPL and MPR is generated.
  • step S5 When it is recognized in step S5 that the tool path control information is included in the machining condition CP and the tool path control information is set to control the tool path, the tool radius correction amount calculation unit 201 The tool path control range CD and the tool path control ratio CR included in the tool path control information are recognized.
  • step S6 the tool diameter correction amount calculation unit 201 determines that the tool diameter TDs (design value) of the tool path TP at the control start position SP is the target tool diameter at the corner corresponding position KP based on the tool path control ratio CR1.
  • the tool diameter TD of the tool path TP is corrected continuously or stepwise in the tool path control range CD so as to be TDk, and the control center point CL is in the cutting progress direction DT with respect to the nozzle center point CN.
  • Tool radius correction information TC for moving continuously or stepwise is generated.
  • the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLx and MVRx corresponding to the tool radius of the tool path TP continuously or stepwise according to the tool path control ratio CR. Is generated.
  • the tool radius correction amount calculation unit 201 sets the tool path so that the tool diameter TDk of the tool path TP becomes the designed tool diameter TDs after the machining surface formation position MPLy of the tool path TP reaches the corner corresponding position KP.
  • the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLy and MVRy corresponding to the tool radius TD of the tool path TP continuously or stepwise according to the tool path control ratio CR. TC is generated. The tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
  • the machining locus calculation unit 202 In the machining locus calculation unit 202, the machining program PP and the machining condition CP are input from the CAM device 21 in step S2, and the tool radius correction information TC is input from the tool radius correction amount calculation unit 201 in step S6. In step S7, the machining locus calculation unit 202 translates the G code included in the machining program PP. Further, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction based on the translation result.
  • the machining locus calculation unit 202 performs the tool radius correction control signal TS on the basis of the machining program PP, the machining condition CP, the tool radius correction information TC, and the cutting machining correction condition determined in step S8 of the flowchart shown in FIG. 8B. Is generated. Further, the machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203. In step S9, the drive control unit 203 generates a drive control signal CS for controlling the processing machine main body 100 based on the tool radius correction control signal TS. Further, the drive control unit 203 outputs a drive control signal CS to the processing machine body 100.
  • step S10 the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 based on the drive control signal CS to control the nozzle locus NP. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
  • step S5 When it is recognized in step S5 that the tool path control information is not included in the machining condition CP, or it is recognized that the tool path control information is included in the machining condition CP, and the tool path control information is the tool
  • the processing machine main body 100 fixes the tool diameter of the tool locus TP in step S11. Thereby, the tool radius correction values MVL and MVR corresponding to the tool radius of the tool path TP are fixed.
  • step S5 When it is recognized in step S5 that the tool path control information is included in the machining condition CP and the tool path control information is set to control the tool path TP, the processing machine main body 100 determines that the tool path control information is in step S12. In the tool path control range CD, the tool surface forming position MPL or MPR moves along the contour line of the final processed product, and the tool path control ratio CR changes continuously or stepwise. The tool diameter TD of the trajectory TP is controlled.
  • the processing machine body 100 controls the tool path TP so that the control center point CL moves continuously or stepwise in the cutting direction DT with respect to the nozzle center point CN in the tool path control range CD. To do.
  • tool radius correction information TC including correction information based on the tool trajectory TP and correction information based on the nozzle trajectory NP is generated.
  • the nozzle locus NP and the tool locus TP are obtained by controlling the drive of the machining unit 104 and the drive of the tool locus control unit 300 based on the tool radius correction information TC. Control. Therefore, according to the cutting machine and the cutting method of the present embodiment, the tool trace corresponding to the cutting tool or the cutting trace in a state where the relative position between the nozzle and the processing stage is fixed is non-circular. Even if it exists, the tool diameter of the cutting tool can be accurately corrected.
  • the machining condition CP includes tool path control information in which whether or not to control the tool path TP is set when cutting a portion corresponding to the corner of the final processed product with respect to the workpiece W. There may be.
  • the tool path control information when the tool path control information is not included in the machining condition CP, or the tool path control information set so as not to control the tool path TP is included. In this case, the tool diameter of the tool path TP is fixed.
  • the tool path control information set to control the tool path TP when the tool path control information set to control the tool path TP is included in the processing condition CP, the tool path control is performed in the tool path control range CD.
  • the tool diameter TD of the tool path TP is controlled so that the ratio CR changes continuously or stepwise.
  • the corner portion of the final processed product can be formed with the target tool diameter by controlling the tool trajectory TP.
  • angular part of a final processed product can be reduced.
  • the present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the present invention.
  • the laser processing machine and the laser processing method have been described as examples.
  • the present invention can be applied to, for example, a water jet processing machine.

Abstract

The present invention provides a cutting machine including a cutting machine (1) which comprises a machine body (100) and an NC device (200). The NC device (200) has a tool diameter correction amount calculation unit (201), a processing path calculation unit (202), and a drive control unit (203). The processing path calculation unit (202) generates a tool diameter correction control signal (TS). The drive control unit (203) generates a drive control signal (CS). When tool path control information, which has been set so as to control a tool path (TP) when cutting a portion corresponding to a corner of a final processed product with respect to a workpiece (W), is included in a processing condition (CP), the tool diameter correction amount calculation unit (201) generates tool diameter correction information for correcting the tool diameter of the tool path (TP). The machine body (100) controls the tool path (TP) so that the tool path (TP) becomes the target tool diameter at a position (KP) corresponding to the corner of the final processed product in the workpiece (W).

Description

切削加工機及び切削加工方法Cutting machine and cutting method
 本開示は、レーザビームを照射して加工対象物を加工するレーザ加工機等の切削加工機及び切削加工方法に関する。 The present disclosure relates to a cutting machine such as a laser processing machine and a cutting method for processing a workpiece by irradiating a laser beam.
 切削加工機として、レーザビームを照射して加工対象物を加工し、所定の形状を有する製品を製作するレーザ加工機が普及している。レーザ加工機は、製品が所定の形状を有して製作されるように、レーザビームによる切削量を考慮した工具径補正により加工対象物を切削加工する。特許文献1には、工具径補正により加工対象物を切削加工するレーザ加工機の一例が記載されている。 As a cutting machine, a laser beam machine for processing a workpiece by irradiating a laser beam and manufacturing a product having a predetermined shape is widely used. The laser processing machine cuts a workpiece by tool diameter correction in consideration of a cutting amount by a laser beam so that a product has a predetermined shape. Patent Document 1 describes an example of a laser processing machine that cuts a workpiece by tool diameter correction.
特許第6087483号公報Japanese Patent No. 6087483
 レーザ加工機において、レーザビームを射出するノズルと加工対象物を載せる加工テーブルとの相対位置が固定されている状態では、レーザビームは通常、円形状を有するため、切削加工跡も円形状を有する。複数の種類の回転工具を備えたマシニングセンタにおいても、回転工具の位置座標が固定されている状態では、切削加工跡は通常、円形状を有する。ウォータジェット加工機においても、高圧水が射出される位置座標が固定されている状態では、切削加工跡は通常、円形状を有する。従って、工具径補正は、ノズル、回転工具、高圧水等の切削工具の位置座標が固定されている状態における切削加工跡が円形状であることを前提としている。 In a laser processing machine, in a state in which the relative position between a nozzle for emitting a laser beam and a processing table on which a processing target is placed is fixed, the laser beam usually has a circular shape, and thus the cutting trace also has a circular shape. . Even in a machining center provided with a plurality of types of rotary tools, the cutting trace usually has a circular shape when the position coordinates of the rotary tools are fixed. Also in a water jet processing machine, a cutting trace usually has a circular shape in a state where the position coordinates at which high-pressure water is injected are fixed. Therefore, the tool diameter correction is based on the premise that the cutting trace in a state where the position coordinates of the cutting tool such as the nozzle, the rotary tool, and the high-pressure water are fixed is circular.
 そのため、レーザ加工機等の切削加工機は、切削工具による切削加工跡の半径分または切削加工跡の半幅分を工具径補正量に設定し、工具径補正量分だけシフトさせて加工対象物を切削加工するときの軌跡を制御する。一般的に、従来の切削加工機では、工具径補正は切削加工跡が非円形状の場合に対応していない。 For this reason, a cutting machine such as a laser processing machine sets the radius of the cutting trace by the cutting tool or the half width of the cutting trace as the tool radius correction amount, and shifts the workpiece by shifting the tool radius correction amount. Controls the trajectory when cutting. In general, in a conventional cutting machine, the tool diameter correction does not correspond to a case where the cutting trace is non-circular.
 実施形態は、切削工具の位置座標が固定されている状態における切削加工跡が非円形状であっても、切削工具の工具径を精度よく補正することができる切削加工機及び切削加工方法を提供することを目的とする。 Embodiments provide a cutting machine and a cutting method capable of accurately correcting the tool diameter of a cutting tool even if the cutting trace in a state where the position coordinates of the cutting tool are fixed is non-circular. The purpose is to do.
 実施形態の第1の態様によれば、加工対象物を切削加工する加工機本体と、前記加工機本体を制御するNC装置とを備え、前記NC装置は、前記加工対象物を切削加工することによって得られる最終加工製品の寸法及び形状を含む製品形状情報に基づいて設定された加工プログラムと加工条件とに基づいて、前記加工対象物を切削加工する切削工具の工具径を補正するための工具径補正情報を生成する工具径補正量演算部と、前記加工プログラムと前記加工条件と前記工具径補正情報とに基づいて、切削加工補正条件を含む工具径補正制御信号を生成する加工軌跡演算部と、前記工具径補正制御信号に基づいて、前記加工機本体を制御する駆動制御信号を生成する駆動制御部とを有し、前記加工機本体は、前記加工対象物との相対位置を変化させることにより、前記加工対象物を切削加工する加工ユニットと、前記駆動制御信号に基づいて、前記切削工具に相当し、かつ、非円形状を有する工具軌跡を制御する工具軌跡制御部とを有し、前記加工対象物に対して前記最終加工製品の角部に対応する部分を切削加工するとき、前記加工条件に前記工具軌跡を制御するように設定された工具軌跡制御情報が含まれている場合に、前記工具径補正量演算部は、前記工具軌跡の工具径を補正するための前記工具径補正情報を生成し、前記加工機本体は、前記駆動制御信号に基づいて、前記加工対象物における前記最終加工製品の角部に対応する位置において前記工具軌跡が目的の工具径となるように前記工具軌跡を制御することを特徴とする切削加工機が提供される。 According to the first aspect of the embodiment, the machine includes a processing machine main body that cuts a processing object and an NC device that controls the processing machine main body, and the NC apparatus cuts the processing object. A tool for correcting the tool diameter of the cutting tool for cutting the workpiece based on the machining program and machining conditions set based on the product shape information including the size and shape of the final processed product obtained by A tool radius correction amount calculation unit that generates radius correction information, and a machining path calculation unit that generates a tool radius correction control signal including a cutting correction condition based on the machining program, the machining condition, and the tool radius correction information And a drive control unit that generates a drive control signal for controlling the processing machine main body based on the tool radius correction control signal, and the processing machine main body changes a relative position with respect to the processing object. A machining unit that cuts the workpiece, and a tool path control unit that controls a tool path that corresponds to the cutting tool and has a non-circular shape based on the drive control signal. In addition, when the portion corresponding to the corner of the final processed product is cut on the workpiece, the tool path control information set to control the tool path is included in the processing conditions. In this case, the tool radius correction amount calculation unit generates the tool radius correction information for correcting the tool radius of the tool path, and the processing machine main body is configured to generate the tool to be processed based on the drive control signal. A cutting machine is provided that controls the tool path so that the tool path becomes a target tool diameter at a position corresponding to a corner of the final processed product.
 実施形態の第2の態様によれば、加工対象物を切削加工することによって得られる最終加工製品の寸法及び形状を含む製品形状情報に基づいて設定された加工プログラムと加工条件とに基づいて、前記加工対象物を切削加工するための切削工具の工具径を補正するための工具径補正情報を生成し、前記加工プログラムと前記加工条件と前記工具径補正情報とに基づいて工具径補正制御信号を生成し、前記工具径補正制御信号に基づいて駆動制御信号を生成し、前記加工条件に、前記加工対象物に対して、前記最終加工製品の角部に対応する部分を切削加工するときに前記切削工具に相当し、かつ、非円形状を有する工具軌跡を制御するように設定された工具軌跡制御情報が含まれている場合に、前記工具軌跡の工具径を補正するための前記工具径補正情報を生成し、前記駆動制御信号に基づいて、前記加工対象物における前記最終加工製品の角部に対応する位置において前記工具軌跡が目的の工具径となるように前記工具軌跡を制御することを特徴とする切削加工方法が提供される。 According to the second aspect of the embodiment, based on the processing program and processing conditions set based on the product shape information including the size and shape of the final processed product obtained by cutting the workpiece. Tool radius correction information for correcting a tool radius of a cutting tool for cutting the workpiece is generated, and a tool radius correction control signal is generated based on the machining program, the machining conditions, and the tool radius correction information. And generating a drive control signal based on the tool radius correction control signal, and cutting a portion corresponding to a corner of the final processed product with respect to the processing object according to the processing condition. The tool for correcting the tool radius of the tool path when tool path control information corresponding to the cutting tool and set to control a tool path having a non-circular shape is included. Generate tool diameter correction information and control the tool path so that the tool path has a target tool diameter at a position corresponding to a corner of the final processed product on the workpiece based on the drive control signal. A cutting method is provided.
 実施形態の切削加工機及び切削加工方法によれば、切削工具の位置座標が固定されている状態における切削加工跡が非円形状であっても、切削工具の工具径を精度よく補正することができる。 According to the cutting machine and the cutting method of the embodiment, the tool diameter of the cutting tool can be accurately corrected even if the cutting trace in a state where the position coordinates of the cutting tool are fixed is non-circular. it can.
図1は、一実施形態の切削加工機の全体的な構成例を示す図である。FIG. 1 is a diagram illustrating an overall configuration example of a cutting machine according to an embodiment. 図2は、工具軌跡の一例を示す図である。FIG. 2 is a diagram illustrating an example of a tool trajectory. 図3は、工具軌跡制御部の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of the tool path control unit. 図4は、最終加工製品の角部と工具軌跡との関係を示す図である。FIG. 4 is a diagram showing the relationship between the corners of the final processed product and the tool trajectory. 図5は、最終加工製品の角部と工具軌跡との関係を示す図である。FIG. 5 is a diagram showing the relationship between the corners of the final processed product and the tool trajectory. 図6は、最終加工製品の角部と工具軌跡との関係を示す図である。FIG. 6 is a diagram showing the relationship between the corners of the final processed product and the tool trajectory. 図7は、最終加工製品の角部と工具軌跡との関係を示す図である。FIG. 7 is a diagram showing the relationship between the corners of the final processed product and the tool trajectory. 図8Aは、一実施形態の切削加工方法の一例を示すフローチャートである。FIG. 8A is a flowchart illustrating an example of a cutting method according to an embodiment. 図8Bは、一実施形態の切削加工方法の一例を示すフローチャートである。FIG. 8B is a flowchart illustrating an example of a cutting method according to an embodiment.
 以下、一実施形態の切削加工機及び切削加工方法について、添付図面を参照して説明する。切削加工機及び切削加工方法の一例として、レーザ加工機及びレーザ加工方法について説明する。 Hereinafter, a cutting machine and a cutting method according to an embodiment will be described with reference to the accompanying drawings. As an example of the cutting machine and the cutting method, a laser processing machine and a laser processing method will be described.
 図1に示すように、切削加工機1は、レーザ発振器10と、加工機本体100と、NC装置(数値制御装置)200とを備える。NC装置200は、レーザ発振器10と加工機本体100とを制御する。レーザ発振器10はレーザビームを生成して射出する。レーザ発振器10から射出されたレーザビームは、プロセスファイバ11を介して加工機本体100へ伝送される。加工機本体100は、レーザビームを加工対象物Wに照射し、かつ、加工対象物Wとレーザビームのビームスポットとの相対位置を変化させることにより、加工対象物Wを切削加工する。 As shown in FIG. 1, the cutting machine 1 includes a laser oscillator 10, a machine body 100, and an NC device (numerical control device) 200. The NC device 200 controls the laser oscillator 10 and the processing machine main body 100. The laser oscillator 10 generates and emits a laser beam. The laser beam emitted from the laser oscillator 10 is transmitted to the processing machine main body 100 through the process fiber 11. The processing machine main body 100 cuts the processing target object W by irradiating the processing target object W with the laser beam and changing the relative position between the processing target object W and the beam spot of the laser beam.
 レーザ発振器10としては、レーザダイオードより発せられる励起光を増幅して所定の波長のレーザビームを射出するレーザ発振器、または、レーザダイオードより発せられるレーザビームを直接利用するレーザ発振器が好適である。レーザ発振器10は、例えば、固体レーザ発振器、ファイバレーザ発振器、ディスクレーザ発振器、または、ダイレクトダイオードレーザ発振器(DDL発振器)である。 As the laser oscillator 10, a laser oscillator that amplifies excitation light emitted from a laser diode and emits a laser beam having a predetermined wavelength, or a laser oscillator that directly uses a laser beam emitted from the laser diode is preferable. The laser oscillator 10 is, for example, a solid laser oscillator, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator (DDL oscillator).
 レーザ発振器10は、波長900nm~1100nmの1μm帯のレーザビームを射出する。ファイバレーザ発振器及びDDL発振器を例とすると、ファイバレーザ発振器は、波長1060nm~1080nmのレーザビームを射出し、DDL発振器は、波長910nm~950nmのレーザビームを射出する。 The laser oscillator 10 emits a 1 μm band laser beam having a wavelength of 900 nm to 1100 nm. Taking a fiber laser oscillator and a DDL oscillator as examples, the fiber laser oscillator emits a laser beam having a wavelength of 1060 nm to 1080 nm, and the DDL oscillator emits a laser beam having a wavelength of 910 nm to 950 nm.
 加工機本体100は、加工対象物Wを載せる加工テーブル101と、門型のX軸キャリッジ102と、Y軸キャリッジ103と、加工ユニット104と、工具軌跡制御部300とを有する。加工対象物Wは例えばステンレス鋼よりなる板金である。加工対象物はステンレス鋼以外の鉄系の板金であっても構わないし、アルミニウム、アルミニウム合金、銅鋼などの板金であっても構わない。レーザ発振器10から射出されたレーザビームは、プロセスファイバ11を介して加工機本体100の加工ユニット104へ伝送される。工具軌跡制御部300は加工ユニット104の内部に収容されている。 The processing machine main body 100 includes a processing table 101 on which a workpiece W is mounted, a portal X-axis carriage 102, a Y-axis carriage 103, a processing unit 104, and a tool path control unit 300. The workpiece W is a sheet metal made of stainless steel, for example. The workpiece may be an iron-based sheet metal other than stainless steel, or may be a sheet metal such as aluminum, an aluminum alloy, or copper steel. The laser beam emitted from the laser oscillator 10 is transmitted to the processing unit 104 of the processing machine main body 100 through the process fiber 11. The tool path control unit 300 is accommodated in the machining unit 104.
 X軸キャリッジ102は、加工テーブル101上でX軸方向に移動自在に構成されている。Y軸キャリッジ103は、X軸キャリッジ102上でX軸と直交するY軸方向に移動自在に構成されている。X軸キャリッジ102及びY軸キャリッジ103は、加工ユニット104を加工対象物Wの面に沿って、X軸方向、Y軸方向、または、X軸とY軸との任意の合成方向に移動させる移動機構として機能する。 The X-axis carriage 102 is configured to be movable on the processing table 101 in the X-axis direction. The Y-axis carriage 103 is configured to be movable in the Y-axis direction orthogonal to the X-axis on the X-axis carriage 102. The X-axis carriage 102 and the Y-axis carriage 103 move to move the processing unit 104 along the surface of the workpiece W in the X-axis direction, the Y-axis direction, or any combination direction of the X-axis and the Y-axis. Acts as a mechanism.
 加工機本体100は、加工ユニット104を加工対象物Wの面に沿って移動させる代わりに、加工ユニット104は位置が固定されていて、加工対象物Wが移動するように構成されていてもよい。加工機本体100は、加工対象物Wの面に対する加工ユニット104の相対的な位置を移動させる移動機構を備えていればよい。 Instead of moving the processing unit 104 along the surface of the workpiece W, the processing machine body 100 may be configured such that the position of the processing unit 104 is fixed and the workpiece W moves. . The processing machine main body 100 only needs to include a moving mechanism that moves the relative position of the processing unit 104 with respect to the surface of the workpiece W.
 加工ユニット104にはノズル106が取り付けられている。ノズル106の先端部には円形の開口部105が形成されている。加工ユニット104に伝送されたレーザビームは、ノズル106の開口部105から射出され、加工対象物Wに照射される。 A nozzle 106 is attached to the processing unit 104. A circular opening 105 is formed at the tip of the nozzle 106. The laser beam transmitted to the processing unit 104 is emitted from the opening 105 of the nozzle 106 and irradiated onto the processing target W.
 加工ユニット104には、窒素または空気等のアシストガスが供給される。アシストガスは酸素であってもよく、その目的が酸化抑制なのか、酸化反応熱を利用するのかによって、混合比を任意に設定できるものである。レーザビームが開口部105から加工対象物Wに照射され、かつ、アシストガスが開口部105から加工対象物Wへと吹き付けられる。アシストガスは、加工対象物Wが溶融したカーフ幅内の溶融物を排出する。 The processing unit 104 is supplied with an assist gas such as nitrogen or air. The assist gas may be oxygen, and the mixing ratio can be arbitrarily set depending on whether the purpose is to suppress oxidation or use heat of oxidation reaction. The workpiece W is irradiated with the laser beam from the opening 105, and the assist gas is sprayed from the opening 105 to the workpiece W. The assist gas discharges the melt within the kerf width in which the workpiece W is melted.
 工具軌跡制御部300は、加工ユニット104内を進行して開口部105から射出されるレーザビームを、非円形状の振動パターンで振動させるビーム振動機構として機能する。工具軌跡制御部300がレーザビームを非円形状の振動パターンで振動させることにより、加工ユニット104は非円形状の工具軌跡により加工対象物Wを切削加工する。工具軌跡制御部300の具体的な構成例、及び、工具軌跡制御部300がレーザビームのビームスポットを非円形状の振動パターンで振動させる方法については後述する。ここで、工具軌跡とは、一定時間内に非円形状の振動パターンで振動させたビーム振動によってなされたビームの軌跡が描いた図形であって、振動工具形状を指す。つまり、通常は、ノズル106から射出される円形のレーザビームそのものが切削工具であり、そのビーム半径分が工具径補正となるが、ここでは、振動パターンで描いた図形の工具軌跡を切削工具とする。ノズル106と加工テーブル101との相対位置が固定されている状態における切削加工跡は、工具軌跡に対応する。 The tool trajectory control unit 300 functions as a beam vibration mechanism that vibrates the machining unit 104 and emits a laser beam emitted from the opening 105 with a non-circular vibration pattern. The tool trajectory control unit 300 causes the laser beam to vibrate in a non-circular vibration pattern, so that the processing unit 104 cuts the workpiece W using the non-circular tool trajectory. A specific configuration example of the tool path control unit 300 and a method by which the tool path control unit 300 vibrates the beam spot of the laser beam with a non-circular vibration pattern will be described later. Here, the tool trajectory is a figure drawn by a beam trajectory formed by beam vibration that is vibrated with a non-circular vibration pattern within a predetermined time, and indicates a vibration tool shape. That is, normally, the circular laser beam itself emitted from the nozzle 106 is a cutting tool, and the beam radius is the tool diameter correction. Here, the tool trajectory of the figure drawn with the vibration pattern is referred to as the cutting tool. To do. The cutting trace when the relative position between the nozzle 106 and the machining table 101 is fixed corresponds to the tool trace.
 CAD(Computer Aided Design)装置20は、加工対象物Wを切削加工することによって得られる最終加工製品の寸法及び形状を含む製品形状情報に基づいて製品形状データ(CADデータ)SDを生成し、CAM(computer aided manufacturing)装置21へ出力する。CAM装置21は、製品形状データSDに基づいて、切削加工機1が加工対象物Wを切削加工するための加工プログラム(NCデータ)PPを生成し、加工条件CPを指定する。即ち、加工プログラムPPと加工条件CPとは、最終加工製品の寸法及び形状を含む製品形状情報に基づいて設定させる。 A CAD (Computer Aided Design) device 20 generates product shape data (CAD data) SD based on product shape information including dimensions and shapes of a final processed product obtained by cutting the workpiece W. CAM (Computer aided manufacturing) Output to device 21. The CAM device 21 generates a machining program (NC data) PP for the cutting machine 1 to cut the workpiece W based on the product shape data SD, and designates a machining condition CP. That is, the machining program PP and the machining condition CP are set based on product shape information including the size and shape of the final processed product.
 加工プログラムPPには、切削加工の進行方向の左側に工具径補正量分だけシフトさせて切削工具の軌跡を制御するG41(左工具径補正)、または、切削加工の進行方向の右側に工具径補正量分だけシフトさせて切削工具の軌跡を制御するG42(右工具径補正)で示されるGコードが含まれている。 The machining program PP includes G41 (left tool radius correction) for controlling the locus of the cutting tool by shifting the tool radius correction amount to the left side in the cutting progress direction, or the tool diameter on the right side in the cutting progress direction. A G code indicated by G42 (right tool diameter correction) for controlling the locus of the cutting tool by shifting by the correction amount is included.
 CAM装置21は、加工条件CPとして、切削工具に相当する工具軌跡を指定する。工具軌跡は例えば非円形状を有する。CAM装置21では、加工対象物Wに対して、最終加工製品の角部に対応する部分を切削加工するときに工具軌跡を制御するか否かを設定することができる。 The CAM device 21 designates a tool locus corresponding to the cutting tool as the machining condition CP. The tool path has, for example, a non-circular shape. In the CAM device 21, it is possible to set whether or not to control the tool trajectory when cutting the portion corresponding to the corner portion of the final processed product with respect to the workpiece W.
 加工条件CPには、加工対象物Wに対して、最終加工製品の角部に対応する部分を切削加工するときに工具軌跡を制御するか否かが設定された工具軌跡制御情報が含まれている。工具軌跡を制御することにより、工具軌跡の工具径を変更することができる。工具軌跡を制御するように設定されている場合、工具軌跡制御情報には工具軌跡制御範囲と工具軌跡制御比率とが設定されている。 The machining condition CP includes tool path control information in which whether or not to control the tool path when cutting a portion corresponding to the corner portion of the final processed product with respect to the workpiece W is set. Yes. By controlling the tool path, the tool diameter of the tool path can be changed. When it is set to control the tool path, a tool path control range and a tool path control ratio are set in the tool path control information.
 CAM装置21は、工具軌跡制御範囲、及び、工具軌跡制御比率をそれぞれ任意の値に設定することができる。工具軌跡制御範囲は、工具軌跡を制御する範囲であり、工具軌跡の制御を開始する位置から最終加工製品の角部に対応する位置までの範囲である。工具軌跡制御比率は、工具軌跡の工具径を制御する比率である。工具軌跡の工具径は工具軌跡制御比率に応じて変更される。 The CAM device 21 can set the tool path control range and the tool path control ratio to arbitrary values, respectively. The tool trajectory control range is a range for controlling the tool trajectory, and is a range from a position where the tool trajectory control is started to a position corresponding to the corner of the final processed product. The tool path control ratio is a ratio for controlling the tool diameter of the tool path. The tool diameter of the tool path is changed according to the tool path control ratio.
 加工条件CPには、加工対象物Wの材質及び厚さ等の材料パラメータが指定された加工対象情報が含まれている。加工条件CPには、レーザビームの出力、加工速度、及び、ノズル106の開口部105の直径(ノズル径)等の加工パラメータ、及び、アシストガス条件等の切削加工情報が含まれている。即ち、加工条件CPには、工具軌跡制御情報と加工対象情報と切削加工情報とが含まれている。 The processing condition CP includes processing target information in which material parameters such as the material and thickness of the processing target W are specified. The machining conditions CP include machining parameters such as laser beam output, machining speed, diameter (nozzle diameter) of the opening 105 of the nozzle 106, and cutting gas information such as assist gas conditions. That is, the machining condition CP includes tool path control information, machining target information, and cutting information.
 CAM装置21は、加工プログラムPPと加工条件CPとを切削加工機1のNC装置200へ出力する。NC装置200は、加工プログラムPPと加工条件CPとに基づいてレーザ発振器10を制御する。NC装置200は、加工プログラムPPと加工条件CPとに基づいて、加工機本体100を制御してX軸キャリッジ102及びY軸キャリッジ103を駆動させることにより、ノズル106を目的の位置へ移動させる。 The CAM device 21 outputs the machining program PP and the machining condition CP to the NC device 200 of the cutting machine 1. The NC device 200 controls the laser oscillator 10 based on the machining program PP and the machining condition CP. The NC device 200 moves the nozzle 106 to a target position by controlling the processing machine main body 100 and driving the X-axis carriage 102 and the Y-axis carriage 103 based on the processing program PP and the processing condition CP.
 NC装置200は、加工プログラムPPと加工条件CPとに基づいて、工具軌跡制御部300を制御することにより、ノズル106の開口部105より射出されるレーザビームのビームスポットの軌跡を制御する。ビームスポットの軌跡は工具軌跡に相当する。 The NC apparatus 200 controls the beam spot locus of the laser beam emitted from the opening 105 of the nozzle 106 by controlling the tool locus control unit 300 based on the machining program PP and the machining condition CP. The beam spot trajectory corresponds to the tool trajectory.
 NC装置200は、工具径補正量演算部201と、加工軌跡演算部202と、駆動制御部203とを有する。工具径補正量演算部201、及び、加工軌跡演算部202には、CAM装置21から加工プログラムPPと加工条件CPとが入力される。工具径補正量演算部201は、加工プログラムPPと加工条件CPとに基づいて、加工対象物Wを切削加工するための切削工具の工具径を補正するための工具径補正情報TCを生成する。 The NC device 200 includes a tool radius correction amount calculation unit 201, a machining locus calculation unit 202, and a drive control unit 203. A machining program PP and a machining condition CP are input from the CAM device 21 to the tool radius correction amount computing unit 201 and the machining locus computing unit 202. The tool radius correction amount calculation unit 201 generates tool radius correction information TC for correcting the tool radius of the cutting tool for cutting the workpiece W based on the machining program PP and the machining condition CP.
 図2を用いて、工具径補正情報TCについて説明する。図2は、ノズル106の内部から開口部105を介して加工対象物Wに照射されるレーザビームのビームスポットの軌跡(工具軌跡)を示している。 The tool radius correction information TC will be described with reference to FIG. FIG. 2 shows a locus (tool locus) of a beam spot of a laser beam irradiated from the inside of the nozzle 106 to the workpiece W through the opening 105.
 工具径補正量演算部201は、加工条件CPに含まれる工具軌跡TPを認識する。工具径補正量演算部201は、認識された工具軌跡TPとノズル106の軌跡NP(以下、ノズル軌跡NPとする)と切削加工の進行方向DTとに基づいて、工具径補正情報TCを生成する。工具軌跡TPは加工対象物Wを切削加工するための切削工具に相当する。工具軌跡TPの形状は切削工具の形状に相当する。工具軌跡TPは例えば非円形状を有する。 The tool radius correction amount calculation unit 201 recognizes the tool path TP included in the machining condition CP. The tool radius correction amount calculation unit 201 generates tool radius correction information TC based on the recognized tool trajectory TP, the trajectory NP of the nozzle 106 (hereinafter referred to as the nozzle trajectory NP) and the cutting progress direction DT. . The tool path TP corresponds to a cutting tool for cutting the workpiece W. The shape of the tool trajectory TP corresponds to the shape of the cutting tool. The tool path TP has, for example, a non-circular shape.
 図2に示す符号BSは、工具軌跡TP上を移動するレーザビームのビームスポットを示している。図2には、非円形状の一例として、ビームスポットBSが回転方向に振動する振動パターンの工具軌跡TPを示している。なお、工具軌跡TPの振動パターンは非円形状を含む自由形状であればよい。 2 indicates a beam spot of a laser beam that moves on the tool trajectory TP. FIG. 2 shows a tool locus TP having a vibration pattern in which the beam spot BS vibrates in the rotation direction as an example of a non-circular shape. The vibration pattern of the tool locus TP may be a free shape including a non-circular shape.
 レーザ加工機の場合、工具軌跡TPはレーザビームのビームスポットBSの軌跡に相当する。ビームスポットBSは工具軌跡TP上を回転移動する。図2に示す矢印は、ビームスポットBSの回転方向を示している。なお、図2ではビームスポットBSが左回りに回転移動する状態を示しているが、ビームスポットBSが右回りに回転移動するようにしてもよい。 In the case of a laser processing machine, the tool trajectory TP corresponds to the trajectory of the beam spot BS of the laser beam. The beam spot BS rotates on the tool trajectory TP. The arrows shown in FIG. 2 indicate the direction of rotation of the beam spot BS. Although FIG. 2 shows a state in which the beam spot BS rotates in the counterclockwise direction, the beam spot BS may rotate in the clockwise direction.
 工具径補正情報TCは、工具軌跡TPと、工具軌跡TPを制御するための基準となる制御中心点CLと、ノズル軌跡NPにおけるノズル106の中心点CN(以下、ノズル中心点CNとする)とを含む。なお、制御中心点CLとは、従前のレーザ加工の工具径補正の場合のレーザビーム中心であり、本件の場合は工具軌跡を非円形状の切削工具とするとき、切断ラインを切削工具と製品の境界とするときの切断ライン(切断位置)に対して切削工具を制御する中心の位置である。
ノズル軌跡NPとは、具体的にはノズル中心点CNの軌跡である。ノズル106の中心点CNと開口部105の中心点とは一致している。図2は、制御中心点CLとノズル中心点CNとが一致している場合を示している。
The tool radius correction information TC includes a tool path TP, a control center point CL serving as a reference for controlling the tool path TP, a center point CN of the nozzle 106 in the nozzle path NP (hereinafter referred to as a nozzle center point CN), and including. The control center point CL is the laser beam center in the case of the tool diameter correction in the conventional laser processing. In this case, when the tool locus is a non-circular cutting tool, the cutting line is the cutting tool and the product. This is the center position for controlling the cutting tool with respect to the cutting line (cutting position) when the boundary is set.
The nozzle locus NP is specifically the locus of the nozzle center point CN. The center point CN of the nozzle 106 is coincident with the center point of the opening 105. FIG. 2 shows a case where the control center point CL and the nozzle center point CN coincide with each other.
 工具径補正情報TCは、工具径補正値MVL及びMVRを含む。工具径補正値MVL及びMVRは、制御中心点CL(ノズル中心点CN)から加工面形成位置MPL及びMPRまでの距離に相当する。加工面形成位置MPL及びMPRは、工具軌跡TPが切削加工の進行方向DTに移動したときに、加工対象物Wに加工面が形成される位置である。即ち、加工面形成位置MPL及びMPRは、工具軌跡TPにおいて工具径が最大となる位置である。工具径補正値MVLは左工具径補正におけるパラメータであり、工具径補正値MVRは右工具径補正におけるパラメータである。 The tool radius correction information TC includes tool radius correction values MVL and MVR. The tool radius correction values MVL and MVR correspond to the distances from the control center point CL (nozzle center point CN) to the machining surface formation positions MPL and MPR. The machining surface formation positions MPL and MPR are positions where a machining surface is formed on the workpiece W when the tool path TP moves in the cutting progress direction DT. That is, the machining surface formation positions MPL and MPR are positions where the tool diameter is maximum in the tool path TP. The tool radius correction value MVL is a parameter in the left tool radius correction, and the tool radius correction value MVR is a parameter in the right tool radius correction.
 図2に示す符号DTx及びDTyは切削加工の進行方向を示す。進行方向DTxは切削加工がx方向に進行する場合を示す。進行方向DTyは切削加工がy方向に進行する場合を示す。符号MVLx及びMVRxは進行方向DTxにおける工具径補正値を示す。符号MVLy及びMVRyは進行方向DTyにおける工具径補正値を示す。 Numerals DTx and DTy shown in FIG. The traveling direction DTx indicates a case where the cutting process proceeds in the x direction. The traveling direction DTy indicates a case where the cutting process proceeds in the y direction. Symbols MVLx and MVRx indicate tool radius correction values in the traveling direction DTx. Symbols MVLy and MVRy indicate tool radius correction values in the traveling direction DTy.
 符号MPLx及びMPRxは工具軌跡TPが進行方向DTxに移動したときに、加工対象物Wに加工面が形成される加工面形成位置を示す。符号MPLy及びMPRyは工具軌跡TPが進行方向DTyに移動したときに、加工対象物Wに加工面が形成される位置を示す。工具径補正値MVLx及びMVLy、並びに、加工面形成位置MPLx及びMPLyは左工具径補正におけるパラメータである。工具径補正値MVRx及びMVRy、並びに、加工面形成位置MPRx及びMPRyは右工具径補正におけるパラメータである。 Symbols MPLx and MPRx indicate machining surface formation positions where a machining surface is formed on the workpiece W when the tool trajectory TP moves in the traveling direction DTx. Symbols MPLy and MPRy indicate positions where a machining surface is formed on the workpiece W when the tool trajectory TP moves in the traveling direction DTy. The tool radius correction values MVLx and MVLy, and the machining surface formation positions MPLx and MPLy are parameters in the left tool radius correction. The tool radius correction values MVRx and MVRy and the machining surface formation positions MPRx and MPRy are parameters in the right tool radius correction.
 工具径補正量演算部201は、左工具径補正と右工具径補正の両方の補正情報を含む工具径補正情報TCを加工軌跡演算部202へ出力する。加工軌跡演算部202には、CAM装置21から加工プログラムPPと加工条件CPとが入力され、工具径補正量演算部201から工具径補正情報TCが入力される。加工軌跡演算部202は、加工プログラムPPに含まれているGコードを翻訳する。なお、加工プログラムPPはGコードの代わりにロボット言語等を含んでいてもよい。 The tool radius correction amount calculation unit 201 outputs tool radius correction information TC including correction information for both the left tool radius correction and the right tool radius correction to the machining locus calculation unit 202. The machining track calculation unit 202 receives the machining program PP and the machining condition CP from the CAM device 21, and receives the tool radius correction information TC from the tool radius correction amount calculation unit 201. The machining locus calculation unit 202 translates the G code included in the machining program PP. Note that the machining program PP may include a robot language or the like instead of the G code.
 加工軌跡演算部202は、翻訳結果に基づいて、左工具径補正にて切削加工するか、右工具径補正にて切削加工するかのいずれかの切削加工補正条件を決定する。 The machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction based on the translation result.
 加工軌跡演算部202は、加工プログラムPPと加工条件CPと工具径補正情報TCと決定された切削加工補正条件とに基づいて工具径補正制御信号TSを生成する。加工軌跡演算部202は、工具径補正制御信号TSを駆動制御部203へ出力する。駆動制御部203は、工具径補正制御信号TSに基づいて、加工機本体100を制御する駆動制御信号CSを生成する。駆動制御部203は駆動制御信号CSを加工機本体100へ出力する。 The machining locus calculation unit 202 generates a tool radius correction control signal TS based on the machining program PP, the machining condition CP, the tool radius correction information TC, and the determined cutting correction condition. The machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203. The drive control unit 203 generates a drive control signal CS for controlling the processing machine body 100 based on the tool radius correction control signal TS. The drive control unit 203 outputs a drive control signal CS to the processing machine body 100.
 左工具径補正にて切削加工する場合、駆動制御部203は、ノズル軌跡NPと工具軌跡TPと工具軌跡TPの制御中心点CLと工具径補正値MVLと加工面形成位置MPLとに基づいて駆動制御信号CSを生成する。右工具径補正にて切削加工する場合、駆動制御部203は、ノズル軌跡NPと工具軌跡TPと工具軌跡TPの制御中心点CLと工具径補正値MVRと加工面形成位置MPRに基づいて駆動制御信号CSを生成する。 When cutting with the left tool radius correction, the drive control unit 203 drives based on the nozzle locus NP, the tool locus TP, the control center point CL of the tool locus TP, the tool radius correction value MVL, and the machining surface forming position MPL. A control signal CS is generated. When cutting with the right tool radius correction, the drive control unit 203 performs drive control based on the nozzle locus NP, the tool locus TP, the control center point CL of the tool locus TP, the tool radius correction value MVR, and the machining surface forming position MPR. A signal CS is generated.
 駆動制御部203は、駆動制御信号CSにより、加工機本体100の工具軌跡制御部300を制御する。工具軌跡制御部300は、駆動制御信号CSに基づいて、ノズル106の開口部105より射出されるレーザビームのビームスポットBSの軌跡を制御する。 The drive control unit 203 controls the tool path control unit 300 of the processing machine main body 100 by the drive control signal CS. The tool locus control unit 300 controls the locus of the beam spot BS of the laser beam emitted from the opening 105 of the nozzle 106 based on the drive control signal CS.
 図3を用いて、工具軌跡制御部300の具体的な構成例、及び、工具軌跡制御部300がレーザビームのビームスポットBSを非円形状の振動パターンで振動させる方法の一例を説明する。 3, a specific configuration example of the tool path control unit 300 and an example of a method in which the tool path control unit 300 vibrates the beam spot BS of the laser beam with a non-circular vibration pattern will be described.
 図3に示すように、工具軌跡制御部300は加工ユニット104の内部に収容されている。工具軌跡制御部300は、コリメータレンズ331と、ガルバノスキャナユニット340と、ベンドミラー334と、集束レンズ335とを有する。コリメータレンズ331は、プロセスファイバ11より射出されたレーザビームを平行光(コリメート光)に変換する。 As shown in FIG. 3, the tool path control unit 300 is accommodated in the machining unit 104. The tool locus control unit 300 includes a collimator lens 331, a galvano scanner unit 340, a bend mirror 334, and a focusing lens 335. The collimator lens 331 converts the laser beam emitted from the process fiber 11 into parallel light (collimated light).
 ガルバノスキャナユニット340は、スキャンミラー341(第1のスキャンミラー)と、スキャンミラー341を回転駆動させる駆動部342(第1の駆動部)と、スキャンミラー343(第2のスキャンミラー)と、スキャンミラー343を回転駆動させる駆動部344(第2の駆動部)とを有する。 The galvano scanner unit 340 includes a scan mirror 341 (first scan mirror), a drive unit 342 (first drive unit) that rotationally drives the scan mirror 341, a scan mirror 343 (second scan mirror), and a scan. And a driving unit 344 (second driving unit) that rotationally drives the mirror 343.
 駆動部342は、駆動制御部203の制御により、スキャンミラー341を所定の方向(例えばX方向)に所定の角度範囲で往復駆動させることができる。スキャンミラー341は、コリメータレンズ321により平行光に変換されたレーザビームをスキャンミラー343に向けて反射する。 The driving unit 342 can reciprocate the scan mirror 341 in a predetermined direction (for example, the X direction) in a predetermined angle range under the control of the drive control unit 203. The scan mirror 341 reflects the laser beam converted into parallel light by the collimator lens 321 toward the scan mirror 343.
 駆動部344は、駆動制御部203の制御により、スキャンミラー343を、スキャンミラー341の駆動方向とは異なる方向(例えばY方向)に所定の角度範囲で往復駆動させることができる。スキャンミラー343は、スキャンミラー341により反射されたレーザビームをベンドミラー334に向けて反射する。 The drive unit 344 can drive the scan mirror 343 to reciprocate in a predetermined angle range in a direction (for example, Y direction) different from the drive direction of the scan mirror 341 under the control of the drive control unit 203. The scan mirror 343 reflects the laser beam reflected by the scan mirror 341 toward the bend mirror 334.
 ベンドミラー334は、スキャンミラー343により反射されたレーザビームをX軸及びY軸に垂直なZ軸方向下方に向けて反射させる。集束レンズ335はベンドミラー334により反射したレーザビームを集束して、加工対象物Wに照射する。 The bend mirror 334 reflects the laser beam reflected by the scan mirror 343 downward in the Z-axis direction perpendicular to the X-axis and the Y-axis. The focusing lens 335 focuses the laser beam reflected by the bend mirror 334 and irradiates the workpiece W.
 ガルバノスキャナユニット340は、スキャンミラー341とスキャンミラー343とのいずれか一方または双方を高速で例えば1000Hz以上で往復振動させることにより、工具軌跡TPを多種の非円形状にすることができる。即ち、一定の光強度以上のレーザビームを単位時間当たりに複数個所へ集束(集光)させることにより、加工対象物Wに接して実質的に加工に寄与する工具形状を、多種の非円形状にすることが任意にできる。 The galvano scanner unit 340 can make the tool trajectory TP into various non-circular shapes by reciprocatingly vibrating one or both of the scan mirror 341 and the scan mirror 343 at a high speed of, for example, 1000 Hz or more. That is, by converging (condensing) a laser beam having a certain light intensity or more to a plurality of locations per unit time, the tool shape that is in contact with the workpiece W and substantially contributes to machining can be changed into various non-circular shapes. Can be arbitrarily.
 図4、図5、図6、及び、図7を用いて、加工条件CPに、最終加工製品の角部に対応する部分を切削加工するときに工具軌跡TPを制御するか否かが設定された工具軌跡制御情報が含まれていない場合と含まれている場合とについて説明する。図4~図7は、工具軌跡TPを用いて左工具径補正にて切削加工する場合を示している。図4~図6は制御中心点CLがノズル中心点CNと一致する場合を示し、図7は制御中心点CLがノズル中心点CNと一致しない場合を示している。 4, 5, 6, and 7, whether or not to control the tool trajectory TP when cutting a portion corresponding to the corner portion of the final processed product is set as the processing condition CP. A case where the tool path control information is not included and a case where it is included will be described. 4 to 7 show a case where cutting is performed with the left tool radius correction using the tool locus TP. 4 to 6 show a case where the control center point CL coincides with the nozzle center point CN, and FIG. 7 shows a case where the control center point CL does not coincide with the nozzle center point CN.
 加工条件CPには、加工対象物Wに対して、最終加工製品の角部に対応する部分を切削加工するときに工具軌跡TPを制御するか否かが設定された工具軌跡制御情報が含まれていない場合と含まれている場合とがある。工具軌跡TPを制御するように設定された工具軌跡制御情報には、工具軌跡TPと工具軌跡制御範囲と工具軌跡制御比率とが含まれている。 The machining condition CP includes tool path control information in which whether or not the tool path TP is to be controlled when the part corresponding to the corner of the final processed product is cut with respect to the workpiece W is included. It may or may not be included. The tool path control information set to control the tool path TP includes a tool path TP, a tool path control range, and a tool path control ratio.
 工具軌跡制御範囲は、工具軌跡を制御する範囲であり、工具軌跡TPの制御を開始する位置から最終加工製品の角部に対応する位置までの範囲である。工具軌跡制御比率は工具軌跡TPの工具径を制御する比率である。工具軌跡TPの工具径は工具軌跡制御比率に応じて変更される。 The tool trajectory control range is a range for controlling the tool trajectory, and is a range from a position where the control of the tool trajectory TP is started to a position corresponding to the corner of the final processed product. The tool path control ratio is a ratio for controlling the tool diameter of the tool path TP. The tool diameter of the tool path TP is changed according to the tool path control ratio.
 図4は、加工条件CPに工具軌跡制御情報が含まれていない場合、または、加工条件CPに工具軌跡TPを制御しないように設定された工具軌跡制御情報が含まれている場合を示している。図4は、ノズル106がX方向に移動し、さらにY方向に移動する状態を示している。図4に一点鎖線で示す符号NPはノズル軌跡を示し、かつ、工具軌跡TPの制御中心点CLの軌跡を示している。 FIG. 4 shows a case where the tool path control information is not included in the machining condition CP, or a case where the tool path control information set so as not to control the tool path TP is included in the machining condition CP. . FIG. 4 shows a state in which the nozzle 106 moves in the X direction and further moves in the Y direction. A symbol NP indicated by a one-dot chain line in FIG. 4 indicates a nozzle locus, and also indicates a locus of the control center point CL of the tool locus TP.
 工具径補正量演算部201は、加工条件CPに工具軌跡制御情報が含まれているか否かを認識する。加工条件CPに工具軌跡制御情報が含まれていないと認識された場合、工具径補正量演算部201は、工具軌跡TPを固定する。これにより、工具軌跡TPの工具径に対応する工具径補正値MVL及びMVRは固定される。加工条件CPに工具軌跡TPを制御しないように設定された工具軌跡制御情報が含まれている場合も同様である。 The tool radius correction amount calculation unit 201 recognizes whether or not the tool path control information is included in the machining condition CP. When it is recognized that the tool path control information is not included in the machining condition CP, the tool radius correction amount calculation unit 201 fixes the tool path TP. Thereby, the tool radius correction values MVL and MVR corresponding to the tool radius of the tool path TP are fixed. The same applies to the case where tool path control information set so as not to control the tool path TP is included in the machining condition CP.
 工具径補正量演算部201は、工具軌跡TPと工具径補正値MVL及びMVRとが固定された工具径補正情報TCを生成する。工具径補正量演算部201は、工具径補正情報TCを加工軌跡演算部202へ出力する。 The tool radius correction amount calculation unit 201 generates tool radius correction information TC in which the tool path TP and the tool radius correction values MVL and MVR are fixed. The tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
 加工軌跡演算部202は、加工プログラムPPに含まれているGコードを翻訳する。加工軌跡演算部202は、翻訳結果に基づいて、左工具径補正にて切削加工するか、右工具径補正にて切削加工するかのいずれかの切削加工補正条件を決定する。 The machining locus calculation unit 202 translates the G code included in the machining program PP. Based on the translation result, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction.
 左工具径補正にて切削加工すると決定された場合、加工軌跡演算部202は、工具径補正情報TCに基づいて、工具軌跡TPと工具径補正値MVLとが固定された工具径補正制御信号TSを生成する。なお、右工具径補正にて切削加工すると決定された場合、加工軌跡演算部202は、工具径補正情報TCに基づいて、工具軌跡TPと工具径補正値MVRとが固定された工具径補正制御信号TSを生成する。 When it is determined to perform the cutting with the left tool radius correction, the machining locus calculation unit 202 determines the tool radius correction control signal TS in which the tool locus TP and the tool radius correction value MVL are fixed based on the tool radius correction information TC. Is generated. When it is determined that cutting is performed with the right tool radius correction, the machining locus calculation unit 202 performs tool radius correction control in which the tool locus TP and the tool radius correction value MVR are fixed based on the tool radius correction information TC. A signal TS is generated.
 加工軌跡演算部202は、工具径補正制御信号TSを駆動制御部203へ出力する。駆動制御部203は、工具径補正制御信号TSに基づいて駆動制御信号CSを生成する。駆動制御部203は、駆動制御信号CSにより、加工機本体100を制御する。加工機本体100は、駆動制御信号CSに基づいて、X軸キャリッジ102及びY軸キャリッジ103を駆動させてノズル軌跡NP1を制御する。また、加工機本体100は、駆動制御信号CSに基づいて、工具軌跡制御部300を駆動させて工具軌跡TPを制御する。 The machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203. The drive control unit 203 generates a drive control signal CS based on the tool radius correction control signal TS. The drive control unit 203 controls the processing machine body 100 with a drive control signal CS. Based on the drive control signal CS, the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 to control the nozzle locus NP1. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
 加工条件CPに工具軌跡制御情報が含まれていないと認識された場合、または、加工条件CPに工具軌跡TPを制御しないように設定された工具軌跡制御情報が含まれている場合、加工機本体100は、駆動制御信号CSに基づいて、加工面形成位置MPLxまたはMPLyが最終加工製品の外形線に沿って移動するように、制御中心点CLを基準として工具軌跡TPを制御する。これにより、工具軌跡TPの工具径は、工具径補正値MVLxまたはMVLyが一定となるように補正される。 When it is recognized that the tool path control information is not included in the machining condition CP, or when the tool path control information set so as not to control the tool path TP is included in the machining condition CP, 100 controls the tool trajectory TP based on the control center point CL so that the machining surface formation position MPLx or MPLy moves along the outline of the final machining product based on the drive control signal CS. Thereby, the tool radius of the tool path TP is corrected so that the tool radius correction value MVLx or MVLy becomes constant.
 図4に示すように、最終加工製品の角部は、固定された工具軌跡TPの工具径により形成される。そのため、最終加工製品の角部には、工具軌跡TPの工具径に応じて未切削領域UAが形成される。 As shown in FIG. 4, the corner of the final processed product is formed by the tool diameter of the fixed tool locus TP. Therefore, an uncut area UA is formed at the corner of the final processed product according to the tool diameter of the tool path TP.
 工具径補正量演算部201は、加工プログラムPPと加工条件CPとに基づいて、工具軌跡TPと、工具軌跡TPにおける制御中心点CLと工具径補正値MVL及びMVRと加工面形成位置MPL及びMPRとを含む工具径補正情報TCを生成する。 Based on the machining program PP and the machining condition CP, the tool radius correction amount calculation unit 201 is configured to provide a tool path TP, a control center point CL in the tool path TP, tool diameter correction values MVL and MVR, and machining surface formation positions MPL and MPR. Tool radius correction information TC including
 図5~図7を用いて、加工条件CPに工具軌跡TPを制御するように設定された工具軌跡制御情報が含まれている場合について説明する。図5、図6、及び、図7に示す符号SP1、SP2、及び、SP3は、工具軌跡TPの制御を開始する位置SP(以下、制御開始位置SP(SP1、SP2、及び、SP3)とする)を示している。図5、図6、及び、図7に示す符号KP1、KP2、及び、KP3は、最終加工製品の角部に対応する位置KP(以下、角部対応位置KP(KP1、KP2、及び、KP3)とする)を示している。 A case where tool path control information set so as to control the tool path TP is included in the machining condition CP will be described with reference to FIGS. Reference numerals SP1, SP2, and SP3 shown in FIGS. 5, 6, and 7 are positions SP at which the control of the tool trajectory TP is started (hereinafter referred to as control start positions SP (SP1, SP2, and SP3). ). Reference numerals KP1, KP2, and KP3 shown in FIGS. 5, 6, and 7 indicate positions KP corresponding to the corners of the final processed product (hereinafter referred to as corner corresponding positions KP (KP1, KP2, and KP3). ).
 図5、図6、及び、図7に示す符号CD1、CD2、及び、CD3は、工具軌跡TPを制御する工具軌跡制御範囲CDを示している。具体的には、工具軌跡制御範囲CD1は、制御開始位置SP1から角部対応位置KP1までの範囲である。工具軌跡制御範囲CD2は、制御開始位置SP2から角部対応位置KP2までの範囲である。工具軌跡制御範囲CD3は、制御開始位置SP3から角部対応位置KP3までの範囲である。 Symbols CD1, CD2, and CD3 shown in FIGS. 5, 6, and 7 indicate a tool path control range CD that controls the tool path TP. Specifically, the tool path control range CD1 is a range from the control start position SP1 to the corner corresponding position KP1. The tool path control range CD2 is a range from the control start position SP2 to the corner corresponding position KP2. The tool path control range CD3 is a range from the control start position SP3 to the corner corresponding position KP3.
 CAM装置21は工具軌跡制御比率CRを任意の値に設定することができる。工具軌跡制御比率CRは、角部対応位置KPにおける工具軌跡TPの工具径TDkを、制御開始位置SPにおける工具軌跡TPの工具径TDs(設計値)で除算した値(CR=TDk/TDs)に相当する。なお、工具軌跡制御比率CRをパーセントで示す場合はCR(%)=(TDk/TDs)×100となる。 The CAM device 21 can set the tool path control ratio CR to an arbitrary value. The tool path control ratio CR is a value obtained by dividing the tool diameter TDk of the tool path TP at the corner corresponding position KP by the tool diameter TDs (design value) of the tool path TP at the control start position SP (CR = TDk / TDs). Equivalent to. When the tool path control ratio CR is expressed in percent, CR (%) = (TDk / TDs) × 100.
 図5、図6、及び、図7を用いて工具軌跡TPの制御方法を実施例1、実施例2、及び、実施例3として説明する。 A method for controlling the tool path TP will be described as a first embodiment, a second embodiment, and a third embodiment with reference to FIGS. 5, 6, and 7.
 図5は、ノズル106がX方向に移動し、さらにY方向に移動する状態を示している。図5に一点鎖線で示す符号NP1はノズル軌跡を示し、かつ、工具軌跡TPの制御中心点CLの軌跡を示している。図5は、工具軌跡制御情報に工具軌跡制御範囲CD1と工具軌跡制御比率CR1とが設定されている場合を示している。工具軌跡制御比率CR1は上記の工具軌跡制御比率CRに相当する。 FIG. 5 shows a state where the nozzle 106 moves in the X direction and further moves in the Y direction. A symbol NP1 indicated by a one-dot chain line in FIG. 5 indicates a nozzle locus, and also indicates a locus of the control center point CL of the tool locus TP. FIG. 5 shows a case where the tool path control range CD1 and the tool path control ratio CR1 are set in the tool path control information. The tool path control ratio CR1 corresponds to the tool path control ratio CR described above.
 図5は、工具軌跡制御比率CR1が最小となるように設定されている場合を示している。工具軌跡制御比率CR1が最小となる場合とは、角部対応位置KP1における工具軌跡TPの工具径TDkがビームスポットBSのビーム径、具体的にはビームスポットBSのビームウェスト径となる場合である。例えば、工具径TDsを100μmに設定し、工具径TDkを30μm(=ビームウェスト径)に設定する場合、工具軌跡制御比率CR1は30%に設定される。なお、デフォーカスされたレーザビームで加工対象物Wを切削加工する場合には、工具軌跡TPの工具径TDkはデフォーカスされたレーザビームのビーム径となる。 FIG. 5 shows a case where the tool path control ratio CR1 is set to be minimum. The case where the tool path control ratio CR1 is the minimum is a case where the tool diameter TDk of the tool path TP at the corner corresponding position KP1 is the beam diameter of the beam spot BS, specifically, the beam waist diameter of the beam spot BS. . For example, when the tool diameter TDs is set to 100 μm and the tool diameter TDk is set to 30 μm (= beam waist diameter), the tool path control ratio CR1 is set to 30%. Note that when the workpiece W is cut with a defocused laser beam, the tool diameter TDk of the tool locus TP is the beam diameter of the defocused laser beam.
 加工条件CPに工具軌跡TPを制御するように設定された工具軌跡制御情報が含まれている場合、工具径補正量演算部201は、工具軌跡制御比率CR1に基づいて、制御開始位置SP1における工具軌跡TPの工具径TDsが角部対応位置KP1で目的の工具径TDkとなるように、工具軌跡制御範囲CD1において工具軌跡TPの工具径TDを連続的または段階的に補正するための工具径補正情報TCを生成する。さらに、工具径補正量演算部201は、工具軌跡制御比率CR1に応じて、工具軌跡TPの工具径TDに対応する工具径補正値MVLx及びMVRxを連続的または段階的に変化させる工具径補正情報TCを生成する。 When the tool path control information set to control the tool path TP is included in the machining condition CP, the tool radius correction amount calculation unit 201 determines the tool at the control start position SP1 based on the tool path control ratio CR1. Tool diameter correction for correcting the tool diameter TD of the tool path TP continuously or stepwise in the tool path control range CD1 so that the tool diameter TDs of the path TP becomes the target tool diameter TDk at the corner corresponding position KP1. Information TC is generated. Further, the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLx and MVRx corresponding to the tool radius TD of the tool path TP continuously or stepwise according to the tool path control ratio CR1. TC is generated.
 工具径補正量演算部201は、工具軌跡TPの加工面形成位置MPLyが角部対応位置KP1に到達した後に、工具軌跡TPの工具径TDkが設計値の工具径TDsとなるように、工具軌跡TPの工具径TDを連続的または段階的に補正するための工具径補正情報TCを生成する。さらに、工具径補正量演算部201は、工具軌跡TPの工具径TDに対応させて工具径補正値MVLy及びMVRyを連続的または段階的に変化させる工具径補正情報TCを生成する。工具径補正量演算部201は、工具径補正情報TCを加工軌跡演算部202へ出力する。 The tool radius correction amount calculation unit 201 sets the tool path so that the tool diameter TDk of the tool path TP becomes the designed tool diameter TDs after the machining surface formation position MPLy of the tool path TP reaches the corner corresponding position KP1. Tool diameter correction information TC for correcting the tool diameter TD of the TP continuously or stepwise is generated. Further, the tool radius correction amount calculation unit 201 generates tool radius correction information TC that changes the tool radius correction values MVLy and MVRy continuously or stepwise in accordance with the tool radius TD of the tool path TP. The tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
 加工軌跡演算部202は、加工プログラムPPに含まれているGコードを翻訳する。加工軌跡演算部202は、翻訳結果に基づいて、左工具径補正にて切削加工するか、右工具径補正にて切削加工するかのいずれかの切削加工補正条件を決定する。 The machining locus calculation unit 202 translates the G code included in the machining program PP. Based on the translation result, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction.
 左工具径補正にて切削加工すると決定された場合、加工軌跡演算部202は、工具径補正情報TCに基づいて、工具軌跡制御範囲CD1において工具軌跡TP及び工具径補正値MVLxを連続的または段階的に変化させるための第1の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。 When it is determined that the machining is performed with the left tool radius correction, the machining locus calculation unit 202 continuously or steps the tool locus TP and the tool radius correction value MVLx in the tool locus control range CD1 based on the tool radius correction information TC. The tool radius correction control signal TS including the first tool path control information for changing automatically is generated.
 また、加工軌跡演算部202は、工具軌跡TPの加工面形成位置MPLyが角部対応位置KP1に到達した後に、工具軌跡TP及び工具径補正値MVLyを連続的または段階的に変化させるための第2の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。即ち、工具径補正量演算部201は、第1及び第2の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。 Further, the machining locus calculation unit 202 changes the tool locus TP and the tool radius correction value MVLy continuously or stepwise after the machining surface forming position MPLy of the tool locus TP reaches the corner corresponding position KP1. The tool radius correction control signal TS including the tool path control information of 2 is generated. That is, the tool radius correction amount calculation unit 201 generates a tool radius correction control signal TS including first and second tool path control information.
 加工軌跡演算部202は、工具径補正制御信号TSを駆動制御部203へ出力する。駆動制御部203は、工具径補正制御信号TSに基づいて駆動制御信号CSを生成する。駆動制御部203は、駆動制御信号CSにより、加工機本体100を制御する。加工機本体100は、駆動制御信号CSに基づいて、X軸キャリッジ102及びY軸キャリッジ103を駆動させてノズル軌跡NP1を制御する。また、加工機本体100は、駆動制御信号CSに基づいて、工具軌跡制御部300を駆動させて工具軌跡TPを制御する。 The machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203. The drive control unit 203 generates a drive control signal CS based on the tool radius correction control signal TS. The drive control unit 203 controls the processing machine body 100 with a drive control signal CS. Based on the drive control signal CS, the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 to control the nozzle locus NP1. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
 加工条件CPに工具軌跡TPを制御するように設定された工具軌跡制御情報が含まれている場合、加工機本体100は、駆動制御信号CSに基づいて、加工面形成位置MPLxまたはMPLyが最終加工製品の外形線に沿って移動するように、制御中心点CLを基準として工具軌跡TPを制御する。これにより、工具軌跡TPの工具径TDは、工具軌跡制御範囲CD1において、工具径補正値MVLx及びMVLyが工具軌跡制御比率CR1に応じて連続的または段階的に変化するように補正される。 When the tool path control information set to control the tool path TP is included in the processing condition CP, the processing machine main body 100 determines that the processing surface formation position MPLx or MPLy is the final processing based on the drive control signal CS. The tool trajectory TP is controlled based on the control center point CL so as to move along the outline of the product. As a result, the tool diameter TD of the tool path TP is corrected so that the tool diameter correction values MVLx and MVLy change continuously or stepwise according to the tool path control ratio CR1 in the tool path control range CD1.
 また、加工機本体100は、駆動制御信号CSに基づいて、加工面形成位置MPLxまたはMPLyが最終加工製品の外形線に沿って移動し、かつ、加工対象物Wにおける最終加工製品の角部に対応する角部対応位置KP1において工具軌跡TPが目的の工具径TDとなるように、制御中心点CLを基準として工具軌跡TPを制御する。これにより、工具軌跡TPの工具径TDは、工具径補正値MVLxまたはMVLyが工具軌跡制御比率CR1に応じて連続的または段階的に変化するように補正される。 Further, the processing machine main body 100 moves the machining surface formation position MPLx or MPLy along the outline of the final processed product based on the drive control signal CS, and at the corner of the final processed product in the workpiece W. The tool path TP is controlled on the basis of the control center point CL so that the tool path TP becomes the target tool diameter TD at the corresponding corner corresponding position KP1. Thereby, the tool diameter TD of the tool path TP is corrected so that the tool diameter correction value MVLx or MVLy changes continuously or stepwise according to the tool path control ratio CR1.
 工具軌跡制御比率CR1が最小となるように設定されている場合、図5に示すように、角部対応位置KP1における工具軌跡TPはビームスポットBSとなる。これにより、最終加工製品の角部は、最小の工具径TDを有する工具軌跡TPにより形成される。そのため、工具軌跡TPを制御しない場合と比較して、角部における未切削領域UAを低減することができる。 When the tool path control ratio CR1 is set to be the minimum, the tool path TP at the corner corresponding position KP1 becomes a beam spot BS as shown in FIG. Thereby, the corner of the final processed product is formed by the tool trajectory TP having the minimum tool diameter TD. Therefore, the uncut area UA at the corner can be reduced as compared with the case where the tool path TP is not controlled.
 図6は、ノズル106がX方向に移動し、さらにY方向に移動する状態を示している。図6に一点鎖線で示す符号NP2はノズル軌跡を示し、かつ、工具軌跡TPの制御中心点CLの軌跡を示している。図6は、工具軌跡制御情報に工具軌跡制御範囲CD2と工具軌跡制御比率CR2とが設定されている場合を示している。工具軌跡制御比率CR2は上記の工具軌跡制御比率CRに相当する。 FIG. 6 shows a state where the nozzle 106 moves in the X direction and further moves in the Y direction. A symbol NP2 indicated by a one-dot chain line in FIG. 6 indicates a nozzle locus, and also indicates a locus of the control center point CL of the tool locus TP. FIG. 6 shows a case where the tool path control range CD2 and the tool path control ratio CR2 are set in the tool path control information. The tool path control ratio CR2 corresponds to the tool path control ratio CR described above.
 図6は、工具軌跡制御比率CR2が任意の値(g%)に設定されている場合を示している。工具軌跡制御比率CR2がg%となる場合とは、角部対応位置KP2における工具軌跡TPの工具径TDkが、制御開始位置SP2における工具軌跡TPの工具径TDsのg%となる場合である。 FIG. 6 shows a case where the tool path control ratio CR2 is set to an arbitrary value (g%). The case where the tool path control ratio CR2 is g% is a case where the tool diameter TDk of the tool path TP at the corner corresponding position KP2 is g% of the tool diameter TDs of the tool path TP at the control start position SP2.
 加工条件CPに工具軌跡TPを制御するように設定された工具軌跡制御情報が含まれている場合、工具径補正量演算部201は、工具軌跡制御比率CR2に基づいて、制御開始位置SP2における工具軌跡TPの工具径TDs(設計値)が角部対応位置KP2で目的の工具径TDkとなるように、工具軌跡制御範囲CD2において工具軌跡TPの工具径TDを連続的または段階的に補正するための工具径補正情報TCを生成する。さらに、工具径補正量演算部201は、工具軌跡制御比率CR2に応じて、工具軌跡TPの工具径TDに対応する工具径補正値MVLx及びMVRxを連続的または段階的に変化させる工具径補正情報TCを生成する。 When the tool path control information set to control the tool path TP is included in the machining condition CP, the tool radius correction amount calculation unit 201 determines the tool at the control start position SP2 based on the tool path control ratio CR2. To continuously or stepwise correct the tool diameter TD of the tool path TP in the tool path control range CD2 so that the tool diameter TDs (design value) of the path TP becomes the target tool diameter TDk at the corner corresponding position KP2. Tool radius correction information TC is generated. Further, the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLx and MVRx corresponding to the tool radius TD of the tool path TP continuously or stepwise according to the tool path control ratio CR2. TC is generated.
 工具径補正量演算部201は、工具軌跡TPの加工面形成位置MPLyが角部対応位置KP2に到達した後に、工具軌跡TPの工具径TDkが設計値の工具径TDsとなるように、工具軌跡TPの工具径TDを連続的または段階的に補正するための工具径補正情報TCを生成する。さらに、工具径補正量演算部201は、工具軌跡TPの工具径TDに対応させて工具径補正値MVLy及びMVRyを連続的または段階的に変化させる工具径補正情報TCを生成する。工具径補正量演算部201は、工具径補正情報TCを加工軌跡演算部202へ出力する。 The tool radius correction amount calculation unit 201 sets the tool path so that the tool diameter TDk of the tool path TP becomes the designed tool diameter TDs after the machining surface formation position MPLy of the tool path TP reaches the corner corresponding position KP2. Tool diameter correction information TC for correcting the tool diameter TD of the TP continuously or stepwise is generated. Further, the tool radius correction amount calculation unit 201 generates tool radius correction information TC that changes the tool radius correction values MVLy and MVRy continuously or stepwise in accordance with the tool radius TD of the tool path TP. The tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
 加工軌跡演算部202は、加工プログラムPPに含まれているGコードを翻訳する。加工軌跡演算部202は、翻訳結果に基づいて、左工具径補正にて切削加工するか、右工具径補正にて切削加工するかのいずれかの切削加工補正条件を決定する。 The machining locus calculation unit 202 translates the G code included in the machining program PP. Based on the translation result, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction.
 左工具径補正にて切削加工すると決定された場合、加工軌跡演算部202は、工具径補正情報TCに基づいて、工具軌跡制御範囲CD2において工具軌跡TP及び工具径補正値MVLxを連続的または段階的に変化させるための第3の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。 When it is determined that the cutting is performed with the left tool radius correction, the machining locus calculation unit 202 continuously or steps the tool locus TP and the tool radius correction value MVLx in the tool locus control range CD2 based on the tool radius correction information TC. A tool radius correction control signal TS including the third tool path control information for changing the position is generated.
 また、加工軌跡演算部202は、工具軌跡TPの加工面形成位置MPLyが角部対応位置KP2に到達した後に、工具軌跡TP及び工具径補正値MVLyを連続的または段階的に変化させるための第4の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。即ち、工具径補正量演算部201は、第3及び第4の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。 Further, the machining locus calculation unit 202 changes the tool locus TP and the tool radius correction value MVLy continuously or stepwise after the machining surface forming position MPLy of the tool locus TP reaches the corner corresponding position KP2. 4 generates a tool radius correction control signal TS including the tool path control information. That is, the tool radius correction amount calculation unit 201 generates the tool radius correction control signal TS including the third and fourth tool path control information.
 加工軌跡演算部202は、工具径補正制御信号TSを駆動制御部203へ出力する。駆動制御部203は、工具径補正制御信号TSに基づいて駆動制御信号CSを生成する。駆動制御部203は、駆動制御信号CSにより、加工機本体100を制御する。加工機本体100は、駆動制御信号CSに基づいて、X軸キャリッジ102及びY軸キャリッジ103を駆動させてノズル軌跡NP1を制御する。また、加工機本体100は、駆動制御信号CSに基づいて、工具軌跡制御部300を駆動させて工具軌跡TPを制御する。 The machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203. The drive control unit 203 generates a drive control signal CS based on the tool radius correction control signal TS. The drive control unit 203 controls the processing machine body 100 with a drive control signal CS. Based on the drive control signal CS, the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 to control the nozzle locus NP1. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
 加工条件CPに工具軌跡TPを制御するように設定された工具軌跡制御情報が含まれている場合、加工機本体100は、駆動制御信号CSに基づいて、加工面形成位置MPLxまたはMPLyが最終加工製品の外形線に沿って移動するように、制御中心点CLを基準として工具軌跡TPを制御する。これにより、工具軌跡TPの工具径TDは、工具軌跡制御範囲CD2において、工具径補正値MVLx及びMVLyが工具軌跡制御比率CR2に応じて連続的または段階的に変化するように補正される。 When the tool path control information set to control the tool path TP is included in the processing condition CP, the processing machine main body 100 determines that the processing surface formation position MPLx or MPLy is the final processing based on the drive control signal CS. The tool trajectory TP is controlled based on the control center point CL so as to move along the outline of the product. Thereby, the tool diameter TD of the tool path TP is corrected so that the tool diameter correction values MVLx and MVLy change continuously or stepwise in the tool path control range CD2 in accordance with the tool path control ratio CR2.
 また、加工機本体100は、駆動制御信号CSに基づいて、加工面形成位置MPLxまたはMPLyが最終加工製品の外形線に沿って移動し、かつ、加工対象物Wにおける最終加工製品の角部に対応する角部対応位置KP2において工具軌跡TPが目的の工具径TDとなるように、制御中心点CLを基準として工具軌跡TPを制御する。これにより、工具軌跡TPの工具径TDは、工具径補正値MVLxまたはMVLyが工具軌跡制御比率CR2に応じて連続的または段階的に変化するように補正される。 Further, the processing machine main body 100 moves the machining surface formation position MPLx or MPLy along the outline of the final processed product based on the drive control signal CS, and at the corner of the final processed product in the workpiece W. The tool trajectory TP is controlled on the basis of the control center point CL so that the tool trajectory TP becomes the target tool diameter TD at the corresponding corner corresponding position KP2. Thereby, the tool diameter TD of the tool path TP is corrected so that the tool diameter correction value MVLx or MVLy changes continuously or stepwise according to the tool path control ratio CR2.
 図6に示すように、最終加工製品の角部は、工具軌跡制御比率CR2(CR2=g%)に応じて制御された工具径TDを有する工具軌跡TPにより形成される。そのため、工具軌跡TPを制御しない場合と比較して、角部における未切削領域UAを低減することができる。 As shown in FIG. 6, the corner of the final processed product is formed by a tool path TP having a tool diameter TD controlled according to the tool path control ratio CR2 (CR2 = g%). Therefore, the uncut area UA at the corner can be reduced as compared with the case where the tool path TP is not controlled.
 図7は、ノズル106がX方向に移動し、さらにY方向に移動する状態を示している。図7に一点鎖線で示す符号NP3はノズル軌跡を示し、符号CL3は工具軌跡TPの制御中心点CLの軌跡を示している。図7は、工具軌跡制御情報に工具軌跡制御範囲CD3と工具軌跡制御比率CR3とが設定されている場合を示している。工具軌跡制御比率CR3は上記の工具軌跡制御比率CRに相当する。 FIG. 7 shows a state where the nozzle 106 moves in the X direction and further moves in the Y direction. A reference numeral NP3 indicated by a one-dot chain line in FIG. 7 indicates a nozzle locus, and a reference CL3 indicates a locus of the control center point CL of the tool locus TP. FIG. 7 shows a case where the tool path control range CD3 and the tool path control ratio CR3 are set in the tool path control information. The tool path control ratio CR3 corresponds to the tool path control ratio CR described above.
 図7は、工具軌跡制御比率CR3が最小となるように設定されている場合を示している。工具軌跡制御比率CR3が最小となる場合とは、角部対応位置KP3における工具軌跡TPの工具径TDkがビームスポットBSのビーム径、具体的にはビームスポットBSのビームウェスト径となる場合である。 FIG. 7 shows a case where the tool path control ratio CR3 is set to be minimum. The case where the tool path control ratio CR3 is the minimum is a case where the tool diameter TDk of the tool path TP at the corner corresponding position KP3 is the beam diameter of the beam spot BS, specifically, the beam waist diameter of the beam spot BS. .
 例えば、工具径TDsが100μmであり、工具径TDkを30μm(=ビームウェスト径)に設定する場合、工具軌跡制御比率CR3は30%に設定される。なお、デフォーカスされたレーザビームで加工対象物Wを切削加工する場合には、工具軌跡TPの工具径TDkはデフォーカスされたレーザビームのビーム径となる。図7は、工具軌跡制御範囲CD3を含む、工具軌跡TPを制御する範囲において、制御中心点CLがノズル中心点CNと一致しない場合を示している。 For example, when the tool diameter TDs is 100 μm and the tool diameter TDk is set to 30 μm (= beam waist diameter), the tool path control ratio CR3 is set to 30%. Note that when the workpiece W is cut with a defocused laser beam, the tool diameter TDk of the tool locus TP is the beam diameter of the defocused laser beam. FIG. 7 shows a case where the control center point CL does not coincide with the nozzle center point CN in the range in which the tool path TP is controlled, including the tool path control range CD3.
 加工条件CPに工具軌跡TPを制御するように設定された工具軌跡制御情報が含まれている場合、工具径補正量演算部201は、工具軌跡制御範囲CD3において、ノズル106の工具径を一定とする工具径補正情報TCを生成する。工具径補正量演算部201は、工具軌跡制御範囲CD3において、工具軌跡制御比率CR3に基づいて、制御開始位置SP3における工具軌跡TPの工具径TDsが角部対応位置KP3で目的の工具径TDkとなる工具径補正情報TCを生成する。 When the tool path control information set to control the tool path TP is included in the machining condition CP, the tool radius correction amount calculation unit 201 sets the tool diameter of the nozzle 106 to be constant in the tool path control range CD3. Tool radius correction information TC to be generated is generated. Based on the tool path control ratio CR3, the tool diameter correction amount calculation unit 201 determines that the tool diameter TDs of the tool path TP at the control start position SP3 is the target tool diameter TDk at the corner corresponding position KP3 in the tool path control range CD3. The tool radius correction information TC is generated.
 具体的には、工具径補正量演算部201は、工具軌跡制御範囲CD3において、工具軌跡制御比率CR3に基づいて、工具軌跡制御範囲CD3において工具軌跡TPの工具径TDを連続的または段階的に補正し、かつ、制御中心点CLをノズル中心点CNに対して切削加工の進行方向DTに連続的または段階的に移動させる工具径補正情報TCを生成する。 Specifically, the tool diameter correction amount calculation unit 201 continuously or stepwise sets the tool diameter TD of the tool path TP in the tool path control range CD3 based on the tool path control ratio CR3 in the tool path control range CD3. Tool radius correction information TC is generated that corrects and moves the control center point CL continuously or stepwise in the cutting direction DT with respect to the nozzle center point CN.
 さらに、工具径補正量演算部201は、工具軌跡制御比率CR3に応じて、工具軌跡TPの工具径TDに対応する工具径補正値MVLx及びMVRxを連続的または段階的に変化させる工具径補正情報TCを生成する。 Further, the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLx and MVRx corresponding to the tool radius TD of the tool path TP continuously or stepwise according to the tool path control ratio CR3. TC is generated.
 工具径補正量演算部201は、工具軌跡TPの加工面形成位置MPLyが角部対応位置KP1に到達した後に、ノズル106の工具径を一定とする工具径補正情報TCを生成する。工具径補正量演算部201は、工具軌跡TPの工具径TDkが設計値の工具径TDsとなる工具径補正情報TCを生成する。 The tool radius correction amount calculation unit 201 generates tool radius correction information TC that makes the tool radius of the nozzle 106 constant after the machining surface formation position MPLy of the tool trajectory TP reaches the corner corresponding position KP1. The tool radius correction amount calculation unit 201 generates tool radius correction information TC in which the tool radius TDk of the tool trajectory TP becomes the designed tool radius TDs.
 具体的には、工具径補正量演算部201は、工具軌跡TPの工具径TDを連続的または段階的に補正し、かつ、制御中心点CLをノズル中心点CNに対して切削加工の進行方向DTに連続的または段階的に移動させる工具径補正情報TCを生成する。 Specifically, the tool radius correction amount calculation unit 201 corrects the tool radius TD of the tool trajectory TP continuously or stepwise, and the cutting direction of the control center point CL with respect to the nozzle center point CN. Tool radius correction information TC to be moved continuously or stepwise by DT is generated.
 さらに、工具径補正量演算部201は、工具軌跡TPの工具径TDに対応させて工具径補正値MVLy及びMVRyを連続的または段階的に変化させる工具径補正情報TCを生成する。工具径補正量演算部201は、工具径補正情報TCを加工軌跡演算部202へ出力する。 Further, the tool radius correction amount calculation unit 201 generates tool radius correction information TC that changes the tool radius correction values MVLy and MVRy continuously or stepwise in accordance with the tool radius TD of the tool path TP. The tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
 加工軌跡演算部202は、加工プログラムPPに含まれているGコードを翻訳する。加工軌跡演算部202は、翻訳結果に基づいて、左工具径補正にて切削加工するか、右工具径補正にて切削加工するかのいずれかの切削加工補正条件を決定する。 The machining locus calculation unit 202 translates the G code included in the machining program PP. Based on the translation result, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction.
 左工具径補正にて切削加工すると決定された場合、加工軌跡演算部202は、工具径補正情報TCに基づいて、工具軌跡制御範囲CD3において、ノズル106の工具径を一定とし、かつ、工具軌跡TP及び工具径補正値MVLxを連続的または段階的に変化させ、かつ、制御中心点CLをノズル中心点CNに対して切削加工の進行方向DTに連続的または段階的に移動させるための第5の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。 When it is determined to perform the cutting with the left tool radius correction, the machining locus calculation unit 202 makes the tool radius of the nozzle 106 constant in the tool locus control range CD3 based on the tool radius correction information TC, and the tool locus. A fifth for changing the TP and the tool diameter correction value MVLx continuously or stepwise and moving the control center point CL in the cutting progress direction DT with respect to the nozzle center point CN continuously or stepwise. A tool radius correction control signal TS including the tool path control information is generated.
 また、加工軌跡演算部202は、工具軌跡TPの加工面形成位置MPLyが角部対応位置KP3に到達した後に、ノズル106の工具径を一定とし、かつ、工具軌跡TP及び工具径補正値MVLyを連続的または段階的に変化させ、かつ、制御中心点CLをノズル中心点CNに対して切削加工の進行方向DTに連続的または段階的に移動させるための第6の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。即ち、工具径補正量演算部201は、第5及び第6の工具軌跡制御情報を含む工具径補正制御信号TSを生成する。 Further, the machining locus calculation unit 202 makes the tool radius of the nozzle 106 constant after the machining surface formation position MPLy of the tool locus TP reaches the corner corresponding position KP3, and sets the tool locus TP and the tool radius correction value MVly. A tool including sixth tool path control information for changing continuously or stepwise and moving the control center point CL with respect to the nozzle center point CN in the cutting progress direction DT continuously or stepwise. A diameter correction control signal TS is generated. That is, the tool radius correction amount calculation unit 201 generates a tool radius correction control signal TS including the fifth and sixth tool path control information.
 加工軌跡演算部202は、工具径補正制御信号TSを駆動制御部203へ出力する。駆動制御部203は、工具径補正制御信号TSに基づいて駆動制御信号CSを生成する。駆動制御部203は、駆動制御信号CSにより、加工機本体100を制御する。加工機本体100は、駆動制御信号CSに基づいて、X軸キャリッジ102及びY軸キャリッジ103を駆動させてノズル軌跡NP3を制御する。また、加工機本体100は、駆動制御信号CSに基づいて、工具軌跡制御部300を駆動させて工具軌跡TPを制御する。 The machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203. The drive control unit 203 generates a drive control signal CS based on the tool radius correction control signal TS. The drive control unit 203 controls the processing machine body 100 with a drive control signal CS. Based on the drive control signal CS, the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 to control the nozzle locus NP3. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
 加工条件CPに工具軌跡TPを制御するように設定された工具軌跡制御情報が含まれている場合、加工機本体100は、駆動制御信号CSに基づいて、ノズル106の工具径を一定とし、かつ、加工面形成位置MPLxまたはMPLyが最終加工製品の外形線に沿って移動し、かつ、制御中心点CLがノズル中心点CNに対して切削加工の進行方向DTに連続的または段階的に移動するように工具軌跡TPを制御する。これにより、工具軌跡TPの工具径TDは、工具軌跡制御範囲CD3において、工具径補正値MVLx及びMVLyが工具軌跡制御比率CR3に応じて連続的または段階的に変化するように補正される。 When the tool path control information set to control the tool path TP is included in the processing condition CP, the processing machine body 100 sets the tool diameter of the nozzle 106 constant based on the drive control signal CS, and The machining surface forming position MPLx or MPLy moves along the outline of the final processed product, and the control center point CL moves continuously or stepwise in the cutting direction DT with respect to the nozzle center point CN. Thus, the tool path TP is controlled. Thereby, the tool diameter TD of the tool path TP is corrected so that the tool diameter correction values MVLx and MVLy change continuously or stepwise in accordance with the tool path control ratio CR3 in the tool path control range CD3.
 また、加工機本体100は、駆動制御信号CSに基づいて、加工面形成位置MPLxまたはMPLyが最終加工製品の外形線に沿って移動し、かつ、加工対象物Wにおける最終加工製品の角部に対応する角部対応位置KP3において、ノズル106の工具径を一定とし、かつ、工具軌跡TPが目的の工具径TDとなるように工具軌跡TPを制御する。 Further, the processing machine main body 100 moves the machining surface formation position MPLx or MPLy along the outline of the final processed product based on the drive control signal CS, and at the corner of the final processed product in the workpiece W. At the corresponding corner corresponding position KP3, the tool path TP is controlled so that the tool diameter of the nozzle 106 is constant and the tool path TP becomes the target tool diameter TD.
 これにより、工具軌跡TPの工具径TDは、工具径補正値MVLxまたはMVLyが工具軌跡制御比率CR3に応じて連続的または段階的に変化するように補正される。即ち、工具軌跡TPを制御する範囲では、ノズル軌跡MP3と工具軌跡TPの制御中心点CLの軌跡CL3とは別々に制御されることになる。 Thereby, the tool diameter TD of the tool path TP is corrected so that the tool diameter correction value MVLx or MVLy changes continuously or stepwise according to the tool path control ratio CR3. That is, in the range in which the tool locus TP is controlled, the nozzle locus MP3 and the locus CL3 of the control center point CL of the tool locus TP are controlled separately.
 ノズル中心点CNを通るノズル106の中心軸を親軸とすると、工具軌跡TPを構成するレーザビームの光軸が子軸に相当する。即ち、工具軌跡TPを制御する範囲において、親軸と子軸とは工具軌跡制御比率CR3に応じて軸分配される。 Suppose that the central axis of the nozzle 106 passing through the nozzle center point CN is the parent axis, the optical axis of the laser beam constituting the tool locus TP corresponds to the child axis. That is, in the range where the tool path TP is controlled, the parent axis and the child axis are distributed according to the tool path control ratio CR3.
 工具軌跡制御比率CR1が最小となるように設定されている場合、図7に示すように、角部対応位置KP3における工具軌跡TPはビームスポットBSとなる。これにより、最終加工製品の角部は、最小の工具径TDを有する工具軌跡TPにより形成される。そのため、工具軌跡TPを制御しない場合と比較して、角部における未切削領域UAを低減することができる。 When the tool path control ratio CR1 is set to be minimum, the tool path TP at the corner corresponding position KP3 becomes a beam spot BS as shown in FIG. Thereby, the corner of the final processed product is formed by the tool trajectory TP having the minimum tool diameter TD. Therefore, the uncut area UA at the corner can be reduced as compared with the case where the tool path TP is not controlled.
 図8A及び図8Bに示すフローチャートを用いて、切削加工方法の一例を説明する。CAD装置20は、図8Aに示すフローチャートのステップS1にて、最終加工製品の寸法及び形状を含む製品形状情報に基づいて製品形状データSDを生成する。さらに、CAD装置20は、製品形状データSDをCAM装置21へ出力する。 An example of the cutting method will be described using the flowcharts shown in FIGS. 8A and 8B. The CAD device 20 generates product shape data SD based on the product shape information including the size and shape of the final processed product in step S1 of the flowchart shown in FIG. 8A. Further, the CAD device 20 outputs the product shape data SD to the CAM device 21.
 CAM装置21は、ステップS2にて、製品形状データSDに基づいて、切削加工機1の加工プログラムPP(Gコードを含む)を生成し、加工条件CPを指定する。さらに、CAM装置21は加工プログラムPPと加工条件CPとを切削加工機1のNC装置200へ出力する。 In step S2, the CAM device 21 generates a machining program PP (including a G code) for the cutting machine 1 based on the product shape data SD, and designates a machining condition CP. Further, the CAM device 21 outputs the machining program PP and the machining condition CP to the NC device 200 of the cutting machine 1.
 NC装置200は、ステップS3にて、加工プログラムPPと加工条件CPとに基づいて、加工機本体100を制御してX軸キャリッジ102及びY軸キャリッジ103を駆動させることにより、ノズル106を目的の位置へ移動させる。また、NC装置200は、ステップS4にて、加工プログラムPPと加工条件CPとに基づいてレーザ発振器10を制御することにより、レーザビームをノズル106の開口部105から射出し、加工対象物Wに照射する。ステップS3とステップS4とのタイミングは加工プログラムPPと加工条件CPとに基づいて制御される。 In step S3, the NC device 200 controls the processing machine main body 100 based on the processing program PP and the processing condition CP to drive the X-axis carriage 102 and the Y-axis carriage 103, thereby setting the target nozzle 106. Move to position. Further, in step S4, the NC device 200 controls the laser oscillator 10 based on the machining program PP and the machining condition CP, thereby emitting a laser beam from the opening 105 of the nozzle 106 to the workpiece W. Irradiate. The timing of step S3 and step S4 is controlled based on the machining program PP and machining conditions CP.
 NC装置200の工具径補正量演算部201、及び、加工軌跡演算部202には、ステップS2にてCAM装置21から加工プログラムPPと加工条件CPとが入力される。工具径補正量演算部201は、ステップS5にて、加工条件CPに工具軌跡制御情報が含まれているか否かを認識する。 In step S2, the machining program PP and the machining condition CP are input from the CAM device 21 to the tool diameter correction amount computing unit 201 and the machining locus computing unit 202 of the NC device 200. In step S5, the tool radius correction amount calculation unit 201 recognizes whether or not the tool path control information is included in the machining condition CP.
 工具軌跡制御情報には、加工対象物Wに対して、最終加工製品の角部に対応する部分を切削加工するときに工具軌跡TPを制御するか否かが設定されている。工具軌跡TPを制御するように設定された工具軌跡制御情報には、工具軌跡制御範囲CDと工具軌跡制御比率CRとが設定されている。加工条件CPに工具軌跡制御情報が含まれていると認識された場合、工具径補正量演算部201は、工具軌跡制御情報が工具軌跡TPを制御するように設定されているか否かを認識する。 In the tool trajectory control information, whether or not to control the tool trajectory TP when cutting a portion corresponding to the corner of the final processed product is set for the workpiece W. In the tool path control information set to control the tool path TP, a tool path control range CD and a tool path control ratio CR are set. When it is recognized that the tool path control information is included in the machining condition CP, the tool radius correction amount calculation unit 201 recognizes whether or not the tool path control information is set to control the tool path TP. .
 加工条件CPに工具軌跡制御情報が含まれていないと認識された場合、または、加工条件CPに工具軌跡制御情報が含まれていると認識され、かつ、工具軌跡制御情報が工具軌跡を制御しないように設定されている場合、工具径補正量演算部201は、工具軌跡TPの工具径を固定する。これにより、工具軌跡TPの工具径に対応する工具径補正値MVL及びMVRは固定される。 When it is recognized that the tool path control information is not included in the machining condition CP, or it is recognized that the tool path control information is included in the machining condition CP, and the tool path control information does not control the tool path. In such a case, the tool radius correction amount calculation unit 201 fixes the tool radius of the tool path TP. Thereby, the tool radius correction values MVL and MVR corresponding to the tool radius of the tool path TP are fixed.
 工具径補正量演算部201は、ステップS6にて、加工プログラムPPと加工条件CPとに基づいて、工具軌跡TPと、工具軌跡TPにおける制御中心点CLと工具径補正値MVL及びMVRと加工面形成位置MPL及びMPRとを含む工具径補正情報TCを生成する。 In step S6, the tool radius correction amount calculation unit 201 determines the tool path TP, the control center point CL in the tool path TP, the tool radius correction values MVL and MVR, and the machining surface based on the machining program PP and the machining condition CP. Tool radius correction information TC including the formation positions MPL and MPR is generated.
 ステップS5にて加工条件CPに工具軌跡制御情報が含まれていると認識され、かつ、工具軌跡制御情報が工具軌跡を制御するように設定されている場合、工具径補正量演算部201は、工具軌跡制御情報に含まれている工具軌跡制御範囲CDと工具軌跡制御比率CRとを認識する。 When it is recognized in step S5 that the tool path control information is included in the machining condition CP and the tool path control information is set to control the tool path, the tool radius correction amount calculation unit 201 The tool path control range CD and the tool path control ratio CR included in the tool path control information are recognized.
 工具径補正量演算部201は、ステップS6にて、工具軌跡制御比率CR1に基づいて、制御開始位置SPにおける工具軌跡TPの工具径TDs(設計値)が角部対応位置KPで目的の工具径TDkとなるように、工具軌跡制御範囲CDにおいて工具軌跡TPの工具径TDを連続的または段階的に補正し、かつ、制御中心点CLがノズル中心点CNに対して切削加工の進行方向DTに連続的または段階的に移動するための工具径補正情報TCを生成する。 In step S6, the tool diameter correction amount calculation unit 201 determines that the tool diameter TDs (design value) of the tool path TP at the control start position SP is the target tool diameter at the corner corresponding position KP based on the tool path control ratio CR1. The tool diameter TD of the tool path TP is corrected continuously or stepwise in the tool path control range CD so as to be TDk, and the control center point CL is in the cutting progress direction DT with respect to the nozzle center point CN. Tool radius correction information TC for moving continuously or stepwise is generated.
 さらに、工具径補正量演算部201は、工具軌跡制御比率CRに応じて、工具軌跡TPの工具径に対応する工具径補正値MVLx及びMVRxを連続的または段階的に変化させる工具径補正情報TCを生成する。 Further, the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLx and MVRx corresponding to the tool radius of the tool path TP continuously or stepwise according to the tool path control ratio CR. Is generated.
 工具径補正量演算部201は、工具軌跡TPの加工面形成位置MPLyが角部対応位置KPに到達した後に、工具軌跡TPの工具径TDkが設計値の工具径TDsとなるように、工具軌跡TPの工具径TDを連続的または段階的に補正し、かつ、制御中心点CLがノズル中心点CNに対して切削加工の進行方向DTに連続的または段階的に移動するための工具径補正情報TCを生成する。 The tool radius correction amount calculation unit 201 sets the tool path so that the tool diameter TDk of the tool path TP becomes the designed tool diameter TDs after the machining surface formation position MPLy of the tool path TP reaches the corner corresponding position KP. Tool diameter correction information for correcting the tool diameter TD of the TP continuously or stepwise and for the control center point CL to move continuously or stepwise in the cutting progress direction DT with respect to the nozzle center point CN. TC is generated.
 さらに、工具径補正量演算部201は、工具軌跡制御比率CRに応じて、工具軌跡TPの工具径TDに対応する工具径補正値MVLy及びMVRyを連続的または段階的に変化させる工具径補正情報TCを生成する。工具径補正量演算部201は、工具径補正情報TCを加工軌跡演算部202へ出力する。 Further, the tool radius correction amount calculation unit 201 changes the tool radius correction values MVLy and MVRy corresponding to the tool radius TD of the tool path TP continuously or stepwise according to the tool path control ratio CR. TC is generated. The tool radius correction amount calculation unit 201 outputs the tool radius correction information TC to the machining locus calculation unit 202.
 加工軌跡演算部202には、ステップS2にてCAM装置21から加工プログラムPPと加工条件CPとが入力され、ステップS6にて工具径補正量演算部201から工具径補正情報TCが入力される。加工軌跡演算部202は、ステップS7にて、加工プログラムPPに含まれているGコードを翻訳する。さらに、加工軌跡演算部202は、翻訳結果に基づいて、左工具径補正にて切削加工するか、右工具径補正にて切削加工するかのいずれかの切削加工補正条件を決定する。 In the machining locus calculation unit 202, the machining program PP and the machining condition CP are input from the CAM device 21 in step S2, and the tool radius correction information TC is input from the tool radius correction amount calculation unit 201 in step S6. In step S7, the machining locus calculation unit 202 translates the G code included in the machining program PP. Further, the machining locus calculation unit 202 determines a cutting correction condition for either cutting with the left tool radius correction or cutting with the right tool radius correction based on the translation result.
 加工軌跡演算部202は、図8Bに示すフローチャートのステップS8にて、加工プログラムPPと加工条件CPと工具径補正情報TCと決定された切削加工補正条件とに基づいて、工具径補正制御信号TSを生成する。さらに、加工軌跡演算部202は、工具径補正制御信号TSを駆動制御部203へ出力する。駆動制御部203は、ステップS9にて、工具径補正制御信号TSに基づいて、加工機本体100を制御する駆動制御信号CSを生成する。さらに、駆動制御部203は駆動制御信号CSを加工機本体100へ出力する。 The machining locus calculation unit 202 performs the tool radius correction control signal TS on the basis of the machining program PP, the machining condition CP, the tool radius correction information TC, and the cutting machining correction condition determined in step S8 of the flowchart shown in FIG. 8B. Is generated. Further, the machining locus calculation unit 202 outputs a tool radius correction control signal TS to the drive control unit 203. In step S9, the drive control unit 203 generates a drive control signal CS for controlling the processing machine main body 100 based on the tool radius correction control signal TS. Further, the drive control unit 203 outputs a drive control signal CS to the processing machine body 100.
 加工機本体100は、ステップS10にて、駆動制御信号CSに基づいて、X軸キャリッジ102及びY軸キャリッジ103を駆動させてノズル軌跡NPを制御する。また、加工機本体100は、駆動制御信号CSに基づいて、工具軌跡制御部300を駆動させて工具軌跡TPを制御する。 In step S10, the processing machine main body 100 drives the X-axis carriage 102 and the Y-axis carriage 103 based on the drive control signal CS to control the nozzle locus NP. Further, the processing machine main body 100 controls the tool path TP by driving the tool path control unit 300 based on the drive control signal CS.
 ステップS5にて加工条件CPに工具軌跡制御情報が含まれていないと認識された場合、または、加工条件CPに工具軌跡制御情報が含まれていると認識され、かつ、工具軌跡制御情報が工具軌跡TPを制御しないように設定されている場合、加工機本体100は、ステップS11にて、工具軌跡TPの工具径を固定する。これにより、工具軌跡TPの工具径に対応する工具径補正値MVL及びMVRは固定される。 When it is recognized in step S5 that the tool path control information is not included in the machining condition CP, or it is recognized that the tool path control information is included in the machining condition CP, and the tool path control information is the tool When it is set not to control the locus TP, the processing machine main body 100 fixes the tool diameter of the tool locus TP in step S11. Thereby, the tool radius correction values MVL and MVR corresponding to the tool radius of the tool path TP are fixed.
 ステップS5にて加工条件CPに工具軌跡制御情報が含まれていると認識され、かつ、工具軌跡制御情報が工具軌跡TPを制御するように設定されている場合、加工機本体100は、ステップS12にて、工具軌跡制御範囲CDにおいて、加工面形成位置MPLまたはMPRが最終加工製品の外形線に沿って移動し、かつ、工具軌跡制御比率CRが連続的または段階的に変化するように、工具軌跡TPの工具径TDを制御する。 When it is recognized in step S5 that the tool path control information is included in the machining condition CP and the tool path control information is set to control the tool path TP, the processing machine main body 100 determines that the tool path control information is in step S12. In the tool path control range CD, the tool surface forming position MPL or MPR moves along the contour line of the final processed product, and the tool path control ratio CR changes continuously or stepwise. The tool diameter TD of the trajectory TP is controlled.
 さらに、加工機本体100は、工具軌跡制御範囲CDにおいて、制御中心点CLがノズル中心点CNに対して切削加工の進行方向DTに連続的または段階的に移動するように、工具軌跡TPを制御する。 Further, the processing machine body 100 controls the tool path TP so that the control center point CL moves continuously or stepwise in the cutting direction DT with respect to the nozzle center point CN in the tool path control range CD. To do.
 本実施形態の切削加工機及び切削加工方法では、工具軌跡TPに基づく補正情報とノズル軌跡NPに基づく補正情報とを含む工具径補正情報TCを生成する。本実施形態の切削加工機及び切削加工方法では、工具径補正情報TCに基づいて加工ユニット104の駆動と工具軌跡制御部300の駆動とを制御することにより、ノズル軌跡NPと工具軌跡TPとを制御する。従って、本実施形態の切削加工機及び切削加工方法によれば、切削工具に相当する工具軌跡、または、ノズルと加工ステージとの相対位置が固定されている状態における切削加工跡が非円形状であっても、切削工具の工具径を精度よく補正することができる。 In the cutting machine and the cutting method of the present embodiment, tool radius correction information TC including correction information based on the tool trajectory TP and correction information based on the nozzle trajectory NP is generated. In the cutting machine and the cutting method of the present embodiment, the nozzle locus NP and the tool locus TP are obtained by controlling the drive of the machining unit 104 and the drive of the tool locus control unit 300 based on the tool radius correction information TC. Control. Therefore, according to the cutting machine and the cutting method of the present embodiment, the tool trace corresponding to the cutting tool or the cutting trace in a state where the relative position between the nozzle and the processing stage is fixed is non-circular. Even if it exists, the tool diameter of the cutting tool can be accurately corrected.
 加工条件CPに、加工対象物Wに対して、最終加工製品の角部に対応する部分を切削加工するときに工具軌跡TPを制御するか否かが設定された工具軌跡制御情報が含まれている場合がある。本実施形態の切削加工機及び切削加工方法では、加工条件CPに工具軌跡制御情報が含まれていない場合、または、工具軌跡TPを制御しないように設定された工具軌跡制御情報が含まれている場合には、工具軌跡TPの工具径を固定する。 The machining condition CP includes tool path control information in which whether or not to control the tool path TP is set when cutting a portion corresponding to the corner of the final processed product with respect to the workpiece W. There may be. In the cutting machine and the cutting method according to the present embodiment, when the tool path control information is not included in the machining condition CP, or the tool path control information set so as not to control the tool path TP is included. In this case, the tool diameter of the tool path TP is fixed.
 本実施形態の切削加工機及び切削加工方法では、加工条件CPに工具軌跡TPを制御するように設定された工具軌跡制御情報が含まれている場合には、工具軌跡制御範囲CDにおいて工具軌跡制御比率CRが連続的または段階的に変化するように工具軌跡TPの工具径TDを制御する。 In the cutting machine and the cutting method according to the present embodiment, when the tool path control information set to control the tool path TP is included in the processing condition CP, the tool path control is performed in the tool path control range CD. The tool diameter TD of the tool path TP is controlled so that the ratio CR changes continuously or stepwise.
 従って、本実施形態の切削加工機及び切削加工方法によれば、工具軌跡TPを制御することにより、最終加工製品の角部を目的の工具径により形成することができる。これにより、工具軌跡TPを制御しない場合と比較して、最終加工製品の角部における未切削領域UAを低減することができる。 Therefore, according to the cutting machine and the cutting method of the present embodiment, the corner portion of the final processed product can be formed with the target tool diameter by controlling the tool trajectory TP. Thereby, compared with the case where the tool locus | trajectory TP is not controlled, the uncut area | region UA in the corner | angular part of a final processed product can be reduced.
 本発明は以上説明した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。本実施形態の切削加工機及び切削加工方法では、レーザ加工機及びレーザ加工方法を例に挙げて説明したが、本発明は例えばウォータジェット加工機に対しても適用可能である。 The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the present invention. In the cutting machine and the cutting method of the present embodiment, the laser processing machine and the laser processing method have been described as examples. However, the present invention can be applied to, for example, a water jet processing machine.
 本願の開示は、2018年3月12日に出願された特願2018-044116号に記載の主題と関連しており、それらの全ての開示内容は引用によりここに援用される。 The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2018-04116 filed on Mar. 12, 2018, the entire disclosure content of which is incorporated herein by reference.

Claims (4)

  1.  加工対象物を切削加工する加工機本体と、
     前記加工機本体を制御するNC装置と、
     を備え、
     前記NC装置は、
     前記加工対象物を切削加工することによって得られる最終加工製品の寸法及び形状を含む製品形状情報に基づいて設定された加工プログラムと加工条件とに基づいて、前記加工対象物を切削加工する切削工具の工具径を補正するための工具径補正情報を生成する工具径補正量演算部と、
     前記加工プログラムと前記加工条件と前記工具径補正情報とに基づいて、切削加工補正条件を含む工具径補正制御信号を生成する加工軌跡演算部と、
     前記工具径補正制御信号に基づいて、前記加工機本体を制御する駆動制御信号を生成する駆動制御部と、
     を有し、
     前記加工機本体は、
     前記加工対象物との相対位置を変化させることにより、前記加工対象物を切削加工する加工ユニットと、
     前記駆動制御信号に基づいて、前記切削工具に相当し、かつ、非円形状を有する工具軌跡を制御する工具軌跡制御部と、
     を有し、
     前記加工対象物に対して前記最終加工製品の角部に対応する部分を切削加工するとき、前記加工条件に前記工具軌跡を制御するように設定された工具軌跡制御情報が含まれている場合に、
     前記工具径補正量演算部は、前記工具軌跡の工具径を補正するための前記工具径補正情報を生成し、
     前記加工機本体は、前記駆動制御信号に基づいて、前記加工対象物における前記最終加工製品の角部に対応する位置において前記工具軌跡が目的の工具径となるように前記工具軌跡を制御する
     ことを特徴とする切削加工機。
    A processing machine body for cutting a workpiece;
    An NC device for controlling the processing machine body;
    With
    The NC device
    A cutting tool for cutting the workpiece based on a machining program and machining conditions set based on product shape information including the size and shape of the final processed product obtained by cutting the workpiece. A tool radius correction amount calculation unit for generating tool radius correction information for correcting the tool radius of
    Based on the machining program, the machining conditions, and the tool radius correction information, a machining locus calculation unit that generates a tool radius correction control signal including a cutting correction condition;
    A drive control unit that generates a drive control signal for controlling the processing machine body based on the tool radius correction control signal;
    Have
    The processing machine body is
    A machining unit that cuts the workpiece by changing a relative position with the workpiece;
    A tool path control unit that controls a tool path corresponding to the cutting tool and having a non-circular shape based on the drive control signal;
    Have
    When cutting the portion corresponding to the corner of the final processed product with respect to the object to be processed, when the tool path control information set to control the tool path is included in the processing conditions ,
    The tool radius correction amount calculation unit generates the tool radius correction information for correcting the tool radius of the tool path,
    The processing machine body controls the tool path based on the drive control signal so that the tool path becomes a target tool diameter at a position corresponding to a corner of the final processed product in the processing target. Cutting machine characterized by.
  2.  前記加工機本体は、前記NC装置により制御され、レーザビームを射出するレーザ発振器をさらに備え、
     前記加工ユニットは、前記加工ユニットの先端部に取り付けられ、前記レーザビームを前記加工対象物に照射するための開口部が形成されたノズルを有し、
     前記工具軌跡制御部は、前記加工ユニットの内部に収容され、前記開口部から射出されるレーザビームを非円形状の振動パターンで振動させることにより、前記工具軌跡を制御する
     ことを特徴とする請求項1に記載の切削加工機。
    The processing machine body further includes a laser oscillator that is controlled by the NC device and emits a laser beam,
    The processing unit has a nozzle that is attached to the tip of the processing unit and has an opening for irradiating the processing object with the laser beam.
    The tool trajectory control unit is housed in the machining unit and controls the tool trajectory by vibrating a laser beam emitted from the opening with a non-circular vibration pattern. Item 2. The cutting machine according to Item 1.
  3.  加工対象物を切削加工することによって得られる最終加工製品の寸法及び形状を含む製品形状情報に基づいて設定された加工プログラムと加工条件とに基づいて、前記加工対象物を切削加工するための切削工具の工具径を補正するための工具径補正情報を生成し、
     前記加工プログラムと前記加工条件と前記工具径補正情報とに基づいて工具径補正制御信号を生成し、
     前記工具径補正制御信号に基づいて駆動制御信号を生成し、
     前記加工条件に、前記加工対象物に対して、前記最終加工製品の角部に対応する部分を切削加工するときに前記切削工具に相当し、かつ、非円形状を有する工具軌跡を制御するように設定された工具軌跡制御情報が含まれている場合に、
     前記工具軌跡の工具径を補正するための前記工具径補正情報を生成し、
     前記駆動制御信号に基づいて、前記加工対象物における前記最終加工製品の角部に対応する位置において前記工具軌跡が目的の工具径となるように前記工具軌跡を制御する
     ことを特徴とする切削加工方法。
    Cutting for cutting the workpiece based on the machining program and machining conditions set based on the product shape information including the size and shape of the final processed product obtained by cutting the workpiece. Generate tool radius correction information to correct the tool radius of the tool,
    A tool radius correction control signal is generated based on the machining program, the machining conditions, and the tool radius correction information,
    A drive control signal is generated based on the tool radius correction control signal,
    The tool path corresponding to the cutting tool and having a non-circular shape is controlled when the portion corresponding to the corner of the final processed product is cut with respect to the workpiece under the machining conditions. If the tool path control information set in is included,
    Generating the tool radius correction information for correcting the tool radius of the tool path,
    Based on the drive control signal, the tool trajectory is controlled such that the tool trajectory has a target tool diameter at a position corresponding to a corner of the final processed product in the workpiece. Method.
  4.  前記加工対象物にレーザビームを照射し、
     前記レーザビームを非円形状の振動パターンで振動させることにより、前記工具軌跡を制御する
     ことを特徴とする請求項3に記載の切削加工方法。
    Irradiating the workpiece with a laser beam;
    The cutting method according to claim 3, wherein the tool trajectory is controlled by vibrating the laser beam in a non-circular vibration pattern.
PCT/JP2019/008527 2018-03-12 2019-03-05 Cutting machine and cutting method WO2019176631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506416A JP7129469B2 (en) 2018-03-12 2019-03-05 Cutting machine and cutting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018044116 2018-03-12
JP2018-044116 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019176631A1 true WO2019176631A1 (en) 2019-09-19

Family

ID=67906575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008527 WO2019176631A1 (en) 2018-03-12 2019-03-05 Cutting machine and cutting method

Country Status (2)

Country Link
JP (1) JP7129469B2 (en)
WO (1) WO2019176631A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3871825A4 (en) * 2018-10-22 2021-12-29 Amada Co., Ltd. Laser beam machine, laser beam machining method
DE102022118281A1 (en) 2022-07-21 2024-02-01 TRUMPF Werkzeugmaschinen SE + Co. KG Laser cutting process with oscillating laser beam and optimized cutting gas supply

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129804A (en) * 1983-12-17 1985-07-11 Mitsubishi Electric Corp Numerical controller
JP2001047269A (en) * 1999-08-09 2001-02-20 Nippei Toyama Corp Laser beam machine
JP2007021579A (en) * 2005-06-17 2007-02-01 Nippon Steel Corp Copying laser beam-oscillating device, and beam oscillating laser machining apparatus
JP2010162561A (en) * 2009-01-14 2010-07-29 Nippon Steel Corp Laser beam cutting method and apparatus
JP2011025272A (en) * 2009-07-23 2011-02-10 Nippon Steel Corp Laser beam cutting apparatus and laser beam cutting method
JP2014217875A (en) * 2013-05-10 2014-11-20 新日鐵住金株式会社 Laser cut material and laser cutting method
WO2015140906A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Numerical control device
JP2015174096A (en) * 2014-03-13 2015-10-05 新日鐵住金株式会社 Laser cutting method and laser cutting system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129804A (en) * 1983-12-17 1985-07-11 Mitsubishi Electric Corp Numerical controller
JP2001047269A (en) * 1999-08-09 2001-02-20 Nippei Toyama Corp Laser beam machine
JP2007021579A (en) * 2005-06-17 2007-02-01 Nippon Steel Corp Copying laser beam-oscillating device, and beam oscillating laser machining apparatus
JP2010162561A (en) * 2009-01-14 2010-07-29 Nippon Steel Corp Laser beam cutting method and apparatus
JP2011025272A (en) * 2009-07-23 2011-02-10 Nippon Steel Corp Laser beam cutting apparatus and laser beam cutting method
JP2014217875A (en) * 2013-05-10 2014-11-20 新日鐵住金株式会社 Laser cut material and laser cutting method
JP2015174096A (en) * 2014-03-13 2015-10-05 新日鐵住金株式会社 Laser cutting method and laser cutting system
WO2015140906A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Numerical control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3871825A4 (en) * 2018-10-22 2021-12-29 Amada Co., Ltd. Laser beam machine, laser beam machining method
US11666991B2 (en) 2018-10-22 2023-06-06 Amada Co., Ltd. Laser machining apparatus and laser machining method
DE102022118281A1 (en) 2022-07-21 2024-02-01 TRUMPF Werkzeugmaschinen SE + Co. KG Laser cutting process with oscillating laser beam and optimized cutting gas supply

Also Published As

Publication number Publication date
JP7129469B2 (en) 2022-09-01
JPWO2019176631A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP2008200712A (en) Method and apparatus for laser beam machining
WO2019176632A1 (en) Cutting machine and cutting method
WO2019176631A1 (en) Cutting machine and cutting method
WO2020036021A1 (en) Laser processing machine and laser processing method
KR101401486B1 (en) Method for processing material with laser
JP6667735B1 (en) Cutting machine and cutting method
JP6719683B2 (en) Cutting machine and cutting method
JP2008290135A (en) Laser beam machining apparatus and laser beam machining method
WO2020085073A1 (en) Laser beam machine, laser beam machining method
JP6670983B1 (en) Cutting machine and cutting method
US11433485B2 (en) Cutting processing machine and cutting processing method
EP3865244B1 (en) Laser processing machine and laser processing method
JP2019181543A (en) Cutting machine and cutting method
WO2022202797A1 (en) Laser machining device and laser machining method
JP7291527B2 (en) Laser processing machine and laser processing method
WO2023037915A1 (en) Laser processing method and laser processing device
WO2020045081A1 (en) Laser machining device and laser machining method
US20230381889A1 (en) Laser processing system and control method
JP2003285173A (en) Laser machine, controller thereof, and control method of laser machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767539

Country of ref document: EP

Kind code of ref document: A1