JPS60129804A - Numerical controller - Google Patents

Numerical controller

Info

Publication number
JPS60129804A
JPS60129804A JP23868283A JP23868283A JPS60129804A JP S60129804 A JPS60129804 A JP S60129804A JP 23868283 A JP23868283 A JP 23868283A JP 23868283 A JP23868283 A JP 23868283A JP S60129804 A JPS60129804 A JP S60129804A
Authority
JP
Japan
Prior art keywords
vector
command
ellipse
generating section
interpolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23868283A
Other languages
Japanese (ja)
Inventor
Sadahiko Hasegawa
長谷川 貞彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23868283A priority Critical patent/JPS60129804A/en
Publication of JPS60129804A publication Critical patent/JPS60129804A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation

Abstract

PURPOSE:To make highly accurate processing possible even when a tool having a non-circular sectional shape is to be used, by providing a function generator and changing cutter compensation vectors generated from a correcting vector section depending upon the direction. CONSTITUTION:At an interpolation calculation device 3 a command vector (a) is calculated and an interpolation vector (c) is obtained by calculating the sum of the calculated command vector (a) and a cutter compensation vector (b). A compensation vector generating section 3b does not generate the vector (b) having a fixed size always, but generates the vector (b) having different sizes depending upon the direction which becomes points on an ellipse. Generation of the vector (b) is made in such a way that the direction intersecting the vector (a) at right angles is first found and the found direction is given to an ellipse vector generating section 5. At the generating section 5, a point on the ellipse in the found direction is obtained from the given angle and the vector size until the obtained point is returned to the compensation vector generating section 3b. The vector (b) is calculated from the direction and size thus found.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、工具断面形状が非円形で声る工作機械の制
御を行う数値制御装置(以下NO装置とである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a numerical control device (hereinafter referred to as NO device) for controlling a machine tool having a non-circular tool cross-sectional shape.

〔従来技術〕[Prior art]

従来、この種の装置として第1図に示すものがあった。 Conventionally, there has been a device of this type as shown in FIG.

この図において、1はNC指令入力装置(通常は紙テー
プリーダまたは内部のメモリである)、2はこのNC指
令入力装置1から入力したNC指令を後工程で処理し易
い形式に変更する前処理計算装置、3はNC指令に基づ
いた移動動作7行うための補間計算を行う補間計算装置
で、その内部は種々の部分から構成されているが、ここ
ではこの発明に関係の保い指令ベクトル計算部3a。
In this figure, 1 is an NC command input device (usually a paper tape reader or internal memory), and 2 is a preprocessing calculation that changes the NC commands input from this NC command input device 1 into a format that is easy to process in subsequent processes. The device 3 is an interpolation calculation device that performs interpolation calculation for performing the movement operation 7 based on the NC command, and its interior is composed of various parts, but here we will explain only the command vector calculation unit that is related to this invention. 3a.

補正ベクトル発生部3b、補間ベクトル発生部3c+補
間計算部3dK分けて説明する。4は計算結果に基づい
て工作機械への指令を出力する出力装置である。
The correction vector generation section 3b and the interpolation vector generation section 3c+interpolation calculation section 3dK will be explained separately. 4 is an output device that outputs instructions to the machine tool based on the calculation results.

次に、動作について説明する。Next, the operation will be explained.

NC指令入力装置1かも入力したNC指令は、前処理計
算装置2で機械にとって扱い易い形式、テなわら数字は
10進数から2進数への変換1文字は相当するレジスタ
の設定などが行われて補間計算装置3に渡される。
The NC command inputted by the NC command input device 1 is processed by the preprocessing calculation device 2 into a format that is easy for the machine to handle, including converting numbers from decimal to binary and setting the corresponding register for each character. It is passed to the interpolation calculation device 3.

補間計算装置3では、その与えらt′1に指令から第2
図に示すような関係にある指令ベクトルa。
In the interpolation calculation device 3, from the command to the given t'1, the second
The command vector a has the relationship as shown in the figure.

工具径補正ベクトルb、補間ベクトルct’それぞれの
発生部jb、3eで算出する。指令ベクトルaは、NC
指令中匠与えられた移動量そのものからめられるもので
あり、工具径補正ベクトルbは指令ベクトルaと直交し
、かつ、その大きさがNC指令とは別にあらかじめ与え
らt’17.:工具径補正量と一致するベクトルである
。また、補間ベクトルcは、上記2つのベクトルa+b
の和であり、工作機械はこのベクトル分の移動を行う。
The tool diameter correction vector b and the interpolation vector ct' are calculated by the generation units jb and 3e, respectively. The command vector a is NC
The tool radius correction vector b is orthogonal to the command vector a, and its magnitude is determined from the amount of movement itself given during the command. : A vector that matches the tool diameter correction amount. Also, the interpolation vector c is the above two vectors a+b
The machine tool moves by this vector.

補間計算部3dでは、この補間ベクトルC相当の移動量
を微少時間ごとに多数のベクトルに分割して実時間で出
力装置4へそのデータを渡丁。出力装置4ではこの微少
時間ごとのベクトルを、例えば工作機械のX、Y軸駆動
用モータに対するパルス指令として出力する。
The interpolation calculation unit 3d divides the movement amount corresponding to the interpolation vector C into a large number of vectors every minute time and passes the data to the output device 4 in real time. The output device 4 outputs this vector for each minute time as a pulse command to, for example, the X- and Y-axis drive motors of a machine tool.

従来のNC装置は以上のよ5に構成されているので、フ
ライス盤によるミーリング加工のよ5に工具断面形状が
円形のものにおいては、その工具径補正機能は十分な機
能を有している。ところが、レーザ加工機ではンーザ発
振のモードや光学系の特性によりレーザビーム断面は種
々の形状をとり、切断加工では楕円のビームが多(用い
られる。また、ワイヤ放電加工機において、加工チップ
の排除、加ニスピードアップなどを目的として超音波振
動子でワイヤを振動させるものでをま、工具形状が長円
形と見なせる。これらレーザ加工機、ワイヤ放電加工機
では従来の工具径補正機能によったのでは精度の高い加
工を行うことはできないという欠点があっに0 〔発明のR便〕 この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、工具径補正4!!!能による補
正量を工具径補正の行われる平面上の全方向(36o0
λ均一なものではなく特定の方向を持たせることにより
、非円形の断面形状を有する工具を使用した場合におい
ても精度の高い加工をすることができるNC装置Z提供
すること金目的としている。
Since the conventional NC device is configured as described above, its tool diameter correction function is sufficient for milling using a milling machine, where the cross-sectional shape of the tool is circular. However, in laser processing machines, the cross section of the laser beam takes various shapes depending on the mode of laser oscillation and the characteristics of the optical system, and elliptical beams are often used for cutting. In the case of machines in which the wire is vibrated with an ultrasonic vibrator for the purpose of speeding up machining, etc., the tool shape can be considered as an oval shape. [R feature of the invention] This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the tool diameter correction 4! !!The amount of correction due to the function is calculated in all directions (36o0
The object of the present invention is to provide an NC device Z that can perform highly accurate machining even when using a tool with a non-circular cross-sectional shape by having a specific direction rather than a uniform λ.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第3図はこの発明の一実施例Y示す構成図であり、この
図で、1はNC指令入力装置、2は前処理計算装置、3
は補間計算装置、4は出方装置で、以上は第1図の従来
例と同様である。5は楕円ベクトル発生部であり、与え
られた互いに直交する2つのベクトルを基に任意の角度
での楕円上のベクトルを計算するものである。
FIG. 3 is a configuration diagram showing one embodiment Y of the present invention, in which 1 is an NC command input device, 2 is a preprocessing calculation device, and 3 is a block diagram showing an embodiment of the present invention.
4 is an interpolation calculation device, and 4 is an output device, which are the same as the conventional example shown in FIG. 5 is an ellipse vector generator, which calculates a vector on an ellipse at an arbitrary angle based on two given vectors that are orthogonal to each other.

この実施例の動作は、補間計算装置3を除く部分は従来
のNC装置と同様である。補間計算装置3では従来同様
に指令ベクトルaが算出され、工具径補正ベクトルbと
の和がとられて補間ベクトルCが算出されるのであるが
、ここで補正ベクトル発生部3bは常に大きさが一定の
工具径補正ベクトルbv発生するのではなく、楕円上の
点となるような方向裏よって大きさの異なる工具径補正
ベクトルbv発生する。その方法は、まず、指令ベクト
ルaと直交する方向をめ、こfLヲ楕円ベクトル発生部
5に与える。楕円ベクトル発生部5では、与えろt−し
た角度からその方向における楕円上の点をめ、そこまで
の大きさを補正ベクトル発生部3bK返丁。こうしてめ
られた方向と大きさから工具径補正ベクトルbが算出さ
れるのである。なお、楕円ベクトル発生部5にはあらか
じめ長軸、短軸の値を設定しである。
The operation of this embodiment is similar to that of a conventional NC device except for the interpolation calculation device 3. In the interpolation calculation device 3, the command vector a is calculated in the same manner as before, and the sum with the tool radius correction vector b is calculated to calculate the interpolation vector C. A constant tool radius correction vector bv is not generated, but a tool radius correction vector bv whose size differs depending on the direction of the point on the ellipse is generated. In this method, first, a direction perpendicular to the command vector a is determined, and fL is given to the elliptic vector generator 5. The ellipse vector generator 5 finds a point on the ellipse in that direction from the given angle t-, and corrects the magnitude up to that point by the vector generator 3bK. The tool radius correction vector b is calculated from the direction and magnitude thus determined. Note that the values of the major axis and minor axis are set in advance in the ellipse vector generator 5.

上記実施例では、工具径補正量は楕円状のものとしたが
、楕円ベクトル発生部5を′他の任意の関数発生器に置
き換えれば四角、長丸など各種の異形状の工具忙も対応
し得ることはいうまでもない。
In the above embodiment, the tool diameter correction amount is elliptical, but if the ellipse vector generator 5 is replaced with any other function generator, various irregularly shaped tools such as squares and oblongs can also be handled. Needless to say, you can get it.

また、工具径補正量は互いに直交する2方向に対して値
を指定することで行うこともでき、さらKX、Y、まK
は2軸の内のいずれか2軸に平行な成分として与えるよ
5にすることもできる。
In addition, the tool radius correction amount can also be specified by specifying values in two directions perpendicular to each other.
can also be set to 5 so that it is given as a component parallel to either one of the two axes.

〔発明の効果〕 以上説明したようK、この発明は、関数発生器を備えて
補正ベクトル発生部で発生する工具径補正ベクトルを方
向によって異なるようにしたので、円以外の異形状の断
面の工具を有する工作機械に対しても精度の高い工具径
補正を行うことができるため、工作物の精度を高めるこ
とができ、特にワイヤ放電加工機、レーザ加工機など工
具形状が楕円とみなせるような工作機械においては、工
具径補正量を長軸と短軸方向の値で与えればよい等の利
点ン有する。
[Effects of the Invention] As explained above, the present invention is equipped with a function generator so that the tool radius correction vector generated in the correction vector generation section differs depending on the direction. Since highly accurate tool diameter correction can be performed even for machine tools with In machines, there are advantages such as the fact that the tool diameter correction amount can be given as values in the long axis and short axis directions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のNC装置を示す構成図、第2図は第1図
で用いられる各ベクトルの関係を示す図、第3図はこの
発明の一実711i例の構成図である。 図中、1はNC指令入力装置、2は前処理計算装置、3
は補間計算装置、3aは指令ベクトル計算部、3bは補
正ベクトル発生部、3cは補間ベクトル発生部、3dは
補間計算部、4は出力装置、5は楕円ベクトル発生部で
ある。 なお、図中の同一符号は同一または相当部分を示す。 代理人 大岩 増 雄 (外2名ン 第1図
FIG. 1 is a block diagram showing a conventional NC device, FIG. 2 is a diagram showing the relationship between vectors used in FIG. 1, and FIG. 3 is a block diagram of an example 711i of the present invention. In the figure, 1 is an NC command input device, 2 is a preprocessing calculation device, and 3
3a is an interpolation calculation device, 3a is a command vector calculation unit, 3b is a correction vector generation unit, 3c is an interpolation vector generation unit, 3d is an interpolation calculation unit, 4 is an output device, and 5 is an ellipse vector generation unit. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others, Figure 1)

Claims (1)

【特許請求の範囲】 DJ 指令ベクトル計算部からの指令ベクトルと、補正
ベク) tk発生部からの工具径補正ベクトルから補間
ベクトル発生部で補間ベクトルを発生する補間計算装置
を備えた工具径補正機能ヶ有する数値制御装置において
、工具径補正量を方向性を有するものとして与えるため
の指令を前記補正ベクトル発生部に与える関数発生器を
具備せしめたことを特徴とする数値制御装置。 (2) X、 yty、=t’zz軸の内いずれか2軸
1C”F行な成分として工具径補正量を与えることがで
きることを特徴とする特許請求の範囲第(1)項記載の
数値制御装置。
[Scope of Claims] DJ (command vector from a command vector calculation unit and correction vector) A tool radius correction function equipped with an interpolation calculation device that generates an interpolation vector in an interpolation vector generation unit from a tool radius correction vector from a tk generation unit. 1. A numerical control device comprising: a function generator for giving a command to the correction vector generating section for giving a tool radius correction amount as having directionality. (2) The numerical value according to claim (1), characterized in that the tool diameter correction amount can be given as a component of any two axes 1C"F among the X, yty, = t'zz axes. Control device.
JP23868283A 1983-12-17 1983-12-17 Numerical controller Pending JPS60129804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23868283A JPS60129804A (en) 1983-12-17 1983-12-17 Numerical controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23868283A JPS60129804A (en) 1983-12-17 1983-12-17 Numerical controller

Publications (1)

Publication Number Publication Date
JPS60129804A true JPS60129804A (en) 1985-07-11

Family

ID=17033734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23868283A Pending JPS60129804A (en) 1983-12-17 1983-12-17 Numerical controller

Country Status (1)

Country Link
JP (1) JPS60129804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176631A1 (en) * 2018-03-12 2019-09-19 株式会社アマダホールディングス Cutting machine and cutting method
WO2020008779A1 (en) * 2018-07-06 2020-01-09 株式会社アマダホールディングス Cutting machine and cutting method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176631A1 (en) * 2018-03-12 2019-09-19 株式会社アマダホールディングス Cutting machine and cutting method
JPWO2019176631A1 (en) * 2018-03-12 2021-03-11 株式会社アマダ Cutting machine and cutting method
WO2020008779A1 (en) * 2018-07-06 2020-01-09 株式会社アマダホールディングス Cutting machine and cutting method
JP6667735B1 (en) * 2018-07-06 2020-03-18 株式会社アマダホールディングス Cutting machine and cutting method
US11537098B2 (en) 2018-07-06 2022-12-27 Amada Co., Ltd. Cutting machine and cutting method including tool radius compensation relative to a laser path

Similar Documents

Publication Publication Date Title
US4621959A (en) Area cutting method
US4905158A (en) Normal vector computation method
US4870597A (en) Complex curved surface creation method
JPH067363B2 (en) Compound surface generation method
JPH0152141B2 (en)
US4521721A (en) Numerical control method
JPS60129804A (en) Numerical controller
US4855921A (en) Complex curved surface creation method
JPS6219910A (en) Rounding method
US4855926A (en) Complex curved surface creation method
US5008806A (en) Method of creating NC data for machining curved surfaces
JPS63206804A (en) Numerical control system
WO1993001535A1 (en) Method for specifying position where fillet curved surface is located
JPS62169210A (en) System for generating tool locus in nc data generating device
US4276792A (en) Method for continuous path control of a machine tool
JPH069007B2 (en) NC data creation method for compound curved surface
JP2995812B2 (en) Tool path generation method by numerical controller
JP2771361B2 (en) Rough cutter path generation system
JPH0811017A (en) Method and device for preparing data to manufacture electrode for and data to control electric discharge machine
JP2001154719A (en) Method for interpolating free curve
JP3343826B2 (en) Numerical control information creation device
JPS6223324B2 (en)
JPH05282027A (en) Nc data generating method
JPH0734166B2 (en) Method for creating offset shape of numerical control device
EP0411137A1 (en) Method of forming composite curved surface