WO2019176312A1 - Power distribution network monitoring system - Google Patents

Power distribution network monitoring system Download PDF

Info

Publication number
WO2019176312A1
WO2019176312A1 PCT/JP2019/002115 JP2019002115W WO2019176312A1 WO 2019176312 A1 WO2019176312 A1 WO 2019176312A1 JP 2019002115 W JP2019002115 W JP 2019002115W WO 2019176312 A1 WO2019176312 A1 WO 2019176312A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
value
measurement
data
distribution network
Prior art date
Application number
PCT/JP2019/002115
Other languages
French (fr)
Japanese (ja)
Inventor
英明 小島
雅思 佐藤
足立 達哉
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019176312A1 publication Critical patent/WO2019176312A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to a distribution network monitoring system for detecting an abnormality in the distribution network.
  • the subject of this invention is providing the distribution network monitoring system which can detect the information regarding the amount of electricity used accurately.
  • the distribution network monitoring system includes a measuring instrument, a receiving unit, and a correcting unit.
  • the measuring instrument has a measurement unit, a transmission unit, and a counter unit.
  • the measurement unit is installed at a plurality of predetermined positions of the power line provided in the distribution network, and performs electrical measurement of the power line using current flowing through the power line at each predetermined position.
  • a transmission part transmits the measurement result by a measurement part.
  • the counter unit counts the number of transmissions by the transmission unit.
  • the receiving unit receives the transmitted counter value.
  • the correction unit corrects the measurement result based on the counter value when there is an unreceived timing at which the measurement result is not received by the reception unit.
  • the counter value By using the counter value in this way, it is possible to determine whether or not to perform correction when the reception unit cannot receive the measurement result at a predetermined timing. For example, since the counter value is transmitted together with the measurement result from the measuring instrument, the counter value before the unreceived timing at which the measurement result was not received is compared with the counter value after the timing at which the measurement result was not received. Is called. And if the measurement count counter value has changed, including the number of times the measurement result has not been received from the counter value before the unreceived timing to the counter value after it, the measurement can be performed by the measuring instrument. Therefore, it is possible to determine that the measurement result is accurate because only the reception has failed.
  • the measuring instrument is not transmitting. Therefore, it is determined that the measurement result obtained by the measuring instrument is not accurate, and the measurement result is corrected.
  • the measurement result can be corrected based on the counter value, it is possible to improve the detection accuracy of the information regarding the amount of electricity used.
  • the counter value only needs to know the number of transmissions, so it does not have to be incremented by one, for example, it may be incremented by two or three, or may be decremented. Any change that shows the number of measurements is sufficient.
  • a power distribution network monitoring system is the power distribution network monitoring system according to the first aspect of the present invention, and the measuring instrument has a calculation unit.
  • the calculation unit calculates an integrated value of the current measured by the measurement unit.
  • the measurement result includes the integrated value and time information related to the observation time corresponding to the integrated value.
  • the correction unit corrects the observation time. In this way, the integrated value can be obtained from the measuring instrument, and the accuracy of the observation time of the integrated value measured by the measuring instrument can be improved.
  • a distribution network monitoring system is the distribution network monitoring system according to the second aspect of the present invention, wherein the correction unit includes a determination unit and a calculation unit.
  • the determination unit determines whether or not to correct the observation time based on the counter value when there is an unreceived timing at which the measurement result is not received by the reception unit.
  • the arithmetic unit performs correction by subtracting the non-reception time when the measurement result has not been received from the observation time. Thereby, since the time when measurement is not performed by the measuring instrument can be subtracted from the observation time obtained from the received time information, the observation time can be calculated with high accuracy.
  • a power distribution network monitoring system is the power distribution network monitoring system according to the third aspect, wherein the counter unit resets the counter value when the transmission unit cannot operate.
  • the determination unit transmits the counter value transmitted after one or more unreceived timings when the counter value is not received from the counter value transmitted before the unreceived timing by the number of unreceived timings. If there is no change including, the determination is made to correct.
  • the counter value is not incremented, for example, from the counter value before the unreceived timing to the counter value after the unreceived timing, transmission by the measuring device is performed. Therefore, it can be determined that the measurement by the measuring instrument is not completed. Therefore, the observation time can be calculated with high accuracy by performing correction.
  • a distribution network monitoring system is the distribution network monitoring system according to the third aspect, wherein the counter unit resets the counter value when the transmission unit cannot operate.
  • the determination unit transmits the counter value transmitted after one or more unreceived timings when the counter value is not received from the counter value transmitted before the unreceived timing by the number of unreceived timings. If it has changed, the determination is made not to perform correction. In this way, when the counter value is increased, for example, including the number of times of unreceived timing from the counter value before the unreceived timing to the counter value after, the measurement by the measuring device is performed, Although transmission is also performed, it can be determined that reception is not possible. Therefore, an accurate observation time can be obtained without the need for correction.
  • a distribution network monitoring system is the distribution network monitoring system according to the third aspect of the present invention, further comprising a storage unit.
  • the storage unit stores the counter value and the measurement result received by the receiving unit.
  • the storage unit stores predetermined information indicating that the counter value has not been received when the counter unit has not received the counter value at the timing at which the counter value is scheduled to be received.
  • the calculation unit calculates a non-reception time based on the number of predetermined information.
  • predetermined information indicating that the counter value could not be received in the storage unit
  • predetermined information a numerical value, a symbol, etc. may be sufficient and it is not specifically limited, For example, zero can be mentioned.
  • a power distribution network monitoring system is the power distribution network monitoring system according to the sixth aspect of the present invention, wherein the storage unit corresponds the integrated value to the observation time after the correction when correction is performed. Add and remember. Thereby, for example, an accurate observation time can be calculated from measurement results received from a plurality of measuring devices, and an integrated value and an observation time in the distribution network can be obtained with high accuracy.
  • a distribution network monitoring system is the distribution network monitoring system according to any one of the first to seventh aspects of the present invention, wherein the measuring device further includes a power feeding unit.
  • the power supply unit supplies power to the measurement unit and the transmission unit using a current flowing through the power line.
  • a predetermined value When the current flowing through the power line is equal to or less than a predetermined value, power is not supplied from the power supply unit to the measurement unit and the transmission unit. Thereby, when disconnection occurs, the counter value cannot be transmitted from the transmission unit.
  • the predetermined value can be set to 2A, for example.
  • a distribution network monitoring system is the distribution network monitoring system according to any one of the first to eighth aspects of the present invention, further comprising a repeater.
  • the repeater receives measurement results and counter values from a plurality of measuring devices and transmits them to the receiving unit.
  • the receiving unit can receive measurement results and counter values from a plurality of measuring devices via the repeater, and can accurately determine the integrated values and observation times of the power lines at a plurality of locations.
  • a distribution network monitoring system is the distribution network monitoring system according to the seventh aspect of the present invention, wherein the transmission unit transmits identification information unique to the measuring device together with the measurement result and the counter value.
  • storage part matches and memorize
  • the power distribution network monitoring system further includes a section calculation unit. The interval calculation unit corresponds to the integrated value and the integrated value in the entire predetermined interval based on the integrated value of each measuring device and the observation time after correction, the identification information of each measuring device, and the installation location. Calculate the observation time.
  • the distribution network monitoring system which can detect the information regarding electricity usage accurately can be provided.
  • the block diagram which shows the structure of the power distribution network monitoring system in embodiment concerning this invention The figure which shows the installation place in the data collection repeater of FIG. 1, and the distribution network of LTLS. It is a block diagram which shows the structure of the data collection repeater and LTLS of FIG. The block diagram which shows the structure of the power management center of FIG.
  • movement of LTLS of the power distribution network monitoring system of FIG. The figure which shows the setting information preserve
  • FIG. 2 is a flowchart showing the operation of the LTLS in FIG. 1.
  • amendment determination processing of FIG. The figure which shows an example of the history data introduced in the process of FIG.
  • FIG. 1 is a block diagram showing a configuration of a power distribution network monitoring system 10 according to an embodiment of the present invention.
  • the distribution network monitoring system 10 in the embodiment according to the present invention is provided in the distribution network 100 shown in FIG.
  • the distribution network monitoring system 10 monitors the distribution network system by using a plurality of LTLS (Low Tension Line Sensors) (an example of a measuring instrument) installed at predetermined positions of the distribution lines constituting the distribution network 100, and And the observation time corresponding to the current amount.
  • the distribution network monitoring system 10 according to the present embodiment includes a power management center 5, a plurality of data collection relays 6 (an example of a relay), and a plurality of LTLSs 7.
  • the power management center 5 manages the power in each area, and calculates the amount of current used in the distribution network 100 (see FIG. 2) in the area and the observation time corresponding to the amount of current used.
  • one or more data collection repeaters 6 are installed for each area, and collect data from a plurality of LTLSs 7.
  • the LTLS 7 is a power source (battery) -less type measuring instrument and is a type of current sensor using a CT power feeding method.
  • the LTLS 7 is operated by a current flowing through the power line, and performs electrical measurement of the power line.
  • a plurality of LTLSs 7 are installed for each electrical area flowing through the power line, and the current flowing through the power line is measured.
  • Data relating to the current value of the power line measured by the LTLS 7 is sent to the power management center 5 via the data collection relay 6.
  • the power management center 5 calculates data indicating the measurement result of the current value and an observation time corresponding to the current amount.
  • the area shown in FIG. 1 indicates, for example, an area transmitted from a predetermined substation or an area of a municipality such as a city or a town.
  • one data collection repeater 6 is provided for each area, and data of a plurality of LTLS 7 installed in one area is provided as one data collection repeater. 6 is collecting.
  • a plurality of data collection repeaters 6 are provided, and a plurality of data collection repeaters 6 collect data of a plurality of LTLS 7 installed in one area.
  • the plurality of LTLS 7 are divided into groups, and each data collection repeater 6 collects data of the plurality of LTLS 7 belonging to the group. Only one data collection repeater 6 may be provided in the area, or a plurality of data collection repeaters 6 may be provided.
  • FIG. 2 is a diagram showing the installation locations of the data collection repeater 6 and the LTLS 7 in the power distribution network 100.
  • a power pole 101 on the upstream side in the power transmission direction and a power pole 102 on the downstream side are shown, and the distribution lines 103, 104, 105 are arranged as three trunk lines constituting three phases of RTS between the power pole 101 and the power pole 102. Is over. Electricity flows in the direction from the utility pole 101 to the utility pole 102.
  • the distribution line 103 is an R-phase distribution line
  • the distribution line 104 is an S-phase distribution line
  • the distribution line 105 is a T-phase distribution line.
  • a distribution line 106 is branched from the distribution line 105 as a service line (branch line), and two distribution lines 107 are branched from the distribution line 106 as a house line, and are connected to the electrical equipment in the house 108.
  • the data collection repeater 6 is installed in each of the utility pole 101 and the utility pole 102. In order to make a distinction by location, the data collection repeater 6 installed on the utility pole 101 is designated 6a, and the data collection repeater 6 installed on the utility pole 102 is designated 6b.
  • the LTLS 7 is a clamp type and is detachably installed on a distribution line (an example of a power line).
  • the LTLS 7 is installed in the vicinity of the utility pole 101 and in the vicinity of the utility pole 102 in each of the distribution lines 103, 104, and 105. Further, in FIG. 2, the LTLS 7 is installed on the distribution line 106.
  • a to f are given to the codes of the LTLS 7 in order to distinguish them by places.
  • the LTLS 7 installed near the power pole 101 of the distribution line 103 is 7a
  • the LTLS installed near the power pole 101 of the distribution line 104 is 7b
  • the LTLS 7 installed near the power pole 101 of the distribution line 105 is 7c. To do.
  • LTLS7 installed in the vicinity of the utility pole 102 of the distribution line 103 is 7d
  • LTLS7 installed in the vicinity of the utility pole 102 of the distribution line 104 is 7e
  • LTLS7 installed in the vicinity of the utility pole 102 of the distribution line 105 is 7f.
  • the LTLS7 installed in the distribution line 106 is 7 g.
  • FIG. 3 is a block diagram showing the configuration of the data collection repeater 6 and the LTLS 7 in the area An.
  • the LTLS 7 has a clip-type mounting structure and is detachably attached to the distribution lines 103, 104, 105, 106, and the like.
  • the LTLS 7 includes a detection / power feeding unit 71, a measurement unit 72, a charging unit 73, a switching unit 74, a control unit 75, and a transmission unit 76.
  • the detection / power feeding unit 71 detects a magnetic flux generated when a current flows through the power line, and measures a current value flowing through the power line every predetermined time (for example, 10 seconds).
  • the detection / power supply unit 71 converts magnetic flux into electrical energy, and supplies the converted electrical energy to the measurement unit 72, the control unit 75, and the transmission unit 76. Note that the detection / power supply unit 71 is switched by the switching unit 74 between supplying electric energy to the measurement unit 72, the control unit 75, and the transmission unit 76 and storing the electric energy in the charging unit 73.
  • the measuring unit 72 operates by feeding power from the detection / power feeding unit 71 and measures the electrical energy sent from the detection / power feeding unit 71.
  • the measurement unit 72 is provided with a calculation unit (not shown), which calculates the effective value of the current from the detected current waveform.
  • the charging unit 73 is a capacitor or the like that temporarily stores electrical energy sent from the detection / power feeding unit 71, and when the power feeding from the detection / power feeding unit 71 stops, the measurement unit 72 and the transmission unit 76. To supply power.
  • the switching unit 74 is controlled by the control unit 75 so that the destination of the electrical energy sent from the detection / power feeding unit 71 is switched between the measurement unit 72 and the charging unit 73. Thereby, the electrical energy generated in the detection / power feeding unit 71 can be switched to be supplied to either the measurement unit 72 or the charging unit 73.
  • the control unit 75 controls each unit included in the LTLS 7 and controls the switching unit 74 to switch the supply destination of the electrical energy converted in the detection / power feeding unit 71.
  • the control part 75 transmits the integrated value which integrated the data of the current effective value measured in the measurement part 72 to the receiving part 61a of the data collection repeater 6 every predetermined time (for example, 5 minutes) progress.
  • the transmitter 76 is controlled.
  • the control unit 75 includes a timer unit 75a, an arithmetic processing unit 75b, and a memory holding unit 75c.
  • the timer unit 75a takes the timing of the measurement by the measurement unit 72 and the timing of the data communication interval by the transmission unit 76.
  • the measurement unit 72 measures a current value at intervals of 10 seconds, for example, and the transmission unit 76 transmits data at intervals of 5 minutes, for example.
  • the calculation processing unit 75b includes an integrated value calculation unit 75d and a counter unit 75e.
  • the integrated value calculation unit 75d calculates the integrated value from the measurement value obtained by the measurement unit 72.
  • the counter unit 75 e counts the number of data transmissions by the transmission unit 76.
  • the memory holding unit 75c stores and stores the integrated value by the integrated value calculating unit 75d and the value of the communication number counter by the counter unit 75e.
  • the transmission unit 76 adds the ID (Identification) (an example of identification information) and time information unique to the LTLS 7 to the integrated value (an example of the measurement result) and the value of the communication count counter, and obtains data as measurement data, for example, every 5 minutes It transmits to the collection repeater 6. This measurement data is transmitted to the power management apparatus 51 via the data collection repeater 6. The time information, integrated value, transmission count counter value, and ID are transmitted in association with each other.
  • the data collection repeater 6 includes a communication unit 61, a management DB (Data base) 62, and a communication unit 63.
  • the communication unit 61 communicates with a plurality of LTLS 7.
  • the communication unit 61 includes a reception unit 61a and receives measurement data (sensor ID, counter value, and integrated value) transmitted from a plurality of LTLSs 7 by radio.
  • the management DB 62 stores and manages setting information 91 transmitted from the power management apparatus 51.
  • FIG. 5 is a diagram showing the setting information 91.
  • the relay management code (A01_01) and time information of the data collection relay 6 are recorded.
  • the setting information 91 is updated by storing the setting information received from the power management apparatus 51.
  • the communication unit 63 communicates with the power management device 51.
  • the communication unit 63 includes a reception unit 63a and a transmission unit 63b.
  • the receiving unit 63a receives a setting request from the power management apparatus 51 of the power management center 5.
  • the setting request requests setting of the management code of the data collection repeater 6.
  • the transmission unit 63b adds a relay management code (an example of relay identification information) to the measurement data (LTLSID, integrated value, counter value, and time information) received from the LTLS 7, and transmits the result to the power management center 5.
  • a relay management code an example of relay identification information
  • the power management center 5 includes a power management device 51 and a display / input unit 52.
  • the power management apparatus 51 uses the measurement information received from the data collection repeater 6 to calculate an integrated value of current in the distribution network and an observation time corresponding to the integrated value.
  • the display / input unit 52 inputs a data confirmation section when the user calculates the observation time.
  • FIG. 4 is a block diagram showing the configuration of the power management center 5 and the maintenance management center 4.
  • the power management apparatus 51 includes a communication unit 53, a management DB 54 (an example of a storage unit), a correction unit 56, a section calculation unit 57, a timer unit 58, a counter setting unit 59, Have
  • the communication unit 53 communicates with the data collection repeater 6.
  • the communication unit 53 includes a reception unit 53a and a transmission unit 53b.
  • the receiving unit 53a receives the sensor ID, time information, integrated value, communication count counter value, and repeater management code transmitted from the transmitting unit 63b of the plurality of data collection repeaters 6.
  • the transmission unit 53b transmits a setting request to each data collection repeater 6.
  • the management DB 54 stores setting information 92, a storage table 93, and a location management information table 94.
  • FIG. 6 is a diagram showing the setting information 92.
  • FIG. 7 is a diagram showing the storage table 93.
  • FIG. 8 is a diagram showing the location management information table 94.
  • the setting information 92 includes the relay management code of the data collection repeater 6 provided in each area code, the LTLSD of the LTLS 7 for collecting data in each data collection repeater 6, and further includes time information. It is.
  • the setting information 92 includes relay management codes (A01_01,..., A01_n) and (A02_01, A02_02,..., A02_n) corresponding to the area code (A01) and area code (A02), LTLSID ( 001, 002,..., 00n) and (001, 002,..., 00n) and time information (2018/2/7/10: 00: 00).
  • the data collection repeater 6 with the relay management code A01_01 collects data from the LTLS 7 with the LTLSID of 001 and 002.
  • the data collection repeater 6 with the relay management code A02_01 collects data from the LTLS7 with the LTLSID of 001
  • the data collection repeater 6 with the relay management code A02_02 collects the data from the LTLS7 with the LTLSID of 002. collect.
  • the storage table 93 includes a relay management code provided for each area code, an LTLSID of the LTLS 7 from which the data collection repeater 6 having each relay management code collects data, a measurement time and an integrated value of each LTLS 7. And a communication counter.
  • the storage table 93 includes an integrated value from the time 11:00 to 12:00 of the LTLS 7 in which LTLSID is 001 and a communication count counter.
  • the communication number counter is incremented as described later each time communication is performed, but the setting information 92 also indicates a value of 0 (zero).
  • the value of 0 (zero) in the communication number counter is a counter setting unit 59 (described later) when the power management apparatus 51 does not receive measurement data at the timing at which measurement data is to be received from the data collection repeater 6. ) Is stored.
  • the storage table 93 includes a flag Cd.
  • the flag Cd is attached to data in which the measured data counter value is 0 (zero), measurement data cannot be received due to disconnection, and current value measurement by the LTLS 7 is not performed.
  • Data whose flag Cd is not attached when the value of the communication counter is 0 (zero) is data for which it is determined that the LTLS 7 is operating because the measurement data cannot be received due to a communication error. Based on the flag Cd, the measurement result is corrected.
  • the position management information table 94 each installation location of the plurality of LTLSs 7 is stored as a position code, and a relay management code of the data collection relay 6 that collects data from each LTLS 7 is also stored. Thereby, the position of each LTLS 7 can be confirmed.
  • the setting information 92, the storage table 93, and the location management information table 94 are updated when new information is received.
  • the correction unit 56 corrects the measurement result based on the value of the communication number counter stored in the management DB 54 and calculates the observation time of the integrated value.
  • the correction unit 56 includes a determination unit 56a and a calculation unit 56b.
  • the determination unit 56a determines whether or not to perform correction based on the value of the communication number counter. Whether the determination unit 56a adds the flag Cd to the data whose communication counter value is 0 (zero) and excludes it from the observation time, or does not add the flag Cd and does not exclude it from the observation time. Determine whether. That is, it is determined whether or not the LTLS 7 is operating for data whose communication counter value is 0 (zero). If it is determined that the LTLS 7 is not operating, the flag Cd is added to the measurement data. When it is determined that the LTLS 7 is operating, the flag Cd is not given to the measurement data.
  • the calculation unit 56b calculates the true observation time by subtracting the time corresponding to the data to which the flag Cd is given by the determination unit 56a from the observation time based on the received measurement data.
  • the section calculation unit 57 specifies the ratio of the observation time in the target section based on the integrated value of the plurality of LTLS7, the true observation time, and the information regarding the installation location of each LTLS7.
  • the timer unit 58 checks whether or not measurement data is transmitted from the data collection repeater 6 at a reception timing every 5 minutes.
  • the counter setting unit 59 When the counter setting unit 59 detects that the measurement data is not received at the timing scheduled to be received by the timer unit 58, the counter setting unit 59 sets the communication number counter at the reception timing to 0 (zero) and stores it in the management DB 54. . For example, at time 11:30 in FIG. 7, since the measurement data is not received from the LTLS 7 via the data collection repeater 6, the communication number counter is set to 0. At this time, since the integrated value data is not received, an integrated value 110 of 11:25, which is the reception timing immediately before 11:30, is stored as the integrated value.
  • FIG. 9 is a flowchart showing the operation of the LTLS 7 of the distribution network monitoring system 10 of the present embodiment.
  • the LTLS 7 is activated and waits until a predetermined time (for example, 10 seconds) elapses in step S11. During this predetermined time, charging is performed and electric energy is stored in the charging unit 73. Next, when a predetermined time has elapsed, in step S12, the control unit 75 determines whether or not the current flowing through the power line is 2A or more.
  • a predetermined time for example, 10 seconds
  • the control unit 75 determines whether or not the current flowing through the power line is 2A or more.
  • the LTLS 7 is operable, but when smaller than 2 A, charging cannot be performed and the LTLS 7 cannot operate.
  • step S12 If it is determined in step S12 that the current is 2 A or more, the current flowing through the power line is measured by the detection / power feeding unit 71 and the measurement unit 72 in step S13.
  • step S14 the timer unit 75a of the control unit 75 determines whether 5 minutes have elapsed. If it is determined in step S14 that 5 minutes have not elapsed, the control returns to step S11 and waits for the next measurement. Thus, the current value of the power line is measured every predetermined time (for example, 10 seconds) until 5 minutes elapse.
  • step S15 the integrated value calculation unit 75d calculates the integrated value of the current value.
  • step S ⁇ b> 16 the integrated value, the communication count counter, and LTLSID are transmitted to the data collection repeater 6.
  • step S17 the counter unit 75e increments the communication number counter. For example, when the first transmission is performed in step S13, the value of the communication number counter is transmitted as 1, and after the transmission, the value of the communication number counter is incremented to 2.
  • step S17 control returns to step S11, and the LTLS 7 enters a measurement standby state.
  • the LTLS 7 measures the current of the power line every 10 seconds and transmits the integrated value, the counter value, and the LTLSID to the data collection repeater 6 every 5 minutes.
  • step S12 if the current flowing through the power line is smaller than 2A, the control proceeds to step S18, the LTLS 7 is shut down, and at that time, the counter unit 75e resets the communication number counter value, and the communication number counter Returned to 1.
  • the power management apparatus 51 can determine whether or not the LTLS 7 has been shut down by the communication number counter.
  • FIG. 10 is a flowchart showing the operation of the data collection repeater 6 of the distribution network monitoring system 10 of the present embodiment.
  • step S21 the data collection repeater 6 enters a reception standby state.
  • step S22 it is determined whether or not measurement data is received. If measurement data is received from the LTLS 7, the measurement data is received in step S23. That is, the data collection repeater 6 is in a standby state until data is received. Next, in step S24, the data collection repeater 6 adds the relay management code (A01_01) extracted from the management DB 62 to the measurement data and transmits the measurement data to the power management apparatus 51.
  • the relay management code A01_01
  • FIG. 11 is a flowchart showing the operation of the power management device 51 of the distribution network monitoring system 10 of the present embodiment.
  • step S31 the power management apparatus 51 enters a reception standby state.
  • step S32 it is determined whether or not measurement data has been received. If the reception unit 53a receives measurement data from the data collection repeater 6, the measurement data is received and measurement data is received in step S33. Are stored in the storage table 93 of the management DB 54.
  • step S34 the determination unit 56a of the correction unit 56 performs a correction determination process.
  • the correction determination process is a process for determining whether or not the observation time includes the time when the measurement data cannot be received. In the correction determination process, the above determination is made based on whether or not the LTLS 7 was operating when the measurement data could not be received. Details will be described later.
  • control returns to step S31.
  • step S32 determines in step S35 whether or not 5 minutes have elapsed.
  • step S32 it is determined whether or not the measurement data is received at the reception timing for receiving the measurement data. If 5 minutes has not elapsed in step S35, the control returns to step S31, and the power management apparatus 51 enters a standby state.
  • step S35 the counter setting unit 59 sets the communication counter to 0 in step S36, assuming that the measurement data could not be received at the scheduled reception timing, Store in the management DB 54.
  • step S36 control returns to step S31, and the power management apparatus 51 enters a standby state. (Correction judgment processing)
  • step S34 the correction determination process in step S34 will be described.
  • the correction determination process is started with the measurement data stored in the management DB 54 in step S33 as a trigger.
  • FIG. 12 is a diagram illustrating a flow of the correction determination process.
  • the determination unit 56a introduces the history of the LTLS 7 having the same ID from the storage table 93.
  • FIG. 13 is a diagram illustrating an example of introduced history data 200.
  • FIG. 13 shows the measurement time, integrated value (data Ah), and communication number counter of LSLT 7 whose LSLT ID is 001.
  • FIG. 13 shows history data 200 from 11:00 to 12:00.
  • step S62 the determination unit 56a extracts data until the communication count counter is other than 0 except for the latest received data, and creates the table 201.
  • FIG. 14 is a diagram showing the table 201.
  • data up to 11:45 where the communication number counter is other than 0 (zero) is extracted from the history data 200 except the latest received data at 12:00.
  • End data (11:45 data) is set as IDgood.
  • step S63 the determination unit 56a counts the number of times the communication number counter is 0 (zero) in the extracted data range table 201, and sets it as Cn.
  • step S64 the determination unit 56a determines whether or not Cn is equal to or greater than 0. If Cn is equal to or greater than 0, that is, in the extracted data range table 201, the communication number counter is 0 (zero). ) Exists, control proceeds to step S66.
  • step S65 the determination unit 56a sets the value of the latest reception data communication counter to IDnew.
  • IDnew is set in the data flag of 12:00.
  • the LTLS 7 is transmitting, It can be determined that the power management apparatus 51 has failed to receive due to a communication failure or the like.
  • FIG. 15 is a diagram illustrating an example of the history data 202 introduced in step S61 when it is determined that the power line is disconnected.
  • FIG. 15 shows history data 202 from 11:00 to 12:00.
  • the determination unit 56a extracts data until the communication count counter is other than 0 except for the latest received data, and the table 203 shown in FIG. 16 is created.
  • data up to 11:45 is extracted from the history data 202, except for the latest received data at 12:00, in which the communication count counter is other than 0 (zero). Then, the communication number counter of the end data (11:45 data) is set as IDgood.
  • step S63 the determination unit 56a counts the number of times the communication number counter is 0 (zero) in the extracted data range table 203, and sets it as Cn.
  • step S64 the determination unit 56a determines whether or not Cn is equal to or greater than 0. If Cn is equal to or greater than 0, that is, in the extracted data range table 203, the communication number counter is 0 (zero). ) Exists, control proceeds to step S66.
  • step S66 the determination unit 56a sets the value of the latest reception data communication count counter to IDnew.
  • IDnew is set in the data flag of 12:00.
  • the measurement number counter value is reset. Therefore, if the communication counter at the timing at which reception is possible has not been incremented by the number of times at which communication could not be received from the communication counter immediately before the timing at which reception is not possible, the LTLS 7 is not operating due to power line disconnection, etc. Can be determined.
  • step S70 the determination unit 56a adds the flag Cd to the measurement data determined to have not been operated by the LTLS 7, and stores the measurement data in the storage table 93.
  • steps S67, S70, and S69 the control returns to step S31 shown in FIG. 11, and the power management apparatus 51 enters a reception standby state.
  • the reason for determining whether or not the LTLS 7 was operating based on the value of the communication number counter will be described in more detail.
  • FIG. 17 is a diagram illustrating an example of the state of each device when an abnormality occurs.
  • the integrated value 100Ah of the current measured by the LTLS 7 for the previous 5 minutes and the value (1) of the number of times of measurement counter are transmitted to the data collection repeater 6, and the data collection repeater 6
  • the integrated value 100Ah and the measurement counter value (1) are transmitted to the power management apparatus 51.
  • the power management apparatus 51 receives the integrated value 100Ah and the value (1) of the measurement number counter, and stores them in the storage table 93 together with the LTLSID and the relay management code.
  • FIG. 17 it is assumed that there is no time lag due to transmission / reception for easy understanding.
  • the LTLS 7 measures 40 Ah, and the integrated value 140 Ah combined with 100 Ah for the previous 5 minutes and the incremented measurement count counter value (2) are sent via the data collection relay 6 at time 9:05.
  • the power management apparatus 51 receives the integrated value 140Ah and the incremented measurement number counter value (2).
  • time 9:10 which is the next reception timing, the power management apparatus 51 has not received the integrated value and the measurement count counter value from the data collection repeater 6. Therefore, the power management apparatus 51 stores the integrated value 140Ah and a value of 0 as the measurement number counter in the storage table 93.
  • the power management apparatus 51 receives the integrated value 300Ah and the value (4) of the measurement number counter.
  • IDnew 4 (counter value at 9:15)
  • IDgood 2 (counter value at 9:05)
  • the LTLS 7 has normally incremented the measurement counter value from (2) to (3) at time 9:10. For this reason, between time 9:05 and 9:15, the LTLS 7 normally measures the current value and transmits data at time 9:10, but the data does not reach the power management apparatus 51. It can be confirmed that the measurement data could not be received due to the occurrence of a communication failure or the like.
  • the power management apparatus 51 receives the integrated value 400Ah and the measurement count counter value (5). However, at time 9:25 and time 9:30, the power management apparatus 51 does not receive data.
  • the integrated value 450Ah and the measurement counter value (1) are received.
  • IDnew 1 (counter value at 9:35)
  • IDgood 5 (counter value at 9:20)
  • Cn 2
  • observation time calculation process First, after describing the necessity of correcting measurement data, the operation in the observation time calculation process will be described.
  • FIG. 18A is a graph showing an example of the relationship between the integrated value and the observation time when there is no unreceived timing at which no measurement data is received at the data confirmation time T0.
  • FIG. 18B is a diagram illustrating a correspondence relationship between the integrated value and the observation time when there is no unreceived timing at which measurement data is not received.
  • the integrated value and the observation time in the measurement data received by the power management apparatus 51 correspond to each other. For example, in the data shown in FIG. 17, the integrated value received at 9:00 is the integrated value of current for 5 minutes from 8:55 to 9:00, and the integrated value received at 9:05 is 8: It is the integrated value of current in 10 minutes from 55 to 9:05.
  • the integrated value received by the power management apparatus 51 is the integrated value of the current at the observation time obtained from the time information when the integrated value is received. It has become.
  • the LTLS 7 it is determined whether the LTLS 7 is operating.
  • the LTLS 7 operates normally and the integrated value is calculated.
  • the integrated value 300Ah received at 9:15 is an integrated value of current for an observation time of 20 minutes from 8:55 to 9:15.
  • the measurement number counter is not incremented including the timing at which measurement data could not be received as shown at times 9:25 and 9:30 in FIG. 17, the LTLS 7 does not operate normally and the integrated value Therefore, the accumulated value 450Ah received at 9:35 is not the accumulated value of the current for the observation time of 40 minutes from 8:55 to 9:35. Therefore, the observation time of the integrated value 450Ah needs to be subtracted from 40 minutes by the time during which the LTLS 7 is not operating (10 minutes).
  • the current value is calculated as an integrated value, it increases even if there is an unmeasurable interval, so it can be measured at the data confirmation time T0 shown in FIGS. 19 (a) and 19 (b).
  • the data confirmation time T0 may include a time that cannot be measured due to disconnection or the like.
  • FIG. 20 is a flowchart showing the observation time calculation process.
  • step S81 the user sets a data confirmation section in which the observation time is arbitrarily calculated from the display / input unit 52.
  • FIG. 22 is a diagram showing setting items 301 by the user. As shown in FIG. 22, the start time and the end time are input as the data confirmation section T0. In FIG. 22, 11:00 is input as the start time and 12:00 is input as the end time.
  • step S82 the calculation unit 56b inquires data of the T0 section of the storage table 93 of the management DB 54.
  • FIG. 23 is a diagram showing data in the T0 section inquired from the storage table 93 of the management DB 54.
  • step S84 the calculation unit 56b subtracts the deletion time T1 from the data confirmation interval T0 (calculates T0-T1) to calculate the observation time T0 ′.
  • step S85 the calculation unit 56b stores the calculated observation time in the management DB 54.
  • FIG. 24 is a diagram showing the result data 303 stored in the management DB 54.
  • the result data 303 shows the measured LSLTID of the LSLT 7, the data confirmation interval T0, the number of Cd, the deletion time T1, and the observation time T0 ′.
  • FIG. 25 is a diagram illustrating a flow of composite processing of the power management apparatus 51.
  • the section calculation unit 57 collects the result data 303 of each of the plurality of LTLSs 7 belonging to the target section.
  • the target section is input by the user using the display / input unit 52.
  • FIG. 26 is a diagram illustrating a power distribution network 100 as an example of a target section.
  • the plurality of distribution lines 103 as the trunk line described in FIG. 2, the plurality of distribution lines 106 as service lines, the plurality of distribution lines 107 as house lines, and the house 108 are shown.
  • the power distribution network 100 shown in FIG. 26 is one area.
  • the LTLS 7 installed on the distribution line 103 is indicated as Lt1 to Lt6.
  • the LTLS 7 installed on the distribution line 106 is indicated as Ls1 to Ls5.
  • the LTLS 7 installed in the distribution line 107 is indicated as Lh1 to Lh5.
  • the section calculation unit 57 uses the result data 303 obtained from the data confirmation sections 11:00 to 12:00 of Lt1 to Lt6, Ls1 to Ls5, and Lh1 to Lh5 shown in the power distribution network 100 of FIG. collect. Next, the section calculation unit 57 calculates the ratio of the observation time T0 ′ in the target section to the data confirmation section T0.
  • the current value of R is the current value of Lt1, the current value of Lt2, the current value of Lt3, the current value of Lt4, the current value of Lt5, and the current value of Lt6. It is the sum of the values.
  • the current value of Lt1 is a value obtained by adding the current value of Ls1, the current value of Ls2, the current value of Ls3, the current value of Ls4, and the current value of Ls5.
  • the current value of Ls5 is a value obtained by adding the current value of Lh1, the current value of Lh2, the current value of Lh3, the current value of Lh4, and the current value of Lh5.
  • the ratio of the observation time T0 ′ to the total data confirmation interval T0 of the R phase can be calculated.
  • the section calculation unit 57 causes the display / input unit 52 to display the ratio of the observation time T0 ′ to the data confirmation section T0 in the target section together with the integrated value of the entire R phase. Similar to the R phase, the total ratio in the T phase and the S phase can be calculated.
  • the usage amount (integrated value) in the power distribution network 100 and the time during which the current corresponding to the usage amount is used can be calculated with high accuracy, and a power generation plan can be made with high accuracy.
  • the power distribution network monitoring system 10 of the present embodiment is also useful for a smart city where a smart home or the like provided with a smart meter is set up.
  • FIG. 27 is a flowchart showing the process of the management DB 54 to which step S37 of the correction determination process based on the number of 0 (zero) on the management DB 54 is added. As illustrated in FIG. 27, the correction determination process in step S ⁇ b> 37 is started by using the communication count counter value stored in step S ⁇ b> 36 as 0 (zero) as a trigger.
  • FIG. 28 is a diagram showing a flow of correction determination processing based on the number of 0 (zero) on the management DB 54.
  • the determination unit 56a reflects the setting by the user.
  • the setting is input in advance from the display / input unit 52 by the user.
  • FIG. 29 is a diagram illustrating settings by the user.
  • the setting (i) includes a target period in which it is determined that the LTLS 7 has not been moved due to disconnection of the power line or the like, and a threshold (the number of consecutive 0 data (X)).
  • the target period of setting (i) is set to 30 minutes, and the threshold is set to 3 times.
  • step S42 the determination unit 56a introduces the history of the LTLS 7 having the same ID.
  • An example of the history data of the LTLS 7 having the same ID is data as shown in FIG.
  • step S43 the determination unit 56a creates the determination table 97 on the management DB 54.
  • FIG. 30 is a diagram showing the determination table 97 in the setting (i).
  • the extracted data table 97a of the determination table 97 shows LTLSID, the integrated value in the period of setting (i), and the communication count counter.
  • the continuous 0 data table 97b shows the maximum number M0 of continuous 0 (zero) in the period of setting (i) and the setting value (X).
  • step S44 the LTLS7 non-operation determination process is started, and in step S45, the determination unit 56a extracts data for the period of setting (i) from the latest storage table, and the extracted data of the determination table 97 This is reflected in the table 97a.
  • FIG. 30 is a diagram showing a determination table 97 created based on the setting (i) shown in FIG. 29 and reflecting data from 11:30 to 12:00. In the extracted data table 97a shown in FIG.
  • the integrated value and the communication count counter from 11:30 to 12:00 of the LTLS 7 with the LTLSID of 001 are shown starting from the latest data reception time of 12:00. Since the target period is set to 30 minutes in the setting (i), the determination table 97 is updated every 30 minutes. Specifically, the history is referred to when the reception timing reaches 12:00, and the determination table 97 is created from the measurement data from 11:30 to 12:00.
  • step S46 the determination unit 56a extracts the maximum number (M0) of 0 (zero) when the communication number counter is continuously 0 (zero) from the extraction data table 97a, This is reflected in the continuous 0 data table 97b of the determination table 97.
  • the maximum number M0 of consecutive 0s is 3 times.
  • step S47 the determination unit 56a compares the set value X in the setting (i) with the maximum number M0 and determines whether M0 is equal to or greater than X.
  • M0 is equal to or greater than X
  • the determination unit 56a determines that the LTLS 7 has not moved due to a disconnection of the power line or the like.
  • M0 is 3 times and is equal to or greater than 3 that is the set value of X, and therefore the determination unit 56a determines that the LTLS 7 has not moved.
  • step S48 the flag Cd is written in the data with the communication counter value of 0 and stored in the storage table 93.
  • M is smaller than X in step S47, even if the value of the communication counter is 0, it is considered intermittent because it is intermittent, and the correction is performed without adding the flag Cd. The determination process ends.
  • the power management apparatus 51 cannot receive data at the timing of every 5 minutes continues for a predetermined number of times or more, it can be determined that the LTLS 7 has not been operated, and the flag Cd is added. be able to.
  • the true observation time T0 ′ can be obtained by deleting from the data confirmation section T0 as the time T1 when the time to which the flag Cd is given could not be measured.
  • two determination processes are performed by the determination unit 56a, but only one of them may be performed.
  • the measurement information of the LTLS 7 is once collected by the data collection repeater 6 and then transmitted to the power management device 51, but this is not a limitation.
  • the data collection repeater 6 may not be provided in the distribution network monitoring system 10, and in this case, the measurement information is directly transmitted from the LTLS 7 to the power management apparatus 51 via the radio.
  • the power management apparatus 51 when data is not received at the timing of data reception, stores a value of 0 in the communication count counter as an example of the predetermined information, but is limited to a value of 0. There may be no value, a value that is not used in the communication counter, a symbol, or the like. In short, it is only necessary to store information that can detect that data is not received.
  • the power management device 51 is provided with the correction unit 56 and the power management device 51 determines the correction.
  • the correction unit 56 may be provided in the data collection relay device 6 and the correction determination may be performed by the data collection relay device 6. Further, only the result data calculated by the data collection repeater 6 may be transmitted from the data collection repeater 6 to the power management apparatus 51.
  • the LTLS 7 that measures current is used, but a sensor that can measure voltage may be used. Thereby, since a value can be made to correspond with an electric power meter, and consistency with a meter can be aimed at, accuracy can be improved more.
  • the LTLS 7 of the above embodiment cannot operate when the current is smaller than 2A, but a sensor that can measure from 0A may be used. Thereby, the accuracy of the measurement data can be ensured without correcting the time when the power line smaller than 2A is disconnected.
  • the LTLS 7 of the above embodiment performs only transmission, but may be bidirectional communication with the data collection repeater 6. Thereby, a reception error can be detected, and measurement data can be retransmitted.
  • the correction determination is performed using the communication number counter value immediately before and after the measurement data whose communication number counter value is 0 (zero). It is not limited to immediately before and immediately after, using the value of the communication number counter before (for example, two before) and after (for example, two after) the measurement data whose communication number counter is 0 (zero). Also good.
  • observation time detection program for causing a computer to execute an observation time detection method implemented according to the flowcharts shown in FIGS. 9, 10, 11, 12, 21, 21, 25, 27, and 28, the present invention is It may be realized.
  • one usage form of the observation time detection program may be an aspect in which the program is recorded on a recording medium such as a ROM readable by a computer and operates in cooperation with the computer.
  • observation time detection program is an aspect in which it is transmitted through a transmission medium such as the Internet or a transmission medium such as light, radio wave, and sound wave, read by a computer, and operated in cooperation with the computer. Also good.
  • the computer described above is not limited to hardware such as a CPU, and may include firmware, an OS, and peripheral devices.
  • the observation time detection method may be realized by software or hardware.
  • the distribution network monitoring system of the present invention has an effect of being able to detect information on the amount of electricity used with high accuracy, and is useful in performing maintenance management and the like in making a power generation plan and the like.

Abstract

This power distribution network monitoring system (10) has an LTLS (7), a reception part (53a), and a correction unit (56). The LTLS (7) has a detection and power supply part (71), a transmission part (76), and a counter part (75e). The detection and power supply part (71) is installed at each of a plurality of predetermined positions on a power line provided in a power distribution network (100), and performs electrical measurement of the power line at each of the predetermined positions by using the current that flows through the power line. The transmission part (76) transmits a result measured by the detection and power supply part (71). The counter part (75e) counts the number of transmissions made by the transmission part (76). The reception part (53a) receives the transmitted measurement result and the counter value. The correction unit (56) performs a correction of the measurement result on the basis of the counter value when there is timing at which a measurement result was not received by the reception part (53a).

Description

配電網モニタリングシステムDistribution network monitoring system
 本発明は、配電網の異常を検出する配電網モニタリングシステムに関する。 The present invention relates to a distribution network monitoring system for detecting an abnormality in the distribution network.
 近年、配電系統に連係する電力需要家に通信機能つきの検針装置が設置され、検針装置から検針情報を受信して配電設備を管理するシステムが提案されている(例えば、特許文献1参照。)。
 このような配電設備管理システムでは、上記検針装置と、トランスハウスの横に設けられたDTメータ部によって電力線の計測が行われていた。
In recent years, a meter reading device with a communication function has been installed in a power consumer linked to a power distribution system, and a system for receiving meter reading information from the meter reading device and managing power distribution equipment has been proposed (for example, see Patent Document 1).
In such a distribution facility management system, power lines are measured by the meter reading device and a DT meter unit provided beside the transformer house.
特開2014-36482号公報JP 2014-36482 A
 しかしながら、電力の発電計画を立てるためには、正確な電気の使用量が必要となるが、配電網上では計測ができないため、正確な電気の使用量を求めることが困難であった。
 本発明の課題は、精度良く電気使用量に関する情報を検出することが可能な配電網モニタリングシステムを提供することにある。
However, in order to make a power generation plan, it is necessary to use an accurate amount of electricity. However, since it cannot be measured on the distribution network, it is difficult to obtain an accurate amount of electricity.
The subject of this invention is providing the distribution network monitoring system which can detect the information regarding the amount of electricity used accurately.
 第1の発明にかかる配電網モニタリングシステムは、測定器と、受信部と、補正部とを、有する。測定器は、測定部と、送信部と、カウンタ部と、を有する。測定部は、配電網に設けられた電力線の複数の所定位置に設置され、各々の所定位置において電力線を流れる電流を利用して電力線の電気的測定を行う。送信部は、測定部による測定結果を送信する。カウンタ部は、送信部による送信回数をカウントする。受信部は、送信されたカウンタ値を受信する。補正部は、受信部によって測定結果が受信されなかった未受信のタイミングが存在する場合、カウンタ値に基づいて測定結果について補正を行う。 The distribution network monitoring system according to the first invention includes a measuring instrument, a receiving unit, and a correcting unit. The measuring instrument has a measurement unit, a transmission unit, and a counter unit. The measurement unit is installed at a plurality of predetermined positions of the power line provided in the distribution network, and performs electrical measurement of the power line using current flowing through the power line at each predetermined position. A transmission part transmits the measurement result by a measurement part. The counter unit counts the number of transmissions by the transmission unit. The receiving unit receives the transmitted counter value. The correction unit corrects the measurement result based on the counter value when there is an unreceived timing at which the measurement result is not received by the reception unit.
 このようにカウンタ値を利用することによって、所定のタイミングにおいて測定結果を受信部が受信できない場合に、補正を行うか否かを判定することができる。
 例えば、測定器から測定結果とともにカウンタ値を送信するため、測定結果を受信できなかった未受信のタイミングの前のカウンタ値と、測定結果を受信できなかったタイミングの後のカウンタ値の比較が行われる。そして、未受信のタイミングの前のカウンタ値から後のカウンタ値まで測定結果が受信できなかった回数分を含めて、測定回数カウンタ値が変化している場合には、測定器において測定はできており、受信が出来なかっただけであるため、測定結果は正確であると判定することができる。また、未受信のタイミングの前のカウンタ値から後のカウンタ値まで測定結果が受信できなかった回数分を含めて、測定回数カウンタ値が繰り上がっていない場合には、測定器が送信を行えていないため、測定器による測定結果が正確でないと判定し、測定結果に対して補正が行われる。
By using the counter value in this way, it is possible to determine whether or not to perform correction when the reception unit cannot receive the measurement result at a predetermined timing.
For example, since the counter value is transmitted together with the measurement result from the measuring instrument, the counter value before the unreceived timing at which the measurement result was not received is compared with the counter value after the timing at which the measurement result was not received. Is called. And if the measurement count counter value has changed, including the number of times the measurement result has not been received from the counter value before the unreceived timing to the counter value after it, the measurement can be performed by the measuring instrument. Therefore, it is possible to determine that the measurement result is accurate because only the reception has failed. In addition, if the measurement count value is not incremented, including the number of times the measurement result was not received from the counter value before the unreceived timing to the counter value after it, the measuring instrument is not transmitting. Therefore, it is determined that the measurement result obtained by the measuring instrument is not accurate, and the measurement result is corrected.
 このように、カウンタ値に基づいて測定結果に対して補正を行うことができるため、電気使用量に関する情報の検出精度を向上することができる。
 なお、カウンタ値は、送信回数がわかればよいだけであるため、1つずつ繰り上がるだけに限らなくてもよく、例えば、2または3ずつ繰り上がっても良いし、繰り下がってもよく、要するに測定回数がわかる変化があればよい。
As described above, since the measurement result can be corrected based on the counter value, it is possible to improve the detection accuracy of the information regarding the amount of electricity used.
Note that the counter value only needs to know the number of transmissions, so it does not have to be incremented by one, for example, it may be incremented by two or three, or may be decremented. Any change that shows the number of measurements is sufficient.
 第2の発明にかかる配電網モニタリングシステムは、第1の発明にかかる配電網モニタリングシステムであって、測定器は、演算部を有する。演算部は、測定部で測定された電流の積算値を演算する。測定結果は、積算値と、積算値に対応する観測時間に関する時間情報とを含む。補正部は、観測時間について補正を行う。
 このように測定器から積算値を得ることができ、測定器によって計測された積算値の観測時間の精度を向上することができる。
A power distribution network monitoring system according to a second aspect of the present invention is the power distribution network monitoring system according to the first aspect of the present invention, and the measuring instrument has a calculation unit. The calculation unit calculates an integrated value of the current measured by the measurement unit. The measurement result includes the integrated value and time information related to the observation time corresponding to the integrated value. The correction unit corrects the observation time.
In this way, the integrated value can be obtained from the measuring instrument, and the accuracy of the observation time of the integrated value measured by the measuring instrument can be improved.
 第3の発明にかかる配電網モニタリングシステムは、第2の発明にかかる配電網モニタリングシステムであって、補正部は、判定部と、演算部とを有する。判定部は、受信部によって測定結果が受信されなかった未受信のタイミングが存在する場合に、カウンタ値に基づいて、観測時間について補正を行うか否かを判定する。演算部は、補正を行う場合、観測時間から測定結果が受信されなかった未受信時間を差し引く補正を行う。
 これにより、受信した時間情報から得られる観測時間から、測定器によって測定が行われていない時間を差し引くことができるため、精度よく観測時間を算出することができる。
A distribution network monitoring system according to a third aspect of the present invention is the distribution network monitoring system according to the second aspect of the present invention, wherein the correction unit includes a determination unit and a calculation unit. The determination unit determines whether or not to correct the observation time based on the counter value when there is an unreceived timing at which the measurement result is not received by the reception unit. When performing the correction, the arithmetic unit performs correction by subtracting the non-reception time when the measurement result has not been received from the observation time.
Thereby, since the time when measurement is not performed by the measuring instrument can be subtracted from the observation time obtained from the received time information, the observation time can be calculated with high accuracy.
 第4の発明にかかる配電網モニタリングシステムは、第3の発明にかかる配電網モニタリングシステムであって、カウンタ部は、送信部が動作できない場合に、カウンタ値をリセットする。判定部は、カウンタ値が受信されなかった1回または複数回の未受信のタイミングの後に送信されたカウンタ値が、未受信のタイミングの前に送信されたカウンタ値から未受信のタイミングの回数分を含んで変化していない場合は、補正を行う判定をする。
 このように、未受信のタイミングの前のカウンタ値から後のカウンタ値まで未受信のタイミングの回数分を含んで、カウンタ値が例えば繰り上がっていない場合には、測定器による送信が行われていないため、測定器における測定ができていないと判定することができる。そのため、補正を行うことによって精度良く観測時間を算出することができる。
A power distribution network monitoring system according to a fourth aspect is the power distribution network monitoring system according to the third aspect, wherein the counter unit resets the counter value when the transmission unit cannot operate. The determination unit transmits the counter value transmitted after one or more unreceived timings when the counter value is not received from the counter value transmitted before the unreceived timing by the number of unreceived timings. If there is no change including, the determination is made to correct.
As described above, when the counter value is not incremented, for example, from the counter value before the unreceived timing to the counter value after the unreceived timing, transmission by the measuring device is performed. Therefore, it can be determined that the measurement by the measuring instrument is not completed. Therefore, the observation time can be calculated with high accuracy by performing correction.
 第5の発明にかかる配電網モニタリングシステムは、第3の発明にかかる配電網モニタリングシステムであって、カウンタ部は、送信部が動作できない場合に、カウンタ値をリセットする。判定部は、カウンタ値が受信されなかった1回または複数回の未受信のタイミングの後に送信されたカウンタ値が、未受信のタイミングの前に送信されたカウンタ値から未受信のタイミングの回数分を含んで変化している場合は、補正を行わない判定をする。
 このように、未受信のタイミングの前のカウンタ値から後のカウンタ値まで未受信のタイミングの回数分を含んで、カウンタ値が例えば繰り上がっている場合には、測定器による測定は行われ、送信も行われているが、受信することができていないと判定することができる。そのため、補正を行う必要なく正確な観測時間を求めることができる。
A distribution network monitoring system according to a fifth aspect is the distribution network monitoring system according to the third aspect, wherein the counter unit resets the counter value when the transmission unit cannot operate. The determination unit transmits the counter value transmitted after one or more unreceived timings when the counter value is not received from the counter value transmitted before the unreceived timing by the number of unreceived timings. If it has changed, the determination is made not to perform correction.
In this way, when the counter value is increased, for example, including the number of times of unreceived timing from the counter value before the unreceived timing to the counter value after, the measurement by the measuring device is performed, Although transmission is also performed, it can be determined that reception is not possible. Therefore, an accurate observation time can be obtained without the need for correction.
 第6の発明にかかる配電網モニタリングシステムは、第3の発明にかかる配電網モニタリングシステムであって、記憶部を更に備える。記憶部は、受信部で受信されたカウンタ値と測定結果を記憶する。記憶部には、カウンタ値を受信する予定のタイミングにおいて受信部によってカウンタ値が受信されなかった場合、受信されなかったことを示す所定情報が記憶される。演算部は、所定情報の数に基づいて、未受信の時間を算出する。 A distribution network monitoring system according to a sixth aspect of the present invention is the distribution network monitoring system according to the third aspect of the present invention, further comprising a storage unit. The storage unit stores the counter value and the measurement result received by the receiving unit. The storage unit stores predetermined information indicating that the counter value has not been received when the counter unit has not received the counter value at the timing at which the counter value is scheduled to be received. The calculation unit calculates a non-reception time based on the number of predetermined information.
 このように、カウンタ値を受信できなかったことを示す所定情報を記憶部に記憶することにより、所定情報の数に基づいて測定器が測定できなかった時間を算出することができ、精度良く観測時間を求めることができる。
 なお、所定情報としては、数値や記号等であってもよく、特に限定されるものではないが、例えばゼロを挙げることができる。
Thus, by storing predetermined information indicating that the counter value could not be received in the storage unit, it was possible to calculate the time when the measuring device could not be measured based on the number of the predetermined information, and to observe with high accuracy. You can ask for time.
In addition, as predetermined information, a numerical value, a symbol, etc. may be sufficient and it is not specifically limited, For example, zero can be mentioned.
 第7の発明にかかる配電網モニタリングシステムは、第6の発明にかかる配電網モニタリングシステムであって、記憶部は、補正を行った場合には、積算値と、補正後の観測時間とを対応付けて記憶する。
 これにより、例えば、複数の測定器から受信した測定結果から正確な観測時間を算出し、配電網における積算値および観測時間を精度良く求めることができる。
A power distribution network monitoring system according to a seventh aspect of the present invention is the power distribution network monitoring system according to the sixth aspect of the present invention, wherein the storage unit corresponds the integrated value to the observation time after the correction when correction is performed. Add and remember.
Thereby, for example, an accurate observation time can be calculated from measurement results received from a plurality of measuring devices, and an integrated value and an observation time in the distribution network can be obtained with high accuracy.
 第8の発明にかかる配電網モニタリングシステムは、第1~7のいずれかの発明にかかる配電網モニタリングシステムであって、測定器は、給電部を更に有する。給電部は、電力線を流れる電流を用いて測定部および送信部に給電を行う。電力線を流れる電流が所定値以下の場合、給電部から測定部および送信部に給電が行われない。
 これにより、断線が発生した場合には、送信部からカウンタ値を送信することができなくなる。
 なお、所定値とは、例えば2Aに設定することができる。
A distribution network monitoring system according to an eighth aspect of the present invention is the distribution network monitoring system according to any one of the first to seventh aspects of the present invention, wherein the measuring device further includes a power feeding unit. The power supply unit supplies power to the measurement unit and the transmission unit using a current flowing through the power line. When the current flowing through the power line is equal to or less than a predetermined value, power is not supplied from the power supply unit to the measurement unit and the transmission unit.
Thereby, when disconnection occurs, the counter value cannot be transmitted from the transmission unit.
The predetermined value can be set to 2A, for example.
 第9の発明にかかる配電網モニタリングシステムは、第1~8のいずれかの発明にかかる配電網モニタリングシステムであって、中継器を更に備える。中継器は、複数の測定器から測定結果およびカウンタ値を受信し、受信部に送信する。
 これにより、受信部は、中継器を介して複数の測定器からの測定結果およびカウンタ値などを受信することができ、複数の箇所における電力線の積算値および観測時間を精度良く求めることができる。
A distribution network monitoring system according to a ninth aspect of the present invention is the distribution network monitoring system according to any one of the first to eighth aspects of the present invention, further comprising a repeater. The repeater receives measurement results and counter values from a plurality of measuring devices and transmits them to the receiving unit.
As a result, the receiving unit can receive measurement results and counter values from a plurality of measuring devices via the repeater, and can accurately determine the integrated values and observation times of the power lines at a plurality of locations.
 第10の発明にかかる配電網モニタリングシステムは、第7の発明にかかる配電網モニタリングシステムであって、送信部は、測定結果およびカウンタ値とともに測定器に固有の識別情報を送信する。記憶部は、複数の測定器について識別情報と設置場所を対応付けて記憶する。配電網モニタリングシステムは、区間演算部を更に備える。区間演算部は、各々の測定器の積算値および補正後の観測時間と、各々の測定器の識別情報と、設置場所とに基づいて、所定区間の全体における積算値と、積算値に対応する観測時間を算出する。 A distribution network monitoring system according to a tenth aspect of the present invention is the distribution network monitoring system according to the seventh aspect of the present invention, wherein the transmission unit transmits identification information unique to the measuring device together with the measurement result and the counter value. A memory | storage part matches and memorize | stores identification information and an installation place about a some measuring device. The power distribution network monitoring system further includes a section calculation unit. The interval calculation unit corresponds to the integrated value and the integrated value in the entire predetermined interval based on the integrated value of each measuring device and the observation time after correction, the identification information of each measuring device, and the installation location. Calculate the observation time.
 このように、測定器が設置されている設置場所を記憶しているため、配電網全体において精度良く積算値および観測時間を求めることができる。
(発明の効果)
 本発明によれば、精度良く電気使用量に関する情報を検出することが可能な配電網モニタリングシステムを提供することができる。
Thus, since the installation location where the measuring device is installed is stored, the integrated value and the observation time can be obtained with high accuracy in the entire distribution network.
(The invention's effect)
ADVANTAGE OF THE INVENTION According to this invention, the distribution network monitoring system which can detect the information regarding electricity usage accurately can be provided.
本発明にかかる実施の形態における配電網モニタリングシステムの構成を示すブロック図。The block diagram which shows the structure of the power distribution network monitoring system in embodiment concerning this invention. 図1のデータ収集中継器およびLTLSの配電網における設置場所を示す図。The figure which shows the installation place in the data collection repeater of FIG. 1, and the distribution network of LTLS. 図1のデータ収集中継器およびLTLSの構成を示すブロック図である。It is a block diagram which shows the structure of the data collection repeater and LTLS of FIG. 図1の電力管理センタの構成を示すブロック図。The block diagram which shows the structure of the power management center of FIG. 図1の配電網モニタリングシステムのLTLSの動作を示すフロー図。The flowchart which shows the operation | movement of LTLS of the power distribution network monitoring system of FIG. 図1の電力管理センタの管理DBに保存されている設定情報を示す図。The figure which shows the setting information preserve | saved in management DB of the power management center of FIG. 図1の電力管理センタの管理DBに保存されている格納テーブルを示す図。The figure which shows the storage table preserve | saved at management DB of the power management center of FIG. 図1の電力管理センタの管理DBに保存されている位置情報テーブルを示す図。The figure which shows the positional infomation table preserve | saved in management DB of the power management center of FIG. 図1のLTLSの動作を示すフロー図。FIG. 2 is a flowchart showing the operation of the LTLS in FIG. 1. 図1のデータ収集中継器の動作を示すフロー図。The flowchart which shows operation | movement of the data collection repeater of FIG. 図1の電力管理装置の動作を示すフロー図。The flowchart which shows operation | movement of the power management apparatus of FIG. 図11の補正判定処理のフローを示す図。The figure which shows the flow of the correction | amendment determination processing of FIG. 図12の処理において紹介された履歴データの一例を示す図。The figure which shows an example of the history data introduced in the process of FIG. 図12の処理において作成されたテーブルの一例を示す図。The figure which shows an example of the table produced in the process of FIG. 図12の処理において紹介された履歴データの一例を示す図。The figure which shows an example of the history data introduced in the process of FIG. 図12の処理において作成されたテーブルの一例を示す図。The figure which shows an example of the table produced in the process of FIG. 電力線に異常が発生した場合の各装置の状態の一例を示す図。The figure which shows an example of the state of each apparatus when abnormality generate | occur | produces in a power line. (a)、(b)図1の電力管理装置における観測時間算出処理を説明するための図。(A), (b) The figure for demonstrating the observation time calculation process in the power management apparatus of FIG. (a)、(b)図1の電力管理装置における観測時間算出処理を説明するための図。(A), (b) The figure for demonstrating the observation time calculation process in the power management apparatus of FIG. 図1の電力管理装置における観測時間算出処理を説明するための図。The figure for demonstrating the observation time calculation process in the power management apparatus of FIG. 図1の電力管理装置における観測時間算出処理を示すフロー図。The flowchart which shows the observation time calculation process in the power management apparatus of FIG. 図21の処理におけるユーザ設定項目を示す図。The figure which shows the user setting item in the process of FIG. 図21の処理において照会されたデータを示す図。The figure which shows the data inquired in the process of FIG. 図21の処理において算出された結果データを示す図。The figure which shows the result data calculated in the process of FIG. 図1の電力管理装置の動作における複合処理のフローを示す図。The figure which shows the flow of the composite process in operation | movement of the power management apparatus of FIG. 図25の処理における対象区間の一例としての配電網を示す図である。It is a figure which shows the power distribution network as an example of the object area in the process of FIG. 本発明にかかる実施の形態の変形例における電力管理装置の動作を示すフロー図。The flowchart which shows operation | movement of the power management apparatus in the modification of embodiment concerning this invention. 図27の補正判定処理のフローを示す図。The figure which shows the flow of the correction | amendment determination processing of FIG. 図28の処理におけるユーザ設定項目を示す図。The figure which shows the user setting item in the process of FIG. 図28の処理における異常判定テーブルを示す図。The figure which shows the abnormality determination table in the process of FIG.
 以下に、本発明の実施の形態に係る配電網モニタリングシステムについて図面に基づいて説明する。
 <構成>
 (配電網モニタリングシステム10の概要)
 図1は、本発明に係る実施の形態における配電網モニタリングシステム10の構成を示すブロック図である。
Below, the distribution network monitoring system which concerns on embodiment of this invention is demonstrated based on drawing.
<Configuration>
(Outline of distribution network monitoring system 10)
FIG. 1 is a block diagram showing a configuration of a power distribution network monitoring system 10 according to an embodiment of the present invention.
 本発明に係る実施の形態における配電網モニタリングシステム10は、図2に示す配電網100に設けられている。配電網モニタリングシステム10は、配電網100を構成する配電線の所定の位置に設置された複数のLTLS(Low Tension Line Sensor)(測定器の一例)を用いて配電網システムの監視を行い、電流量と、その電流量に対応する観測時間を求める。
 本実施の形態の配電網モニタリングシステム10は、図1に示すように、電力管理センタ5と、複数のデータ収集中継器6(中継器の一例)と、複数のLTLS7とを有する。
The distribution network monitoring system 10 in the embodiment according to the present invention is provided in the distribution network 100 shown in FIG. The distribution network monitoring system 10 monitors the distribution network system by using a plurality of LTLS (Low Tension Line Sensors) (an example of a measuring instrument) installed at predetermined positions of the distribution lines constituting the distribution network 100, and And the observation time corresponding to the current amount.
As shown in FIG. 1, the distribution network monitoring system 10 according to the present embodiment includes a power management center 5, a plurality of data collection relays 6 (an example of a relay), and a plurality of LTLSs 7.
 電力管理センタ5は、各エリアにおける電力の管理を行い、エリア内の配電網100(図2参照)において使用した電流量と、使用した電流量に対応する観測時間を算出する。
 データ収集中継器6は、図1に示すように、エリアごとに1つ以上設置されており、複数のLTLS7からデータを収集する。
 LTLS7は、電源(電池)レスタイプの測定器であり、CT給電方式を用いた電流センサの一種である。LTLS7は、電力線を流れる電流によって動作し、電力線の電気的測定を行う。LTLS7は、電力線を流れる電気的なエリアごとに複数設置されており、電力線を流れる電流の測定を行う。そして、LTLS7によって測定された電力線の電流値に関するデータは、データ収集中継器6を経由して電力管理センタ5に送られる。電力管理センタ5では、詳しくは後述するが、その電流値の測定結果を示すデータと、その電流量に対応する観測時間を算出する。
The power management center 5 manages the power in each area, and calculates the amount of current used in the distribution network 100 (see FIG. 2) in the area and the observation time corresponding to the amount of current used.
As shown in FIG. 1, one or more data collection repeaters 6 are installed for each area, and collect data from a plurality of LTLSs 7.
The LTLS 7 is a power source (battery) -less type measuring instrument and is a type of current sensor using a CT power feeding method. The LTLS 7 is operated by a current flowing through the power line, and performs electrical measurement of the power line. A plurality of LTLSs 7 are installed for each electrical area flowing through the power line, and the current flowing through the power line is measured. Data relating to the current value of the power line measured by the LTLS 7 is sent to the power management center 5 via the data collection relay 6. As will be described in detail later, the power management center 5 calculates data indicating the measurement result of the current value and an observation time corresponding to the current amount.
 ここで、図1に示すエリアとは、例えば、所定の変電所から送信されている区域若しくは、市や町などの市町村の区域を示す。
 エリアA-1・・・A-nには、エリア毎に1つずつデータ収集中継器6が設けられており、1つのエリアに設置されている複数のLTLS7のデータを1つのデータ収集中継器6が収集している。
Here, the area shown in FIG. 1 indicates, for example, an area transmitted from a predetermined substation or an area of a municipality such as a city or a town.
In each of the areas A-1... An, one data collection repeater 6 is provided for each area, and data of a plurality of LTLS 7 installed in one area is provided as one data collection repeater. 6 is collecting.
 エリアB-1には、複数のデータ収集中継器6が設けられており、1つのエリアに設置されている複数のLTLS7のデータを複数のデータ収集中継器6が収集している。エリアB-1のような場合、複数のLTLS7はグループに分けられており、各々のデータ収集中継器6は、グループに所属する複数のLTLS7のデータを収集する。
 データ収集中継器6は、エリアに1つだけ設けられていてもよいし、複数設けられていてもよい。
In the area B-1, a plurality of data collection repeaters 6 are provided, and a plurality of data collection repeaters 6 collect data of a plurality of LTLS 7 installed in one area. In the case of the area B-1, the plurality of LTLS 7 are divided into groups, and each data collection repeater 6 collects data of the plurality of LTLS 7 belonging to the group.
Only one data collection repeater 6 may be provided in the area, or a plurality of data collection repeaters 6 may be provided.
 (データ収集中継器6およびLTLS7の設置)
 図2は、配電網100におけるデータ収集中継器6およびLTLS7の設置場所を示す図である。図2では、送電方向上流側の電柱101と下流側の電柱102が示されており、電柱101と電柱102の間にRTSの3相を構成する3本の幹線として配電線103、104、105が掛け渡されている。電柱101から電柱102の方向に電気が流れる。配電線103がR相の配電線である、配電線104がS相の配電線であり、配電線105がT相の配電線である。
(Installation of data collection repeater 6 and LTLS7)
FIG. 2 is a diagram showing the installation locations of the data collection repeater 6 and the LTLS 7 in the power distribution network 100. In FIG. 2, a power pole 101 on the upstream side in the power transmission direction and a power pole 102 on the downstream side are shown, and the distribution lines 103, 104, 105 are arranged as three trunk lines constituting three phases of RTS between the power pole 101 and the power pole 102. Is over. Electricity flows in the direction from the utility pole 101 to the utility pole 102. The distribution line 103 is an R-phase distribution line, the distribution line 104 is an S-phase distribution line, and the distribution line 105 is a T-phase distribution line.
 また、配電線105からはサービスライン(支線)として配電線106が分岐し、配電線106から、ハウスラインとして2つの配電線107が分岐して家屋108内の電気設備に繋がっている。
 データ収集中継器6は、電柱101および電柱102の各々に設置されている。場所による区別を行うために、電柱101に設置されているデータ収集中継器6を6aとし、電柱102に設置されているデータ収集中継器6を6bとする。
In addition, a distribution line 106 is branched from the distribution line 105 as a service line (branch line), and two distribution lines 107 are branched from the distribution line 106 as a house line, and are connected to the electrical equipment in the house 108.
The data collection repeater 6 is installed in each of the utility pole 101 and the utility pole 102. In order to make a distinction by location, the data collection repeater 6 installed on the utility pole 101 is designated 6a, and the data collection repeater 6 installed on the utility pole 102 is designated 6b.
 LTLS7は、クランプ型であり、配電線(電力線の一例)に着脱可能に設置される。LTLS7は、配電線103、104、105の各々の配電線において電柱101の近傍と電柱102の近傍に設置されている。更に、図2では、LTLS7は、配電線106に設置されている。
 ここで、場所によって区別するためLTLS7の符号にa~fを付与する。配電線103の電柱101近傍に設置されているLTLS7を7aとし、配電線104の電柱101近傍に設置されているLTLSを7bとし、配電線105の電柱101近傍に設置されているLTLS7を7cとする。配電線103の電柱102近傍に設置されているLTLS7を7dとし、配電線104の電柱102近傍に設置されているLTLS7を7eとし、配電線105の電柱102近傍に設置されているLTLS7を7fとする。また、配電線106に設置されておるLTLS7を7gとする。
The LTLS 7 is a clamp type and is detachably installed on a distribution line (an example of a power line). The LTLS 7 is installed in the vicinity of the utility pole 101 and in the vicinity of the utility pole 102 in each of the distribution lines 103, 104, and 105. Further, in FIG. 2, the LTLS 7 is installed on the distribution line 106.
Here, a to f are given to the codes of the LTLS 7 in order to distinguish them by places. The LTLS 7 installed near the power pole 101 of the distribution line 103 is 7a, the LTLS installed near the power pole 101 of the distribution line 104 is 7b, and the LTLS 7 installed near the power pole 101 of the distribution line 105 is 7c. To do. LTLS7 installed in the vicinity of the utility pole 102 of the distribution line 103 is 7d, LTLS7 installed in the vicinity of the utility pole 102 of the distribution line 104 is 7e, and LTLS7 installed in the vicinity of the utility pole 102 of the distribution line 105 is 7f. To do. Moreover, the LTLS7 installed in the distribution line 106 is 7 g.
 図2では、LTLS7a、7b、7c、7gのデータは、データ収集中継器6aに送信され、LTLS7d、7e、7fのデータは、データ収集中継器6bに送信される。LTLS7とデータ収集中継器6との間の通信は、後述するように無線によって行われる。
 (LTLS7)
 図3は、エリアA―nにおけるデータ収集中継器6およびLTLS7の構成を示すブロック図である。
In FIG. 2, the data of the LTLS 7a, 7b, 7c, and 7g is transmitted to the data collection repeater 6a, and the data of the LTLS 7d, 7e, and 7f is transmitted to the data collection repeater 6b. Communication between the LTLS 7 and the data collection repeater 6 is performed wirelessly as described later.
(LTLS7)
FIG. 3 is a block diagram showing the configuration of the data collection repeater 6 and the LTLS 7 in the area An.
 LTLS7は、図2に示すように、クリップ式の取付構造を有しており、配電線103,104,105,106等に着脱自在に取り付けられる。
 LTLS7は、図3に示すように、検出・給電部71と、計測部72と、充電部73と、切替部74と、制御部75と、送信部76とを有している。
 検出・給電部71は、電力線に電流が流れた際に発生する磁束を検出して、電力線に流れる電流値を所定時間(例えば10秒)ごとに計測する。また、検出・給電部71は、磁束を電気エネルギーに変換して、変換した電気エネルギーを計測部72、制御部75、および送信部76に給電する。なお、検出・給電部71は、電気エネルギーを、計測部72、制御部75、および送信部76へ給電する場合と、充電部73に蓄電させる場合とを、切替部74によって切り替えられる。
As shown in FIG. 2, the LTLS 7 has a clip-type mounting structure and is detachably attached to the distribution lines 103, 104, 105, 106, and the like.
As illustrated in FIG. 3, the LTLS 7 includes a detection / power feeding unit 71, a measurement unit 72, a charging unit 73, a switching unit 74, a control unit 75, and a transmission unit 76.
The detection / power feeding unit 71 detects a magnetic flux generated when a current flows through the power line, and measures a current value flowing through the power line every predetermined time (for example, 10 seconds). The detection / power supply unit 71 converts magnetic flux into electrical energy, and supplies the converted electrical energy to the measurement unit 72, the control unit 75, and the transmission unit 76. Note that the detection / power supply unit 71 is switched by the switching unit 74 between supplying electric energy to the measurement unit 72, the control unit 75, and the transmission unit 76 and storing the electric energy in the charging unit 73.
 計測部72は、検出・給電部71からの給電により動作し、検出・給電部71から送られた電気エネルギーを計測する。また、計測部72には、演算部(図示せず)が設けられており、検出した電流の波形から、電流の実効値を演算する。
 充電部73は、検出・給電部71から送られて来る電気エネルギーを、一時的に蓄えるキャパシタ等であって、検出・給電部71からの給電が停止した際に、計測部72および送信部76に対して給電する。
The measuring unit 72 operates by feeding power from the detection / power feeding unit 71 and measures the electrical energy sent from the detection / power feeding unit 71. The measurement unit 72 is provided with a calculation unit (not shown), which calculates the effective value of the current from the detected current waveform.
The charging unit 73 is a capacitor or the like that temporarily stores electrical energy sent from the detection / power feeding unit 71, and when the power feeding from the detection / power feeding unit 71 stops, the measurement unit 72 and the transmission unit 76. To supply power.
 切替部74は、検出・給電部71から送られる電気エネルギーの送り先を、計測部72と充電部73とで切り替えるように、制御部75によって制御される。これにより、検出・給電部71において生じた電気エネルギーを、計測部72および充電部73のいずれか一方に供給するように切り替えることができる。
 制御部75は、LTLS7に含まれる各部の制御を行うとともに、切替部74を制御して、検出・給電部71において変換された電気エネルギーの供給先を切り替える。そして、制御部75は、所定時間(例えば5分)経過ごとに、計測部72において計測された電流実効値のデータを積算した積算値をデータ収集中継器6の受信部61aに送信するように、送信部76を制御する。
The switching unit 74 is controlled by the control unit 75 so that the destination of the electrical energy sent from the detection / power feeding unit 71 is switched between the measurement unit 72 and the charging unit 73. Thereby, the electrical energy generated in the detection / power feeding unit 71 can be switched to be supplied to either the measurement unit 72 or the charging unit 73.
The control unit 75 controls each unit included in the LTLS 7 and controls the switching unit 74 to switch the supply destination of the electrical energy converted in the detection / power feeding unit 71. And the control part 75 transmits the integrated value which integrated the data of the current effective value measured in the measurement part 72 to the receiving part 61a of the data collection repeater 6 every predetermined time (for example, 5 minutes) progress. The transmitter 76 is controlled.
 制御部75は、タイマ部75aと、演算処理部75bと、記憶保持部75cとを有している。タイマ部75aは、計測部72による計測のタイミングと、送信部76によるデータの通信間隔のタイミングをとる。計測部72は、例えば10秒間隔で電流値の計測を行い、送信部76は例えば5分間隔でデータの送信を行う。演算処理部75bは、積算値演算部75dと、カウンタ部75eと、を有している。積算値演算部75dは、計測部72による計測値から積算値を演算する。カウンタ部75eは、送信部76によるデータの送信回数をカウントする。記憶保持部75cは、積算値演算部75dによる積算値およびカウンタ部75eによる通信回数カウンタの値を格納して記憶する。 The control unit 75 includes a timer unit 75a, an arithmetic processing unit 75b, and a memory holding unit 75c. The timer unit 75a takes the timing of the measurement by the measurement unit 72 and the timing of the data communication interval by the transmission unit 76. The measurement unit 72 measures a current value at intervals of 10 seconds, for example, and the transmission unit 76 transmits data at intervals of 5 minutes, for example. The calculation processing unit 75b includes an integrated value calculation unit 75d and a counter unit 75e. The integrated value calculation unit 75d calculates the integrated value from the measurement value obtained by the measurement unit 72. The counter unit 75 e counts the number of data transmissions by the transmission unit 76. The memory holding unit 75c stores and stores the integrated value by the integrated value calculating unit 75d and the value of the communication number counter by the counter unit 75e.
 送信部76は、積算値(測定結果の一例)および通信回数カウンタの値に、LTLS7に固有のID(Identification)(識別情報の一例)および時刻情報を加えて測定データとして例えば5分間隔でデータ収集中継器6に送信する。この測定データは、データ収集中継器6を介して電力管理装置51に送信される。なお、時刻情報、積算値、送信回数カウンタ値およびIDは、互いに関連付けられて送信される。 The transmission unit 76 adds the ID (Identification) (an example of identification information) and time information unique to the LTLS 7 to the integrated value (an example of the measurement result) and the value of the communication count counter, and obtains data as measurement data, for example, every 5 minutes It transmits to the collection repeater 6. This measurement data is transmitted to the power management apparatus 51 via the data collection repeater 6. The time information, integrated value, transmission count counter value, and ID are transmitted in association with each other.
 (データ収集中継器6)
 図3に示すように、データ収集中継器6は、通信部61と、管理DB(Data base)62と、通信部63と、を有する。
 通信部61は、複数のLTLS7と通信を行う。通信部61は、受信部61aを有し、複数のLTLS7から無線によって送信されてくる測定データ(センサID、カウンタ値、および積算値)の受信を行う。
(Data collection repeater 6)
As shown in FIG. 3, the data collection repeater 6 includes a communication unit 61, a management DB (Data base) 62, and a communication unit 63.
The communication unit 61 communicates with a plurality of LTLS 7. The communication unit 61 includes a reception unit 61a and receives measurement data (sensor ID, counter value, and integrated value) transmitted from a plurality of LTLSs 7 by radio.
 管理DB62は、電力管理装置51から送信される設定情報91を記憶して管理する。図5は、設定情報91を示す図である。
 設定情報91には、データ収集中継器6の中継器管理コード(A01_01)および時刻情報が記録されている。設定情報91は、電力管理装置51から受信した設定情報を記憶して更新される。
The management DB 62 stores and manages setting information 91 transmitted from the power management apparatus 51. FIG. 5 is a diagram showing the setting information 91.
In the setting information 91, the relay management code (A01_01) and time information of the data collection relay 6 are recorded. The setting information 91 is updated by storing the setting information received from the power management apparatus 51.
 通信部63は、電力管理装置51と通信を行う。通信部63は、受信部63aおよび送信部63bを有する。受信部63aは、電力管理センタ5の電力管理装置51からの設定要求を受信する。設定要求は、データ収集中継器6の管理コードの設定を要求する。送信部63bは、LTLS7から受信した測定データ(LTLSID、積算値、カウンタ値、時刻情報)に中継器管理コード(中継器識別情報の一例)を加えて、電力管理センタ5に送信する。 The communication unit 63 communicates with the power management device 51. The communication unit 63 includes a reception unit 63a and a transmission unit 63b. The receiving unit 63a receives a setting request from the power management apparatus 51 of the power management center 5. The setting request requests setting of the management code of the data collection repeater 6. The transmission unit 63b adds a relay management code (an example of relay identification information) to the measurement data (LTLSID, integrated value, counter value, and time information) received from the LTLS 7, and transmits the result to the power management center 5.
 (電力管理センタ5)
 電力管理センタ5は、図1に示すように、電力管理装置51と、表示・入力部52とを有する。電力管理装置51は、データ収集中継器6から受信した測定情報を用いて配電網における電流の積算値と、積算値に対応する観測時間を算出する。表示・入力部52は、ユーザが観測時間の算出の際のデータ確認区間等を入力する。
(Power Management Center 5)
As shown in FIG. 1, the power management center 5 includes a power management device 51 and a display / input unit 52. The power management apparatus 51 uses the measurement information received from the data collection repeater 6 to calculate an integrated value of current in the distribution network and an observation time corresponding to the integrated value. The display / input unit 52 inputs a data confirmation section when the user calculates the observation time.
 図4は、電力管理センタ5および保守管理センタ4の構成を示すブロック図である。図4に示すように、電力管理装置51は、通信部53と、管理DB54(記憶部の一例)と、補正部56と、区間演算部57と、タイマ部58と、カウンタ設定部59と、を有する。
 通信部53は、データ収集中継器6と通信を行う。通信部53は、受信部53aと、送信部53bとを有する。受信部53aは、図1に示すように、複数のデータ収集中継器6の送信部63bから送信されるセンサID、時刻情報、積算値、通信回数カウンタ値、および中継器管理コードを受信する。送信部53bは、各々のデータ収集中継器6に設定要求を送信する。
FIG. 4 is a block diagram showing the configuration of the power management center 5 and the maintenance management center 4. As shown in FIG. 4, the power management apparatus 51 includes a communication unit 53, a management DB 54 (an example of a storage unit), a correction unit 56, a section calculation unit 57, a timer unit 58, a counter setting unit 59, Have
The communication unit 53 communicates with the data collection repeater 6. The communication unit 53 includes a reception unit 53a and a transmission unit 53b. As shown in FIG. 1, the receiving unit 53a receives the sensor ID, time information, integrated value, communication count counter value, and repeater management code transmitted from the transmitting unit 63b of the plurality of data collection repeaters 6. The transmission unit 53b transmits a setting request to each data collection repeater 6.
 管理DB54は、設定情報92と、格納テーブル93と、位置管理情報テーブル94と、を記憶する。図6は、設定情報92を示す図である。図7は、格納テーブル93を示す図である。図8は、位置管理情報テーブル94を示す図である。
 設定情報92には、各々のエリアコードに設けられたデータ収集中継器6の中継管理コードと、各々のデータ収集中継器6にデータが収集されるLTLS7のLTLSIDが含まれ、更に時刻情報が含まれている。例えば、設定情報92には、エリアコード(A01)およびエリアコード(A02)に対応する中継器管理コード(A01_01,・・・,A01_n)および(A02_01,A02_02,・・・、A02_n)、LTLSID(001,002,・・・,00n)および(001,002,・・・,00n)と、時刻情報(2018/2/7/10:00:08)と、が含まれる。
The management DB 54 stores setting information 92, a storage table 93, and a location management information table 94. FIG. 6 is a diagram showing the setting information 92. FIG. 7 is a diagram showing the storage table 93. FIG. 8 is a diagram showing the location management information table 94.
The setting information 92 includes the relay management code of the data collection repeater 6 provided in each area code, the LTLSD of the LTLS 7 for collecting data in each data collection repeater 6, and further includes time information. It is. For example, the setting information 92 includes relay management codes (A01_01,..., A01_n) and (A02_01, A02_02,..., A02_n) corresponding to the area code (A01) and area code (A02), LTLSID ( 001, 002,..., 00n) and (001, 002,..., 00n) and time information (2018/2/7/10: 00: 00).
 例えば、エリアコードA01では、中継管理コードA01_01のデータ収集中継器6は、LTLSIDが001と002のLTLS7からデータを収集する。また、エリアコードA02では、中継管理コードA02_01のデータ収集中継器6が、LTLSIDが001のLTLS7からデータを収集し、中継管理コードA02_02のデータ収集中継器6が、LTLSIDが002のLTLS7からデータを収集する。 For example, in the area code A01, the data collection repeater 6 with the relay management code A01_01 collects data from the LTLS 7 with the LTLSID of 001 and 002. In the area code A02, the data collection repeater 6 with the relay management code A02_01 collects data from the LTLS7 with the LTLSID of 001, and the data collection repeater 6 with the relay management code A02_02 collects the data from the LTLS7 with the LTLSID of 002. collect.
 格納テーブル93には、各々のエリアコードに設けられた中継管理コードと、各々の中継管理コードを有するデータ収集中継器6がデータを収集するLTLS7のLTLSIDと、各々のLTLS7における測定時刻、積算値および通信回数カウンタが含まれている。例えば、格納テーブル93には、LTLSIDが001のLTLS7の時刻11:00から12:00までの積算値と通信回数カウンタが含まれている。 The storage table 93 includes a relay management code provided for each area code, an LTLSID of the LTLS 7 from which the data collection repeater 6 having each relay management code collects data, a measurement time and an integrated value of each LTLS 7. And a communication counter. For example, the storage table 93 includes an integrated value from the time 11:00 to 12:00 of the LTLS 7 in which LTLSID is 001 and a communication count counter.
 通信回数カウンタは通信を行うたびに後述するインクリメントされるが、設定情報92には、0(ゼロ)の値も示されている。通信回数カウンタの0(ゼロ)の値は、電力管理装置51が、データ収集中継器6から測定データを受信する予定のタイミングにおいて、測定データを受信しなかった場合にカウンタ設定部59(後述する)によって格納される値である。 The communication number counter is incremented as described later each time communication is performed, but the setting information 92 also indicates a value of 0 (zero). The value of 0 (zero) in the communication number counter is a counter setting unit 59 (described later) when the power management apparatus 51 does not receive measurement data at the timing at which measurement data is to be received from the data collection repeater 6. ) Is stored.
 また、格納テーブル93には、フラグCdが含まれている。フラグCdは、通信回数カウンタの値が0(ゼロ)のうち、断線により測定データを受信できず、LTLS7による電流値の測定が行われていないと判断されたデータに付されている。通信回数カウンタの値が0(ゼロ)のうちフラグCdが付されていないデータは、通信異常により測定データを受信できず、LTLS7は動作していると判断されたデータである。このフラグCdに基づいて、測定結果についての補正が行われる。 Further, the storage table 93 includes a flag Cd. The flag Cd is attached to data in which the measured data counter value is 0 (zero), measurement data cannot be received due to disconnection, and current value measurement by the LTLS 7 is not performed. Data whose flag Cd is not attached when the value of the communication counter is 0 (zero) is data for which it is determined that the LTLS 7 is operating because the measurement data cannot be received due to a communication error. Based on the flag Cd, the measurement result is corrected.
 データ収集中継器6からLTLS7の測定情報および中継管理コードを受信するたびに、最新の測定情報が格納テーブル93に順に格納されていく。
 位置管理情報テーブル94には、複数のLTLS7の各々の設置場所が位置コードとして記憶され、各々のLTLS7からデータを収集するデータ収集中継器6の中継器管理コードも記憶されている。これによって、各々のLTLS7の位置を確認することができる。
Each time the measurement information and the relay management code of the LTLS 7 are received from the data collection repeater 6, the latest measurement information is sequentially stored in the storage table 93.
In the position management information table 94, each installation location of the plurality of LTLSs 7 is stored as a position code, and a relay management code of the data collection relay 6 that collects data from each LTLS 7 is also stored. Thereby, the position of each LTLS 7 can be confirmed.
 なお、設定情報92、格納テーブル93および位置管理情報テーブル94は、新たな情報を受信すると更新される。
 補正部56は、管理DB54に保存された通信回数カウンタの値に基づいて測定結果に対して補正を行い、積算値の観測時間を算出する。補正部56は、判定部56aと、演算部56bとを有する。
The setting information 92, the storage table 93, and the location management information table 94 are updated when new information is received.
The correction unit 56 corrects the measurement result based on the value of the communication number counter stored in the management DB 54 and calculates the observation time of the integrated value. The correction unit 56 includes a determination unit 56a and a calculation unit 56b.
 判定部56aは、通信回数カウンタの値に基づいて補正を行うか否かを判定する。判定部56aは、通信回数カウンタの値が0(ゼロ)のデータに対して、フラグCdを付与して観測時間から除外するか、フラグCdを付与せず観測時間からの除外を行わないか否かを判定する。すなわち、通信回数カウンタの値が0(ゼロ)のデータについて、LTLS7が動作していたか否かを判定し、LTLS7が動作していなかったと判定した場合には、その測定データにフラグCdを付与し、LTLS7が動作していたと判定した場合には、その測定データにフラグCdを付与しない。 The determination unit 56a determines whether or not to perform correction based on the value of the communication number counter. Whether the determination unit 56a adds the flag Cd to the data whose communication counter value is 0 (zero) and excludes it from the observation time, or does not add the flag Cd and does not exclude it from the observation time. Determine whether. That is, it is determined whether or not the LTLS 7 is operating for data whose communication counter value is 0 (zero). If it is determined that the LTLS 7 is not operating, the flag Cd is added to the measurement data. When it is determined that the LTLS 7 is operating, the flag Cd is not given to the measurement data.
 演算部56bは、判定部56aによってフラグCdを付与されたデータ分の時間を、受信した測定データに基づく観測時間から差し引いて真の観測時間を算出する。
 区間演算部57は、複数のLTLS7の積算値と、真の観測時間と、各々のLTLS7の設置場所に関する情報に基づいて、対象区間における観測時間の割合を明示する。
 タイマ部58は、5分毎の受信タイミングでデータ収集中継器6から測定データが送信されているか否かを確認する。
The calculation unit 56b calculates the true observation time by subtracting the time corresponding to the data to which the flag Cd is given by the determination unit 56a from the observation time based on the received measurement data.
The section calculation unit 57 specifies the ratio of the observation time in the target section based on the integrated value of the plurality of LTLS7, the true observation time, and the information regarding the installation location of each LTLS7.
The timer unit 58 checks whether or not measurement data is transmitted from the data collection repeater 6 at a reception timing every 5 minutes.
 カウンタ設定部59は、タイマ部58によって受信予定のタイミングで測定データを受信していないことを検出した場合、その受信タイミングにおける通信回数カウンタを0(ゼロ)に設定して、管理DB54に格納する。例えば、図7における時刻11:30では、データ収集中継器6を介してLTLS7から測定データを受信していないため、通信回数カウンタが0に設定されている。また、このときは積算値データも受信していないため、積算値は、11:30の1つ前の受信タイミングである11:25の積算値110が記憶されている。 When the counter setting unit 59 detects that the measurement data is not received at the timing scheduled to be received by the timer unit 58, the counter setting unit 59 sets the communication number counter at the reception timing to 0 (zero) and stores it in the management DB 54. . For example, at time 11:30 in FIG. 7, since the measurement data is not received from the LTLS 7 via the data collection repeater 6, the communication number counter is set to 0. At this time, since the integrated value data is not received, an integrated value 110 of 11:25, which is the reception timing immediately before 11:30, is stored as the integrated value.
 <動作>
 本発明に係る実施の形態における配電網モニタリングシステム10の動作について以下に説明する。
 (LTLS7の動作)
 図9は、本実施の形態の配電網モニタリングシステム10のLTLS7の動作を示すフロー図である。
<Operation>
The operation of the distribution network monitoring system 10 in the embodiment according to the present invention will be described below.
(Operation of LTLS7)
FIG. 9 is a flowchart showing the operation of the LTLS 7 of the distribution network monitoring system 10 of the present embodiment.
 LTLS7が起動し、ステップS11において、所定時間(例えば、10秒)が経過するまで待機する。この所定時間の間に、充電が行われ、充電部73に電気エネルギーが貯められる。
 次に、所定時間が経過すると、ステップS12において、制御部75は、電力線を流れている電流が2A以上か否かの判定を行う。ここで、2A以上の場合、LTLS7は動作可能であるが、2Aより小さい場合、充電を行うことが出来ずLTLS7は動作することができない。
The LTLS 7 is activated and waits until a predetermined time (for example, 10 seconds) elapses in step S11. During this predetermined time, charging is performed and electric energy is stored in the charging unit 73.
Next, when a predetermined time has elapsed, in step S12, the control unit 75 determines whether or not the current flowing through the power line is 2A or more. Here, when 2 A or more, the LTLS 7 is operable, but when smaller than 2 A, charging cannot be performed and the LTLS 7 cannot operate.
 ステップS12において2A以上と判定された場合には、ステップS13において検出・給電部71および計測部72によって電力線を流れる電流の測定が行われる。
 次に、ステップS14において制御部75のタイマ部75aによって5分が経過したか判定される。
 ステップS14において5分が経過していないと判定された場合には、制御はステップS11へと戻り、次の測定まで待機する。このように、5分が経過するまでは、所定時間(例えば10秒)ごとに電力線の電流値の測定が行われる。
If it is determined in step S12 that the current is 2 A or more, the current flowing through the power line is measured by the detection / power feeding unit 71 and the measurement unit 72 in step S13.
Next, in step S14, the timer unit 75a of the control unit 75 determines whether 5 minutes have elapsed.
If it is determined in step S14 that 5 minutes have not elapsed, the control returns to step S11 and waits for the next measurement. Thus, the current value of the power line is measured every predetermined time (for example, 10 seconds) until 5 minutes elapse.
 ステップS14において5分が経過したと判定されると、ステップS15において、積算値演算部75dによって電流値の積算値が演算される。
 次に、ステップS16において、積算値、通信回数カウンタ、およびLTLSIDがデータ収集中継器6に送信される。
 次に、ステップS17において、カウンタ部75eが、通信回数カウンタをインクリメントする。例えば、ステップS13において1回目の送信を行う際には、通信回数カウンタの値は1として送信され、送信後、通信回数カウンタの値は2にインクリメントされる。
If it is determined in step S14 that 5 minutes have elapsed, in step S15, the integrated value calculation unit 75d calculates the integrated value of the current value.
Next, in step S <b> 16, the integrated value, the communication count counter, and LTLSID are transmitted to the data collection repeater 6.
Next, in step S17, the counter unit 75e increments the communication number counter. For example, when the first transmission is performed in step S13, the value of the communication number counter is transmitted as 1, and after the transmission, the value of the communication number counter is incremented to 2.
 ステップS17の後、制御はステップS11へと戻り、LTLS7は測定待機状態となる。これにより、LTLS7は、10秒ごとに電力線の電流を測定して5分毎に積算値、カウンタ値およびLTLSIDをデータ収集中継器6に送信する。
 また、ステップS12において、電力線を流れる電流が2Aよりも小さい場合、制御はステップS18へと進み、LTLS7はシャットダウンし、その際に、カウンタ部75eは通信回数カウンタ値をリセットし、通信回数カウンタが1に戻される。この通信回数カウンタによって電力管理装置51は、LTLS7がシャットダウンしていたか否かを判定することができる。
After step S17, control returns to step S11, and the LTLS 7 enters a measurement standby state. Thereby, the LTLS 7 measures the current of the power line every 10 seconds and transmits the integrated value, the counter value, and the LTLSID to the data collection repeater 6 every 5 minutes.
In step S12, if the current flowing through the power line is smaller than 2A, the control proceeds to step S18, the LTLS 7 is shut down, and at that time, the counter unit 75e resets the communication number counter value, and the communication number counter Returned to 1. The power management apparatus 51 can determine whether or not the LTLS 7 has been shut down by the communication number counter.
 (データ収集中継器6の動作)
 図10は、本実施の形態の配電網モニタリングシステム10のデータ収集中継器6の動作を示すフロー図である。
 処理が開始すると、ステップS21において、データ収集中継器6は、受信待機状態となる。
(Operation of data collection repeater 6)
FIG. 10 is a flowchart showing the operation of the data collection repeater 6 of the distribution network monitoring system 10 of the present embodiment.
When the process starts, in step S21, the data collection repeater 6 enters a reception standby state.
 次に、ステップS22において、測定データを受信したか否かが判定され、LTLS7から測定データを受信した場合には、ステップS23において、測定データを受信する。すなわち、データ収集中継器6は、データを受信するまで待機状態となっている。
 次に、ステップS24において、データ収集中継器6は、管理DB62から取り出した中継管理コード(A01_01)を測定データに付加して電力管理装置51に送信する。
Next, in step S22, it is determined whether or not measurement data is received. If measurement data is received from the LTLS 7, the measurement data is received in step S23. That is, the data collection repeater 6 is in a standby state until data is received.
Next, in step S24, the data collection repeater 6 adds the relay management code (A01_01) extracted from the management DB 62 to the measurement data and transmits the measurement data to the power management apparatus 51.
 このように、データ収集中継器6は、5分毎に送られてくる測定データを5分毎に電力管理装置51に送信している。
 (電力管理装置51の動作)
 図11は、本実施の形態の配電網モニタリングシステム10の電力管理装置51の動作を示すフロー図である。
Thus, the data collection repeater 6 transmits the measurement data sent every 5 minutes to the power management apparatus 51 every 5 minutes.
(Operation of the power management device 51)
FIG. 11 is a flowchart showing the operation of the power management device 51 of the distribution network monitoring system 10 of the present embodiment.
 処理が開始すると、ステップS31において、電力管理装置51は、受信待機状態となる。
 次に、ステップS32において、測定データを受信したか否かが判定され、受信部53aがデータ収集中継器6から測定データを受信した場合には、ステップS33において、測定データを受信し、測定データを管理DB54の格納テーブル93に格納する。
When the process starts, in step S31, the power management apparatus 51 enters a reception standby state.
Next, in step S32, it is determined whether or not measurement data has been received. If the reception unit 53a receives measurement data from the data collection repeater 6, the measurement data is received and measurement data is received in step S33. Are stored in the storage table 93 of the management DB 54.
 次に、ステップS34において、補正部56の判定部56aが、補正判定処理を行う。補正判定処理は、測定データを受信できなかった際の時間を観測時間に含むか否かを判定する処理である。補正判定処理では、測定データを受信できなかった際にLTLS7が動作していたか否かによって上記判定を行う。詳しくは、後段にて詳述する。
 ステップS34の処理後、制御はステップS31に戻る。
Next, in step S34, the determination unit 56a of the correction unit 56 performs a correction determination process. The correction determination process is a process for determining whether or not the observation time includes the time when the measurement data cannot be received. In the correction determination process, the above determination is made based on whether or not the LTLS 7 was operating when the measurement data could not be received. Details will be described later.
After the process of step S34, control returns to step S31.
 一方、ステップS32において受信部53aがデータを受信していない場合には、ステップS35において、タイマ部58が、5分経過したか否かを判定する。このステップS32では、測定データを受信する受信タイミングで測定データを受信しているか否かが判定される。
 ステップS35において5分経過していない場合は、制御はステップS31に戻り、電力管理装置51は待機状態となる。
On the other hand, if the receiving unit 53a has not received data in step S32, the timer unit 58 determines in step S35 whether or not 5 minutes have elapsed. In step S32, it is determined whether or not the measurement data is received at the reception timing for receiving the measurement data.
If 5 minutes has not elapsed in step S35, the control returns to step S31, and the power management apparatus 51 enters a standby state.
 一方、ステップS35において、5分経過している場合には、ステップS36において、カウンタ設定部59は、受信する予定のタイミングにおいて測定データを受信できなかったとして、通信回数カウンタを0に設定し、管理DB54に格納する。ステップS36の処理後、制御はステップS31に戻り、電力管理装置51は待機状態となる。
 (補正判定処理)
 次に、ステップS34における補正判定処理について説明する。補正判定処理は、ステップS33において測定データを管理DB54に格納したことをトリガーとして開始される。
On the other hand, if 5 minutes have passed in step S35, the counter setting unit 59 sets the communication counter to 0 in step S36, assuming that the measurement data could not be received at the scheduled reception timing, Store in the management DB 54. After the process of step S36, control returns to step S31, and the power management apparatus 51 enters a standby state.
(Correction judgment processing)
Next, the correction determination process in step S34 will be described. The correction determination process is started with the measurement data stored in the management DB 54 in step S33 as a trigger.
 図12は、補正判定処理のフローを示す図である。
 処理が開始すると、はじめにステップS61において、判定部56aは、格納テーブル93から、同一IDのLTLS7の履歴を紹介する。図13は、紹介された履歴データ200の一例を示す図である。図13では、LSLTIDが001のLSLT7の測定時刻、積算値(データAh)および通信回数カウンタが示されている。図13では、11時から12時までの履歴データ200が示されている。
FIG. 12 is a diagram illustrating a flow of the correction determination process.
When the process starts, first, in step S61, the determination unit 56a introduces the history of the LTLS 7 having the same ID from the storage table 93. FIG. 13 is a diagram illustrating an example of introduced history data 200. FIG. 13 shows the measurement time, integrated value (data Ah), and communication number counter of LSLT 7 whose LSLT ID is 001. FIG. 13 shows history data 200 from 11:00 to 12:00.
 次に、ステップS62において、判定部56aは、最新受付データを除き、通信回数カウンタが0以外となるまでのデータを抽出し、テーブル201を作成する。図14は、テーブル201を示す図である。テーブル201では、履歴データ200のうち、12時の最新受付データを除いて、通信回数カウンタが0(ゼロ)以外となる11:45までのデータが抽出されている。そして、末端データ(11:45のデータ)がIDgoodと設定される。 Next, in step S62, the determination unit 56a extracts data until the communication count counter is other than 0 except for the latest received data, and creates the table 201. FIG. 14 is a diagram showing the table 201. In the table 201, data up to 11:45 where the communication number counter is other than 0 (zero) is extracted from the history data 200 except the latest received data at 12:00. End data (11:45 data) is set as IDgood.
 次に、ステップS63において、判定部56aは、抽出したデータ範囲のテーブル201において、通信回数カウンタが0(ゼロ)の数をカウントし、Cnとする。
 次に、ステップS64において、判定部56aは、Cnが0以上であるか否かを判定し、Cnが0以上の場合、すなわち、抽出したデータ範囲のテーブル201において、通信回数カウンタが0(ゼロ)の値が存在する場合、制御は、ステップS66に進む。
Next, in step S63, the determination unit 56a counts the number of times the communication number counter is 0 (zero) in the extracted data range table 201, and sets it as Cn.
Next, in step S64, the determination unit 56a determines whether or not Cn is equal to or greater than 0. If Cn is equal to or greater than 0, that is, in the extracted data range table 201, the communication number counter is 0 (zero). ) Exists, control proceeds to step S66.
 そして、ステップS65において、判定部56aは、最新受付データの通信回数カウンタの値をIDnewとする。図14に示す例では、最新受付データは、12:00のデータであるため、12:00のデータのフラグにIDnewが設定される。
 次に、ステップS66において、判定部56aは、IDnew-(Cn+1)=IDgoodであるか否かを判定する。図14に示す例では、IDnewの通信回数カウンタは23であり、Cn=2であり、IDgoodの通信回数カウンタは20である。そのため、IDnew-(Cn+1)=23-(2+1)=20となり、IDgoodと一致する。そのため、制御は、ステップS67へと進み、判定部56aは、LTLS7は正常に動作しているが、通信異常などによって測定データが受信できなかったと判定する。
In step S65, the determination unit 56a sets the value of the latest reception data communication counter to IDnew. In the example shown in FIG. 14, since the latest received data is 12:00 data, IDnew is set in the data flag of 12:00.
Next, in step S66, the determination unit 56a determines whether or not IDnew− (Cn + 1) = IDgood. In the example illustrated in FIG. 14, the IDnew communication count counter is 23, Cn = 2, and the IDgood communication count counter is 20. Therefore, IDnew− (Cn + 1) = 23− (2 + 1) = 20, which matches IDgood. Therefore, the control proceeds to step S67, and the determination unit 56a determines that the measurement data could not be received due to a communication abnormality or the like although the LTLS 7 is operating normally.
 すなわち、電力管理装置51が受信していない場合でも、LTLS7が正常に動作している場合には送信が行われ、通信回数カウンタがインクリメントされている。このため、受信できるようになったタイミングの通信回数カウンタが、受信できないタイミングの直前の通信回数カウンタから、受信できなかった回数分インクリメントされている場合には、LTLS7は送信を行っているが、通信障害等により電力管理装置51が受信できなかったと判定することができる。 That is, even when the power management apparatus 51 is not receiving, if the LTLS 7 is operating normally, transmission is performed and the communication counter is incremented. For this reason, when the communication number counter at the timing at which reception is possible has been incremented by the number of times at which reception was not possible from the communication number counter immediately before the timing at which reception is not possible, the LTLS 7 is transmitting, It can be determined that the power management apparatus 51 has failed to receive due to a communication failure or the like.
 一方、ステップS66においてIDnew-(Cn+1)=IDgoodではない場合、制御はステップS68へと進み、判定部56aは、電力線の断線等の発生によりLTLS7が動作していなかったため、測定データが受信できなかったと判定する。
 LTLS7が動作していなかったと判定される場合について他の例のデータを用いて説明する。図15は、電力線の断線と判定される場合のステップS61で紹介された履歴データ202の一例を示す図である。図15では、11時から12時までの履歴データ202が示されている。次に、ステップS62において、判定部56aは、最新受付データを除き、通信回数カウンタが0以外となるまでのデータを抽出し、図16に示すテーブル203が作成される。テーブル203では、履歴データ202のうち、12時の最新受付データを除いて、通信回数カウンタが0(ゼロ)以外となる11:45までのデータが抽出されている。そして、末端データ(11:45のデータ)の通信回数カウンタがIDgoodと設定される。
On the other hand, if IDnew− (Cn + 1) = IDgood is not satisfied in step S66, the control proceeds to step S68, and the determination unit 56a cannot receive measurement data because the LTLS7 has not been operated due to the occurrence of a power line disconnection or the like. It is determined that
A case where it is determined that the LTLS 7 has not been operated will be described using data of another example. FIG. 15 is a diagram illustrating an example of the history data 202 introduced in step S61 when it is determined that the power line is disconnected. FIG. 15 shows history data 202 from 11:00 to 12:00. Next, in step S62, the determination unit 56a extracts data until the communication count counter is other than 0 except for the latest received data, and the table 203 shown in FIG. 16 is created. In the table 203, data up to 11:45 is extracted from the history data 202, except for the latest received data at 12:00, in which the communication count counter is other than 0 (zero). Then, the communication number counter of the end data (11:45 data) is set as IDgood.
 次に、ステップS63において、判定部56aは、抽出したデータ範囲のテーブル203において、通信回数カウンタが0(ゼロ)の数をカウントし、Cnとする。
 次に、ステップS64において、判定部56aは、Cnが0以上であるか否かを判定し、Cnが0以上の場合、すなわち、抽出したデータ範囲のテーブル203において、通信回数カウンタが0(ゼロ)の値が存在する場合、制御は、ステップS66に進む。
Next, in step S63, the determination unit 56a counts the number of times the communication number counter is 0 (zero) in the extracted data range table 203, and sets it as Cn.
Next, in step S64, the determination unit 56a determines whether or not Cn is equal to or greater than 0. If Cn is equal to or greater than 0, that is, in the extracted data range table 203, the communication number counter is 0 (zero). ) Exists, control proceeds to step S66.
 そして、ステップS66において、判定部56aは、最新受付データの通信回数カウンタの値をIDnewとする。図16に示す例では、最新受付データは、12:00のデータであるため、12:00のデータのフラグにIDnewが設定される。
 次に、ステップS66において、判定部56aは、IDnew-(Cn+1)=IDgoodであるか否かを判定する。図16に示す例では、IDnewの通信回数カウンタは1であり、Cn=2であり、IDgoodの通信回数カウンタは20である。そのため、IDnew-(Cn+1)=1-(2+1)=-2となり、IDgoodと一致しない。そのため、制御は、ステップS68へと進み、判定部56aは、LTLS7が動作していなかったと判定する。
In step S66, the determination unit 56a sets the value of the latest reception data communication count counter to IDnew. In the example shown in FIG. 16, since the latest received data is 12:00 data, IDnew is set in the data flag of 12:00.
Next, in step S66, the determination unit 56a determines whether or not IDnew− (Cn + 1) = IDgood. In the example illustrated in FIG. 16, the IDnew communication count counter is 1, Cn = 2, and the IDgood communication count counter is 20. Therefore, IDnew− (Cn + 1) = 1− (2 + 1) = − 2, which does not match IDgood. Therefore, the control proceeds to step S68, and the determination unit 56a determines that the LTLS 7 has not been operated.
 すなわち、LTLS7が動作していなかった場合には、測定回数カウンタ値がリセットされている。そのため受信できるようになったタイミングの通信回数カウンタが、受信できないタイミングの直前の通信回数カウンタから、受信できなかった回数分インクリメントされていない場合には、電力線の断線等によりLTLS7が動作していなかったと判定することができる。 That is, when the LTLS 7 is not operating, the measurement number counter value is reset. Therefore, if the communication counter at the timing at which reception is possible has not been incremented by the number of times at which communication could not be received from the communication counter immediately before the timing at which reception is not possible, the LTLS 7 is not operating due to power line disconnection, etc. Can be determined.
 次に、ステップS70において、判定部56aは、LTLS7が動作していなかったと判定した測定データについてフラグCdを付して格納テーブル93に格納する。
 ステップS67、S70、S69の後、制御は図11に示すステップS31へ戻り、電力管理装置51は受信待機状態となる。
 次に、通信回数カウンタの値によってLTLS7が動作していたか否かを判定する理由について更に詳しく説明する。
Next, in step S70, the determination unit 56a adds the flag Cd to the measurement data determined to have not been operated by the LTLS 7, and stores the measurement data in the storage table 93.
After steps S67, S70, and S69, the control returns to step S31 shown in FIG. 11, and the power management apparatus 51 enters a reception standby state.
Next, the reason for determining whether or not the LTLS 7 was operating based on the value of the communication number counter will be described in more detail.
 図17は、異常が発生した場合の各装置の状態の一例を示す図である。図17では、時刻9:00に、LTLS7がその前の5分間で計測した電流の積算値100Ahと測定回数カウンタの値(1)をデータ収集中継器6に送信し、データ収集中継器6が電力管理装置51に積算値100Ahと測定回数カウンタの値(1)を送信する。電力管理装置51は、時刻9:00には、積算値100Ahと測定回数カウンタの値(1)を受信し、LTLSIDおよび中継器管理コードとともに格納テーブル93に格納する。なお、図17では、説明を分り易くするために、送受信によるタイムラグがないものとしている。 FIG. 17 is a diagram illustrating an example of the state of each device when an abnormality occurs. In FIG. 17, at time 9:00, the integrated value 100Ah of the current measured by the LTLS 7 for the previous 5 minutes and the value (1) of the number of times of measurement counter are transmitted to the data collection repeater 6, and the data collection repeater 6 The integrated value 100Ah and the measurement counter value (1) are transmitted to the power management apparatus 51. At time 9:00, the power management apparatus 51 receives the integrated value 100Ah and the value (1) of the measurement number counter, and stores them in the storage table 93 together with the LTLSID and the relay management code. In FIG. 17, it is assumed that there is no time lag due to transmission / reception for easy understanding.
 次の5分間でLTLS7は40Ahを計測し、前回の5分間の100Ahと合わせた積算値140Ahとインクリメントされた測定回数カウンタ値(2)とを、時刻9:05にデータ収集中継器6を介して電力管理装置51に送信する。電力管理装置51は、積算値140Ahとインクリメントされた測定回数カウンタ値(2)を受信する。
 そして、次の受信タイミングである時刻9:10には、電力管理装置51はデータ収集中継器6から積算値および測定回数カウンタ値を受信していない。そのため、電力管理装置51は格納テーブル93に積算値140Ahと測定回数カウンタとして0の値を格納する。
In the next 5 minutes, the LTLS 7 measures 40 Ah, and the integrated value 140 Ah combined with 100 Ah for the previous 5 minutes and the incremented measurement count counter value (2) are sent via the data collection relay 6 at time 9:05. To the power management apparatus 51. The power management apparatus 51 receives the integrated value 140Ah and the incremented measurement number counter value (2).
At time 9:10, which is the next reception timing, the power management apparatus 51 has not received the integrated value and the measurement count counter value from the data collection repeater 6. Therefore, the power management apparatus 51 stores the integrated value 140Ah and a value of 0 as the measurement number counter in the storage table 93.
 次の受信タイミングである時刻9:15には、電力管理装置51は、積算値300Ahと測定回数カウンタの値(4)を受信している。
 ここで、図12で説明したステップS66の式に当て嵌めると、IDnew=4(9:15におけるカウンタ値)、IDgood=2(9:05におけるカウンタ値)、Cn=1となるため、IDnew-(Cn+1)=4-(1+1)=2となり、IDgoodと一致する。
At time 9:15, which is the next reception timing, the power management apparatus 51 receives the integrated value 300Ah and the value (4) of the measurement number counter.
When applied to the equation of step S66 described in FIG. 12, IDnew = 4 (counter value at 9:15), IDgood = 2 (counter value at 9:05), and Cn = 1, so IDnew− (Cn + 1) = 4- (1 + 1) = 2, which matches IDgood.
 すなわち、図17に示すように、LTLS7は、時刻9:10において測定回数カウンタ値を正常に(2)から(3)にインクリメントしていることがわかる。このため、時刻9:05~9:15までの間において、LTLS7は正常に電流値を計測し、時刻9:10においてデータを送信しているものの、電力管理装置51にデータが届いていないことが確認でき、通信障害等の発生により測定データを受信できなかったことがわかる。 That is, as shown in FIG. 17, it can be seen that the LTLS 7 has normally incremented the measurement counter value from (2) to (3) at time 9:10. For this reason, between time 9:05 and 9:15, the LTLS 7 normally measures the current value and transmits data at time 9:10, but the data does not reach the power management apparatus 51. It can be confirmed that the measurement data could not be received due to the occurrence of a communication failure or the like.
 また、時刻9:20には、電力管理装置51は、積算値400Ahと測定回数カウンタ値(5)とを受信しているが、時刻9:25と時刻9:30には、データを受信せず、時刻9:35に積算値450Ahと測定回数カウンタ値(1)を受信している。ここで、図12で説明したステップS66の式に当て嵌めると、IDnew=1(9:35におけるカウンタ値)、IDgood=5(9:20におけるカウンタ値)、Cn=2となるため、IDnew-(Cn+1)=1-(2+1)=-2となり、IDgoodと一致しない。すなわち、図17のLTLS7の動作に示すように、9:20から9:35の間で、通信回数カウンタ値がリセットされていることがわかる。通信カウンタ値のリセットは、電流値が2Aよりも小さい場合にステップS18におけるシャットダウンで行われるため、断線等の発生によりLTLS7が動作していなかったと判定することができる。 At time 9:20, the power management apparatus 51 receives the integrated value 400Ah and the measurement count counter value (5). However, at time 9:25 and time 9:30, the power management apparatus 51 does not receive data. First, at time 9:35, the integrated value 450Ah and the measurement counter value (1) are received. Here, if it is applied to the equation of step S66 described in FIG. 12, IDnew = 1 (counter value at 9:35), IDgood = 5 (counter value at 9:20), and Cn = 2, so IDnew− (Cn + 1) = 1− (2 + 1) = − 2, which does not match IDgood. That is, as shown in the operation of the LTLS 7 in FIG. 17, it can be seen that the communication number counter value is reset between 9:20 and 9:35. Since the reset of the communication counter value is performed by the shutdown in step S18 when the current value is smaller than 2A, it can be determined that the LTLS 7 has not been operated due to the occurrence of a disconnection or the like.
 以上のように、5分毎の受信タイミングにおいて、積算値および測定回数カウンタ値を受信できない場合、その直前と直後における測定回数カウンタの値からLTLS7が動作していたか否かを判定することができる。
 (観測時間算出処理)
 はじめに、測定データの補正の必要性について説明したのちに、観測時間算出処理における動作について説明する。
As described above, when the integrated value and the measurement number counter value cannot be received at the reception timing every 5 minutes, it is possible to determine whether or not the LTLS 7 has been operated based on the value of the measurement number counter immediately before and after that. .
(Observation time calculation process)
First, after describing the necessity of correcting measurement data, the operation in the observation time calculation process will be described.
 図18(a)は、データ確認時間T0において測定データを受信しなかった未受信のタイミングが存在しなかった場合における積算値と観測時間の関係の一例のグラフを示す図である。図18(b)は、測定データを受信しなかった未受信のタイミングが存在しなかった場合における積算値と観測時間の対応関係を示す図である。図18(a)および図18(b)では、電力管理装置51が受信する測定データにおける積算値と観測時間は対応している。例えば、図17に示すデータでは、9:00に受信する積算値は、8:55から9:00までの5分間における電流の積算値であり、9:05に受信する積算値は、8:55から9:05までの10分間における電流の積算値である。 FIG. 18A is a graph showing an example of the relationship between the integrated value and the observation time when there is no unreceived timing at which no measurement data is received at the data confirmation time T0. FIG. 18B is a diagram illustrating a correspondence relationship between the integrated value and the observation time when there is no unreceived timing at which measurement data is not received. 18A and 18B, the integrated value and the observation time in the measurement data received by the power management apparatus 51 correspond to each other. For example, in the data shown in FIG. 17, the integrated value received at 9:00 is the integrated value of current for 5 minutes from 8:55 to 9:00, and the integrated value received at 9:05 is 8: It is the integrated value of current in 10 minutes from 55 to 9:05.
 このように、測定データを受信しなかった未受信タイミングが存在しなかった場合、電力管理装置51が受信する積算値は、その積算値を受信した時刻情報から求められる観測時間における電流の積算値となっている。
 一方、データ確認時間T0において測定データを受信しなかった未受信のタイミングが存在する場合、上述したように、LTLS7が動作していたか否かが判定される。
As described above, when there is no non-reception timing at which the measurement data is not received, the integrated value received by the power management apparatus 51 is the integrated value of the current at the observation time obtained from the time information when the integrated value is received. It has become.
On the other hand, if there is an unreceived timing at which the measurement data is not received at the data confirmation time T0, as described above, it is determined whether the LTLS 7 is operating.
 図17の時刻9:10に示す場合のように、測定データを受信できなかったタイミングを含めて測定回数カウンタがインクリメントされている場合、LTLS7は正常に動作し積算値が計算されているため、9:15に受信した積算値300Ahは、8:55~9:15までの観測時間20分間の電流の積算値である。
 しかしながら、図17の時刻9:25および9:30に示す場合のように、測定データを受信できなかったタイミングを含めて測定回数カウンタがインクリメントされていない場合、LTLS7は正常に動作せず積算値が計算されていないため、9:35に受信した積算値450Ahは、8:55~9:35までの観測時間40分間の電流の積算値ではない。そのため、積算値450Ahの観測時間は、40分間からLTLS7が動作していない時間(10分間)分差し引く必要がある。
As shown at time 9:10 in FIG. 17, when the measurement number counter is incremented including the timing when measurement data cannot be received, the LTLS 7 operates normally and the integrated value is calculated. The integrated value 300Ah received at 9:15 is an integrated value of current for an observation time of 20 minutes from 8:55 to 9:15.
However, if the measurement number counter is not incremented including the timing at which measurement data could not be received as shown at times 9:25 and 9:30 in FIG. 17, the LTLS 7 does not operate normally and the integrated value Therefore, the accumulated value 450Ah received at 9:35 is not the accumulated value of the current for the observation time of 40 minutes from 8:55 to 9:35. Therefore, the observation time of the integrated value 450Ah needs to be subtracted from 40 minutes by the time during which the LTLS 7 is not operating (10 minutes).
 すなわち、電流値は積算値で計算しているため、測定できていない区間があったとしても増加するため、図19(a)及び図19(b)に示すデータ確認時間T0において、測定できていない区間T1と、真の値を測定できている区間T2-1、T2-2が存在することになる。このように、データ確認時間T0のなかに、断線などによって測定できていない時間も含まれる場合がある。 That is, since the current value is calculated as an integrated value, it increases even if there is an unmeasurable interval, so it can be measured at the data confirmation time T0 shown in FIGS. 19 (a) and 19 (b). There are no section T1 and sections T2-1 and T2-2 in which true values can be measured. Thus, the data confirmation time T0 may include a time that cannot be measured due to disconnection or the like.
 このため、図20に示すように、データ確認時間T0から測定できていない区間T1を差し引くことによって、積算値A0´(=A0)を測定できている区間T0´(=T2-1+T2-2)の時間を求めることができ、計測された積算値分の電流を使用した時間(真の観測時間T0´)を求めることができる。
 次に、観測時間算出処理のフローについて説明する。図21は、観測時間算出処理を示すフロー図である。
Therefore, as shown in FIG. 20, the interval T0 ′ (= T2-1 + T2-2) in which the integrated value A0 ′ (= A0) can be measured by subtracting the interval T1 that cannot be measured from the data confirmation time T0. The time (true observation time T0 ') using the current corresponding to the measured integrated value can be obtained.
Next, the flow of the observation time calculation process will be described. FIG. 21 is a flowchart showing the observation time calculation process.
 はじめに、ステップS81において、ユーザが表示・入力部52から任意に観測時間を算出するデータ確認区間を設定する。図22は、ユーザによる設定項目301を示す図である。図22に示すように、データ確認区間T0として、開始時間と終了時間が入力される。図22では、開始時間に11:00が入力され、終了時間に12:00が入力されている。 First, in step S81, the user sets a data confirmation section in which the observation time is arbitrarily calculated from the display / input unit 52. FIG. 22 is a diagram showing setting items 301 by the user. As shown in FIG. 22, the start time and the end time are input as the data confirmation section T0. In FIG. 22, 11:00 is input as the start time and 12:00 is input as the end time.
 次に、ステップS82において、演算部56bは、管理DB54の格納テーブル93のT0区間のデータを照会する。図23は、管理DB54の格納テーブル93から照会されたT0区間のデータを示す図である。
 次に、ステップS83において、演算部56bは、データ確認区間から削除する削除時間T1を、Cd×送信時間=T1の式を用いて算出する。図23に示す例では、Cd=3であり、送信時間は5分毎であるため、3×5=15(分)が算出される。
Next, in step S82, the calculation unit 56b inquires data of the T0 section of the storage table 93 of the management DB 54. FIG. 23 is a diagram showing data in the T0 section inquired from the storage table 93 of the management DB 54. As shown in FIG.
Next, in step S83, the calculation unit 56b calculates a deletion time T1 to be deleted from the data confirmation interval using an expression of Cd × transmission time = T1. In the example shown in FIG. 23, since Cd = 3 and the transmission time is every 5 minutes, 3 × 5 = 15 (minutes) is calculated.
 次に、ステップS84において、演算部56bは、データ確認区間T0から削除時間T1を差し引いて(T0-T1を計算)、観測時間T0´を算出する。
 次に、ステップS85において、演算部56bは、算出された観測時間を管理DB54に格納する。図24は、管理DB54に格納した結果データ303を示す図である。結果データ303には、測定したLSLT7のLSLTIDと、データ確認区間T0と、Cdの数と、削除時間T1と、観測時間T0´が示されている。
Next, in step S84, the calculation unit 56b subtracts the deletion time T1 from the data confirmation interval T0 (calculates T0-T1) to calculate the observation time T0 ′.
Next, in step S85, the calculation unit 56b stores the calculated observation time in the management DB 54. FIG. 24 is a diagram showing the result data 303 stored in the management DB 54. The result data 303 shows the measured LSLTID of the LSLT 7, the data confirmation interval T0, the number of Cd, the deletion time T1, and the observation time T0 ′.
 これにより、11:00か12:00までのデータ確認区間T0=60分における電流の積算値140Ah(190-50)は、観測時間T0´=45分で得られた値であるということが算出できる。
 なお、照会データ302にフラグCdが含まれていない場合には、T1=0となり、データ確認区間T0が、積算値の観測時間T0´に一致する。
Thus, it is calculated that the current integrated value 140Ah (190-50) in the data confirmation section T0 = 60 minutes until 11:00 or 12:00 is a value obtained at the observation time T0 ′ = 45 minutes. it can.
If the flag Cd is not included in the inquiry data 302, T1 = 0, and the data confirmation section T0 matches the observation time T0 ′ of the integrated value.
 (複合処理)
 次に、電力管理装置51における複合処理について説明する。
 図25は、電力管理装置51の複合処理のフローを示す図である。
 複合処理が開始されると、ステップS71において、区間演算部57は、対象区間に属する複数のLTLS7の各々の結果データ303を収集する。なお、対象区間は、表示・入力部52を用いてユーザによって入力される。
(Composite processing)
Next, composite processing in the power management apparatus 51 will be described.
FIG. 25 is a diagram illustrating a flow of composite processing of the power management apparatus 51.
When the composite processing is started, in step S71, the section calculation unit 57 collects the result data 303 of each of the plurality of LTLSs 7 belonging to the target section. The target section is input by the user using the display / input unit 52.
 図26は、対象区間の一例としての配電網100を示す図である。図26では、図2で説明した幹線としての複数の配電線103と、サービスラインとしての複数の配電線106と、ハウスラインとしての複数の配電線107と、家屋108が示されている。例えば、図26に示す配電網100が、1つのエリアとする。配電線103に設置されているLTLS7は、Lt1~Lt6と示されている。また、配電線106に設置されているLTLS7は、Ls1~Ls5と示されている。配電線107に設置されているLTLS7は、Lh1~Lh5と示されている。 FIG. 26 is a diagram illustrating a power distribution network 100 as an example of a target section. In FIG. 26, the plurality of distribution lines 103 as the trunk line described in FIG. 2, the plurality of distribution lines 106 as service lines, the plurality of distribution lines 107 as house lines, and the house 108 are shown. For example, the power distribution network 100 shown in FIG. 26 is one area. The LTLS 7 installed on the distribution line 103 is indicated as Lt1 to Lt6. The LTLS 7 installed on the distribution line 106 is indicated as Ls1 to Ls5. The LTLS 7 installed in the distribution line 107 is indicated as Lh1 to Lh5.
 例えば、区間演算部57は、図26の配電網100に示されているLt1~Lt6、Ls1~Ls5、およびLh1~Lh5のデータ確認区間11:00~12:00より得られた結果データ303を収集する。
 次に、区間演算部57は、対象区間における観測時間T0´のデータ確認区間T0に対する割合を算出する。図26に示す配電網100では、Rの電流値は、Lt1の電流値と、Lt2の電流値と、Lt3の電流値と、Lt4の電流値と、Lt5の電流値と、Lt6の電流値を足し合わせた値となる。また、Lt1の電流値は、Ls1の電流値と、Ls2の電流値と、Ls3の電流値と、Ls4の電流値と、Ls5の電流値を足し合わせた値となる。また、Ls5の電流値は、Lh1の電流値と、Lh2の電流値と、Lh3の電流値と、Lh4の電流値と、Lh5の電流値を足し合わせた値となる。
For example, the section calculation unit 57 uses the result data 303 obtained from the data confirmation sections 11:00 to 12:00 of Lt1 to Lt6, Ls1 to Ls5, and Lh1 to Lh5 shown in the power distribution network 100 of FIG. collect.
Next, the section calculation unit 57 calculates the ratio of the observation time T0 ′ in the target section to the data confirmation section T0. In the distribution network 100 shown in FIG. 26, the current value of R is the current value of Lt1, the current value of Lt2, the current value of Lt3, the current value of Lt4, the current value of Lt5, and the current value of Lt6. It is the sum of the values. The current value of Lt1 is a value obtained by adding the current value of Ls1, the current value of Ls2, the current value of Ls3, the current value of Ls4, and the current value of Ls5. The current value of Ls5 is a value obtained by adding the current value of Lh1, the current value of Lh2, the current value of Lh3, the current value of Lh4, and the current value of Lh5.
 これらの関係を用いて、例えばR相のトータルのデータ確認区間T0に対する観測時間T0´の割合を算出することができる。
 次に、区間演算部57は、対象区間における観測時間T0´のデータ確認区間T0に対する割合をR相全体の積算値とともに表示・入力部52に表示させる。なお、R相と同様に、T相およびS相におけるトータルの割合を算出することができる。
Using these relationships, for example, the ratio of the observation time T0 ′ to the total data confirmation interval T0 of the R phase can be calculated.
Next, the section calculation unit 57 causes the display / input unit 52 to display the ratio of the observation time T0 ′ to the data confirmation section T0 in the target section together with the integrated value of the entire R phase. Similar to the R phase, the total ratio in the T phase and the S phase can be calculated.
 これによって、配電網100における使用量(積算値)と、その使用量分の電流を使用した時間を精度良く算出することができ、発電計画を精度良く立てることができる。
 このため、本実施の形態の配電網モニタリングシステム10は、スマートメータが設けられたスマートホーム等が立てられたスマートシティ等に対しても有用である。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
Thereby, the usage amount (integrated value) in the power distribution network 100 and the time during which the current corresponding to the usage amount is used can be calculated with high accuracy, and a power generation plan can be made with high accuracy.
For this reason, the power distribution network monitoring system 10 of the present embodiment is also useful for a smart city where a smart home or the like provided with a smart meter is set up.
[Other Embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary of invention.
 (A)
 上記実施の形態では、通信回数カウンタ値に基づいて補正判定処理が行われているが、これに限らず、管理DB54上の通信回数カウンタの値が0(ゼロ)の数にも基づいて補正を行うか否かの判定が行われてもよい。
 図27は、管理DB54上の0(ゼロ)の数に基づく補正判定処理のステップS37を追加した管理DB54の処理を示すフロー図である。図27に示すように、ステップS36における通信回数カウンタの値を0(ゼロ)として格納することをトリガーとして、ステップS37の補正判定処理が開始される。
(A)
In the above embodiment, the correction determination process is performed based on the communication count counter value. However, the present invention is not limited to this, and the correction is also performed based on the number of the communication count counter on the management DB 54 being 0 (zero). A determination as to whether or not to do so may be made.
FIG. 27 is a flowchart showing the process of the management DB 54 to which step S37 of the correction determination process based on the number of 0 (zero) on the management DB 54 is added. As illustrated in FIG. 27, the correction determination process in step S <b> 37 is started by using the communication count counter value stored in step S <b> 36 as 0 (zero) as a trigger.
 図28は、管理DB54上の0(ゼロ)の数に基づく補正判定処理のフローを示す図である。
 処理が開始すると、はじめにステップS41において、判定部56aは、ユーザによる設定を反映する。設定は、ユーザによって表示・入力部52から予め入力されている。図29は、ユーザによる設定を示す図である。設定(i)は、電力線の断線等によりLTLS7が動いていなかったことを判定する対象期間と、閾値(連続0データ数(X))を含む。図29では、設定(i)の対象期間が30分に設定され、閾値が3回に設定されている。
FIG. 28 is a diagram showing a flow of correction determination processing based on the number of 0 (zero) on the management DB 54.
When the process starts, first, in step S41, the determination unit 56a reflects the setting by the user. The setting is input in advance from the display / input unit 52 by the user. FIG. 29 is a diagram illustrating settings by the user. The setting (i) includes a target period in which it is determined that the LTLS 7 has not been moved due to disconnection of the power line or the like, and a threshold (the number of consecutive 0 data (X)). In FIG. 29, the target period of setting (i) is set to 30 minutes, and the threshold is set to 3 times.
 次に、ステップS42において、判定部56aは、同一IDのLTLS7の履歴を紹介する。同一IDのLTLS7の履歴データの一例は、上述した図13に示すようなデータである。
 次に、ステップS43において、判定部56aは、判断テーブル97を管理DB54上に作成する。図30は、設定(i)における判断テーブル97を示す図である。
Next, in step S42, the determination unit 56a introduces the history of the LTLS 7 having the same ID. An example of the history data of the LTLS 7 having the same ID is data as shown in FIG.
Next, in step S43, the determination unit 56a creates the determination table 97 on the management DB 54. FIG. 30 is a diagram showing the determination table 97 in the setting (i).
 判断テーブル97のうち抽出データテーブル97aには、LTLSIDと設定(i)の期間における積算値と通信回数カウンタが示されている。また、連続0データテーブル97bには、設定(i)の期間における連続した0(ゼロ)の最大数M0と、設定値(X)が示されている。
 次に、ステップS44において、LTLS7の未動作判定処理が開始され、ステップS45において、判定部56aは、最新の格納テーブルから設定(i)の期間分のデータを抽出し、判断テーブル97の抽出データテーブル97aに反映する。図30は、図29に示す設定(i)に基づいて作成され、11時30分から12時までのデータが反映された判断テーブル97を示す図である。図30に示す抽出データテーブル97aでは、最新のデータ受付時刻である12:00を起点として、LTLSIDが001のLTLS7の11時30分から12時までの積算値と通信回数カウンタが示されている。なお、設定(i)において対象期間が30分に設定されているため、判断テーブル97は30分ごとに更新される。具体的には、受信タイミングである12時に達した時点で履歴を参照し、11時30分から12時までの測定データから判断テーブル97が作成される。
The extracted data table 97a of the determination table 97 shows LTLSID, the integrated value in the period of setting (i), and the communication count counter. The continuous 0 data table 97b shows the maximum number M0 of continuous 0 (zero) in the period of setting (i) and the setting value (X).
Next, in step S44, the LTLS7 non-operation determination process is started, and in step S45, the determination unit 56a extracts data for the period of setting (i) from the latest storage table, and the extracted data of the determination table 97 This is reflected in the table 97a. FIG. 30 is a diagram showing a determination table 97 created based on the setting (i) shown in FIG. 29 and reflecting data from 11:30 to 12:00. In the extracted data table 97a shown in FIG. 30, the integrated value and the communication count counter from 11:30 to 12:00 of the LTLS 7 with the LTLSID of 001 are shown starting from the latest data reception time of 12:00. Since the target period is set to 30 minutes in the setting (i), the determination table 97 is updated every 30 minutes. Specifically, the history is referred to when the reception timing reaches 12:00, and the determination table 97 is created from the measurement data from 11:30 to 12:00.
 次に、ステップS46において、判定部56aは、抽出データテーブル97aから、通信回数カウンタが連続して0(ゼロ)となっている場合の0(ゼロ)の最大数(M0)を抽出して、判断テーブル97の連続0データテーブル97bに反映する。図30の抽出データテーブル97aでは、11:50、11:55、12:00の通信回数カウンタが0(ゼロ)となっているため、連続する0の最大数M0は3回となる。 Next, in step S46, the determination unit 56a extracts the maximum number (M0) of 0 (zero) when the communication number counter is continuously 0 (zero) from the extraction data table 97a, This is reflected in the continuous 0 data table 97b of the determination table 97. In the extracted data table 97a of FIG. 30, since the communication counter of 11:50, 11:55, and 12:00 is 0 (zero), the maximum number M0 of consecutive 0s is 3 times.
 次に、ステップS47において、判定部56aは、設定(i)における設定値Xと、最大数M0を比較し、M0がX以上であるか否かを判定する。そして、M0がX以上の場合、判定部56aは電力線の断線等によりLTLS7が動いていなかったと判定する。図30に示す例では、M0は3回であり、Xの設定値である3以上となるため、判定部56aは、LTLS7が動いていなかったと判定する。 Next, in step S47, the determination unit 56a compares the set value X in the setting (i) with the maximum number M0 and determines whether M0 is equal to or greater than X. When M0 is equal to or greater than X, the determination unit 56a determines that the LTLS 7 has not moved due to a disconnection of the power line or the like. In the example illustrated in FIG. 30, M0 is 3 times and is equal to or greater than 3 that is the set value of X, and therefore the determination unit 56a determines that the LTLS 7 has not moved.
 そのため、次のステップS48において、通信回数カウンタの値が0のデータにフラグCdを記して格納テーブル93に格納する。
 一方、ステップS47において、MがXより小さい場合には、たとえ通信回数カウンタの値が0であっても断続的なものであるため通信異常であると考え、フラグCdを付与せずに、補正判定処理は終了する。
Therefore, in the next step S48, the flag Cd is written in the data with the communication counter value of 0 and stored in the storage table 93.
On the other hand, if M is smaller than X in step S47, even if the value of the communication counter is 0, it is considered intermittent because it is intermittent, and the correction is performed without adding the flag Cd. The determination process ends.
 このように、電力管理装置51が5分毎のタイミングにおいてデータを受信できない場合が連続して所定回数以上続いたときは、LTLS7が動作していなかったと判断することができ、フラグCdを付与することができる。これにより、フラグCdが付与されている時間を測定できなかった時間T1としてデータ確認区間T0から削除することにより真の観測時間T0´を得ることができる。
 なお、図27では、判定部56aによって2つの判定処理(ステップS34とステップS37)が行われているが、どちらか一方だけが行われてもよい。
Thus, when the case where the power management apparatus 51 cannot receive data at the timing of every 5 minutes continues for a predetermined number of times or more, it can be determined that the LTLS 7 has not been operated, and the flag Cd is added. be able to. As a result, the true observation time T0 ′ can be obtained by deleting from the data confirmation section T0 as the time T1 when the time to which the flag Cd is given could not be measured.
In FIG. 27, two determination processes (step S34 and step S37) are performed by the determination unit 56a, but only one of them may be performed.
 (B)
 上記実施の形態の配電網モニタリングシステム10では、LTLS7の測定情報がデータ収集中継器6に一旦収集されてから、電力管理装置51に送信されているが、これに限らなくても良い。
 例えば、配電網モニタリングシステム10にデータ収集中継器6が設けられていなくてもよく、この場合、LTLS7から電力管理装置51に無線を介して直接的に測定情報が送信される。
(B)
In the distribution network monitoring system 10 of the above embodiment, the measurement information of the LTLS 7 is once collected by the data collection repeater 6 and then transmitted to the power management device 51, but this is not a limitation.
For example, the data collection repeater 6 may not be provided in the distribution network monitoring system 10, and in this case, the measurement information is directly transmitted from the LTLS 7 to the power management apparatus 51 via the radio.
 (C)
 上記実施の形態では、データ受信予定のタイミングにおいてデータを受信しない場合には、電力管理装置51は、所定情報の一例として通信回数カウンタに0という値を格納しているが、0という値に限らなくても良く、通信回数カウンタに用いられない値や、記号等であってもよい。要するに、データを受信していないことが検出できる情報が保存されていればよい。
(C)
In the above embodiment, when data is not received at the timing of data reception, the power management apparatus 51 stores a value of 0 in the communication count counter as an example of the predetermined information, but is limited to a value of 0. There may be no value, a value that is not used in the communication counter, a symbol, or the like. In short, it is only necessary to store information that can detect that data is not received.
 (D)
 上記実施の形態では、電力管理装置51に補正部56が設けられており、電力管理装置51で補正の判定が行われているが、これに限らなくても良い。
 例えば、データ収集中継器6に、補正部56が設けられ、データ収集中継器6で補正の判定が行われてもよい。また、データ収集中継器6から電力管理装置51には、データ収集中継器6で演算された結果データだけが送信されてもよい。
(D)
In the above-described embodiment, the power management device 51 is provided with the correction unit 56 and the power management device 51 determines the correction. However, the present invention is not limited to this.
For example, the correction unit 56 may be provided in the data collection relay device 6 and the correction determination may be performed by the data collection relay device 6. Further, only the result data calculated by the data collection repeater 6 may be transmitted from the data collection repeater 6 to the power management apparatus 51.
 (E)
 上記実施の形態では、電流を測定するLTLS7を用いているが、電圧を測定可能なセンサを用いても良い。これにより、電力メータと値を一致させることができ、メータとの整合性を図ることができるため、精度をより向上することができる。
 (F)
 上記実施の形態のLTLS7は、電流が2Aよりも小さい場合、動作することができないが、0Aから測定できるセンサを用いても良い。これにより、2Aよりも小さい電力線の断線時の時間を補正しなくても測定データの精度を確保することができる。
(E)
In the above embodiment, the LTLS 7 that measures current is used, but a sensor that can measure voltage may be used. Thereby, since a value can be made to correspond with an electric power meter, and consistency with a meter can be aimed at, accuracy can be improved more.
(F)
The LTLS 7 of the above embodiment cannot operate when the current is smaller than 2A, but a sensor that can measure from 0A may be used. Thereby, the accuracy of the measurement data can be ensured without correcting the time when the power line smaller than 2A is disconnected.
 (G)
 上記実施の形態のLTLS7は送信のみを行っているが、データ収集中継器6と双方向通信であってもよい。これにより、受信エラーを検出することができ、測定データの再送等を行うことが可能となる。
 (H)
 上記実施の形態では、図14および図16に示すように、通信回数カウンタの値が0(ゼロ)の測定データの直前と直後の通信回数カウンタ値を用いて補正の判定を行っているが、直前と直後に限らなくても良く、通信回数カウンタの値が0(ゼロ)の測定データの前(例えば、2個前)と後(例えば、2個後)の通信回数カウンタの値を用いてもよい。この場合、後の通信回数カウンタの値が、前の通信回数カウンタの値から、通信回数カウンタの値が0(ゼロ)の数を含んで繰り上がっているときは通信異常と判定し、繰り上がっていないときは断線が発生したと判定することができる。
(G)
The LTLS 7 of the above embodiment performs only transmission, but may be bidirectional communication with the data collection repeater 6. Thereby, a reception error can be detected, and measurement data can be retransmitted.
(H)
In the above embodiment, as shown in FIG. 14 and FIG. 16, the correction determination is performed using the communication number counter value immediately before and after the measurement data whose communication number counter value is 0 (zero). It is not limited to immediately before and immediately after, using the value of the communication number counter before (for example, two before) and after (for example, two after) the measurement data whose communication number counter is 0 (zero). Also good. In this case, when the value of the subsequent communication number counter is incremented from the value of the previous communication number counter including the number of 0 (zero), it is determined that the communication is abnormal, and the value is incremented. If not, it can be determined that a disconnection has occurred.
 (I)
 上記実施の形態では、配電網モニタリングシステムの制御方法および観測時間検出方法として、図9、図10、図11、図12、図21、図25、図27および図28に示すフローチャートに従って、制御方法および観測時間検出方法を実施する例を挙げて説明したが、これに限定されるものではない。
(I)
In the above embodiment, the control method and the observation time detection method of the distribution network monitoring system are controlled according to the flowcharts shown in FIGS. 9, 10, 11, 12, 21, 25, 27, and 28. In addition, although an example in which the observation time detection method is implemented has been described, the present invention is not limited to this.
 例えば、図9、図10、図11、図12、図21、図25、図27および図28に示すフローチャートに従って実施される観測時間検出方法をコンピュータに実行させる観測時間検出プログラムとして、本発明を実現しても良い。
 また、観測時間検出プログラムの一つの利用形態は、コンピュータにより読取可能な、ROM等の記録媒体に記録され、コンピュータと協働して動作する態様であってもよい。
For example, as an observation time detection program for causing a computer to execute an observation time detection method implemented according to the flowcharts shown in FIGS. 9, 10, 11, 12, 21, 21, 25, 27, and 28, the present invention is It may be realized.
In addition, one usage form of the observation time detection program may be an aspect in which the program is recorded on a recording medium such as a ROM readable by a computer and operates in cooperation with the computer.
 また観測時間検出プログラムの一つの利用形態は、インターネット等の伝送媒体、光・電波・音波などの伝送媒体中を伝送し、コンピュータにより読みとられ、コンピュータと協働して動作する態様であってもよい。
 また、上述したコンピュータは、CPU等のハードウェアに限らずファームウェアや、OS、更に周辺機器を含むものであってもよい。
Also, one use form of the observation time detection program is an aspect in which it is transmitted through a transmission medium such as the Internet or a transmission medium such as light, radio wave, and sound wave, read by a computer, and operated in cooperation with the computer. Also good.
The computer described above is not limited to hardware such as a CPU, and may include firmware, an OS, and peripheral devices.
 なお、以上説明したように、観測時間検出方法はソフトウェア的に実現してもよいし、ハードウェア的に実現しても良い。 As described above, the observation time detection method may be realized by software or hardware.
 本発明の配電網モニタリングシステムは、精度良く電気使用量に関する情報を検出することが可能な効果を有し、発電計画等を立てる上で保守管理等を行う上で有用である。 The distribution network monitoring system of the present invention has an effect of being able to detect information on the amount of electricity used with high accuracy, and is useful in performing maintenance management and the like in making a power generation plan and the like.
7   LTLS
10  配電網モニタリングシステム
53a 受信部
56  補正部
71  検出・給電部
75e カウンタ部
76  送信部
100 配電網
7 LTLS
DESCRIPTION OF SYMBOLS 10 Distribution network monitoring system 53a Receiving part 56 Correction | amendment part 71 Detection and electric power feeding part 75e Counter part 76 Transmission part 100 Distribution network

Claims (10)

  1.  配電網に設けられた電力線の複数の所定位置に設置され、各々の前記所定位置において前記電力線を流れる電流を利用して前記電力線の電気的測定を行う測定部と、前記測定部による測定結果を送信する送信部と、前記送信部による送信回数をカウントするカウンタ部と、を有し、前記送信部は、前記測定結果とともにカウンタ値を送信する、測定器と、
     送信された前記測定結果および前記カウンタ値を受信する受信部と、
     前記受信部によって前記測定結果が受信されなかった未受信のタイミングが存在する場合、前記カウンタ値に基づいて前記測定結果について補正を行う補正部と、
    を備えた配電網モニタリングシステム。
    A measurement unit that is installed at a plurality of predetermined positions of a power line provided in a distribution network and performs electrical measurement of the power line using current flowing through the power line at each of the predetermined positions, and a measurement result by the measurement unit A transmission unit for transmitting, and a counter unit for counting the number of transmissions by the transmission unit, wherein the transmission unit transmits a counter value together with the measurement result,
    A receiving unit that receives the transmitted measurement result and the counter value;
    A correction unit that corrects the measurement result based on the counter value when there is an unreceived timing at which the measurement result is not received by the reception unit;
    Power distribution network monitoring system with
  2.  前記測定器は、前記測定部で測定された電流の積算値を演算する演算部を有し、
     前記測定結果は、前記積算値と、前記積算値に対応する観測時間に関する情報とを含み、
     前記補正部は、前記観測時間について補正を行う、
    請求項1に記載の配電網モニタリングシステム。
    The measuring device has a calculation unit that calculates an integrated value of the current measured by the measurement unit,
    The measurement result includes the integrated value and information related to an observation time corresponding to the integrated value,
    The correction unit corrects the observation time;
    The power distribution network monitoring system according to claim 1.
  3.  前記補正部は、
     前記受信部によって前記測定結果が受信されなかった未受信のタイミングが存在する場合に、前記カウンタ値に基づいて、前記観測時間について補正を行うか否かを判定する判定部と、
     前記補正を行う場合、前記観測時間から前記測定結果が受信されなかった未受信時間を差し引く補正を行う演算部と、を有する、
    請求項2に記載の配電網モニタリングシステム。
    The correction unit is
    A determination unit that determines whether to correct the observation time based on the counter value when there is an unreceived timing at which the measurement result is not received by the reception unit;
    When performing the correction, and having a calculation unit that performs correction to subtract the non-reception time in which the measurement result was not received from the observation time,
    The power distribution network monitoring system according to claim 2.
  4.  前記カウンタ部は、前記送信部が動作できない場合に、前記カウンタ値をリセットし、
     前記判定部は、
     前記カウンタ値が受信されなかった1回または複数回の未受信のタイミングの後に送信された前記カウンタ値が、前記未受信のタイミングの前に送信された前記カウンタ値から前記未受信のタイミングの回数分を含んで変化していない場合は、前記補正を行う判定をする、
    請求項3に記載の配電網モニタリングシステム。
    The counter unit resets the counter value when the transmission unit cannot operate,
    The determination unit
    The counter value transmitted after one or more unreceived timings when the counter value was not received is the number of times of the unreceived timing from the counter value transmitted before the unreceived timing. If there is no change including the minute, determine to perform the correction,
    The distribution network monitoring system according to claim 3.
  5.  前記カウンタ部は、前記送信部が動作できない場合に、前記カウンタ値をリセットし、
     前記判定部は、
     前記カウンタ値が受信されなかった1回または複数回の未受信のタイミングの後に送信された前記カウンタ値が、前記未受信のタイミングの前に送信された前記カウンタ値から前記未受信のタイミングの回数分を含んで変化している場合は、前記補正を行わない判定をする、
    請求項3に記載の配電網モニタリングシステム。
    The counter unit resets the counter value when the transmission unit cannot operate,
    The determination unit
    The counter value transmitted after one or more unreceived timings when the counter value was not received is the number of times of the unreceived timing from the counter value transmitted before the unreceived timing. If it has changed including the minute, it is determined not to perform the correction,
    The distribution network monitoring system according to claim 3.
  6.  前記受信部で受信された前記カウンタ値と前記測定結果を記憶する記憶部を更に備え、
     前記記憶部には、前記カウンタ値を受信する予定のタイミングにおいて前記受信部によって前記カウンタ値が受信されなかった場合、受信されなかったことを示す所定情報が記憶され、
     前記演算部は、前記所定情報の数に基づいて、前記未受信の時間を算出する、
    請求項3に記載の配電網モニタリングシステム。
    A storage unit for storing the counter value and the measurement result received by the reception unit;
    In the storage unit, when the counter value is not received by the receiving unit at a timing at which the counter value is scheduled to be received, predetermined information indicating that the counter value has not been received is stored.
    The calculation unit calculates the unreceived time based on the number of the predetermined information.
    The distribution network monitoring system according to claim 3.
  7.  前記記憶部は、前記補正を行った場合には、前記積算値と、前記補正後の前記観測時間とを対応付けて記憶する、
    請求項6に記載の配電網モニタリングシステム。
    When the correction is performed, the storage unit stores the integrated value and the corrected observation time in association with each other.
    The power distribution network monitoring system according to claim 6.
  8.  前記測定器は、前記電力線を流れる電流を用いて前記測定部および前記送信部に給電を行う給電部を更に有し、
     前記電力線を流れる電流が所定値以下の場合、前記給電部から前記測定部および前記送信部に給電が行われない、
    請求項1~7のいずれか1項に記載の配電網モニタリングシステム。
    The measuring device further includes a power supply unit that supplies power to the measurement unit and the transmission unit using a current flowing through the power line,
    When the current flowing through the power line is equal to or less than a predetermined value, power is not supplied from the power supply unit to the measurement unit and the transmission unit.
    The distribution network monitoring system according to any one of claims 1 to 7.
  9.  複数の前記測定器から前記測定結果および前記カウンタ値を受信し、前記受信部に送信する中継器を更に備えた、
    請求項1~8のいずれか1項に記載の配電網モニタリングシステム。
    A relay that receives the measurement results and the counter values from a plurality of the measuring devices and transmits the results to the receiving unit;
    The distribution network monitoring system according to any one of claims 1 to 8.
  10.  前記送信部は、前記測定結果および前記カウンタ値とともに前記測定器に固有の識別情報を送信し、
     前記記憶部は、複数の前記測定器について前記識別情報と設置場所を対応付けて記憶し、
     各々の前記測定器の前記積算値および前記補正後の前記観測時間と、各々の前記測定器の前記識別情報と、前記設置場所とに基づいて、所定区間の全体における前記積算値と、前記積算値に対応する観測時間を算出する区間演算部を更に備えた、
    請求項7に記載の配電網モニタリングシステム。
    The transmission unit transmits identification information unique to the measuring device together with the measurement result and the counter value,
    The storage unit stores the identification information and installation locations in association with each other for a plurality of the measuring devices,
    Based on the integrated value of each measuring device and the corrected observation time, the identification information of each measuring device, and the installation location, the integrated value in the entire predetermined section, and the integrated An interval calculation unit for calculating an observation time corresponding to the value;
    The power distribution network monitoring system according to claim 7.
PCT/JP2019/002115 2018-03-13 2019-01-23 Power distribution network monitoring system WO2019176312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045784A JP2019161858A (en) 2018-03-13 2018-03-13 Distribution network monitoring system
JP2018-045784 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176312A1 true WO2019176312A1 (en) 2019-09-19

Family

ID=67907088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002115 WO2019176312A1 (en) 2018-03-13 2019-01-23 Power distribution network monitoring system

Country Status (2)

Country Link
JP (1) JP2019161858A (en)
WO (1) WO2019176312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995312A (en) * 2019-11-22 2020-04-10 深圳供电局有限公司 Power grid four-remote joint debugging data transmission method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211519A (en) * 1998-01-29 1999-08-06 Meidensha Corp Data making-up method of electric power system monitoring system
JP2014036482A (en) * 2012-08-08 2014-02-24 Hitachi Ltd Disconnection fault detection method for distribution system and distribution facility management system
JP2016162294A (en) * 2015-03-03 2016-09-05 株式会社東芝 Monitoring system, sensor node, server, and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211519A (en) * 1998-01-29 1999-08-06 Meidensha Corp Data making-up method of electric power system monitoring system
JP2014036482A (en) * 2012-08-08 2014-02-24 Hitachi Ltd Disconnection fault detection method for distribution system and distribution facility management system
JP2016162294A (en) * 2015-03-03 2016-09-05 株式会社東芝 Monitoring system, sensor node, server, and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995312A (en) * 2019-11-22 2020-04-10 深圳供电局有限公司 Power grid four-remote joint debugging data transmission method and system

Also Published As

Publication number Publication date
JP2019161858A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP4584056B2 (en) Electricity supply and demand forecast and control system
CA2710623C (en) Method and apparatus for monitoring voltage in a meter network
US10080069B2 (en) Collection of telemetry data through a meter reading system
JP5952127B2 (en) Distribution system disconnection accident detection method and distribution facility management system
CN101809452A (en) Method and apparatus for monitoring power transmission
US20110285382A1 (en) Power meter phase identification
US11721977B2 (en) Automatic discovery of electrical supply network topology and phase
JP2009050064A (en) Distribution system status estimating device
JP2016521962A (en) Estimate the feed lines and phases that power the transmitter
US9801113B2 (en) Collection system with a hybrid node performing both fixed network and mobile communications
JP5465976B2 (en) Life change detection system and life change detection method
KR101103613B1 (en) Metering system using mobile communication network
TW201832166A (en) Power flow characteristics
WO2019176312A1 (en) Power distribution network monitoring system
JP2015203702A (en) System of measuring damage of hvdc
JP6907726B2 (en) Data management system
KR100572835B1 (en) Transmission system for measurement data a transformer of using the wire and radio communication network and method thereof
JP5854953B2 (en) Disconnection detector
US20190363575A1 (en) Harmonic detection system
WO2019176313A1 (en) Power distribution network monitoring system
KR101473845B1 (en) Method for menagement of measureing instrument and apparatus thereof
CN110703035A (en) Fault location device for power transmission line
JP4698248B2 (en) Power outage discount calculation system for electricity charges
JP2014150647A (en) Power failure section determining system
CN211627724U (en) Fault location device for power transmission line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768568

Country of ref document: EP

Kind code of ref document: A1