WO2019175979A1 - Organic electronic material and organic electronic element - Google Patents

Organic electronic material and organic electronic element Download PDF

Info

Publication number
WO2019175979A1
WO2019175979A1 PCT/JP2018/009777 JP2018009777W WO2019175979A1 WO 2019175979 A1 WO2019175979 A1 WO 2019175979A1 JP 2018009777 W JP2018009777 W JP 2018009777W WO 2019175979 A1 WO2019175979 A1 WO 2019175979A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
charge transporting
group
transporting polymer
organic
Prior art date
Application number
PCT/JP2018/009777
Other languages
French (fr)
Japanese (ja)
Inventor
涼 本名
伊織 福島
広貴 佐久間
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020505997A priority Critical patent/JP7131606B2/en
Priority to PCT/JP2018/009777 priority patent/WO2019175979A1/en
Priority to TW108107356A priority patent/TW201938762A/en
Publication of WO2019175979A1 publication Critical patent/WO2019175979A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • Embodiments of the present invention relate to an organic electronics material, an ink composition, an organic layer, an organic electronics element, an organic electroluminescence element (also referred to as “organic EL element”), a display element, a lighting device, and a display device.
  • organic EL element organic electroluminescence element
  • Organic EL devices are attracting attention as large-area solid-state light source applications as alternatives to incandescent lamps and gas-filled lamps. It is also attracting attention as the most powerful self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.
  • LCD liquid crystal display
  • FPD flat panel display
  • Organic EL elements are roughly classified into two types, low molecular organic EL elements using low molecular compounds and high molecular organic EL elements using high molecular compounds, depending on the organic materials used.
  • the manufacturing method of the organic EL element includes a dry process in which film formation is mainly performed in a vacuum system and a wet process in which film formation is performed by plate printing such as letterpress printing and intaglio printing, and plateless printing such as inkjet.
  • plate printing such as letterpress printing and intaglio printing
  • plateless printing such as inkjet.
  • An organic EL device manufactured using a wet process has the feature that it is easy to reduce the cost and increase the area. However, there is room for further improvement regarding the characteristics of the organic EL element.
  • an object of an embodiment of the present invention to provide an organic electronic material and an ink composition that are suitable for a wet process and suitable for improving the charge transportability of an organic layer. It is an object of another embodiment of the present invention to provide an organic layer having excellent charge transportability. Furthermore, another embodiment of the present invention has an object to provide an organic electronics element, an organic EL element, a display element, a lighting device, and a display device including an organic layer having excellent charge transporting properties.
  • the present invention includes various embodiments. Examples of embodiments are listed below. The present invention is not limited to the following embodiments.
  • One embodiment relates to an organic electronic material containing a charge transporting polymer or oligomer having a branched structure and having a structural unit including a partial structure represented by the following formula (1).
  • each Ra independently represents a hydrogen atom or a substituent.
  • Each Rb independently represents a hydrogen atom, a substituent, or a bonding site with another structure, and One is the binding site with other structures.
  • Another embodiment relates to an ink composition containing the organic electronic material and a solvent.
  • Another embodiment relates to an organic layer formed using the organic electronic material or the ink composition.
  • Another embodiment relates to an organic electronic device including at least one organic layer.
  • Another embodiment relates to an organic electroluminescence device including at least one organic layer.
  • a display element comprising the organic electroluminescence element; a lighting device comprising the organic electroluminescence element; and a display comprising the lighting device and a liquid crystal element as a display means Relates to the device.
  • an organic electronic material and an ink composition that are suitable for a wet process and suitable for improving the charge transportability of an organic layer.
  • an organic layer having excellent charge transportability can be provided.
  • the organic electronics element provided with the organic layer which has the outstanding electric charge transportability, an organic EL element, a display element, an illuminating device, and a display apparatus can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic EL element according to an embodiment of the present invention.
  • the organic electronic material which is one embodiment contains a charge transporting polymer or oligomer having a branched structure and a structural unit including a partial structure represented by the formula (1).
  • the organic electronic material may contain only one kind or two or more kinds of charge transporting polymers or oligomers.
  • the charge transporting polymer or oligomer is preferable in that the film forming property in the wet process is excellent as compared with the low molecular compound.
  • each Ra independently represents a hydrogen atom or a substituent.
  • Rb independently represents a hydrogen atom, a substituent, or a bonding site with another structure. At least one of Rb is a binding site with another structure.
  • the charge transporting polymer or oligomer has a partial structure represented by the formula (1), an arylamine structure and a thiophene structure, which are good hole transporting sites, are introduced, and the hole transporting property is improved. Conceivable.
  • the charge transporting polymer or oligomer has a structural unit including the partial structure represented by the formula (1) and a structural unit having a hole transporting property, it exhibits high hole transporting ability.
  • the “structural unit having a hole transporting property” is a structural unit different from the “structural unit including the partial structure represented by the formula (1)”. It is considered that the charge transporting polymer or oligomer can exhibit high performance as an organic electronic material by having the partial structure represented by the formula (1).
  • a charge transporting polymer or oligomer is a polymer or oligomer having the ability to transport charge.
  • charge transporting polymer or oligomer is also referred to as “charge transporting polymer”.
  • the charge transporting polymer has a structural unit including a partial structure represented by the following formula (1).
  • “partial structure represented by formula (1)” is also referred to as “partial structure (1)”
  • “structural unit including the partial structure represented by formula (1)” is “structural unit (1 ) ".
  • the charge transporting polymer may contain only one type of structural unit (1), or may contain two or more types.
  • each Ra independently represents a hydrogen atom or a substituent.
  • Rb each independently represents a hydrogen atom, a substituent, or a binding site with another structure, and at least one of Rb is a binding site with another structure.
  • substituents examples include —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a group containing a polymerizable functional group described later.
  • substituent a a substituent selected from the group (hereinafter, also referred to as “substituent a”).
  • R 1 is selected from the group consisting of alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, and heteroaryl groups.
  • R 2 to R 8 are each independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryl group, and a heteroaryl group.
  • the alkyl group, alkenyl group, alkynyl group and alkoxy group may be linear, branched or cyclic.
  • the alkyl group, alkenyl group, alkynyl group, and alkoxy group preferably have 1 to 22 carbon atoms.
  • the number of carbon atoms of the aryl group is preferably 6-30.
  • the carbon number of the heteroaryl group is preferably 2-30.
  • the alkyl group, alkenyl group, alkynyl group, alkoxy group, aryl group, and heteroaryl group may be substituted or unsubstituted.
  • the alkenyl group and alkynyl group may exhibit polymerizability, and the alkenyl group and alkynyl group exhibiting polymerizability correspond to groups containing a polymerizable functional group described later.
  • Examples of the substituent in the case where the alkyl group, alkenyl group, alkynyl group, alkoxy group, aryl group, and heteroaryl group further have a substituent include the above-mentioned substituent a, preferably —R 1 .
  • At least one of Ra may be a group containing a polymerizable functional group.
  • the thiophen-yl group contained in the partial structure (1) may exhibit polymerizability, and the thiophen-yl group showing the polymerizability contained in the partial structure (1) corresponds to a group containing a polymerizable functional group described later. To do.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n- Decyl, n-undecyl, n-dodecyl, isopropyl, isobutyl, sec-butyl, tert-butyl, 2-ethylhexyl, 3,7-dimethyloctyl, cyclohexyl, cycloheptyl, cyclo An octyl group etc. are mentioned.
  • an aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • a heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring.
  • Examples of the aromatic hydrocarbon include a single ring, a condensed ring, or a polycycle in which two or more selected from a single ring and a condensed ring are bonded through a direct bond.
  • Examples of the aromatic heterocycle include a single ring, a condensed ring, or a polycycle in which two or more selected from a monocycle and a condensed ring are bonded via a direct bond.
  • aromatic hydrocarbons examples include benzene, naphthalene, anthracene, tetracene, fluorene, phenanthrene, biphenyl, terphenyl, triphenylbenzene, and the like.
  • aromatic heterocycles include pyridine, pyrazine, quinoline, isoquinoline, acridine, phenanthroline, furan, benzofuran, dibenzofuran, pyrrole, thiophene, benzothiophene, dibenzothiophene, carbazole, oxazole, oxadiazole, thiadiazole, triazole, benzoxazole , Benzoxadiazole, benzothiadiazole, benzotriazole, benzothiophene and the like.
  • the substituent preferably includes —R 1 , more preferably includes at least one selected from an alkyl group and a heteroaryl group, and more preferably includes an alkyl group.
  • the alkyl group an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • the heteroaryl group a condensed ring is preferable, and a carbazolyl group is more preferable.
  • the carbazolyl group is preferably a 9-carbazolyl group.
  • Rb each independently represents a hydrogen atom, a substituent, or a bonding site with another structure.
  • substituent include the substituent a.
  • At least one of Rb is a binding site with another structure.
  • “Other structures” are structures other than hydrogen atoms and the above-described substituents. When three of Rb are binding sites, partial structure (1) is a trivalent structure, and when two of Rb are binding sites, partial structure (1) is a divalent structure, and one of Rb is When it is a binding site, the partial structure (1) is a monovalent structure.
  • the partial structure (1) is preferably divalent or trivalent, and more preferably trivalent because a higher effect of improving charge transportability is obtained.
  • the total number of substituents contained in the partial structure (1) is preferably 1 to 6, and more preferably 1 to 5.
  • the plurality of substituents may be the same as or different from each other.
  • Ra which is not a substituent and Rb which is not a substituent and a binding site are a hydrogen atom.
  • the number of hydrogen atoms is 0 to 8, and preferably 3 to 8. All Ra and Rb other than the binding site may be hydrogen atoms.
  • the partial structure (1) is preferably a partial structure represented by the following formula (1-1).
  • the partial structure (1) is a partial structure represented by the formula (1-1)
  • a high effect of improving the charge transportability can be obtained.
  • a charge transporting polymer can also be easily produced.
  • each Ra independently represents a hydrogen atom or a substituent.
  • Rb each independently represents a hydrogen atom, a substituent, or a binding site with another structure, and at least one of Rb is a binding site with another structure. Examples of the substituent include the substituent a.
  • partial structure (1) is not limited to the structure represented by the following formula.
  • “*” represents a binding site with another structure.
  • each R independently represents a substituent.
  • n independently represents an integer of 0 to 2.
  • n represents the number of Rs. Examples of the substituent include the substituent a. When several R exist, R may mutually be same or different.
  • partial structure (1) is not limited to the structure represented by the following formula.
  • the structural unit (1) is a structural unit having at least one partial structure (1).
  • the structural unit (1) is preferably monovalent to hexavalent, and more preferably monovalent to trivalent.
  • the structural unit (1) is preferably divalent or trivalent, and more preferably trivalent because a higher effect of improving charge transportability is obtained.
  • structural unit (1) is not limited to the structure represented by the following formula.
  • each A independently represents a partial structure (1)
  • each B independently represents a partial structure containing at least one selected from an aromatic hydrocarbon structure and an aromatic heterocyclic structure
  • Y represents a direct bond or a divalent linking group.
  • the divalent linking group is, for example, a divalent linking group in which one hydrogen atom is further removed from a group having one or more hydrogen atoms in the substituent a (excluding a group containing a polymerizable functional group). It is a group.
  • the structural unit (1) When the partial structure (1) is contained in the charge transporting polymer as a structural unit forming a skeleton structure of a molecular chain, a high effect of improving the charge transporting property tends to be obtained. From this point of view, the structural unit (1) has the formulas (L1-1) to (L1-5), formulas (B1-1) to (B1-11), and formulas (T1-1) and (T1-2). It is preferable that it is a structural unit represented by either. The structural unit (1) is represented by any one of the formula (L1-1), the formula (B1-1), and the formula (T1-1) because a higher effect of improving the charge transport property can be obtained.
  • Partial structure (1) may be included in the charge transporting polymer as a substituent to the backbone structure of the molecular chain.
  • the structural unit (1) is, for example, a structural unit represented by any one of formulas (L1-6) to (L1-8).
  • R ′ is substituted for R.
  • R ′ represents a hydrogen atom or a substituent, and the substituent is preferably each independently a substituent a or a partial structure (1).
  • at least one of R ′ is the partial structure (1).
  • the charge transporting polymer has the structural unit (1).
  • the charge transporting polymer preferably further has a structural unit having a hole transporting property.
  • the charge transporting polymer is a branched polymer having a branched structure.
  • the structural unit constituting the charge transporting polymer preferably includes a trivalent or higher valent structural unit B and a monovalent structural unit T.
  • the structural unit constituting the charge transporting polymer may further include a divalent structural unit L.
  • the structural unit B is a structural unit that constitutes the branch portion.
  • the structural unit L is preferably a structural unit having charge transporting properties.
  • the structural unit T is a structural unit that constitutes the terminal portion of the molecular chain.
  • the charge transporting polymer preferably includes at least a trivalent or higher structural unit B constituting a branched portion, a divalent structural unit L having charge transporting property, and a monovalent structural unit T constituting a terminal portion. Including.
  • the charge transporting polymer may contain only one kind of each structural unit, or may contain plural kinds of structural units.
  • each structural unit is bonded to each other at a binding site of “monovalent” to “trivalent or more”.
  • the branched structure has at least one branch part and three or more chains bonded to one of the at least one branch part. More preferably, the branched structure has at least one branch part and three or more chains bonded to one of the at least one branch part, and each of the three or more chains has a separate structure. And a multi-branch structure having at least one other branched portion and two or more chains bonded to one of the at least one other branched portion.
  • the “chain” is a connection of structural units including at least the structural unit L, preferably a structural unit composed of the structural unit L, the structural unit B (unit that can be optionally included), and the structural unit T. Connection.
  • the branched structure has at least one structural unit B and three or more structural units L bonded to one of the at least one structural unit B.
  • the branched structure includes at least one structural unit B and three or more structural units L bonded to one of the at least one structural unit B, and further includes the three or more structural units L.
  • Each includes a multi-branched structure having another structural unit B bonded to the structural unit L and two or more other structural units L bonded to the other structural unit B.
  • the charge transporting polymer has at least one structural unit (1) as at least one selected from the group consisting of “structural unit B”, “structural unit L”, and “structural unit T”. Preferred examples of the charge transporting polymer are listed below.
  • the charge transporting polymer preferably satisfies at least one of (A) and (B), and more preferably satisfies at least (A), since a high effect of improving the charge transporting property tends to be obtained.
  • the charge transporting polymer having the structural unit (1) preferably further has a structural unit having a hole transporting property.
  • the structural unit having a hole transporting property is not particularly limited as long as it contains an atomic group having an ability to transport charges.
  • the structural unit having a hole transporting property may be monovalent, divalent, or trivalent or higher.
  • the charge transporting polymer has at least one structural unit having a hole transporting property as at least one selected from the group consisting of “structural unit B”, “structural unit L”, and “structural unit T”.
  • the structural unit having a hole transporting property is preferably included as a structural unit forming a skeleton structure of a molecular chain in the charge transporting polymer.
  • charge transporting polymer having a structural unit having a hole transporting property Preferred examples of the charge transporting polymer having a structural unit having a hole transporting property are listed below.
  • the following charge transporting polymers (a) to (c) also have a structural unit (1).
  • the charge transporting polymer preferably satisfies at least one of (a) and (b), and more preferably satisfies at least (b), since a high effect of improving the charge transporting property tends to be obtained.
  • A a charge transporting polymer having a structural unit B, a structural unit L, and a structural unit T, wherein the structural unit L includes a structural unit having a hole transporting property; and (b) the structural unit B and the structural unit T.
  • the charge transporting polymer comprising the structural unit (1) and the structural unit having a hole transporting property is at least one selected from the group consisting of the above (A) to (D), and the above (a ) To (c), and is preferably a charge transporting polymer satisfying at least one selected from the group consisting of. More preferably, it is a charge transporting polymer satisfying at least (A) and (b) or a charge transporting polymer satisfying at least (B) and (a), and a charge satisfying at least (A) and (b). More preferably, it is a transportable polymer.
  • the structural unit having a hole transporting property is selected from the group consisting of a substituted or unsubstituted aromatic amine structure, a substituted or unsubstituted carbazole structure, a substituted or unsubstituted thiophene structure, and a substituted or unsubstituted fluorene structure. It is preferable that the structural unit contains one or more partial structures.
  • a structural unit comprising one or more partial structures selected from the group consisting of a substituted or unsubstituted aromatic amine structure and a substituted or unsubstituted carbazole structure It is preferable that
  • the aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure.
  • Examples of the partial structure contained in the charge transporting polymer include the following.
  • “B” represents the structural unit B
  • “L” represents the structural unit L
  • “T” represents the structural unit T.
  • the plurality of Bs may be the same structural unit or different structural units. The same applies to L and T.
  • the charge transporting polymer is not limited to those having the following partial structure.
  • the structural unit B is a trivalent or higher valent structural unit constituting a branched portion in a charge transporting polymer having a structure branched in three or more directions.
  • the charge transporting polymer may have only one type of structural unit B, or may have two or more types.
  • the structural unit B is preferably hexavalent or less, more preferably trivalent or tetravalent, from the viewpoint of improving the durability of the organic electronic element.
  • a trivalent structural unit (1) hereinafter also referred to as “structural unit B1”
  • structural unit B2 a structural unit not including the partial structure (1)
  • the structural unit B2 is preferably a structural unit having a charge transporting property, and more preferably a structural unit having a hole transporting property.
  • the structural unit B2 is not particularly limited.
  • the substituted or unsubstituted aromatic amine structure, carbazole structure, condensed polycyclic aromatic hydrocarbon structure, and these It is selected from the structure containing 1 type, or 2 or more types.
  • the aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure.
  • structural unit B2 includes the following.
  • the structural unit B2 is not limited to the following.
  • W represents a trivalent linking group, for example, an arenetriyl group or a heteroarenetriyl group having 2 to 30 carbon atoms.
  • Ar each independently represents a divalent linking group, for example, each independently represents an arylene group or heteroarylene group having 2 to 30 carbon atoms.
  • Ar is preferably an arylene group, more preferably a phenylene group.
  • Y represents a divalent linking group.
  • one R atom in the structural unit L (excluding a group containing a polymerizable functional group) has one more hydrogen atom from a group having one or more hydrogen atoms.
  • Z represents any of a carbon atom, a silicon atom, or a phosphorus atom.
  • W, the benzene ring, and Ar may have a substituent (however, the partial structure represented by the formula (1) is not included). As an example of the substituent, the substituent a is Can be mentioned.
  • an arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon.
  • a heteroarylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle.
  • the arenetriyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon.
  • the heteroarene triyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic heterocyclic ring.
  • the structural unit L is a divalent structural unit.
  • the charge transporting polymer may have only one type of structural unit L, or may have two or more types.
  • a divalent structural unit (1) hereinafter also referred to as “structural unit L1”
  • a structural unit not including the partial structure (1) hereinafter also referred to as “structural unit L2”.
  • the structural unit L2 is preferably a structural unit having a charge transporting property, and more preferably a structural unit having a hole transporting property.
  • the structural unit having charge transporting properties is not particularly limited as long as it contains an atomic group having the ability to transport charges.
  • the structural unit L2 is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure, tetracene structure, phenanthrene structure, dihydro Phenanthrene structure, pyridine structure, pyrazine structure, quinoline structure, isoquinoline structure, quinoxaline structure, acridine structure, diazaphenanthrene structure, furan structure, pyrrole structure, oxazole structure, oxadiazole structure, thiazole structure, thiadiazole structure, triazole structure, benzo Thiophene structure, benzoxazole structure, benzooxadiazole structure, benzothiazole structure, benzothiadiazole structure, benzotriazole structure, and one or two of these It is selected from a structure including more.
  • the structural unit L2 has a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, pyrrole structure, and these from the viewpoint of obtaining excellent hole transport properties.
  • the structural unit L2 is a substituted or unsubstituted fluorene structure, benzene structure, phenanthrene structure, pyridine structure, quinoline structure, and one or two kinds thereof from the viewpoint of obtaining excellent electron transport properties. It is preferable to select from a structure including the above.
  • structural unit L2 includes the following.
  • the structural unit L2 is not limited to the following.
  • each R independently represents a hydrogen atom or a substituent (however, the partial structure represented by the formula (1) is not included).
  • substituent a examples include the substituent a.
  • R is preferably a hydrogen atom, an alkyl group, an aryl group, or an alkyl-substituted aryl group.
  • Ar represents an arylene group or heteroarylene group having 2 to 30 carbon atoms. Ar is preferably an arylene group, more preferably a phenylene group.
  • the structural unit T is a monovalent structural unit constituting the terminal portion of the charge transporting polymer.
  • the charge transporting polymer may have only one type of structural unit T, or may have two or more types.
  • the structural unit T may have a group containing a polymerizable functional group.
  • a monovalent structural unit (1) hereinafter also referred to as “structural unit T1”
  • a structural unit not including the partial structure (1) hereinafter also referred to as “structural unit T2”.
  • the structural unit T2 is preferably a structural unit having a charge transporting property, and more preferably a structural unit having a hole transporting property.
  • the structural unit T2 is not particularly limited, and is selected from, for example, a substituted or unsubstituted aromatic hydrocarbon structure, aromatic heterocyclic structure, and a structure including one or more of these.
  • the structural unit T2 is preferably a substituted or unsubstituted aromatic hydrocarbon structure from the viewpoint of imparting durability without deteriorating charge transportability, and is preferably a substituted or unsubstituted benzene structure. A structure is more preferable.
  • the structural unit T2 when the charge transporting polymer has a polymerizable functional group at the terminal portion, the structural unit T2 has a polymerizable structure (that is, a polymerizable functional group such as a pyrrol-yl group). It may have a polymerizable functional group.
  • the structural unit T2 may have the same structure as the structural unit B2 or a different structure with respect to other than the valence.
  • the structural unit T2 may have the same structure as the structural unit L2 or a different structure with respect to other than the valence.
  • structural unit T2 includes the following.
  • the structural unit T2 is not limited to the following.
  • R is the same as R in the structural unit L2.
  • the charge transporting polymer has a polymerizable functional group at the terminal portion, at least one of R is preferably a group containing a polymerizable functional group.
  • the charge transporting polymer preferably has at least one polymerizable functional group from the viewpoint of curing by a polymerization reaction and changing the solubility in a solvent.
  • the “polymerizable functional group” refers to a functional group that can form a bond with each other by applying heat and / or light.
  • the polymerizable functional group may be contained in the structural unit (1), or may be contained in a structural unit other than the structural unit (1).
  • Examples of the polymerizable functional group include substituted or unsubstituted groups having a carbon-carbon multiple bond (for example, vinyl group, styryl group, allyl group, butenyl group, ethynyl group, acryloyl group, acryloyloxy group, acryloylamino group, A methacryloyl group, a methacryloyloxy group, a methacryloylamino group, a vinyloxy group, a vinylamino group, etc.), a group having a small ring (for example, a cyclic alkyl group such as a cyclopropyl group, a benzocyclobutenyl group, a cyclobutyl group; an epoxy group ( A group having a cyclic ether structure such as an oxiranyl group) or an oxetane group (oxetanyl group); a diketene group; an episulfide group; a
  • the substituent in the case where these groups are substituted is not particularly limited, and examples thereof include a linear, cyclic or branched alkyl group.
  • the alkyl group preferably has 1 to 22 carbon atoms, more preferably 1 to 10 carbon atoms.
  • the polymerizable functional group is preferably a substituted or unsubstituted group having a cyclic ether structure and a group having a carbon-carbon multiple bond, and is a substituted or unsubstituted vinyl group, styryl group, acryloyl group, methacryloyl group, epoxy.
  • Group and oxetane group are more preferable, and from the viewpoint of reactivity and characteristics of the organic electronic device, a substituted or unsubstituted vinyl group, styryl group, oxetane group, and epoxy group are more preferable, and vinyl group and styryl group are particularly preferable. preferable.
  • the skeleton structure of the charge transporting polymer and the polymerizable functional group are alkylene chains (for example, linear chains having 1 to 8 carbon atoms). It may be bonded via a linking group such as an alkylene chain.
  • a hydrophilic linkage such as an ethylene glycol chain or a diethylene glycol chain from the viewpoint of improving the affinity with a hydrophilic electrode such as ITO. Also good.
  • one or more selected from an ether bond, an ester bond, and the like are included between the skeleton structure and the polymerizable functional group. It may have a linking group.
  • group containing a polymerizable functional group examples include “polymerizable functional group” itself and “a group in which a polymerizable functional group is combined with a linking group such as an alkylene chain or an ether bond”.
  • group containing a polymerizable functional group for example, groups exemplified in International Publication No. 2010/140553 can be preferably used.
  • the polymerizable functional group may be introduced into the terminal part (that is, the structural unit T) of the charge transporting polymer, or may be introduced into a part other than the terminal part (that is, the structural unit L or B). And may be introduced into both parts other than the terminal part. From the viewpoint of curability, it is preferably introduced at least at the end portion, and from the viewpoint of achieving both curability and charge transportability, it is preferably introduced only at the end portion.
  • the polymerizable functional group may be introduced into the main chain of the charge transporting polymer, may be introduced into the side chain, or may be introduced into both the main chain and the side chain.
  • the amount contained in the charge transporting polymer is small.
  • the content of the polymerizable functional group can be appropriately set in consideration of these.
  • the number of polymerizable functional groups per molecule of the charge transporting polymer is preferably 2 or more, more preferably 3 or more from the viewpoint of obtaining a sufficient solubility change and facilitating multilayering.
  • the number of polymerizable functional groups is preferably 1,000 or less, more preferably 500 or less, from the viewpoint of maintaining charge transportability.
  • the number of polymerizable functional groups per molecule of the charge transporting polymer is the amount of the polymerizable functional group used to synthesize the charge transporting polymer (for example, the amount of the monomer having a polymerizable functional group), each structure
  • the average value can be obtained by using the monomer charge corresponding to the unit and the weight average molecular weight of the charge transporting polymer.
  • the number of polymerizable functional groups is the ratio between the integral value of the signal derived from the polymerizable functional group and the integral value of the entire spectrum in the 1 H NMR (nuclear magnetic resonance) spectrum of the charge transporting polymer, the charge transporting polymer
  • the weight average molecular weight can be used to calculate the average value.
  • the number average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the number average molecular weight is preferably 500 or more, more preferably 1,000 or more, and still more preferably 2,000 or more, from the viewpoint of excellent charge transportability.
  • the number average molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less, and more preferably 50,000 from the viewpoint of maintaining good solubility in a solvent and facilitating the preparation of an ink composition. The following is more preferable.
  • the weight average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the weight average molecular weight is preferably 1,000 or more, more preferably 3,000 or more, and further preferably 5,000 or more, from the viewpoint of excellent charge transportability.
  • the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of an ink composition. The following is more preferable, and 300,000 or less is most preferable.
  • the number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • the proportion of the structural unit (1) contained in the charge transporting polymer is preferably 1 mol% or more, more preferably 5 mol% or more, more preferably 10 mol%, based on the total structural unit, from the viewpoint of improving the characteristics of the organic electronics element.
  • the above is more preferable.
  • 25 mol% or more is preferable, and 40 mol% or more is more preferable.
  • An upper limit is not specifically limited, It is 100 mol% or less.
  • the proportion of the structural unit (1) is preferably 70 mol% or less, more preferably 60 mol% or less, and further preferably 50 mol% or less. preferable.
  • the proportion of the structural unit having hole transporting property contained in the charge transporting polymer is preferably 5 mol% or more, more preferably 10 mol% or more, based on the total structural unit, from the viewpoint of improving the characteristics of the organic electronics element. 25 mol% or more is more preferable.
  • the upper limit is less than 100 mol%.
  • the proportion of the structural unit B contained in the charge transporting polymer is preferably 1 mol% or more, more preferably 5 mol% or more, more preferably 10 mol%, based on the total structural unit, from the viewpoint of improving the durability of the organic electronics element. The above is more preferable.
  • the proportion of the structural unit B is preferably 50 mol% or less, preferably 40 mol% or less, from the viewpoint of suppressing the increase in viscosity and satisfactorily synthesizing the charge transporting polymer or obtaining sufficient charge transportability. Is more preferable, and 30 mol% or less is still more preferable.
  • the proportion of the structural unit L is preferably 10 mol% or more, more preferably 20 mol% or more, based on the total structural unit, from the viewpoint of obtaining sufficient charge transportability. 30 mol% or more is more preferable.
  • the proportion of the structural unit L is preferably 95 mol% or less, more preferably 90 mol% or less, and still more preferably 85 mol% or less.
  • the proportion of the structural unit T contained in the charge transporting polymer is based on the total structural unit from the viewpoint of improving the characteristics of the organic electronics element or suppressing the increase in the viscosity and satisfactorily synthesizing the charge transporting polymer. 5 mol% or more is preferable, 10 mol% or more is more preferable, and 15 mol% or more is still more preferable.
  • the proportion of the structural unit T is preferably 60 mol% or less, more preferably 55 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining sufficient charge transport properties.
  • the proportion of the polymerizable functional group is preferably 0.1 mol% or more based on the total structural unit from the viewpoint of efficiently curing the charge transporting polymer, 1 mol% or more is more preferable, and 3 mol% or more is still more preferable.
  • the proportion of the polymerizable functional group is preferably 70 mol% or less, more preferably 60 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining good charge transportability.
  • the “ratio of polymerizable functional groups” here refers to the ratio of structural units having a polymerizable functional group.
  • the proportion of the structural unit can be determined by using the charged amount of the monomer corresponding to each structural unit used for synthesizing the charge transporting polymer. Moreover, the ratio of the structural unit can be calculated as an average value using an integrated value of the spectrum derived from each structural unit in the 1 H NMR spectrum of the charge transporting polymer. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
  • charge transporting polymer having at least the structural unit L1, the structural unit B2, and the structural unit T2
  • the charge transporting polymer may further include the structural unit L2 for adjusting the charge transporting property and the like.
  • charge transporting polymer having at least the structural unit L2, the structural unit B1, and the structural unit T2 The charge transporting polymer may further include the structural unit B2 for the purpose of adjusting the charge transporting property and the like.
  • charge transporting polymer having at least the structural unit L2, the structural unit B2, and the structural unit T1 The charge transporting polymer may further include the structural unit T2 in order to adjust solubility, curability, and the like. .
  • the structural unit B2 and the structural unit L2 are preferably each independently a structural unit having a hole transporting property, and are a substituted or unsubstituted aromatic amine structure, substituted or unsubstituted. It is preferably a structural unit containing at least one partial structure selected from the group consisting of a carbazole structure, a substituted or unsubstituted thiophene structure, and a substituted or unsubstituted fluorene structure, and a substituted or unsubstituted aromatic amine It is more preferably a structural unit including a structure and at least one partial structure selected from the group consisting of a substituted or unsubstituted carbazole structure.
  • the structural unit T2 is preferably a structural unit containing a substituted or unsubstituted aromatic hydrocarbon structure, more preferably a structural unit containing a substituted or unsubstituted benzene structure. preferable.
  • the charge transporting polymer is preferably a polymer satisfying (1) or (2), and more preferably a polymer satisfying (1).
  • the polymerization degree (number of structural units) of the charge transporting polymer is preferably 5 or more, more preferably 10 or more, and still more preferably 20 or more, from the viewpoint of stabilizing the film quality of the organic layer.
  • the degree of polymerization is preferably 1,000 or less, more preferably 700 or less, and even more preferably 500 or less, from the viewpoint of solubility in a solvent.
  • the degree of polymerization can be obtained as an average value using the weight average molecular weight of the charge transporting polymer, the molecular weight of the structural unit, and the ratio of the structural unit.
  • the charge transporting polymer can be produced by various synthetic methods and is not particularly limited. For example, it can be produced by polymerizing a monomer for forming the structural unit of the charge transporting polymer.
  • the charge transporting polymer is preferably a copolymer of a monomer mixture containing at least a monomer having the structural unit (1) and a monomer having a structural unit having a hole transporting property.
  • the monomer mixture preferably includes a monomer having the structural unit (1), a monomer having the structural unit L2, and / or a monomer having the structural unit B2.
  • the monomer mixture may optionally contain one or more monomers other than those described above (for example, a monomer having the structural unit T2).
  • the charge transporting polymer may be a polymer of a monomer including only one monomer having the structural unit (1). Further, the charge transporting polymer may be a copolymer of a monomer mixture containing two or more monomers having only the structural unit (1).
  • the proportion of the monomer having the structural unit (1) in the monomer mixture is preferably 1 mol% or more, more preferably 25 mol% or more, based on the total monomers in the monomer mixture, from the viewpoint of improving the characteristics of the organic electronic device. More preferably, it is 40 mol% or more.
  • An upper limit is not specifically limited, It is 100 mol% or less.
  • the proportion of the structural unit (1) is preferably 70 mol% or less. 60 mol% or less is more preferable, and 50 mol% or less is still more preferable.
  • the ratio of the total of at least one selected from the group consisting of the monomer having the structural unit B2, the monomer having the structural unit L2, and the monomer having the structural unit T2 is a monomer from the viewpoint of improving the characteristics of the organic electronics element.
  • it is 5 mol% or more, more preferably 10 mol% or more, and still more preferably 25 mol% or more, based on the total monomers in the mixture.
  • An upper limit is not specifically limited, It is less than 100 mol%.
  • a charge transporting polymer can be easily produced by copolymerizing the monomers.
  • the type of copolymerization may be an alternating, random, block or graft copolymer, or a copolymer having an intermediate structure thereof, for example, a random copolymer having a block property. .
  • the polymerization reaction is preferably a coupling reaction.
  • the coupling reaction include known reactions such as Suzuki coupling, Negishi coupling, Sonogashira coupling, Stille coupling, Buchwald-Hartwig coupling, etc. Can be used.
  • Suzuki coupling causes a cross coupling reaction using a Pd catalyst between an aromatic boronic acid derivative and an aromatic halide. According to Suzuki coupling, a charge transporting polymer can be easily produced by bonding desired aromatic rings together.
  • a Pd (0) compound, a Pd (II) compound, a Ni compound, or the like is used as a catalyst.
  • a catalyst species generated by mixing tris (dibenzylideneacetone) dipalladium (0), palladium (II) acetate and the like with a phosphine ligand can also be used.
  • the description in WO 2010/140553 can be referred to.
  • Examples of monomers that can be used in the Suzuki coupling reaction include the following.
  • L represents a divalent structural unit
  • B represents a trivalent or tetravalent structural unit
  • T represents a monovalent structural unit.
  • R 1 to R 3 each represents a functional group capable of forming a bond with each other.
  • each of R 1 to R 3 independently represents any one selected from the group consisting of a boronic acid group, a boronic ester group, and a halogen group.
  • the monomer used includes the structural unit (1) as at least one of “L”, “B”, and “T”.
  • These monomers can be synthesized by a known method. These monomers are available from, for example, Tokyo Chemical Industry Co., Ltd., Sigma Aldrich Japan LLC.
  • the organic electronic material can contain any additive, for example, it may further contain a dopant.
  • the dopant is not particularly limited as long as it can be added to the organic electronic material to develop a doping effect and improve the charge transport property.
  • Doping includes p-type doping and n-type doping. In p-type doping, a substance serving as an electron acceptor is used as a dopant, and in n-type doping, a substance serving as an electron donor is used as a dopant. It is preferable to perform p-type doping for improving hole transportability and n-type doping for improving electron transportability.
  • the dopant used in the organic electronic material may be a dopant that exhibits any effect of p-type doping or n-type doping. One kind of dopant may be added alone, or plural kinds of dopants may be mixed and added.
  • the dopant used for p-type doping is an electron-accepting compound, and examples thereof include Lewis acids, proton acids, transition metal compounds, ionic compounds, halogen compounds, and ⁇ -conjugated compounds.
  • Lewis acid FeCl 3 , PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 3 , BBr 3 and the like;
  • protonic acid HF, HCl, HBr, HNO 5 , H 2 SO 4 , HClO 4 and other inorganic acids, benzenesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, polyvinylsulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid, 1-butanesulfonic acid, vinylphenylsulfonic acid Organic acids such as camphorsulfonic acid; transition metal compounds include FeCl 3
  • the dopant used for n-type doping is an electron donating compound, for example, alkali metals such as Li and Cs; alkaline earth metals such as Mg and Ca; alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
  • alkali metals such as Li and Cs
  • alkaline earth metals such as Mg and Ca
  • alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
  • the charge transporting polymer has a polymerizable functional group
  • a compound that can act as a polymerization initiator for the polymerizable functional group as a dopant in order to facilitate the change in solubility of the organic layer.
  • the organic electronic material may further contain a charge transporting low molecular weight compound, another polymer, and the like.
  • the content of the charge transporting polymer in the organic electronic material is preferably 50% by mass or more, more preferably 70% by mass or more based on the total mass of the organic electronic material from the viewpoint of obtaining good charge transporting property. 80 mass% or more is more preferable.
  • the upper limit of the content of the charge transporting polymer is not particularly limited, and may be 100% by mass. Considering that an additive such as a dopant is included, the content of the charge transporting polymer may be, for example, 95% by mass or less or 90% by mass or less.
  • the content is preferably 0.01% by mass or more, and 0.1% by mass or more with respect to the total mass of the organic electronic material from the viewpoint of improving the charge transport property of the organic electronic material. More preferred is 0.5% by mass or more. Moreover, from a viewpoint of maintaining favorable film formability, 50 mass% or less is preferable with respect to the total mass of the organic electronic material, 30 mass% or less is more preferable, and 20 mass% or less is still more preferable.
  • the ink composition contains the organic electronic material and a solvent capable of dissolving or dispersing the material.
  • the organic layer can be easily formed by a simple method such as a coating method.
  • solvent water, an organic solvent, or a mixed solvent thereof can be used.
  • Organic solvents include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetralin and diphenylmethane; ethylene glycol Aliphatic ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, 2,4
  • Amide solvents dimethyl sulfoxide, tetrahydrofuran, acetone, chloroform, methylene chloride and the like can be mentioned.
  • the ink composition preferably contains a polymerization initiator.
  • a polymerization initiator known radical polymerization initiators, cationic polymerization initiators, anionic polymerization initiators and the like can be used. From the viewpoint of easily preparing the ink composition, it is preferable to use a substance having both a function as a dopant and a function as a polymerization initiator. As such a substance, the said ionic compound is mentioned, for example.
  • the ink composition may further contain an additive as an optional component.
  • additives include polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, antifoaming agents, Examples thereof include a dispersant and a surfactant.
  • the content of the solvent in the ink composition can be determined in consideration of application to various coating methods.
  • the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.5% by mass or more. More preferred is an amount of
  • the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. .
  • the organic layer is a layer formed using the organic electronic material or ink composition.
  • the organic layer exhibits good charge transport properties.
  • the organic layer can be satisfactorily and easily formed by a coating method.
  • the coating method include spin coating method; casting method; dipping method; letterpress printing, intaglio printing, offset printing, planographic printing, letterpress inversion offset printing, screen printing, gravure printing and other plate printing methods; ink jet method, etc.
  • a known method such as a plateless printing method may be used.
  • the organic layer (coating layer) obtained after the coating may be dried using a hot plate or an oven to remove the solvent.
  • the solubility of the organic layer can be changed by proceeding the polymerization reaction of the charge transporting polymer by light irradiation, heat treatment or the like.
  • the solubility of the organic layer can be changed by proceeding the polymerization reaction of the charge transporting polymer by light irradiation, heat treatment or the like.
  • the thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more.
  • the thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less, from the viewpoint of reducing electrical resistance.
  • the organic electronics element has at least one said organic layer.
  • the organic electronics element include an organic EL element, an organic photoelectric conversion element, and an organic transistor.
  • the organic electronic element preferably has a structure in which an organic layer is disposed between at least a pair of electrodes.
  • the organic EL device has at least one organic layer.
  • the organic EL element usually includes a light emitting layer, an anode, a cathode, and a substrate, and other functional layers such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer are provided as necessary. I have. Each layer may be formed by a vapor deposition method or a coating method.
  • the organic EL element preferably has the organic layer as a light emitting layer or other functional layer, more preferably as another functional layer, and more preferably as at least one of a hole injection layer and a hole transport layer. Have.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an organic EL element.
  • the organic EL element of FIG. 1 is an element having a multilayer structure, and includes a substrate 8, an anode 2, a hole injection layer 3 and a hole transport layer 6, a light emitting layer 1, an electron transport layer 7, an electron injection layer 5 and a cathode 4. In this order.
  • Light emitting layer As a material used for the light emitting layer, a light emitting material such as a low molecular compound, a polymer, or a dendrimer can be used. A polymer is preferable because it has high solubility in a solvent and is suitable for a coating method. Examples of the light emitting material include a fluorescent material, a phosphorescent material, a thermally activated delayed fluorescent material (TADF), and the like.
  • TADF thermally activated delayed fluorescent material
  • Fluorescent materials such as perylene, coumarin, rubrene, quinacridone, stilbene, dyes for dye lasers, aluminum complexes, and derivatives thereof; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinyl carbazole, fluorene-benzothiadiazole copolymer , Fluorene-triphenylamine copolymers, polymers thereof such as derivatives thereof, and mixtures thereof.
  • a metal complex containing a metal such as Ir or Pt can be used as the phosphorescent material.
  • Ir complex include FIr (pic) that emits blue light (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate), Ir (ppy) 3 that emits green light.
  • the light emitting layer contains a phosphorescent material
  • a host material a low molecular compound, a polymer, or a dendrimer can be used.
  • Examples of the low molecular weight compound include CBP (4,4′-bis (9H-carbazol-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), CDBP (4,4′-
  • Examples of the polymer such as bis (carbazol-9-yl) -2,2′-dimethylbiphenyl) and derivatives thereof include the organic electronic materials, polyvinylcarbazole, polyphenylene, polyfluorene, and derivatives thereof.
  • thermally active delayed fluorescent material examples include PIC-TRZ (2-biphenyl-4,6-bis (12-phenylindolo [2,3-a] carbazol-11-yl) -1,3,5-triazine), CC2TA (2,4-bis ⁇ 3- (9H-carbazol-9-yl) -9H-carbazol-9-yl ⁇ -6-phenyl-1,3,5-triazine), CZ-PS (9,9 ' -(4,4'-sulfonylbis (4,1-phenylene)) bis (3,6-di-tert-butyl-9H-carbazole)), 4CzPN (3,4,5,6-tetra (9H-carbazol- 9-yl) phthalonitrile), HAP-3TPA (4,4 ', 4' '-(1,3,3a1,4,6,7,9-heptaazaphenalene-2,5,8-triyl) tris (N, N -bis (4- (tert
  • the organic layer is preferably used as at least one of a hole injection layer and a hole transport layer. As described above, these layers can be easily formed by using an ink composition containing an organic electronic material.
  • the organic EL element has the organic layer as a hole injection layer and further has a hole transport layer
  • a known material can be used for the hole transport layer.
  • an organic EL element has the said organic layer as a positive hole transport layer and also has a positive hole injection layer
  • a well-known material can be used for a positive hole injection layer.
  • Known materials include, for example, aromatic amine compounds (eg, aromatic diamines such as N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine ( ⁇ -NPD)), phthalocyanines And thiophene compounds (for example, poly (3,4-ethylenedioxythiophene): thiophene conductive polymer such as poly (4-styrenesulfonate) (PEDOT: PSS)), and the like.
  • aromatic amine compounds eg, aromatic diamines such as N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine ( ⁇ -NPD)
  • phthalocyanines And thiophene compounds for example, poly (3,4-ethylenedioxythiophene): thiophene conductive polymer such as poly (4-styrenesulfonate) (PEDOT: PSS)
  • the hole transport layer is an organic layer whose solubility is changed, it is possible to easily form a light emitting layer on the upper layer using an ink composition.
  • the polymerization initiator may be contained in the organic layer that is the hole transport layer, or may be contained in the organic layer under the hole transport layer.
  • Electrode transport layer examples include phenanthroline derivatives, bipyridine derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, condensed ring tetracarboxylic anhydrides such as naphthalene and perylene, carbodiimides, and the like. Fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, quinoxaline derivatives, aluminum complexes, and the like.
  • the organic electronic material can also be used.
  • cathode As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
  • a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
  • anode for example, a metal (for example, Au) or another material having conductivity is used.
  • examples of other materials include oxides (for example, ITO: indium oxide / tin oxide) and conductive polymers (for example, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).
  • substrate glass, plastic or the like can be used.
  • the substrate is preferably transparent and preferably has flexibility. Quartz glass, resin film and the like are preferably used.
  • the resin film a light transmissive resin film is preferable.
  • the resin film include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propionate. Can be mentioned.
  • an inorganic substance such as silicon oxide or silicon nitride may be coated on the resin film in order to suppress permeation of water vapor, oxygen and the like.
  • the organic EL element may be sealed in order to reduce the influence of outside air and extend the life.
  • a material used for sealing glass, epoxy resin, acrylic resin, polyethylene terephthalate, polyethylene naphthalate and other plastic films, or inorganic materials such as silicon oxide and silicon nitride can be used. Absent.
  • the sealing method is not particularly limited, and can be performed by a known method.
  • the emission color of the organic EL element is not particularly limited.
  • the white organic EL element is preferable because it can be used for various lighting devices such as home lighting, interior lighting, a clock, or a liquid crystal backlight.
  • a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used.
  • a combination of a plurality of emission colors is not particularly limited.
  • the emission color can be controlled by adjusting the type and amount of the light emitting material.
  • the display element includes the organic EL element.
  • a color display element can be obtained by using an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB).
  • Image forming methods include a simple matrix type in which individual organic EL elements arranged in a panel are directly driven by electrodes arranged in a matrix, and an active matrix type in which a thin film transistor is arranged and driven in each element.
  • the lighting device includes the organic EL element of the embodiment of the present invention.
  • the display device includes a lighting device and a liquid crystal element as a display unit.
  • the display device can be a display device using the illumination device as a backlight and a known liquid crystal element as a display means, that is, a liquid crystal display device.
  • each Ra independently represents a hydrogen atom or a substituent.
  • Each Rb independently represents a hydrogen atom, a substituent, or a bonding site with another structure, and One is the binding site with other structures.
  • the charge transporting polymer or oligomer further has a structural unit having a hole transporting property
  • the structural unit having hole transportability is a group consisting of a substituted or unsubstituted aromatic amine structure, a substituted or unsubstituted carbazole structure, a substituted or unsubstituted thiophene structure, and a substituted or unsubstituted fluorene structure.
  • the organic electronic material according to [1] including a structural unit including at least one selected partial structure.
  • a co-polymer of a monomer mixture in which the charge transporting polymer or oligomer includes a monomer having a structural unit including the partial structure represented by the formula (1) and a monomer having a structural unit having a hole transporting property.
  • the charge transporting polymer or oligomer has a trivalent or higher valent structural unit, a divalent structural unit, and a monovalent structural unit, and the divalent structural unit is represented by the formula (1).
  • the charge transporting polymer or oligomer has at least a trivalent or higher structural unit and a monovalent structural unit, and the trivalent or higher structural unit is a partial structure represented by the formula (1).
  • the charge transporting polymer or oligomer has at least a trivalent or higher valent structural unit and a monovalent structural unit, and the monovalent structural unit is a partial structure represented by the formula (1).
  • An organic electronic device comprising at least one organic layer according to [10].
  • An organic electroluminescence device comprising at least one organic layer according to [10].
  • a display device comprising the organic electroluminescence device according to [12].
  • An illumination device comprising the organic electroluminescence element according to [12].
  • a display device comprising the illumination device according to [14] and a liquid crystal element as display means.
  • the number average molecular weight of the obtained charge transporting polymer 1 was 5,600, and the weight average molecular weight was 40,200.
  • the charge transporting polymer 1 has a structural unit L-1, a structural unit B-1, a structural unit T-1, and a structural unit T-2, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
  • the number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent.
  • the measurement conditions are as follows. Liquid feed pump: L-6050 Hitachi High-Technologies Corporation UV-Vis detector: L-3000 Hitachi High-Technologies Corporation Detection wavelength: 254 nm Column: Gelpack (registered trademark) GL-A160S / GL-A150S Hitachi Chemical Co., Ltd. Eluent: THF (for HPLC, without stabilizer) Wako Pure Chemical Industries, Ltd. Flow rate: 1 mL / min Column temperature: Room temperature (25 ° C) Molecular weight reference material: Standard polystyrene (PStQuick B / C / D) Tosoh Corporation
  • the number average molecular weight of the obtained charge transporting polymer 2 was 9,400, and the weight average molecular weight was 28,100.
  • the charge transporting polymer 2 has a structural unit L-1, a structural unit B-1, a structural unit B-2, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 16.4%, 1.8%, 18.2%, and 18.2%.
  • the number average molecular weight of the obtained charge transporting polymer 3 was 11,000, and the weight average molecular weight was 32,000.
  • the charge transporting polymer 3 has a structural unit L-1, a structural unit B-1, a structural unit B-2, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 9.1%, 9.1%, 18.2%, and 18.2%.
  • the number average molecular weight of the obtained charge transporting polymer 4 was 10,200, and the weight average molecular weight was 31,700.
  • the charge transporting polymer 4 has a structural unit L-1, a structural unit B-2, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
  • the number average molecular weight of the obtained charge transporting polymer 5 was 12,100, and the weight average molecular weight was 45,000.
  • the charge transporting polymer 5 has a structural unit L-2, a structural unit B-1, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
  • the number average molecular weight of the obtained charge transporting polymer 6 was 10,000, and the weight average molecular weight was 47,600.
  • the charge transporting polymer 6 has a structural unit L-1, a structural unit B-1, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
  • the number average molecular weight of the obtained charge transporting polymer 7 was 10,300, and the weight average molecular weight was 32,600.
  • the charge transporting polymer 7 has a structural unit L-3, a structural unit B-1, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
  • each charge transporting polymer (10.0 mg), the following electron-accepting compound 1 (0.5 mg), and toluene (1.5 mL) were mixed to prepare an ink composition.
  • the ink composition was spin-coated on a glass substrate patterned with ITO at a width of 1.6 mm at a rotation speed of 3,000 min ⁇ 1 , and then cured by heating on a hot plate at 210 ° C. for 30 minutes to form an organic layer ( 100 nm).
  • the substrate having the organic layer was transferred into a vacuum vapor deposition machine, and aluminum was deposited on the organic layer by a vapor deposition method (100 nm), followed by sealing treatment to produce a charge transportability evaluation element.
  • a voltage was applied using the ITO of the charge transportability evaluation element as an anode and aluminum as a cathode.
  • Table 1 shows current densities (A / cm 3 ) when voltages of 0.1 V and 1.5 V were applied, respectively.
  • the organic layer containing the charge transporting polymer having the structural unit (1) described above can be used to obtain an organic layer exhibiting good charge transportability. Is possible. By using an organic layer exhibiting good charge transportability, it is possible to obtain an organic electronics element with a low driving voltage.

Abstract

The present invention relates to an organic electronic material which contains a charge transporting polymer or oligomer having a structural unit that has a branch structure and that has the partial structure represented in formula (1).

Description

有機エレクトロニクス材料及び有機エレクトロニクス素子Organic electronics materials and organic electronics elements
 本発明の実施形態は、有機エレクトロニクス材料、インク組成物、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子(「有機EL素子」とも記す。)、表示素子、照明装置、及び表示装置に関する。 Embodiments of the present invention relate to an organic electronics material, an ink composition, an organic layer, an organic electronics element, an organic electroluminescence element (also referred to as “organic EL element”), a display element, a lighting device, and a display device.
 有機EL素子は、白熱ランプ、ガス充填ランプ等の代替えとして、大面積ソリッドステート光源用途として注目されている。また、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイ(LCD)に置き換わる最有力の自発光ディスプレイとしても注目されており、製品化が進んでいる。 Organic EL devices are attracting attention as large-area solid-state light source applications as alternatives to incandescent lamps and gas-filled lamps. It is also attracting attention as the most powerful self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.
 有機EL素子は、使用する有機材料から、低分子化合物を用いる低分子型有機EL素子と、高分子化合物を用いる高分子型有機EL素子との二つに大別される。有機EL素子の製造方法は、主に真空系で成膜が行われる乾式プロセスと、凸版印刷、凹版印刷等の有版印刷、インクジェット等の無版印刷などにより成膜が行われる湿式プロセスとの二つに大別される。簡易成膜が可能なため、湿式プロセスは、今後の大画面有機ELディスプレイには不可欠な方法として期待されている(例えば、特許文献1参照)。 Organic EL elements are roughly classified into two types, low molecular organic EL elements using low molecular compounds and high molecular organic EL elements using high molecular compounds, depending on the organic materials used. The manufacturing method of the organic EL element includes a dry process in which film formation is mainly performed in a vacuum system and a wet process in which film formation is performed by plate printing such as letterpress printing and intaglio printing, and plateless printing such as inkjet. There are two main types. Since simple film formation is possible, the wet process is expected as an indispensable method for future large-screen organic EL displays (see, for example, Patent Document 1).
特開2006-279007号公報JP 2006-279007 A
 湿式プロセスを用いて作製した有機EL素子は、低コスト化及び大面積化が容易であるという特長を有している。しかし、有機EL素子の特性に関しては、更なる改善の余地がある。 An organic EL device manufactured using a wet process has the feature that it is easy to reduce the cost and increase the area. However, there is room for further improvement regarding the characteristics of the organic EL element.
 本発明の実施形態は、前記に鑑み、湿式プロセスに適し、かつ、有機層の電荷輸送性の向上に適した有機エレクトロニクス材料及びインク組成物を提供することを課題とする。本発明の他の実施形態は、優れた電荷輸送性を有する有機層を提供することを課題とする。更には、本発明の他の実施形態は、優れた電荷輸送性を有する有機層を備えた有機エレクトロニクス素子、有機EL素子、表示素子、照明装置、及び表示装置を提供することを課題とする。 In view of the above, it is an object of an embodiment of the present invention to provide an organic electronic material and an ink composition that are suitable for a wet process and suitable for improving the charge transportability of an organic layer. It is an object of another embodiment of the present invention to provide an organic layer having excellent charge transportability. Furthermore, another embodiment of the present invention has an object to provide an organic electronics element, an organic EL element, a display element, a lighting device, and a display device including an organic layer having excellent charge transporting properties.
 本発明には様々な実施形態が含まれる。実施形態の例を以下に列挙する。本発明は以下の実施形態に限定されない。 The present invention includes various embodiments. Examples of embodiments are listed below. The present invention is not limited to the following embodiments.
 一実施形態は、分岐構造を有し、かつ、下記式(1)で表される部分構造を含む構造単位を有する電荷輸送性ポリマー又はオリゴマーを含有する、有機エレクトロニクス材料に関する。
Figure JPOXMLDOC01-appb-C000002
(式(1)において、Raは、それぞれ独立に、水素原子又は置換基を表す。Rbは、それぞれ独立に、水素原子、置換基、又は、他の構造との結合部位を表し、Rbの少なくとも一つは他の構造との結合部位である。)
One embodiment relates to an organic electronic material containing a charge transporting polymer or oligomer having a branched structure and having a structural unit including a partial structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
(In the formula (1), each Ra independently represents a hydrogen atom or a substituent. Each Rb independently represents a hydrogen atom, a substituent, or a bonding site with another structure, and One is the binding site with other structures.)
 他の一実施形態は、前記有機エレクトロニクス材料と、溶媒とを含有する、インク組成物に関する。 Another embodiment relates to an ink composition containing the organic electronic material and a solvent.
 他の一実施形態は、前記有機エレクトロニクス材料、又は、前記インク組成物を用いて形成された、有機層に関する。 Another embodiment relates to an organic layer formed using the organic electronic material or the ink composition.
 他の一実施形態は、前記有機層を少なくとも一つ備えた、有機エレクトロニクス素子に関する。 Another embodiment relates to an organic electronic device including at least one organic layer.
 他の一実施形態は、有機層を少なくとも一つ備えた、有機エレクトロルミネセンス素子に関する。 Another embodiment relates to an organic electroluminescence device including at least one organic layer.
 他の実施形態は、前記有機エレクトロルミネセンス素子を備えた、表示素子;前記有機エレクトロルミネセンス素子を備えた、照明装置;及び、前記照明装置と、表示手段として液晶素子とを備えた、表示装置に関する。 In another embodiment, a display element comprising the organic electroluminescence element; a lighting device comprising the organic electroluminescence element; and a display comprising the lighting device and a liquid crystal element as a display means Relates to the device.
 本発明の実施形態によれば、湿式プロセスに適し、かつ、有機層の電荷輸送性の向上に適した有機エレクトロニクス材料及びインク組成物を提供することができる。また、本発明の他の実施形態によれば、優れた電荷輸送性を有する有機層を提供することができる。更には、本発明の他の実施形態によれば、優れた電荷輸送性を有する有機層を備えた有機エレクトロニクス素子、有機EL素子、表示素子、照明装置、及び表示装置を提供することができる。 According to the embodiment of the present invention, it is possible to provide an organic electronic material and an ink composition that are suitable for a wet process and suitable for improving the charge transportability of an organic layer. In addition, according to another embodiment of the present invention, an organic layer having excellent charge transportability can be provided. Furthermore, according to other embodiment of this invention, the organic electronics element provided with the organic layer which has the outstanding electric charge transportability, an organic EL element, a display element, an illuminating device, and a display apparatus can be provided.
図1は、本発明の一実施形態である有機EL素子の一例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of an organic EL element according to an embodiment of the present invention.
 本発明の実施形態について説明する。本発明は以下の実施形態に限定されない。 Embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
<有機エレクトロニクス材料>
 一実施形態である有機エレクトロニクス材料は、分岐構造を有し、かつ、式(1)で表される部分構造を含む構造単位を有する電荷輸送性ポリマー又はオリゴマーを含有する。有機エレクトロニクス材料は、電荷輸送性ポリマー又はオリゴマーを、一種のみ含有しても、又は、二種以上含有してもよい。電荷輸送性ポリマー又はオリゴマーは、低分子化合物と比較し、湿式プロセスにおける成膜性に優れるという点で好ましい。
<Organic electronics materials>
The organic electronic material which is one embodiment contains a charge transporting polymer or oligomer having a branched structure and a structural unit including a partial structure represented by the formula (1). The organic electronic material may contain only one kind or two or more kinds of charge transporting polymers or oligomers. The charge transporting polymer or oligomer is preferable in that the film forming property in the wet process is excellent as compared with the low molecular compound.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)において、Raは、それぞれ独立に、水素原子又は置換基を表す。Rbは、それぞれ独立に、水素原子、置換基、又は、他の構造との結合部位を表す。Rbの少なくとも一つは他の構造との結合部位である。 In formula (1), each Ra independently represents a hydrogen atom or a substituent. Rb independently represents a hydrogen atom, a substituent, or a bonding site with another structure. At least one of Rb is a binding site with another structure.
 電荷輸送性ポリマー又はオリゴマーは、式(1)で表される部分構造を有することで、良好な正孔輸送性部位であるアリールアミン構造とチオフェン構造とが導入され、正孔輸送性が向上すると考えられる。特に、電荷輸送性ポリマー又はオリゴマーは、式(1)で表される部分構造を含む構造単位と、正孔輸送性を有する構造単位とを有する場合、高い正孔輸送能を示す。「正孔輸送性を有する構造単位」は「式(1)で表される部分構造を含む構造単位」とは異なる構造単位である。電荷輸送性ポリマー又はオリゴマーは、式(1)で表される部分構造を有することにより、有機エレクトロニクス材料として高い性能を発揮することができると考えられる。 When the charge transporting polymer or oligomer has a partial structure represented by the formula (1), an arylamine structure and a thiophene structure, which are good hole transporting sites, are introduced, and the hole transporting property is improved. Conceivable. In particular, when the charge transporting polymer or oligomer has a structural unit including the partial structure represented by the formula (1) and a structural unit having a hole transporting property, it exhibits high hole transporting ability. The “structural unit having a hole transporting property” is a structural unit different from the “structural unit including the partial structure represented by the formula (1)”. It is considered that the charge transporting polymer or oligomer can exhibit high performance as an organic electronic material by having the partial structure represented by the formula (1).
[電荷輸送性ポリマー又はオリゴマー]
 電荷輸送性ポリマー又はオリゴマーは、電荷を輸送する能力を有するポリマー又はオリゴマーである。以下の記載において、「電荷輸送性ポリマー又はオリゴマー」を、「電荷輸送性ポリマー」とも記す。
[Charge transporting polymer or oligomer]
A charge transporting polymer or oligomer is a polymer or oligomer having the ability to transport charge. In the following description, “charge transporting polymer or oligomer” is also referred to as “charge transporting polymer”.
(式(1)で表される部分構造を含む構造単位)
 電荷輸送性ポリマーは、下記式(1)で表される部分構造を含む構造単位を有する。以下の記載において、「式(1)で表される部分構造」を「部分構造(1)」とも記し、「式(1)で表される部分構造を含む構造単位」を「構造単位(1)」とも記す。電荷輸送性ポリマーは、構造単位(1)を、一種のみ含有しても、又は、二種以上含有してもよい。
(Structural unit including the partial structure represented by Formula (1))
The charge transporting polymer has a structural unit including a partial structure represented by the following formula (1). In the following description, “partial structure represented by formula (1)” is also referred to as “partial structure (1)”, and “structural unit including the partial structure represented by formula (1)” is “structural unit (1 ) ". The charge transporting polymer may contain only one type of structural unit (1), or may contain two or more types.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)において、Raは、それぞれ独立に、水素原子又は置換基を表す。Rbは、それぞれ独立に、水素原子、置換基、又は、他の構造との結合部位を表し、Rbの少なくとも一つは他の構造との結合部位である。 In formula (1), each Ra independently represents a hydrogen atom or a substituent. Rb each independently represents a hydrogen atom, a substituent, or a binding site with another structure, and at least one of Rb is a binding site with another structure.
 置換基の例としては、-R、-OR、-SR、-OCOR、-COOR、-SiR、ハロゲン原子、及び、後述する重合性官能基を含む基からなる群から選択される置換基(以下、「置換基a」とも記す。)が挙げられる。 Examples of the substituent include —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a group containing a polymerizable functional group described later. And a substituent selected from the group (hereinafter, also referred to as “substituent a”).
 Rは、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、及びヘテロアリール基からなる群から選択される。 R 1 is selected from the group consisting of alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, and heteroaryl groups.
 R~Rは、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、及びヘテロアリール基からなる群から選択される。 R 2 to R 8 are each independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryl group, and a heteroaryl group.
 アルキル基、アルケニル基、アルキニル基、及びアルコキシ基は、直鎖、分岐又は環状であってよい。アルキル基、アルケニル基、アルキニル基、及びアルコキシ基の炭素数は、好ましくは1~22である。アリール基の炭素数は、好ましくは6~30である。ヘテロアリール基の炭素数は、好ましくは2~30である。アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、及びヘテロアリール基は、置換又は非置換であってよい。アルケニル基及びアルキニル基は重合性を示してもよく、重合性を示すアルケニル基及びアルキニル基は、後述する重合性官能基を含む基に該当する。 The alkyl group, alkenyl group, alkynyl group and alkoxy group may be linear, branched or cyclic. The alkyl group, alkenyl group, alkynyl group, and alkoxy group preferably have 1 to 22 carbon atoms. The number of carbon atoms of the aryl group is preferably 6-30. The carbon number of the heteroaryl group is preferably 2-30. The alkyl group, alkenyl group, alkynyl group, alkoxy group, aryl group, and heteroaryl group may be substituted or unsubstituted. The alkenyl group and alkynyl group may exhibit polymerizability, and the alkenyl group and alkynyl group exhibiting polymerizability correspond to groups containing a polymerizable functional group described later.
 アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、及びヘテロアリール基が更に置換基を有する場合の置換基の例として、前記置換基aが挙げられ、好ましくは-Rである。 Examples of the substituent in the case where the alkyl group, alkenyl group, alkynyl group, alkoxy group, aryl group, and heteroaryl group further have a substituent include the above-mentioned substituent a, preferably —R 1 .
 電荷輸送性ポリマーが重合性官能基を有する場合、Raのいずれか少なくとも一つが、重合性官能基を含む基であってもよい。部分構造(1)に含まれるチオフェン-イル基が重合性を示してもよく、部分構造(1)に含まれる重合性を示すチオフェン-イル基は、後述する重合性官能基を含む基に該当する。 When the charge transporting polymer has a polymerizable functional group, at least one of Ra may be a group containing a polymerizable functional group. The thiophen-yl group contained in the partial structure (1) may exhibit polymerizability, and the thiophen-yl group showing the polymerizability contained in the partial structure (1) corresponds to a group containing a polymerizable functional group described later. To do.
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。 Examples of the alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n- Decyl, n-undecyl, n-dodecyl, isopropyl, isobutyl, sec-butyl, tert-butyl, 2-ethylhexyl, 3,7-dimethyloctyl, cyclohexyl, cycloheptyl, cyclo An octyl group etc. are mentioned.
 本明細書において、アリール基は、芳香族炭化水素から水素原子1個を除いた原子団である。ヘテロアリール基は、芳香族複素環から水素原子1個を除いた原子団である。 In the present specification, an aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon. A heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring.
 芳香族炭化水素としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が直接結合を介して結合した多環が挙げられる。芳香族複素環としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が直接結合を介して結合した多環が挙げられる。 Examples of the aromatic hydrocarbon include a single ring, a condensed ring, or a polycycle in which two or more selected from a single ring and a condensed ring are bonded through a direct bond. Examples of the aromatic heterocycle include a single ring, a condensed ring, or a polycycle in which two or more selected from a monocycle and a condensed ring are bonded via a direct bond.
 芳香族炭化水素の例として、ベンゼン、ナフタレン、アントラセン、テトラセン、フルオレン、フェナントレン、ビフェニル、ターフェニル、トリフェニルベンゼン等が挙げられる。芳香族複素環の例として、ピリジン、ピラジン、キノリン、イソキノリン、アクリジン、フェナントロリン、フラン、ベンゾフラン、ジベンゾフラン、ピロール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、カルバゾール、オキサゾール、オキサジアゾール、チアジアゾール、トリアゾール、ベンゾオキサゾール、ベンゾオキサジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェン等が挙げられる。 Examples of aromatic hydrocarbons include benzene, naphthalene, anthracene, tetracene, fluorene, phenanthrene, biphenyl, terphenyl, triphenylbenzene, and the like. Examples of aromatic heterocycles include pyridine, pyrazine, quinoline, isoquinoline, acridine, phenanthroline, furan, benzofuran, dibenzofuran, pyrrole, thiophene, benzothiophene, dibenzothiophene, carbazole, oxazole, oxadiazole, thiadiazole, triazole, benzoxazole , Benzoxadiazole, benzothiadiazole, benzotriazole, benzothiophene and the like.
 Raが置換基を含む場合、置換基は、好ましくは-Rを含み、より好ましくはアルキル基及びヘテロアリール基から選択される少なくとも一種を含み、更に好ましくはアルキル基を含む。アルキル基としては、炭素数1~8のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。ヘテロアリール基としては、縮合環が好ましく、カルバゾリル基がより好ましい。カルバゾリル基は、9-カルバゾリル基であることが好ましい。 When Ra includes a substituent, the substituent preferably includes —R 1 , more preferably includes at least one selected from an alkyl group and a heteroaryl group, and more preferably includes an alkyl group. As the alkyl group, an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable. As the heteroaryl group, a condensed ring is preferable, and a carbazolyl group is more preferable. The carbazolyl group is preferably a 9-carbazolyl group.
 Rbは、それぞれ独立に、水素原子、置換基、又は、他の構造との結合部位を表す。置換基の例としては、前記置換基aが挙げられる。 Rb each independently represents a hydrogen atom, a substituent, or a bonding site with another structure. Examples of the substituent include the substituent a.
 Rbの少なくとも一つは他の構造との結合部位である。「他の構造」は、水素原子及び上述の置換基以外の構造である。Rbの三つが結合部位である場合、部分構造(1)は3価の構造であり、Rbの二つが結合部位である場合、部分構造(1)は2価の構造であり、Rbの一つが結合部位である場合、部分構造(1)は1価の構造である。電荷輸送性向上のより高い効果が得られることから、部分構造(1)は、2又は3価であることが好ましく、3価であることがより好ましい。 At least one of Rb is a binding site with another structure. “Other structures” are structures other than hydrogen atoms and the above-described substituents. When three of Rb are binding sites, partial structure (1) is a trivalent structure, and when two of Rb are binding sites, partial structure (1) is a divalent structure, and one of Rb is When it is a binding site, the partial structure (1) is a monovalent structure. The partial structure (1) is preferably divalent or trivalent, and more preferably trivalent because a higher effect of improving charge transportability is obtained.
 Ra及びRbの少なくとも一方が置換基を含む場合、部分構造(1)に含まれる置換基の合計数は、1~6であることが好ましく、1~5であることがより好ましい。複数の置換基が存在する場合、複数の置換基は互いに同一であっても異なってもよい。 When at least one of Ra and Rb contains a substituent, the total number of substituents contained in the partial structure (1) is preferably 1 to 6, and more preferably 1 to 5. When a plurality of substituents are present, the plurality of substituents may be the same as or different from each other.
 置換基ではないRa、並びに、置換基及び結合部位ではないRbは、水素原子である。水素原子の数は、0~8個であり、3~8個であることが好ましい。結合部位以外の全てのRa及びRbが水素原子であってもよい。 Ra which is not a substituent and Rb which is not a substituent and a binding site are a hydrogen atom. The number of hydrogen atoms is 0 to 8, and preferably 3 to 8. All Ra and Rb other than the binding site may be hydrogen atoms.
 部分構造(1)は、下記式(1-1)で表される部分構造であることが好ましい。部分構造(1)が式(1-1)で表される部分構造である場合、電荷輸送性向上の高い効果が得られる。電荷輸送性ポリマーを容易に製造することもできる。 The partial structure (1) is preferably a partial structure represented by the following formula (1-1). When the partial structure (1) is a partial structure represented by the formula (1-1), a high effect of improving the charge transportability can be obtained. A charge transporting polymer can also be easily produced.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1-1)において、Raは、それぞれ独立に、水素原子又は置換基を表す。Rbは、それぞれ独立に、水素原子、置換基、又は、他の構造との結合部位を表し、Rbの少なくとも一つは他の構造との結合部位である。置換基の例として、前記置換基aが挙げられる。 In the formula (1-1), each Ra independently represents a hydrogen atom or a substituent. Rb each independently represents a hydrogen atom, a substituent, or a binding site with another structure, and at least one of Rb is a binding site with another structure. Examples of the substituent include the substituent a.
 部分構造(1)の例を以下に挙げる。部分構造(1)は、下記式で表される構造に限定されない。本明細書において、「*」は、他の構造との結合部位を表す。 Examples of partial structure (1) are given below. The partial structure (1) is not limited to the structure represented by the following formula. In the present specification, “*” represents a binding site with another structure.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式において、Rは、それぞれ独立に、置換基を表す。nは、それぞれ独立に、0~2の整数を表す。nはRの数を示す。置換基の例として、前記置換基aが挙げられる。複数のRが存在する場合、Rは互いに同一であっても異なってもよい。 In the above formula, each R independently represents a substituent. n independently represents an integer of 0 to 2. n represents the number of Rs. Examples of the substituent include the substituent a. When several R exist, R may mutually be same or different.
 部分構造(1)の好ましい具体例を以下に列挙する。部分構造(1)は、下記式で表される構造に限定されない。 Preferred specific examples of partial structure (1) are listed below. The partial structure (1) is not limited to the structure represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 構造単位(1)は、部分構造(1)を少なくとも一つ有する構造単位である。構造単位(1)は、1~6価であることが好ましく、1~3価であることがより好ましい。電荷輸送性向上のより高い効果が得られることから、構造単位(1)は、2価又は3価であることが好ましく、3価であることがより好ましい。 The structural unit (1) is a structural unit having at least one partial structure (1). The structural unit (1) is preferably monovalent to hexavalent, and more preferably monovalent to trivalent. The structural unit (1) is preferably divalent or trivalent, and more preferably trivalent because a higher effect of improving charge transportability is obtained.
 構造単位(1)の例を以下に列挙する。構造単位(1)は、下記式で表される構造に限定されない。 Examples of structural unit (1) are listed below. The structural unit (1) is not limited to the structure represented by the following formula.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式において、Aは、それぞれ独立に部分構造(1)を表し、Bは、それぞれ独立に、芳香族炭化水素構造及び芳香族複素環構造から選択される少なくとも一種を含む部分構造を表し、Yは、直接結合又は2価の連結基を表す。
 2価の連結基は、例えば、置換基a(ただし、重合性官能基を含む基を除く。)のうち水素原子を1個以上有する基から、更に1個の水素原子を除いた2価の基である。
In the above formula, each A independently represents a partial structure (1), each B independently represents a partial structure containing at least one selected from an aromatic hydrocarbon structure and an aromatic heterocyclic structure, and Y Represents a direct bond or a divalent linking group.
The divalent linking group is, for example, a divalent linking group in which one hydrogen atom is further removed from a group having one or more hydrogen atoms in the substituent a (excluding a group containing a polymerizable functional group). It is a group.
 部分構造(1)が、電荷輸送性ポリマー内に、分子鎖の骨格構造を形成する構造単位として含まれる場合、電荷輸送性向上の高い効果が得られる傾向がある。この観点から、構造単位(1)は、式(L1-1)~(L1-5)、式(B1-1)~(B1-11)、並びに、式(T1-1)及び(T1-2)のいずれかで表される構造単位であることが好ましい。電荷輸送性向上のより高い効果が得られることから、構造単位(1)は、式(L1-1)、式(B1-1)、及び、式(T1-1)のいずれかで表される構造単位であることが好ましく、式(L1-1)及び式(B1-1)のいずれかで表される構造単位であることがより好ましく、式(B1-1)で表される単位であることが更に好ましい。これらの単位は、所望の電荷輸送性ポリマーを容易に合成しやすい傾向があることからも好ましい単位である。 When the partial structure (1) is contained in the charge transporting polymer as a structural unit forming a skeleton structure of a molecular chain, a high effect of improving the charge transporting property tends to be obtained. From this point of view, the structural unit (1) has the formulas (L1-1) to (L1-5), formulas (B1-1) to (B1-11), and formulas (T1-1) and (T1-2). It is preferable that it is a structural unit represented by either. The structural unit (1) is represented by any one of the formula (L1-1), the formula (B1-1), and the formula (T1-1) because a higher effect of improving the charge transport property can be obtained. It is preferably a structural unit, more preferably a structural unit represented by any one of formulas (L1-1) and (B1-1), and a unit represented by formula (B1-1). More preferably. These units are preferable units because they tend to easily synthesize desired charge transporting polymers.
 部分構造(1)は、電荷輸送性ポリマー内に、分子鎖の骨格構造への置換基として含まれていてもよい。分子鎖の骨格構造の置換基として含まれている場合、構造単位(1)は、例えば、式(L1-6)~(L1-8)のいずれかで表される構造単位である。具体的には、Rに代えてR’を有すること以外は、後述する構造単位L2の説明において具体例として列挙した構造単位と同じ構造単位が挙げられる。R’は、水素原子又は置換基を表し、置換基は、好ましくは、それぞれ独立に置換基a又は部分構造(1)である。各構造単位においてR’のいずれか少なくとも一つは部分構造(1)である。 Partial structure (1) may be included in the charge transporting polymer as a substituent to the backbone structure of the molecular chain. When included as a substituent in the skeleton structure of the molecular chain, the structural unit (1) is, for example, a structural unit represented by any one of formulas (L1-6) to (L1-8). Specifically, structural units that are the same as the structural units listed as specific examples in the description of the structural unit L2 to be described later are given except that R ′ is substituted for R. R ′ represents a hydrogen atom or a substituent, and the substituent is preferably each independently a substituent a or a partial structure (1). In each structural unit, at least one of R ′ is the partial structure (1).
(電荷輸送性ポリマーの構造)
 電荷輸送性ポリマーは、構造単位(1)を有する。電荷輸送性ポリマーは、更に正孔輸送性を有する構造単位を有することが好ましい。電荷輸送性ポリマーは、分岐構造を有する分岐状ポリマーである。電荷輸送性ポリマーを構成する構造単位は、好ましくは、3価以上の構造単位Bと1価の構造単位Tとを含む。電荷輸送性ポリマーを構成する構造単位は、2価の構造単位Lを更に含んでもよい。構造単位Bは、分岐部を構成する構造単位である。構造単位Lは、電荷輸送性を有する構造単位であることが好ましい。構造単位Tは、分子鎖の末端部を構成する構造単位である。電荷輸送性ポリマーは、好ましくは、分岐部を構成する3価以上の構造単位Bと、電荷輸送性を有する2価の構造単位Lと、末端部を構成する1価の構造単位Tとを少なくとも含む。
(Structure of charge transporting polymer)
The charge transporting polymer has the structural unit (1). The charge transporting polymer preferably further has a structural unit having a hole transporting property. The charge transporting polymer is a branched polymer having a branched structure. The structural unit constituting the charge transporting polymer preferably includes a trivalent or higher valent structural unit B and a monovalent structural unit T. The structural unit constituting the charge transporting polymer may further include a divalent structural unit L. The structural unit B is a structural unit that constitutes the branch portion. The structural unit L is preferably a structural unit having charge transporting properties. The structural unit T is a structural unit that constitutes the terminal portion of the molecular chain. The charge transporting polymer preferably includes at least a trivalent or higher structural unit B constituting a branched portion, a divalent structural unit L having charge transporting property, and a monovalent structural unit T constituting a terminal portion. Including.
 電荷輸送性ポリマーは、各構造単位を、それぞれ一種のみ含んでいても、又は、それぞれ複数種含んでいてもよい。電荷輸送性ポリマーにおいて、各構造単位は、「1価」~「3価以上」の結合部位において互いに結合している。 The charge transporting polymer may contain only one kind of each structural unit, or may contain plural kinds of structural units. In the charge transporting polymer, each structural unit is bonded to each other at a binding site of “monovalent” to “trivalent or more”.
 好ましい実施形態によれば、分岐構造は、少なくとも一つの分岐部と、該少なくとも一つの分岐部の一つに結合する3個以上の鎖を有する。より好ましくは、分岐構造は、少なくとも一つの分岐部と、該少なくとも一つの分岐部の一つに結合する3個以上の鎖とを有し、更に、前記3個以上の鎖のそれぞれに、別の少なくとも一つの分岐部と、該別の少なくとも一つの分岐部の一つに結合する別の2個以上の鎖とを有する多重分岐構造を含む。ここで、「鎖」とは、少なくとも構造単位Lを含む構造単位の繋がりであり、好ましくは構造単位Lと構造単位B(任意に含まれ得る単位)と構造単位Tとにより構成される構造単位の繋がりである。 According to a preferred embodiment, the branched structure has at least one branch part and three or more chains bonded to one of the at least one branch part. More preferably, the branched structure has at least one branch part and three or more chains bonded to one of the at least one branch part, and each of the three or more chains has a separate structure. And a multi-branch structure having at least one other branched portion and two or more chains bonded to one of the at least one other branched portion. Here, the “chain” is a connection of structural units including at least the structural unit L, preferably a structural unit composed of the structural unit L, the structural unit B (unit that can be optionally included), and the structural unit T. Connection.
 好ましい実施形態によれば、分岐構造は、少なくとも一つの構造単位Bと、該少なくとも一つの構造単位Bの一つに結合する3個以上の構造単位Lを有する。好ましくは、分岐構造は、少なくとも一つの構造単位Bと、該少なくとも一つの構造単位Bの一つに結合する3個以上の構造単位Lとを有し、更に、前記3個以上の構造単位Lのそれぞれにつき、該構造単位Lに結合する別の構造単位Bと、該別の構造単位Bに結合する別の2個以上の構造単位Lとを有する多重分岐構造を含む。 According to a preferred embodiment, the branched structure has at least one structural unit B and three or more structural units L bonded to one of the at least one structural unit B. Preferably, the branched structure includes at least one structural unit B and three or more structural units L bonded to one of the at least one structural unit B, and further includes the three or more structural units L. Each includes a multi-branched structure having another structural unit B bonded to the structural unit L and two or more other structural units L bonded to the other structural unit B.
 電荷輸送性ポリマーは、「構造単位B」、「構造単位L」、及び「構造単位T」からなる群から選ばれる少なくとも一種として、構造単位(1)を少なくとも一つ有する。電荷輸送性ポリマーの好ましい例を以下に挙げる。電荷輸送性向上の高い効果が得られる傾向があることから、電荷輸送性ポリマーは、(A)及び(B)の少なくとも一方を満たすことが好ましく、(A)を少なくとも満たすことがより好ましい。
 (A)構造単位Bと構造単位Lと構造単位Tとを有し、構造単位Lが構造単位(1)を含む、電荷輸送性ポリマー
 (B)構造単位Bと構造単位Tとを少なくとも有し、構造単位Bが構造単位(1)を含む、電荷輸送性ポリマー
 (C)構造単位Bと構造単位Tとを少なくとも有し、構造単位Tが構造単位(1)を含む、電荷輸送性ポリマー
 (D)構造単位Bと構造単位Lと構造単位Tとを有し、構造単位Bと構造単位Lと構造単位Tからなる群から選ばれる少なくとも一種が構造単位(1)を含む、電荷輸送性ポリマー
The charge transporting polymer has at least one structural unit (1) as at least one selected from the group consisting of “structural unit B”, “structural unit L”, and “structural unit T”. Preferred examples of the charge transporting polymer are listed below. The charge transporting polymer preferably satisfies at least one of (A) and (B), and more preferably satisfies at least (A), since a high effect of improving the charge transporting property tends to be obtained.
(A) Charge transporting polymer having structural unit B, structural unit L, and structural unit T, wherein structural unit L includes structural unit (1) (B) having at least structural unit B and structural unit T A charge transporting polymer in which structural unit B includes structural unit (1) (C) charge transporting polymer having at least structural unit B and structural unit T, wherein structural unit T includes structural unit (1) D) Charge transporting polymer comprising structural unit B, structural unit L, and structural unit T, wherein at least one selected from the group consisting of structural unit B, structural unit L, and structural unit T includes structural unit (1)
 構造単位(1)を有する電荷輸送性ポリマーは、更に正孔輸送性を有する構造単位を有することが好ましい。正孔輸送性を有する構造単位は、電荷を輸送する能力を有する原子団を含んでいればよく、特に限定されない。正孔輸送性を有する構造単位は、1価、2価、又は3価以上のいずれであってもよい。電荷輸送性ポリマーは、「構造単位B」、「構造単位L」、及び「構造単位T」からなる群から選ばれる少なくとも一種として、正孔輸送性を有する構造単位を少なくとも一つ有する。正孔輸送性を有する構造単位は、電荷輸送性ポリマー内に、分子鎖の骨格構造を形成する構造単位として含まれることが好ましい。 The charge transporting polymer having the structural unit (1) preferably further has a structural unit having a hole transporting property. The structural unit having a hole transporting property is not particularly limited as long as it contains an atomic group having an ability to transport charges. The structural unit having a hole transporting property may be monovalent, divalent, or trivalent or higher. The charge transporting polymer has at least one structural unit having a hole transporting property as at least one selected from the group consisting of “structural unit B”, “structural unit L”, and “structural unit T”. The structural unit having a hole transporting property is preferably included as a structural unit forming a skeleton structure of a molecular chain in the charge transporting polymer.
 正孔輸送性を有する構造単位を有する電荷輸送性ポリマーの好ましい例を以下に列挙する。以下の電荷輸送性ポリマー(a)~(c)は、構造単位(1)も有する。電荷輸送性向上の高い効果が得られる傾向があることから、電荷輸送性ポリマーは、(a)及び(b)の少なくとも一方を満たすことが好ましく、(b)を少なくとも満たすことがより好ましい。
 (a)構造単位Bと構造単位Lと構造単位Tとを有し、構造単位Lが正孔輸送性を有する構造単位を含む、電荷輸送性ポリマー
 (b)構造単位Bと構造単位Tとを少なくとも有し、構造単位Bが正孔輸送性を有する構造単位を含む、電荷輸送性ポリマー
 (c)構造単位Bと構造単位Lと構造単位Tとを有し、構造単位Lと構造単位Bとからなる群から選ばれる少なくとも一種が正孔輸送性を有する構造単位を含む、電荷輸送性ポリマー
Preferred examples of the charge transporting polymer having a structural unit having a hole transporting property are listed below. The following charge transporting polymers (a) to (c) also have a structural unit (1). The charge transporting polymer preferably satisfies at least one of (a) and (b), and more preferably satisfies at least (b), since a high effect of improving the charge transporting property tends to be obtained.
(A) a charge transporting polymer having a structural unit B, a structural unit L, and a structural unit T, wherein the structural unit L includes a structural unit having a hole transporting property; and (b) the structural unit B and the structural unit T. A charge transporting polymer having at least a structural unit in which the structural unit B has a hole transporting property (c) having a structural unit B, a structural unit L, and a structural unit T; Charge transporting polymer, wherein at least one selected from the group consisting of structural units having a hole transporting property
 構造単位(1)と、正孔輸送性を有する構造単位とをする電荷輸送性ポリマーは、上記の(A)~(D)からなる群から選択されるいずれか少なくとも一つと、上記の(a)~(c)からなる群から選択されるいずれか少なくとも一つとを満たす電荷輸送性ポリマーであることが好ましい。(A)と(b)とを少なくとも満たす電荷輸送性ポリマー又は(B)と(a)とを少なくとも満たす電荷輸送性ポリマーであることがより好ましく、(A)と(b)とを少なくとも満たす電荷輸送性ポリマーであることが更に好ましい。 The charge transporting polymer comprising the structural unit (1) and the structural unit having a hole transporting property is at least one selected from the group consisting of the above (A) to (D), and the above (a ) To (c), and is preferably a charge transporting polymer satisfying at least one selected from the group consisting of. More preferably, it is a charge transporting polymer satisfying at least (A) and (b) or a charge transporting polymer satisfying at least (B) and (a), and a charge satisfying at least (A) and (b). More preferably, it is a transportable polymer.
 正孔輸送性を有する構造単位は、置換又は非置換の芳香族アミン構造、置換又は非置換のカルバゾール構造、置換又は非置換のチオフェン構造、及び、置換又は非置換のフルオレン構造からなる群から選ばれる一種以上の部分構造を含む構造単位であることが好ましい。高い正孔注入性、正孔輸送性等を有する観点から、置換又は非置換の芳香族アミン構造、及び、置換又は非置換のカルバゾール構造からなる群から選ばれる一種以上の部分構造を含む構造単位であることが好ましい。芳香族アミン構造は、好ましくはトリアリールアミン構造であり、より好ましくはトリフェニルアミン構造である。 The structural unit having a hole transporting property is selected from the group consisting of a substituted or unsubstituted aromatic amine structure, a substituted or unsubstituted carbazole structure, a substituted or unsubstituted thiophene structure, and a substituted or unsubstituted fluorene structure. It is preferable that the structural unit contains one or more partial structures. From the viewpoint of having high hole injecting property, hole transporting property, etc., a structural unit comprising one or more partial structures selected from the group consisting of a substituted or unsubstituted aromatic amine structure and a substituted or unsubstituted carbazole structure It is preferable that The aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure.
 電荷輸送性ポリマーに含まれる部分構造の例として、以下が挙げられる。部分構造中、「B」は構造単位Bを、「L」は構造単位Lを、「T」は構造単位Tを表す。以下の部分構造中、複数のBは、互いに同一の構造単位であっても、互いに異なる構造単位であってもよい。L及びTについても、同様である。なお、電荷輸送性ポリマーは、以下の部分構造を有するものに限定されない。 Examples of the partial structure contained in the charge transporting polymer include the following. In the partial structure, “B” represents the structural unit B, “L” represents the structural unit L, and “T” represents the structural unit T. In the following partial structures, the plurality of Bs may be the same structural unit or different structural units. The same applies to L and T. The charge transporting polymer is not limited to those having the following partial structure.
 分岐構造を有する電荷輸送性ポリマー
Figure JPOXMLDOC01-appb-C000009
Charge transporting polymer having a branched structure
Figure JPOXMLDOC01-appb-C000009
(構造単位B)
 構造単位Bは、3方向以上に分岐した構造を有する電荷輸送性ポリマーおいて、分岐部を構成する3価以上の構造単位である。電荷輸送性ポリマーは、構造単位Bを、一種のみ有していても、又は、二種以上有していてもよい。構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、好ましくは6価以下であり、より好ましくは3価又は4価である。構造単位Bの例として、3価の構造単位(1)(以下、「構造単位B1」とも記す。)と、部分構造(1)を含まない構造単位(以下、「構造単位B2」とも記す。)が挙げられる。
(Structural unit B)
The structural unit B is a trivalent or higher valent structural unit constituting a branched portion in a charge transporting polymer having a structure branched in three or more directions. The charge transporting polymer may have only one type of structural unit B, or may have two or more types. The structural unit B is preferably hexavalent or less, more preferably trivalent or tetravalent, from the viewpoint of improving the durability of the organic electronic element. As an example of the structural unit B, a trivalent structural unit (1) (hereinafter also referred to as “structural unit B1”) and a structural unit not including the partial structure (1) (hereinafter also referred to as “structural unit B2”). ).
 構造単位B2は、電荷輸送性を有する構造単位であることが好ましく、正孔輸送性を有する構造単位であることがより好ましい。構造単位B2は、特に限定されないが、例えば、有機エレクトロニクス素子の耐久性向上の観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、縮合多環式芳香族炭化水素構造、及び、これらの一種又は二種以上を含有する構造から選択される。芳香族アミン構造は、好ましくはトリアリールアミン構造であり、より好ましくはトリフェニルアミン構造である。 The structural unit B2 is preferably a structural unit having a charge transporting property, and more preferably a structural unit having a hole transporting property. The structural unit B2 is not particularly limited. For example, from the viewpoint of improving the durability of the organic electronics element, the substituted or unsubstituted aromatic amine structure, carbazole structure, condensed polycyclic aromatic hydrocarbon structure, and these It is selected from the structure containing 1 type, or 2 or more types. The aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure.
 構造単位B2の具体例として、以下が挙げられる。構造単位B2は、以下に限定されない。 Specific examples of the structural unit B2 include the following. The structural unit B2 is not limited to the following.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 Wは、3価の連結基を表し、例えば、炭素数2~30個のアレーントリイル基又はヘテロアレーントリイル基を表す。
 Arは、それぞれ独立に2価の連結基を表し、例えば、それぞれ独立に、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。Arは、好ましくはアリーレン基、より好ましくはフェニレン基である。Yは、2価の連結基を表し、例えば、構造単位LにおけるR(ただし、重合性官能基を含む基を除く。)のうち水素原子を1個以上有する基から、更に1個の水素原子を除いた2価の基が挙げられる。
 Zは、炭素原子、ケイ素原子、又はリン原子のいずれかを表す。
 構造単位中、W、ベンゼン環及びArは、置換基(ただし、式(1)で表される部分構造を含まない。)を有していてもよく、置換基の例として、置換基aが挙げられる。
W represents a trivalent linking group, for example, an arenetriyl group or a heteroarenetriyl group having 2 to 30 carbon atoms.
Ar each independently represents a divalent linking group, for example, each independently represents an arylene group or heteroarylene group having 2 to 30 carbon atoms. Ar is preferably an arylene group, more preferably a phenylene group. Y represents a divalent linking group. For example, one R atom in the structural unit L (excluding a group containing a polymerizable functional group) has one more hydrogen atom from a group having one or more hydrogen atoms. And divalent groups excluding.
Z represents any of a carbon atom, a silicon atom, or a phosphorus atom.
In the structural unit, W, the benzene ring, and Ar may have a substituent (however, the partial structure represented by the formula (1) is not included). As an example of the substituent, the substituent a is Can be mentioned.
 本明細書において、アリーレン基は、芳香族炭化水素から水素原子2個を除いた原子団である。ヘテロアリーレン基は、芳香族複素環から水素原子2個を除いた原子団である。アレーントリイル基は、芳香族炭化水素から水素原子3個を除いた原子団である。ヘテロアレーントリイル基は、芳香族複素環から水素原子3個を除いた原子団である。 In the present specification, an arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon. A heteroarylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle. The arenetriyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon. The heteroarene triyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic heterocyclic ring.
(構造単位L)
 構造単位Lは、2価の構造単位である。電荷輸送性ポリマーは、構造単位Lを、一種のみ有していても、又は、二種以上有していてもよい。構造単位Lの例として、2価の構造単位(1)(以下、「構造単位L1」とも記す。)と、部分構造(1)を含まない構造単位(以下、「構造単位L2」とも記す。)が挙げられる。
(Structural unit L)
The structural unit L is a divalent structural unit. The charge transporting polymer may have only one type of structural unit L, or may have two or more types. As examples of the structural unit L, a divalent structural unit (1) (hereinafter also referred to as “structural unit L1”) and a structural unit not including the partial structure (1) (hereinafter also referred to as “structural unit L2”). ).
 構造単位L2は、電荷輸送性を有する構造単位であることが好ましく、正孔輸送性を有する構造単位であることがより好ましい。電荷輸送性を有する構造単位は、電荷を輸送する能力を有する原子団を含んでいればよく、特に限定されない。例えば、構造単位L2は、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造、テトラセン構造、フェナントレン構造、ジヒドロフェナントレン構造、ピリジン構造、ピラジン構造、キノリン構造、イソキノリン構造、キノキサリン構造、アクリジン構造、ジアザフェナントレン構造、フラン構造、ピロール構造、オキサゾール構造、オキサジアゾール構造、チアゾール構造、チアジアゾール構造、トリアゾール構造、ベンゾチオフェン構造、ベンゾオキサゾール構造、ベンゾオキサジアゾール構造、ベンゾチアゾール構造、ベンゾチアジアゾール構造、ベンゾトリアゾール構造、及び、これらの一種又は二種以上を含む構造から選択される。芳香族アミン構造は、好ましくはトリアリールアミン構造であり、より好ましくはトリフェニルアミン構造である。構造単位L2は、価数以外に関し、構造単位B2と同じ構造を有していても、又は、異なる構造を有していてもよい。 The structural unit L2 is preferably a structural unit having a charge transporting property, and more preferably a structural unit having a hole transporting property. The structural unit having charge transporting properties is not particularly limited as long as it contains an atomic group having the ability to transport charges. For example, the structural unit L2 is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure, tetracene structure, phenanthrene structure, dihydro Phenanthrene structure, pyridine structure, pyrazine structure, quinoline structure, isoquinoline structure, quinoxaline structure, acridine structure, diazaphenanthrene structure, furan structure, pyrrole structure, oxazole structure, oxadiazole structure, thiazole structure, thiadiazole structure, triazole structure, benzo Thiophene structure, benzoxazole structure, benzooxadiazole structure, benzothiazole structure, benzothiadiazole structure, benzotriazole structure, and one or two of these It is selected from a structure including more. The aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure. The structural unit L2 may have the same structure as the structural unit B2 or a different structure with respect to other than the valence.
 一実施形態において、構造単位L2は、優れた正孔輸送性を得る観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ピロール構造、及び、これらの一種又は二種以上を含む構造から選択されることが好ましく、置換又は非置換の、芳香族アミン構造、カルバゾール構造、及び、これらの一種又は二種以上を含む構造から選択されることがより好ましい。他の実施形態において、構造単位L2は、優れた電子輸送性を得る観点から、置換又は非置換の、フルオレン構造、ベンゼン構造、フェナントレン構造、ピリジン構造、キノリン構造、及び、これらの一種又は二種以上を含む構造から選択されることが好ましい。 In one embodiment, the structural unit L2 has a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, pyrrole structure, and these from the viewpoint of obtaining excellent hole transport properties. Are preferably selected from structures containing one or more of these, more preferably selected from substituted or unsubstituted aromatic amine structures, carbazole structures, and structures containing one or more of these. preferable. In another embodiment, the structural unit L2 is a substituted or unsubstituted fluorene structure, benzene structure, phenanthrene structure, pyridine structure, quinoline structure, and one or two kinds thereof from the viewpoint of obtaining excellent electron transport properties. It is preferable to select from a structure including the above.
 構造単位L2の具体例として、以下が挙げられる。構造単位L2は、以下に限定されない。 Specific examples of the structural unit L2 include the following. The structural unit L2 is not limited to the following.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、Rは、それぞれ独立に、水素原子又は置換基(ただし、式(1)で表される部分構造を含まない。)を表す。置換基の例として、置換基aが挙げられる。Rは、好ましくは水素原子、アルキル基、アリール基、アルキル置換アリール基である。
 Arは、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。Arは、好ましくはアリーレン基であり、より好ましくはフェニレン基である。
In the formula, each R independently represents a hydrogen atom or a substituent (however, the partial structure represented by the formula (1) is not included). Examples of the substituent include the substituent a. R is preferably a hydrogen atom, an alkyl group, an aryl group, or an alkyl-substituted aryl group.
Ar represents an arylene group or heteroarylene group having 2 to 30 carbon atoms. Ar is preferably an arylene group, more preferably a phenylene group.
(構造単位T)
 構造単位Tは、電荷輸送性ポリマーの末端部を構成する1価の構造単位である。電荷輸送性ポリマーは、構造単位Tを、一種のみ有していても、又は、二種以上有していてもよい。電荷輸送性ポリマーが末端部に重合性官能基を有する場合、構造単位Tは、重合性官能基を含む基を有してもよい。構造単位Tの例として、1価の構造単位(1)(以下、「構造単位T1」とも記す。)と、部分構造(1)を含まない構造単位(以下、「構造単位T2」とも記す。)が挙げられる。
(Structural unit T)
The structural unit T is a monovalent structural unit constituting the terminal portion of the charge transporting polymer. The charge transporting polymer may have only one type of structural unit T, or may have two or more types. When the charge transporting polymer has a polymerizable functional group at the terminal portion, the structural unit T may have a group containing a polymerizable functional group. As examples of the structural unit T, a monovalent structural unit (1) (hereinafter also referred to as “structural unit T1”) and a structural unit not including the partial structure (1) (hereinafter also referred to as “structural unit T2”). ).
 構造単位T2は、電荷輸送性を有する構造単位であることが好ましく、正孔輸送性を有する構造単位であることがより好ましい。構造単位T2は、特に限定されず、例えば、置換又は非置換の、芳香族炭化水素構造、芳香族複素環構造、及び、これらの一種又は二種以上を含む構造から選択される。一実施形態において、構造単位T2は、電荷の輸送性を低下させずに耐久性を付与するという観点から、置換又は非置換の芳香族炭化水素構造であることが好ましく、置換又は非置換のベンゼン構造であることがより好ましい。また、他の実施形態において、電荷輸送性ポリマーが末端部に重合性官能基を有する場合、構造単位T2は重合可能な構造(すなわち、例えば、ピロール-イル基等の重合性官能基)であってもよく、重合性官能基を有してもよい。構造単位T2は、価数以外に関し、構造単位B2と同じ構造を有していても、又は、異なる構造を有していてもよい。構造単位T2は、価数以外に関し、構造単位L2と同じ構造を有していても、又は、異なる構造を有していてもよい。 The structural unit T2 is preferably a structural unit having a charge transporting property, and more preferably a structural unit having a hole transporting property. The structural unit T2 is not particularly limited, and is selected from, for example, a substituted or unsubstituted aromatic hydrocarbon structure, aromatic heterocyclic structure, and a structure including one or more of these. In one embodiment, the structural unit T2 is preferably a substituted or unsubstituted aromatic hydrocarbon structure from the viewpoint of imparting durability without deteriorating charge transportability, and is preferably a substituted or unsubstituted benzene structure. A structure is more preferable. In another embodiment, when the charge transporting polymer has a polymerizable functional group at the terminal portion, the structural unit T2 has a polymerizable structure (that is, a polymerizable functional group such as a pyrrol-yl group). It may have a polymerizable functional group. The structural unit T2 may have the same structure as the structural unit B2 or a different structure with respect to other than the valence. The structural unit T2 may have the same structure as the structural unit L2 or a different structure with respect to other than the valence.
 構造単位T2の具体例として、以下が挙げられる。構造単位T2は、以下に限定されない。 Specific examples of the structural unit T2 include the following. The structural unit T2 is not limited to the following.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、Rは、構造単位L2におけるRと同様である。電荷輸送性ポリマーが末端部に重合性官能基を有する場合、好ましくは、Rのいずれか少なくとも一つが重合性官能基を含む基である。 In the formula, R is the same as R in the structural unit L2. When the charge transporting polymer has a polymerizable functional group at the terminal portion, at least one of R is preferably a group containing a polymerizable functional group.
(重合性官能基)
 一実施形態において電荷輸送性ポリマーは、重合反応により硬化させ、溶剤への溶解度を変化させる観点から、重合性官能基を少なくとも一つ有することが好ましい。「重合性官能基」とは、熱及び/又は光を加えることにより、互いに結合を形成し得る官能基をいう。重合性官能基は、構造単位(1)中に含まれていてもよく、構造単位(1)以外の構造単位中に含まれていてもよい。
(Polymerizable functional group)
In one embodiment, the charge transporting polymer preferably has at least one polymerizable functional group from the viewpoint of curing by a polymerization reaction and changing the solubility in a solvent. The “polymerizable functional group” refers to a functional group that can form a bond with each other by applying heat and / or light. The polymerizable functional group may be contained in the structural unit (1), or may be contained in a structural unit other than the structural unit (1).
 重合性官能基としては、置換又は非置換の、炭素-炭素多重結合を有する基(例えば、ビニル基、スチリル基、アリル基、ブテニル基、エチニル基、アクリロイル基、アクリロイルオキシ基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルオキシ基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基等)、小員環を有する基(例えば、シクロプロピル基、ベンゾシクロブテニル基、シクロブチル基等の環状アルキル基;エポキシ基(オキシラニル基)、オキセタン基(オキセタニル基)等の環状エーテル構造を有する基;ジケテン基;エピスルフィド基;ラクトン基;ラクタム基等)、複素環基(例えば、フラン-イル基、ピロール-イル基、チオフェン-イル基、シロール-イル基)などが挙げられる。 Examples of the polymerizable functional group include substituted or unsubstituted groups having a carbon-carbon multiple bond (for example, vinyl group, styryl group, allyl group, butenyl group, ethynyl group, acryloyl group, acryloyloxy group, acryloylamino group, A methacryloyl group, a methacryloyloxy group, a methacryloylamino group, a vinyloxy group, a vinylamino group, etc.), a group having a small ring (for example, a cyclic alkyl group such as a cyclopropyl group, a benzocyclobutenyl group, a cyclobutyl group; an epoxy group ( A group having a cyclic ether structure such as an oxiranyl group) or an oxetane group (oxetanyl group); a diketene group; an episulfide group; a lactone group; a lactam group, etc.), a heterocyclic group (eg, furanyl group, pyrroleyl group, thiophene) -Yl group, silyl-yl group) and the like.
 これらの基が置換されている場合の置換基は特に限定されないが、例えば、直鎖、環状又は分岐アルキル基が挙げられる。アルキル基の炭素数は、1~22であることが好ましく、1~10であることがより好ましい。 The substituent in the case where these groups are substituted is not particularly limited, and examples thereof include a linear, cyclic or branched alkyl group. The alkyl group preferably has 1 to 22 carbon atoms, more preferably 1 to 10 carbon atoms.
 重合性官能基としては、置換又は非置換の、環状エーテル構造を有する基及び炭素-炭素多重結合を有する基が好ましく、置換又は非置換の、ビニル基、スチリル基、アクリロイル基、メタクリロイル基、エポキシ基、及びオキセタン基がより好ましく、反応性及び有機エレクトロニクス素子の特性の観点から、置換又は非置換の、ビニル基、スチリル基、オキセタン基、及びエポキシ基がより好ましく、ビニル基及びスチリル基が特に好ましい。 The polymerizable functional group is preferably a substituted or unsubstituted group having a cyclic ether structure and a group having a carbon-carbon multiple bond, and is a substituted or unsubstituted vinyl group, styryl group, acryloyl group, methacryloyl group, epoxy. Group and oxetane group are more preferable, and from the viewpoint of reactivity and characteristics of the organic electronic device, a substituted or unsubstituted vinyl group, styryl group, oxetane group, and epoxy group are more preferable, and vinyl group and styryl group are particularly preferable. preferable.
 重合性官能基の自由度を上げ、重合反応を生じさせやすくする観点からは、電荷輸送性ポリマーの骨格構造と重合性官能基とが、アルキレン鎖(例えば炭素数1~8の直鎖状のアルキレン鎖)等の連結基を介して結合していてもよい。また、例えば、電極上に有機層を形成する場合、ITO等の親水性電極との親和性を向上させる観点からは、エチレングリコール鎖、ジエチレングリコール鎖等の親水性の連結を介して結合していてもよい。更に、重合性官能基を導入するために用いられるモノマーの調製が容易になる観点からは、骨格構造と重合性官能基との間に、エーテル結合、エステル結合等から選択される一種以上を含む連結基を有していてもよい。 From the viewpoint of increasing the degree of freedom of the polymerizable functional group and facilitating the occurrence of a polymerization reaction, the skeleton structure of the charge transporting polymer and the polymerizable functional group are alkylene chains (for example, linear chains having 1 to 8 carbon atoms). It may be bonded via a linking group such as an alkylene chain. In addition, for example, when an organic layer is formed on an electrode, it is bonded via a hydrophilic linkage such as an ethylene glycol chain or a diethylene glycol chain from the viewpoint of improving the affinity with a hydrophilic electrode such as ITO. Also good. Furthermore, from the viewpoint of facilitating preparation of a monomer used for introducing a polymerizable functional group, one or more selected from an ether bond, an ester bond, and the like are included between the skeleton structure and the polymerizable functional group. It may have a linking group.
 前述の「重合性官能基を含む基」の例には、「重合性官能基」それ自体、及び、「重合性官能基と、アルキレン鎖、エーテル結合等の連結基とを合わせた基が含まれる。重合性官能基を含む基として、例えば、国際公開第2010/140553号に例示された基を好適に用いることができる。 Examples of the above-mentioned “group containing a polymerizable functional group” include “polymerizable functional group” itself and “a group in which a polymerizable functional group is combined with a linking group such as an alkylene chain or an ether bond”. As the group containing a polymerizable functional group, for example, groups exemplified in International Publication No. 2010/140553 can be preferably used.
 重合性官能基は、電荷輸送性ポリマーの末端部(すなわち、構造単位T)に導入されていても、末端部以外の部分(すなわち、構造単位L又はB)に導入されていても、末端部と末端部以外の部分の両方に導入されていてもよい。硬化性の観点からは、少なくとも末端部に導入されていることが好ましく、硬化性及び電荷輸送性の両立を図る観点からは、末端部のみに導入されていることが好ましい。また、重合性官能基は、電荷輸送性ポリマーの主鎖に導入されていても、側鎖に導入されていてもよく、主鎖と側鎖の両方に導入されていてもよい。 The polymerizable functional group may be introduced into the terminal part (that is, the structural unit T) of the charge transporting polymer, or may be introduced into a part other than the terminal part (that is, the structural unit L or B). And may be introduced into both parts other than the terminal part. From the viewpoint of curability, it is preferably introduced at least at the end portion, and from the viewpoint of achieving both curability and charge transportability, it is preferably introduced only at the end portion. The polymerizable functional group may be introduced into the main chain of the charge transporting polymer, may be introduced into the side chain, or may be introduced into both the main chain and the side chain.
 重合性官能基は、溶解度の変化に寄与する観点からは、電荷輸送性ポリマー中に多く含まれる方が好ましい。一方、電荷輸送性を妨げない観点からは、電荷輸送性ポリマー中に含まれる量が少ない方が好ましい。重合性官能基の含有量は、これらを考慮し、適宜設定できる。 From the viewpoint of contributing to the change in solubility, it is preferable that a large amount of the polymerizable functional group is contained in the charge transporting polymer. On the other hand, from the viewpoint of not hindering the charge transporting property, it is preferable that the amount contained in the charge transporting polymer is small. The content of the polymerizable functional group can be appropriately set in consideration of these.
 例えば、電荷輸送性ポリマー1分子あたりの重合性官能基数は、十分な溶解度の変化を得て、多層化を容易に行う観点から、2個以上が好ましく、3個以上がより好ましい。また、重合性官能基数は、電荷輸送性を保つ観点から、1,000個以下が好ましく、500個以下がより好ましい。 For example, the number of polymerizable functional groups per molecule of the charge transporting polymer is preferably 2 or more, more preferably 3 or more from the viewpoint of obtaining a sufficient solubility change and facilitating multilayering. The number of polymerizable functional groups is preferably 1,000 or less, more preferably 500 or less, from the viewpoint of maintaining charge transportability.
 電荷輸送性ポリマー1分子あたりの重合性官能基数は、電荷輸送性ポリマーを合成するために使用した、重合性官能基の仕込み量(例えば、重合性官能基を有するモノマーの仕込み量)、各構造単位に対応するモノマーの仕込み量、電荷輸送性ポリマーの重量平均分子量等を用い、平均値として求めることができる。また、重合性官能基の数は、電荷輸送性ポリマーのH NMR(核磁気共鳴)スペクトルにおける重合性官能基に由来するシグナルの積分値と全スペクトルの積分値との比、電荷輸送性ポリマーの重量平均分子量等を利用し、平均値として算出できる。 The number of polymerizable functional groups per molecule of the charge transporting polymer is the amount of the polymerizable functional group used to synthesize the charge transporting polymer (for example, the amount of the monomer having a polymerizable functional group), each structure The average value can be obtained by using the monomer charge corresponding to the unit and the weight average molecular weight of the charge transporting polymer. The number of polymerizable functional groups is the ratio between the integral value of the signal derived from the polymerizable functional group and the integral value of the entire spectrum in the 1 H NMR (nuclear magnetic resonance) spectrum of the charge transporting polymer, the charge transporting polymer The weight average molecular weight can be used to calculate the average value.
(数平均分子量)
 電荷輸送性ポリマーの数平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましい。
(Number average molecular weight)
The number average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like. The number average molecular weight is preferably 500 or more, more preferably 1,000 or more, and still more preferably 2,000 or more, from the viewpoint of excellent charge transportability. The number average molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less, and more preferably 50,000 from the viewpoint of maintaining good solubility in a solvent and facilitating the preparation of an ink composition. The following is more preferable.
(重量平均分子量)
 電荷輸送性ポリマーの重量平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。重量平均分子量は、電荷輸送性に優れるという観点から、1,000以上が好ましく、3,000以上がより好ましく、5,000以上が更に好ましい。また、重量平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、700,000以下がより好ましく、400,000以下が更に好ましく、300,000以下が最も好ましい。
(Weight average molecular weight)
The weight average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like. The weight average molecular weight is preferably 1,000 or more, more preferably 3,000 or more, and further preferably 5,000 or more, from the viewpoint of excellent charge transportability. Further, the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of an ink composition. The following is more preferable, and 300,000 or less is most preferable.
 数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、標準ポリスチレンの検量線を用いて測定することができる。 The number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
(構造単位の割合)
 電荷輸送性ポリマーに含まれる構造単位(1)の割合は、有機エレクトロニクス素子の特性向上の観点から、全構造単位を基準として1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上が更に好ましい。特に高い特性向上の効果を得る観点から、25モル%以上が好ましく、40モル%以上がより好ましい。上限は特に限定されず、100モル%以下である。例えば、電荷輸送性ポリマーが正孔輸送性を有する構造単位を更に有する場合、構造単位(1)の割合は、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。
(Percentage of structural units)
The proportion of the structural unit (1) contained in the charge transporting polymer is preferably 1 mol% or more, more preferably 5 mol% or more, more preferably 10 mol%, based on the total structural unit, from the viewpoint of improving the characteristics of the organic electronics element. The above is more preferable. In particular, from the viewpoint of obtaining the effect of improving characteristics, 25 mol% or more is preferable, and 40 mol% or more is more preferable. An upper limit is not specifically limited, It is 100 mol% or less. For example, when the charge transporting polymer further has a structural unit having a hole transporting property, the proportion of the structural unit (1) is preferably 70 mol% or less, more preferably 60 mol% or less, and further preferably 50 mol% or less. preferable.
 電荷輸送性ポリマーに含まれる正孔輸送性を有する構造単位の割合は、有機エレクトロニクス素子の特性向上の観点から、全構造単位を基準として5モル%以上が好ましく、10モル%以上がより好ましく、25モル%以上が更に好ましい。上限は、100モル%未満である。 The proportion of the structural unit having hole transporting property contained in the charge transporting polymer is preferably 5 mol% or more, more preferably 10 mol% or more, based on the total structural unit, from the viewpoint of improving the characteristics of the organic electronics element. 25 mol% or more is more preferable. The upper limit is less than 100 mol%.
 電荷輸送性ポリマーに含まれる構造単位Bの割合は、有機エレクトロニクス素子の耐久性向上の観点から、全構造単位を基準として、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上が更に好ましい。また、構造単位Bの割合は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点、又は、十分な電荷輸送性を得る観点から、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が更に好ましい。 The proportion of the structural unit B contained in the charge transporting polymer is preferably 1 mol% or more, more preferably 5 mol% or more, more preferably 10 mol%, based on the total structural unit, from the viewpoint of improving the durability of the organic electronics element. The above is more preferable. The proportion of the structural unit B is preferably 50 mol% or less, preferably 40 mol% or less, from the viewpoint of suppressing the increase in viscosity and satisfactorily synthesizing the charge transporting polymer or obtaining sufficient charge transportability. Is more preferable, and 30 mol% or less is still more preferable.
 電荷輸送性ポリマーが構造単位Lを含む場合、構造単位Lの割合は、十分な電荷輸送性を得る観点から、全構造単位を基準として、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましい。また、構造単位Lの割合は、構造単位B及び構造単位Tを考慮すると、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下が更に好ましい。 When the charge transporting polymer includes the structural unit L, the proportion of the structural unit L is preferably 10 mol% or more, more preferably 20 mol% or more, based on the total structural unit, from the viewpoint of obtaining sufficient charge transportability. 30 mol% or more is more preferable. In consideration of the structural unit B and the structural unit T, the proportion of the structural unit L is preferably 95 mol% or less, more preferably 90 mol% or less, and still more preferably 85 mol% or less.
 電荷輸送性ポリマーに含まれる構造単位Tの割合は、有機エレクトロニクス素子の特性向上の観点、又は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点から、全構造単位を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、構造単位Tの割合は、十分な電荷輸送性を得る観点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下が更に好ましい。 The proportion of the structural unit T contained in the charge transporting polymer is based on the total structural unit from the viewpoint of improving the characteristics of the organic electronics element or suppressing the increase in the viscosity and satisfactorily synthesizing the charge transporting polymer. 5 mol% or more is preferable, 10 mol% or more is more preferable, and 15 mol% or more is still more preferable. The proportion of the structural unit T is preferably 60 mol% or less, more preferably 55 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining sufficient charge transport properties.
 電荷輸送性ポリマーが重合性官能基を有する場合、重合性官能基の割合は、電荷輸送性ポリマーを効率よく硬化させるという観点から、全構造単位を基準として、0.1モル%以上が好ましく、1モル%以上がより好ましく、3モル%以上が更に好ましい。また、重合性官能基の割合は、良好な電荷輸送性を得るという観点から、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。なお、ここでの「重合性官能基の割合」とは、重合性官能基を有する構造単位の割合をいう。 When the charge transporting polymer has a polymerizable functional group, the proportion of the polymerizable functional group is preferably 0.1 mol% or more based on the total structural unit from the viewpoint of efficiently curing the charge transporting polymer, 1 mol% or more is more preferable, and 3 mol% or more is still more preferable. The proportion of the polymerizable functional group is preferably 70 mol% or less, more preferably 60 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining good charge transportability. The “ratio of polymerizable functional groups” here refers to the ratio of structural units having a polymerizable functional group.
 電荷輸送性、耐久性、生産性等のバランスを考慮すると、構造単位L、構造単位T、及び構造単位Bを含む電荷輸送性ポリマーの場合、これらの構造単位の割合(モル比)は、L:T:B=100:10~400:10~300が好ましく、100:20~300:20~200がより好ましく、100:40~200:30~100が更に好ましい。 In consideration of the balance of charge transportability, durability, productivity, etc., in the case of a charge transporting polymer containing the structural unit L, the structural unit T, and the structural unit B, the ratio (molar ratio) of these structural units is L : T: B = 100: 10 to 400: 10 to 300 is preferable, 100: 20 to 300: 20 to 200 is more preferable, and 100: 40 to 200: 30 to 100 is still more preferable.
 構造単位の割合は、電荷輸送性ポリマーを合成するために使用した、各構造単位に対応するモノマーの仕込み量を用いて求めることができる。また、構造単位の割合は、電荷輸送性ポリマーのH NMRスペクトルにおける各構造単位に由来するスペクトルの積分値を利用し、平均値として算出することができる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。 The proportion of the structural unit can be determined by using the charged amount of the monomer corresponding to each structural unit used for synthesizing the charge transporting polymer. Moreover, the ratio of the structural unit can be calculated as an average value using an integrated value of the spectrum derived from each structural unit in the 1 H NMR spectrum of the charge transporting polymer. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
 電荷輸送性ポリマーの好ましい例を以下に挙げる。
 (1) 構造単位L1と構造単位B2と構造単位T2とを少なくとも有する電荷輸送性ポリマー
 電荷輸送性ポリマーは、電荷輸送性等の調整のために、構造単位L2を更に有してもよい。
 (2) 構造単位L2と構造単位B1と構造単位T2とを少なくとも有する電荷輸送性ポリマー
 電荷輸送性ポリマーは、電荷輸送性等の調整のために、構造単位B2を更に有してもよい。
 (3) 構造単位L2と構造単位B2と構造単位T1とを少なくとも有する電荷輸送性ポリマー
 電荷輸送性ポリマーは、溶解性、硬化性等の調整のために、構造単位T2を更に有してもよい。
Preferred examples of the charge transporting polymer are listed below.
(1) Charge transporting polymer having at least the structural unit L1, the structural unit B2, and the structural unit T2 The charge transporting polymer may further include the structural unit L2 for adjusting the charge transporting property and the like.
(2) Charge transporting polymer having at least the structural unit L2, the structural unit B1, and the structural unit T2 The charge transporting polymer may further include the structural unit B2 for the purpose of adjusting the charge transporting property and the like.
(3) Charge transporting polymer having at least the structural unit L2, the structural unit B2, and the structural unit T1 The charge transporting polymer may further include the structural unit T2 in order to adjust solubility, curability, and the like. .
 (1)~(3)において、構造単位B2及び構造単位L2は、それぞれ独立に、正孔輸送性を有する構造単位であることが好ましく、置換又は非置換の芳香族アミン構造、置換又は非置換のカルバゾール構造、置換又は非置換のチオフェン構造、及び、置換又は非置換のフルオレン構造からなる群から選ばれる少なくとも一種の部分構造を含む構造単位であることが好ましく、置換又は非置換の芳香族アミン構造、及び、置換又は非置換のカルバゾール構造からなる群から選ばれる少なくとも一種の部分構造を含む構造単位であることがより好ましい。 In (1) to (3), the structural unit B2 and the structural unit L2 are preferably each independently a structural unit having a hole transporting property, and are a substituted or unsubstituted aromatic amine structure, substituted or unsubstituted. It is preferably a structural unit containing at least one partial structure selected from the group consisting of a carbazole structure, a substituted or unsubstituted thiophene structure, and a substituted or unsubstituted fluorene structure, and a substituted or unsubstituted aromatic amine It is more preferably a structural unit including a structure and at least one partial structure selected from the group consisting of a substituted or unsubstituted carbazole structure.
 (1)~(3)において、構造単位T2は、置換又は非置換の芳香族炭化水素構造を含む構造単位であることが好ましく、置換又は非置換のベンゼン構造を含む構造単位であることがより好ましい。 In (1) to (3), the structural unit T2 is preferably a structural unit containing a substituted or unsubstituted aromatic hydrocarbon structure, more preferably a structural unit containing a substituted or unsubstituted benzene structure. preferable.
 電荷輸送性ポリマーは、(1)又は(2)を満たすポリマーであることが好ましく、(1)を満たすポリマーであることがより好ましい。 The charge transporting polymer is preferably a polymer satisfying (1) or (2), and more preferably a polymer satisfying (1).
 電荷輸送性ポリマーの重合度(構造単位の単位数)は、有機層の膜質を安定化させる観点から、5以上が好ましく、10以上がより好ましく、20以上が更に好ましい。また、重合度は、溶媒への溶解性の観点から、1,000以下が好ましく、700以下がより好ましく、500以下が更に好ましい。 The polymerization degree (number of structural units) of the charge transporting polymer is preferably 5 or more, more preferably 10 or more, and still more preferably 20 or more, from the viewpoint of stabilizing the film quality of the organic layer. The degree of polymerization is preferably 1,000 or less, more preferably 700 or less, and even more preferably 500 or less, from the viewpoint of solubility in a solvent.
 重合度は、電荷輸送性ポリマーの重量平均分子量、構造単位の分子量、及び構造単位の比率を利用し、平均値として求めることができる。 The degree of polymerization can be obtained as an average value using the weight average molecular weight of the charge transporting polymer, the molecular weight of the structural unit, and the ratio of the structural unit.
(製造方法)
 電荷輸送性ポリマーは、種々の合成方法により製造でき、特に限定されない。例えば、電荷輸送性ポリマーが有する構造単位を形成するためのモノマーを重合反応させることによって製造できる。電荷輸送性ポリマーは、構造単位(1)を有するモノマーと、正孔輸送性を有する構造単位を有するモノマーとを少なくとも含むモノマー混合物の共重合体であることが好ましい。一例を挙げると、モノマー混合物は、構造単位(1)を有するモノマーと、構造単位L2を有するモノマー、及び/又は、構造単位B2を有するモノマーとを含むことが好ましい。モノマー混合物は、任意に、前記以外の一種以上のモノマー(例えば、構造単位T2を有するモノマー)を含んでもよい。電荷輸送性ポリマーは、構造単位(1)を有するモノマーのみを一種含むモノマーの重合体であってもよい。また、電荷輸送性ポリマーは、構造単位(1)を有するモノマーのみを二種以上含むモノマー混合物の共重合体であってもよい。
(Production method)
The charge transporting polymer can be produced by various synthetic methods and is not particularly limited. For example, it can be produced by polymerizing a monomer for forming the structural unit of the charge transporting polymer. The charge transporting polymer is preferably a copolymer of a monomer mixture containing at least a monomer having the structural unit (1) and a monomer having a structural unit having a hole transporting property. For example, the monomer mixture preferably includes a monomer having the structural unit (1), a monomer having the structural unit L2, and / or a monomer having the structural unit B2. The monomer mixture may optionally contain one or more monomers other than those described above (for example, a monomer having the structural unit T2). The charge transporting polymer may be a polymer of a monomer including only one monomer having the structural unit (1). Further, the charge transporting polymer may be a copolymer of a monomer mixture containing two or more monomers having only the structural unit (1).
 モノマー混合物における構造単位(1)を有するモノマーの割合は、有機エレクトロニクス素子の特性向上の観点から、モノマー混合物中の全モノマーを基準として、好ましくは1モル%以上、より好ましくは25モル%以上、更に好ましくは40モル%以上である。上限は特に限定されず、100モル%以下である。例えば、モノマー混合物が構造単位L2を有するモノマー、構造単位B2を有するモノマー、及び構造単位T2を有するモノマーのいずれかを更に含有する場合、構造単位(1)の割合は、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。 The proportion of the monomer having the structural unit (1) in the monomer mixture is preferably 1 mol% or more, more preferably 25 mol% or more, based on the total monomers in the monomer mixture, from the viewpoint of improving the characteristics of the organic electronic device. More preferably, it is 40 mol% or more. An upper limit is not specifically limited, It is 100 mol% or less. For example, when the monomer mixture further contains any of the monomer having the structural unit L2, the monomer having the structural unit B2, and the monomer having the structural unit T2, the proportion of the structural unit (1) is preferably 70 mol% or less. 60 mol% or less is more preferable, and 50 mol% or less is still more preferable.
 モノマー混合物における構造単位B2を有するモノマー、構造単位L2を有するモノマー、及び構造単位T2を有するモノマーからなる群から選択される少なくとも一種の合計の割合は、有機エレクトロニクス素子の特性向上の観点から、モノマー混合物中の全モノマーを基準として、好ましくは5モル%以上、より好ましくは10モル%以上、更に好ましくは25モル%以上である。上限は特に限定されず、100モル%未満である。 In the monomer mixture, the ratio of the total of at least one selected from the group consisting of the monomer having the structural unit B2, the monomer having the structural unit L2, and the monomer having the structural unit T2 is a monomer from the viewpoint of improving the characteristics of the organic electronics element. Preferably, it is 5 mol% or more, more preferably 10 mol% or more, and still more preferably 25 mol% or more, based on the total monomers in the mixture. An upper limit is not specifically limited, It is less than 100 mol%.
 モノマー混合物を用いる場合、モノマーを共重合させることにより、電荷輸送性ポリマーを容易に製造することができる。共重合の形式は、交互、ランダム、ブロック又はグラフト共重合体であってもよいし、それらの中間的な構造を有する共重合体、例えばブロック性を帯びたランダム共重合体であってもよい。 When a monomer mixture is used, a charge transporting polymer can be easily produced by copolymerizing the monomers. The type of copolymerization may be an alternating, random, block or graft copolymer, or a copolymer having an intermediate structure thereof, for example, a random copolymer having a block property. .
 重合反応は、カップリング反応であることが好ましく、カップリング反応としては、例えば、鈴木カップリング、根岸カップリング、薗頭カップリング、スティルカップリング、ブッフバルト・ハートウィッグカップリング等の公知の反応を用いることができる。鈴木カップリングは、芳香族ボロン酸誘導体と芳香族ハロゲン化物の間で、Pd触媒を用いたクロスカップリング反応を起こさせるものである。鈴木カップリングによれば、所望とする芳香環同士を結合させることにより、電荷輸送性ポリマーを簡便に製造できる。 The polymerization reaction is preferably a coupling reaction. Examples of the coupling reaction include known reactions such as Suzuki coupling, Negishi coupling, Sonogashira coupling, Stille coupling, Buchwald-Hartwig coupling, etc. Can be used. Suzuki coupling causes a cross coupling reaction using a Pd catalyst between an aromatic boronic acid derivative and an aromatic halide. According to Suzuki coupling, a charge transporting polymer can be easily produced by bonding desired aromatic rings together.
 カップリング反応では、触媒として、例えば、Pd(0)化合物、Pd(II)化合物、Ni化合物等が用いられる。また、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム(II)等を前駆体とし、ホスフィン配位子と混合することにより発生させた触媒種を用いることもできる。電荷輸送性ポリマーの合成方法については、例えば、国際公開第2010/140553号の記載を参照できる。 In the coupling reaction, for example, a Pd (0) compound, a Pd (II) compound, a Ni compound, or the like is used as a catalyst. In addition, a catalyst species generated by mixing tris (dibenzylideneacetone) dipalladium (0), palladium (II) acetate and the like with a phosphine ligand can also be used. For the method for synthesizing the charge transporting polymer, for example, the description in WO 2010/140553 can be referred to.
 鈴木カップリング反応に使用できるモノマーとして、例えば、以下が挙げられる。 Examples of monomers that can be used in the Suzuki coupling reaction include the following.
(モノマーL)
Figure JPOXMLDOC01-appb-C000014
(Monomer L)
Figure JPOXMLDOC01-appb-C000014
(モノマーB)
Figure JPOXMLDOC01-appb-C000015
(Monomer B)
Figure JPOXMLDOC01-appb-C000015
(モノマーT)
Figure JPOXMLDOC01-appb-C000016
(Monomer T)
Figure JPOXMLDOC01-appb-C000016
 式中、Lは2価の構造単位を表し、Bは3価又は4価の構造単位を表し、Tは1価の構造単位を表す。R~Rは、互いに結合を形成することが可能な官能基を表し、例えば、それぞれ独立に、ボロン酸基、ボロン酸エステル基、及びハロゲン基からなる群から選択されるいずれか一種を表す。使用されるモノマーは、「L」、「B」及び「T」の少なくともいずれかとして、構造単位(1)を含む。 In the formula, L represents a divalent structural unit, B represents a trivalent or tetravalent structural unit, and T represents a monovalent structural unit. R 1 to R 3 each represents a functional group capable of forming a bond with each other. For example, each of R 1 to R 3 independently represents any one selected from the group consisting of a boronic acid group, a boronic ester group, and a halogen group. To express. The monomer used includes the structural unit (1) as at least one of “L”, “B”, and “T”.
 これらのモノマーは、公知の方法により合成することができる。また、これらのモノマーは、例えば、東京化成工業株式会社、シグマアルドリッチジャパン合同会社等から入手可能である。 These monomers can be synthesized by a known method. These monomers are available from, for example, Tokyo Chemical Industry Co., Ltd., Sigma Aldrich Japan LLC.
[ドーパント]
 有機エレクトロニクス材料は、任意の添加剤を含むことができ、例えばドーパントを更に含有してよい。ドーパントは、有機エレクトロニクス材料に添加することでドーピング効果を発現させ、電荷の輸送性を向上させ得るものであればよく、特に制限はない。ドーピングには、p型ドーピングとn型ドーピングがあり、p型ドーピングではドーパントとして電子受容体として働く物質が用いられ、n型ドーピングではドーパントとして電子供与体として働く物質が用いられる。正孔輸送性の向上にはp型ドーピング、電子輸送性の向上にはn型ドーピングを行うことが好ましい。有機エレクトロニクス材料に用いられるドーパントは、p型ドーピング又はn型ドーピングのいずれの効果を発現させるドーパントであってもよい。また、一種のドーパントを単独で添加しても、複数種のドーパントを混合して添加してもよい。
[Dopant]
The organic electronic material can contain any additive, for example, it may further contain a dopant. The dopant is not particularly limited as long as it can be added to the organic electronic material to develop a doping effect and improve the charge transport property. Doping includes p-type doping and n-type doping. In p-type doping, a substance serving as an electron acceptor is used as a dopant, and in n-type doping, a substance serving as an electron donor is used as a dopant. It is preferable to perform p-type doping for improving hole transportability and n-type doping for improving electron transportability. The dopant used in the organic electronic material may be a dopant that exhibits any effect of p-type doping or n-type doping. One kind of dopant may be added alone, or plural kinds of dopants may be mixed and added.
 p型ドーピングに用いられるドーパントは、電子受容性の化合物であり、例えば、ルイス酸、プロトン酸、遷移金属化合物、イオン化合物、ハロゲン化合物、π共役系化合物等が挙げられる。具体的には、ルイス酸としては、FeCl、PF、AsF、SbF、BF、BCl、BBr等;プロトン酸としては、HF、HCl、HBr、HNO、HSO、HClO等の無機酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ポリビニルスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、1-ブタンスルホン酸、ビニルフェニルスルホン酸、カンファスルホン酸等の有機酸;遷移金属化合物としては、FeOCl、TiCl、ZrCl、HfCl、NbF、AlCl、NbCl、TaCl、MoF;イオン化合物としては、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、トリス(トリフルオロメタンスルホニル)メチドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロアンチモン酸イオン、AsF (ヘキサフルオロ砒酸イオン)、BF (テトラフルオロホウ酸イオン)、PF (ヘキサフルオロリン酸イオン)等のパーフルオロアニオンを有する塩、アニオンとして前記プロトン酸の共役塩基を有する塩など;ハロゲン化合物としては、Cl、Br、I、ICl、ICl、IBr、IF等;π共役系化合物としては、TCNE(テトラシアノエチレン)、TCNQ(テトラシアノキノジメタン)等が挙げられる。前記以外の公知の電子受容性化合物を用いることも可能である。好ましくは、ルイス酸、イオン化合物、π共役系化合物等である。 The dopant used for p-type doping is an electron-accepting compound, and examples thereof include Lewis acids, proton acids, transition metal compounds, ionic compounds, halogen compounds, and π-conjugated compounds. Specifically, as the Lewis acid, FeCl 3 , PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 3 , BBr 3 and the like; as the protonic acid, HF, HCl, HBr, HNO 5 , H 2 SO 4 , HClO 4 and other inorganic acids, benzenesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, polyvinylsulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid, 1-butanesulfonic acid, vinylphenylsulfonic acid Organic acids such as camphorsulfonic acid; transition metal compounds include FeOCl, TiCl 4 , ZrCl 4 , HfCl 4 , NbF 5 , AlCl 3 , NbCl 5 , TaCl 5 , MoF 5 ; Phenyl) borate ion, tris (trifluoro) Methanesulfonyl) Mechidoion, bis (trifluoromethanesulfonyl) imide ion, hexafluoroantimonate ion, AsF 6 - (hexafluoro arsenic acid ions), BF 4 - (tetrafluoroborate), PF 6 - (hexafluorophosphate) A salt having a perfluoroanion such as a salt, a salt having a conjugate base of the protonic acid as an anion; halogen compounds such as Cl 2 , Br 2 , I 2 , ICl, ICl 3 , IBr and IF; π-conjugated compounds Examples thereof include TCNE (tetracyanoethylene), TCNQ (tetracyanoquinodimethane) and the like. It is also possible to use known electron-accepting compounds other than those described above. Preferred are Lewis acids, ionic compounds, π-conjugated compounds and the like.
 n型ドーピングに用いられるドーパントは、電子供与性の化合物であり、例えば、Li、Cs等のアルカリ金属;Mg、Ca等のアルカリ土類金属;LiF、CsCO等のアルカリ金属及び/又はアルカリ土類金属の塩;金属錯体;電子供与性有機化合物などが挙げられる。 The dopant used for n-type doping is an electron donating compound, for example, alkali metals such as Li and Cs; alkaline earth metals such as Mg and Ca; alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
 電荷輸送性ポリマーが重合性官能基を有する場合は、有機層の溶解度の変化を容易にするために、ドーパントとして重合性官能基に対する重合開始剤として作用し得る化合物を用いることが好ましい。 When the charge transporting polymer has a polymerizable functional group, it is preferable to use a compound that can act as a polymerization initiator for the polymerizable functional group as a dopant in order to facilitate the change in solubility of the organic layer.
[他の任意成分]
 有機エレクトロニクス材料は、電荷輸送性低分子化合物、他のポリマー等を更に含有してもよい。
[Other optional ingredients]
The organic electronic material may further contain a charge transporting low molecular weight compound, another polymer, and the like.
[含有量]
 有機エレクトロニクス材料中の電荷輸送性ポリマーの含有量は、良好な電荷輸送性を得る観点から、有機エレクトロニクス材料の全質量に対して50質量%以上であることが好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。電荷輸送性ポリマーの含有量の上限は特に限定されず、100質量%とすることも可能である。ドーパント等の添加剤を含むことを考慮し、電荷輸送性ポリマーの含有量を、例えば95質量%以下又は90質量%以下としてもよい。
[Content]
The content of the charge transporting polymer in the organic electronic material is preferably 50% by mass or more, more preferably 70% by mass or more based on the total mass of the organic electronic material from the viewpoint of obtaining good charge transporting property. 80 mass% or more is more preferable. The upper limit of the content of the charge transporting polymer is not particularly limited, and may be 100% by mass. Considering that an additive such as a dopant is included, the content of the charge transporting polymer may be, for example, 95% by mass or less or 90% by mass or less.
 ドーパントを含有する場合、その含有量は、有機エレクトロニクス材料の電荷輸送性を向上させる観点から、有機エレクトロニクス材料の全質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上が更に好ましい。また、成膜性を良好に保つ観点から、有機エレクトロニクス材料の全質量に対して、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。 When the dopant is contained, the content is preferably 0.01% by mass or more, and 0.1% by mass or more with respect to the total mass of the organic electronic material from the viewpoint of improving the charge transport property of the organic electronic material. More preferred is 0.5% by mass or more. Moreover, from a viewpoint of maintaining favorable film formability, 50 mass% or less is preferable with respect to the total mass of the organic electronic material, 30 mass% or less is more preferable, and 20 mass% or less is still more preferable.
<インク組成物>
 一実施形態によれば、インク組成物は、前記有機エレクトロニクス材料と、該材料を溶解又は分散し得る溶媒とを含有する。インク組成物を用いることによって、塗布法といった簡便な方法によって有機層を容易に形成できる。
<Ink composition>
According to one embodiment, the ink composition contains the organic electronic material and a solvent capable of dissolving or dispersing the material. By using the ink composition, the organic layer can be easily formed by a simple method such as a coating method.
[溶媒]
 溶媒としては、水、有機溶媒、又はこれらの混合溶媒を使用できる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール;ペンタン、ヘキサン、オクタン等のアルカン;シクロヘキサン等の環状アルカン;ベンゼン、トルエン、キシレン、メシチレン、テトラリン、ジフェニルメタン等の芳香族炭化水素;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、テトラヒドロフラン、アセトン、クロロホルム、塩化メチレンなどが挙げられる。好ましくは、芳香族炭化水素、脂肪族エステル、芳香族エステル、脂肪族エーテル、芳香族エーテル等である。
[solvent]
As the solvent, water, an organic solvent, or a mixed solvent thereof can be used. Organic solvents include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetralin and diphenylmethane; ethylene glycol Aliphatic ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole; ethyl acetate, n-butyl acetate, ethyl lactate, n-butyl lactate Aliphatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate and n-butyl benzoate; N, N-dimethylformamide, N, N-dimethylacetamide, etc. Amide solvents; dimethyl sulfoxide, tetrahydrofuran, acetone, chloroform, methylene chloride and the like can be mentioned. Preferred are aromatic hydrocarbons, aliphatic esters, aromatic esters, aliphatic ethers, aromatic ethers and the like.
[重合開始剤]
 電荷輸送性ポリマーが重合性官能基を有する場合、インク組成物は、好ましくは、重合開始剤を含有する。重合開始剤として、公知のラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤等を使用できる。インク組成物を簡便に調製できる観点から、ドーパントとしての機能と重合開始剤としての機能とを兼ねる物質を用いることが好ましい。そのような物質として、例えば、前記イオン化合物が挙げられる。
[Polymerization initiator]
When the charge transporting polymer has a polymerizable functional group, the ink composition preferably contains a polymerization initiator. As the polymerization initiator, known radical polymerization initiators, cationic polymerization initiators, anionic polymerization initiators and the like can be used. From the viewpoint of easily preparing the ink composition, it is preferable to use a substance having both a function as a dopant and a function as a polymerization initiator. As such a substance, the said ionic compound is mentioned, for example.
[添加剤]
 インク組成物は、更に、任意成分として添加剤を含有してもよい。添加剤としては、例えば、重合禁止剤、安定剤、増粘剤、ゲル化剤、難燃剤、酸化防止剤、還元防止剤、酸化剤、還元剤、表面改質剤、乳化剤、消泡剤、分散剤、界面活性剤等が挙げられる。
[Additive]
The ink composition may further contain an additive as an optional component. Examples of additives include polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, antifoaming agents, Examples thereof include a dispersant and a surfactant.
[含有量]
 インク組成物における溶媒の含有量は、種々の塗布方法へ適用することを考慮して定めることができる。例えば、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの割合が、0.1質量%以上となる量が好ましく、0.2質量%以上となる量がより好ましく、0.5質量%以上となる量が更に好ましい。また、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの割合が、20質量%以下となる量が好ましく、15質量%以下となる量がより好ましく、10質量%以下となる量が更に好ましい。
[Content]
The content of the solvent in the ink composition can be determined in consideration of application to various coating methods. For example, the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.5% by mass or more. More preferred is an amount of The content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. .
<有機層>
 一実施形態によれば、有機層は、前記有機エレクトロニクス材料又はインク組成物を用いて形成された層である。有機層は、良好な電荷輸送性を示す。インク組成物を用いることによって、塗布法により有機層を良好かつ簡便に形成できる。塗布方法としては、例えば、スピンコーティング法;キャスト法;浸漬法;凸版印刷、凹版印刷、オフセット印刷、平版印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等の有版印刷法;インクジェット法等の無版印刷法などの公知の方法が挙げられる。塗布法によって有機層を形成する場合、塗布後に得られた有機層(塗布層)を、ホットプレート又はオーブンを用いて乾燥させ、溶媒を除去してもよい。
<Organic layer>
According to one embodiment, the organic layer is a layer formed using the organic electronic material or ink composition. The organic layer exhibits good charge transport properties. By using the ink composition, the organic layer can be satisfactorily and easily formed by a coating method. Examples of the coating method include spin coating method; casting method; dipping method; letterpress printing, intaglio printing, offset printing, planographic printing, letterpress inversion offset printing, screen printing, gravure printing and other plate printing methods; ink jet method, etc. A known method such as a plateless printing method may be used. When the organic layer is formed by a coating method, the organic layer (coating layer) obtained after the coating may be dried using a hot plate or an oven to remove the solvent.
 電荷輸送性ポリマーが重合性官能基を有する場合、光照射、加熱処理等により電荷輸送性ポリマーの重合反応を進行させ、有機層の溶解度を変化させることができる。溶解度を変化させた有機層を積層することで、有機エレクトロニクス素子の多層化を容易に図ることが可能となる。有機層の形成方法については、例えば、国際公開第2010/140553号の記載を参照できる。 When the charge transporting polymer has a polymerizable functional group, the solubility of the organic layer can be changed by proceeding the polymerization reaction of the charge transporting polymer by light irradiation, heat treatment or the like. By laminating organic layers with different solubility, it is possible to easily increase the number of organic electronics elements. For the method for forming the organic layer, for example, the description of WO 2010/140553 can be referred to.
 乾燥後又は硬化後の有機層の厚さは、電荷輸送の効率を向上させる観点から、好ましくは0.1nm以上であり、より好ましくは1nm以上であり、更に好ましくは3nm以上である。また、有機層の厚さは、電気抵抗を小さくする観点から、好ましくは300nm以下であり、より好ましくは200nm以下であり、更に好ましくは100nm以下である。 From the viewpoint of improving the charge transport efficiency, the thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more. In addition, the thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less, from the viewpoint of reducing electrical resistance.
<有機エレクトロニクス素子>
 一実施形態によれば、有機エレクトロニクス素子は、少なくとも一つの前記有機層を有する。有機エレクトロニクス素子として、例えば、有機EL素子、有機光電変換素子、有機トランジスタ等が挙げられる。有機エレクトロニクス素子は、好ましくは、少なくとも一対の電極の間に有機層が配置された構造を有する。
<Organic electronics elements>
According to one embodiment, the organic electronics element has at least one said organic layer. Examples of the organic electronics element include an organic EL element, an organic photoelectric conversion element, and an organic transistor. The organic electronic element preferably has a structure in which an organic layer is disposed between at least a pair of electrodes.
<有機エレクトロルミネセンス素子(有機EL素子)>
 一実施形態によれば、有機EL素子は、少なくとも一つの前記有機層を有する。有機EL素子は、通常、発光層、陽極、陰極、及び基板を備えており、必要に応じて、正孔注入層、電子注入層、正孔輸送層、電子輸送層等の他の機能層を備えている。各層は、蒸着法により形成してもよく、塗布法により形成してもよい。有機EL素子は、好ましくは、前記有機層を発光層又は他の機能層として有し、より好ましくは他の機能層として有し、更に好ましくは正孔注入層及び正孔輸送層の少なくとも一方として有する。
<Organic electroluminescence device (organic EL device)>
According to one embodiment, the organic EL device has at least one organic layer. The organic EL element usually includes a light emitting layer, an anode, a cathode, and a substrate, and other functional layers such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer are provided as necessary. I have. Each layer may be formed by a vapor deposition method or a coating method. The organic EL element preferably has the organic layer as a light emitting layer or other functional layer, more preferably as another functional layer, and more preferably as at least one of a hole injection layer and a hole transport layer. Have.
 図1は、有機EL素子の一実施形態を示す断面模式図である。図1の有機EL素子は、多層構造の素子であり、基板8、陽極2、正孔注入層3及び正孔輸送層6、発光層1、電子輸送層7、電子注入層5、並びに陰極4をこの順に有している。 FIG. 1 is a schematic cross-sectional view showing an embodiment of an organic EL element. The organic EL element of FIG. 1 is an element having a multilayer structure, and includes a substrate 8, an anode 2, a hole injection layer 3 and a hole transport layer 6, a light emitting layer 1, an electron transport layer 7, an electron injection layer 5 and a cathode 4. In this order.
[発光層]
 発光層に用いる材料として、低分子化合物、ポリマー、デンドリマー等の発光材料を使用できる。ポリマーは、溶媒への溶解性が高く、塗布法に適しているため好ましい。発光材料としては、蛍光材料、燐光材料、熱活性化遅延蛍光材料(TADF)等が挙げられる。
[Light emitting layer]
As a material used for the light emitting layer, a light emitting material such as a low molecular compound, a polymer, or a dendrimer can be used. A polymer is preferable because it has high solubility in a solvent and is suitable for a coating method. Examples of the light emitting material include a fluorescent material, a phosphorescent material, a thermally activated delayed fluorescent material (TADF), and the like.
 蛍光材料として、ペリレン、クマリン、ルブレン、キナクリドン、スチルベン、色素レーザー用色素、アルミニウム錯体、これらの誘導体等の低分子化合物;ポリフルオレン、ポリフェニレン、ポリフェニレンビニレン、ポリビニルカルバゾール、フルオレンーベンゾチアジアゾール共重合体、フルオレン-トリフェニルアミン共重合体、これらの誘導体等のポリマー;これらの混合物等が挙げられる。 Fluorescent materials such as perylene, coumarin, rubrene, quinacridone, stilbene, dyes for dye lasers, aluminum complexes, and derivatives thereof; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinyl carbazole, fluorene-benzothiadiazole copolymer , Fluorene-triphenylamine copolymers, polymers thereof such as derivatives thereof, and mixtures thereof.
 燐光材料として、Ir、Pt等の金属を含む金属錯体などを使用できる。Ir錯体としては、例えば、青色発光を行うFIr(pic)(イリジウム(III)ビス[(4,6-ジフルオロフェニル)-ピリジネート-N,C]ピコリネート)、緑色発光を行うIr(ppy)(ファク トリス(2-フェニルピリジン)イリジウム)、赤色発光を行う(btp)Ir(acac)(ビス〔2-(2’-ベンゾ[4,5-α]チエニル)ピリジナート-N,C〕イリジウム(アセチル-アセトネート))、Ir(piq)(トリス(1-フェニルイソキノリン)イリジウム)等が挙げられる。Pt錯体としては、例えば、赤色発光を行うPtOEP(2,3,7,8,12,13,17,18-オクタエチル-21H,23H-フォルフィンプラチナ)等が挙げられる。 As the phosphorescent material, a metal complex containing a metal such as Ir or Pt can be used. Examples of the Ir complex include FIr (pic) that emits blue light (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate), Ir (ppy) 3 that emits green light. (Factris (2-phenylpyridine) iridium), which emits red light (btp) 2 Ir (acac) (bis [2- (2′-benzo [4,5-α] thienyl) pyridinate-N, C 3 ] Iridium (acetyl-acetonate)), Ir (piq) 3 (tris (1-phenylisoquinoline) iridium) and the like. Examples of the Pt complex include PtOEP (2, 3, 7, 8, 12, 13, 17, 18-octaethyl-21H, 23H-formin platinum) that emits red light.
 発光層が燐光材料を含む場合、燐光材料の他に、更にホスト材料を含むことが好ましい。ホスト材料としては、低分子化合物、ポリマー、又はデンドリマーを使用できる。低分子化合物としては、例えば、CBP(4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル)、mCP(1,3-ビス(9-カルバゾリル)ベンゼン)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、これらの誘導体等が、ポリマーとしては、前記有機エレクトロニクス材料、ポリビニルカルバゾール、ポリフェニレン、ポリフルオレン、これらの誘導体等が挙げられる。 In the case where the light emitting layer contains a phosphorescent material, it is preferable to further contain a host material in addition to the phosphorescent material. As the host material, a low molecular compound, a polymer, or a dendrimer can be used. Examples of the low molecular weight compound include CBP (4,4′-bis (9H-carbazol-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), CDBP (4,4′- Examples of the polymer such as bis (carbazol-9-yl) -2,2′-dimethylbiphenyl) and derivatives thereof include the organic electronic materials, polyvinylcarbazole, polyphenylene, polyfluorene, and derivatives thereof.
 熱活性遅延蛍光材料としては、例えば、PIC-TRZ(2-biphenyl-4,6-bis(12-phenylindolo[2,3-a]carbazol-11-yl)-1,3,5-triazine)、CC2TA(2,4-bis{3-(9H-carbazol-9-yl)-9H-carbazol-9-yl}-6-phenyl-1,3,5-triazine)、CZ-PS(9,9'-(4,4'-sulfonylbis(4,1-phenylene))bis(3,6-di-tert-butyl-9H-carbazole))、4CzPN(3,4,5,6-tetra(9H-carbazol-9-yl)phthalonitrile)、HAP-3TPA(4,4',4''-(1,3,3a1,4,6,7,9-heptaazaphenalene-2,5,8-triyl)tris(N,N-bis(4-(tert-butyl)phenyl)aniline))等の化合物が挙げられる。 Examples of the thermally active delayed fluorescent material include PIC-TRZ (2-biphenyl-4,6-bis (12-phenylindolo [2,3-a] carbazol-11-yl) -1,3,5-triazine), CC2TA (2,4-bis {3- (9H-carbazol-9-yl) -9H-carbazol-9-yl} -6-phenyl-1,3,5-triazine), CZ-PS (9,9 ' -(4,4'-sulfonylbis (4,1-phenylene)) bis (3,6-di-tert-butyl-9H-carbazole)), 4CzPN (3,4,5,6-tetra (9H-carbazol- 9-yl) phthalonitrile), HAP-3TPA (4,4 ', 4' '-(1,3,3a1,4,6,7,9-heptaazaphenalene-2,5,8-triyl) tris (N, N -bis (4- (tert-butyl) phenyl) aniline)) and the like.
[正孔注入層、正孔輸送層]
 前記有機層を、正孔注入層及び正孔輸送層の少なくとも一方として使用することが好ましい。上述のとおり、有機エレクトロニクス材料を含むインク組成物を用いることにより、これらの層を容易に形成することができる。
[Hole injection layer, hole transport layer]
The organic layer is preferably used as at least one of a hole injection layer and a hole transport layer. As described above, these layers can be easily formed by using an ink composition containing an organic electronic material.
 有機EL素子が、前記有機層を正孔注入層として有し、更に正孔輸送層を有する場合、正孔輸送層には公知の材料を使用できる。また、有機EL素子が、前記有機層を正孔輸送層として有し、更に正孔注入層を有する場合、正孔注入層には公知の材料を使用できる。公知の材料として、例えば、芳香族アミン系化合物(例えば、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)等の芳香族ジアミン)、フタロシアニン系化合物、チオフェン系化合物(例えば、ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸塩)(PEDOT:PSS)等のチオフェン系導電性ポリマー)などが挙げられる。 When the organic EL element has the organic layer as a hole injection layer and further has a hole transport layer, a known material can be used for the hole transport layer. Moreover, when an organic EL element has the said organic layer as a positive hole transport layer and also has a positive hole injection layer, a well-known material can be used for a positive hole injection layer. Known materials include, for example, aromatic amine compounds (eg, aromatic diamines such as N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (α-NPD)), phthalocyanines And thiophene compounds (for example, poly (3,4-ethylenedioxythiophene): thiophene conductive polymer such as poly (4-styrenesulfonate) (PEDOT: PSS)), and the like.
 正孔輸送層が溶解度を変化させた有機層である場合、その上層にインク組成物を用いて発光層を容易に形成することが可能である。この場合、重合開始剤は、正孔輸送層である有機層に含有させても、又は、正孔輸送層の下層にある有機層に含有させてもよい。 In the case where the hole transport layer is an organic layer whose solubility is changed, it is possible to easily form a light emitting layer on the upper layer using an ink composition. In this case, the polymerization initiator may be contained in the organic layer that is the hole transport layer, or may be contained in the organic layer under the hole transport layer.
[電子輸送層、電子注入層]
 電子輸送層及び電子注入層に用いる材料としては、例えば、フェナントロリン誘導体、ビピリジン誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレン、ペリレンなどの縮合環テトラカルボン酸無水物、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、アルミニウム錯体等が挙げられる。また、前記有機エレクトロニクス材料も使用できる。
[Electron transport layer, electron injection layer]
Examples of materials used for the electron transport layer and the electron injection layer include phenanthroline derivatives, bipyridine derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, condensed ring tetracarboxylic anhydrides such as naphthalene and perylene, carbodiimides, and the like. Fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, quinoxaline derivatives, aluminum complexes, and the like. The organic electronic material can also be used.
[陰極]
 陰極材料としては、例えば、Li、Ca、Mg、Al、In、Cs、Ba、Mg/Ag、LiF、CsF等の金属又は金属合金が用いられる。
[cathode]
As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
[陽極]
 陽極材料としては、例えば、金属(例えば、Au)又は導電性を有する他の材料が用いられる。他の材料として、例えば、酸化物(例えば、ITO:酸化インジウム/酸化錫)、導電性高分子(例えば、ポリチオフェン-ポリスチレンスルホン酸混合物(PEDOT:PSS))が挙げられる。
[anode]
As the anode material, for example, a metal (for example, Au) or another material having conductivity is used. Examples of other materials include oxides (for example, ITO: indium oxide / tin oxide) and conductive polymers (for example, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).
[基板]
 基板として、ガラス、プラスチック等を使用できる。基板は、透明であることが好ましく、また、フレキシブル性を有することが好ましい。石英ガラス、樹脂フィルム等が好ましく用いられる。
[substrate]
As the substrate, glass, plastic or the like can be used. The substrate is preferably transparent and preferably has flexibility. Quartz glass, resin film and the like are preferably used.
 樹脂フィルムとしては、光透過性樹脂フィルムが好ましい。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネート等からなるフィルムが挙げられる。 As the resin film, a light transmissive resin film is preferable. Examples of the resin film include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propionate. Can be mentioned.
 樹脂フィルムを用いる場合、水蒸気、酸素等の透過を抑制するために、樹脂フィルムへ酸化珪素、窒化珪素等の無機物をコーティングして用いてもよい。 In the case of using a resin film, an inorganic substance such as silicon oxide or silicon nitride may be coated on the resin film in order to suppress permeation of water vapor, oxygen and the like.
[封止]
 有機EL素子は、外気の影響を低減させて長寿命化させるため、封止されていてもよい。封止に用いる材料としては、ガラス、エポキシ樹脂、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のプラスチックフィルム、又は酸化珪素、窒化ケイ素等の無機物を用いることができるが、これらに限定されることはない。封止の方法も、特に限定されず、公知の方法で行うことができる。
[Sealing]
The organic EL element may be sealed in order to reduce the influence of outside air and extend the life. As a material used for sealing, glass, epoxy resin, acrylic resin, polyethylene terephthalate, polyethylene naphthalate and other plastic films, or inorganic materials such as silicon oxide and silicon nitride can be used. Absent. The sealing method is not particularly limited, and can be performed by a known method.
[発光色]
 有機EL素子の発光色は特に限定されるものではない。白色の有機EL素子は、家庭用照明、車内照明、時計又は液晶のバックライト等の各種照明器具に用いることができるため好ましい。
[Luminescent color]
The emission color of the organic EL element is not particularly limited. The white organic EL element is preferable because it can be used for various lighting devices such as home lighting, interior lighting, a clock, or a liquid crystal backlight.
 白色の有機EL素子を形成する方法としては、複数の発光材料を用いて複数の発光色を同時に発光させて混色させる方法を用いることができる。複数の発光色の組み合わせとしては、特に限定されないが、青色、緑色及び赤色の三つの発光極大波長を含有する組み合わせ、青色と黄色、黄緑色と橙色等の二つの発光極大波長を含有する組み合わせなどが挙げられる。発光色の制御は、発光材料の種類と量の調整により行うことができる。 As a method of forming a white organic EL element, a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used. A combination of a plurality of emission colors is not particularly limited. A combination containing three emission maximum wavelengths of blue, green and red, a combination containing two emission maximum wavelengths such as blue and yellow, yellow green and orange, etc. Is mentioned. The emission color can be controlled by adjusting the type and amount of the light emitting material.
<表示素子、照明装置、表示装置>
 一実施形態によれば、表示素子は、前記有機EL素子を備えている。例えば、赤、緑及び青(RGB)の各画素に対応する素子として、有機EL素子を用いることで、カラーの表示素子が得られる。画像の形成方法には、マトリックス状に配置した電極でパネルに配列された個々の有機EL素子を直接駆動する単純マトリックス型と、各素子に薄膜トランジスタを配置して駆動するアクティブマトリックス型とがある。
<Display element, lighting device, display device>
According to one embodiment, the display element includes the organic EL element. For example, a color display element can be obtained by using an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB). Image forming methods include a simple matrix type in which individual organic EL elements arranged in a panel are directly driven by electrodes arranged in a matrix, and an active matrix type in which a thin film transistor is arranged and driven in each element.
 また、一実施形態によれば、照明装置は、本発明の実施形態の有機EL素子を備えている。更に、一実施形態によれば、表示装置は、照明装置と、表示手段として液晶素子とを備えている。例えば、表示装置は、バックライトとして前記照明装置を用い、表示手段として公知の液晶素子を用いた表示装置、すなわち液晶表示装置とすることができる。 Moreover, according to one embodiment, the lighting device includes the organic EL element of the embodiment of the present invention. Furthermore, according to one embodiment, the display device includes a lighting device and a liquid crystal element as a display unit. For example, the display device can be a display device using the illumination device as a backlight and a known liquid crystal element as a display means, that is, a liquid crystal display device.
<実施形態の例>
 本発明の好ましい実施形態の例を以下に挙げる。本発明の実施形態は以下の例に限定されない。
<Example of Embodiment>
Examples of preferred embodiments of the present invention are given below. Embodiments of the present invention are not limited to the following examples.
 [1] 分岐構造を有し、かつ、下記式(1)で表される部分構造を含む構造単位を有する電荷輸送性ポリマー又はオリゴマーを含有する、有機エレクトロニクス材料。
Figure JPOXMLDOC01-appb-C000017
(式(1)において、Raは、それぞれ独立に、水素原子又は置換基を表す。Rbは、それぞれ独立に、水素原子、置換基、又は、他の構造との結合部位を表し、Rbの少なくとも一つは他の構造との結合部位である。)
[1] An organic electronic material containing a charge transporting polymer or oligomer having a branched structure and having a structural unit including a partial structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000017
(In the formula (1), each Ra independently represents a hydrogen atom or a substituent. Each Rb independently represents a hydrogen atom, a substituent, or a bonding site with another structure, and One is the binding site with other structures.)
 [2] 前記電荷輸送性ポリマー又はオリゴマーが、正孔輸送性を有する構造単位を更に有し、
 前記正孔輸送性を有する構造単位が、置換又は非置換の芳香族アミン構造、置換又は非置換のカルバゾール構造、置換又は非置換のチオフェン構造、及び、置換又は非置換のフルオレン構造からなる群から選ばれる少なくとも一種の部分構造を含む構造単位を含む、前記[1]に記載の有機エレクトロニクス材料。
 [3] 前記電荷輸送性ポリマー又はオリゴマーが、前記式(1)で表される部分構造を含む構造単位を有するモノマーと、正孔輸送性を有する構造単位を有するモノマーとを含むモノマー混合物の共重合体である、前記[1]又は[2]に記載の有機エレクトロニクス材料。
[2] The charge transporting polymer or oligomer further has a structural unit having a hole transporting property,
The structural unit having hole transportability is a group consisting of a substituted or unsubstituted aromatic amine structure, a substituted or unsubstituted carbazole structure, a substituted or unsubstituted thiophene structure, and a substituted or unsubstituted fluorene structure. The organic electronic material according to [1], including a structural unit including at least one selected partial structure.
[3] A co-polymer of a monomer mixture in which the charge transporting polymer or oligomer includes a monomer having a structural unit including the partial structure represented by the formula (1) and a monomer having a structural unit having a hole transporting property. The organic electronic material according to [1] or [2], which is a polymer.
 [4] 前記電荷輸送性ポリマー又はオリゴマーが、3価以上の構造単位と、2価の構造単位と、1価の構造単位とを有し、前記2価の構造単位が、前記式(1)で表される部分構造を含む構造単位を含む、前記[1]~[3]のいずれか一項に記載の有機エレクトロニクス材料。
 [5] 前記電荷輸送性ポリマー又はオリゴマーが、3価以上の構造単位と1価の構造単位とを少なくとも有し、前記3価以上の構造単位が、前記式(1)で表される部分構造を含む構造単位を含む、前記[1]~[4]のいずれか一項に記載の有機エレクトロニクス材料。
 [6] 前記電荷輸送性ポリマー又はオリゴマーが、3価以上の構造単位と1価の構造単位とを少なくとも有し、前記1価の構造単位が、前記式(1)で表される部分構造を含む構造単位を含む、前記[1]~[5]のいずれか一項に記載の有機エレクトロニクス材料。
[4] The charge transporting polymer or oligomer has a trivalent or higher valent structural unit, a divalent structural unit, and a monovalent structural unit, and the divalent structural unit is represented by the formula (1). The organic electronic material according to any one of [1] to [3], comprising a structural unit including a partial structure represented by the formula:
[5] The charge transporting polymer or oligomer has at least a trivalent or higher structural unit and a monovalent structural unit, and the trivalent or higher structural unit is a partial structure represented by the formula (1). The organic electronic material according to any one of the above [1] to [4], comprising a structural unit containing
[6] The charge transporting polymer or oligomer has at least a trivalent or higher valent structural unit and a monovalent structural unit, and the monovalent structural unit is a partial structure represented by the formula (1). The organic electronic material according to any one of [1] to [5], including a structural unit.
 [7] 前記電荷輸送性ポリマー又はオリゴマーが、重合性官能基を更に有する、前記[1]~[6]のいずれか一項に記載の有機エレクトロニクス材料。
 [8] 重合開始剤を更に含有する、前記[7]に記載の有機エレクトロニクス材料。
 [9] 前記[1]~[8]のいずれか一項に記載の有機エレクトロニクス材料と、溶媒とを含有する、インク組成物。
 [10] 前記[1]~[8]のいずれか一項に記載の有機エレクトロニクス材料、又は、前記[9]に記載のインク組成物を用いて形成された、有機層。
[7] The organic electronic material according to any one of [1] to [6], wherein the charge transporting polymer or oligomer further has a polymerizable functional group.
[8] The organic electronic material according to [7], further including a polymerization initiator.
[9] An ink composition comprising the organic electronic material according to any one of [1] to [8] and a solvent.
[10] An organic layer formed using the organic electronic material according to any one of [1] to [8] or the ink composition according to [9].
 [11] 前記[10]に記載の有機層を少なくとも一つ備えた、有機エレクトロニクス素子。
 [12] 前記[10]に記載の有機層を少なくとも一つ備えた、有機エレクトロルミネセンス素子。
 [13] 前記[12]に記載の有機エレクトロルミネセンス素子を備えた、表示素子。
 [14] 前記[12]に記載の有機エレクトロルミネセンス素子を備えた、照明装置。
 [15] 前記[14]に記載の照明装置と、表示手段として液晶素子とを備えた、表示装置。
[11] An organic electronic device comprising at least one organic layer according to [10].
[12] An organic electroluminescence device comprising at least one organic layer according to [10].
[13] A display device comprising the organic electroluminescence device according to [12].
[14] An illumination device comprising the organic electroluminescence element according to [12].
[15] A display device comprising the illumination device according to [14] and a liquid crystal element as display means.
 以下に、実施例により本発明を更に具体的に説明する。本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.
<Pd触媒の調製>
 窒素雰囲気下のグローブボックス中で、室温下、サンプル管にトリス(ジベンジリデンアセトン)ジパラジウム(73.2mg、80μmol)を秤取り、アニソール(15ml)を加え、30分間撹拌した。同様に、サンプル管にトリス(t-ブチル)ホスフィン(129.6mg、640μmol)を秤取り、アニソール(5ml)を加え、5分間撹拌した。これらの溶液を混合し、室温で30分間撹拌して、触媒の溶液(以下、「Pd触媒溶液」とも記す。)を得た。触媒の調製において、全ての溶媒は、30分間以上、窒素バブルにより脱気した後に使用した。
<Preparation of Pd catalyst>
In a glove box under a nitrogen atmosphere, tris (dibenzylideneacetone) dipalladium (73.2 mg, 80 μmol) was weighed into a sample tube at room temperature, anisole (15 ml) was added, and the mixture was stirred for 30 minutes. Similarly, tris (t-butyl) phosphine (129.6 mg, 640 μmol) was weighed in a sample tube, anisole (5 ml) was added, and the mixture was stirred for 5 minutes. These solutions were mixed and stirred at room temperature for 30 minutes to obtain a catalyst solution (hereinafter also referred to as “Pd catalyst solution”). In preparing the catalyst, all solvents were used after degassing with nitrogen bubbles for more than 30 minutes.
<電荷輸送性ポリマー1の合成>
 三口丸底フラスコに、下記モノマーL-1(5.0mmol)、下記モノマーB-1(2.0mmol)、下記モノマーT-1(2.0mmol)、下記モノマーT-2(2.0mmol)、及びアニソール(20mL)を加え、更に前記Pd触媒溶液(7.5mL)を加えた。30分間撹拌した後、10%テトラエチルアンモニウム水酸化物水溶液(20mL)を加えた。全ての溶媒は30分間以上、窒素バブルにより脱気した後に使用した。得られた混合物を2時間、加熱還流した。ここまでの全ての操作は窒素気流下で行った。
<Synthesis of Charge Transporting Polymer 1>
In a three-necked round bottom flask, the following monomer L-1 (5.0 mmol), the following monomer B-1 (2.0 mmol), the following monomer T-1 (2.0 mmol), the following monomer T-2 (2.0 mmol), And anisole (20 mL) were added, and the Pd catalyst solution (7.5 mL) was further added. After stirring for 30 minutes, 10% tetraethylammonium hydroxide aqueous solution (20 mL) was added. All solvents were used after being degassed with nitrogen bubbles for more than 30 minutes. The resulting mixture was heated to reflux for 2 hours. All the operations so far were performed under a nitrogen stream.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 反応終了後、有機層を水洗し、有機層をメタノール-水(9:1)に注いだ。生じた沈殿を吸引ろ過により回収し、メタノール-水(9:1)で洗浄した。得られた沈殿をトルエンに溶解し、メタノールから再沈殿した。得られた沈殿を吸引ろ過により回収し、トルエンに溶解し、金属吸着剤(Strem Chemicals社製「Triphenylphosphine, polymer-bound on styrene-divinylbenzene copolymer」、沈殿物100mgに対して200mg)を加えて、一晩撹拌した。撹拌終了後、金属吸着剤と不溶物とをろ過して取り除き、ろ液をロータリーエバポレーターで濃縮した。濃縮液をトルエンに溶解した後、メタノール-アセトン(8:3)から再沈殿した。生じた沈殿を吸引ろ過により回収し、メタノール-アセトン(8:3)で洗浄した。得られた沈殿を真空乾燥し、電荷輸送性ポリマー1を得た。 After completion of the reaction, the organic layer was washed with water, and the organic layer was poured into methanol-water (9: 1). The resulting precipitate was collected by suction filtration and washed with methanol-water (9: 1). The resulting precipitate was dissolved in toluene and reprecipitated from methanol. The resulting precipitate was collected by suction filtration, dissolved in toluene, and a metal adsorbent (“Triphenylphosphine, polymer-bound styrene-divinylbenzene polymer” manufactured by Strem Chemicals, 200 mg for 100 mg of the precipitate) was added. Stir overnight. After completion of the stirring, the metal adsorbent and insoluble matter were removed by filtration, and the filtrate was concentrated with a rotary evaporator. The concentrate was dissolved in toluene and then reprecipitated from methanol-acetone (8: 3). The resulting precipitate was collected by suction filtration and washed with methanol-acetone (8: 3). The obtained precipitate was vacuum-dried to obtain a charge transporting polymer 1.
 得られた電荷輸送性ポリマー1の数平均分子量は5,600、重量平均分子量は40,200であった。電荷輸送性ポリマー1は、構造単位L-1、構造単位B-1、構造単位T-1、及び構造単位T-2を有し、それぞれの構造単位の割合(モル比)は、45.5%、18.2%、18.2%、および18.2%であった。 The number average molecular weight of the obtained charge transporting polymer 1 was 5,600, and the weight average molecular weight was 40,200. The charge transporting polymer 1 has a structural unit L-1, a structural unit B-1, a structural unit T-1, and a structural unit T-2, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
 数平均分子量及び重量平均分子量は、溶離液にテトラヒドロフラン(THF)を用いたGPC(ポリスチレン換算)により測定した。測定条件は以下のとおりである。
 送液ポンプ    :L-6050 株式会社日立ハイテクノロジーズ
 UV-Vis検出器:L-3000 株式会社日立ハイテクノロジーズ
 検出波長     :254nm
 カラム      :Gelpack(登録商標) GL-A160S/GL-A150S 日立化成株式会社
 溶離液      :THF(HPLC用、安定剤を含まない) 和光純薬工業株式会社
 流速       :1mL/min
 カラム温度    :室温(25℃)
 分子量標準物質  :標準ポリスチレン(PStQuick B/C/D) 東ソー株式会社
The number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent. The measurement conditions are as follows.
Liquid feed pump: L-6050 Hitachi High-Technologies Corporation UV-Vis detector: L-3000 Hitachi High-Technologies Corporation Detection wavelength: 254 nm
Column: Gelpack (registered trademark) GL-A160S / GL-A150S Hitachi Chemical Co., Ltd. Eluent: THF (for HPLC, without stabilizer) Wako Pure Chemical Industries, Ltd. Flow rate: 1 mL / min
Column temperature: Room temperature (25 ° C)
Molecular weight reference material: Standard polystyrene (PStQuick B / C / D) Tosoh Corporation
<電荷輸送性ポリマー2の合成>
 三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-1(1.8mmol)、下記モノマーB-2(0.2mmol)、前記モノマーT-1(2.0mmol)、下記モノマーT-3(2.0mmol)、及びアニソール(20mL)を加え、更に前記Pd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー2の合成を行った。
<Synthesis of charge transporting polymer 2>
In a three-necked round bottom flask, the monomer L-1 (5.0 mmol), the monomer B-1 (1.8 mmol), the following monomer B-2 (0.2 mmol), the monomer T-1 (2.0 mmol), The following monomer T-3 (2.0 mmol) and anisole (20 mL) were added, and the Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 2 was synthesized in the same manner as the synthesis of the charge transporting polymer 1.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 得られた電荷輸送性ポリマー2の数平均分子量は9,400、重量平均分子量は28,100であった。電荷輸送性ポリマー2は、構造単位L-1、構造単位B-1、構造単位B-2、構造単位T-1、及び構造単位T-3を有し、それぞれの構造単位の割合(モル比)は、45.5%、16.4%、1.8%、18.2%、及び18.2%であった。 The number average molecular weight of the obtained charge transporting polymer 2 was 9,400, and the weight average molecular weight was 28,100. The charge transporting polymer 2 has a structural unit L-1, a structural unit B-1, a structural unit B-2, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 16.4%, 1.8%, 18.2%, and 18.2%.
<電荷輸送性ポリマー3の合成>
 三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-1(1.0mmol)、前記モノマーB-2(1.0mmol)、前記モノマーT-1(2.0mmol)、前記モノマーT-3(2.0mmol)、及びアニソール(20mL)を加え、更に前記Pd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー3の合成を行った。
<Synthesis of charge transporting polymer 3>
In a three-necked round bottom flask, the monomer L-1 (5.0 mmol), the monomer B-1 (1.0 mmol), the monomer B-2 (1.0 mmol), the monomer T-1 (2.0 mmol), The monomer T-3 (2.0 mmol) and anisole (20 mL) were added, and the Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 3 was synthesized in the same manner as the synthesis of the charge transporting polymer 1.
 得られた電荷輸送性ポリマー3の数平均分子量は11,000、重量平均分子量は32,000であった。電荷輸送性ポリマー3は、構造単位L-1、構造単位B-1、構造単位B-2、構造単位T-1、及び構造単位T-3を有し、それぞれの構造単位の割合(モル比)は、45.5%、9.1%、9.1%、18.2%、及び18.2%であった。 The number average molecular weight of the obtained charge transporting polymer 3 was 11,000, and the weight average molecular weight was 32,000. The charge transporting polymer 3 has a structural unit L-1, a structural unit B-1, a structural unit B-2, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 9.1%, 9.1%, 18.2%, and 18.2%.
<電荷輸送性ポリマー4の合成>
 三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、前記モノマーT-1(2.0mmol)、前記モノマーT-3(2.0mmol)、及びアニソール(20mL)を加え、更に前記Pd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー4の合成を行った。
<Synthesis of Charge Transporting Polymer 4>
In a three-necked round bottom flask, the monomer L-1 (5.0 mmol), the monomer B-2 (2.0 mmol), the monomer T-1 (2.0 mmol), the monomer T-3 (2.0 mmol), And anisole (20 mL) were added, and the Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 4 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
 得られた電荷輸送性ポリマー4の数平均分子量は10,200、重量平均分子量は31,700であった。電荷輸送性ポリマー4は、構造単位L-1、構造単位B-2、構造単位T-1、及び構造単位T-3を有し、それぞれの構造単位の割合(モル比)は、45.5%、18.2%、18.2%、及び18.2%であった。 The number average molecular weight of the obtained charge transporting polymer 4 was 10,200, and the weight average molecular weight was 31,700. The charge transporting polymer 4 has a structural unit L-1, a structural unit B-2, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
<電荷輸送性ポリマー5の合成>
 三口丸底フラスコに、下記モノマーL-2(5.0mmol)、前記モノマーB-1(2.0mmol)、前記モノマーT-1(2.0mmol)、前記モノマーT-3(2.0mmol)、及びアニソール(20mL)を加え、更に前記Pd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー5の合成を行った。
<Synthesis of charge transporting polymer 5>
In a three-necked round bottom flask, the following monomer L-2 (5.0 mmol), monomer B-1 (2.0 mmol), monomer T-1 (2.0 mmol), monomer T-3 (2.0 mmol), And anisole (20 mL) were added, and the Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 5 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 得られた電荷輸送性ポリマー5の数平均分子量は12,100、重量平均分子量は45,000であった。電荷輸送性ポリマー5は、構造単位L-2、構造単位B-1、構造単位T-1、及び構造単位T-3を有し、それぞれの構造単位の割合(モル比)は、45.5%、18.2%、18.2%、及び18.2%であった。 The number average molecular weight of the obtained charge transporting polymer 5 was 12,100, and the weight average molecular weight was 45,000. The charge transporting polymer 5 has a structural unit L-2, a structural unit B-1, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
(電荷輸送性ポリマー6の合成)
 三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-1(2.0mmol)、前記モノマーT-1(2.0mmol)、前記モノマーT-3(2.0mmol)、及びアニソール(20mL)を加え、更に前記Pd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー6の合成を行った。
(Synthesis of charge transporting polymer 6)
In a three-necked round bottom flask, the monomer L-1 (5.0 mmol), the monomer B-1 (2.0 mmol), the monomer T-1 (2.0 mmol), the monomer T-3 (2.0 mmol), And anisole (20 mL) were added, and the Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 6 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
 得られた電荷輸送性ポリマー6の数平均分子量は10,000、重量平均分子量は47,600であった。電荷輸送性ポリマー6は、構造単位L-1、構造単位B-1、構造単位T-1、及び構造単位T-3を有し、それぞれの構造単位の割合(モル比)は、45.5%、18.2%、18.2%、及び18.2%であった。 The number average molecular weight of the obtained charge transporting polymer 6 was 10,000, and the weight average molecular weight was 47,600. The charge transporting polymer 6 has a structural unit L-1, a structural unit B-1, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
<電荷輸送性ポリマー7の合成>
 三口丸底フラスコに、下記モノマーL-3(5.0mmol)、前記モノマーB-1(2.0mmol)、前記モノマーT-1(2.0mmol)、前記モノマーT-3(2.0mmol)、及びアニソール(20mL)を加え、更に前記Pd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー7の合成を行った。
<Synthesis of charge transporting polymer 7>
In a three-necked round bottom flask, the following monomer L-3 (5.0 mmol), monomer B-1 (2.0 mmol), monomer T-1 (2.0 mmol), monomer T-3 (2.0 mmol), And anisole (20 mL) were added, and the Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 7 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 得られた電荷輸送性ポリマー7の数平均分子量は10,300、重量平均分子量は32,600であった。電荷輸送性ポリマー7は、構造単位L-3、構造単位B-1、構造単位T-1、及び構造単位T-3を有し、それぞれの構造単位の割合(モル比)は、45.5%、18.2%、18.2%、及び18.2%であった。 The number average molecular weight of the obtained charge transporting polymer 7 was 10,300, and the weight average molecular weight was 32,600. The charge transporting polymer 7 has a structural unit L-3, a structural unit B-1, a structural unit T-1, and a structural unit T-3, and the ratio (molar ratio) of each structural unit is 45.5. %, 18.2%, 18.2%, and 18.2%.
<電荷輸送性評価用素子の作製>
 大気雰囲気下で、各電荷輸送性ポリマー(10.0mg)、下記電子受容性化合物1(0.5mg)、及びトルエン(1.5mL)を混合し、インク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、前記インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で210℃、30分間加熱して硬化させ、有機層(100nm)を形成した。
<Fabrication of charge transportability evaluation element>
Under an air atmosphere, each charge transporting polymer (10.0 mg), the following electron-accepting compound 1 (0.5 mg), and toluene (1.5 mL) were mixed to prepare an ink composition. The ink composition was spin-coated on a glass substrate patterned with ITO at a width of 1.6 mm at a rotation speed of 3,000 min −1 , and then cured by heating on a hot plate at 210 ° C. for 30 minutes to form an organic layer ( 100 nm).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 有機層を有する基板を真空蒸着機中に移し、有機層上に、アルミニウムを蒸着法で成膜(100nm)し、封止処理を行って電荷輸送性評価用素子を作製した。 The substrate having the organic layer was transferred into a vacuum vapor deposition machine, and aluminum was deposited on the organic layer by a vapor deposition method (100 nm), followed by sealing treatment to produce a charge transportability evaluation element.
 電荷輸送性評価用素子のITOを陽極、アルミニウムを陰極として電圧を印加した。0.1V及び1.5Vの電圧をそれぞれ印加した時の電流密度(A/cm)を表1に示す。 A voltage was applied using the ITO of the charge transportability evaluation element as an anode and aluminum as a cathode. Table 1 shows current densities (A / cm 3 ) when voltages of 0.1 V and 1.5 V were applied, respectively.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表1に示したとおり、本発明の実施形態である有機エレクトロニクス材料によれば、良好な電荷輸送性を示す有機層が得られた。 As shown in Table 1, according to the organic electronic material which is an embodiment of the present invention, an organic layer showing good charge transportability was obtained.
 以上に、実施例を用いて本発明の実施形態の効果を示した。実施例において使用した有機エレクトロニクス材料以外にも、前記で説明した、構造単位(1)を有する電荷輸送性ポリマーを含有する有機エレクトロニクス材料を用い、良好な電荷輸送性を示す有機層を得ることが可能である。良好な電荷輸送性を示す有機層を使用することで、駆動電圧の低い有機エレクトロニクス素子を得ることが可能である。 As mentioned above, the effect of the embodiment of the present invention was shown using the example. In addition to the organic electronic materials used in the examples, the organic layer containing the charge transporting polymer having the structural unit (1) described above can be used to obtain an organic layer exhibiting good charge transportability. Is possible. By using an organic layer exhibiting good charge transportability, it is possible to obtain an organic electronics element with a low driving voltage.
 1 発光層
 2 陽極
 3 正孔注入層
 4 陰極
 5 電子注入層
 6 正孔輸送層
 7 電子輸送層
 8 基板
DESCRIPTION OF SYMBOLS 1 Light emitting layer 2 Anode 3 Hole injection layer 4 Cathode 5 Electron injection layer 6 Hole transport layer 7 Electron transport layer 8 Substrate

Claims (15)

  1.  分岐構造を有し、かつ、下記式(1)で表される部分構造を含む構造単位を有する電荷輸送性ポリマー又はオリゴマーを含有する、有機エレクトロニクス材料。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Raは、それぞれ独立に、水素原子又は置換基を表す。Rbは、それぞれ独立に、水素原子、置換基、又は、他の構造との結合部位を表し、Rbの少なくとも一つは他の構造との結合部位である。)
    An organic electronic material comprising a charge transporting polymer or oligomer having a branched structure and having a structural unit including a partial structure represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), each Ra independently represents a hydrogen atom or a substituent. Each Rb independently represents a hydrogen atom, a substituent, or a bonding site with another structure, and One is the binding site with other structures.)
  2.  前記電荷輸送性ポリマー又はオリゴマーが、正孔輸送性を有する構造単位を更に有し、
     前記正孔輸送性を有する構造単位が、置換又は非置換の芳香族アミン構造、置換又は非置換のカルバゾール構造、置換又は非置換のチオフェン構造、及び、置換又は非置換のフルオレン構造からなる群から選ばれる少なくとも一種の部分構造を含む構造単位を含む、請求項1に記載の有機エレクトロニクス材料。
    The charge transporting polymer or oligomer further has a structural unit having a hole transporting property,
    The structural unit having hole transportability is a group consisting of a substituted or unsubstituted aromatic amine structure, a substituted or unsubstituted carbazole structure, a substituted or unsubstituted thiophene structure, and a substituted or unsubstituted fluorene structure. The organic electronic material of Claim 1 containing the structural unit containing at least 1 type of partial structure chosen.
  3.  前記電荷輸送性ポリマー又はオリゴマーが、前記式(1)で表される部分構造を含む構造単位を有するモノマーと、正孔輸送性を有する構造単位を有するモノマーとを含むモノマー混合物の共重合体である、請求項1又は2に記載の有機エレクトロニクス材料。 The charge transporting polymer or oligomer is a copolymer of a monomer mixture containing a monomer having a structural unit including the partial structure represented by the formula (1) and a monomer having a structural unit having a hole transporting property. The organic electronic material according to claim 1 or 2.
  4.  前記電荷輸送性ポリマー又はオリゴマーが、3価以上の構造単位と、2価の構造単位と、1価の構造単位とを有し、前記2価の構造単位が、前記式(1)で表される部分構造を含む構造単位を含む、請求項1~3のいずれか一項に記載の有機エレクトロニクス材料。 The charge transporting polymer or oligomer has a trivalent or higher valent structural unit, a divalent structural unit, and a monovalent structural unit, and the divalent structural unit is represented by the formula (1). The organic electronic material according to any one of claims 1 to 3, comprising a structural unit including a partial structure.
  5.  前記電荷輸送性ポリマー又はオリゴマーが、3価以上の構造単位と1価の構造単位とを少なくとも有し、前記3価以上の構造単位が、前記式(1)で表される部分構造を含む構造単位を含む、請求項1~4のいずれか一項に記載の有機エレクトロニクス材料。 The charge transporting polymer or oligomer has at least a trivalent or higher structural unit and a monovalent structural unit, and the trivalent or higher structural unit includes a partial structure represented by the formula (1). The organic electronic material according to any one of claims 1 to 4, comprising a unit.
  6.  前記電荷輸送性ポリマー又はオリゴマーが、3価以上の構造単位と1価の構造単位とを少なくとも有し、前記1価の構造単位が、前記式(1)で表される部分構造を含む構造単位を含む、請求項1~5のいずれか一項に記載の有機エレクトロニクス材料。 The charge transporting polymer or oligomer has at least a trivalent or higher valent structural unit and a monovalent structural unit, and the monovalent structural unit includes a partial structure represented by the formula (1). The organic electronic material according to any one of claims 1 to 5, comprising
  7.  前記電荷輸送性ポリマー又はオリゴマーが、重合性官能基を更に有する、請求項1~6のいずれか一項に記載の有機エレクトロニクス材料。 The organic electronic material according to any one of claims 1 to 6, wherein the charge transporting polymer or oligomer further has a polymerizable functional group.
  8.  重合開始剤を更に含有する、請求項7に記載の有機エレクトロニクス材料。 The organic electronic material according to claim 7, further comprising a polymerization initiator.
  9.  請求項1~8のいずれか一項に記載の有機エレクトロニクス材料と、溶媒とを含有する、インク組成物。 An ink composition comprising the organic electronic material according to any one of claims 1 to 8 and a solvent.
  10.  請求項1~8のいずれか一項に記載の有機エレクトロニクス材料、又は、請求項9に記載のインク組成物を用いて形成された、有機層。 An organic layer formed using the organic electronic material according to any one of claims 1 to 8 or the ink composition according to claim 9.
  11.  請求項10に記載の有機層を少なくとも一つ備えた、有機エレクトロニクス素子。 An organic electronic device comprising at least one organic layer according to claim 10.
  12.  請求項10に記載の有機層を少なくとも一つ備えた、有機エレクトロルミネセンス素子。 An organic electroluminescence device comprising at least one organic layer according to claim 10.
  13.  請求項12に記載の有機エレクトロルミネセンス素子を備えた、表示素子。 A display element comprising the organic electroluminescence element according to claim 12.
  14.  請求項12に記載の有機エレクトロルミネセンス素子を備えた、照明装置。 An illumination device comprising the organic electroluminescence element according to claim 12.
  15.  請求項14に記載の照明装置と、表示手段として液晶素子とを備えた、表示装置。 A display device comprising the illumination device according to claim 14 and a liquid crystal element as display means.
PCT/JP2018/009777 2018-03-13 2018-03-13 Organic electronic material and organic electronic element WO2019175979A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020505997A JP7131606B2 (en) 2018-03-13 2018-03-13 Organic electronic materials and organic electronic elements
PCT/JP2018/009777 WO2019175979A1 (en) 2018-03-13 2018-03-13 Organic electronic material and organic electronic element
TW108107356A TW201938762A (en) 2018-03-13 2019-03-06 Organic electronic material and organic electronic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009777 WO2019175979A1 (en) 2018-03-13 2018-03-13 Organic electronic material and organic electronic element

Publications (1)

Publication Number Publication Date
WO2019175979A1 true WO2019175979A1 (en) 2019-09-19

Family

ID=67906550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009777 WO2019175979A1 (en) 2018-03-13 2018-03-13 Organic electronic material and organic electronic element

Country Status (3)

Country Link
JP (1) JP7131606B2 (en)
TW (1) TW201938762A (en)
WO (1) WO2019175979A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267972A (en) * 2002-03-11 2003-09-25 Kanagawa Acad Of Sci & Technol Tris(thienylphenyl)amine derivative and organic el element
JP2012004206A (en) * 2010-06-15 2012-01-05 Konica Minolta Business Technologies Inc Photoelectric conversion element and solar battery
JP2014505694A (en) * 2011-01-25 2014-03-06 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー Star compounds for organic solar cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359922A (en) * 1991-06-07 1992-12-14 Nissan Motor Co Ltd Production of electrochromic material
FR3003044B1 (en) * 2013-03-07 2016-07-29 Centre Nat Rech Scient ELECTROCHROME DEVICE WITH FOUR OR THREE LAYERS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267972A (en) * 2002-03-11 2003-09-25 Kanagawa Acad Of Sci & Technol Tris(thienylphenyl)amine derivative and organic el element
JP2012004206A (en) * 2010-06-15 2012-01-05 Konica Minolta Business Technologies Inc Photoelectric conversion element and solar battery
JP2014505694A (en) * 2011-01-25 2014-03-06 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー Star compounds for organic solar cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUNUGI, Y. ET AL.: "Light-emitting diodes based on linear and starburst electro-oligomerized thienyltriphenylamines", SYNTHETIC METALS, vol. 89, 11 November 1997 (1997-11-11), pages 227 - 229, XP055636902 *

Also Published As

Publication number Publication date
JPWO2019175979A1 (en) 2021-02-25
JP7131606B2 (en) 2022-09-06
TW201938762A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP7044063B2 (en) Organic electronics materials and their use
WO2018084009A1 (en) Organic electronics material, organic layer, organic electronics element, organic electroluminescence element, display element, illumination device, and display device
JP2017069324A (en) Organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, luminaire, and display device
WO2017188023A1 (en) Charge transport material and utilization thereof
WO2017043502A1 (en) Organic electronics material and use thereof
WO2018143438A1 (en) Organic electronics material and use thereof
WO2018146779A1 (en) Organic electronics material, organic electronics element, and organic electroluminescent element
JP6775736B2 (en) Charge transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
WO2018021381A1 (en) Organic electronic material
WO2018020571A1 (en) Organic electronics material
JP6769020B2 (en) Charge transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
JP7318233B2 (en) Organic electronic materials and their uses
JP6641845B2 (en) Charge transporting material, ink composition using the material, organic electronic device, organic electroluminescent device, display device, lighting device, and display device
JP2017050338A (en) Organic electronics material and organic electronics element
JP6657702B2 (en) Organic electronic material, ink composition containing the same, organic electronic device and organic electroluminescent device
WO2019175979A1 (en) Organic electronic material and organic electronic element
JP7131605B2 (en) Organic electronic materials and organic electronic elements
JP2017199866A (en) Charge-transporting material and utilization thereof
JP6657663B2 (en) Charge transporting material, ink composition using the material, organic electronic device, organic electroluminescent device, display device, display device, and lighting device
JP6816540B2 (en) Charge-transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
WO2020067300A1 (en) Organic electronic material and organic electronic element
JP2017048271A (en) Organic electronics material and organic electronics element
WO2020065920A1 (en) Organic electronic material and organic electronic element
JP6690241B2 (en) Organic electronic material and use thereof
JP6657701B2 (en) Organic electronics materials and their use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910087

Country of ref document: EP

Kind code of ref document: A1