JPH04359922A - Production of electrochromic material - Google Patents

Production of electrochromic material

Info

Publication number
JPH04359922A
JPH04359922A JP16243991A JP16243991A JPH04359922A JP H04359922 A JPH04359922 A JP H04359922A JP 16243991 A JP16243991 A JP 16243991A JP 16243991 A JP16243991 A JP 16243991A JP H04359922 A JPH04359922 A JP H04359922A
Authority
JP
Japan
Prior art keywords
triphenylamine
thin film
formula
polymerization
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16243991A
Other languages
Japanese (ja)
Inventor
Yasuhiko Osawa
康彦 大澤
Katsunori Aoki
克徳 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16243991A priority Critical patent/JPH04359922A/en
Publication of JPH04359922A publication Critical patent/JPH04359922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain the title material which can give a thin film having good oxidation/reduction stability and excellent durabiliting and being capable of giving a large area, easily moldable in any desired shape and nonproblematic in transparency by electrolytically polymerizing a specified triphenylamine monomer mixture as a starting monomer. CONSTITUTION:An electrochromic material is obtained by polymerizing through electrolytic oxidation a mixture, as a starting monomer, prepared by mixing a compound of formula I (wherein X is alkyl, alkoxy or halogen which is ortho, meta or para to the nitrogen atom) with 5-50mol% compound of formula II. This material can give at good efficiency an electrochromic thin film containing a triphenylamine moiety, having good oxidation/reduction stability and excellent durability and being capable of giving a large area, easily moldable in any desired shape and nonproblematic in transparency.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、次式[Industrial Application Field] This invention is based on the following formula

【化3】 (式中のXは水素原子あるいはオルト、メタ、パラ位の
アルキル基、アルコキシ基、ハロゲン原子のうちから選
ばれる置換基を示す)で表わされる化合物に次式
[Chemical formula 3] (wherein X represents a hydrogen atom or a substituent selected from an alkyl group, an alkoxy group, and a halogen atom at the ortho, meta, and para positions) is added to a compound represented by the following formula:

【化4
】 で表わされる化合物を5〜50モル%加えた混合物を原
料モノマーとして用いて電解酸化重合することによりエ
レクトロクロミック材料を製造する方法に関する。
[C4
The present invention relates to a method for producing an electrochromic material by electrolytic oxidation polymerization using a mixture containing 5 to 50 mol % of the compound represented by the formula as a raw material monomer.

【0002】0002

【従来の技術】これまでに、エレクトロクロミック(E
C)材料としてはいろいろな有機材料、無機材料が提案
されてきたが、駆動安定性、耐久性が問題でありなかな
か実用化されなかった。EC物質の中でもいわゆる導電
性高分子は材料のバリエーションの広さ、加工性のよさ
、色のバリエーションの豊富さや多色化の可能性、応答
性等のよさ等の魅力があるが、駆動安定性、耐久性がや
はり問題であった。本出願人はこれまでポリトリフェニ
ルアミン類という導電性がかなり高く(ドーピングによ
り1S・cm−1のオーダーになる) 駆動安定性、耐
久性に特に優れた一連の導電性高分子を開発してきた[
 特開昭61−28524号公報] 。ポリトリフェニ
ルアミンEC薄膜の作製は次のように行なう。ポリ(4
,4′− トリフェニルアミン) 等のポリマーをクロ
ロホルム等の溶媒に溶かし、スピンコート法によってI
T0 ( インジウムドープ酸化錫) 等の透明導電ガ
ラスの上に製膜後、加熱して沃素ドーピングを行い架橋
して不溶性としてエレクトロクロミック薄膜とする。こ
のようにして作製したエレクトクロミック薄膜は酸化還
元の安定性、駆動安定性、耐久性に優れ、前述の様に成
形加工性もいいので、きわめて実用性の高いものである
[Prior Art] Until now, electrochromic (E
C) Various organic and inorganic materials have been proposed as materials, but problems with driving stability and durability have prevented them from being put into practical use. Among EC materials, so-called conductive polymers are attractive because of their wide range of material variations, good processability, wide variety of colors, possibility of multicolorization, and good responsiveness. However, durability was still an issue. The applicant has so far developed a series of conductive polymers called polytriphenylamines, which have fairly high conductivity (on the order of 1S cm-1 due to doping) and have particularly excellent drive stability and durability. [
JP-A No. 61-28524]. A polytriphenylamine EC thin film is prepared as follows. Poly (4
, 4'-triphenylamine) in a solvent such as chloroform and coated with I by spin coating.
After forming a film on a transparent conductive glass such as T0 (indium-doped tin oxide), it is heated to dope with iodine and cross-link to make it insoluble to form an electrochromic thin film. The electrochromic thin film produced in this way has excellent redox stability, driving stability, and durability, and has good moldability as described above, so it is extremely practical.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記の
ポリ(4,4′−トリフェニルアミン) を代表とする
ポリトリフェニルアミン類では、大面積のEC素子を構
成する場合には実用的に十分均一なむらの無いEC薄膜
を作製することが難しく、また文字等の複雑なパターン
を含むEC素子を構成する場合にも製膜後不要部分を正
確に除去する簡便で適当な加工法がなく問題であった。 従って電解重合法で、ポリトリフェニルアミンのEC薄
膜を作製できれば、この問題は解決できるのであるが、
以下の比較例1に示すようにトリフェニルアミンのダイ
マーの安定性が逆に災いしてトリフェニルアミンの直接
の電解重合法ではEC薄膜を得ることができないと判明
した。そこで発明者らは、何とかこの非常に優れた反応
部位であるトリフェニルアミン単位を主鎖中に含む導電
性高分子薄膜を電解重合法で得ることを検討してきた。 その結果、電解重合性がよく、グリニヤール試薬に対す
る安定性などを考え、チオフェンとトリフェニルアミン
を結合させた原料モノマーを合成し、それを電解重合す
ることによって問題が解決されるという見解に至り、4
,4′,4″−トリス(2− チエニル) トリフェニ
ルアミン(特願平2−137194号) および、4,
4′−ビス(2− チエニル) トリフェニルアミン(
特願平2−115872号) を合成し、それぞれを原
料モノマーとして電解酸化重合することによって所望の
エレクトロクロミック材料を得た。その際、4,4′,
4″− トリス(2−チエニル)トリフェニルアミンの
電気量効率は非常によく、事実上100%であった。こ
れはおそらく、このモノマーが3方向に共有結合の手を
出せるので、生成する高分子はネットワーク構造である
と考えられた。そのためかこの膜はごく僅かであるが膜
の透明感が損なわれた。他方、4,4′−ビス(2−チ
エニル)トリフェニルアミンのみを用いた膜では、透明
感には全く問題がないが、電解重合の電気量効率が良く
ないので問題であった。
[Problems to be Solved by the Invention] However, polytriphenylamines such as the above-mentioned poly(4,4'-triphenylamine) are insufficient for practical use when constructing large-area EC elements. It is difficult to produce an EC thin film that is uniform and free from unevenness, and there is also a problem in that there is no simple and appropriate processing method to accurately remove unnecessary parts after film formation when configuring EC elements that include complex patterns such as letters. Met. Therefore, if an EC thin film of polytriphenylamine could be produced using electrolytic polymerization, this problem could be solved.
As shown in Comparative Example 1 below, it was found that an EC thin film could not be obtained by direct electrolytic polymerization of triphenylamine due to the stability of the triphenylamine dimer. Therefore, the inventors have been studying how to somehow obtain a conductive polymer thin film containing triphenylamine units, which are extremely excellent reactive sites, in the main chain by electrolytic polymerization. As a result, we came to the conclusion that the problem could be solved by synthesizing a raw material monomer that had good electrolytic polymerizability and stability against Grignard reagents, combining thiophene and triphenylamine, and electropolymerizing it. 4
,4',4''-tris(2-thienyl)triphenylamine (Japanese Patent Application No. 137194/1994) and 4,
4'-bis(2-thienyl) triphenylamine (
(Japanese Patent Application No. 115872/1999) were synthesized and subjected to electrolytic oxidation polymerization using each as a raw material monomer to obtain a desired electrochromic material. At that time, 4, 4',
The coulometric efficiency of 4″-tris(2-thienyl)triphenylamine was very good, virtually 100%. This is probably due to the covalent bonding ability of this monomer in three directions, resulting in high yields. The molecules were thought to have a network structure.Perhaps because of this, the transparency of this film was slightly impaired.On the other hand, when only 4,4'-bis(2-thienyl)triphenylamine was used, Although there was no problem with the transparency of the membrane, there was a problem because the efficiency of the amount of electricity in electrolytic polymerization was not good.

【0004】0004

【課題を解決するための手段】この発明はこのような問
題点に着目してなされたもので、前記化3で示される化
合物に、前記化4で示される化合物を5〜50モル%加
えた混合物を原料モノマーとして用い電解酸化重合して
エレクトロクロミック材料を得ることにより前記の問題
点を解決したものである。
[Means for Solving the Problems] The present invention has been made by focusing on the above-mentioned problems, and is made by adding 5 to 50 mol% of the compound represented by Chemical Formula 4 to the compound represented by Chemical Formula 3 above. The above-mentioned problems have been solved by using the mixture as a raw material monomer and performing electrolytic oxidation polymerization to obtain an electrochromic material.

【0005】一般に電解酸化重合が起る条件として、定
電流または定電圧で行なう。本発明の場合には、ボルタ
モグラムで第2波めにかかる電位で酸化が生じることが
必要条件である。電解酸化重合が生じる電位として、1
.3 〜2.0 V程度であり、あまり高すぎると膜の
不活性化をまねく。
[0005] Generally, the conditions for electrolytic oxidative polymerization are constant current or constant voltage. In the case of the present invention, it is a necessary condition that oxidation occurs at the potential applied to the second wave in the voltammogram. As the potential at which electrolytic oxidative polymerization occurs, 1
.. The voltage is about 3 to 2.0 V, and if it is too high, it will lead to inactivation of the membrane.

【0006】この発明で使用される電解重合時の溶媒お
よび指示電解質としてはニトリル系溶媒およびノルマル
テトラブチルアンモニウムヘキサフルオロフォスフェー
トが用いられるがこれらのみに限られるものではなく、
電解重合する電位で酸化分解されないものなら非水溶液
の電気化学で用いられる溶媒および電解質が使用可能で
ある。作製したエレクトロクロミック薄膜の駆動用溶媒
も同様に過塩素酸リチウムのプロピレンカーボネート溶
液が用いられるが、これのみに限定されるものではない
[0006] As the solvent and indicator electrolyte during electrolytic polymerization used in this invention, nitrile solvents and n-tetrabutylammonium hexafluorophosphate are used, but are not limited to these.
Solvents and electrolytes used in non-aqueous electrochemistry can be used as long as they are not oxidatively decomposed at the potential for electrolytic polymerization. Similarly, a propylene carbonate solution of lithium perchlorate is used as the driving solvent for the produced electrochromic thin film, but the solvent is not limited to this.

【0007】この発明において電解重合法で得られる生
成物はプロピレンカーボネート中でAg/AgCl に
対して0.5Vから1.0Vの範囲で可逆に酸化される
In the present invention, the product obtained by electrolytic polymerization is reversibly oxidized in propylene carbonate at a voltage of 0.5 V to 1.0 V relative to Ag/AgCl.

【0008】[0008]

【実施例】以下本発明を実施例および比較例により具体
的に説明する。 比較例1 トリフェニルアミンの直接電解重合 吉野等によりベンゼン等の縮合系炭化水素の電解酸化重
合により導電性高分子薄膜ができることが示されている
ので〔J. Electroanal. Chem. 
195(1985) 203と J. Chem. S
oc. Chem. Commum., (1986)
 550] 、この方法を用いてトリフェニルアミンの
電解酸化重合を以下のように試みた。電解液は、0.3
モル/リットルトリフェニルアミン、0.1 モル/リ
ットル CuCl2、0.1 モル/リットル LiA
sF6 のニトロベンゼン溶液を用いた。動作電極にネ
サガラスを、対極に白金線を用いて動作電極を対極に対
して10V かけて電解した。トリフェニルアミンの代
わりにベンゼンを加えたときは黒い膜ができたが、この
場合には、溶液が赤褐色になったがネサガラス上にはい
くら電解しても薄膜はできなかった。恐らくこれは、ト
リフェニルアミンが酸化重合してダイマーができるが、
そのカチオンが安定で更にジカチオンまで酸化してもあ
る程度安定な為電解重合がダイマー以上には進まないの
で膜ができないものと考えられる。
[Examples] The present invention will be specifically explained below using Examples and Comparative Examples. Comparative Example 1 Direct electrolytic polymerization of triphenylamine It has been shown by Yoshino et al. that a conductive polymer thin film can be produced by electrolytic oxidative polymerization of condensed hydrocarbons such as benzene [J. Electroanal. Chem.
195 (1985) 203 and J. Chem. S
oc. Chem. Commun. , (1986)
[550], electrolytic oxidative polymerization of triphenylamine was attempted using this method as follows. The electrolyte is 0.3
moles/liter triphenylamine, 0.1 moles/liter CuCl2, 0.1 moles/liter LiA
A solution of sF6 in nitrobenzene was used. Nesa glass was used as the working electrode and platinum wire was used as the counter electrode, and 10V was applied between the working electrode and the counter electrode to conduct electrolysis. When benzene was added instead of triphenylamine, a black film was formed, but in this case, the solution turned reddish-brown, but a thin film could not be formed on Nesaglass no matter how much electrolysis was carried out. This is probably due to the oxidative polymerization of triphenylamine to form a dimer.
The cation is stable, and even if dication is oxidized, it is stable to a certain extent, so electrolytic polymerization does not proceed beyond the level of dimer, which is why a film is not formed.

【0009】比較例2 4,4′−ビス(2−チエニル)トリフェニルアミンの
みの電解重合4,4′−ビス(2−チエニル)トリフェ
ニルアミンの電解重合を以下の条件で行った。溶媒とし
ては、水素化カルシウムにより脱水した後真空蒸留した
ベンゾニトリルと、同様にして脱水したアセトニトリル
の体積比1:2の混合溶媒を用い、支持電解質としては
0.1 モル/リットルのノルマルテトラブチルアンモ
ニウムヘキサフルオロフォスフェートを用いて、参照電
極としてはプロピレンカーボネート中の銀/塩化銀電極
を2枚のガラスフィルターで隔てて用いた。原料モノマ
ーの濃度は5ミリモル/リットルとした。動作電極には
ITOガラス(表面抵抗10オーム/□)を用いた。得
られる薄膜の酸化還元特性の理解をより正確に行なうた
めに直径0.5 mmの白金線(長さ約2cm) も動
作電極として用いた。対極は白金線を用いた。電解重合
は3室式の電解セルを用い窒素雰囲気のグローブボック
ス中で行った。 セルの中央の部屋に動作電極を置き、ガラスフィルター
を隔てて片方の部屋に対極を置き、ガラスフィルターを
隔ててもう一方の部屋に参照電極を置いた。
Comparative Example 2 Electropolymerization of 4,4'-bis(2-thienyl)triphenylamine alone Electrolytic polymerization of 4,4'-bis(2-thienyl)triphenylamine was carried out under the following conditions. As the solvent, a mixed solvent of benzonitrile dehydrated with calcium hydride and vacuum distilled and acetonitrile dehydrated in the same manner at a volume ratio of 1:2 was used, and as the supporting electrolyte, 0.1 mol/liter of n-tetrabutyl was used. Ammonium hexafluorophosphate was used, and the reference electrode was a silver/silver chloride electrode in propylene carbonate separated by two glass filters. The concentration of the raw material monomer was 5 mmol/liter. ITO glass (surface resistance: 10 ohms/□) was used for the working electrode. In order to more accurately understand the redox properties of the resulting thin film, a platinum wire (about 2 cm in length) with a diameter of 0.5 mm was also used as a working electrode. A platinum wire was used as the counter electrode. Electrolytic polymerization was carried out in a glove box with a nitrogen atmosphere using a three-chamber electrolytic cell. The working electrode was placed in the central chamber of the cell, the counter electrode was placed in one chamber across the glass filter, and the reference electrode was placed in the other chamber across the glass filter.

【0010】図1(b)に白金電極での上記溶液でのサ
イクリックボルタモグラムを示す。電位掃引を0から1
.1 Vの範囲に限ると非常に安定な1電子可逆波を示
し電解重合は起こらない。ところが、電位掃引を1.5
 V位まで行うと掃引回数の増加にしたがい反応電気量
が少しずつ増加し、白金電極が着色してきて電解重合膜
が生成していることがわかる。よく知られたポリチオフ
ェンについての一連の結果(例えば G.Touril
lon in T.A. Skotheim, (Ed
), Handbook of Conducting
 Polymers, Vol. 1, Dekker
, New York, 1986, p.293) 
から酸化によってチオフェン骨格の硫黄の隣の2−,5
−の位置の炭素上のプロトンがはずれ、その炭素同士が
結合してポリマーとなる。
FIG. 1(b) shows a cyclic voltammogram of the above solution using a platinum electrode. potential sweep from 0 to 1
.. When limited to the 1 V range, a very stable one-electron reversible wave is exhibited and electrolytic polymerization does not occur. However, if the potential sweep is 1.5
It can be seen that when the temperature reaches about V, the amount of reaction electricity increases little by little as the number of sweeps increases, and the platinum electrode becomes colored, indicating that an electrolytically polymerized film is being formed. A series of results on well-known polythiophenes (e.g. G. Touril
lon in T. A. Skothheim, (Ed.
), Handbook of Conducting
Polymers, Vol. 1. Dekker
, New York, 1986, p. 293)
2-,5 next to the sulfur of the thiophene skeleton by oxidation from
The proton on the carbon at the - position is removed, and the carbons bond together to form a polymer.

【0011】実施例1 混合モノマーの電解重合 比較例2において、溶液に更に1ミリモル/リットルの
4,4′,4″−トリス(2−チエニル)トリフェニル
アミンを加えた以外は同様にして電解重合を行った。結
果を図1(a)に示す。図1(b)に比べ、掃引回数の
増加と共に、反応電気量(近似的にボルタモグラムで囲
まれる部分の面積に対応する)がコンスタントにどんど
ん増加していくことがわかる。両方のモノマーが、生成
する高分子に含まれる割合を調べる為にIRスペクトル
を測定した(図2)。定量的な議論は出来なかったがI
Rスペクトルのパターンはポリ(4,4′,4″−トリ
ス(2−チエニル)トリフェニルアミン)というよりポ
リ(4,4′−ビス(2−チエニル)トリフェニルアミ
ン)のスペクトルにかなり近かったので、4,4′−ビ
ス(2−チエニル)トリフェニルアミンの組成割合が大
きいと見なされる。
Example 1 Electrolytic polymerization of mixed monomers Electrolyzed in the same manner as in Comparative Example 2 except that 1 mmol/liter of 4,4',4''-tris(2-thienyl)triphenylamine was further added to the solution. Polymerization was carried out.The results are shown in Figure 1(a).Compared to Figure 1(b), as the number of sweeps increased, the amount of reaction electricity (corresponding approximately to the area surrounded by the voltammogram) became constant. It can be seen that the amount increases steadily.In order to investigate the proportion of both monomers contained in the produced polymer, we measured the IR spectrum (Figure 2).Although it was not possible to discuss quantitatively, I
The pattern of the R spectrum was much closer to that of poly(4,4′-bis(2-thienyl)triphenylamine) than to poly(4,4′,4″-tris(2-thienyl)triphenylamine). Therefore, the composition ratio of 4,4'-bis(2-thienyl)triphenylamine is considered to be large.

【0012】得られた高分子の酸化還元特性を調べるた
めより実用的な溶媒であるプロピレンカーボネート中で
1.0 モル/リットルの過塩素酸リチウムを支持電解
質としてサイクリックボルタメトリーを行った。得られ
たボルタモグラムを図3に示す。酸化第一波にて百回以
上の酸化還元を繰り返したが波形の変化はみられず非常
に安定であった。白金電極の場合と同様にして、ITO
上に高分子薄膜を作製した。得られた薄膜はポリ(4,
4′−ビス(2−チエニル)トリフェニルアミン)と類
似で、透明感に問題は無かった。得られた薄膜のエクレ
トロクロミック特性を、同様にしてより実用的な溶媒で
あるプロピレンカーボネート中で行った。吸収スペクト
ル測定用の電気化学セルを構成して、酸化に伴う可視−
近赤外吸収スペクトルの変化を測定したところ、ポリ(
4,4′−ビス(2−チエニル)トリフェニルアミン)
の場合と同様で第一波での酸化に伴ってうす黄色から黒
に可逆に変化した。
In order to examine the redox properties of the obtained polymer, cyclic voltammetry was performed in propylene carbonate, a more practical solvent, using 1.0 mol/liter of lithium perchlorate as a supporting electrolyte. The obtained voltammogram is shown in FIG. 3. Redox was repeated more than 100 times in the first wave of oxidation, but no change in waveform was observed and it was very stable. In the same way as for platinum electrodes, ITO
A thin polymer film was fabricated on top. The obtained thin film was made of poly(4,
4'-bis(2-thienyl)triphenylamine), and there was no problem with transparency. Ecretrochromic properties of the obtained thin films were similarly investigated in propylene carbonate, a more practical solvent. An electrochemical cell for measuring absorption spectra was constructed to detect visible -
When we measured changes in the near-infrared absorption spectrum, we found that poly(
4,4'-bis(2-thienyl)triphenylamine)
As in the case of , the color changed reversibly from pale yellow to black with the oxidation in the first wave.

【0013】[0013]

【発明の効果】以上説明してきた様に、この発明によれ
ば、トリフェニルアミン部位を含み酸化還元安定性がよ
く、耐久性に優れ大面積化可能で、しかも容易に任意の
形状にでき、膜の透明度にも問題が無いEC薄膜を効率
よく得ることができる。
As explained above, according to the present invention, it contains a triphenylamine moiety, has good redox stability, is excellent in durability, can be made into a large area, and can be easily formed into any shape. It is possible to efficiently obtain an EC thin film with no problems in film transparency.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(a) は4,4′−ビス(2−チエニル)ト
リフェニルアミンと4,4′,4″−トリス(2−チエ
ニル)トリフェニルアミンのモノマー混合物を含む溶液
のサイクリックボルタモグラム線図であり、(b) は
4,4′−ビス(2−チエニル)トリフェニルアミンを
含む溶液のサイクリックボルタモグラムである。
FIG. 1 (a) is a cyclic voltammogram of a solution containing a monomer mixture of 4,4′-bis(2-thienyl)triphenylamine and 4,4′,4″-tris(2-thienyl)triphenylamine. FIG. 3(b) is a cyclic voltammogram of a solution containing 4,4'-bis(2-thienyl)triphenylamine.

【図2】モノマー混合物から得られた電解重合ポリマー
のIRスペクトル線図である。
FIG. 2 is an IR spectrum diagram of an electrolytically polymerized polymer obtained from a monomer mixture.

【図3】モノマー混合物から得られた電解重合ポリマー
のサイクリックボクタモグラム線図である。
FIG. 3 is a cyclic voctamogram diagram of an electrolytically polymerized polymer obtained from a monomer mixture.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  次式 【化1】 (式中のXは水素原子あるいはオルト、メタ、パラ位の
アルキル基、アルコキシ基、ハロゲン原子のうちから選
ばれる置換基を示す)で表わされる化合物に次式【化2
】 で表わされる化合物を5〜50モル%加えた混合物を原
料モノマーとして用いて電解酸化重合することを特徴と
するエレクトロクロミック材料の製造方法。
Claim 1: A compound represented by the following formula [Formula 1] (wherein X represents a hydrogen atom or a substituent selected from an alkyl group, an alkoxy group, and a halogen atom at ortho, meta, and para positions) The following formula [chemical formula 2
A method for producing an electrochromic material, which comprises carrying out electrolytic oxidation polymerization using a mixture containing 5 to 50 mol % of the compound represented by the following as a raw material monomer.
【請求項2】  請求項1において、生成する高分子が
、プロピレンカーボネート中でAg/AgClに対して
0.5 V から1.0 V の範囲で可逆に酸化され
ることを特徴とする電解酸化重合法。
2. Electrolytic oxidation according to claim 1, characterized in that the produced polymer is reversibly oxidized in the range of 0.5 V to 1.0 V against Ag/AgCl in propylene carbonate. Polymerization method.
JP16243991A 1991-06-07 1991-06-07 Production of electrochromic material Pending JPH04359922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16243991A JPH04359922A (en) 1991-06-07 1991-06-07 Production of electrochromic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16243991A JPH04359922A (en) 1991-06-07 1991-06-07 Production of electrochromic material

Publications (1)

Publication Number Publication Date
JPH04359922A true JPH04359922A (en) 1992-12-14

Family

ID=15754638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16243991A Pending JPH04359922A (en) 1991-06-07 1991-06-07 Production of electrochromic material

Country Status (1)

Country Link
JP (1) JPH04359922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354668A (en) * 2000-06-13 2001-12-25 Chisso Corp Benzothiophene derivative and organic electroluminescent element using the same
JP2012111958A (en) * 2001-10-25 2012-06-14 Cambridge Display Technology Ltd Triarylamine-containing monomer for optoelectronic device
JPWO2019175979A1 (en) * 2018-03-13 2021-02-25 昭和電工マテリアルズ株式会社 Organic Electronics Materials and Organic Electronics Devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354668A (en) * 2000-06-13 2001-12-25 Chisso Corp Benzothiophene derivative and organic electroluminescent element using the same
JP4604312B2 (en) * 2000-06-13 2011-01-05 チッソ株式会社 Benzothiophene derivative and organic electroluminescence device using the same
JP2012111958A (en) * 2001-10-25 2012-06-14 Cambridge Display Technology Ltd Triarylamine-containing monomer for optoelectronic device
JPWO2019175979A1 (en) * 2018-03-13 2021-02-25 昭和電工マテリアルズ株式会社 Organic Electronics Materials and Organic Electronics Devices

Similar Documents

Publication Publication Date Title
Tran-Van et al. Synthesis and electrochemical properties of mixed ionic and electronic modified polycarbazole
WO2018016385A1 (en) Composite containing organic/metal hybrid polymer and ionic liquid, electrochromic device in which same is used, and method for manufacturing said composite and device
Xu et al. Triphenylamine-based multielectrochromic material and its neutral green electrochromic devices
Sannicolò et al. An effective multipurpose building block for 3D electropolymerisation: 2, 2′-Bis (2, 2′-bithiophene-5-yl)-3, 3′-bithianaphthene
Yildirim et al. Syntheses of electroactive layers based on functionalized anthracene for electrochromic applications
Kamata et al. Voltammetric anion recognition by a highly cross-linked polyviologen film
Holze Spectroelectrochemistry of two-layered composites of polyaniline and poly (o-aminophenol)
EP0476338A2 (en) Polyviologen modified electrode and use thereof
EP3674791A1 (en) Electrochromic element and display system using same
Beer et al. Cyclic voltammetry of benzo-15-crown-5 ether-vinyl-bipyridyl ligands, their ruthenium (II) complexes and bismethoxyphenyl-vinyl–bipyridyl ruthenium (II) complexes. Electrochemical polymerization studies and supporting electrolyte effects
US4772940A (en) Polymer having isothianaphthene structure and electrochromic display
US4954590A (en) Preparation of polymer having isoindole structures
JPS62169820A (en) Polymer of five-membered heterocyclic compound
Manisankar et al. Electrochemical synthesis and spectroelectrochemical behavior of poly (diphenylamine-co-4, 4′-diaminodiphenyl sulfone)
Cheng et al. Electrosynthesis and characterization of a multielectrochromic copolymer of tris [4-(2-thienyl) phenyl] amine with 3, 4-ethylenedioxythiophene
Sarac et al. Electrosynthesis and study of carbazole–acrylamide copolymer electrodes
JPH04359922A (en) Production of electrochromic material
JPH075716B2 (en) Process for producing N, N'-diphenylbenzidine polymer
US4786715A (en) Electrochromic polymer comprising N,N'-diphenyl-N,N'-diphenylene-phenylene diamine units
Thanneermalai et al. In situ UV–visible spectroelectrochemical evidences for conducting copolymer formation between diphenylamine and m-methoxyaniline
KR0165310B1 (en) Soluble conductive polymer manufacturing method thereof and display device employing the same
Sacan et al. Conducting polymers of succinic acid bis-(2-thiophen-3-yl-ethyl) ester and their electrochromic properties
Mitsuhara et al. Electrochemical preparation of poly (di (2‐thienyl) benzene) s and poly (4, 4′‐di (2‐thienyl) biphenyl)
JPH0433918A (en) Electrochromic material produced by electrolytic polymenrization
Zotti et al. Electrochemical polymerization of some dihydrobenzodipyrroles