WO2019175489A1 - Microcircuit sans contact avec gestion d'alimentation - Google Patents

Microcircuit sans contact avec gestion d'alimentation Download PDF

Info

Publication number
WO2019175489A1
WO2019175489A1 PCT/FR2019/050457 FR2019050457W WO2019175489A1 WO 2019175489 A1 WO2019175489 A1 WO 2019175489A1 FR 2019050457 W FR2019050457 W FR 2019050457W WO 2019175489 A1 WO2019175489 A1 WO 2019175489A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
measurement
microcircuit
field
antenna coil
Prior art date
Application number
PCT/FR2019/050457
Other languages
English (en)
Inventor
Henri Bottaro
Stéphane GODZINSKI
Original Assignee
Wisekey Semiconductors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisekey Semiconductors filed Critical Wisekey Semiconductors
Priority to EP19717514.4A priority Critical patent/EP3766014B1/fr
Publication of WO2019175489A1 publication Critical patent/WO2019175489A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0707Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement being capable of collecting energy from external energy sources, e.g. thermocouples, vibration, electromagnetic radiation
    • G06K19/0708Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement being capable of collecting energy from external energy sources, e.g. thermocouples, vibration, electromagnetic radiation the source being electromagnetic or magnetic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0712Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement being capable of triggering distinct operating modes or functions dependent on the strength of an energy or interrogation field in the proximity of the record carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0716Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs

Definitions

  • the present invention relates to microcircuits or contactless integrated circuits, and in particular RFID (Radio Frequency I Dentification) or Near Field Communication (NFC) microcircuits in accordance with one of ISO / IEC 14443, 15693, 18000- 3 and 18092.
  • RFID Radio Frequency I Dentification
  • NFC Near Field Communication
  • Non-contact, RFID or NFC microcircuits have been developed to be able to carry out transactions with a reading terminal, by inductive coupling or by electric field coupling. These microcircuits are widely used in many applications such as payment (bank cards), ticketing (public transport, events), access control, and identity verification (passports, ID cards).
  • a communication To perform a transaction (data exchange) with a reading terminal, a communication must be established with the terminal.
  • this communication is established by inductive coupling, the terminal excites an antenna coil by applying an alternating current, which produces a magnetic field which induces a current in an antenna coil connected to the microcircuit.
  • Such communication implies that a sufficient inductive coupling factor is obtained between the antenna coil of the terminal and the antenna coil of the microcircuit.
  • This coupling factor depends on the respective sizes of the antenna coils of the terminal and the microcircuit, and the distance and relative positions of these two coils. The closer the coil of the microcircuit is to that of the terminal, the higher the coupling factor between the two coils can be.
  • Microcircuits conforming to the ISO-14443 standard are generally designed to operate at a distance from the terminal coil of between 0 and 4 cm. If this distance increases, the communication between the microcircuit and the terminal may be lost.
  • the non-contact microcircuits are generally powered by the energy extracted from the electromagnetic field received from the reading terminal.
  • they comprise a voltage regulation circuit adapted to provide a regulated voltage, set to the nominal supply voltage of the processor integrated in the microcircuit.
  • Embodiments are directed to a method of power management in a non-contact microcircuit, the method comprising the steps of: receiving a variable electromagnetic field through an antenna coil of the contactless microcircuit, extracting the field received a non-contact microcircuit power supply current, triggering in the contactless microcircuit a measurement circuit for measuring a received field strength, and acquiring a measurement of the field using the measurement circuit, and deactivating the measurement circuit; measurement when the field measurement is acquired, and control a clock circuit and / or a controlled supply circuit of the non-contact microcircuit, coupled to digital circuits of the non-contact microcircuit, according to the acquired field measurement, in order to to reduce an electrical consumption of the digital circuits when the field measurement is lower than a threshold value.
  • the digital circuits are at least partially deactivated during acquisition of the field measurement.
  • the triggering of the measurement circuit is performed following the detection of an event in a signal received by the antenna coil.
  • the event is an end-of-frame signal appearing in the signal received by the antenna coil of the microcircuit, the end-of-frame signal being in accordance with the ISO / IEC 14443 standard.
  • the triggering of the measurement circuit is performed following the detection of an event by a processor of the digital circuits, the processor controlling the activation of the measuring circuit following the detection of the event.
  • the measuring circuit is triggered several times during a contactless communication session between the non-contact microcircuit and a reading terminal.
  • the acquired field measurement is a word of several bits, the method comprising the selection of an operating point of the digital circuits from among several operating points each defined by a control value of the associated clock circuit. to a control value of the supply circuit.
  • the acquisition of a field measurement comprises steps of: taking a first fraction of a first rectified current between an output of the rectified current from the antenna coil and a first terminal of the antenna coil, taking a second fraction of the rectified current, between the output of the rectified current from the antenna coil and a second terminal of the antenna coil, generating a measurement current by adding the first and second fractions of rectified current, filter the measurement current, and convert the filtered current into a digital measurement value representative of the intensity of the filtered current.
  • Embodiments may also relate to a non-contact microcircuit comprising: an antenna coil for receiving and transmitting signals of a non-contact communication by means of a modulated electromagnetic field, a primary supply circuit for extracting from the coil of an antenna a supply current occurring when the antenna coil is placed in a variable electromagnetic field, a field measuring circuit configured to measure a field strength received by the antenna coil, a clock circuit and a voltage regulation circuit, and digital circuits configured to detect an event in the contactless microcircuit, and during the detection of the event: to trigger the measuring circuit to measure a received field strength, to acquire a field measurement using the measuring circuit, switch off the measuring circuit when the field measurement is acquired, and control the clock circuit e t / or the voltage regulation circuit as a function of the acquired field measurement, in order to decrease a power consumption of digital circuits when the field strength is less than a threshold value.
  • the digital circuits comprise a processor that is deactivated during acquisition of the field measurement.
  • the digital circuits are configured to detect an end of frame signal in the field received by the antenna coil, the end of frame signal being the event to be detected to trigger a field measurement.
  • the clock circuit is configured to generate more than two clock signal frequencies, as a function of a control word, the microcircuit being configured to determine the control word of the clock circuit by function of the acquired field measurement, and to supply the control word to the clock circuit.
  • the voltage regulation circuit is configured to supply a supply voltage dependent on a control word, the microcircuit being configured to determine the control word of the voltage regulation circuit as a function of the measurement. acquired field, and to supply the control word to the voltage regulation circuit.
  • the measurement circuit is configured to: take a first fraction of a rectified current from the antenna coil, between an output of the rectified current and a first terminal of the antenna coil, take a second fraction of the rectified current from the antenna circuit, between the output of the rectified current and a second terminal of the antenna coil, generating a measurement current by adding the first and second rectified current fractions, filtering the measurement current , and converting the filtered current into a digital measurement value representative of the intensity of the filtered current.
  • FIG. 1 schematically represents a microcircuit coupled to a reading terminal, according to one embodiment
  • FIG. 2 represents a circuit for measuring the microcircuit, according to one embodiment
  • FIG. 3 represents a variation curve of a voltage generated by the measuring circuit as a function of the intensity of the field received by an antenna coil connected to the microcircuit
  • FIG. 4 represents a control circuit of the measurement circuit, according to one embodiment
  • FIG. 5 represents a state diagram illustrating the operation of the measurement control circuit, according to one embodiment
  • FIG. 6 represents a control circuit of a clock circuit of the microcircuit, according to one embodiment
  • FIG. 7 is a state diagram illustrating the operation of the control circuit of the measuring circuit, according to another embodiment, FIG. 8 represents a time diagram of signals received and transmitted by the microcircuit,
  • FIGS. 9 to 12 represent circuits of the microcircuit, according to other embodiments.
  • FIG. 1 represents a read terminal RD and a microcircuit C1, according to one embodiment.
  • the microcircuit C1 comprises two connection terminals RF1, RF2 connected to an antenna coil AC which can be coupled to an antenna coil AC1 of the terminal RD.
  • the microcircuit C1 comprises analog circuits and digital circuits.
  • the analog circuits comprise an antenna circuit comprising a resistor R1 comprising a first terminal connected to the RF1 terminal and a second terminal connected to the RF2 terminal via a tuning capacitor C1 of the antenna circuit.
  • the analog circuits also include an ESD protection circuit against electrostatic discharges, a retro-modulation circuit RMOD, a primary supply circuit PWE and a demodulation circuit DMD, connected between the second terminal of the resistor R1 and the terminal RF2 .
  • the analog circuits also include a clock signal extraction circuit CKE connected to the second terminal of the resistor R1, and a supply voltage regulating circuit PS.
  • the circuit CKE extracts a clock signal PK from the modulated electromagnetic field received by the antenna coil AC. In the case of ISO / IEC 14443, the clock signal PK is at the frequency 13.56 MHz.
  • the control circuit PS receives a primary supply voltage RC of the circuit PWE and supplies a supply voltage PV to the digital circuits of the microcircuit C1.
  • the circuit DMD receives signals 11, I2 of the circuit PWE, from which it extracts a DT data signal received from the read terminal RD.
  • the digital circuits comprise a processor MC, for example of the microcontroller type (including one or more internal memories), a control circuit CIC of the communication interface, and a clock circuit CKC providing a clock signal CK to the processor MC.
  • the control circuit CIC receives the clock signal PK extracted by the circuit CKE and the data signal DT, and notably provides a retro-modulation control signal RM to the circuit RMOD and a control signal CTL to the circuit DMD.
  • the digital circuits of the microcircuit C1 may also include one or more memories (not shown).
  • An internal bus IB connects the different digital circuits (MC, CIC) of the microcircuit Cl.
  • the analog circuits of the microcircuit C1 comprise an IMS measurement circuit for measuring the intensity of the field received by the antenna coil AC
  • the digital circuits comprise an IMC control circuit of the measurement circuit IMS, the IMC control circuit being connected to the bus IB.
  • the IMS circuit is configured to exploit the primary supply current RC supplied by the PWE circuit, and to provide a signal representative of the field strength received by the antenna coil AC.
  • FIG. 2 represents an exemplary embodiment of the measurement circuit IMS in the case where the power supply circuit PWE comprises a single-wave rectifier circuit.
  • the circuit PWE thus conventionally comprises a diode-mounted NOS type NOS transistor (gate and drain connected to the RF1 terminal and source supplying the primary voltage RC), between the terminal RF1 and the output supplying the primary voltage RC, and a N-type MOS transistor N01 whose gate is connected to terminal RF2, the drain is connected to terminal RF1 and the source is connected to ground.
  • the measuring circuit IMS comprises a switch circuit ITC controlled by a signal CS, a measurement circuit FSM of the field strength, a filter circuit RCF and a comparison circuit VCP.
  • the FSM measuring circuit is connected to the RF1 terminal and receives the supply current primary RC via MOS transistors of the ITC circuit, used as switches controlled by the signal CS.
  • the measuring circuit FSM comprises P-type MOS transistors P01, P02 whose sources are connected to the terminal RF1 via the ITC circuit.
  • the measuring circuit FSM also comprises N-type MOS transistors N03, N04 whose gates are connected to the terminal RF1 via the ITC circuit.
  • the gate and the drain of the transistor P01 are connected to the drain of the transistor N03 and to the gate of the transistor P02.
  • the source of the transistor N03 receives the primary voltage RC via the circuit ITC.
  • the drain of the transistor P02 is connected to the drain of the transistor N04 whose source provides a measurement current DI representative of the intensity of the field received by the antenna coil AC.
  • the transistors P01, P02, N03 and N04 form a 1 / N ratio current mirror making it possible to take a measurement signal DI representing a 1 / N fraction of the primary current RC, and to supply the measurement signal DI to the filtering circuit. RCF.
  • the ratio 1 / N is between 1/5 and 1/20, for example 1/12.
  • the filter circuit RCF comprises a low-pass filter produced using a resistor R2 connected in parallel with a capacitor C2, between the source of the transistor N04 and the ground.
  • the values of the resistor R2 and the capacitor C2 are chosen to obtain a cutoff frequency of the order of 200 kHz, for example, in order to eliminate the frequency of the carrier at 13. , 56 MHz of the DI signal.
  • the RCF circuit provides an FDI filtered measurement signal to the VCP comparison circuit.
  • the comparison circuit VCP comprises a comparator CP1 comparing the measured measurement signal FDI with a threshold voltage VRF and supplying a binary signal CM at 0 or 1 depending on whether or not the voltage of the signal FDI is greater than the threshold voltage VRF.
  • the threshold voltage VRF can be generated by microcircuit from a "Bandgap" type reference voltage independent of the temperature of the microcircuit C1.
  • FIG. 3 represents a curve CC1 of variation of the measurement signal DI as a function of the field received by the antenna coil AC.
  • the threshold value the field received by the antenna coil AC is set at about 3 A / m, which corresponds to a voltage of about 0.45 V.
  • the reference voltage VRF is therefore set at this value 0.45 V. It can be provided that the reference voltage can be fixed, for example by the processor MC.
  • FIG. 4 represents an exemplary embodiment of the IMC control circuit.
  • the IMC control circuit comprises an STM state machine, a CNT counter and one or more CSR control and status registers.
  • the counter CNT is clocked by the clock signal PK supplied by the circuit CKE.
  • the state machine STM is configured to control the counter CNT and the measuring circuit IMS, and in particular to activate them at the arrival of a particular event, for example a rising or falling edge in an EV signal, provided by example by the CIC control circuit.
  • the state machine STM supplies control signals RN and CS respectively to the counter CNT and to the measuring circuit IMS.
  • the state machine STM is also configured to control the lock of the register CSR with the aid of the signal LTH, and to read a command STT in the register CSR.
  • Fig. 5 shows a state diagram illustrating the operation of the state machine STM.
  • the output signals CS, RN and LTH of the state machine STM are at 0.
  • the state machine STM goes into a measurement state SMP1 in which it activates the measurement circuit IMS by passing the signal CS to 1, and it activates the counter CNT by passing the signal RN to 1, the LTH signal remaining at 0.
  • the counter value VW corresponds to the time required for the measuring circuit IMS to perform a current measurement.
  • the measured value LC loaded into the register CSR is supplied to the clock circuit CKC which controls the frequency of the clock signal CK supplied to the processor MC.
  • the IMS measuring circuit is active and therefore consumes energy, only when it has to perform a field measurement.
  • FIG. 6 represents an exemplary embodiment of the clock circuit CKC.
  • the clock circuit CKC comprises an oscillator OSC providing a primary clock signal OS to a frequency dividing circuit FDV, a multiplexer MX1 and two registers HDR and LDR respectively memorizing high frequency ratio ratios HR and low frequency LR.
  • the multiplexer MX1 is controlled by the measurement bit value LC stored in the register CSR, to select one or the other of the division ratios HR, LR to be transmitted to the dividing circuit FDV.
  • the FDV circuit applies the selected split ratio to the clock signal OS and provides the clock signal CK produced to the processor MC.
  • the clock signal CK provided to the processor MC may have a maximum frequency corresponding to the division ratio HR.
  • the clock signal CK supplied to the processor MC may have a minimum frequency corresponding to the division ratio. LR. In this way, when the intensity of the field received by the antenna coil AC is lower than the threshold value VT, the processor MC is clocked at a slower frequency, and thus consumes less energy.
  • This arrangement makes it possible to keep the PS supply circuit, and thus the microcircuit C1, at a greater distance (for example about 4 to 5 cm) from the read terminal RD, while allowing a fast transaction between the reading terminal and the read terminal. the microcircuit when the latter are closer to each other (for example at a distance less than 1 cm).
  • the value of the measurement LC in the register CSR is forced to 1 at the start of the microcircuit C1 (state RST in FIG. 5), so that the processor MC operates at its maximum speed, until a first CM measurement is acquired and an LC measurement is stored in the CSR register.
  • the clock signal CK can be modified if the measured field is smaller than the threshold value VT.
  • Fig. 7 shows a state diagram illustrating the operation of the state machine STM, according to another embodiment.
  • the state diagram of FIG. 7 differs from that of FIG. 5 in that the processor MC controls the activation of the IMS circuit by modifying the value of the signal CS via the register CSR where this value is stored, or well by providing the EV signal to the CIC circuit.
  • the state diagram of FIG. 7 comprises the states RST, SMP0 and SMP1.
  • the transition from the state machine STM from the state RST to the state SMP1 is triggered by the passage of the signal CS from 0 to 1.
  • the processor MC can trigger the transition to the SMP1 state to make a new measurement, forcing the signal CS to 1.
  • the processor MC can trigger at any time a new measurement by the measuring circuit IMS, which allows to take into account a variation of the field received by the microcircuit C1 during a transaction between the microcircuit and the RD terminal.
  • the processor MC can thus trigger a field measurement at a time when the energy requirement of the circuit C1 is minimum.
  • FIG. 8 represents a transmission sequence of signals RX, CX transmitted respectively by the read terminal RD and the microcircuit C1, according to the ISO / IEC 14443 standard.
  • the terminal RD When active, the terminal RD continuously transmits an unmodulated carrier UMC. Periodically, the terminal RD transmits, by modulating the carrier, a SOF frame start signal, then a DTR1 frame, and finally an EOF frame end signal.
  • the frame DTR1 can include a CMD command, DT data, and a CRC checksum.
  • the microcircuit C1 is in the field of a reading terminal and therefore receives a carrier signal, modulated or not, it is activated under the effect of the appearance of the primary supply voltage RC.
  • the microcircuit C1 Once powered, it receives the RX signal transmitted by the RD terminal, the RX signal comprising the DTR1 data frame and the EOF frame end signal. Following the detection of the EOF signal, the microcircuit C1 triggers a timer TRO, at the end of which it transmits an unmodulated subcarrier SCN by modulating the field emitted by the terminal RD (by retro-modulation), during a time TR1. Then, the microcircuit C1 emits, by modulating the subcarrier, a SOF frame start signal, then a DTR2 frame. At the end of the transmission of the DTR2 frame, and an end of frame signal (not shown), the microcircuit Cl suspends the transmission of the subcarrier.
  • this event is the end-of-frame signal EOF transmitted by the terminal RD.
  • the signal CS is activated (goes from 0 to 1) at the end of the reception of the signal EOF sent by the terminal RD, the signal CS remaining only activated during the acquisition time of the field measurement CM .
  • the end of the reception of the EOF signal received by the microcircuit C1 corresponds to a waiting time (delay time TRO) during which the processor MC has no particular operation to perform as part of the transaction. driving with the RD terminal. During this time, the processor MC can therefore be blocked provided that it can be active at the end of the timer TRO. It may also be noted that the acquisition time of a field measurement (time during which the signal CS is at 1) may be less than the duration of the timer TRO. The waiting time during the time delay TRO can therefore be exploited to perform a field measurement, while blocking the processor MC.
  • FIG. 9 represents the measurement circuit according to another embodiment.
  • the measuring circuit IMS1 shown in FIG. 9 is adapted to a power supply circuit PW1 comprising a double rectifier circuit. alternately.
  • the measuring circuit IMS1 comprises a switch circuit ITC1 controlled by the signal CS, a measurement circuit FSM1 of the field strength, a current addition circuit CSM, the filter circuit RCF and the comparison circuit VCP.
  • the measuring circuit FSM1 is connected to the terminals RF1, RF2, and receives the primary supply current RC of the circuit PW1 via MOS transistors of the circuit ITC1, used as switches controlled by the signal CS.
  • the circuit FSM1 comprises N-type MOS transistors N1, N2, N3 and N4, and P-type MOS transistors P1, P2, P3 and P4.
  • Terminal RF1 is connected to the gates of transistors N1 and N3, and to the sources of transistors P1 and P3, via a transistor of circuit ITC1.
  • Terminal RF2 is connected to the gates of transistors N2 and N4, and to the sources of transistors P2 and P4, via a transistor of circuit ITC1.
  • the sources of the transistors N1, N2 are connected to the output RC of the circuit PW1, via a transistor of the circuit ITC1.
  • the gate of transistor P1 is connected to the gate of transistor P3 and to the drains of transistors P1 and N1.
  • the gate of transistor P2 is connected to the gate of transistor P4 and to the drains of transistors P2 and N2.
  • the drain of the transistor P3 is connected to the drain of the transistor N3 whose source provides a signal DU to the circuit CSM.
  • the drain of the transistor P4 is connected to the drain of the transistor N4 whose source provides a signal DI2 to the circuit CSM.
  • the transistors N1, N3, P1, P3 form a first current mirror 1 / N to take a DU fraction representing the ratio 1 / N of the primary current RC and provide it to the CSM circuit.
  • the transistors N2, N4, P2, P4 form a second 1 / N current mirror making it possible to take a fraction DI2 representing the ratio 1 / N of the primary current RC and to supply it to the circuit CSM.
  • the ratio 1 / N is between 1/5 and 1/20, for example 1/12.
  • the signals Di1 and DI2 have the same amplitude, but are in phase opposition.
  • the CSM circuit comprises N type MOS transistors N5, N6, N7 and N8, and P5 and P6 type MOS transistors.
  • the drain of the transistor N5, and the gates of the transistors N5 and N7 receive the signal DU.
  • the drain of the transistor N6, and the gates of the transistors N6 and N8 receive the signal DI2.
  • the sources of transistors N5, N6, N7 and N8 are connected to ground.
  • the drains of transistors N7 and N8 are connected to the drain of transistor P5 and to the gates of transistors P5 and P6.
  • the sources of transistors P5 and P6 receive the supply voltage PV.
  • the drain of transistor P6 provides the measurement signal DI to the filter circuit RCF.
  • the circuit CSM makes it possible to add the signals DM and DI2 in a resulting signal DI forming the measurement signal of the field received by the antenna coil AC.
  • the comparison circuit VCP is replaced by an analog / digital converter circuit.
  • FIG. 10 represents an example of an analog / digital converter circuit VCP1.
  • the circuit VCP1 is configured to compare the filtered signal FC from the filter circuit RCF with several threshold voltages.
  • the circuit VCP1 comprises several comparators CP receiving the signal FC on a direct input, an inverting input of each comparator receiving the reference voltage VRF through one or more resistors R3 in series.
  • the respective outputs of the CP comparators provide binary signals to an ENC encoder configured to provide a multi-bit binary word representing a digital measurement value CM1 corresponding to the number of outputs to one of the comparators CP.
  • the circuit VCP1 comprises 2 N -1 comparators CP and 2 N resistors R3.
  • the circuit VCP1 thus forms an analog / digital converter with N bits with a resolution equal to VRF / 2 N.
  • FIG. 11 represents an exemplary embodiment of the clock circuit adapted to the comparison circuit VCP1 of FIG. 10.
  • the clock circuit CKC1 represented in FIG. 11 comprises an oscillator OSC1 supplying a primary clock signal OS at a speed of MX2 multiplexer and p frequency divider circuits DV1, ..., DVp having increasing division ratios of DV1 to DVp.
  • the respective outputs of the dividers DV1 -DVp are connected to respective inputs of the multiplexer MX2 whose output supplies the clock signal to the processor MC.
  • the circuits VCP1 and CKC1 thus make it possible to finely adjust the clock frequency CK of the processor MC and thus its electrical consumption as a function of the intensity of the field received by the microcircuit C1, and therefore as a function of the available energy.
  • FIG. 12 represents an exemplary embodiment PS1 of the PS supply circuit providing a regulated and adjusted PV supply voltage.
  • the circuit PS1 comprises a voltage limiter circuit SHR and a regulation circuit LDOR with a small voltage drop.
  • the circuit SHR comprises a comparator CP2 comprising a direct input connected via a resistor R4 to a supply voltage input RCL supplied by the circuit PWE or PW1 for the analog circuits of the microcircuit C1.
  • the direct input of the Comparator CP2 is also connected to ground via a resistor R5.
  • the comparator CP2 is powered by the voltage RCL and also comprises an inverting input receiving the reference voltage VRF.
  • the circuit SHR also includes a capacitor C3 connecting the supply voltage input RCL to ground.
  • the output of comparator CP2 is connected to the gate of an N-type MOS transistor N11 whose drain receives the primary supply voltage RC and whose source is connected to ground.
  • the circuit SHR makes it possible to force the voltage of the primary current RC supplied by the circuit PW1 to a value (for example 3 V) required by the digital circuits of the microcircuit C1 and to limit the current RC to the value required by the digital circuits.
  • the LDOR control circuit comprises a comparator CP3 powered by the supply voltage RCL, whose direct input receives the reference voltage VRF.
  • the inverting input of the comparator CP3 is connected to ground via a resistor R7, and to the output PV of the circuit PS1 via a variable resistor R6 controlled by steps by the digital measurement value LC1 stored in the CSR register.
  • the output of the comparator CP3 is connected to the gate of an N-type MOS transistor whose drain receives the primary supply voltage RC and the source is connected to the supply voltage output PV of the power supply circuit PS1.
  • the LDOR circuit also comprises a capacitor C4 connected between the ground and the output PV of the circuit PS1.
  • the LC or LC1 field measurement stored in the register CSR is used to select an operating point of the processor MC from among several operating points, each operating point being defined by a control of the circuit CKC or CKC1 associated with an adjustment command of the PV supply voltage, applied to the resistor R6 in the power supply circuit PS1.
  • the operating points defined by the associated values of the commands of the circuit CKC or CKC1 and the variable resistor R6 can be stored in a table indexed by the possible values of the LC or LC1 field measurement stored in the register CSR.
  • the present invention is capable of various alternative embodiments and various applications.
  • the invention is not limited to current measurements to obtain a representative measurement of the field received by the antenna coil AC.
  • this field measurement can be obtained by a voltage measurement in the primary supply circuit PWE, PW1.
  • the invention is also not limited to the communication protocol specified in the ISO / IEC 14443 standard, but can be applied to other communication protocols between a contactless microcircuit and a reading terminal.
  • events other than those described can trigger a field measurement in the microcircuit.
  • the event to be detected triggering a field measurement is not necessarily related to a particular time in the communication protocol between the microcircuit and the reading terminal. It is simply important that the field measurement be performed at a time that is least likely to disturb the reception and processing of the signal received by the microcircuit, particularly when the received field strength is close to the limit below which the energy collected by the power supply circuit PWE, PW1 is insufficient to power the microcircuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

L'invention concerne un procédé de gestion de l'alimentation dans un microcircuit sans contact, le procédé comprenant des étapes consistant à : recevoir un champ électromagnétique variable par l'intermédiaire d'une bobine d'antenne (AC) du microcircuit sans contact (CI), extraire du champ reçu un courant d'alimentation (RC) du microcircuit sans contact, déclencher dans le microcircuit sans contact un circuit de mesure (IMS) pour mesurer une intensité du champ reçu, et acquérir une mesure du champ (LC) à l'aide du circuit de mesure, et désactiver le circuit de mesure lorsque la mesure de champ est acquise, et commander un circuit d'horloge (CKC) et/ou un circuit d'alimentation régulé (PS) du microcircuit sans contact, couplés à des circuits numériques (MC) du microcircuit sans contact, en fonction de la mesure de champ acquise, afin de diminuer une consommation électrique des circuits numériques lorsque la mesure de champ est inférieure à une valeur de seuil.

Description

MICROCIRCUIT SANS CONTACT AVEC GESTION D’ALIMENTATION
La présente invention concerne les microcircuits ou circuits intégrés sans contact, et en particulier les microcircuits RFID (Radio Frequency I Dentification) ou à champ proche NFC (Near Field Communication) conformes à l’un des standards ISO/IEC 14443, 15693, 18000-3 et 18092.
Les microcircuits sans contact, RFID ou NFC ont été développés pour pouvoir effectuer des transactions avec un terminal de lecture, par couplage inductif ou par couplage de champ électrique. Ces microcircuits sont utilisés couramment dans de nombreuses applications telles que le paiement (cartes bancaires), la billetterie (transports publics, événements), le contrôle d’accès, et la vérification d’identité (passeports, cartes d’identité).
Pour réaliser une transaction (échange de données) avec un terminal de lecture, une communication doit pouvoir être établie avec le terminal. Lorsque cette communication est établie par couplage inductif, le terminal excite une bobine d’antenne en y appliquant un courant alternatif, ce qui produit un champ magnétique qui induit un courant dans une bobine d’antenne connectée au microcircuit. Une telle communication implique qu’un facteur de couplage inductif suffisant soit obtenu entre la bobine d’antenne du terminal et la bobine d’antenne du microcircuit. Ce facteur de couplage dépend des tailles respectives des bobines d’antenne du terminal et du microcircuit, et de la distance et des positions relatives de ces deux bobines. Plus la bobine du microcircuit est proche de celle du terminal, plus le facteur de couplage entre les deux bobines peut être élevé.
Les microcircuits conformes au standard ISO-14443 sont généralement conçus pour fonctionner à une distance de la bobine du terminal comprise entre 0 et 4 cm. Si cette distance augmente, la communication entre le microcircuit et le terminal risque d’être perdue. En outre, les microcircuits sans contact sont généralement alimentés par l’énergie extraite du champ électromagnétique reçu du terminal de lecture. A cet effet, ils comportent un circuit de régulation de tension adaptés pour fournir une tension régulée, calée sur la tension nominale d’alimentation du processeur intégré dans le microcircuit. Il en résulte que si l’amplitude du champ reçu par le microcircuit est insuffisante, l’énergie susceptible d’être extraite du champ reçu peut être insuffisante pour faire fonctionner le circuit de régulation de tension.
Il est donc souhaitable de pouvoir augmenter la distance maximum de communication sans contact entre un terminal de lecture et un microcircuit sans contact. Il peut être également souhaitable d’obtenir un tel résultat avec un terminal de lecture classique, c’est-à-dire sans avoir à modifier ce dernier, et donc, notamment, sans augmenter la puissance du champ émis par le terminal. Il peut être également souhaitable d’obtenir un tel résultat sans avoir à augmenter notablement la taille du microcircuit, et sans qu’il soit nécessaire de lui adjoindre une source d’énergie supplémentaire ou un moyen de stockage d’énergie.
Des modes de réalisation concernent un procédé de gestion de l’alimentation dans un microcircuit sans contact, le procédé comprenant des étapes consistant à : recevoir un champ électromagnétique variable par l’intermédiaire d’une bobine d’antenne du microcircuit sans contact, extraire du champ reçu un courant d’alimentation du microcircuit sans contact, déclencher dans le microcircuit sans contact un circuit de mesure pour mesurer une intensité du champ reçu, et acquérir une mesure du champ à l’aide du circuit de mesure, et désactiver le circuit de mesure lorsque la mesure de champ est acquise, et commander un circuit d’horloge et/ou un circuit d’alimentation régulé du microcircuit sans contact, couplés à des circuits numériques du microcircuit sans contact, en fonction de la mesure de champ acquise, afin de diminuer une consommation électrique des circuits numériques lorsque la mesure de champ est inférieure à une valeur de seuil.
Selon un mode de réalisation, les circuits numériques sont au moins en partie désactivés pendant l’acquisition de la mesure de champ.
Selon un mode de réalisation, le déclenchement du circuit de mesure est effectué à la suite de la détection d’un événement dans un signal reçu par la bobine d’antenne.
Selon un mode de réalisation, l’événement est un signal de fin de trame apparaissant dans le signal reçu par la bobine d’antenne du microcircuit, le signal de fin de trame étant conforme au standard ISO/IEC 14443.
Selon un mode de réalisation, le déclenchement du circuit de mesure est effectué à la suite de la détection d’un événement par un processeur des circuits numériques, le processeur commandant l’activation du circuit de mesure à la suite de la détection de l’événement.
Selon un mode de réalisation, le circuit de mesure est déclenché plusieurs fois durant une session de communication sans contact entre le microcircuit sans contact et un terminal de lecture.
Selon un mode de réalisation, la mesure de champ acquise est un mot de plusieurs bits, le procédé comprenant la sélection d’un point de fonctionnement des circuits numériques parmi plusieurs points de fonctionnement définis chacun par une valeur de commande du circuit d’horloge associée à une valeur de commande du circuit d’alimentation.
Selon un mode de réalisation, l’acquisition d’une mesure de champ comprend des étapes consistant à : prélever une première fraction d’un premier courant redressé entre une sortie du courant redressé issu de la bobine d’antenne et une première borne de la bobine d’antenne, prélever une seconde fraction du courant redressé, entre la sortie du courant redressé issu de la bobine d’antenne et une seconde borne de la bobine d’antenne, générer un courant de mesure en additionnant les première et seconde fractions de courant redressé, filtrer le courant de mesure, et convertir le courant filtré en une valeur numérique de mesure représentative de l’intensité du courant filtré.
Des modes de réalisation peuvent également concerner un microcircuit sans contact comprenant : une bobine d’antenne pour recevoir et émettre des signaux d’une communication sans contact au moyen d’un champ électromagnétique modulé, un circuit d’alimentation primaire pour extraire de la bobine d’antenne un courant d’alimentation apparaissant lorsque la bobine d’antenne est placée dans un champ électromagnétique variable, un circuit de mesure de champ configuré pour mesurer une intensité du champ reçu par la bobine d’antenne, un circuit d’horloge et un circuit de régulation de tension, et des circuits numériques configurés pour détecter un événement dans le microcircuit sans contact, et lors de la détection de l’événement : déclencher le circuit de mesure pour mesurer une intensité du champ reçu, acquérir une mesure du champ à l’aide du circuit de mesure, désactiver le circuit de mesure lorsque la mesure de champ est acquise, et commander le circuit d’horloge et/ou le circuit de régulation de tension en fonction de la mesure de champ acquise, afin de diminuer une consommation électrique des circuits numériques lorsque la mesure de champ est inférieure à une valeur de seuil.
Selon un mode de réalisation, les circuits numériques comprennent un processeur qui est désactivé pendant l’acquisition de la mesure de champ.
Selon un mode de réalisation, les circuits numériques sont configurés pour détecter un signal de fin de trame dans le champ reçu par la bobine d’antenne, le signal de fin de trame étant l’événement à détecter pour déclencher une mesure de champ.
Selon un mode de réalisation, le circuit d’horloge est configuré pour générer plus de deux fréquences de signal d’horloge, en fonction d’un mot de commande, le microcircuit étant configuré pour déterminer le mot de commande du circuit d’horloge en fonction de la mesure de champ acquise, et pour fournir le mot de commande au circuit d’horloge.
Selon un mode de réalisation, le circuit de régulation de tension est configuré pour fournir une tension d’alimentation dépendant d’un mot de commande, le microcircuit étant configuré pour déterminer le mot de commande du circuit de régulation de tension en fonction de la mesure de champ acquise, et pour fournir le mot de commande au circuit de régulation de tension.
Selon un mode de réalisation, le circuit de mesure est configuré pour : prélever une première fraction d’un courant redressé issu de la bobine d’antenne, entre une sortie du courant redressé et une première borne de la bobine d’antenne, prélever une seconde fraction du courant redressé issu du circuit d’antenne, entre la sortie du courant redressé et une seconde borne de la bobine d’antenne, générer un courant de mesure en additionnant les première et seconde fractions de courant redressé, filtrer le courant de mesure, et convertir le courant filtré en une valeur numérique de mesure représentative de l’intensité du courant filtré.
Des exemples de réalisation de l’invention seront décrits dans ce qui suit, à titre non limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 représente schématiquement un microcircuit couplé à un terminal de lecture, selon un mode de réalisation, la figure 2 représente un circuit de mesure du microcircuit, selon un mode de réalisation,
la figure 3 représente une courbe de variation d’une tension générée par le circuit de mesure en fonction de l’intensité du champ reçu par une bobine d’antenne connectée au microcircuit,
la figure 4 représente un circuit de contrôle du circuit de mesure, selon un mode de réalisation,
la figure 5 représente un diagramme d’état illustrant le fonctionnement du circuit de contrôle de mesure, selon un mode de réalisation,
la figure 6 représente un circuit de contrôle d’un circuit d’horloge du microcircuit, selon un mode de réalisation,
la figure 7 est un diagramme d’état illustrant le fonctionnement du circuit de contrôle du circuit de mesure, selon un autre mode de réalisation, la figure 8 représente un diagramme temporel de signaux reçus et émis par le microcircuit,
les figures 9 à 12 représentent des circuits du microcircuit, selon d’autres modes de réalisation,
La figure 1 représente un terminal de lecture RD et un microcircuit Cl, selon un mode de réalisation. Le microcircuit Cl comprend deux bornes de connexion RF1 , RF2 connectées à une bobine d’antenne AC qui peut être couplée à une bobine d’antenne AC1 du terminal RD. Le microcircuit Cl comprend des circuits analogiques et des circuits numériques. Les circuits analogiques comprennent un circuit d’antenne comprenant une résistance R1 comportant une première borne connectée à la borne RF1 et une seconde borne reliée à la borne RF2 par l’intermédiaire d’un condensateur C1 d’accord du circuit d’antenne. Les circuits analogiques comprennent également un circuit de protection ESD contre les décharges électrostatiques, un circuit de rétro-modulation RMOD, un circuit d’alimentation primaire PWE et un circuit de démodulation DMD, connectés entre la seconde borne de la résistance R1 et la borne RF2. Les circuits analogiques comprennent également un circuit d’extraction de signal d’horloge CKE connecté à la seconde borne de la résistance R1 , et un circuit de régulation de tension d’alimentation PS. Le circuit CKE extrait un signal d’horloge PK du champ électromagnétique modulé reçu par la bobine d’antenne AC. Dans le cas du standard ISO/IEC 14443, le signal d’horloge PK est à la fréquence 13,56 MHz. Le circuit de régulation PS reçoit une tension primaire d’alimentation RC du circuit PWE et fournit une tension d’alimentation PV aux circuits numériques du microcircuit Cl. Le circuit DMD reçoit des signaux 11 , I2 du circuit PWE, à partir desquels il extrait un signal de données DT reçu du terminal de lecture RD.
Les circuits numériques comprennent un processeur MC, par exemple de type microcontrôleur (incluant un ou plusieurs mémoires internes), un circuit de contrôle CIC de l’interface de communication, et un circuit d’horloge CKC fournissant un signal d’horloge CK au processeur MC. Le circuit de contrôle CIC reçoit le signal d’horloge PK extrait par le circuit CKE et le signal de donnée DT, et fournit notamment un signal RM de contrôle de rétro-modulation au circuit RMOD et un signal de contrôle CTL au circuit DMD. Les circuits numériques du microcircuit Cl peuvent également comprendre une ou plusieurs mémoires (non représentées). Un bus interne IB connecte entre eux les différents circuits numériques (MC, CIC) du microcircuit Cl.
Selon un mode de réalisation, les circuits analogiques du microcircuit Cl comprennent un circuit de mesure IMS pour mesurer l’intensité du champ reçu par la bobine d’antenne AC, et les circuits numériques comprennent un circuit de contrôle IMC du circuit de mesure IMS, le circuit de contrôle IMC étant connecté au bus IB. Le circuit IMS est configuré pour exploiter le courant d’alimentation primaire RC fourni par le circuit PWE, et fournir un signal représentatif de l’intensité du champ reçu par la bobine d’antenne AC.
La figure 2 représente un exemple de réalisation du circuit de mesure IMS dans le cas où le circuit d’alimentation PWE comprend un circuit redresseur mono-alternance. Le circuit PWE comprend donc classiquement, un transistor MOS de type N N02 monté en diode (grille et drain connectés à la borne RF1 et source fournissant la tension primaire RC), entre la borne RF1 et la sortie fournissant la tension primaire RC, et un transistor MOS de type N N01 dont la grille est connectée à la borne RF2, le drain est connecté à la borne RF1 et la source est connectée à la masse.
Le circuit de mesure IMS comprend un circuit interrupteur ITC commandé par un signal CS, un circuit de mesure FSM de l’intensité du champ, un circuit de filtrage RCF et un circuit de comparaison VCP. Le circuit de mesure FSM est relié à la borne RF1 et reçoit le courant d’alimentation primaire RC par l’intermédiaire de transistors MOS du circuit ITC, utilisés comme interrupteurs commandés par le signal CS. Le circuit de mesure FSM comprend des transistors MOS de type P P01 , P02 dont les sources sont reliées à la borne RF1 par l’intermédiaire du circuit ITC. Le circuit de mesure FSM comprend également des transistors MOS de type N N03, N04 dont les grilles sont reliées à la borne RF1 par l’intermédiaire du circuit ITC. La grille et le drain du transistor P01 sont connectés au drain du transistor N03 et à la grille du transistor P02. La source du transistor N03 reçoit la tension primaire RC par l’intermédiaire du circuit ITC. Le drain du transistor P02 est connecté au drain du transistor N04 dont la source fournit un courant de mesure DI représentatif de l’intensité du champ reçu par la bobine d’antenne AC. Les transistors P01 , P02, N03 et N04 forment un miroir de courant de rapport 1/N permettant de prélever un signal de mesure DI représentant une fraction 1/N du courant primaire RC, et de fournir le signal de mesure DI au circuit de filtrage RCF. Selon un mode de réalisation, le rapport 1/N est compris entre 1/5 et 1/20, par exemple 1/12.
Le circuit de filtrage RCF comprend un filtre passe-bas réalisé à l’aide d’une résistance R2 montée en parallèle avec un condensateur C2, entre la source du transistor N04 et la masse. Dans le cas du standard ISO/IEC 14443, les valeurs de la résistance R2 et du condensateur C2 sont choisies pour obtenir une fréquence de coupure de l’ordre de 200 kHz, par exemple, afin d’éliminer la fréquence de la porteuse à 13,56 MHz du signal DI. Le circuit RCF fournit un signal de mesure filtré FDI au circuit de comparaison VCP. Le circuit de comparaison VCP comprend un comparateur CP1 comparant le signal de mesure filtré FDI à une tension de seuil VRF et fournissant un signal binaire CM à 0 ou à 1 selon que la tension du signal FDI est supérieure ou non à la tension de seuil VRF. La tension de seuil VRF peut être générée par microcircuit à partir d’une tension de référence de type "Bandgap" indépendante de la température du microcircuit Cl.
La figure 3 représente une courbe CC1 de variation du signal de mesure DI en fonction du champ reçu par la bobine d’antenne AC. Lorsque le champ reçu par la bobine d’antenne AC augmente de 1 à 9 A/m, la tension du signal DI augmente de 0,25 V à 0,9 V. Dans l’exemple de la figure 3, la valeur de seuil du champ reçu par la bobine d’antenne AC est fixée à environ 3 A/m, ce qui correspond à une tension d’environ 0,45 V. dans l’exemple de la figure 3, la tension de référence VRF est donc fixée à cette valeur 0.45 V. Il peut être prévu que la tension de référence puisse être fixée, par exemple par le processeur MC.
La figure 4 représente un exemple de réalisation du circuit de contrôle IMC. Dans cet exemple, le circuit de contrôle IMC comprend une machine d’état STM, un compteur CNT et un ou plusieurs registres de commande et d’état CSR. Le compteur CNT est cadencé par le signal d’horloge PK fourni par le circuit CKE. La machine d’état STM est configurée pour commander le compteur CNT et le circuit de mesure IMS, et en particulier pour les activer à l’arrivée d’un événement particulier, par exemple un front montant ou descendant dans un signal EV, fourni par exemple par le circuit de contrôle CIC. A cet effet, la machine d’état STM fournit des signaux de commande RN et CS, respectivement au compteur CNT et au circuit de mesure IMS. La machine d’état STM est également configurée pour commander le verrouillage du registre CSR à l’aide du signal LTH, et lire une commande STT dans le registre CSR.
La figure 5 représente un diagramme d’état illustrant le fonctionnement de la machine d’état STM. Dans un état initial RST, les signaux de sortie CS, RN et LTH de la machine d’état STM sont à 0. A la détection de l’événement EV, la machine d’état STM passe dans un état de mesure SMP1 dans lequel elle active le circuit de mesure IMS en passant le signal CS à 1 , et elle active le compteur CNT en passant le signal RN à 1 , le signal LTH restant à 0. A la fin du comptage, lorsque la valeur CNV du compteur atteint une valeur attendue WV, la machine d’état STM passe dans un état de fin de mesure SMP0 dans lequel elle désactive le circuit de mesure IMS (CS=0) et le compteur CNT (RN=0), et verrouille le registre CSR (LTH=1 ), de sorte que le signal binaire de mesure CM fournie par le circuit de mesure IMS et chargée dans le registre CSR ne peut pas être modifiée par une nouvelle valeur du signal binaire de mesure. La valeur de compteur VW correspond au temps nécessaire au circuit de mesure IMS pour effectuer une mesure de courant. La valeur de mesure LC chargée dans le registre CSR est fournie au circuit d’horloge CKC qui commande la fréquence du signal d’horloge CK fourni au processeur MC. La valeur de mesure LC reste inchangée jusqu’à ce que la machine d’état STM repasse dans l’état de mesure SMP1. Si dans l’état SMP0, l’événement se produit à nouveau (signal EV = 1 ), la machine d’état STM repasse dans l’état de mesure SMP1 pour effectuer une nouvelle mesure de champ conduisant à une mise à jour éventuelle de la valeur de mesure LC mémorisée dans le registre CSR.
Ainsi, le circuit de mesure IMS est actif et donc consomme de l’énergie, uniquement lorsqu’il doit effectuer une mesure de champ.
Selon un mode de réalisation, la machine d’état STM peut également être configurée fournir un signal WT permettant de bloquer le processeur MC (WT=1 ) pendant qu’une mesure est acquise durant l’état SMP1 (lorsque le signal de commande CS est à 1 ). De cette manière, on évite que le circuit de mesure IMS et le processeur MC soient actifs en même temps, ce qui limite la consommation électrique instantanée du microcircuit Cl.
La figure 6 représente un exemple de réalisation du circuit d’horloge CKC. Le circuit d’horloge CKC comprend un oscillateur OSC fournissant un signal d’horloge primaire OS à un circuit diviseur de fréquence FDV, un multiplexeur MX1 et deux registres HDR et LDR mémorisant respectivement des rapports de division haute fréquence HR et basse fréquence LR. Le multiplexeur MX1 est commandé par la valeur binaire LC de mesure stockée dans le registre CSR, pour sélectionner l’un ou l’autre des rapports de division HR, LR à transmettre au circuit diviseur FDV. Le circuit FDV applique le rapport de division sélectionné au signal d’horloge OS et fournit le signal d’horloge CK produit au processeur MC.
Ainsi, si le microcircuit Cl est à une distance réduite du terminal RD de sorte que l’intensité du champ reçu par la bobine d’antenne AC est supérieure à la valeur de seuil VT (LC = 1 ), le signal d’horloge CK fourni au processeur MC peut présenter une fréquence maximum correspondant au rapport de division HR. Inversement, si l’intensité du champ reçu par la bobine d’antenne AC est inférieure à la valeur de seuil VT (LC = 0), le signal d’horloge CK fourni au processeur MC peut présenter une fréquence minimum correspondant au rapport de division LR. De cette manière, lorsque l’intensité du champ reçu par la bobine d’antenne AC est inférieure à la valeur de seuil VT, le processeur MC est cadencé à une fréquence plus lente, et donc consomme moins d’énergie. Cette disposition permet maintenir opérationnel le circuit d’alimentation PS, et donc le microcircuit Cl, à une plus grande distance (par exemple environ 4 à 5 cm) du terminal de lecture RD, tout en autorisant une transaction rapide entre le terminal de lecture et le microcircuit lorsque ces derniers sont plus proche l’un de l’autre (par exemple à une distance inférieure à 1 cm).
Selon un mode de réalisation, la valeur de la mesure LC dans le registre CSR est forcée à 1 au démarrage du microcircuit Cl (état RST sur la figure 5), de sorte que le processeur MC fonctionne à sa vitesse maximale, jusqu’à ce qu’une première mesure CM soit acquise et qu’une mesure LC soit stockée dans le registre CSR. A l’acquisition de cette première mesure, le signal d’horloge CK peut être modifié si le champ mesuré est inférieur à la valeur de seuil VT.
La figure 7 représente un diagramme d’état illustrant le fonctionnement de la machine d’état STM, selon un autre mode de réalisation. Le diagramme d’état de la figure 7 diffère de celui de la figure 5 en ce que le processeur MC contrôle l’activation du circuit IMS en modifiant la valeur du signal CS par l’intermédiaire du registre CSR où cette valeur est mémorisée, ou bien en fournissant le signal EV au circuit CIC. Le diagramme d’état de la figure 7 comporte les états RST, SMP0 et SMP1. Le passage de la machine d’état STM de l’état RST à l’état SMP1 est déclenché par le passage du signal CS de 0 à 1. De même, dans l’état SMP0, le processeur MC peut déclencher le passage à l’état SMP1 pour effectuer une nouvelle mesure, en forçant le signal CS à 1. Ainsi, le processeur MC peut déclencher à tout moment une nouvelle mesure par le circuit de mesure IMS, ce qui permet de prendre en compte une variation du champ reçu par le microcircuit Cl durant une transaction entre le microcircuit et le terminal RD. Le processeur MC peut ainsi déclencher une mesure de champ à un moment où le besoin en énergie du circuit Cl est minimum.
Dans l’exemple de la figure 7, la machine d’état STM peut également être configurée pour fournir le signal WT permettant de bloquer le processeur MC (WT=1 ) juste pendant qu’une mesure est acquise, c’est-à-dire tant que la machine d’état STM se trouve dans l’état SMP1.
La figure 8 représente une séquence de transmission de signaux RX, CX émis respectivement par le terminal de lecture RD et le microcircuit Cl, conformément au standard ISO/IEC 14443. Lorsqu’il est actif, le terminal RD émet en permanence une porteuse non modulée UMC. Périodiquement, le terminal RD émet, en modulant la porteuse, un signal de début de trame SOF, puis une trame DTR1 , et enfin un signal de fin de trame EOF. La trame DTR1 peut comprendre une commande CMD, des données DT et une somme de contrôle CRC. Lorsque le microcircuit Cl se trouve dans le champ d’un terminal de lecture et donc reçoit un signal de porteuse, modulée ou non, il s’active sous l’effet de l’apparition de la tension d’alimentation primaire RC. Une fois alimenté, il reçoit le signal RX émis par le terminal RD, le signal RX comportant la trame de données DTR1 et le signal de fin de trame EOF. A la suite de la détection du signal EOF, le microcircuit Cl déclenche une temporisation TRO, à la fin de laquelle il émet une sous-porteuse non modulée SCN en modulant le champ émis par le terminal RD (par rétro- modulation), pendant un temps TR1. Ensuite, le microcircuit Cl émet, en modulant la sous-porteuse, un signal de début de trame SOF, puis une trame DTR2. A l’issue de la transmission de la trame DTR2, et d’un signal de fin de trame (non représenté), le microcircuit Cl suspend l’émission de la sous- porteuse.
Selon un mode de réalisation, le circuit de contrôle CIC est configuré pour détecter un événement dans le signal reçu du terminal RD, et pour signaler cet événement (EV=1 ) au circuit IMC, afin d’activer le circuit de mesure IMS à l’aide du signal d’activation CS. Selon un mode de réalisation, cet événement est le signal de fin de trame EOF émis par le terminal RD. Sur la figure 8, le signal CS est activé (passe de 0 à 1 ) à la fin de la réception du signal EOF émis par le terminal RD, le signal CS restant activé uniquement pendant le temps d’acquisition de la mesure de champ CM. Il est à noter que la fin de la réception du signal EOF reçu par le microcircuit Cl correspond à un temps d’attente (temporisation TRO) pendant lequel le processeur MC n’a pas d’opération particulière à réaliser dans le cadre de la transaction conduite avec le terminal RD. Pendant ce temps, le processeur MC peut donc être bloqué à condition de pouvoir être actif la fin de la temporisation TRO. Il peut être noté également que le temps d’acquisition d’une mesure de champ (temps pendant lequel le signal CS est à 1 ) peut être inférieur à la durée de la temporisation TRO. Le temps d’attente pendant la temporisation TRO peut donc être exploité pour effectuer une mesure de champ, tout en bloquant le processeur MC.
La figure 9 représente le circuit de mesure, selon un autre mode de réalisation. Le circuit de mesure IMS1 représenté sur la figure 9 est adapté à un circuit d’alimentation PW1 comportant un circuit redresseur double alternance. Le circuit de mesure IMS1 comprend un circuit interrupteur ITC1 commandé par le signal CS, un circuit de mesure FSM1 de l’intensité du champ, un circuit d’addition de courant CSM, le circuit de filtrage RCF et le circuit de comparaison VCP. Le circuit de mesure FSM1 est relié aux bornes RF1 , RF2, et reçoit le courant d’alimentation primaire RC du circuit PW1 par l’intermédiaire de transistors MOS du circuit ITC1 , utilisés comme interrupteurs commandés par le signal CS.
Le circuit FSM1 comprend des transistors MOS de type N N1 , N2, N3 et N4, et des transistors MOS de type P P1 , P2, P3 et P4. La borne RF1 est reliée aux grilles des transistors N1 et N3, et aux sources des transistors P1 et P3, par l’intermédiaire d’un transistor du circuit ITC1. La borne RF2 est reliée aux grilles des transistors N2 et N4, et aux sources des transistors P2 et P4, par l’intermédiaire d’un transistor du circuit ITC1. Les sources des transistors N1 , N2 sont reliées à la sortie RC du circuit PW1 , par l’intermédiaire d’un transistor du circuit ITC1. La grille du transistor P1 est connectée à la grille du transistor P3 et aux drains des transistors P1 et N1. La grille du transistor P2 est connectée à la grille du transistor P4 et aux drains des transistors P2 et N2. Le drain du transistor P3 est connecté au drain du transistor N3 dont la source fournit un signal DU au circuit CSM. Le drain du transistor P4 est connecté au drain du transistor N4 dont la source fournit un signal DI2 au circuit CSM.
Les transistors N1 , N3, P1 , P3 forment un premier miroir de courant de rapport 1/N permettant de prélever une fraction DU représentant le rapport 1/N du courant primaire RC et de la fournir au circuit CSM. Les transistors N2, N4, P2, P4 forment un second miroir de courant de rapport 1/N permettant de prélever une fraction DI2 représentant le rapport 1/N du courant primaire RC et de la fournir au circuit CSM. Selon un mode de réalisation, le rapport 1/N est compris entre 1/5 et 1/20, par exemple 1/12. Les signaux Di1 et DI2 présentent une même amplitude, mais sont en opposition de phase.
Le circuit CSM comprend des transistors MOS de type N N5, N6, N7 et N8, et des transistors MOS de type P P5 et P6. Le drain du transistor N5, et les grilles des transistors N5 et N7 reçoivent le signal DU . Le drain du transistor N6, et les grilles des transistors N6 et N8 reçoivent le signal DI2. Les sources des transistors N5, N6, N7 et N8 sont connectées à la masse. Les drains des transistors N7 et N8 sont connectées au drain du transistor P5 et aux grilles des transistors P5 et P6. Les sources des transistors P5 et P6 reçoivent la tension d’alimentation PV. Le drain du transistor P6 fournit le signal de mesure DI au circuit de filtrage RCF. Le circuit CSM permet d’additionner les signaux DM et DI2 en un signal résultant DI formant le signal de mesure du champ reçu par la bobine d’antenne AC.
Selon un mode de réalisation, le circuit de comparaison VCP est remplacé par un circuit convertisseur analogique/numérique. La figure 10 représente un exemple de circuit convertisseur analogique/numérique VCP1. Le circuit VCP1 est configuré pour comparer le signal filtré FC issu du circuit de filtrage RCF à plusieurs tensions de seuil. A cet effet, le circuit VCP1 comprend plusieurs comparateurs CP recevant le signal FC sur une entrée directe, une entrée inverseuse de chaque comparateur recevant la tension de référence VRF au travers d’une ou plusieurs résistances R3 en série. Les sorties respectives des comparateurs CP fournissent des signaux binaires à un encodeur ENC configuré pour fournir un mot binaire de plusieurs bits représentant une valeur de mesure numérique CM1 correspondant au nombre de sorties à un des comparateurs CP. Si N est le nombre de bits du mot de mesure CM1 , le circuit VCP1 comprend 2N-1 comparateurs CP et 2N résistances R3. Le circuit VCP1 forme ainsi un convertisseur analogique/numérique à N bits avec une résolution égale à VRF/2N.
La figure 11 représente un exemple de réalisation du circuit d’horloge adapté au circuit de comparaison VCP1 de la figure 10. Le circuit d’horloge CKC1 représenté sur la figure 1 1 comprend un oscillateur OSC1 fournissant un signal d’horloge primaire OS à un multiplexeur MX2 et à p circuits diviseurs de fréquence DV1 , ..., DVp ayant des rapports de division croissants de DV1 à DVp. Les sorties respectives des diviseurs DV1 -DVp sont connectées à des entrées respectives du multiplexeur MX2 dont la sortie fournit le signal d’horloge au processeur MC. Le multiplexeur MX2 est commandé par une valeur numérique de mesure LC1 stockée dans le registre CSR correspondant au mot de mesure CM1 , pour sélectionner l’un ou l’autre des signaux d’horloge en sortie de l’oscillateur OSC1 ou des diviseurs DV1 -DVp, à transmettre en sortie du circuit CKC1 au processeur MC. Si le mot de mesure LC1 (ou CM1 à la fin de la temporisation définie par le compteur CNT) comporte N bits, le multiplexeur MX2 comporte 2N entrées, et le circuit CKC1 comporte 2N-1 (= p) diviseurs de fréquence.
Les circuits VCP1 et CKC1 permettent ainsi d’ajuster finement la fréquence d’horloge CK du processeur MC et donc sa consommation électrique en fonction de l’intensité du champ reçu par le microcircuit Cl, et donc en fonction de l’énergie disponible.
Selon un autre mode de réalisation, la fréquence du signal d’horloge CK est fixe, et la tension d’alimentation PV du processeur MC est ajustée en fonction du signal LC ou LC1 . Ainsi, la figure 12 représente un exemple de réalisation PS1 du circuit d’alimentation PS fournissant une tension d’alimentation PV régulée et ajustée. Le circuit PS1 comprend un circuit limiteur de tension SHR et un circuit de régulation LDOR à faible chute de tension. Le circuit SHR comprend un comparateur CP2 comportant une entrée directe reliée par l’intermédiaire d’une résistance R4 à une entrée de tension d’alimentation RCL fournie par le circuit PWE ou PW1 pour les circuits analogiques du microcircuit Cl. L’entrée directe du comparateur CP2 est également reliée à la masse par l’intermédiaire d’une résistance R5. Le comparateur CP2 est alimenté par la tension RCL et comprend également une entrée inverseuse recevant la tension de référence VRF. Le circuit SHR comprend également un condensateur C3 reliant l’entrée de tension d’alimentation RCL à la masse. La sortie du comparateur CP2 est connectée à la grille d’un transistor MOS de type N N11 dont le drain reçoit la tension d’alimentation primaire RC et dont la source est connectée à la masse. Le circuit SHR permet de forcer la tension du courant primaire RC fourni par le circuit PW1 à une valeur (par exemple 3 V) requise par les circuits numériques du microcircuit Cl et de limiter le courant RC à la valeur requise par les circuits numériques.
Le circuit de régulation LDOR comprend un comparateur CP3 alimenté par la tension d’alimentation RCL, dont l’entrée directe reçoit la tension de référence VRF. L’entrée inverseuse du comparateur CP3 est reliée à la masse par l’intermédiaire d’une résistance R7, et à la sortie PV du circuit PS1 par l’intermédiaire d’une résistance variable R6 commandée par pas par la valeur numérique de mesure LC1 mémorisée dans le registre CSR. La sortie du comparateur CP3 est connectée à la grille d’un transistor MOS de type N dont le drain reçoit la tension d’alimentation primaire RC et la source est connectée à la sortie de tension d’alimentation PV du circuit d’alimentation PS1. Le circuit LDOR comprend également un condensateur C4 connecté entre la masse et la sortie PV du circuit PS1.
Selon un autre mode de réalisation, la mesure de champ LC ou LC1 mémorisée dans le registre CSR est utilisée pour sélectionner un point de fonctionnement du processeur MC, parmi plusieurs points de fonctionnement, chaque point de fonctionnement étant défini par une commande du circuit CKC ou CKC1 associée à une commande d’ajustement de la tension d’alimentation PV, appliquée à la résistance R6 dans le circuit d’alimentation PS1. Par exemple, les points de fonctionnement définis par les valeurs associées des commandes du circuit CKC ou CKC1 et de la résistance variable R6 peuvent être stockés dans une table indexée par les valeurs possibles de la mesure de champ LC ou LC1 stockée dans le registre CSR.
Il apparaîtra clairement à l'homme de l'art que la présente invention est susceptible de diverses variantes de réalisation et diverses applications. En particulier, l’invention n’est pas limitée à des mesures de courant pour obtenir une mesure représentative du champ reçu par la bobine d’antenne AC. En effet, cette mesure de champ peut être obtenue par une mesure de tension dans le circuit d’alimentation primaire PWE, PW1.
De plus, d’autres circuits que ceux décrits (Figures 6 et 1 1 ) peuvent aisément être imaginés pour ajuster la fréquence d’horloge fournie au processeur MP.
L’invention n’est pas non plus limitée au protocole de communication spécifié dans le standard ISO/IEC 14443, mais peut s’appliquer à d’autres protocoles de communication entre un microcircuit sans contact et un terminal de lecture. Il en résulte que d’autres événements que ceux décrits peuvent déclencher une mesure de champ dans le microcircuit. En outre, l’événement à détecter déclenchant une mesure de champ n’est pas nécessairement liée à un instant particulier dans le protocole de communication entre le microcircuit et le terminal de lecture. Il importe simplement que la mesure du champ soit effectuée à un moment risquant le moins de perturber la réception et le traitement du signal reçu par le microcircuit, en particulier lorsque l’intensité du champ reçu est proche de la limite en dessous de laquelle l’énergie collectée par le circuit d’alimentation PWE, PW1 est insuffisante pour alimenter le microcircuit.

Claims

REVENDICATIONS
1. Procédé de gestion de l’alimentation dans un microcircuit sans contact, le procédé comprenant des étapes consistant à :
recevoir un champ électromagnétique variable par l’intermédiaire d’une bobine d’antenne (AC) du microcircuit sans contact (Cl),
extraire du champ reçu un courant d’alimentation (RC, RCL) du microcircuit sans contact,
déclencher dans le microcircuit sans contact un circuit de mesure (IMS) pour mesurer une intensité du champ reçu, et acquérir une mesure du champ (LC) à l’aide du circuit de mesure, et désactiver le circuit de mesure lorsque la mesure de champ est acquise, et
commander un circuit d’horloge (CKC, CKC1 ) et/ou un circuit d’alimentation régulé (PS, PS1 ) du microcircuit sans contact, couplés à des circuits numériques (MC) du microcircuit sans contact, en fonction de la mesure de champ acquise, afin de diminuer une consommation électrique des circuits numériques lorsque la mesure de champ est inférieure à une valeur de seuil (VT).
2. Procédé selon la revendication 1 , dans lequel les circuits numériques (MC) sont au moins en partie désactivés pendant l’acquisition de la mesure de champ (LC).
3. Procédé selon la revendication 1 ou 2, dans lequel le déclenchement du circuit de mesure (IMS) est effectué à la suite de la détection d’un événement (EV, EOF) dans un signal reçu par la bobine d’antenne (AC).
4. Procédé selon la revendication 3, dans lequel l’événement (EV) est un signal de fin de trame (EOF) apparaissant dans le signal reçu par la bobine d’antenne (AC) du microcircuit (Cl), le signal de fin de trame étant conforme au standard ISO/IEC 14443.
5. Procédé selon la revendication 1 ou 2, dans lequel le déclenchement du circuit de mesure (IMS) est effectué à la suite de la détection d’un événement (EV) par un processeur (MC) des circuits numériques, le processeur commandant l’activation du circuit de mesure (IMS) à la suite de la détection de l’événement.
6. Procédé selon l'une des revendications 1 à 5, dans lequel le circuit de mesure (IMS) est déclenché plusieurs fois durant une session de communication sans contact entre le microcircuit sans contact (Cl) et un terminal de lecture (RD).
7. Procédé selon l'une des revendications 1 à 6, dans lequel la mesure de champ acquise (LC1 ) est un mot de plusieurs bits, le procédé comprenant la sélection d’un point de fonctionnement des circuits numériques (MC) parmi plusieurs points de fonctionnement définis chacun par une valeur de commande du circuit d’horloge (CKC1 ) associée à une valeur de commande du circuit d’alimentation (PS1 ).
8. Procédé selon l'une des revendications 1 à 7, dans lequel l’acquisition d’une mesure de champ comprend des étapes consistant à : prélever une première fraction d’un premier (DM ) courant redressé entre une sortie du courant redressé (RC) issu de la bobine d’antenne (AC) et une première borne (RF1 ) de la bobine d’antenne,
prélever une seconde fraction (DI2) du courant redressé, entre la sortie du courant redressé issu de la bobine d’antenne et une seconde borne (RF2) de la bobine d’antenne,
générer un courant de mesure (DI) en additionnant les première et seconde fractions de courant redressé,
filtrer le courant de mesure, et
convertir le courant filtré (FDI) en une valeur numérique de mesure (CM1 ) représentative de l’intensité du courant filtré.
9. Microcircuit sans contact comprenant :
une bobine d’antenne (AC) pour recevoir et émettre des signaux d’une communication sans contact au moyen d’un champ électromagnétique modulé, un circuit d’alimentation primaire (PWE) pour extraire de la bobine d’antenne un courant d’alimentation (RC) apparaissant lorsque la bobine d’antenne est placée dans un champ électromagnétique variable,
un circuit de mesure de champ (IMS) configuré pour mesurer une intensité du champ reçu par la bobine d’antenne,
un circuit d’horloge (CKC, CKC1 ) et un circuit de régulation de tension (PS, PS1 ), et
des circuits numériques (MC, IMC, CIC) configurés pour détecter un événement (EV) dans le microcircuit sans contact (Cl), et lors de la détection de l’événement :
déclencher le circuit de mesure pour mesurer une intensité du champ reçu,
acquérir une mesure du champ (LC) à l’aide du circuit de mesure,
désactiver le circuit de mesure lorsque la mesure de champ est acquise, et
commander le circuit d’horloge et/ou le circuit de régulation de tension en fonction de la mesure de champ acquise, afin de diminuer une consommation électrique des circuits numériques lorsque la mesure de champ est inférieure à une valeur de seuil (VT).
10. Microcircuit selon la revendication 9, dans lequel les circuits numériques comprennent un processeur (MC) qui est désactivé pendant l’acquisition de la mesure de champ.
1 1. Microcircuit selon la revendication 9 ou 10, dans lequel les circuits numériques (CIC, IMC, MC) sont configurés pour détecter un signal de fin de trame (EOF) dans le champ reçu par la bobine d’antenne (AC), le signal de fin de trame étant l’événement à détecter (EV) pour déclencher une mesure de champ.
12. Microcircuit selon l'une des revendications 9 à 11 , dans lequel le circuit d’horloge (CKC1 ) est configuré pour générer plus de deux fréquences de signal d’horloge, en fonction d’un mot de commande (LC1 ), le microcircuit (Cl) étant configuré pour déterminer le mot de commande du circuit d’horloge en fonction de la mesure de champ acquise, et pour fournir le mot de commande au circuit d’horloge.
13. Microcircuit selon l'une des revendications 9 à 12, dans lequel le circuit de régulation de tension (PS1 ) est configuré pour fournir une tension d’alimentation (PV) dépendant d’un mot de commande (LC1 ), le microcircuit (Cl) étant configuré pour déterminer le mot de commande du circuit de régulation de tension en fonction de la mesure de champ acquise (CM1 ), et pour fournir le mot de commande au circuit de régulation de tension.
14. Microcircuit selon l'une des revendications 9 à 13, dans lequel le circuit de mesure est configuré pour :
prélever une première fraction (DM ) d’un courant redressé issu de la bobine d’antenne (AC), entre une sortie du courant redressé (RC) et une première borne (RF1 ) de la bobine d’antenne,
prélever une seconde fraction (DI2) du courant redressé issu du circuit d’antenne (AC), entre la sortie du courant redressé et une seconde borne (RF2) de la bobine d’antenne,
générer un courant de mesure (DI) en additionnant les première et seconde fractions de courant redressé,
filtrer le courant de mesure, et
convertir le courant filtré (FDI) en une valeur numérique de mesure (CM1 ) représentative de l’intensité du courant filtré.
PCT/FR2019/050457 2018-03-13 2019-02-28 Microcircuit sans contact avec gestion d'alimentation WO2019175489A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19717514.4A EP3766014B1 (fr) 2018-03-13 2019-02-28 Microcircuit sans contact avec gestion d'alimentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852167A FR3079084B1 (fr) 2018-03-13 2018-03-13 Microcircuit sans contact avec gestion d’alimentation
FRFR1852167 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019175489A1 true WO2019175489A1 (fr) 2019-09-19

Family

ID=62873446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050457 WO2019175489A1 (fr) 2018-03-13 2019-02-28 Microcircuit sans contact avec gestion d'alimentation

Country Status (3)

Country Link
EP (1) EP3766014B1 (fr)
FR (1) FR3079084B1 (fr)
WO (1) WO2019175489A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120049942A1 (en) * 2010-08-31 2012-03-01 Kabushiki Kaisha Toshiba Semiconductor device and contactless communication medium
US20120120989A1 (en) * 2010-11-17 2012-05-17 Renesas Electronics Corporation Contactless communication device, contactless ic card, and mobile information terminal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11296627A (ja) * 1998-04-14 1999-10-29 Mitsubishi Electric Corp 非接触カード,非接触カードのリーダライタ及び非接触カードの制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120049942A1 (en) * 2010-08-31 2012-03-01 Kabushiki Kaisha Toshiba Semiconductor device and contactless communication medium
US20120120989A1 (en) * 2010-11-17 2012-05-17 Renesas Electronics Corporation Contactless communication device, contactless ic card, and mobile information terminal

Also Published As

Publication number Publication date
FR3079084A1 (fr) 2019-09-20
EP3766014A1 (fr) 2021-01-20
EP3766014B1 (fr) 2022-06-01
FR3079084B1 (fr) 2020-04-17

Similar Documents

Publication Publication Date Title
CA2245912C (fr) Systeme d'echange de donnees par communication sans contact entre une borne et des objets portatifs telealimentes
EP1045336B1 (fr) Fonctionnement en couplage très proche d'un système à transpondeur électromagnétique
EP1043677B1 (fr) Borne de lecture d'un transpondeur électromagnétique fonctionnant en couplage très proche
EP1459240B1 (fr) Lecteur de circuit integre sans contact comprenant un mode de veille active a faible consommation electrique
EP2443594B1 (fr) Gestion de puissance dans un transpondeur electromagnetique
EP2507739B1 (fr) Prolongateur d'antenne rfid auto-parametrable
EP1617550A2 (fr) Circuit d'alimentation adaptable
EP1936541A1 (fr) Chargeur de batterie fonctionnant par "tout ou rien" avec circuit de protection d'alimentation pour circuits intégrés monolithiques utilisant l'énergie de l'antenne
EP3629487B1 (fr) Synchronisation rapide entre un objet et un lecteur communiquant sans contact par une modulation active de charge
EP3766014B1 (fr) Microcircuit sans contact avec gestion d'alimentation
EP4038476B1 (fr) Dispositif de generation d'une tension d'alimentation / polarisation et d'un signal d'horloge pour un circuit numerique synchrone
EP1986136B1 (fr) Circuit transpondeur à unité à double extracteur d'horloge
FR2806855A1 (fr) Demodulateur d'un signal alternatif module en amplitude
FR2776781A1 (fr) Dispositif de controle de l'impedance ramenee sur l'antenne d'une etiquette electromagnetique
EP3012980A1 (fr) Procédé de gestion du fonctionnement, en particulier de la modulation de charge, d'un objet capable de communiquer sans contact avec un lecteur, dispositif et objet correspondants
FR2835119A1 (fr) Demodulateur a large dynamique pour cartes a puce ou etiquettes sans contact
FR2917557A1 (fr) Dispositif de demodulation d'un signal comportant des informations transitant par modulation de la phase d'une porteuse
FR2999831A1 (fr) Dispositif de demodulation
WO2003050955A2 (fr) Circuit integre comprenant un generateur d'horloge, carte a puce comprenant un tel circuit integre et procede de generation d'horloge associe
FR3118190A1 (fr) Procédé de rétro-modulation d’une communication sans contact, et transpondeur correspondant
FR2940555A1 (fr) Dispositif de filtrage a auto-etalonnage
EP1922834A1 (fr) Procede de generation d'un signal d'horloge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19717514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019717514

Country of ref document: EP

Effective date: 20201013