WO2019174616A1 - 一种分离锂离子电池正、负极的物理方法 - Google Patents

一种分离锂离子电池正、负极的物理方法 Download PDF

Info

Publication number
WO2019174616A1
WO2019174616A1 PCT/CN2019/078139 CN2019078139W WO2019174616A1 WO 2019174616 A1 WO2019174616 A1 WO 2019174616A1 CN 2019078139 W CN2019078139 W CN 2019078139W WO 2019174616 A1 WO2019174616 A1 WO 2019174616A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive
physical method
negative electrode
lithium ion
ion battery
Prior art date
Application number
PCT/CN2019/078139
Other languages
English (en)
French (fr)
Inventor
王武生
Original Assignee
王武生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王武生 filed Critical 王武生
Publication of WO2019174616A1 publication Critical patent/WO2019174616A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to a physical method for separating positive and negative electrodes of a lithium ion battery, and belongs to the technical field of recovery of lithium ion batteries.
  • the positive electrode and the negative electrode are usually mixed together; if the mixture of the positive electrode and the negative electrode is directly recovered, a mixture of the positive and negative electrode materials and the positive and negative current collectors is obtained; Processing will be very complicated and costly. If the mixture of the positive and negative electrodes is first subjected to phase separation between the positive electrode and the negative electrode, the post-treatment cost can be reduced, and resource utilization can be improved. Therefore, the development of a high-efficiency, non-polluting, low-cost method for separating the positive and negative electrodes of lithium-ion batteries will have important value and social significance for solving the pollution and resource problems of used lithium-ion batteries.
  • an object of the present invention is to provide a physical method which is convenient in operation, low in cost, non-polluting, and resource-separable to separate positive and negative electrodes of a lithium ion battery.
  • the present invention adopts the following technical solutions:
  • the invention utilizes a liquid double-layer liquid medium in which the upper layer is water and the lower layer is liquid bromide by using water and a liquid bromide having a specific gravity larger than the specific gravity of the positive electrode, so that the positive and negative electrode mixture of the lithium ion battery is proportioned in the double-layer liquid medium. Separation is carried out, thereby not only utilizing the difference in specific gravity, but also realizing the phase separation of the positive electrode and the negative electrode in the positive and negative electrode mixture of the lithium ion battery, and avoiding the chemical reaction of the separated positive electrode to be destroyed, because the positive electrode of the lithium ion battery is generally made of aluminum foil.
  • the aluminum foil is easily chemically reacted with bromide to form aluminum bromide, and the present invention allows the separated positive electrode to be located in the upper layer water in the two-layer liquid medium, thereby avoiding chemical reaction with the bromide contact, thereby reducing the environment. Contamination, and improved recovery and quality of the positive electrode, is of significant value to the positive electrode of the resource recovery lithium ion battery.
  • the liquid bromide is a brominated alkane. Because the production process of brominated alkanes is mature and low in cost, it is the easiest to industrialize.
  • the brominated alkane is bromoform because bromoform has a wide source of raw materials for production, low production cost, and simple production process.
  • the negative electrode alcohol separated from the bottom of the liquid bromide is washed.
  • a certain amount of liquid bromide remains on the surface of the negative electrode obtained after separation, and the residual bromide can be washed by washing with an alcohol such as methanol or ethanol.
  • alcohols can be immiscible with liquid bromide, and alcohols are cheap, such as methanol, which is only about 5% of bromoform, and alcohols are environmentally friendly.
  • the negative electrode after washing is subjected to centrifugation, and the amount of liquid remaining on the surface of the negative electrode can be further reduced by centrifugal separation.
  • water is added to the filtrate obtained by centrifugation, and the mixture is stirred and mixed to separate an aqueous alcohol solution formed from an alcohol and water with a liquid bromide.
  • the alcohol is soluble in both liquid bromide and water, it is more miscible with water.
  • the low-concentration aqueous solution formed by dissolving with water and the liquid bromide will be layered.
  • the upper layer is an aqueous alcohol solution
  • the lower layer is The liquid bromide is separated by a liquid separation method.
  • the obtained alcohol aqueous solution is subjected to recovery of an alcohol so that the alcoholic substance can be recovered and reused.
  • the separation of alcohol from water is usually carried out by distillation.
  • the positive and negative electrode mixtures of the lithium ion battery are first subjected to pulverization pretreatment. Since the positive and negative electrodes of a lithium ion battery are usually mixed with a separator, a casing, etc., the subsequent separation is more convenient and thorough by performing the pulverization pretreatment.
  • the positive and negative electrode mixtures of the lithium ion battery are subjected to magnetic separation separation pretreatment.
  • lithium ion batteries contain magnetic metals (such as metal casings, tabs, etc.), these magnetic metals are mixed with the positive and negative electrodes during the disassembly process, so the magnetic metal can be removed first by magnetic pretreatment.
  • the tabs on the current collector are usually made of a metallic nickel material, nickel has magnetic permeability.
  • the polar ear can be separated by magnetic separation processing. Magnetic separation is a low-cost, high-efficiency separation method that improves separation efficiency and reduces separation costs through magnetic separation.
  • the physical method further comprises the steps of: ball-milling the separated positive and negative electrodes, or unseparated positive and negative electrode mixtures, and causing the positive current collector and the positive electrode material, the negative current collector and the negative electrode by ball milling.
  • the materials are phase separated. Ball milling is a purely physical method with low cost and high efficiency.
  • the physical method further comprises the steps of: separately mixing the separated positive current collector and the positive electrode material, and mixing the negative current collector and the negative electrode material, respectively, or performing positive or negative separation without separation.
  • the polar mixture is subjected to a winnowing treatment. Since the specific gravity of the positive electrode current collector and the positive electrode material, the negative electrode current collector and the negative electrode material are different, the positive electrode current collector and the positive electrode material, the negative electrode current collector and the negative electrode material are separated by air separation. Also, the separator in the positive and negative electrode mixture can be separated first. The air selection operation is simple, the cost is low, and the output is high.
  • the physical method further comprises the steps of: placing a mixture of the separated positive current collector and the positive electrode material into the solution, and making the specific gravity of the solution larger than the specific gravity of the positive electrode material but smaller than the positive electrode current collector.
  • Specific gravity putting a mixture of the separated anode current collector and the anode material into a solution, and making the specific gravity of the solution larger than the specific gravity of the anode material but smaller than the specific gravity of the anode current collector, thereby realizing separation of the cathode current collector from the cathode material Or the anode current collector is separated from the anode material.
  • Specific gravity separation is a physical method with complete separation, low cost and high efficiency. The separation of the electrode material and the current collector can be 100% separated by specific gravity separation.
  • the present invention has the following significant benefits:
  • High degree of resource utilization the present invention can perform high-quality recovery of the positive electrode of the lithium ion battery, and thus the degree of resource utilization is high;
  • the present invention makes a positive and negative electrode mixture of a lithium ion battery by artificially using a liquid bromide having a specific gravity greater than a specific gravity of the positive electrode to form a double layer liquid medium having an upper layer of water and a lower layer of liquid bromide.
  • the separation of the specific gravity in the liquid medium can achieve complete separation of the positive electrode and the negative electrode at one time.
  • the separation operation is very simple, and the separation efficiency is high, which is of significant value for the large-scale separation and recovery of the positive and negative electrodes of the lithium ion battery.
  • FIG. 1 is a schematic flow chart of a physical method for separating positive and negative electrodes of a lithium ion battery according to an embodiment of the present invention.
  • a physical method for separating positive and negative electrodes of a lithium ion battery, including a positive and negative electrode mixture of a lithium ion battery, is provided in the embodiment; the specific process is as follows:
  • the present invention can be used to form a two-layer liquid medium in which the upper layer is water and the lower layer is liquid bromide by using water and a liquid bromide having a specific gravity larger than the specific gravity of the cathode, so that the positive and negative electrodes of the lithium ion battery are doubled.
  • the liquid medium is separated by specific gravity, so that the phase separation of the positive electrode and the negative electrode in the positive and negative electrode mixture of the lithium ion battery is realized not only by the difference in specific gravity, but also the chemical reaction of the separated positive electrode and the bromide is prevented from being destroyed. It not only reduces environmental pollution, but also ensures the recovery quality of the positive electrode.
  • the whole separation process is safe, reliable, environmentally friendly, easy to operate, easy to scale, and requires no special equipment and can be reused. Therefore, the separation and recovery cost is also Very low, it has significant industrial application value and significance for the positive and negative electrodes in the positive and negative electrode mixture of large-scale resource separation and recycling of waste lithium ion batteries, and therefore, the present invention has significant progress over the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种分离锂离子电池正、负极的物理方法,包括锂离子电池的正负极混合物;所述的物理方法包括:a)在分离容器里放入水和比重大于正极比重的液态溴化物,使形成上层为水、下层为液态溴化物的双层液态介质;b)将锂离子电池的正负极混合物放入到所述的双层液态介质中,使正极浮在液态溴化物层的表面,负极沉入液态溴化物的底部,从而实现正极与负极的相分离。本发明所述的物理方法既安全可靠,又环保,并且操作简单,易于实现规模化,以及成本低,对大规模资源化分离回收废旧锂离子电池的正、负极具有显著的工业应用价值。

Description

一种分离锂离子电池正、负极的物理方法 技术领域
本发明是涉及一种分离锂离子电池正、负极的物理方法,属于锂离子电池的回收技术领域。
背景技术
现在由于电子产品的报废越来越多,用于电子产品的锂离子电池的报废量也越来越大,如何环保回收锂离子电池也越来越重要。现有技术中已有关于锂离子电池的相关回收技术,如:中国专利申请CN01130735.8、发明名称为《从废锂离子电池中回收金属的方法》的发明中公开了一种回收方法,该发明虽然也能达到回收其中金属的目的,但在回收过程中采用了高温炉焙烧,并且还采用了加入酸溶蚀的手段,回收过程中不仅产生了新的环境污染,而且成本高、工艺复杂,不适合规模化回收要求!另外,在锂离子电池的回收过程中,正极与负极通常是混在一起的;如果直接对正极与负极的混合物进行回收,得到的是正、负极材料与正、负极集流体的混合物;而混合物的后处理将非常复杂,成本也非常高。如果先将正负极的混合物进行正极与负极的相分离,将可减少后处理成本,并可提高资源化。因此,研发一种效率高、无污染、成本低的分离锂离子电池正、负极的方法,将对解决废旧锂离子电池的污染和资源化问题具有重要价值和社会意义。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种操作方便、成本低廉、无污染、可资源化分离锂离子电池正、负极的物理方法。
为实现上述目的,本发明采用如下技术方案:
一种分离锂离子电池正、负极的物理方法,包括锂离子电池的正负极混合物;所述的物理方法包括:
a)在分离容器里放入水和比重大于正极比重的液态溴化物,使形成上层为水、下层为液态溴化物的双层液态介质(因为液态溴化物与水互不相溶);
b)将锂离子电池的正负极混合物放入到所述的双层液态介质中,使正极浮在液态溴化物层的表面,负极沉入液态溴化物的底部,从而实现正极与负极的相分离。当然采用搅拌致使正极浮在液态溴化物层的表面,负极沉入液态溴化物的底部,分离效果更好。
本发明通过创造性地采用水与比重大于正极比重的液态溴化物形成上层为水、下层为 液态溴化物的双层液态介质,使锂离子电池的正负极混合物在此双层液态介质中按比重进行分离,从而不仅利用比重差异实现了锂离子电池的正负极混合物中的正极与负极的相分离,而且可避免分离的正极发生化学反应而被破坏,因为锂离子电池的正极一般是采用铝箔为基材,铝箔容易与溴化物发生化学反应生成溴化铝,而本发明使分离的正极位于双层液态介质中的上层水中,因而可避免与溴化物接触而发生化学反应,不仅可减少环境污染,而且提高了正极的回收率和品质,对资源化回收锂离子电池的正极具有显著价值。
作为优选方案,所述液态溴化物为溴代烷烃。因为溴代烷烃类的生产工艺成熟,成本低,最容易实现工业化。
作为进一步优选方案,所述溴代烷烃为溴仿,因为溴仿的生产原料来源广,生产成本低,生产工艺简单。
作为优选方案,对从液态溴化物底部分离得到的负极用醇类物质进行清洗。因分离后得到的负极的表面仍然残留有一定量的液态溴化物,采用醇类如甲醇、乙醇进行清洗,可将残留的溴化物清洗下来。因为醇类物质可以与液态溴化物进行无限互溶,并且醇类物质价格便宜,如甲醇只有溴仿的5%左右,并且醇类物质环境友好。
作为进一步优选方案,对清洗后的负极进行离心分离,通过离心分离可以进一步地降低负极表面的液体残留量。
作为进一步优选方案,向离心分离得到的滤液中加入水,进行搅拌混合,使醇与水形成的醇水溶液与液态溴化物相分离。虽然醇类物质既能溶于液态溴化物又能溶于水,但与水互溶性更高,与水溶解后形成的低浓度醇水溶液与液态溴化物会分层,上层为醇水溶液,下层为液态溴化物,通过分液方法,使两层液体分开。
作为进一步优选方案,对得到的醇水溶液进行醇的回收,使醇类物质能回收重复利用。通常采用蒸馏方法进行醇与水的分离。
作为优选方案,对所述锂离子电池的正负极混合物先进行粉碎预处理。因锂离子电池的正负极通常与隔膜、外壳等混合在一起,通过先进行粉碎预处理,可使后续的分离更加方便和彻底。
作为优选方案,对锂离子电池的正负极混合物进行磁选分离预处理。由于锂离子电池含有磁性金属(如:金属外壳、极耳等),在拆解过程中这些磁性金属会与正、负极混合在一起,因而通过磁选预处理可先将磁性金属去除。由于集流体上的极耳通常是采用金属镍材料制成,而镍具有导磁性能。通过磁选处理,可以将极耳分离。磁选是一种低成本、高效率的分离方法,通过磁选可以提高分离效率、降低分离成本。
一种实施方案,所述的物理方法还包括如下步骤:将已经分开的正极和负极,或未分 开的正负极混合物进行球磨,通过球磨作用使正极集流体与正极材料,负极集流体与负极材料相分离。球磨处理是一种纯物理方法,成本低,效率高。
一种实施方案,所述的物理方法还包括如下步骤:将已经分离的正极集流体与正极材料的混合物,负极集流体与负极材料的混合物分别进行风选处理,或对未进行分离的正负极混合物进行风选处理。由于正极集流体与正极材料、负极集流体与负极材料的比重不同,通过风选可使正极集流体与正极材料、负极集流体与负极材料相分开。同样,也可以将正负极混合物中的隔膜先分离开。风选操作简单、成本低、产量高。
一种实施方案,所述的物理方法还包括如下步骤:将已经分离的正极集流体与正极材料的混合物放入溶液里,并使所述溶液的比重大于正极材料的比重但小于正极集流体的比重;将已经分离的负极集流体与负极材料的混合物放入溶液里,并使所述溶液的比重大于负极材料的比重但小于负极集流体的比重,从而可实现正极集流体与正极材料相分开,或负极集流体与负极材料相分开。比重分离是一种分离完全、成本低、效率高的物理方法,通过比重分离可以百分之百地使电极材料与集流体分开。
与现有技术相比,本发明具有如下显著性有益效果:
1)安全,成本低:由于整个分离过程是在常温或接近常温中进行,因此本发明方法安全可靠;且整个分离过程中无需特殊设备,操作简单,因此成本也很低;
2)环保:由于本发明所述分离方法为物理方法,在整个回收过程中没有污染排放,因此本发明不会对环境造成污染,具有环保优点;
3)资源化程度高:本发明可对锂离子电池的正极进行高品质回收,因此资源化程度高;
4)分离效率高:本发明通过创造性地采用水与比重大于正极比重的液态溴化物形成上层为水、下层为液态溴化物的双层液态介质,使锂离子电池的正负极混合物在此双层液态介质中按比重进行分离,就可实现正极与负极的一次性完全分离,不仅分离操作非常简单,而且分离效率高,对规模化分离回收锂离子电池的正、负极具有显著价值。
附图说明
图1是本发明实施例提供的一种分离锂离子电池正、负极的物理方法的流程示意图。
具体实施方式
下面结合实施例和附图对本发明技术方案做进一步详细、完整地说明。
实施例
参照图1所示,本实施例提供的一种分离锂离子电池正、负极的物理方法,包括锂离 子电池的正负极混合物;具体流程如下:
1)将锂离子电池的正负极混合物进行粉碎,然后进行风选,通过风选使其中的隔膜被分离出去;
2)将经过风选后的正负极混合物加入到双层液态介质中,所述的双层液态介质是由水与溴甲烷形成(由于溴甲烷是非极性的,并且溴甲烷的比重大于正极的比重,因此可形成上层为水、下层为溴甲烷的双层液态介质);
3)搅拌,使正极浮在溴甲烷层的表面且位于水层中,负极沉入溴甲烷的底部(因为正极的比重小于溴甲烷,所以位于上层的水中;而负极的比重大于溴甲烷,所以能沉入下层溴甲烷的底部);
4)分离上下层,从而可分离得到高纯度的正极;对分离得到的溴甲烷层进行离心分离,从而可分离回收得到溴甲烷,以实现重复利用,可用于双层液态介质的制备;
5)用乙醇对离心分离得到的负极进行清洗,然后进行离心分离,可得到清洗后的负极和乙醇溴甲烷溶液;
6)向离心分离得到的乙醇溴甲烷溶液中加入水,进行搅拌清洗,根据相似相溶原理,乙醇与水相溶,形成的乙醇水溶液与溴甲烷进行了分层,上层为乙醇与水形成的乙醇水溶液,下层为溴甲烷;对乙醇水溶液进行蒸馏可回收得到乙醇,以实现回收再利用,分离得到的溴甲烷也可重复利用,可用于双层液态介质的制备。
综上所述可见:本发明通过创造性地采用水与比重大于正极比重的液态溴化物形成上层为水、下层为液态溴化物的双层液态介质,使锂离子电池的正负极混合物在此双层液态介质中按比重进行分离,从而不仅利用比重差异实现了锂离子电池的正负极混合物中的正极与负极的相分离,而且可避免分离的正极与溴化物接触而发生化学反应被破坏,不仅可减少环境污染,而且保证了正极的回收品质,整个分离过程既安全可靠,又环保,并且操作简单,易于实现规模化,以及无需特殊设备且可实现溶剂的重复利用,因此分离回收成本也很低,对大规模资源化分离回收废旧锂离子电池的正负极混合物中的正极与负极具有显著的工业应用价值和重要意义,因此,本发明相对于现有技术具有显著性进步。
最后需要在此指出的是:以上仅是本发明的部分优选应用例,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (11)

  1. 一种分离锂离子电池正、负极的物理方法,包括锂离子电池的正负极混合物;其特征在于,所述的物理方法包括:
    a)在分离容器里放入水和比重大于正极比重的液态溴化物,使形成上层为水、下层为液态溴化物的双层液态介质;
    b)将锂离子电池的正负极混合物放入到所述的双层液态介质中,使正极浮在液态溴化物层的表面,负极沉入液态溴化物的底部,从而实现正极与负极的相分离。
  2. 根据权利要求1所述的物理方法,其特征在于:所述液态溴化物为溴代烷烃。
  3. 根据权利要求2所述的物理方法,其特征在于:所述溴代烷烃为溴仿。
  4. 根据权利要求1所述的物理方法,其特征在于:对从液态溴化物底部分离得到的负极用醇类物质进行清洗。
  5. 根据权利要求4所述的物理方法,其特征在于:对清洗后的负极进行离心分离。
  6. 根据权利要求5所述的物理方法,其特征在于:向离心分离得到的滤液中加入水,进行搅拌混合,使醇与水形成的醇水溶液与液态溴化物相分离。
  7. 根据权利要求1所述的物理方法,其特征在于:对所述锂离子电池的正负极混合物先进行粉碎预处理。
  8. 根据权利要求1或7所述的物理方法,其特征在于:对锂离子电池的正负极混合物进行磁选分离预处理。
  9. 根据权利要求1至7中任一项所述的物理方法,其特征在于,所述的物理方法还包括如下步骤:将已经分开的正极和负极,或未分开的正负极混合物进行球磨,通过球磨作用使正极集流体与正极材料,负极集流体与负极材料相分离。
  10. 根据权利要求9所述的物理方法,其特征在于,所述的物理方法还包括如下步骤:将已经分离的正极集流体与正极材料的混合物,负极集流体与负极材料的混合物分别进行风选处理,或对未进行分离的正负极混合物进行风选处理。
  11. 根据权利要求9所述的物理方法,其特征在于,所述的物理方法还包括如下步骤:将已经分离的正极集流体与正极材料的混合物放入溶液里,并使所述溶液的比重大于正极材料的比重但小于正极集流体的比重;将已经分离的负极集流体与负极材料的混合物放入溶液里,并使所述溶液的比重大于负极材料的比重但小于负极集流体的比重,从而实现正极集流体与正极材料相分开,负极集流体与负极材料相分开。
PCT/CN2019/078139 2018-03-16 2019-03-14 一种分离锂离子电池正、负极的物理方法 WO2019174616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810217391.0 2018-03-16
CN201810217391.0A CN110277601A (zh) 2018-03-16 2018-03-16 一种分离锂离子电池正、负极的物理方法

Publications (1)

Publication Number Publication Date
WO2019174616A1 true WO2019174616A1 (zh) 2019-09-19

Family

ID=67908577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078139 WO2019174616A1 (zh) 2018-03-16 2019-03-14 一种分离锂离子电池正、负极的物理方法

Country Status (2)

Country Link
CN (1) CN110277601A (zh)
WO (1) WO2019174616A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915661A (zh) * 2013-01-09 2014-07-09 中国科学院过程工程研究所 一种直接回收并修复锂离子电池正极材料的方法
CN105375077A (zh) * 2014-08-13 2016-03-02 法拉赛斯能源公司 回收利用锂离子电池电极材料的方法
CN107282285A (zh) * 2016-04-11 2017-10-24 上海奇谋能源技术开发有限公司 一种分离锂离子电池的正极与负极的方法
CN107394302A (zh) * 2017-07-27 2017-11-24 合肥国轩高科动力能源有限公司 一种废旧镍钴锰酸锂电池电芯焙烧料的分离方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG52087B2 (en) * 1982-07-22 1996-06-28 Ljakov Method and equipment for the separation of battery wastes
TWI726033B (zh) * 2016-01-08 2021-05-01 印度商艾特羅回收股份有限公司 從具有高錳含量的廢棄鋰離子電池回收有價金屬的方法
CN107287424B (zh) * 2016-04-11 2019-01-25 上海奇谋能源技术开发有限公司 一种从金属混合物中物理分离铝金属的方法
CN107293816B (zh) * 2016-04-11 2019-12-20 上海奇谋能源技术开发有限公司 一种分离锂离子电池的电极集流体与电极材料的物理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915661A (zh) * 2013-01-09 2014-07-09 中国科学院过程工程研究所 一种直接回收并修复锂离子电池正极材料的方法
CN105375077A (zh) * 2014-08-13 2016-03-02 法拉赛斯能源公司 回收利用锂离子电池电极材料的方法
CN107282285A (zh) * 2016-04-11 2017-10-24 上海奇谋能源技术开发有限公司 一种分离锂离子电池的正极与负极的方法
CN107394302A (zh) * 2017-07-27 2017-11-24 合肥国轩高科动力能源有限公司 一种废旧镍钴锰酸锂电池电芯焙烧料的分离方法

Also Published As

Publication number Publication date
CN110277601A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN105024106B (zh) 一种从废旧锂离子电池及报废正极片中回收磷酸铁的方法
CN102496752B (zh) 一种回收废旧锂离子电池电解液的方法
CN109536713B (zh) 一种利用离子液体分离废旧锂离子电池正极活性物质与铝箔的方法
CN103943911A (zh) 废旧锂离子电池综合回收利用的方法
CN104882646B (zh) 一种废旧锂离子电池的高效安全放电方法
CN107275700A (zh) 一种基于湿式破碎的废旧锂离子电池回收处理方法
CN104347906B (zh) 一种废旧动力电池中电解液的绿色回收处理方法
CN103311600B (zh) 用水溶性离子液体回收废锂离子电池中金属的方法
CN102637921A (zh) 一种新型高效废旧锂离子电池资源化综合利用方法
CN107317048A (zh) 从废旧锂离子电池负极材料中回收铜箔和石墨的方法
CN108504868A (zh) 一种回收废旧锂离子电池中金属锂的方法
CN108091956A (zh) 一种报废钴酸锂电池正极材料的循环再生方法
CN104810566A (zh) 一种废旧磷酸铁锂动力电池绿色回收处理方法
CN105958150A (zh) 一种废旧锂离子电池的综合利用方法
CN105098280B (zh) 一种从废旧锂离子电池中回收集流体的方法
CN106654437A (zh) 从含锂电池中回收锂的方法
CN105304971A (zh) 废旧锂电池正极材料的机械化学回收利用方法
CN108199105A (zh) 废锂电池电极组成材料的超声水热分离工艺
CN106299532A (zh) 一种锂电池陶瓷隔膜回收方法
CN107130113A (zh) 从废旧锂离子电池正极材料中回收活性物料与铝箔的方法
CN106252743A (zh) 废铅酸蓄电池铅零件、铅栅低温脱渣和铜极柱分离回收工艺
CN106252770A (zh) 一种分离废旧锂离子电池正极材料与集流体的方法
CN107293814B (zh) 一种超声分离锂离子电池的电极集流体与电极材料的方法
WO2019174616A1 (zh) 一种分离锂离子电池正、负极的物理方法
WO2024021232A1 (zh) 废旧锂离子电池水下破碎回收电解液的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29-01-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19767553

Country of ref document: EP

Kind code of ref document: A1