WO2019174548A1 - 一种加速器质谱测量方法和系统 - Google Patents

一种加速器质谱测量方法和系统 Download PDF

Info

Publication number
WO2019174548A1
WO2019174548A1 PCT/CN2019/077683 CN2019077683W WO2019174548A1 WO 2019174548 A1 WO2019174548 A1 WO 2019174548A1 CN 2019077683 W CN2019077683 W CN 2019077683W WO 2019174548 A1 WO2019174548 A1 WO 2019174548A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
accelerator
strong current
ecr
ion source
Prior art date
Application number
PCT/CN2019/077683
Other languages
English (en)
French (fr)
Inventor
姜山
Original Assignee
姜山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 姜山 filed Critical 姜山
Priority to EP19767735.4A priority Critical patent/EP3767291A4/en
Publication of WO2019174548A1 publication Critical patent/WO2019174548A1/zh
Priority to US17/017,794 priority patent/US11410841B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0086Accelerator mass spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/44Separation by mass spectrography

Definitions

  • the present application relates to the field of accelerator mass spectrometry, and in particular to an accelerator mass spectrometry method and system.
  • AMS Error Mass Spectrometry
  • isotope mass spectrometer based on accelerator technology and ion detector technology. It is mainly used for isotope of cosmic ray-forming nuclides such as 14C, 10Be, 26Al, 41Ca, 85Kr and 236U. Measurement of the abundance ratio.
  • the tandem accelerator has good energy singleness and high energy, which is beneficial to eliminate background exclusion.
  • the negative ion source has the ability to exclude the isobaric locality, and the isobarics of some nuclide cannot form negative ions. For example, when 14C is measured, the isobaric 14N cannot form negative ions; when 26Al is measured, 26Mg cannot form negative ions. Therefore, the AMS device based on the negative ion source has been an ideal and advanced analytical instrument for many disciplines such as geosciences and archaeology. Therefore, in the prior art, as shown in FIG.
  • the existing AMS measurement system mainly comprises: a negative ion source system M10, an injector system M11, a tandem accelerator system M12, a high energy analyzer system M13, and a detector system 14.
  • the injector system M11 includes a front acceleration section S02 and an injection magnet 11;
  • the tandem accelerator system M12 includes a first acceleration section S03, a stripper S04, and a second acceleration section S05;
  • the high energy analyzer system M13 includes a first analysis magnet S06, The first absorption film S07, the electrostatic analyzer S08, and the second analysis magnet S09.
  • AMS greatly improves the measurement sensitivity because of its ability to exclude the molecular ion background and isobaric ion background. For example, its isotope abundance sensitivity can reach 1x10 -15 for 14C measurement for 14C; for 10Be The measurement is 10Be/9Be for 1x10 -14 .
  • the isotope abundance ratio of the nuclide to be measured is in the range of 10 -12 - 10 -17 .
  • the abundance sensitivity of the existing AMS instruments cannot meet the measurement. demand.
  • an accelerator mass spectrometry system including:
  • the ECR strong current positive ion source subsystem, the injector subsystem, the strong current accelerator subsystem, the high energy analysis subsystem and the high resolution detector subsystem are sequentially connected;
  • the ECR strong current positive ion source subsystem is used to generate a strong current positive ion in a multi-charge state; the strong current accelerator subsystem is used to directly accelerate a strong current positive ion.
  • the high-current accelerator subsystem is a high-current single-stage electrostatic accelerator
  • the high-current single-stage electrostatic accelerator is composed of a plurality of accelerating tube units; the intensity of the beam accelerated by the high-current accelerator subsystem ranges from 10 ⁇ A. —100 mA.
  • the elements processed by the ECR strong current positive ion source subsystem include at least one of elements from H to Pu, lanthanide, and super lanthanide.
  • the high energy analysis subsystem comprises: an analyzer, a first absorption film, an electrostatic analyzer and a magnetic analyzer; the analyzer, the absorption film, the electrostatic analyzer and the magnetic analyzer are sequentially connected; the first The absorbing film is in a stationary state or in a rotating state after activation of the high energy analysis subsystem.
  • the high resolution detector subsystem comprises a second absorption film and a high resolution detector; the second absorption film and the high resolution detector are connected in sequence; the second absorption film is in the high detector
  • the system is at rest or in a rotating state after startup.
  • the high resolution detector is a 4 ⁇ E gas detector.
  • the injector subsystem comprises: a front acceleration section and a low energy end magnetic analyzer; the front acceleration section is sequentially connected with the low energy end magnetic analyzer; and the low energy end magnetic analyzer is used for selecting an accelerated ion to be accelerated The mass to charge ratio.
  • the method further includes: a control subsystem; the control subsystem is respectively connected to the ECR strong current positive ion source subsystem, the injector subsystem, the strong current accelerator subsystem, the high energy analysis subsystem and the high resolution detector subsystem, Control the operation of each subsystem.
  • a control subsystem is respectively connected to the ECR strong current positive ion source subsystem, the injector subsystem, the strong current accelerator subsystem, the high energy analysis subsystem and the high resolution detector subsystem, Control the operation of each subsystem.
  • an accelerator mass spectrometry method including:
  • the ECR strong current positive ion source subsystem is used to generate a strong current positive ion in a multi-charge state
  • High-energy analysis of positive ions is detected by a high-resolution detector subsystem.
  • the beam intensity is high. Since the ECR strong current positive ion source subsystem can extract ions of +1, +2, +3 and other multi-charge states, it can reach the range of 100 ⁇ A to 100mA, which is higher than that of the conventional AMS sputtering negative ion source. More than 100 times.
  • the total efficiency is high.
  • the ion source extraction efficiency and the transmission efficiency of the device reach 1%-10%, and the total efficiency is 10 to 1000 times higher than that of the conventional AMS.
  • the energy is high.
  • the accelerated energy is proportional to the charge state. As long as the charge state above 2+ is selected, the total energy is higher than that of the conventional AMS (less than 1 MV) device.
  • the structure is simple, and it is easier to achieve miniaturization. Since the multi-charged ions generated by the ECR do not have molecular ions, the stripper system of the conventional AMS is not required (S04); and since the ECR source generates ions of a multi-charge state, the analytical magnet and the electrostatic analyzer on the device can be become smaller.
  • the accelerator mass spectrometry system based on the electron cyclotron resonance ion source has the advantages of strong beam current, high total efficiency, and high background strength, and can greatly improve the abundance sensitivity of the measurement.
  • the ratio is in the range of 10 -16 to 10 -18 , which is 10 to 1000 times higher than the conventional AMS.
  • FIG. 1 is a schematic structural view of an AMS measurement system in the prior art
  • FIG. 2 is a schematic structural view of an embodiment of an accelerator mass spectrometry system of the present application
  • FIG. 3 is a schematic structural view of an ECR strong current positive ion source subsystem of the present application.
  • FIG. 4 is a flow chart showing the steps of an embodiment of an accelerator mass spectrometry method of the present application.
  • FIG. 2 it is a schematic structural diagram of an accelerator mass spectrometry system according to an embodiment of the present application, which may specifically include:
  • ECR strong current positive ion source subsystem 20 injector subsystem 21, high current accelerator subsystem 22, high energy analysis subsystem 23 and high resolution detector subsystem 24;
  • the ECR strong current positive ion source subsystem 20, the injector subsystem 21, the high current accelerator subsystem 22, the high energy analysis subsystem 23 and the high resolution detector subsystem 24 are sequentially connected;
  • the ECR strong current positive ion source subsystem 20 is coupled to the input of the injector subsystem 21, and the output of the injector subsystem is coupled to the input of the high current accelerator subsystem 22; The output is coupled to the input of the high energy analysis subsystem 23; the output of the high energy analysis subsystem 23 is coupled to the input of the high resolution detector subsystem 24.
  • the ECR strong current positive ion source subsystem 20 is used to generate strong current positive ions in a multi-charge state.
  • the ECR strong current positive ion source subsystem is mainly used to generate strong current ions of a multi-charge state such as 1+, 2+, 3+. For example, ions of Be2+ or Be3+ are generated.
  • the ECR ion source uses microwave to heat the plasma.
  • the electrons acquire the ability to generate high-energy electrons from the microwave.
  • the high-energy electrons emit atoms and generate ECR plasma.
  • the ECR plasma is constrained by the "minimum B" magnetic field field shape, thereby making the plasma.
  • the ions have sufficient time to be freely separated by high-energy electrons to generate highly charged ions, and the ions are extracted by high pressure to form an ion beam to supply the accelerator.
  • the microwave is fed into the plasma region via the waveguide or the coaxial line.
  • FIG. 3 a schematic diagram of an ECR high current positive ion source subsystem is shown.
  • wire package 1 insulating cover 2, permanent magnet 3, lead-out stage 4, arc chamber 5, plasma 6, quartz tube, injection cone ring 8, coaxial inner tube 9, cooling Water inlet and outlet 10, waveguide 11, inlet 12, microwave tube 13.
  • the required magnetic field is formed by the wire package and the six-pole permanent magnet.
  • the microwave is fed through the microwave window and transmitted into the arc cavity along the coaxial inner tube to heat the plasma to generate ions to be extracted through the system.
  • the ECR plasma must be well constrained, which requires a reasonable magnetically constrained field shape.
  • the general magnetic field is the superposition of the multi-pole radial field in the axial case.
  • the axial field is composed of a pair of magnetic mirrors. The electrons are constrained by the magnetic field to move back and forth between the magnetic mirrors, and the chance of being heated increases.
  • the radial field is generally composed of a multi-pole permanent magnet that is well confined to the plasma in the radial direction.
  • ECR strong current positive ion source subsystem may also be used, which is not limited in the embodiment of the present application.
  • the elements processed by the ECR strong current positive ion source subsystem 20 include at least one of elements from H to Pu, lanthanide, and super lanthanide.
  • the ECR strong current positive ion source subsystem 20 can generate ions of a multi-charge state such as 1+, 2+, 3+, etc. for elements from H to Pu and even to lanthanide and super lanthanide.
  • the embodiments of the present application can be used for measuring the measurement of 10Be, 14C, and can also be used for the measurement of 3H, 26Al, 32Si, 36Cl, 41Ca, 129I, U and Pu isotopes, super-tethers and the like.
  • highly sensitive measurements of inert gases such as 85Kr and 133Xe can be achieved.
  • the inventors found that the isobaric ionization energy is different in the research process, and can be extracted at a position where the isobaric ionization energy is relatively high, so as to suppress the isobaric background.
  • the first, second, and third ionization energies of 10Be are 930, 1820, and 15390 kJ/mol, respectively
  • the first, second, and third ionization energies of 10B are 800, 2430, and 3660 kJ/mol, respectively.
  • the 10B ionization energy at the second ionization energy is significantly greater than the second ionization energy of 10Be.
  • +1 may correspond to the first ionization energy
  • +2 may correspond to the second ionization energy
  • +3 may correspond to the third ionization energy.
  • the high current accelerator subsystem 22 is used to directly accelerate the strong positive ions.
  • the injector subsystem 21 injects a beam of strong current positive ions
  • the ECR strong current positive ion source subsystem 20 generates a strong current of a multi-charge state of +1, +2, +3, and the like. When it is an ion, it is a positive ion and there is no molecular ion. Therefore, the high current accelerator subsystem 22 in the embodiment of the present application can perform only the acceleration function without using the stripper S04 in the conventional AMS. In the conventional AMS, since the sputtering negative ion source is used as the negative ion source 10 in FIG.
  • the molecular ions are generated when the negative ions are generated, so the stripper accelerator system S12 must be included in the tandem accelerator system M12.
  • the stripper strips the negative ions into positive ions, and the molecular ions are unstable after being stripped into positive ions, and dissociation occurs, so that they can be separated.
  • the high-current accelerator subsystem 22 is a high-current single-stage electrostatic accelerator, and the high-current single-stage electrostatic accelerator is composed of a plurality of accelerating tube units; the range of beam intensity accelerated by the high-current accelerator subsystem is 10 ⁇ A ⁇ 100mA.
  • the high current single-stage electrostatic accelerator has no gas or solid glass components and can accelerate the beam intensity in the range of 10 ⁇ A to 100 mA.
  • the high-current single-stage electrostatic accelerator does not need to be provided with a stripper, and has a simple structure and convenient maintenance.
  • the accelerating voltage of the high current accelerator subsystem 22 can range from 0 to 800 kV.
  • the ECR strong current positive ion source subsystem 20 can be controlled by the control system to generate positive ions according to the required energy level, for example, according to the energy level of the second ionization energy requirement of 10Be, the ECR strong current positive ion source is controlled.
  • the subsystem 20 extracts positive ions according to the energy level, so that the beam of 10Be2+ can be depressed.
  • control systems that control other subsystem operations, such as controlling the accelerating voltage of the high current accelerator subsystem 22.
  • the injector subsystem 21 includes: a front acceleration section A01 and a low energy end magnetic analyzer A02; the front acceleration section A01 and the low energy end magnetic analysis The device is connected to A02 in sequence; the low-energy magnetic analyzer is used to select the mass-to-charge ratio of the ions to be accelerated.
  • the output end of the strong current accelerator subsystem 22 is connected to the input end of the front acceleration section A01, and the output end of the front acceleration section A01 is connected to the input end of the low-energy end magnetic analyzer A02, and the output of the low-energy end magnetic analyzer A02. The end is connected to the input of the high current accelerator subsystem 22.
  • the front acceleration section A01 may be an acceleration tube of 20 kV to 80 kV for pre-acceleration, so that ions pass through the low-energy magnetic analyzer to obtain good mass resolution.
  • the low-energy magnetic analyzer A02 can inject a magnet for selecting a mass-to-charge ratio of the ions to be accelerated, wherein the mass-to-charge ratio is a ratio of the mass number to the charge state, such as selecting 9Be3+ for acceleration, and the mass-to-charge ratio thereof. It is 9/3.
  • the high energy analysis subsystem 23 includes: a first magnetic analyzer A03, a first absorption film A04, an electrostatic analyzer A05 and a second magnetic analyzer A06;
  • the first magnetic analyzer A03, the first absorption film A04, the electrostatic analyzer A05 and the second magnetic analyzer A06 are sequentially connected; the first absorption film A09 is at a standstill after the high energy analysis subsystem is started or It is in a rotating state.
  • the output end of the high current accelerator subsystem 22 is connected to the input end of the first magnetic analyzer A03, and the first absorption film is disposed between the output end of the first magnetic analyzer A03 and the input end of the electrostatic analyzer A05.
  • the output of the electrostatic analyzer A05 is connected to the input of the second magnetic analyzer A06.
  • the first magnetic analyzer A03 is used to further exclude the isotope background having the same charge state. If 10Be3+ is used to interfere with isotopes such as the stable isotope 9Be3+, the first magnetic analyzer A03 can be used to exclude 9Be3+.
  • the first absorption film A04 is for eliminating the interference of the isobaric. If there is strong 10B3+ interference when measuring 10Be3+, the first absorption film A04 can be used to exclude 10B3+. Since the absorption of the film is related to the atomic number of the incident ions, when 10Be3+ and 10B3+ pass through the absorption film, the energy of the two is different.
  • the electrostatic analyzer A05 and the second magnetic analyzer A06 can be based on 10Be3+ and 10B3+. The difference in energy is chosen to exclude 10Be3+ from 10B3+.
  • a Faraday cup is also provided at the output of the first magnetic analyzer A03 for measuring the isotope not being measured in the high resolution detector subsystem 24.
  • the first absorbing film (SiN) A04 can be placed statically in a manner similar to conventional AMS.
  • the first absorbing film (SiN) is rotatable, and by rotating the first absorbing film to change the thickness of the high energy particles passing through the absorbing film, thereby facilitating the elimination of the isobaric background.
  • the high resolution detector subsystem 24 includes a second absorption film A07 and a high resolution detector A08; the second absorption film A07 and a high resolution detector. A08 is connected in sequence; the second absorption film A07 is in a stationary state or in a rotating state after the high detector subsystem 24 is activated.
  • a second absorption film A07 is disposed between the output end of the second magnetic analyzer A06 and the input end of the high resolution detector A08 as shown in FIG.
  • the second absorption film A07 can be disposed in front of the window of the high resolution detector A08.
  • the second absorbing film (SiN) A07 can be placed in a static manner in a manner similar to conventional AMS.
  • the second absorbing film A07 is rotatable, and the second absorbing film is rotated to change the thickness of the high energy particles passing through the absorbing film, thereby facilitating the elimination of the isobaric background.
  • the high energy analysis subsystem 23 is not able to completely eliminate the interference of isobaric, for example, when measuring 10Be3+, there will still be a certain amount of 10B3+, and the second absorption film A07 again causes 10Be3+ and 10B3+ to produce energy difference. In this way, the high resolution detector A08 can be used to exclude 10B3+ while recording 10Be3+.
  • the high resolution detector is a 4 ⁇ E gas detector.
  • 4 ⁇ E represents a gas detector having two cathodes and two anodes.
  • the energy resolution of the 4 ⁇ E gas detector is significantly improved, and the energy difference generated by the second absorption film A07 is combined, so that the detector subsystem 24 has a greatly enhanced ability to exclude the isobaric background.
  • a 4 ⁇ E gas detector can be understood as a gas ionization chamber.
  • cathode and anode gas detectors may be used in the embodiments of the present application, which are not limited in the embodiments of the present application.
  • the method further includes: a control subsystem; the control subsystem is respectively connected to the ECR strong current positive ion source subsystem, the injector subsystem, the strong current accelerator subsystem, the high energy analysis subsystem and the high resolution detector subsystem, Control the operation of each subsystem.
  • a control subsystem is respectively connected to the ECR strong current positive ion source subsystem, the injector subsystem, the strong current accelerator subsystem, the high energy analysis subsystem and the high resolution detector subsystem, Control the operation of each subsystem.
  • control subsystem may be set up by a computer system, and each subsystem may be controlled by a computer system.
  • the tandem accelerator Due to the inheritance of the technical ideas in the AMS field, it is based on two considerations: First, the tandem accelerator has good energy singleness and high energy, which is good for eliminating background exclusion; its two negative ion sources have the same amount of ectopic exclusion. The local ability of some nuclide is not able to form negative ions. For example, when 14C is measured, the isobaric 14N cannot form negative ions; when 26Al is measured, 26Mg cannot form negative ions. Therefore, since the beginning of AMS, a negative ion source has been used to generate negative ions.
  • the isotope abundance ratio of the nuclide to be measured is in the range of 10 -12 - 10 -17 .
  • the abundance sensitivity of the existing AMS instruments cannot meet the measurement. demand.
  • the inventors of the present application have creatively proposed an AMS measurement system based on an ECR ion source.
  • AMS measurement system based on an ECR ion source.
  • a method of extracting positive ions in a multi-charge state using an ECR strong current positive ion source subsystem is proposed. This approach brings two benefits:
  • the first benefit is that the ECR strong current positive ion source subsystem can extract higher ion energy and get higher ion energy. With higher ion energy, it is more beneficial to eliminate the background and provide abundance sensitivity. For example, if the accelerating voltage of the accelerator is 600 kV, the energy of 10Be1+ and 10B1+ is 600 kV when the 1+ charge state is extracted. When the 2+ charge state is extracted, the energy of 10Be2+ and 10B2+ is 1200kV, and the energy of the ion is proportional to the charge state. The increase in energy is positively related to the exclusion of 10B.
  • the second aspect of the benefit is that the ionization energy of the isobaric is different, and the ionization energy of the isobaric is relatively high, so as to lower the isobaric background.
  • the first, second, and third ionization energies of 10Be are 930, 1820, and 15390 kJ/mol, respectively
  • the first, second, and third ionization energies of 10B are 800, 2430, and 3660 kJ/mol, respectively.
  • the 10B ionization energy at the second ionization energy is significantly greater than the second ionization energy of 10Be.
  • ions can be extracted in the 2+ charge state, and when the energy of 10Be2+ can be extracted, the 2+ charge state 10B2+ ions are not easily formed due to the high second ionization energy of 10B. Thus, the isobaric 10B is depressed due to the selection of the 10Be2+ beam of the 2+ charge state.
  • the beam intensity is high. Since the ECR strong current positive ion source subsystem can extract ions of +1, +2, +3 and other multi-charge states, it can reach the range of 100 ⁇ A to 100mA, which is higher than that of the conventional AMS sputtering negative ion source. 10 to 100 times or more.
  • the total efficiency is high.
  • the ion source extraction efficiency and the transmission efficiency of the device reach 1% to 10%, and the total efficiency is 10 to 1000 times higher than that of the conventional AMS.
  • the energy is high.
  • the accelerated energy is proportional to the charge state. As long as the charge state above 2+ is selected, the total energy is higher than that of the conventional AMS (less than 1 MV) device.
  • 2+10B has low ionization and low energy and high pressure of 10B.
  • the detection line is lower, which is 10-100 atoms.
  • the traditional AMS detection line is 100-10000 atoms.
  • inert gases such as 39Ar, 85Kr, and 133Xe.
  • the accelerator mass spectrometry system based on the electron cyclotron resonance ion source has the advantages of strong beam current, high total efficiency, and high background strength, and can greatly improve the abundance sensitivity of the measurement.
  • the ratio is in the range of 10 -16 to 10 -18 , which is 10 to 1000 times higher than the conventional AMS.
  • FIG. 3 a schematic flow chart of an accelerator mass spectrometry method of the present application is shown, including:
  • Step 310 generating a strong current positive ion of a multi-charge state by using an ECR strong current positive ion source subsystem
  • the object to be measured by the ECR strong current positive ion source can be used to generate a corresponding multi-charge state strong current positive ion.
  • ions such as Be2+ or Be3+ are generated.
  • the embodiments of the present application can be used to measure the measurement of 10Be, 14C, and can also be used for the measurement of 3H, 26Al, 32Si, 36Cl, 41Ca, 129I, U, and Pu isotopes, super-tethers and the like.
  • highly sensitive measurements of inert gases such as 85Kr and 133Xe can be achieved.
  • the corresponding positive ion beam current of the multi-charge state of the corresponding element can then be generated.
  • Step 320 injecting the strong current positive ions into the strong current accelerator subsystem through an injector subsystem
  • the strong current positive ion beam generated by the ECR strong current positive ion source subsystem is output to the injector subsystem, and the injector subsystem is pre-accelerated by the pre-acceleration section A01, so that the ions pass through the low-energy magnetic analyzer and get good. Quality resolution.
  • the low energy magnetic analyzer A02 is then used to select the mass to charge ratio of the ions to be accelerated.
  • the mass-to-charge ratio is the ratio of the mass number to the charge state. If 9Be3+ is selected for acceleration, the mass-to-charge ratio is 9/3.
  • Step 330 Accelerate by using the accelerating voltage corresponding to the strong current positive ion to be tested by the strong current accelerator subsystem;
  • the accelerating voltage of the high current accelerator subsystem 22 can range from 0 to 800 kV. It can directly accelerate the beam selected by the low-end magnetic analyzer A02 without setting a stripper, and does not need to strip the beam.
  • Step 340 Perform high-energy analysis on the ion beam current output by the high-current analysis subsystem by the high-energy analysis subsystem;
  • the high energy analysis subsystem 23 includes a first magnetic analyzer A03, a first absorption film A04, an electrostatic analyzer A05, and a second magnetic analyzer A06.
  • the first absorption film A04 is for eliminating the interference of the isobaric, and if there is strong 10B3+ interference when measuring 10Be3+, the first absorption film A04 can be used to exclude 10B3+. Since the absorption of the film is related to the atomic number of the incident ions, when 10Be3+ and 10B3+ pass through the absorption film, the energy of the two is different.
  • the electrostatic analyzer A05 and the second magnetic analyzer A06 can be based on 10Be3+ and 10B3+. The difference in energy is chosen to exclude 10Be3+ from 10B3+.
  • the first absorption film A04 can be rotated to change the thickness of the high energy particles passing through the absorption film, thereby facilitating the elimination of the isobaric background.
  • Step 350 detecting high-energy analyzed positive ions by a high-resolution detector subsystem.
  • the high resolution detector subsystem 24 includes a second absorption film A07 and a high resolution detector A08. Since the high energy analysis subsystem 23 is not able to completely eliminate the interference of isobaric, for example, when measuring 10Be3+, there will still be a certain amount of 10B3+, and the second absorption film A07 again causes 10Be3+ and 10B3+ to produce energy difference. In this way, the high resolution detector A08 can be used to exclude 10B3+ while recording 10Be3+.
  • the second absorption film A07 can also be rotated to change the thickness of the high energy particles passing through the absorption film, thereby facilitating the elimination of the isobaric background.
  • the beam intensity is high. 2. The total efficiency is high. 3. High energy. 4, high-charge state, no molecular ion background generation, 5 simple structure, easier to achieve miniaturization. 6. AMS measurement of inert gas can be realized. 7, with 2+ charge state pressure is lower, 10B is more powerful, 2+10B ionization is low, energy high pressure is low 10B. 8, the detection line is lower, is 10-100 atoms, and the traditional AMS detection line is 100-10000 atoms.
  • the accelerator mass spectrometry system based on the electron cyclotron resonance ion source has the advantages of strong beam current, high total efficiency, and high background strength, and can greatly improve the abundance sensitivity of the measurement.
  • the ratio is in the range of 10 -16 to 10 -18 , which is 10 to 1000 times higher than the conventional AMS.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种加速器质谱测量系统,涉及AMS技术领域。加速器质谱测量系统包括:ECR强流正离子源子系统(20),注入器子系统(21),强流加速器子系统(22),高能分析子系统(23)和高分辨探测器子系统(24); ECR强流正离子源子系统(20),注入器子系统(21),强流加速器子系统(22),高能分析子系统(23)和高分辨探测器子系统(24)按序连接; ECR强流正离子源子系统(20)用于产生多电荷态的强流正离子;强流加速器子系统(22)用于直接对强流正离子进行加速。加速器质谱测量系统具有束流强、总效率高和压低本底能力强等优点,能够大幅度提高测量的丰度灵敏度。

Description

一种加速器质谱测量方法和系统 技术领域
本申请涉及加速器质谱技术领域,特别是涉及一种加速器质谱测量方法和系统。
背景技术
AMS(Accelerator Mass Spectrometry,加速器质谱)是一种基于加速器技术和离子探测器技术的高能量同位素质谱仪,主要用于宇宙射线成因核素如14C、10Be、26Al、41Ca、85Kr和236U等的同位素丰度比值的测量。
上世纪七十年代末,AMS开始出现以来,一直采用溅射负离子源。主要原因是一方面,串列加速器能量单一性好,能量比较高,这样有利于排除本底排除。另一方面,负离子源具有排除同量异位素本地的能力,有些核素的同量异位素不能够形成负离子。例如,测量14C时,同量异位素14N不能形成负离子;测量26Al时,26Mg也不能形成负离子。所以,基于负离子源的串列加速器AMS装置一直是地学、考古等许多学科理想的、先进的分析仪器。因此,在先技术中,如图1,现有的AMS测量系统主要包括:负离子源系统M10、注入器系统M11、串列加速器系统M12、高能分析器系统M13和探测器系统14组成。其中,注入器系统M11包括前加速段S02和注入磁铁11;串列加速器系统M12包括第一加速段S03、剥离器S04和第二加速段S05;高能分析器系统M13包括第一分析磁铁S06、第一吸收膜S07、静电分析器S08、第二分析磁铁S09。AMS因具有排除分子离子本底和同量异位素离子本底的能力,而极大地提高了测量灵敏度,比如其同位素丰度灵敏度对于14C的测量14C/12C能够达到1x10 -15;对于10Be的测量为10Be/9Be为1x10 -14
但是,由于地质、环境、考古、海洋等学科的发展,需要测量的核素的同位素丰度比值在10 -12—10 -17范围,现有的AMS仪器的丰度灵敏度还不能够满足测量的需求。
发明内容
鉴于上述问题,提出了本申请实施例以便提供一种克服上述问题的一种加速器质谱测量方法和系统。
为了解决上述问题,本申请公开了一种加速器质谱测量系统,包括:
ECR强流正离子源子系统,注入器子系统,强流加速器子系统,高能分析子系统和高分辨探测器子系统;
所述ECR强流正离子源子系统,注入器子系统,强流加速器子系统,高能分析子系统和高分辨探测器子系统按序连接;
所述ECR强流正离子源子系统用于产生多电荷态的强流正离子;所述强流加速器子系统用于直接对强流正离子进行加速。
优选的,所述强流加速器子系统为强流单级静电加速器,所述强流单级静电加速器由多个加速管单元组成;所述强流加速器子系统加速的束流强度的范围为10μA—100mA。
优选的,所述ECR强流正离子源子系统处理的元素包括从H到Pu、锕系、超锕系的元素其中至少一种。
优选的,所述高能分析子系统包括:分析器,第一吸收膜,静电分析器和磁分析器;所述分析器,吸收膜,静电分析器和磁分析器按序连接;所述第一吸收膜在所述高能分析子系统启动后处于静止状态或处于转动状态。
优选的,所述高分辨探测器子系统包括第二吸收膜和高分辨探测器;所述第二吸收膜和高分辨探测器按序连接;所述第二吸收膜在所述高探测器子系统启动后处于静止状态或处于转动状态。
优选的,所述高分辨探测器为4ΔE气体探测器。
优选的,所述注入器子系统包括:前加速段和低能端磁分析器;所述前加速段与所述低能端磁分析器按序连接;所述低能端磁分析器用于选择所要加速离子的质荷比。
优选的,还包括:控制子系统;所述控制子系统分别与ECR强流正离子源子系统,注入器子系统,强流加速器子系统,高能分析子系统和高分辨探测器子系统连接,控制各子系统的运行。
相应的,本申请还公开了一种加速器质谱测量方法,包括:
采用ECR强流正离子源子系统生成多电荷态的强流正离子;
通过注入器子系统将所述强流正离子注入到强流加速器子系统;
由所述强流加速器子系统采用待测的强流正离子对应的加速电压进行加速;
由高能分析子系统对所述强流加速器子系统输出的离子束流进行高能分析;
由高分辨探测器子系统对高能分析后的正离子进行探测。
本申请实施例包括以下优点:
第一、束流强度高。由于采用ECR强流正离子源子系统可引出+1、+2、+3等多电荷态的离子,其可达到100μA至100mA范围,比传统的AMS的溅射负离子源得到的束流高出100倍以上。
第二、总效率高。离子源引出效率和装置的传输效率达到1%--10%,总效率比传统AMS高出10~1000倍。
第三、能量高。经过加速后的能量与电荷态成正比,只要选择2+以上的电荷态,其总能量都会高于传统的AMS(小于1MV)装置产生的离子能量。
第四、高电荷态无分子离子本底产生。ECR强流正离子源子系统引出多电荷态时,不存在分子离子。
第五、结构简单,更加容易实现小型化。由于ECR产生的多电荷态离子不存在分子离子,因此不需要传统AMS的剥离器系统(S04);又由于ECR源产生多电荷态的离子,因此本装置上的分析磁铁和静电分析器都可以变小。
第六、能够实现惰性气体的AMS测量。先技术的AMS由于采用负离子源,而惰性气体不能够产生负离子,因此无法实现对其测量。本申请的系统中ECR离子源容易使惰性气体电离成正离子,因此能够实现85Kr、133Xe等惰性气体的测量。
总之,由于上述多个优点,本申请基于电子回旋共振离子源的加速器质谱测量系统具有束流强、总效率高和压低本底能力强等优点,能够大幅度提高测量的丰度灵敏度,同位素丰度比达到10 -16~10 -18范围,比传统的AMS高出10~1000倍。
附图说明
图1是在先技术中AMS测量系统结构示意图;
图2是本申请的一种加速器质谱测量系统实施例的结构示意图;
图3是本申请一种ECR强流正离子源子系统的结构示意图;
图4是本申请的一种加速器质谱测量方法实施例的步骤流程图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
实施例一
参照图2,其示出了本申请实施例的一种加速器质谱测量系统的结构示意图,具体可以包括:
ECR强流正离子源子系统20,注入器子系统21,强流加速器子系统22,高能分析子系统23和高分辨探测器子系统24;
所述ECR强流正离子源子系统20,注入器子系统21,强流加速器子系统22,高能分析子系统23和高分辨探测器子系统24按序连接;
如图2所示,ECR强流正离子源子系统20连接注入器子系统21的输入端,注入器子系统的输出端连接强流加速器子系统22的输入端;强流加速器子系统22的输出端连接高能分析子系统23的输入端;高能分析子系统23的输出端连接高分辨探测器子系统24的输入端。
其中,所述ECR强流正离子源子系统20用于产生多电荷态的强流正离子。
在本申请实施例中,ECR强流正离子源子系统主要用于产生1+、2+、3+等多电荷态的强流离子。例如,产生Be2+或Be3+的离子。
ECR离子源利用微波加热等离子体,电子从微波中获得能力而生成高能电子,高能电子游离原子而产生ECR等离子体,ECR等离子体受到具有“最小B”磁场场形约束,从而使等离子体中的离子有充分时间被高能电子逐级游离而生成高电荷态离子,离子经高压引出而形成离子束,给加速器供束。微波经波导或同轴线馈入到等离子体区,当微波频率ωRF等于电子在磁场中的回旋运动频率ωce时,即 ωce=ωRF=eB/me,将发生共振并从微波中吸收能量,产生高能电子,对于固定的wRF,B也确定。如图3,其示出了一种ECR强流正离子源子系统的简要示意图。图3中,包括如下几个结构:线包1,绝缘罩2,永磁铁3,引出电级4,弧腔5,等离子体6,石英管,注入锥环8,同轴内管9,冷却水出入口10,波导管11,进气口12,微波管13。图3中由线包和六极永磁体构成所需磁场,微波经微波窗口馈入沿同轴内管传输进入弧腔,加热等离子体,产生离子经由系统引出。要得到高电荷态离子,ECR等离子体必须受到很好的约束,这就要有合理的磁约束场形。一般的磁场是轴向场合多极径向场的叠加,轴向场由一对磁镜组成,电子受到磁镜场的约束在磁镜之间往返运动,被加热的机会增加。径向场一般由多极永磁体构成,他能很好地在径向约束等离子体。当然,本申请实施例中,基于ECR的原理,还可以采用其他的结构构件ECR强流正离子源子系统,本申请实施例不对其加以限制。
优选的,所述ECR强流正离子源子系统20处理的元素包括从H到Pu、锕系、超锕系的元素其中至少一种。
在本申请实施例中ECR强流正离子源子系统20对于从H到Pu乃至锕系、超锕系的元素都能够产生1+、2+、3+等多电荷态的离子。
本申请实施例可用于测量10Be、14C的测量,还可用于3H、26Al、32Si、36Cl、41Ca、129I、U和Pu同位素、超锕系等核素的测量。尤其可以实现85Kr、133Xe等惰性气体的高灵敏测量。
在本申请实施例中,发明人在研究过程中发现同量异位素电离能的高低不同,可以在同量异位素电离能相对较高的位置引出,来压低同量异位素本底。例如,10Be的第一、第二、第三电离能分别是,930、1820和15390kJ/mol,10B的第一、第二、和第三电离能分别是,800、2430和3660kJ/mol。在第二电离能处10B电离能明显大于10Be的第二电离能。其中,+1可以对应第一电离能,+2可以对应第二电离能,+3可以对应第三电离能。那么本申请实施例就可以在2+电荷态引出离子,其采用能引出10Be2+的能量时,这时由于10B的第二电离能高就不容易形成2+电荷态的10B2+离子。这样,同量异位素10B就会因为选择2+电荷态的10Be2+的束流而被压低了。
其中,所述强流加速器子系统22用于直接对强流正离子进行加速。
在本申请实施例中,由于注入器子系统21注入的是强流正离子的束流,而ECR强流正离子源子系统20产生+1、+2、+3等多电荷态的强流离子时,其是正离子,不存在分子离子。因此,本申请实施例中强流加速器子系统22可以只进行加速功能,而不用传统AMS中的剥离器S04。在传统的AMS中,由于其采用的是溅射负离子源如图1中的负离子源10,其产生负离子时会产生分子离子,因此其采用的串列加速器系统M12中必须要包括剥离器S04,剥离器将负离子剥离为正离子,而分子离子在被剥离为正离子后其不稳定,发生离解,从而可以被分离。
优选的,所述强流加速器子系统22为强流单级静电加速器,所述强流单级静电加速器由多个加速管单元组成;所述强流加速器子系统加速的束流强度的范围为10μA~100mA。
可以理解,强流单级静电加速器没有气体或固体玻璃器部件,能够加速的束流强度在10μA~100mA范围。该强流单级静电加速器不用设置剥离器,结构简单,维护更方便。
优选的,强流加速器子系统22的加速电压可以在0~800kV范围。
当然,在实际应用中,可以由控制系统控制ECR强流正离子源子系统20按照需求的能级产生正离子,比如按照10Be的第二电离能需求的能级,控制ECR强流正离子源子系统20按照该能级去引出正离子,如此可以压低10Be2+的束流。
还可以有控制系统控制其他子系统工作,比如控制强流加速器子系统22的加速电压。
优选的,在本申请另一实施例中,参照图2,所述注入器子系统21包括:前加速段A01和低能端磁分析器A02;所述前加速段A01与所述低能端磁分析器按序连接A02;所述低能端磁分析器用于选择所要加速离子的质荷比。
如图2所示,强流加速器子系统22的输出端连接前加速段A01的输入端,前加速段A01的输出端连接低能端磁分析器A02的输入端,低能端磁分析器A02的输出端连接强流加速器子系统22的输入端。
需要说明的是,前加速段A01可以是一个20kV~80kV的加速管,用于预先加速,使得离子经过低能端磁分析器后,得到好的质量分辨。其中,低能端磁分析器A02可以使注入磁铁,该注入磁铁用于选择所要加速离子的质荷比,其中质荷比为质量数与电荷态的比值,如选择9Be3+进行加速,其质荷比为9/3。
优选的,在本申请另一实施例中,参照图2,所述高能分析子系统23包括:第一磁分析器A03,第一吸收膜A04,静电分析器A05和第二磁分析器A06;所述第一磁分析器A03,第一吸收膜A04,静电分析器A05和第二磁分析器A06按序连接;所述第一吸收膜A09在所述高能分析子系统启动后处于静止状态或处于转动状态。
如图2所示强流加速器子系统22的输出端连接第一磁分析器A03的输入端,第一磁分析器A03的输出端与静电分析器A05的输入端之间设置有第一吸收膜A04,静电分析器A05的输出端与第二磁分析器A06的输入端连接。
其中,第一磁分析器A03用于进一步排除具有相同电荷态的同位素本底。如测量10Be3+时有稳定同位素9Be3+等同位素的干扰,可以第一磁分析器A03可以用于排除9Be3+。第一吸收膜A04是为了排除同量异位素的干扰,如测量10Be3+时,存在较强的10B3+干扰,那么第一吸收膜A04可以用于排除10B3+。由于膜的吸收与入射离子的原子序数相关,当10Be3+和10B3+都穿过这个吸收膜后,二者的能量就产生了差异,静电分析器A05和第二磁分析器A06就可以根据10Be3+和10B3+能量的差异,来选定10Be3+排除10B3+。
其中,在第一磁分析器A03输出端还设置有法拉第杯,用于测量不在高分辨探测器子系统24中测量同位素。
在实际应用中,第一吸收膜(SiN)A04可以采用与传统的AMS类似的方式静止放置。
优选的,第一吸收膜(SiN)能够转动,通过转动第一吸收膜以改变高能粒子穿过吸收膜的厚度,从而更有利于同量异位素本底的排除。
优选的,在本申请另一实施例中,参照图2,所述高分辨探测器子系统24包括第二吸收膜A07和高分辨探测器A08;所述第二吸收 膜A07和高分辨探测器A08按序连接;所述第二吸收膜A07在所述高探测器子系统24启动后处于静止状态或处于转动状态。
如图2所示第二磁分析器A06的输出端与高分辨探测器A08的输入端之间设置有第二吸收膜A07。
在实际应用中该第二吸收膜A07可以设置在高分辨探测器A08的窗前。
在实际应用中,第二吸收膜(SiN)A07可以采用与传统的AMS类似的方式静止放置。
优选的,第二吸收膜A07能够转动,通过转动第二吸收膜以改变高能粒子穿过吸收膜的厚度,从而更有利于同量异位素本底的排除。
由于高能分析子系统23并不能够完全排除同量异位素的干扰,如测量10Be3+时,仍然会存在一定量的10B3+,用第二吸收膜A07再次使得10Be3+和10B3+产生能量的差别。这样,就可以利用高分辨探测器A08排除10B3+,同时记录10Be3+。
优选的,所述高分辨探测器为4ΔE气体探测器。
可以理解4ΔE表示具有两个阴极和两个阳极的气体探测器。4ΔE气体探测器的能量分辨率明显提高,结合第二吸收膜A07产生的能量差别,使得探测器子系统24排除同量异位素本底的能力大幅度增强。4ΔE气体探测器可以理解为气体电离室。
当然,本申请实施例中还可以采用更多阴极和阳极的气体探测器,本申请实施例不对其加以限制。
优选的,还包括:控制子系统;所述控制子系统分别与ECR强流正离子源子系统,注入器子系统,强流加速器子系统,高能分析子系统和高分辨探测器子系统连接,控制各子系统的运行。
在本申请实施例中,控制子系统可以由计算机系统架设,可以通过计算机系统发送指令控制各个子系统。
由于AMS领域技术思路的传承的关系,其基于两方面的考虑:其一,串列加速器能量单一性好,能量比较高,这样有利于排除本底排除;其二负离子源具有排除同量异位素本地的能力,有些核素的同量异位素不能够形成负离子。例如,测量14C时,同量异位素14N不能形成负离子;测量26Al时,26Mg也不能形成负离子。因此,自AMS 开始出现以来,一直采用溅射负离子源产生负离子。但是,由于地质、环境、考古、海洋等学科的发展,需要测量的核素的同位素丰度比值在10 -12—10 -17范围,现有的AMS仪器的丰度灵敏度还不能够满足测量的需求。
本申请发明人创造性的提出了基于ECR离子源的AMS测量系统,在AMS技术领域首次提出利用ECR强流正离子源子系统引出多电荷态的正离子的方法。该方法带来两个方面的效益:
第一方面的效益是,ECR强流正离子源子系统引出多电荷态就能够得到更高的离子能量,有了更高的离子能量,就更加有利于排除本底,提供丰度灵敏度。例如,如果加速器的加速电压为600kV,当引出1+电荷态时10Be1+和10B1+的能量都是600kV。当引出2+电荷态时10Be2+和10B2+的能量都是1200kV,离子的能量和电荷态成正比。能量的提高与排除10B的多少是正相关的。
第二方面的效益是:利用同量异位素电离能的高低不同,在同量异位素电离能相对较高的位置引出,来压低同量异位素本底。例如,10Be的第一、第二、第三电离能分别是,930、1820和15390kJ/mol,10B的第一、第二、和第三电离能分别是,800、2430和3660kJ/mol。在第二电离能处10B电离能明显大于10Be的第二电离能。那么本申请实施例就可以在2+电荷态引出离子,其采用能引出10Be2+的能量时,这时由于10B的第二电离能高就不容易形成2+电荷态的10B2+离子。这样,同量异位素10B就会因为选择2+电荷态的10Be2+的束流而被压低了。
本申请实施例包括以下优点:
第一、束流强度高。由于采用ECR强流正离子源子系统可引出+1、+2、+3等多电荷态的离子,其可达到100μA至100mA范围,比传统的AMS的溅射负离子源得到的束流高出10~100倍以上。
第二、总效率高。离子源引出效率和装置的传输效率达到1%~10%,总效率比传统AMS高出10~1000倍。
第三、能量高。经过加速后的能量与电荷态成正比,只要选择2+以上的电荷态,其总能量都会高于传统的AMS(小于1MV)装置产生的离子能量。
第四、高电荷态无分子离子本底产生ECR强流正离子源子系统引出多电荷态时,不存在分子离子。不需要剥离器,散射小。
第五、用2+电荷态压低10B能力更强。2+10B电离度低,能量高压低10B。
第六、检测线更低,为10-100原子。而传统的AMS的检测线为100-10000原子。
第七、能够实现39Ar、85Kr、133Xe等惰性气体的测量。
总之,由于上述多个优点,本申请基于电子回旋共振离子源的加速器质谱测量系统具有束流强、总效率高和压低本底能力强等优点,能够大幅度提高测量的丰度灵敏度,同位素丰度比达到10 -16~10 -18范围,比传统的AMS高出10~1000倍。
实施例二
参照图3,其示出了本申请一种加速器质谱测量方法的流程示意图,包括:
步骤310,采用ECR强流正离子源子系统生成多电荷态的强流正离子;
如实施例一中的描述,可以采用ECR强流正离子源子对待测对象,产生相应的多电荷态强流正离子。比如产生Be2+或Be3+的离子等。
当然,本申请实施例可以用于测量10Be、14C的测量,还可用于3H、26Al、32Si、36Cl、41Ca、129I、U和Pu同位素、超锕系等核素的测量。尤其可以实现85Kr、133Xe等惰性气体的高灵敏测量。那么相应的可以产生相应的元素的多电荷态的正离子束流。
步骤320,通过注入器子系统将所述强流正离子注入到强流加速器子系统;
ECR强流正离子源子系统产生的强流正离子束流输出到注入器子系统中,注入器子系统则由前加速段A01预先加速,使得离子经过低能端磁分析器后,得到好的质量分辨。然后使用低能端磁分析器A02选择所要加速离子的质荷比。其中质荷比为质量数与电荷态的比值,如选择9Be3+进行加速,其质荷比为9/3。
步骤330,由所述强流加速器子系统采用待测的强流正离子对应的加速电压进行加速;
强流加速器子系统22的加速电压可以在0~800kV范围。其可以直接对低能端磁分析器A02选择的束流进行加速,不用设置剥离器,不用对束流进行剥离操作。
步骤340,由高能分析子系统对所述强流加速器子系统输出的离子束流进行高能分析;
其中,高能分析子系统23包括:第一磁分析器A03,第一吸收膜A04,静电分析器A05和第二磁分析器A06。其中,第一吸收膜A04是为了排除同量异位素的干扰,如测量10Be3+时,存在较强的10B3+干扰,那么第一吸收膜A04可以用于排除10B3+。由于膜的吸收与入射离子的原子序数相关,当10Be3+和10B3+都穿过这个吸收膜后,二者的能量就产生了差异,静电分析器A05和第二磁分析器A06就可以根据10Be3+和10B3+能量的差异,来选定10Be3+排除10B3+。
当然,在本申请实施例中可以通过转动第一吸收膜A04以改变高能粒子穿过吸收膜的厚度,从而更有利于同量异位素本底的排除。
步骤350,由高分辨探测器子系统对高能分析后的正离子进行探测。
其中,所述高分辨探测器子系统24包括第二吸收膜A07和高分辨探测器A08。由于高能分析子系统23并不能够完全排除同量异位素的干扰,如测量10Be3+时,仍然会存在一定量的10B3+,用第二吸收膜A07再次使得10Be3+和10B3+产生能量的差别。这样,就可以利用高分辨探测器A08排除10B3+,同时记录10Be3+。
当然,在本申请实施例中,还可以通过转动第二吸收膜A07以改变高能粒子穿过吸收膜的厚度,从而更有利于同量异位素本底的排除。
本申请实施例包括以下优点:
1、束流强度高。2、总效率高。3、能量高。4、高电荷态无分子离子本底产生、5结构简单,更加容易实现小型化。6、能够实现惰性气体的AMS测量。7、用2+电荷态压低10B能力更强,2+10B电离度低,能量高压低10B。8、检测线更低,为10-100原子,而传统的AMS的检测线为100-10000原子。
总之,由于上述多个优点,本申请基于电子回旋共振离子源的加速器质谱测量系统具有束流强、总效率高和压低本底能力强等优点, 能够大幅度提高测量的丰度灵敏度,同位素丰度比达到10 -16~10 -18范围,比传统的AMS高出10~1000倍。
对于方法实施例而言,由于其与装置实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (9)

  1. 一种加速器质谱测量系统,其特征在于,包括:
    ECR强流正离子源子系统,注入器子系统,强流加速器子系统,高能分析子系统和高分辨探测器子系统;
    所述ECR强流正离子源子系统,注入器子系统,强流加速器子系统,高能分析子系统和高分辨探测器子系统按序连接;
    所述ECR强流正离子源子系统用于产生多电荷态的强流正离子;所述强流加速器子系统用于直接对强流正离子进行加速。
  2. 根据权利要求1所述的加速器质谱测量系统,其特征在于,所述强流加速器子系统为强流单级静电加速器,所述强流单级静电加速器由多个加速管单元组成;所述强流加速器子系统加速的束流强度的范围为10μA—100mA。
  3. 根据权利要求1所述的加速器质谱测量系统,其特征在于,所述ECR强流正离子源子系统处理的元素包括从H到Pu、锕系、超锕系的元素其中至少一种。
  4. 根据权利要求1所述的加速器质谱测量系统,其特征在于,所述高能分析子系统包括:第一磁分析器,第一吸收膜,静电分析器和第二磁分析器;所述第一磁分析器,第一吸收膜,静电分析器和第二磁分析器按序连接;所述第一吸收膜在所述高能分析子系统启动后处于静止状态或处于转动状态。
  5. 根据权利要求1所述的加速器质谱测量系统,其特征在于,所述高分辨探测器子系统包括第二吸收膜和高分辨探测器;所述第二吸收膜和高分辨探测器按序连接;所述第二吸收膜在所述高探测器子系统启动后处于静止状态或处于转动状态。
  6. 根据权利要求5所述的加速器质谱测量系统,其特征在于,所述高分辨探测器为4ΔE气体探测器。
  7. 根据权利要求1所述的加速器质谱测量系统,其特征在于,所述注入器子系统包括:前加速段和低能端磁分析器;所述前加速段与所述低能端磁分析器按序连接;所述低能端磁分析器用于选择所要加速离子的质荷比。
  8. 根据权利要求1所述的加速器质谱测量系统,其特征在于,还包括:控制子系统;所述控制子系统分别与ECR强流正离子源子系统,注入器子系统,强流加速器子系统,高能分析子系统和高分辨探测器子系统连接,控制各子系统的运行。
  9. 一种加速器质谱测量方法,其特征在于,包括:
    采用ECR强流正离子源子系统生成多电荷态的强流正离子;
    通过注入器子系统将所述强流正离子注入到强流加速器子系统;
    由所述强流加速器子系统采用待测的强流正离子对应的加速电压进行加速;
    由高能分析子系统对所述强流加速器子系统输出的离子束流进行高能分析;
    由高分辨探测器子系统对高能分析后的正离子进行探测。
PCT/CN2019/077683 2018-03-12 2019-03-11 一种加速器质谱测量方法和系统 WO2019174548A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19767735.4A EP3767291A4 (en) 2018-03-12 2019-03-11 MEASURING METHOD AND SYSTEM FOR ACCELERATOR MASS SPECTROMETRY
US17/017,794 US11410841B2 (en) 2018-03-12 2020-09-11 Accelerator mass spectrometry measuring method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810201635 2018-03-12
CN201810201635.6 2018-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/017,794 Continuation US11410841B2 (en) 2018-03-12 2020-09-11 Accelerator mass spectrometry measuring method and system

Publications (1)

Publication Number Publication Date
WO2019174548A1 true WO2019174548A1 (zh) 2019-09-19

Family

ID=66868861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077683 WO2019174548A1 (zh) 2018-03-12 2019-03-11 一种加速器质谱测量方法和系统

Country Status (4)

Country Link
US (1) US11410841B2 (zh)
EP (1) EP3767291A4 (zh)
CN (1) CN109830423B (zh)
WO (1) WO2019174548A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166882A (zh) * 2021-10-29 2022-03-11 山东大齐通信电子有限公司 一种高速重离子皮带探伤系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444461B (zh) * 2019-08-13 2020-11-10 中国原子能科学研究院 加速器质谱装置及加速器质谱测量方法
CN112635293A (zh) * 2019-10-08 2021-04-09 姜山 一种无机质谱仪
CN113156032B (zh) * 2021-03-22 2022-08-30 启先核(北京)科技有限公司 一种同时测量同位素丰度与杂质含量的质谱系统与方法
CN117612928A (zh) * 2023-11-07 2024-02-27 中国科学院近代物理研究所 基于高电荷态离子源的加速器质谱分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362622A (zh) * 2002-02-06 2002-08-07 中国科学院地球环境研究所 双注入串列加速器质谱计
CN1916622A (zh) * 2005-08-19 2007-02-21 北京大学 一种加速器质谱装置及加速器质谱14c测量方法
CN101916607A (zh) * 2010-07-28 2010-12-15 北京大学 一种采用无窗气体靶的小型中子源
CN105301088A (zh) * 2015-04-01 2016-02-03 中国原子能科学研究院 一种具有同位素同时测量功能的加速器质谱仪
US20170278691A1 (en) * 2014-09-18 2017-09-28 Shimadzu Corporation Time-of-flight mass spectrometer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237174A (en) * 1991-10-09 1993-08-17 High Voltage Engineering Europa Single atom detection of chlorine-36 by triple-stage accelerator mass spectrometry
US5569915A (en) * 1995-04-14 1996-10-29 Purser; Kenneth H. Sensitive mass spectroscopy using molecular fragmentation
US5783823A (en) * 1996-03-08 1998-07-21 High Voltage Engineering Europe B.V. Apparatus to be used in the field of accelerator mass spectrometry
US6815666B2 (en) * 2002-09-06 2004-11-09 National Electrostatics Corp. Single stage accelerator mass spectrometer
US7439529B2 (en) * 2004-02-12 2008-10-21 The Thailand Research Fund High current density ion source
EP1810315B1 (en) * 2004-10-28 2014-12-03 Albert Edward Litherland Method and apparatus for separation of isobaric interferences
WO2007025348A1 (en) * 2005-09-02 2007-03-08 Australian Nuclear Science & Technology Organisation An isotope ratio mass spectrometer and methods for determining isotope ratios
EP2129193A1 (en) * 2008-05-30 2009-12-02 Ion Beam Applications S.A. A stripping member, a stripping assembly and a method for extracting a particle beam from a cyclotron
EP2375437A1 (en) * 2010-04-12 2011-10-12 ETH Zurich Mass spectrometry system with molecular dissociation and associated method
WO2013059723A1 (en) * 2011-10-21 2013-04-25 California Institute Of Technology High-resolution mass spectrometer and methods for determining the isotopic anatomy of organic and volatile molecules
GB2521579B (en) * 2012-10-10 2018-12-19 California Inst Of Techn Mass spectrometer, system and use of the mass spectrometer for determining isotopic anatomy of compounds
GB201411407D0 (en) * 2014-06-26 2014-08-13 Univ Glasgow Particle beam treatment
US10395910B2 (en) * 2015-04-01 2019-08-27 China Institute Of Atomic Energy Accelerator mass spectrometry device for simultaneously measuring isotopes
EP3182440A1 (en) 2015-12-15 2017-06-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Accelerator mass spectrometry method
CN107045971B (zh) * 2016-10-18 2018-03-13 中国原子能科学研究院 一种同位素电磁分离器用离子源
EP3582248B1 (en) * 2018-06-14 2021-01-06 High Voltage Engineering Europa B.V. Accelerator mass spectrometry system and associated method
CN108987242A (zh) * 2018-07-17 2018-12-11 姜山 一种同位素质谱仪
JP7430044B2 (ja) * 2019-09-17 2024-02-09 住友重機械工業株式会社 放射線治療装置
CN112635293A (zh) * 2019-10-08 2021-04-09 姜山 一种无机质谱仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362622A (zh) * 2002-02-06 2002-08-07 中国科学院地球环境研究所 双注入串列加速器质谱计
CN1916622A (zh) * 2005-08-19 2007-02-21 北京大学 一种加速器质谱装置及加速器质谱14c测量方法
CN101916607A (zh) * 2010-07-28 2010-12-15 北京大学 一种采用无窗气体靶的小型中子源
US20170278691A1 (en) * 2014-09-18 2017-09-28 Shimadzu Corporation Time-of-flight mass spectrometer
CN105301088A (zh) * 2015-04-01 2016-02-03 中国原子能科学研究院 一种具有同位素同时测量功能的加速器质谱仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767291A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166882A (zh) * 2021-10-29 2022-03-11 山东大齐通信电子有限公司 一种高速重离子皮带探伤系统及方法

Also Published As

Publication number Publication date
CN109830423B (zh) 2021-06-25
CN109830423A (zh) 2019-05-31
EP3767291A4 (en) 2021-12-22
US20200411300A1 (en) 2020-12-31
US11410841B2 (en) 2022-08-09
EP3767291A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2019174548A1 (zh) 一种加速器质谱测量方法和系统
Vockenhuber et al. Accelerator mass spectrometry of heavy long-lived radionuclides
Calcagnile et al. High-resolution accelerator-based mass spectrometry: precision, accuracy and background
Kaneko et al. Study of inelastic collisions by drifting ions
EP2559055B1 (en) Mass spectrometry system with molecular dissociation and associated method
Winkler et al. He stripping for AMS of 236U and other actinides using a 3 MV tandem accelerator
Dance et al. A measurement of the cross section for proton production in collisions between electrons and H2+ ions
Dong et al. The new AMS facility at Tianjin University
Lablanquie et al. Dynamics and Post-Collision Interaction Effects in Two Electron Decay from the Xenon 4 d Hole
Schroeder et al. Initial results with low energy single stage AMS
Yan et al. Measurement of the atomic ion fraction of ion emitted from a miniature penning ion source
Rastigeev et al. Accelerator mass spectrometer with ion selection in high-voltage terminal
Van Gorp et al. First β− ν correlation measurement from the recoil-energy spectrum of Penning trapped Ar 35 ions
Kilius et al. Measurement of 10Be/9Be ratios using an electrostatic tandem accelerator
Kolodko et al. Corpuscular diagnosis of the plasma of penning ion sources
Komppula et al. A study of VUV emission and the extracted electron-ion ratio in hydrogen and deuterium plasmas of a filament-driven H−/D− ion source
Zhou et al. Development of an energy spread analyzer for secondary ion mass spectrometry ion source
Vockenhuber et al. Accelerator mass spectrometry of the heaviest long-lived radionuclides with a 3-MV tandem accelerator
Guozhu et al. A first attempt to measure 92Nb/93Nb ratios with Accelerator Mass Spectrometry
Soares-Santos et al. Search for the weak decay
Achasov et al. Search for the weak decay ψ (3686)→ Λ+ c Σ¯−+ cc
De Jesús et al. 236U identification in the new AMS beamline at the TANDAR accelerator
Kidera et al. Development of a novel mass spectrometer equipped with an electron cyclotron resonance ion source
Wittmaack et al. Versatile in-depth analyzer
Feeney et al. Excitation and ionization of ions by electron impact. Technical progress report, covering the period September 1, 1975--May 31, 1976.[Summary of research activities at Georgia Tech]

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019767735

Country of ref document: EP

Effective date: 20201012