WO2019174359A1 - 电压补偿方法、装置和触控显示模组 - Google Patents

电压补偿方法、装置和触控显示模组 Download PDF

Info

Publication number
WO2019174359A1
WO2019174359A1 PCT/CN2018/124228 CN2018124228W WO2019174359A1 WO 2019174359 A1 WO2019174359 A1 WO 2019174359A1 CN 2018124228 W CN2018124228 W CN 2018124228W WO 2019174359 A1 WO2019174359 A1 WO 2019174359A1
Authority
WO
WIPO (PCT)
Prior art keywords
common electrode
touch
circuit
electrode block
voltage
Prior art date
Application number
PCT/CN2018/124228
Other languages
English (en)
French (fr)
Inventor
刘蕊
陈高伟
徐俊杰
王彦明
王甲强
于超
刘冬
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18899025.3A priority Critical patent/EP3767617A4/en
Priority to US16/478,716 priority patent/US11353987B2/en
Publication of WO2019174359A1 publication Critical patent/WO2019174359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/02Networking aspects
    • G09G2370/022Centralised management of display operation, e.g. in a server instead of locally
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Definitions

  • the present disclosure relates to the field of voltage compensation technologies, and in particular, to a voltage compensation method, device, and touch display module.
  • the common electrode layer in the TDDI (Touch and Display Driver Integration) module includes a plurality of rows and columns of mutually independent common electrode blocks, and the common electrode blocks can be multiplexed into touch electrodes.
  • the loads of different common electrode blocks are different, resulting in different amounts of liquid crystal inversion in different columns in the display phase, and macroscopically seeing the vertical Mura (brightness) Not uniform).
  • the embodiment of the present disclosure provides a method for voltage compensation, including: multiplexing mutually independent multi-row and multi-column common electrode blocks arranged in an array into touch electrodes in a touch time period, and sequentially performing at least one column of common electrode blocks.
  • the time period between the times when the N display time periods start, N is a positive integer, and the work of each common electrode block of the touch scan is calculated according to the capacitance value of each common electrode block scanned by the touch scan.
  • the corresponding common electrode voltage compensation amount is obtained according to the power consumption of each common electrode block scanned by the touch control, and the common electrode voltage compensation amount is added to the basic common electrode voltage to obtain the touch scan a compensated common electrode voltage of each common electrode block; in the Nth display period, adjusting a common electrode voltage transmitted to each common electrode block of the touch scan to be touched Common electrode voltage compensated block of each of the common electrode is described.
  • the obtaining a common common electrode voltage compensation amount according to the power consumption of each of the common electrode blocks scanned by the touch control includes: obtaining a comparison table between the power consumption and the common electrode voltage compensation amount; The power consumption of each common electrode block of the touch scan is obtained by looking up the comparison table to obtain a corresponding common electrode voltage compensation amount.
  • the voltage compensation method further includes: transmitting, at a test period, a basic common electrode voltage to all common electrode blocks, and detecting an average brightness of the display area corresponding to at least one column of the common electrode blocks under the test gray level; comparing the at least one column The average brightness of the display area corresponding to the common electrode block and the standard brightness.
  • the control outputs to the at least one column.
  • the voltage value of the common electrode voltage of the electrode block is increased or decreased by a step voltage value until the difference between the average brightness of the display area corresponding to the at least one column of the common electrode block and the standard brightness is less than or equal to the brightness difference threshold; a common electrode voltage compensation amount corresponding to the at least one column of the common electrode, and providing a touch scan signal to the at least one column of the common electrode block, and detecting a capacitance value of one of the at least one column of the common electrode block, according to the capacitance value Calculating the power consumption of the common electrode block, recording the power consumption and the common electrode A mapping relationship between an amount of pressure compensation to generate the table.
  • the comparison table is stored in the external server; the obtaining the corresponding common electrode voltage compensation amount according to the power consumption of each common electrode block further includes: acquiring the from the external service when the comparison table modification information is received a comparison table of the end, modifying the comparison table according to the modification information of the comparison table to obtain a modified comparison table, sending the modified comparison table to the external server, and storing the stored in the external server The comparison table is updated to the modified comparison table.
  • the look-up table includes a first look-up table and a second look-up table
  • the comparison table between the acquired power consumption and the common electrode voltage compensation amount includes: obtaining an ambient temperature; comparing the ambient temperature with a temperature threshold, and when The first comparison table is obtained when the ambient temperature is greater than or equal to the temperature threshold, and the second comparison table is obtained when the ambient temperature is less than the temperature threshold.
  • the common electrode voltage transmitted to each common electrode block of the touch scan is adjusted to be a post-compensation commonality of each common electrode block of the touch scan.
  • the voltage compensation method further includes: displaying time between the Nth display period set and the Nth display period after the next touch period adjacent to the touch period In the segment, the common electrode voltage transmitted to each common electrode block of the touch scan is maintained as the compensated common electrode voltage of each common electrode block of the touch scan.
  • the present disclosure further provides a voltage compensation device, comprising: a touch circuit, configured to multiplex the mutually independent multi-row and multi-column common electrode blocks arranged in an array into touch electrodes in a touch time period, and sequentially Performing touch scanning on at least one column of common electrode blocks; a capacitance detecting circuit for detecting a capacitance value of each common electrode block scanned by the touch; and a compensation common electrode voltage calculating circuit for completing each of the scanned pairs a time period between a time when the capacitance value of the common electrode block is detected and a time when the Nth display time period is set after the touch time period, N is a positive integer, according to each of the touch scans Calculating the power consumption of each common electrode block of the touch scan, and obtaining the corresponding common electrode voltage compensation amount according to the power consumption of each common electrode block scanned by the touch control, The common electrode voltage compensation amount is added to the base common electrode voltage to obtain the compensated common electrode voltage of each of the common electrode blocks touch-scanned; and a compensation
  • the compensated common electrode voltage calculation circuit includes: a power consumption calculation sub-circuit, configured to calculate each common electrode of the touch scan according to the capacitance value of each common electrode block of the touch scan a power consumption of the block; a common electrode voltage compensation amount obtaining sub-circuit for obtaining a corresponding common electrode voltage compensation amount according to power consumption of each common electrode block scanned by the touch; and a sum sub-circuit for The common electrode voltage compensation amount is added to the base common electrode voltage to obtain the compensated common electrode voltage of each of the common electrode blocks scanned by the touch.
  • the common electrode voltage compensation amount obtaining sub-circuit is specifically used to obtain a comparison table between the power consumption and the common electrode voltage compensation amount, and according to the power consumption of each common electrode block of the touch scan.
  • the look-up table is looked up to obtain the corresponding common electrode voltage compensation amount.
  • the voltage compensation device further includes a look-up table generation circuit, wherein the look-up table generation circuit includes a common electrode voltage transmission sub-circuit, an average brightness obtaining sub-circuit, a brightness comparison sub-circuit, and a comparison relationship recording sub-circuit, wherein
  • the common electrode voltage transmitting sub-circuit is configured to transmit a basic common electrode voltage to all common electrode blocks during a test period;
  • the average brightness obtaining sub-circuit is configured to detect at least one column under the test gray level during the test period
  • the brightness comparison sub-circuit is connected to the average brightness calculation sub-circuit, and is configured to compare the average brightness and the standard brightness of the display area corresponding to the at least one column of the common electrode block in the test period And transmitting, when the difference between the average brightness of the display area corresponding to the at least one column of the common electrode block and the standard brightness is greater than the brightness difference threshold, sending a voltage adjustment signal to the common electrode voltage transmitting sub-circuit
  • the comparison table is stored in an external server; the compensated common electrode voltage calculation circuit further includes a comparison table adjustment sub-circuit; the comparison table adjustment sub-circuit is connected to the external server for receiving the comparison table
  • the comparison table is modified according to the modification information of the comparison table to obtain a modified comparison table, and the modified comparison table is sent to the external server, and the external server is sent.
  • the stored comparison table is updated to the modified comparison table.
  • the comparison table includes a first comparison table and a second comparison table;
  • the compensated common electrode voltage calculation circuit further includes a temperature acquisition sub-circuit and a temperature determination sub-circuit;
  • the temperature acquisition sub-circuit is configured to acquire an ambient temperature;
  • the temperature judging sub-circuit is connected to the temperature obtaining sub-circuit and the common electrode voltage compensation amount obtaining sub-circuit for comparing the ambient temperature and the temperature threshold, and when comparing the ambient temperature to be greater than or equal to the temperature threshold,
  • the common electrode voltage compensation amount obtaining sub-circuit sends a first control signal, and when the ambient temperature is compared to the temperature threshold, the second control signal is sent to the common electrode voltage compensation amount obtaining sub-circuit; the common electrode voltage
  • the compensation amount obtaining sub-circuit is specifically configured to acquire the first comparison table when receiving the first control signal, and acquire the second comparison table when receiving the second control signal.
  • the voltage compensation device further includes a temperature measurer; wherein the temperature measurer is configured to measure an ambient temperature; and the temperature acquisition sub-circuit acquires the ambient temperature obtained by the temperature measurer.
  • the compensation circuit is further configured to display the display period between the Nth display period and the Nth display period after the next touch period adjacent to the touch period And maintaining a common electrode voltage transmitted to each common electrode block of the touch scan as a compensated common electrode voltage of each common electrode block of the touch scan.
  • the present disclosure further provides a touch display module, including: a common electrode layer and the above voltage compensation device; wherein the common electrode layer includes a plurality of rows and columns of common electrode blocks arranged in an array; Used as a touch electrode; the voltage compensation device is configured to provide a compensated post-electrode voltage to the common electrode block.
  • FIG. 1 is a schematic flow chart of a voltage compensation method according to some embodiments of the present disclosure
  • FIG. 2 is a schematic structural diagram of a touch display module applied to a voltage compensation method according to some embodiments of the present disclosure
  • Figure 3 is a timing diagram of signals provided for M11, M12, M13 and M14 of Figure 2;
  • 4A is a schematic structural view of an RC loop model
  • 4B is a graph showing the relationship between Uc(t) and time t of different capacitors C in the RC loop shown in FIG. 4A;
  • FIG. 5 is a structural block diagram of a voltage compensation apparatus according to some embodiments of the present disclosure.
  • FIG. 6 is a structural block diagram of a voltage compensation device according to some embodiments of the present disclosure.
  • the voltage compensation method may be applied to a touch display module, where the touch display module includes a common electrode layer, and the common electrode layer includes an array of mutually independent multi-row and multi-column common An electrode block (shown in FIG. 2); the common electrode block is multiplexed into a touch electrode, and the driving period of the touch display module includes an alternately set touch time period and a display time period;
  • the voltage compensation method includes:
  • S1 performing touch scanning on at least one column of common electrode blocks in sequence during the touch time period, and detecting capacitance values of each common electrode block scanned by the touch control;
  • S2 calculating an power consumption of the common electrode block according to the capacitance value, and obtaining a corresponding common electrode voltage compensation amount according to the power consumption, and the common electrode voltage compensation amount is compared with a predetermined basic basic electrode voltage. Adding the compensated common electrode voltage;
  • the compensation stage is an Nth display time period; the Nth display time period is an Nth display time period set after the touch time period; N is a positive integer;
  • the interval phase is a time period between a time at which the detection of the capacitance value of the scanned common electrode block is completed and a timing at which the compensation phase starts.
  • the voltage compensation method of the embodiment of the present disclosure detects the capacitance value of a column of common electrode blocks that are touch-scanned during the touch time period (the common electrode block is multiplexed into a mutual-capacitive touch electrode), and then calculates the capacitance value according to the capacitance value. Corresponding power consumption, and then compensated for the common electrode voltage in the subsequent compensation phase (display period set after the touch time period) to improve display defects.
  • the load of the common electrode block is related to the common electrode voltage on the common electrode block, and thus the power consumption of the common electrode block is There is a correspondence between the common electrode voltages on the common electrode block, which will be specifically described below.
  • N may be equal to 1, and the Nth display time period is a display time period immediately after the touch time period and immediately adjacent to the touch time period;
  • N may be equal to 2, and the Nth display time period is a second display time period set after the touch time period; or
  • N may be equal to 3, and the Nth display period is a third display period set after the touch period.
  • N can be selected as an integer greater than one.
  • the touch time period includes at least one touch stage
  • the step of performing the touch scanning on the at least one column of the common electrode blocks in the touch time period includes:
  • the touch scan signals are respectively sent to all the row common electrode blocks located in the corresponding columns, and the touch sensing signals respectively fed back by the common electrode blocks of all the rows in the corresponding columns are received.
  • the touch scan signals are respectively sent to the common electrode blocks of all the rows in the corresponding columns, and the touch sensing signals respectively fed back by the common electrode blocks are received, according to the touch Control the sensing signal to determine if there is touch.
  • the common electrode voltage compensation may be performed according to the actually detected capacitance value of the common electrode block.
  • the step of calculating the power consumption of the common electrode block according to the capacitance value may include:
  • P is the power consumption of the common electrode block
  • C is the capacitance value of the common electrode block scanned by the touch
  • Us is the initial common on the common electrode block during the display period before the compensation phase is set. Electrode voltage value.
  • a common electrode voltage is supplied to the common electrode block by a driving IC (Integrated Circuit), and Us is outputted to the common electrode during a display period when the common electrode voltage compensation is not performed.
  • the initial common electrode voltage value of the block is supplied to the common electrode block by a driving IC (Integrated Circuit), and Us is outputted to the common electrode during a display period when the common electrode voltage compensation is not performed.
  • the amount of charge information on the common electrode block may be calculated according to the touch sensing signal fed back by the common electrode block of the touch scan, according to the The charge amount information calculates the capacitance value of the common electrode block.
  • the capacitance value of the common electrode block may be detected according to the charge amount information on the touch scan common electrode block, and the charge amount information may be obtained according to the touch sensing signal fed back by the common electrode block.
  • a modulation signal may be output to all common electrode blocks that are not scanned by the touch; the modulation signal is the same as the touch scan signal.
  • a modulation signal can be output to all common electrode blocks that are not touch-scanned during the touch time period, and the modulation signal is the same as the touch scan signal, so that the common electrode block of the entire screen can be accessed.
  • the same touch scan signal can be more intuitively observed when the common electrode block scanned by the touch scans the touch sensing signal different from the touch scan signal when touched.
  • the step of obtaining a corresponding common electrode voltage compensation amount according to the power consumption may include:
  • the corresponding common electrode voltage compensation amount is obtained by looking up the comparison table.
  • the corresponding common electrode voltage compensation amount can be obtained according to the power consumption by searching for a preset comparison table.
  • the voltage compensation method in the embodiment of the present disclosure may further include: in a test period of the touch display module,
  • a common electrode voltage compensation amount corresponding to the at least one column of the common electrode and providing a touch scan signal to the at least one column of the common electrode block, and detecting a capacitance value of one of the at least one column of the common electrode block, according to the capacitance
  • the value calculates the power consumption of the common electrode block, and records a mapping relationship between the power consumption and the common electrode voltage compensation amount to generate the lookup table.
  • the average brightness of the display area corresponding to the at least one column of the common electrode block is the average brightness of the display area corresponding to the at least one column of the common electrode block.
  • the common electrode voltage in the initial use comparison table is the basic common electrode voltage
  • the touch display panel is partitioned, and the touch display panel is divided into a plurality of display areas, and one of the display areas is a touch display.
  • the module includes at least one column of common electrode blocks corresponding to the display area (one display area may correspond to one column of common electrode blocks, one display area may also correspond to at least two columns of common electrode blocks, which may be selected according to actual conditions), and optical test is used.
  • the device tests the average brightness of each display area on the touch display panel, and controls the common electrode voltage of the common electrode block corresponding to the display area that is output to the uneven brightness to increase or decrease by one step voltage value until the corresponding display area average brightness of the area Meet the requirements.
  • the optional step voltage value may be 0.0025V and the base common electrode voltage may be -0.25V.
  • the comparison table may be stored in an external server (specifically, when the touch display module is a mobile phone, the external server may be a mobile phone motherboard system);
  • the step of obtaining the compensated common electrode voltage further includes:
  • comparison table modification information When the comparison table modification information is received, obtaining a comparison table from the external server, modifying the comparison table according to the comparison table modification information, obtaining a modified comparison table, and sending the modified comparison table And to the external server, so that the comparison table stored in the external server is replaced with the modified comparison table.
  • the comparison table modification information may be input by a user.
  • the comparison table may modify the information change according to the comparison table input by the user, may receive the modification information of the comparison table input by the user, obtain the comparison table from the external server, and modify the information pair according to the comparison table.
  • the comparison table is modified to obtain a modified comparison table, and the modified comparison table is sent to the external server, so that the comparison table stored in the external server is replaced with the modified comparison table to replace the original Chart.
  • the capacitance values detected by the common electrode blocks are different at different temperatures, so different comparison tables can be set according to different temperature ranges.
  • the comparison table may include a first comparison table and a second comparison table
  • the step of comparing the power consumption between the predetermined setting and the common electrode voltage compensation amount includes:
  • the comparison table may include a first comparison table and a second comparison table; the first comparison table corresponds to a normal temperature state, and the second comparison table corresponds to a low temperature state;
  • the ambient temperature can be measured by a temperature measuring device
  • the temperature threshold can be selected according to actual conditions, for example, The temperature threshold can be minus 10 degrees Celsius, but not limited to this; according to common sense in the industry, it is recommended to be -10 degrees Celsius, and when the ambient temperature is greater than or equal to the temperature threshold, the first comparison table is obtained, when comparing Obtaining a second comparison table when the ambient temperature is less than the temperature threshold.
  • the comparison table can be obtained by discriminating the vertical Mura by the human eye or the instrument, and the comparison table is modified because the ambient temperature has a great influence on the loading of the transmission line; at the normal temperature, the first comparison table is enabled. When the temperature is low, the second comparison table is enabled to optimize the display effect.
  • the number of the first comparison table corresponding to the normal temperature state may be one;
  • the number of the comparison tables corresponding to the normal temperature state may also be at least two, and each of the first comparison tables corresponds to a normal temperature range, so that the compensation effect can be further optimized.
  • the number of the first comparison table may be three, and the first first comparison table may correspond to the first normal temperature range, and the second first comparison table Corresponding to the second normal temperature range, the third first comparison table may correspond to the third normal temperature range; the first normal temperature interval may be greater than or equal to minus 10 degrees Celsius and less than 0 degrees Celsius; the second normal temperature The temperature interval may be greater than or equal to 0 degrees Celsius and less than or equal to 15 degrees Celsius; the third ambient temperature interval may be greater than or equal to 15 degrees Celsius.
  • the number of the second comparison table corresponding to the low temperature state may be one;
  • the number of the comparison tables corresponding to the low temperature state may also be at least two, and each of the second comparison tables corresponds to a low temperature temperature interval, so that the compensation effect can be further optimized.
  • the number of the second comparison table may be two, and the first second comparison table may correspond to the first low temperature interval, and the second second comparison table
  • the second cryogenic temperature interval may be greater than or equal to minus 30 degrees Celsius and less than minus 10 degrees Celsius; the second cryogenic temperature interval may be less than minus 30 degrees Celsius and less than or equal to 15 degrees Celsius.
  • the voltage compensation method adjusts the common electrode voltage transmitted to the common electrode block to the compensated common electrode voltage step S3 according to the capacitance value calculation in the compensation phase.
  • the voltage compensation method may further include:
  • the common electrode voltage transmitted to the common electrode block is maintained as the compensated common electrode voltage during a display period set between the compensation phase and the adjacent next compensation phase.
  • the common electrode voltage on the common electrode block remains unchanged during the display period between the current compensation phase and the next compensation phase.
  • the touch display module applied to the voltage compensation method includes a common electrode layer disposed on the display panel 30 , and the common electrode layer includes arrays that are independent of each other. N rows and M columns of common electrode blocks; the common electrode blocks are multiplexed into touch electrodes; N and M are both positive integers.
  • the common electrode block labeled M11 is the first row of the first column common electrode block
  • the common electrode block labeled M21 is the second row first column common electrode block
  • the common electrode block labeled M31 is the first Three rows of the first column of the common electrode block
  • the common electrode block labeled MN1 is the Nth row and the first column of the common electrode block;
  • the common electrode block labeled M12 is the first row and the second column common electrode block
  • the common electrode block labeled M22 is the second row and the second column common electrode block
  • the common electrode block labeled M32 is the third row and the second column.
  • a common electrode block, the common electrode block labeled MN2 is a common electrode block of the Nth row and the second column;
  • the common electrode block labeled M13 is the first row and the third column common electrode block
  • the common electrode block labeled M23 is the second row and the third column common electrode block
  • the common electrode block labeled M33 is the third row and the third column.
  • a common electrode block, the common electrode block labeled MN3 is a common electrode block of the Nth row and the third column;
  • the common electrode block labeled M14 is the first row and the fourth column common electrode block
  • the common electrode block labeled M24 is the second row and the fourth column common electrode block
  • the common electrode block labeled M34 is the third row and the fourth column.
  • a common electrode block, the common electrode block labeled MN4 is a common electrode block of the Nth row and the fourth column;
  • the common electrode block labeled M1M is the common electrode block of the first row and the Mth column
  • the common electrode block labeled M2M is the common electrode block of the second row and the Mth column
  • the common electrode block labeled M3M is the third row and the Mth column.
  • a common electrode block, the common electrode block labeled MNM is a common electrode block of the Nth row and the Mth column;
  • reference numeral 31 denotes a driving integrated circuit
  • each of the common electrode blocks is respectively connected to the driving integrated circuit 31 through a corresponding touch lead (the touch lead, that is, a common electrode voltage lead);
  • the control lead is disposed on the SD layer (source/drain metal layer), and the touch lead is in the same layer as the data line. In order to avoid the touch lead and the data line overlap each other, the area below the display panel 30 is close to the driving integrated circuit 31.
  • the touch leads extend from the SD layer to the gate metal layer (the gate metal layer has a large resistance), and are respectively connected to the driving integrated circuit 31 from both sides, and the length of the touch lead in the Fanout region is inconsistent (touch lead)
  • the resistance value and the capacitance value are also different, so that the voltage values of the common electrode voltages provided by the different touch leads are largely different during the display period, and the loads of the different common electrode blocks are different, resulting in In the display, the liquid crystal inversion amounts of different columns are different, and macroscopically, the vertical Mura (uneven brightness) is seen.
  • the touch display module shown in FIG. 2 When the touch display module shown in FIG. 2 is touch-scanned, it is scanned column by column. There are many specific scanning methods: it can scan from left to right column by column, or from the two sides to the middle. For column scanning, other scanning methods may also be used, and the specific manner of the touch scanning is not limited herein.
  • the driving period of the touch display module includes a first touch time period T11, a first display time period T21, a second touch time period T12, and a second display time period T22.
  • the third touch period T13 and the third display period T23 (in actual operation, the driving period may further include an alternately set touch period and display period after the third display period T23, only in the figure Not drawn in 3).
  • the first column common electrode block (the first column common electrode block refers to the left to right first column common electrode block) Touch scanning (only the signals accessed by the common electrode block M11 of the first row and the first column are drawn in FIG. 3), and the capacitance values of all the common electrode blocks in the common electrode block of the first column are detected; at T111, in addition to the A column of common electrode blocks other than the common electrode block outputs a modulation signal, and the modulation signal is the same as the touch signal; at T111, the touch circuit only receives the touch sensing signal fed back by the first column of the common electrode block;
  • the touch scan signal is a high frequency pulse signal;
  • the second column common electrode block is touch-scanned (only the first row and the second column of the common electrode block M12 are connected in FIG. a signal) detecting a capacitance value of all common electrode blocks in the common electrode block of the second column; and, at T112, outputting a modulation signal to the other column common electrode blocks except the second column common electrode block, the modulation signal and the The touch signal is the same; at T112, the touch circuit only receives the touch sensing signal fed back by the second column of common electrode blocks;
  • the power consumption of the common electrode block is calculated according to the capacitance value of the common electrode block in the first column common electrode block, according to the common electrode in the second column common electrode block.
  • Calculating the power consumption of the common electrode block according to the calculated capacitance value obtaining a corresponding common electrode voltage compensation amount according to the calculated power consumption, adding the common electrode voltage compensation amount to a predetermined set basic common electrode voltage to obtain the The compensated common electrode voltage;
  • Us is an initial common electrode voltage value that the driver IC outputs to the common electrode block during the display period when the common electrode voltage compensation is not performed; in the first display period T21, the transmission is performed to the first The common electrode voltage of one column of the common electrode block and the second
  • the third column common electrode block (the third column common electrode block refers to the left to right third column common electrode block) Touch scanning (only the signals accessed by the common electrode block M13 of the first row and the third column are drawn in FIG. 3), and the capacitance values of all the common electrode blocks in the common electrode block of the third column are detected; at T121, in addition to the The other column common electrode blocks except the three columns of the common electrode block output a modulation signal, and the modulation signal is the same as the touch signal; at T121, the touch circuit only receives the touch sensing signal fed back by the third column of the common electrode block;
  • the touch scan signal is a high frequency pulse signal;
  • the fourth column of the common electrode block is touch-scanned (only the first row and the fourth column of the common electrode block M14 are connected in FIG. a signal) detecting a capacitance value of all common electrode blocks in the fourth column common electrode block; at T122, outputting a modulation signal to the other column common electrode blocks except the fourth column common electrode block, the modulation signal and the The touch signal is the same; at T122, the touch circuit only receives the touch sensing signal fed back by the fourth column of common electrode blocks;
  • the common electrode voltages transmitted to all the common electrode blocks in the first column common electrode block are adjusted to be respectively corresponding to the respective compensation values calculated from the corresponding capacitance values. Electrode voltage; adjusting common electrode voltages transmitted to all common electrode blocks in the second column of common electrode blocks to respectively calculate respective compensated common electrode voltages from respective capacitance values;
  • the common electrode voltages transmitted to all the common electrode blocks in the third column common electrode block are adjusted to be respectively corresponding to the respective compensation values calculated from the respective capacitance values. Electrode voltage; adjusting common electrode voltages transmitted to all common electrode blocks in the fourth column of common electrode blocks to respectively calculate corresponding post-compensation common electrode voltages from respective capacitance values;
  • reference numeral T131 represents a first touch time period included in the third touch time period T13
  • reference numeral T132 represents a second touch time period included in T13.
  • the TDDI Touch and Display Driver Integration
  • the segment adopts a single VCOM (common electrode voltage), and the VCOM compensation is performed according to the load of the common electrode block for different common electrode block regions, which can more accurately adjust the display effect of the screen, which is caused by the difference of the VCOM region of the common electrode block.
  • the resolution of the afterimage phenomenon has a certain auxiliary effect, which improves the display effect.
  • Embodiments of the present disclosure provide a VCOM partition compensation scheme applied to a TDDI product, which increases VCOM compensation according to different capacitance values by increasing the judgment of different base capacitance values on different common electrode blocks during the touch time period. , to achieve the purpose of improving the display.
  • This scheme has a better improvement effect on the Mura generated due to the difference in the transmission load of the common electrode block generated by the reduction of the number of photolithographic masks.
  • the driving integrated circuit applying the scheme can correspond to the display panel of the lithography mask reduction scheme, thereby achieving the overall module cost reduction and the yield improvement.
  • the embodiments of the present disclosure use the method of detecting capacitance in the related art to calculate the load condition of different common electrode blocks, without adding a new calculation circuit, and reducing the complexity of the IC (Integrated Circuit) process.
  • the embodiment of the present disclosure can design a panel of a lithography mask corresponding to a gate metal layer trace and a source/drain metal layer trace, which is beneficial to the overall LCD (liquid crystal display) product to reduce cost and enhance market competitiveness. .
  • an RC loop includes switch S, resistor R, capacitor C, and power supply U
  • switch S when switch S is turned on, capacitor C receives a rise from the power supply.
  • the edge signal acts on the RC loop an instantaneous alternating current i (as shown in Figure 4A):
  • Us is an initial common electrode voltage value that the driving IC outputs to the common electrode block during a display period when the common electrode voltage compensation is not performed;
  • the total power P consumed on the resistor R and the capacitor C is calculated as follows:
  • the power consumption P of the RC loop can be determined by the capacitance values C and Us of the RC loop, and the power consumption P is independent of the resistance value on the RC loop.
  • Us is an initial common electrode voltage value that the driving IC outputs to the common electrode block during the display period when the common electrode voltage compensation is not performed.
  • curve 1 shows a relationship between Uc(t) and t when the capacitance C is 10 uF; and curve 2 corresponds to Uc(t) when the capacitance C is 15 uF.
  • curve 3 shows the relationship between Uc(t) and t when the capacitance C is 20uF; and curve 4 shows the relationship after the adjustment of Us corresponds to C of 20uF.
  • Schematic diagram of the relationship between Uc(t) and t (Us is adjusted from 5V to 7.25V).
  • the common electrode voltage compensation amount is equal to 3.25V as an example, but in actual operation, in general, since the preferred step voltage value can be 0.0025V, the actually selected common electrode voltage compensation amount will be relatively Smaller.
  • the voltage compensation device of the embodiment of the present disclosure is applied to a touch display module, the touch display module includes a common electrode layer, and the common electrode layer includes mutually independent multi-row and multi-column common electrodes arranged in an array. a block (as shown in FIG. 2); the common electrode block is multiplexed into a touch electrode, and the driving period of the touch display module includes an alternately set touch time period and a display time period;
  • the voltage compensation device of the embodiment of the present disclosure includes:
  • the touch circuit 50 is configured to perform touch scanning on at least one column of common electrode blocks in sequence during the touch time period;
  • a capacitance detecting circuit 51 configured to detect a capacitance value of the common electrode block scanned by the touch
  • the compensated common electrode voltage calculation circuit 52 is configured to calculate the power consumption of the common electrode block according to the capacitance value from the capacitance detecting circuit 51 in the interval phase, and obtain a corresponding common electrode voltage compensation amount according to the power consumption. Adding the common electrode voltage compensation amount to a predetermined set basic common electrode voltage to obtain a compensated common electrode voltage; and
  • a compensation circuit 53 for adjusting a common electrode voltage transmitted to the common electrode block to the compensated common electrode voltage from the compensated common electrode voltage calculation circuit 52 in a compensation phase;
  • the compensation stage is an Nth display time period; the Nth display time period is an Nth display time period set after the touch time period; N is a positive integer;
  • the interval phase is a time period between a time at which the detection of the capacitance value of the scanned common electrode block is completed and a timing at which the compensation phase starts.
  • the voltage compensation device of the embodiment of the present disclosure detects the capacitance value of a column of common electrode blocks touched by the touch detection by the capacitance detecting circuit 51 (the common electrode block is multiplexed into a mutual-capacitive touch electrode).
  • the compensated common electrode voltage calculation circuit 52 calculates the compensated common electrode voltage according to the capacitance value, and the compensation circuit 53 compensates the common electrode voltage in the compensation phase (display period after the touch time period) to improve the display defect.
  • N may be equal to 1, and the Nth display time period is a display time period immediately after the touch time period and immediately adjacent to the touch time period;
  • N may be equal to 2, and the Nth display time period is a second display time period set after the touch time period; or
  • N may be equal to 3, and the Nth display period is a third display period set after the touch period.
  • the compensation circuit is further configured to maintain the common electrode voltage transmitted to the common electrode block as the compensated common electrode voltage during a display period between the compensation phase and the adjacent next compensation phase. .
  • the compensated common electrode voltage calculation circuit 52 may include:
  • a power consumption calculation sub-circuit 521 configured to calculate power consumption of the common electrode block according to the capacitance value from the capacitance detection circuit 51;
  • a common electrode voltage compensation amount obtaining sub-circuit 522 for obtaining a corresponding common electrode voltage compensation amount according to the power consumption from the power consumption calculating sub-circuit 521;
  • the summing sub-circuit 523 is for adding the common electrode voltage compensation amount from the common electrode voltage compensation amount obtaining sub-circuit 522 to a predetermined set basic common electrode voltage to obtain the compensated common electrode voltage.
  • P is the power consumption of the common electrode block
  • C is the capacitance value of the common electrode block scanned by the touch
  • Us is the initial common on the common electrode block during the display period before the compensation phase is set. Electrode voltage value.
  • the capacitance detecting circuit 51 transmits the detected capacitance value of the touch-scanned common electrode block to the power consumption calculating sub-circuit 521, and the power consumption calculating sub-circuit 521 calculates the capacitance value and the Us according to the above formula.
  • the common electrode voltage compensation amount obtaining sub-circuit 522 may be disposed in the CPU system, and the common electrode voltage compensation amount obtaining sub-circuit 522 obtains a corresponding common electrode voltage compensation amount according to the power consumption, and the sum sub-circuit 523 sets the common electrode voltage compensation amount to a predetermined setting.
  • the base common electrode voltages are added to obtain the compensated common electrode voltage, and then subjected to digital-to-analog conversion of the compensated common electrode voltage through a digital-to-analog conversion circuit, and then output to the corresponding common electrode block.
  • the common electrode voltage compensation amount obtaining sub-circuit 522 may be specifically configured to obtain a comparison table between the predetermined set power consumption P and the common electrode voltage compensation amount ⁇ VCOM, and according to the power consumption, by searching for the The table is compared to obtain the corresponding common electrode voltage compensation amount.
  • the comparison table records the mapping relationship between the power consumption P of the common electrode block and the common electrode voltage compensation amount ⁇ VCOM.
  • ⁇ VCOM may be the first compensation voltage.
  • the value V 1 when P is greater than or equal to P 1 and less than or equal to the second power consumption P 2 , ⁇ VCOM may be the second compensation voltage value V 2 , when P is greater than or equal to the n-1th power consumption P n-1 equal to or less than n-th power P n, ⁇ VCOM may be n-th compensation voltage value V n, when P is greater than P n, ⁇ VCOM may be n + 1, the offset voltage value V n + 1, n is a positive integer.
  • the corresponding comparison table can be as follows:
  • the voltage compensation device of the present disclosure further includes a look-up table generation circuit.
  • the lookup table generation circuit includes a common electrode voltage transmission sub-circuit, an average luminance obtaining sub-circuit, a luminance comparison sub-circuit, and a comparison relationship recording sub-circuit.
  • the common electrode voltage transmitting sub-circuit is configured to send a basic common electrode voltage to all common electrode blocks included in the touch display module during a test period of the touch display module.
  • the average brightness obtaining sub-circuit is configured to detect, during a test period of the touch display module, an average brightness of a display area corresponding to at least one column of the common electrode blocks at a predetermined gray level.
  • the brightness comparison sub-circuit is connected to the average brightness obtaining sub-circuit for comparing the average brightness and the standard brightness of the display area corresponding to the at least one column of the common electrode block during the test period of the touch display module, when the at least When the difference between the average brightness of the display area corresponding to the common electrode block and the standard brightness is greater than the predetermined brightness difference, the voltage adjustment signal is sent to the common electrode voltage transmitting sub-circuit, so that the common electrode voltage transmitting sub-circuit Controlling, by the voltage adjustment signal, a voltage value of a common electrode voltage outputted to the at least one column of the common electrode block to increase or decrease a step voltage value until the average brightness obtaining sub-circuit calculates the at least one column of the common electrode
  • the difference between the average brightness of the display area corresponding to the block and the standard brightness is less than or equal to a predetermined brightness difference, and the recording control signal is sent to the comparison relationship recording sub-circuit.
  • the comparison relationship recording sub-circuit is connected to the brightness comparison sub-circuit, and is configured to record a common electrode voltage corresponding to the at least one column of common electrodes after receiving the recording control signal in a test period of the touch display module Compensating the amount, and providing a touch scan signal to the at least one column of the common electrode block, detecting a capacitance value of one of the at least one column of the common electrode block, calculating a power consumption of the common electrode block according to the capacitance value, and recording the A mapping relationship between power consumption and the common electrode voltage compensation amount to generate the lookup table.
  • the common electrode voltage in the first-time comparison table is the basic common electrode voltage
  • the touch display panel is divided into a plurality of display areas, and the display area is at least one column of common electrodes included in the touch display module.
  • the area corresponding to the block is used to test the display uniformity of each display area of the touch display panel by using an optical test device, and the common electrode voltage of the common electrode block corresponding to the display area outputted to the uneven brightness is increased or decreased by a step voltage value until The average brightness corresponding to the display area meets the requirements.
  • the optional step voltage value may be 0.0025V and the base common electrode voltage may be -0.25V.
  • the manner in which the comparison table is described (the comparison table describes the mapping relationship between the power consumption P of the common electrode block and the common electrode voltage compensation amount ⁇ VCOM) may be, for example, the following two types (but not limited to the following) Two ways):
  • the comparison table may be stored in an external server (specifically, when the touch display module is a mobile phone, the external server may be a mobile phone motherboard system), and after the compensation
  • the common electrode voltage calculation circuit may further include a comparison table adjustment sub-circuit, the comparison table adjustment sub-circuit is connected to the external server; the comparison table adjustment sub-circuit may receive the comparison table modification information (the comparison table modification information may be User input), obtaining a comparison table from the external server, and modifying the comparison table according to the comparison table modification information to obtain a modified comparison table, and sending the modified comparison table to the external server, so that The comparison table stored in the external server is replaced with the modified comparison table to replace the original comparison table.
  • the comparison table modification information may be User input
  • the comparison table stored in the external server may include a first comparison table and a second comparison table; the first comparison table corresponds to a normal temperature state, and the second comparison table corresponds to a low temperature state;
  • the compensated common electrode voltage calculation circuit may further include a temperature acquisition sub-circuit and a temperature determination sub-circuit;
  • the temperature acquisition sub-circuit is configured to obtain an ambient temperature at which the touch display module is located; the temperature determination sub-circuit is configured to compare the ambient temperature with a temperature threshold (the temperature threshold may be selected according to actual conditions, for example, The temperature threshold may be minus 10 degrees Celsius, but not limited thereto, and when the ambient temperature is greater than or equal to the temperature threshold, the first control signal is sent to the common electrode voltage compensation amount obtaining sub-circuit. When the ambient temperature is less than the temperature threshold, the second control signal is sent to the common electrode voltage compensation amount obtaining sub-circuit;
  • the common electrode voltage compensation amount obtaining sub-circuit is specifically configured to acquire the first comparison table when receiving the first control signal, and acquire the second comparison table when receiving the second control signal.
  • the comparison table can be obtained by discriminating the vertical Mura by the human eye or the instrument, and the comparison table is modified, and the ambient temperature has a great influence on the loading of the transmission line; when the temperature is low, the temperature judger The circuit recognizes the low temperature state and can enable the second look-up table to optimize the display.
  • the comparison table may be stored on the mobile phone platform, and the comparison table may be changed in real time through the mobile phone end code, and the mobile phone directly directly after the mobile phone is powered on.
  • the comparison table is downloaded into an IC (Integrated Circuit) for use; when the mobile phone is at a low temperature, the mobile terminal can recognize the low temperature state and enable the second comparison table.
  • IC Integrated Circuit
  • the comparison table may be disposed in an internal register in a driving IC (Integrated Circuit) included in the touch display module.
  • the comparison table includes a first comparison. a table and a second comparison table; the first comparison table corresponds to a normal temperature state, and the second comparison table corresponds to a low temperature state;
  • the compensated common electrode voltage calculation circuit may further include a temperature acquisition sub-circuit and a temperature determination sub-circuit.
  • the temperature acquisition sub-circuit is configured to obtain an ambient temperature at which the touch display module is located; the temperature determination sub-circuit is configured to compare the ambient temperature with a temperature threshold (the temperature threshold may be selected according to actual conditions, for example, The temperature threshold may be -10 degrees Celsius, but not limited thereto, and when the ambient temperature is greater than or equal to the temperature threshold, the first control signal is sent to the common electrode voltage compensation amount obtaining sub-circuit. When the ambient temperature is less than the temperature threshold, the second control signal is sent to the common electrode voltage compensation amount obtaining sub-circuit.
  • the common electrode voltage compensation amount obtaining sub-circuit is specifically configured to acquire the first comparison table when receiving the first control signal, and acquire the second comparison table when receiving the second control signal.
  • the comparison table is obtained by the method, and the ambient temperature is first recognized by the temperature acquisition sub-circuit after the touch display module is powered on, and the sub-circuit is judged to be in a normal temperature state or a low temperature state by the temperature judgment sub-circuit, and the corresponding result is selected according to the judgment result. Chart.
  • the manufacturer of the touch display module can control the vertical Mura level according to the different process deviation batches of the film forming resistor load, and can control the vertical Mura level, thereby improving the picture yield.
  • the voltage compensation device may further include a temperature measuring device (such as a thermometer, etc.) for measuring an ambient temperature of the touch display module, and the temperature acquiring sub-circuit is obtained from the temperature measuring device. Ambient temperature.
  • a temperature measuring device such as a thermometer, etc.
  • the number of the first comparison table corresponding to the normal temperature state may be one;
  • the number of the comparison tables corresponding to the normal temperature state may also be at least two, and each of the first comparison tables corresponds to a normal temperature range, so that the compensation effect can be further optimized.
  • the number of the first comparison table may be three, and the first first comparison table may correspond to the first normal temperature range, and the second first comparison table Corresponding to the second normal temperature range, the third first comparison table may correspond to the third normal temperature range; the first normal temperature interval may be greater than or equal to minus 10 degrees Celsius and less than 0 degrees Celsius; the second normal temperature The temperature interval may be greater than or equal to 0 degrees Celsius and less than or equal to 15 degrees Celsius; the third ambient temperature interval may be greater than or equal to 15 degrees Celsius.
  • the number of the second comparison table corresponding to the low temperature state may be one;
  • the number of the comparison tables corresponding to the low temperature state may also be at least two, and each of the second comparison tables corresponds to a low temperature temperature interval, so that the compensation effect can be further optimized.
  • the number of the second comparison table may be two, and the first second comparison table may correspond to the first low temperature interval, and the second second comparison table
  • the second cryogenic temperature interval may be greater than or equal to minus 30 degrees Celsius and less than minus 10 degrees Celsius; the second cryogenic temperature interval may be less than minus 30 degrees Celsius and less than or equal to 15 degrees Celsius.
  • the touch display module of the embodiment of the present disclosure includes a common electrode layer, and the common electrode layer includes a plurality of rows and columns of common electrode blocks arranged in an array (as shown in FIG. 2);
  • the touch display module further includes the voltage compensation device described above; the voltage compensation device is configured to provide the compensated common electrode voltage to the common electrode block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种电压补偿方法包括:在触控时间段,将公共电极块复用为触控电极,依次对至少一列公共电极块进行触控扫描,检测被触控扫描的每个公共电极块的电容值;在完成对被扫描的每个公共电极块的电容值的检测的时刻与设置于触控时间段之后的第N个显示时间段开始的时刻之间的时间段,根据被触控扫描的每个公共电极块的电容值计算被触控扫描的每个公共电极块的功耗,根据被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量,将公共电极电压补偿量与基础公共电极电压相加而得到被触控扫描的每个公共电极块的补偿后公共电极电压;在第N个显示时间段,将传送至被触控扫描的每个公共电极块的公共电极电压调整为补偿后公共电极电压。

Description

电压补偿方法、装置和触控显示模组
相关申请的交叉引用
本申请主张在2018年3月15日在中国提交的中国专利申请号No.201810214404.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电压补偿技术领域,尤其涉及一种电压补偿方法、装置和触控显示模组。
背景技术
TDDI(Touch and Display Driver Integration,触控与显示驱动器集成)模组中的公共电极层包括多行多列相互独立的公共电极块,公共电极块可以复用为触控电极。然而,在相关技术中的TDDI模组中,在显示阶段,不同的公共电极块的负载不同,导致在显示阶段不同列的液晶翻转量不同,宏观上看到的即为竖向的Mura(亮度不均匀)。
发明内容
本公开实施例提供了一种电压补偿方法包括:在触控时间段,将呈阵列排布的相互独立的多行多列公共电极块复用为触控电极,并依次对至少一列公共电极块进行触控扫描,检测被触控扫描的每个公共电极块的电容值;在完成对被扫描的每个公共电极块的电容值的检测的时刻与设置于所述触控时间段之后的第N个显示时间段开始的时刻之间的时间段,N为正整数,根据所述被触控扫描的每个公共电极块的电容值计算所述被触控扫描的每个公共电极块的功耗,根据所述被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与基础公共电极电压相加而得到所述被触控扫描的每个公共电极块的补偿后公共电极电压;在所述第N个显示时间段,将传送至所述被触控扫描的每个公共电极块的公共电极电压调整为所述被触控扫描的每个公共电极块的补偿后公共电极电压。
实施时,所述根据所述被触控扫描的每个公共电极块的电容值计算所述被触控扫描的每个公共电极块的功耗包括:根据公式P=CUs 2计算该公共电极块的功耗;其中,P为该公共电极块的功耗,C为被触控扫描的公共电极块的电容值,Us为在设置于所述第N个显示时间段之前的显示时间段内所述公共电极块上的初始公共电极电压值。
实施时,所述根据所述被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量包括:获取功耗与公共电极电压补偿量之间的对照表;根据所述被触控扫描的每个公共电极块的功耗,通过查找该对照表以得到相应的公共电极电压补偿量。
实施时,所述电压补偿方法还包括:在测试周期,向所有公共电极块发送基础公共电极电压,检测在测试灰阶下至少一列所述公共电极块对应的显示区域平均亮度;比较该至少一列所述公共电极块对应的显示区域平均亮度与标准亮度,当该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值大于亮度差阈值时,控制输出至该至少一列公共电极块的公共电极电压的电压值增加或减少一个步进电压值,直至该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值小于或等于所述亮度差阈值;记录与该至少一列公共电极对应的公共电极电压补偿量,并向该至少一列公共电极块提供触控扫描信号,检测该至少一列公共电极块中的其中一公共电极块的电容值,根据该电容值计算该公共电极块的功耗,记录该功耗与该公共电极电压补偿量之间的映射关系,以生成所述对照表。
实施时,所述对照表存储于外部服务端;所述根据每个公共电极块的功耗得到相应的公共电极电压补偿量还包括:当接收到对照表修改信息时,获取来自所述外部服务端的对照表,根据所述对照表修改信息对该对照表进行修改得到修改后的对照表,将所述修改后的对照表发送至所述外部服务端,并将所述外部服务端中存储的对照表更新为所述修改后的对照表。
实施时,所述对照表包括第一对照表和第二对照表;所述获取功耗与公共电极电压补偿量之间的对照表包括:获取环境温度;比较该环境温度与温度阈值,并当比较得到该环境温度大于或等于该温度阈值时获取所述第一对照表,当比较得到该环境温度小于该温度阈值时获取所述第二对照表。
实施时,在所述第N个显示时间段,将传送至所述被触控扫描的每个公共电极块的公共电极电压调整为所述被触控扫描的每个公共电极块的补偿后公共电极电压之后,所述电压补偿方法还包括:在设置于该第N个显示时间段和与所述触控时间段相邻的下一触控时间段之后的第N个显示时间段之间的显示时间段内,将传送至所述被触控扫描的每个公共电极块的公共电极电压维持为所述被触控扫描的每个公共电极块的补偿后公共电极电压。
本公开还提供了一种电压补偿装置,包括:触控电路,用于在触控时间段,将呈阵列排布的相互独立的多行多列公共电极块复用为触控电极,并依次对至少一列公共电极块进行触控扫描;电容检测电路,用于检测被触控扫描的每个公共电极块的电容值;补偿后公共电极电压计算电路,用于在完成对被扫描的每个公共电极块的电容值的检测的时刻与设置于所述触控时间段之后的第N个显示时间段开始的时刻之间的时间段,N为正整数,根据所述被触控扫描的每个公共电极块的电容值计算所述被触控扫描的每个公共电极块的功耗,根据所述被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与基础公共电极电压相加而得到所述被触控扫描的每个公共电极块的补偿后公共电极电压;以及,补偿电路,用于在所述第N个显示时间段,将传送至所述被触控扫描的每个公共电极块的公共电极电压调整为所述被触控扫描的每个公共电极块的补偿后公共电极电压。
实施时,所述补偿后公共电极电压计算电路包括:功耗计算子电路,用于根据所述被触控扫描的每个公共电极块的电容值计算所述被触控扫描的每个公共电极块的功耗;公共电极电压补偿量获得子电路,用于根据所述被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量;以及,加和子电路,用于将该公共电极电压补偿量与基础公共电极电压相加而得到所述被触控扫描的每个公共电极块的补偿后公共电极电压。
实施时,所述功耗计算子电路具体用于根据公式P=CUs 2计算所述被触控扫描的每个公共电极块的功耗;其中,P为该公共电极块的功耗,C为被触控扫描的公共电极块的电容值,Us为在设置于所述第N个显示时间段之前的显示时间段内所述公共电极块上的初始公共电极电压值。
实施时,所述公共电极电压补偿量获得子电路具体用于获取功耗与公共电极电压补偿量之间的对照表,并根据所述被触控扫描的每个公共电极块的功耗,通过查找该对照表以得到相应的公共电极电压补偿量。
实施时,所述电压补偿装置还包括对照表生成电路;其中,所述对照表生成电路包括公共电极电压发送子电路、平均亮度获得子电路、亮度比较子电路和对照关系记录子电路,其中,所述公共电极电压发送子电路用于在测试周期,向所有公共电极块发送基础公共电极电压;所述平均亮度获得子电路用于在所述测试周期,检测在测试灰阶下至少一列所述公共电极块对应的显示区域平均亮度;所述亮度比较子电路与所述平均亮度计算子电路连接,用于在所述测试周期,比较该至少一列公共电极块对应的显示区域平均亮度与标准亮度,当该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值大于亮度差阈值时,向所述公共电极电压发送子电路发送电压调整信号,以使得所述公共电极电压发送子电路在接收到所述电压调整信号后控制输出至该至少一列公共电极块的公共电极电压的电压值增加或减少一个步进电压值,直至所述平均亮度获得模块计算得到的该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值小于或等于亮度差阈值,向所述对照关系记录子电路发送记录控制信号;所述对照关系记录子电路与所述亮度比较子电路连接,用于在所述测试周期在接收到所述记录控制信号后记录与该至少一列公共电极对应的公共电极电压补偿量,并向该至少一列公共电极块提供触控扫描信号,检测该至少一列公共电极块中的其中一公共电极块的电容值,根据该电容值计算该公共电极块的功耗,记录该功耗与该公共电极电压补偿量之间的映射关系,以生成所述对照表。
实施时,所述对照表存储于外部服务端;所述补偿后公共电极电压计算电路还包括对照表调节子电路;该对照表调节子电路与该外部服务端连接,用于当接收到对照表修改信息时,获取来自外部服务端的对照表,根据该对照表修改信息对该对照表进行修改得到修改后的对照表,将该修改后的对照表发送至外部服务端,并将该外部服务端中存储的对照表更新为所述修改后的对照表。
实施时,所述对照表包括第一对照表和第二对照表;所述补偿后公共电 极电压计算电路还包括温度获取子电路和温度判断子电路;该温度获取子电路用于获取环境温度;该温度判断子电路与该温度获取子电路和所述公共电极电压补偿量获得子电路连接,用于比较该环境温度与温度阈值,并当比较得到该环境温度大于或等于该温度阈值时,向所述公共电极电压补偿量获得子电路发送第一控制信号,当比较得到该环境温度小于该温度阈值时,向所述公共电极电压补偿量获得子电路发送第二控制信号;所述公共电极电压补偿量获得子电路具体用于当接收到所述第一控制信号时获取所述第一对照表,当接收到所述第二控制信号时获取所述第二对照表。
实施时,所述电压补偿装置还包括温度测量器;其中,所述温度测量器用于测量环境温度;所述温度获取子电路获取来由所述温度测量器测量获得的所述环境温度。
实施时,所述补偿电路还用于在设置于该第N个显示时间段和与所述触控时间段相邻的下一触控时间段之后的第N个显示时间段之间的显示时间段内,将传送至所述被触控扫描的每个公共电极块的公共电极电压维持为所述被触控扫描的每个公共电极块的补偿后公共电极电压。
本公开还提供了一种触控显示模组,包括:公共电极层及上述电压补偿装置;其中,所述公共电极层包括阵列排布的多行多列公共电极块;所述公共电极块复用为触控电极;所述电压补偿装置用于向所述公共电极块提供补偿后公共电极电压。
附图说明
图1所示为本公开一些实施例所述的电压补偿方法的流程示意图;
图2是本公开一些实施例所述的电压补偿方法应用于的触控显示模组的结构示意图;
图3是对图2中的M11、M12、M13和M14提供的信号的时序图;
图4A是RC回路模型的结构示意图;
图4B是如图4A所示的RC回路中不同的电容C对应的Uc(t)与时间t之间的关系曲线;
图5是本公开一些实施例所述的电压补偿装置的结构框图;
图6是本公开一些实施例所述的电压补偿装置的结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例所述的电压补偿方法,可以应用于触控显示模组,所述触控显示模组包括公共电极层,所述公共电极层包括阵列排布的相互独立的多行多列公共电极块(如图2所示);所述公共电极块复用为触控电极,所述触控显示模组的驱动周期包括交替设置的触控时间段和显示时间段;如图1所示,所述电压补偿方法包括:
S1:在所述触控时间段,依次对至少一列公共电极块进行触控扫描,检测被触控扫描的每个公共电极块的电容值;
S2:在间隔阶段,根据所述电容值计算该公共电极块的功耗,根据该功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与预定设定的基础公共电极电压相加而得到补偿后公共电极电压;
S3:在补偿阶段,将传送至该公共电极块的公共电极电压调整为所述补偿后公共电极电压;
所述补偿阶段为第N显示时间段;所述第N显示时间段为设置于所述触控时间段之后的第N个显示时间段;N为正整数;
所述间隔阶段为在完成对被扫描的公共电极块的电容值的检测的时刻与所述补偿阶段开始的时刻之间的时间段。
本公开实施例所述的电压补偿方法在触控时间段检测被触控扫描的一列公共电极块的电容值(公共电极块复用为互容式的触控电极),然后根据该电容值计算相应的功耗,再在之后的补偿阶段(设置于触控时间段之后的显示时间段)相应补偿公共电极电压,以改善显示不良现象。
在实际操作时,由于所述公共电极块的功耗与该公共电极块的负载有关,该公共电极块的负载与该公共电极块上的公共电极电压有关,因此该公共电 极块的功耗与该公共电极块上的公共电极电压之间存在对应关系,具体将在以下说明。
具体的,N可以等于1,第N显示时间段为设置于所述触控时间段之后的与所述触控时间段紧邻的显示时间段;
N可以等于2,第N显示时间段为设置于所述触控时间段之后的第二个显示时间段;或者,
N可以等于3,第N显示时间段为设置于所述触控时间段之后的第三个显示时间段。
在实际操作时,由于检测被触控扫描的公共电极块的电容值、根据该电容值计算该公共电极块的功耗,根据该功耗得到相应的公共电极电压补偿量都需要时间,因此如果该时间较长时,可以将N选取为大于1的整数。
在具体实施时,所述触控时间段包括至少一个触控阶段;
所述在所述触控时间段,依次对至少一列公共电极块进行触控扫描步骤包括:
在相应的触控阶段,向位于相应列的所有行公共电极块分别发送触控扫描信号,并接收该位于相应列的所有行公共电极块分别反馈的触控感应信号。
在实际操作时,在触控时间段包括的触控阶段,向位于相应列的所有行公共电极块分别发送触控扫描信号,并接收该公共电极块分别反馈的触控感应信号,根据该触控感应信号判断是否存在触控。
在具体实施时,当所述公共电极块被手指触摸时,检测得到的该公共电极块的电容值比未被触摸时检测得到的所述公共电极块的电容值大,针对报点(所述公共电极块被触摸)和不报点(所述公共电极块未被触摸)的情况,都可以根据实际检测到的所述公共电极块的电容值来进行公共电极电压补偿。
具体的,所述根据所述电容值计算该公共电极块的功耗步骤可以包括:
根据公式P=CUs 2计算该公共电极块的功耗;
其中,P为该公共电极块的功耗,C为被触控扫描的公共电极块的电容值,Us为在设置于所述补偿阶段之前的显示时间段内所述公共电极块上的初始公共电极电压值。
在实际操作时,由驱动IC(Integrated Circuit,集成电路)为所述公共电 极块提供公共电极电压,Us即为在未进行公共电极电压补偿时,驱动IC在显示时间段输出至所述公共电极块的初始公共电极电压值。
该公式P=CUs 2的详细推导过程将在下面结合等效图详细介绍。
具体的,在检测被触控扫描的公共电极块的电容值时,可以根据被触控扫描的公共电极块反馈的所述触控感应信号计算得到该公共电极块上的电荷量信息,根据该电荷量信息计算该公共电极块的电容值。
在实际操作时,可以根据被触控扫描公共电极块上的电荷量信息来检测该公共电极块的电容值,该电荷量信息可以根据该公共电极块反馈的触控感应信号得到。
在具体实施时,在所述触控时间段,可以对未被触控扫描的所有的公共电极块输出调制信号;所述调制信号与所述触控扫描信号相同。
在实际操作时,在触控时间段可以对未被触控扫描的所有的公共电极块输出调制信号,该调制信号与所述触控扫描信号相同,从而可以使得整屏的公共电极块接入相同的触控扫描信号,当被触控扫描的公共电极块在被触摸时反馈与该触控扫描信号不同的触控感应信号时,可以更直观的被观察到。
具体的,所述根据该功耗得到相应的公共电极电压补偿量步骤可以包括:
获取预定设定的功耗与公共电极电压补偿量之间的对照表;
根据该功耗,通过查找该对照表以得到相应的公共电极电压补偿量。
在实际操作时,可以通过查找预先设定的对照表的方式来根据功耗得到相应的公共电极电压补偿量。
具体的,本公开实施例所述的电压补偿方法还可以包括:在所述触控显示模组的测试周期,
向触控显示模组包括的所有公共电极块发送基础公共电极电压,检测在预定灰阶(也可称为测试灰阶)下至少一列所述公共电极块对应的显示区域平均亮度;
比较该至少一列公共电极块对应的显示区域平均亮度与标准亮度,当该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值大于预定亮度差值(也可称为亮度差阈值)时,控制输出至该至少一列公共电极块的公共电极电压的电压值增加或减少一个步进电压值,直至该至少一列公 共电极块对应的显示区域平均亮度与该标准亮度之间的差值小于或等于所述预定亮度差值;
记录与该至少一列公共电极对应的公共电极电压补偿量,并向该至少一列公共电极块提供触控扫描信号,检测该至少一列公共电极块中的其中一公共电极块的电容值,根据该电容值计算该公共电极块的功耗,记录该功耗与该公共电极电压补偿量之间的映射关系,以生成所述对照表。
在具体实施时,至少一列公共电极块对应的显示区域平均亮度即为对应于该至少一列公共电极块的显示区域的平均亮度。
在实际操作时,初次使用的对照表中的公共电极电压为基础公共电极电压,对触控显示面板进行分区,将触控显示面板划分为多个显示区域,一个所述显示区域为触控显示模组包括的至少一列公共电极块对应的显示区域(一个显示区域可以对应于一列公共电极块,一个显示区域也可以对应于至少两列公共电极块,可以根据实际情况选定),使用光学测试设备测试触控显示面板上各个显示区域的平均亮度,控制输出至亮度不均匀的显示区域对应的公共电极块的公共电极电压增加或减少一个步进电压值,直至该区域对应的显示区域平均亮度符合要求为止。在实际操作时,可选的步进电压值可以为0.0025V,所述基础公共电极电压可以为-0.25V。
在实际操作时,所述对照表可以存储于外部服务端(具体地,当所述触控显示模组为手机时,所述外部服务端可以为手机主板系统);
所述在间隔阶段,根据所述电容值计算该公共电极块的功耗,根据该功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与预定设定的基础公共电极电压相加而得到所述补偿后公共电极电压步骤还包括:
当接收到对照表修改信息时,获取来自所述外部服务端的对照表,根据所述对照表修改信息对该对照表进行修改,得到修改后的对照表,并将所述修改后的对照表发送至所述外部服务端,以使得所述外部服务端中存储的对照表更换为所述修改后的对照表。
在实际操作时,所述对照表修改信息可以由用户输入。
在具体实施时,所述对照表可以根据用户输入的对照表修改信息更改,可以在接收到用户输入的对照表修改信息,获取来自所述外部服务端的对照 表,并根据该对照表修改信息对该对照表进行修改得到修改后的对照表,并将该修改后的对照表发送于外部服务端,以使得该外部服务端中存储的对照表更换为该修改后的对照表,以替换原来的对照表。
在具体实施时,由于液晶的介电常数随着温度的变化而变化,因此不同温度下各公共电极块检测的电容值不同,因此可以根据温度范围不同设定不同的对照表。
可选的,所述对照表可以包括第一对照表和第二对照表;
所述获取预定设定的功耗与公共电极电压补偿量之间的对照表步骤具体包括:
获取所述触控显示模组所处的环境温度;
比较该环境温度与温度阈值,并当比较得到该环境温度大于或等于该温度阈值时获取所述第一对照表,当比较得到该环境温度小于该温度阈值时获取所述第二对照表。
在实际操作时,所述对照表可以包括第一对照表和第二对照表;所述第一对照表对应于常温状态,所述第二对照表对应于低温状态;
首先获取所述触控显示模组所处的环境温度(所述环境温度可以由温度测量器测得),比较该环境温度与温度阈值(所述温度阈值可以根据实际情况选定,例如,所述温度阈值可以为零下10摄氏度,但不以此为限;根据业内常识,建议-10摄氏度为宜),并当比较得到该环境温度大于或等于该温度阈值时获取第一对照表,当比较得到该环境温度小于该温度阈值时获取第二对照表。
本公开实施例通过如上方式获取对照表可以通过人眼或仪器判别竖向Mura后修改对照表,并由于环境温度对于传输线路的loading(负载)影响较大;在常温时,启用第一对照表;当低温时,启用第二对照表,进而优化显示效果。
根据一种具体实施方式,对应于常温状态的所述第一对照表的个数可以为一个;
根据另一种具体实施方式,对应于常温状态的所述对照表的个数也可以为至少两个,每一个第一对照表对应于一个常温温度区间,这样可以进一步 优化补偿效果。
例如,当所述温度阈值为零下10摄氏度时,所述第一对照表的个数可以为三个,第一个第一对照表可以对应于第一常温温度区间,第二个第一对照表可以对应于第二常温温度区间,第三个第一对照表可以对应于第三常温温度区间;所述第一常温温度区间可以为大于或等于零下10摄氏度并小于0摄氏度;所述第二常温温度区间可以为大于或等于0摄氏度并小于或等于15摄氏度;所述第三常温温度区间可以为大于或等于15摄氏度。
根据一种具体实施方式,对应于低温状态的所述第二对照表的个数可以为一个;
根据另一种具体实施方式,对应于低温状态的所述对照表的个数也可以为至少两个,每一个第二对照表对应于一个低温温度区间,这样可以进一步优化补偿效果。
例如,当所述温度阈值为零下10摄氏度时,所述第二对照表的个数可以为两个,第一个第二对照表可以对应于第一低温温度区间,第二个第二对照表可以对应于第二低温温度区间;所述第一低温温度区间可以为大于或等于零下30摄氏度并小于零下10摄氏度;所述第二低温温度区间可以为小于零下30摄氏度并小于或等于15摄氏度。
在具体实施时,本公开实施例所述的电压补偿方法在所述在补偿阶段,将传送至该公共电极块的公共电极电压调整为根据由所述电容值计算得到补偿后公共电极电压步骤S3之后,所述电压补偿方法还可以包括:
在设置于该补偿阶段与相邻下一补偿阶段之间的显示时间段内,将传送至该公共电极块的公共电极电压维持为该补偿后公共电极电压。
在实际操作时,在本次补偿阶段至下一补偿阶段之间的显示时间段内,该公共电极块上的公共电极电压保持不变。
下面通过一具体实施例来说明本公开所述的电压补偿方法。
如图2所示,本公开一些实施例所述的电压补偿方法应用于的触控显示模组包括设置于显示面板30上的公共电极层,所述公共电极层包括阵列排布的相互独立的N行M列公共电极块;所述公共电极块复用为触控电极;N和M都为正整数。
在图2中,标号为M11的公共电极块为第一行第一列公共电极块,标号为M21的公共电极块为第二行第一列公共电极块,标号为M31的公共电极块为第三行第一列公共电极块,标号为MN1的公共电极块为第N行第一列公共电极块;
标号为M12的公共电极块为第一行第二列公共电极块,标号为M22的公共电极块为第二行第二列公共电极块,标号为M32的公共电极块为第三行第二列公共电极块,标号为MN2的公共电极块为第N行第二列公共电极块;
标号为M13的公共电极块为第一行第三列公共电极块,标号为M23的公共电极块为第二行第三列公共电极块,标号为M33的公共电极块为第三行第三列公共电极块,标号为MN3的公共电极块为第N行第三列公共电极块;
标号为M14的公共电极块为第一行第四列公共电极块,标号为M24的公共电极块为第二行第四列公共电极块,标号为M34的公共电极块为第三行第四列公共电极块,标号为MN4的公共电极块为第N行第四列公共电极块;
标号为M1M的公共电极块为第一行第M列公共电极块,标号为M2M的公共电极块为第二行第M列公共电极块,标号为M3M的公共电极块为第三行第M列公共电极块,标号为MNM的公共电极块为第N行第M列公共电极块;
在图2中,标号31代表驱动集成电路,每一所述公共电极块分别通过相应的触控引线(所述触控引线也即公共电极电压引线)连接至所述驱动集成电路31;该触控引线设置于SD层(源漏金属层),该触控引线与数据线处于同一层,为了避免触控引线与数据线相互交叠短路,在显示面板30下方靠近驱动集成电路31的区域,触控引线从SD层跨越到栅金属层(栅金属层电阻较大),再分别由两侧连接至驱动集成电路31,出现了Fanout(扇出)区域触控引线长短不一致(触控引线的电阻值和电容值也不相同)的情况,从而在显示时间段导致由不同的触控引线提供的公共电极电压的电压值之间相差较大,并使得不同的公共电极块的负载不同,造成在显示时不同列的液晶翻转量不同,宏观上看到的即为竖向的Mura(亮度不均匀)。
在图2中仅示意性的绘制出了与第一列公共电极块连接的触控引线。
在对图2所示的触控显示模组进行触控扫描时,是逐列进行扫描的,具 体的扫描方式有很多种:可以从左至右逐列扫描,也可以从两边的列向中间列扫描,也可以采用其他的扫描方式,在此对触控扫描的具体方式不作限定。
如图3所示,所述触控显示模组的驱动周期包括依次设置的第一触控时间段T11、第一显示时间段T21、第二触控时间段T12、第二显示时间段T22、第三触控时间段T13和第三显示时间段T23(在实际操作时,所述驱动周期在第三显示时间段T23之后还可以包括交替设置的触控时间段和显示时间段,只是在图3中未绘制出来)。
在第一触控时间段T11包括的第一触控时间区段T111,对第一列公共电极块(所述第一列公共电极块指的是从左至右第一列公共电极块)进行触控扫描(图3中仅绘出了第一行第一列公共电极块M11接入的信号),检测第一列公共电极块中所有的公共电极块的电容值;在T111,向除了第一列公共电极块之外的其他列公共电极块都输出调制信号,该调制信号与所述触控信号相同;在T111,触控电路仅接收第一列公共电极块反馈的触控感应信号;所述触控扫描信号为高频脉冲信号;
在第一触控时间段T11包括的第二触控时间区段T112,对第二列公共电极块进行触控扫描(图3中仅绘出了第一行第二列公共电极块M12接入的信号),检测第二列公共电极块中所有的公共电极块的电容值;在T112,向除了第二列公共电极块之外的其他列公共电极块都输出调制信号,该调制信号与所述触控信号相同;在T112,触控电路仅接收第二列公共电极块反馈的触控感应信号;
在第一显示时间段T21,在进行显示驱动的同时,根据第一列公共电极块中的公共电极块的电容值计算该公共电极块的功耗,根据第二列公共电极块中的公共电极块的电容值计算该公共电极块的功耗,根据计算得到的功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与预定设定的基础公共电极电压相加而得到所述补偿后公共电极电压;根据公共电极块的电容值C计算该公共电极块的功耗P的公式如下:P=C×Us 2(具体推导得到如上计算功耗P的公式的过程将在下面结合等效图具体介绍);Us为在未进行公共电极电压补偿时,驱动IC在显示时间段输出至所述公共电极块的初始公共电极电压值;在第一显示时间段T21内,传送至第一列公共电极块和第二 列公共电极块的公共电极电压可以仍为基础公共电极电压;
在第二触控时间段T12包括的第一触控时间区段T121,对第三列公共电极块(所述第三列公共电极块指的是从左至右第三列公共电极块)进行触控扫描(图3中仅绘出了第一行第三列公共电极块M13接入的信号),检测第三列公共电极块中所有的公共电极块的电容值;在T121,向除了第三列公共电极块之外的其他列公共电极块都输出调制信号,该调制信号与所述触控信号相同;在T121,触控电路仅接收第三列公共电极块反馈的触控感应信号;所述触控扫描信号为高频脉冲信号;
在第二触控时间段T12包括的第二触控时间区段T122,对第四列公共电极块进行触控扫描(图3中仅绘出了第一行第四列公共电极块M14接入的信号),检测第四列公共电极块中所有的公共电极块的电容值;在T122,向除了第四列公共电极块之外的其他列公共电极块都输出调制信号,该调制信号与所述触控信号相同;在T122,触控电路仅接收第四列公共电极块反馈的触控感应信号;
在第二显示时间段T22,在进行显示驱动的同时,将传送至第一列公共电极块中的所有公共电极块的公共电极电压调整为分别根据由相应的电容值计算得到相应的补偿后公共电极电压;将传送至第二列公共电极块中的所有公共电极块的公共电极电压调整为分别根据由相应的电容值计算得到相应的补偿后公共电极电压;
并且在第二显示时间段T22,在进行显示驱动的同时,根据第三列公共电极块中的公共电极块的电容值计算该公共电极块的功耗,根据第四列公共电极块中的公共电极块的电容值计算该公共电极块的功耗,根据计算得到的功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与预定设定的基础公共电极电压相加而得到所述补偿后公共电极电压;
在第三显示时间段T32,在进行显示驱动的同时,将传送至第三列公共电极块中的所有公共电极块的公共电极电压调整为分别根据由相应的电容值计算得到相应的补偿后公共电极电压;将传送至第四列公共电极块中的所有公共电极块的公共电极电压调整为分别根据由相应的电容值计算得到相应的补偿后公共电极电压;
并且在第三显示时间段T32,在进行显示驱动的同时,根据第五列公共电极块中的公共电极块(图2中未示出)的电容值计算该公共电极块的功耗,根据第六列公共电极块(图2中未示出)中的公共电极块的电容值计算该公共电极块的功耗,根据计算得到的功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与预定设定的基础公共电极电压相加而得到所述补偿后公共电极电压。
在图3中,标号T131代表第三触控时间段T13包括的第一触控时间区段,标号T132代表T13包括的第二触控时间区段。
为了解决由于不同的公共电极块的负载不同,从而在显示区引起亮度不均匀现象的问题,本公开实施例将原有的TDDI(Touch and Display Driver Integration,触控与显示驱动器集成)产品显示时间段采用单一VCOM(公共电极电压),变化为对不同的公共电极块区域根据公共电极块的负载进行VCOM补偿,可以更精准的调节屏幕的显示效果,对于因公共电极块的VCOM区域差异造成的残像不良现象的解决也有一定的辅助作用,提升了显示效果。
本公开实施例提供了一种应用于TDDI产品的VCOM分区补偿的方案,此方案通过在触控时间段增加对不同的公共电极块上基础电容值不同的判断,根据不同的电容值进行VCOM补偿,达到提升显示效果的目的。此方案对由于光刻掩膜板数目减少后产生的公共电极块传输负载不同产生的Mura有较好的改善作用。同时,应用了此方案的驱动集成电路可以对应光刻掩膜板减少方案的显示面板,从而达到整体模组成本降低及良率提升的目的。
本公开实施例利用相关技术中的检测电容的方式计算不同的公共电极块的负载情况,不需要增加新的计算电路,减少了IC(Integrated Circuit,集成电路)工艺的复杂程度。
本公开实施例可以对应一层栅极金属层走线和一层源漏金属层走线的减光刻掩膜板的面板设计,有利于整体LCD(液晶显示器)产品降低成本,提升市场竞争力。
根据公共电极块的电容值C计算该公共电极块的功耗P的公式的推导过程如下:
对于一个RC回路模型(如图4A所示,一RC回路包括开关S、电阻R、电容C和电源U)来说,当开关S接通时,所述电容C会接收到来自电源的一上升沿信号,此时作用在该RC回路上一瞬时交流电流i(如图4A中所示):
即有以下公式:
Figure PCTCN2018124228-appb-000001
其中,t为时间,Uc(t)为电容C上的电压;
Figure PCTCN2018124228-appb-000002
其中,Us为在未进行公共电极电压补偿时,驱动IC在显示时间段输出至所述公共电极块的初始公共电极电压值;
对于上式求解二元齐次微分方程,
Figure PCTCN2018124228-appb-000003
Figure PCTCN2018124228-appb-000004
将上式代入初始条件,t=0,Uc=0,可以求得该二元齐次微分方程的特解为:
Figure PCTCN2018124228-appb-000005
综上,在传输路径上,电阻R和电容C上消耗的总功率P的计算公式如下:
Figure PCTCN2018124228-appb-000006
由以上推导,对于RC回路,可以通过该RC回路的电容值C及Us确定该RC回路的功耗P,该功耗P与所述RC回路上的电阻值无关。
在以上公式中,Us为在未进行公共电极电压补偿时,驱动IC在显示时间段输出至所述公共电极块的初始公共电极电压值。
对于一个RC回路,由于P=CUs 2,故若该RC回路上消耗的功率越大,则该RC回路上耦合的电容C越大,电容C上的电压Uc(t)与时间t的关系如下:
Figure PCTCN2018124228-appb-000007
则对于电容C越大的RC回路,达到同样的电压的时间越长。
例如,对于如图4A所示的RC回路,U=5V(伏),R=1KΩ(千欧),假设三条RC回路上的电容C分别为10uF(微法),15uF和20uF,电容C上的电压Uc(t)与时间t之间的关系如图4B所示。在图4B中,横轴为时间t,单位为秒;纵轴为电容C上的电压Uc(t),单位为伏。
在图4B中,曲线1所示的为对应于电容C为10uF时的Uc(t)与t之间的关系示意图;曲线2所示的为对应于电容C为15uF时的Uc(t)与t之间的关系示意图;曲线3所示的为对应于电容C为20uF时的Uc(t)与t之间的关系示意图;曲线4所示的为调整了Us之后的对应于C为20uF时的Uc(t)与t之间的关系示意图(将Us由5V调整为7.25V)。
从图4B可知,如果希望公共电极块上的公共电极电压同样达到4V,电容大的RC回路上所花的时间较长。但是经过将Us提升至7.25V(也即公共电极电压补偿量等于3.25V),在同样C等于20uF的情况下Uc(t)达到4V的时间与C等于10uF的RC回路所用时间一致。由上可知,RC回路的功耗与公共电极电压补偿量之间具有对应关系。
在图4B中,以公共电极电压补偿量等于3.25V为例说明,但是在实际操作时,一般情况下,由于优选的步进电压值可以为0.0025V,实际选取的公共电极电压补偿量会相对较小。
本公开实施例所述的电压补偿装置,应用于触控显示模组,所述触控显示模组包括公共电极层,所述公共电极层包括阵列排布的相互独立的多行多列公共电极块(如图2所示);所述公共电极块复用为触控电极,所述触控显示模组的驱动周期包括交替设置的触控时间段和显示时间段;
如图5所示,本公开实施例所述电压补偿装置包括:
触控电路50,用于在所述触控时间段,依次对至少一列公共电极块进行触控扫描;
电容检测电路51,用于检测被触控扫描的公共电极块的电容值;
补偿后公共电极电压计算电路52,用于在间隔阶段,根据来自所述电容检测电路51的所述电容值计算该公共电极块的功耗,根据该功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与预定设定的基础公共电极电压相加而得到补偿后公共电极电压;以及,
补偿电路53,用于在补偿阶段,将传送至该公共电极块的公共电极电压调整为来自所述补偿后公共电极电压计算电路52的所述补偿后公共电极电压;
所述补偿阶段为第N显示时间段;所述第N显示时间段为设置于所述触控时间段之后的第N个显示时间段;N为正整数;
所述间隔阶段为在完成对被扫描的公共电极块的电容值的检测的时刻与所述补偿阶段开始的时刻之间的时间段。
本公开实施例所述的电压补偿装置通过电容检测电路51在触控时间段检测被触控扫描的一列公共电极块的电容值(公共电极块复用为互容式的触控电极),通过补偿后公共电极电压计算电路52根据该电容值计算补偿后公共电极电压,补偿电路53在补偿阶段(设置于触控时间段之后的显示时间段)相应补偿公共电极电压,以改善显示不良现象。
具体的,N可以等于1,第N显示时间段为设置于所述触控时间段之后的与所述触控时间段紧邻的显示时间段;
N可以等于2,第N显示时间段为设置于所述触控时间段之后的第二个显示时间段;或者,
N可以等于3,第N显示时间段为设置于所述触控时间段之后的第三个显示时间段。
具体的,所述补偿电路还用于在设置于该补偿阶段与相邻下一补偿阶段之间的显示时间段内,将传送至该公共电极块的公共电极电压维持为该补偿后公共电极电压。
在具体实施时,如图6所示,所述补偿后公共电极电压计算电路52可以包括:
功耗计算子电路521,用于根据来自所述电容检测电路51的所述电容值计算该公共电极块的功耗;
公共电极电压补偿量获得子电路522,用于根据来自所述功耗计算子电路521的该功耗得到相应的公共电极电压补偿量;以及,
加和子电路523,用于将来自所述公共电极电压补偿量获得子电路522的该公共电极电压补偿量与预定设定的基础公共电极电压相加而得到所述补 偿后公共电极电压。
在具体实施时,所述功耗计算子电路521具体用于根据公式P=CUs 2计算该公共电极块的功耗;
其中,P为该公共电极块的功耗,C为被触控扫描的公共电极块的电容值,Us为在设置于所述补偿阶段之前的显示时间段内所述公共电极块上的初始公共电极电压值。
在实际操作时,电容检测电路51将检测出的被触控扫描的公共电极块的电容值传递给功耗计算子电路521,功耗计算子电路521根据该电容值以及Us结合以上公式计算出该公共电极块的功耗,并将该功耗进行模数转换后传送至TDDI产品的CPU(Central Processing Unit,中央处理单元)系统中,所述公共电极电压补偿量获得子电路522和所述加和子电路523可以设置于该CPU系统中,公共电极电压补偿量获得子电路522根据该功耗得到相应的公共电极电压补偿量,加和子电路523将该公共电极电压补偿量与预定设定的基础公共电极电压相加而得到所述补偿后公共电极电压,然后经过数模转换电路对该补偿后公共电极电压进行数模转换后输出至相应的公共电极块。
在实际操作时,所述公共电极电压补偿量获得子电路522可以具体用于获取预定设定的功耗P与公共电极电压补偿量ΔVCOM之间的对照表,并根据该功耗,通过查找该对照表以得到相应的公共电极电压补偿量。
所述对照表记载公共电极块的功耗P与公共电极电压补偿量ΔVCOM之间的映射关系,例如,当公共电极块的功耗P小于第一功耗P1时,ΔVCOM可以为第一补偿电压值V 1,当P大于或等于P 1而小于或等于第二功耗P 2时,ΔVCOM可以为第二补偿电压值V 2,当P大于或等于第n-1功耗P n-1而小于或等于第n功耗P n时,ΔVCOM可以为第n补偿电压值V n,当P大于P n时,ΔVCOM可以为第n+1补偿电压值V n+1,n为正整数。
相应的对照表可以如下所示:
Figure PCTCN2018124228-appb-000008
在具体实施时,本公开电压补偿装置还包括对照表生成电路。
所述对照表生成电路包括公共电极电压发送子电路、平均亮度获得子电路、亮度比较子电路和对照关系记录子电路。
所述公共电极电压发送子电路用于在所述触控显示模组的测试周期,向触控显示模组包括的所有公共电极块发送基础公共电极电压。
所述平均亮度获得子电路用于在所述触控显示模组的测试周期,检测在预定灰阶下至少一列所述公共电极块对应的显示区域平均亮度。
所述亮度比较子电路与所述平均亮度获得子电路连接,用于在所述触控显示模组的测试周期,比较该至少一列公共电极块对应的显示区域平均亮度与标准亮度,当该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值大于预定亮度差值时,向所述公共电极电压发送子电路发送电压调整信号,以使得所述公共电极电压发送子电路在接收到所述电压调整信号后控制输出至该至少一列公共电极块的公共电极电压的电压值增加或减少一个步进电压值,直至所述平均亮度获得子电路计算得到的该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值小于或等于预定亮度差值,向所述对照关系记录子电路发送记录控制信号。
所述对照关系记录子电路与所述亮度比较子电路连接,用于在所述触控显示模组的测试周期在接收到所述记录控制信号后记录与该至少一列公共电极对应的公共电极电压补偿量,并向该至少一列公共电极块提供触控扫描信号,检测该至少一列公共电极块中的其中一公共电极块的电容值,根据该电容值计算该公共电极块的功耗,记录该功耗与该公共电极电压补偿量之间的映射关系,以生成所述对照表。
在实际操作时,初次使用的对照表中的公共电极电压为基础公共电极电压,将触控显示面板划分为多个显示区域,一个所述显示区域为触控显示模组包括的至少一列公共电极块对应的区域,使用光学测试设备测试触控显示面板各个显示区域的显示均匀性,控制输出至亮度不均匀的显示区域对应的公共电极块的公共电极电压增加或减少一个步进电压值,直至该显示区域对应的平均亮度符合要求为止。在实际操作时,可选的步进电压值可以为0.0025V,所述基础公共电极电压可以为-0.25V。
在实际操作时,具体获取所述对照表(所述对照表记载公共电极块的功 耗P与公共电极电压补偿量ΔVCOM之间的映射关系)的方式例如可以有以下两种(但不限于以下两种方式):
根据一种具体实施方式,所述对照表可以存储于外部服务端(具体地,当所述触控显示模组为手机时,所述外部服务端可以为手机主板系统),并所述补偿后公共电极电压计算电路还可以包括对照表调节子电路,该对照表调节子电路与该外部服务端连接;该对照表调节子电路可以在接收到对照表修改信息(所述对照表修改信息可以由用户输入),获取来自所述外部服务端的对照表,并根据该对照表修改信息对该对照表进行修改得到修改后的对照表,并将该修改后的对照表发送于外部服务端,以使得该外部服务端中存储的对照表更换为该修改后的对照表,以替换原来的对照表。
在实际操作时,存储于外部服务端的对照表可以包括第一对照表和第二对照表;所述第一对照表对应于常温状态,所述第二对照表对应于低温状态;
所述补偿后公共电极电压计算电路还可以包括温度获取子电路和温度判断子电路;
该温度获取子电路用于获取所述触控显示模组所处的环境温度;该温度判断子电路用于比较该环境温度与温度阈值(所述温度阈值可以根据实际情况选定,例如,所述温度阈值可以为零下10摄氏度,但不以此为限),并当比较得到该环境温度大于或等于该温度阈值时,向所述公共电极电压补偿量获得子电路发送第一控制信号,当比较得到该环境温度小于该温度阈值时,向所述公共电极电压补偿量获得子电路发送第二控制信号;
所述公共电极电压补偿量获得子电路具体用于当接收到所述第一控制信号时获取所述第一对照表,当接收到所述第二控制信号时获取所述第二对照表。
本公开实施例通过如上方式获取对照表可以通过人眼或仪器判别竖向Mura后修改对照表,并由于环境温度对于传输线路的loading(负载)影响较大;当低温时,所述温度判断子电路识别低温状态,可以启用第二对照表,进而优化显示效果。
在具体实施时,当所述触控显示模组具体为手机时,所述对照表可以存储于手机平台上,该对照表可以通过手机端代码实时更改,手机每次上电后, 手机直接将对照表下载入IC(Integrated Circuit,集成电路)中使用;当手机处于低温下时,手机端可以识别低温状态,启用第二对照表。
根据另一种具体实施方式,所述对照表可以设置于所述触控显示模组包括的驱动IC(Integrated Circuit,集成电路)中的内部寄存器中,同样的,所述对照表包括第一对照表和第二对照表;所述第一对照表对应于常温状态,所述第二对照表对应于低温状态;
所述补偿后公共电极电压计算电路还可以包括温度获取子电路和温度判断子电路。
该温度获取子电路用于获取所述触控显示模组所处的环境温度;该温度判断子电路用于比较该环境温度与温度阈值(所述温度阈值可以根据实际情况选定,例如,所述温度阈值可以为-10摄氏度,但不以此为限),并当比较得到该环境温度大于或等于该温度阈值时,向所述公共电极电压补偿量获得子电路发送第一控制信号,当比较得到该环境温度小于该温度阈值时,向所述公共电极电压补偿量获得子电路发送第二控制信号。
所述公共电极电压补偿量获得子电路具体用于当接收到所述第一控制信号时获取所述第一对照表,当接收到所述第二控制信号时获取所述第二对照表。
本公开实施例通过如上方式获取对照表,可以在触控显示模组上电后通过温度获取子电路首先识别环境温度,通过温度判断子电路判断处于常温状态或处于低温状态,根据判断结果选用相应对照表。触控显示模组的生产厂商可以根据成膜电阻负载的不同工艺偏差批次,向IC内部烧录相应的对照表,即可控制竖向Mura的等级,进而提高画面良率。
在具体实施时,所述电压补偿装置还可以包括温度测量器(如温度计等),用于测量所述触控显示模组处于的环境温度,所述温度获取子电路获取来自所述温度测量器的环境温度。
根据一种具体实施方式,对应于常温状态的所述第一对照表的个数可以为一个;
根据另一种具体实施方式,对应于常温状态的所述对照表的个数也可以为至少两个,每一个第一对照表对应于一个常温温度区间,这样可以进一步 优化补偿效果。
例如,当所述温度阈值为零下10摄氏度时,所述第一对照表的个数可以为三个,第一个第一对照表可以对应于第一常温温度区间,第二个第一对照表可以对应于第二常温温度区间,第三个第一对照表可以对应于第三常温温度区间;所述第一常温温度区间可以为大于或等于零下10摄氏度并小于0摄氏度;所述第二常温温度区间可以为大于或等于0摄氏度并小于或等于15摄氏度;所述第三常温温度区间可以为大于或等于15摄氏度。
根据一种具体实施方式,对应于低温状态的所述第二对照表的个数可以为一个;
根据另一种具体实施方式,对应于低温状态的所述对照表的个数也可以为至少两个,每一个第二对照表对应于一个低温温度区间,这样可以进一步优化补偿效果。
例如,当所述温度阈值为零下10摄氏度时,所述第二对照表的个数可以为两个,第一个第二对照表可以对应于第一低温温度区间,第二个第二对照表可以对应于第二低温温度区间;所述第一低温温度区间可以为大于或等于零下30摄氏度并小于零下10摄氏度;所述第二低温温度区间可以为小于零下30摄氏度并小于或等于15摄氏度。
本公开实施例所述的触控显示模组,包括公共电极层,所述公共电极层包括阵列排布的多行多列公共电极块(如图2所示);所述公共电极块复用为触控电极,所述触控显示模组还包括上述的电压补偿装置;所述电压补偿装置用于向所述公共电极块提供补偿后公共电极电压。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (17)

  1. 一种电压补偿方法包括:
    在触控时间段,将呈阵列排布的相互独立的多行多列公共电极块复用为触控电极,并依次对至少一列公共电极块进行触控扫描,检测被触控扫描的每个公共电极块的电容值;
    在完成对被扫描的每个公共电极块的电容值的检测的时刻与设置于所述触控时间段之后的第N个显示时间段开始的时刻之间的时间段,N为正整数,根据所述被触控扫描的每个公共电极块的电容值计算所述被触控扫描的每个公共电极块的功耗,根据所述被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与基础公共电极电压相加而得到所述被触控扫描的每个公共电极块的补偿后公共电极电压;
    在所述第N个显示时间段,将传送至所述被触控扫描的每个公共电极块的公共电极电压调整为所述被触控扫描的每个公共电极块的补偿后公共电极电压。
  2. 如权利要求1所述的电压补偿方法,其中,所述根据所述被触控扫描的每个公共电极块的电容值计算所述被触控扫描的每个公共电极块的功耗包括:
    根据公式P=CUs 2计算该公共电极块的功耗;
    其中,P为该公共电极块的功耗,C为被触控扫描的公共电极块的电容值,Us为在设置于所述第N个显示时间段之前的显示时间段内所述公共电极块上的初始公共电极电压值。
  3. 如权利要求1或2所述的电压补偿方法,其中,所述根据所述被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量包括:
    获取功耗与公共电极电压补偿量之间的对照表;
    根据所述被触控扫描的每个公共电极块的功耗,通过查找该对照表以得到相应的公共电极电压补偿量。
  4. 如权利要求3所述的电压补偿方法,还包括:在测试周期,向所有公共电极块发送基础公共电极电压,检测在测试灰阶下至少一列所述公共电极 块对应的显示区域平均亮度;
    比较该至少一列所述公共电极块对应的显示区域平均亮度与标准亮度,当该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值大于亮度差阈值时,控制输出至该至少一列公共电极块的公共电极电压的电压值增加或减少一个步进电压值,直至该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值小于或等于所述亮度差阈值;
    记录与该至少一列公共电极对应的公共电极电压补偿量,并向该至少一列公共电极块提供触控扫描信号,检测该至少一列公共电极块中的其中一公共电极块的电容值,根据该电容值计算该公共电极块的功耗,记录该功耗与该公共电极电压补偿量之间的映射关系,以生成所述对照表。
  5. 如权利要求3所述的电压补偿方法,其中,所述对照表存储于外部服务端;
    所述根据每个公共电极块的功耗得到相应的公共电极电压补偿量还包括:
    当接收到对照表修改信息时,获取来自所述外部服务端的对照表,根据所述对照表修改信息对该对照表进行修改得到修改后的对照表,将所述修改后的对照表发送至所述外部服务端,并将所述外部服务端中存储的对照表更新为所述修改后的对照表。
  6. 如权利要求3所述的电压补偿方法,其中,所述对照表包括第一对照表和第二对照表;
    所述获取功耗与公共电极电压补偿量之间的对照表包括:
    获取环境温度;
    比较该环境温度与温度阈值,并当比较得到该环境温度大于或等于该温度阈值时获取所述第一对照表,当比较得到该环境温度小于该温度阈值时获取所述第二对照表。
  7. 如权利要求1或2所述的电压补偿方法,其中,在所述第N个显示时间段,将传送至所述被触控扫描的每个公共电极块的公共电极电压调整为所述被触控扫描的每个公共电极块的补偿后公共电极电压之后,所述电压补偿方法还包括:
    在设置于该第N个显示时间段和与所述触控时间段相邻的下一触控时间 段之后的第N个显示时间段之间的显示时间段内,将传送至所述被触控扫描的每个公共电极块的公共电极电压维持为所述被触控扫描的每个公共电极块的补偿后公共电极电压。
  8. 一种电压补偿装置,包括:
    触控电路,用于在触控时间段,将呈阵列排布的相互独立的多行多列公共电极块复用为触控电极,并依次对至少一列公共电极块进行触控扫描;
    电容检测电路,用于检测被触控扫描的每个公共电极块的电容值;
    补偿后公共电极电压计算电路,用于在完成对被扫描的每个公共电极块的电容值的检测的时刻与设置于所述触控时间段之后的第N个显示时间段开始的时刻之间的时间段,N为正整数,根据所述被触控扫描的每个公共电极块的电容值计算所述被触控扫描的每个公共电极块的功耗,根据所述被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量,将该公共电极电压补偿量与基础公共电极电压相加而得到所述被触控扫描的每个公共电极块的补偿后公共电极电压;以及,
    补偿电路,用于在所述第N个显示时间段,将传送至所述被触控扫描的每个公共电极块的公共电极电压调整为所述被触控扫描的每个公共电极块的补偿后公共电极电压。
  9. 如权利要求8所述的电压补偿装置,其中,所述补偿后公共电极电压计算电路包括:
    功耗计算子电路,用于根据所述被触控扫描的每个公共电极块的电容值计算所述被触控扫描的每个公共电极块的功耗;
    公共电极电压补偿量获得子电路,用于根据所述被触控扫描的每个公共电极块的功耗得到相应的公共电极电压补偿量;以及,
    加和子电路,用于将该公共电极电压补偿量与基础公共电极电压相加而得到所述被触控扫描的每个公共电极块的补偿后公共电极电压。
  10. 如权利要求9所述的电压补偿装置,其中,所述功耗计算子电路具体用于根据公式P=CUs 2计算所述被触控扫描的每个公共电极块的功耗;
    其中,P为该公共电极块的功耗,C为被触控扫描的公共电极块的电容值,Us为在设置于所述第N个显示时间段之前的显示时间段内所述公共电极 块上的初始公共电极电压值。
  11. 如权利要求9或10所述的电压补偿装置,其中,所述公共电极电压补偿量获得子电路具体用于获取功耗与公共电极电压补偿量之间的对照表,并根据所述被触控扫描的每个公共电极块的功耗,通过查找该对照表以得到相应的公共电极电压补偿量。
  12. 如权利要求11所述的电压补偿装置,还包括对照表生成电路;
    其中,所述对照表生成电路包括公共电极电压发送子电路、平均亮度获得子电路、亮度比较子电路和对照关系记录子电路,其中,
    所述公共电极电压发送子电路用于在测试周期,向所有公共电极块发送基础公共电极电压;
    所述平均亮度获得子电路用于在所述测试周期,检测在测试灰阶下至少一列所述公共电极块对应的显示区域平均亮度;
    所述亮度比较子电路与所述平均亮度计算子电路连接,用于在所述测试周期,比较该至少一列公共电极块对应的显示区域平均亮度与标准亮度,当该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值大于亮度差阈值时,向所述公共电极电压发送子电路发送电压调整信号,以使得所述公共电极电压发送子电路在接收到所述电压调整信号后控制输出至该至少一列公共电极块的公共电极电压的电压值增加或减少一个步进电压值,直至所述平均亮度获得模块计算得到的该至少一列公共电极块对应的显示区域平均亮度与该标准亮度之间的差值小于或等于亮度差阈值,向所述对照关系记录子电路发送记录控制信号;
    所述对照关系记录子电路与所述亮度比较子电路连接,用于在所述测试周期在接收到所述记录控制信号后记录与该至少一列公共电极对应的公共电极电压补偿量,并向该至少一列公共电极块提供触控扫描信号,检测该至少一列公共电极块中的其中一公共电极块的电容值,根据该电容值计算该公共电极块的功耗,记录该功耗与该公共电极电压补偿量之间的映射关系,以生成所述对照表。
  13. 如权利要求11所述的电压补偿装置,其中,所述对照表存储于外部服务端;
    所述补偿后公共电极电压计算电路还包括对照表调节子电路;
    该对照表调节子电路与该外部服务端连接,用于当接收到对照表修改信息时,获取来自外部服务端的对照表,根据该对照表修改信息对该对照表进行修改得到修改后的对照表,将该修改后的对照表发送至外部服务端,并将该外部服务端中存储的对照表更新为所述修改后的对照表。
  14. 如权利要求11所述的电压补偿装置,其中,所述对照表包括第一对照表和第二对照表;
    所述补偿后公共电极电压计算电路还包括温度获取子电路和温度判断子电路;
    该温度获取子电路用于获取环境温度;
    该温度判断子电路与该温度获取子电路和所述公共电极电压补偿量获得子电路连接,用于比较该环境温度与温度阈值,并当比较得到该环境温度大于或等于该温度阈值时,向所述公共电极电压补偿量获得子电路发送第一控制信号,当比较得到该环境温度小于该温度阈值时,向所述公共电极电压补偿量获得子电路发送第二控制信号;
    所述公共电极电压补偿量获得子电路具体用于当接收到所述第一控制信号时获取所述第一对照表,当接收到所述第二控制信号时获取所述第二对照表。
  15. 如权利要求14所述的电压补偿装置,还包括温度测量器;其中,所述温度测量器用于测量环境温度;
    所述温度获取子电路获取来由所述温度测量器测量获得的所述环境温度。
  16. 如权利要求9或10所述的电压补偿装置,其中,所述补偿电路还用于在设置于该第N个显示时间段和与所述触控时间段相邻的下一触控时间段之后的第N个显示时间段之间的显示时间段内,将传送至所述被触控扫描的每个公共电极块的公共电极电压维持为所述被触控扫描的每个公共电极块的补偿后公共电极电压。
  17. 一种触控显示模组,包括:
    公共电极层;及
    如权利要求8至16中任一权利要求所述的电压补偿装置;
    其中,所述公共电极层包括阵列排布的多行多列公共电极块;所述公共电极块复用为触控电极;
    所述电压补偿装置用于向所述公共电极块提供补偿后公共电极电压。
PCT/CN2018/124228 2018-03-15 2018-12-27 电压补偿方法、装置和触控显示模组 WO2019174359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18899025.3A EP3767617A4 (en) 2018-03-15 2018-12-27 METHOD AND DEVICE FOR VOLTAGE COMPENSATION AND TOUCH DISPLAY MODULE
US16/478,716 US11353987B2 (en) 2018-03-15 2018-12-27 Voltage compensation method, voltage compensation device and touch display module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810214404.9A CN110277072B (zh) 2018-03-15 2018-03-15 公共电极电压补偿方法、装置和触控显示模组
CN201810214404.9 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019174359A1 true WO2019174359A1 (zh) 2019-09-19

Family

ID=67908598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124228 WO2019174359A1 (zh) 2018-03-15 2018-12-27 电压补偿方法、装置和触控显示模组

Country Status (4)

Country Link
US (1) US11353987B2 (zh)
EP (1) EP3767617A4 (zh)
CN (1) CN110277072B (zh)
WO (1) WO2019174359A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110689849B (zh) * 2019-11-08 2021-03-02 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN113867043B (zh) * 2020-06-30 2023-01-10 京东方科技集团股份有限公司 发光基板及其制备方法、显示装置
CN113903283B (zh) * 2020-07-06 2023-10-13 敦泰电子股份有限公司 触控显示面板的驱动系统及方法
CN115104080A (zh) * 2020-11-30 2022-09-23 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN113093949B (zh) * 2021-05-06 2024-03-26 武汉天马微电子有限公司 触控显示面板的显示补偿方法及其装置、显示设备
CN114023252B (zh) * 2021-11-15 2022-09-09 北京奕斯伟计算技术股份有限公司 一种显示面板和电压补偿方法
CN114253424A (zh) * 2022-01-18 2022-03-29 信利(仁寿)高端显示科技有限公司 一种触控显示装置异常处理方法及系统
TWI807958B (zh) * 2022-08-08 2023-07-01 大陸商集創北方(珠海)科技有限公司 顯示裝置的溫度補償電路及顯示裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150017A (ja) * 2010-01-19 2011-08-04 Casio Computer Co Ltd 液晶表示装置
CN103488325A (zh) * 2012-06-13 2014-01-01 乐金显示有限公司 具有集成触摸屏的显示设备
CN103941443A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 液晶显示装置及加快液晶分子偏转的驱动电路和方法
CN104090697A (zh) * 2014-06-30 2014-10-08 京东方科技集团股份有限公司 电容式内嵌触摸屏及其触摸定位方法和显示装置
CN104777942A (zh) * 2015-05-08 2015-07-15 厦门天马微电子有限公司 触控显示面板、驱动方法及触控显示装置
CN105426026A (zh) * 2014-09-10 2016-03-23 乐金显示有限公司 触摸感测装置和使用该触摸感测装置的显示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034908A (en) * 1997-02-11 2000-03-07 Artisan Components, Inc. Sense amplifying methods and sense amplification integrated devices
US20020138159A1 (en) * 2001-03-26 2002-09-26 Atkinson Lee W. Temperature responsive power supply to minimize power consumption of digital logic without reducing system performance
CN101414070B (zh) * 2008-12-01 2011-03-23 友达光电股份有限公司 触控电极层及显示面板
CN101562003B (zh) * 2009-06-03 2011-01-05 友达光电股份有限公司 液晶显示面板及其驱动方法
TWI430001B (zh) * 2010-12-27 2014-03-11 Au Optronics Corp 顯示裝置
US9710114B2 (en) * 2011-09-29 2017-07-18 G2Touch Co., Ltd. Touch detection device, touch detection method and touch screen panel, using driving back phenomenon, and display device with built-in touch screen panel
US8988471B2 (en) 2012-06-08 2015-03-24 Apple Inc. Systems and methods for dynamic dwelling time for tuning display to reduce or eliminate mura artifact
KR101349665B1 (ko) * 2012-06-14 2014-01-10 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치
CN103513837B (zh) * 2012-06-29 2016-12-21 上海天马微电子有限公司 互电容式触摸结构、触摸面板以及触摸显示面板
CN105261337B (zh) * 2014-06-27 2018-10-09 敦泰电子有限公司 触控显示装置及其驱动方法和驱动电路
CN104932134B (zh) * 2015-06-30 2018-01-30 厦门天马微电子有限公司 一种触控显示基板
KR102468762B1 (ko) * 2015-12-14 2022-11-21 엘지디스플레이 주식회사 터치스크린 내장형 표시장치 및 구동방법
KR102489512B1 (ko) * 2016-03-08 2023-01-18 엘지디스플레이 주식회사 공통전압 보상회로를 구비한 액정 표시장치
CN112987424B (zh) * 2017-03-25 2022-10-28 厦门天马微电子有限公司 阵列基板、触控显示面板和触控显示装置
CN107016960B (zh) * 2017-06-01 2019-04-09 京东方科技集团股份有限公司 Oled触控驱动电路及方法、触控面板
CN107065253A (zh) * 2017-06-14 2017-08-18 厦门天马微电子有限公司 显示面板的驱动方法、显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150017A (ja) * 2010-01-19 2011-08-04 Casio Computer Co Ltd 液晶表示装置
CN103488325A (zh) * 2012-06-13 2014-01-01 乐金显示有限公司 具有集成触摸屏的显示设备
CN103941443A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 液晶显示装置及加快液晶分子偏转的驱动电路和方法
CN104090697A (zh) * 2014-06-30 2014-10-08 京东方科技集团股份有限公司 电容式内嵌触摸屏及其触摸定位方法和显示装置
CN105426026A (zh) * 2014-09-10 2016-03-23 乐金显示有限公司 触摸感测装置和使用该触摸感测装置的显示装置
CN104777942A (zh) * 2015-05-08 2015-07-15 厦门天马微电子有限公司 触控显示面板、驱动方法及触控显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767617A4 *

Also Published As

Publication number Publication date
US20210365171A1 (en) 2021-11-25
CN110277072B (zh) 2020-07-28
CN110277072A (zh) 2019-09-24
US11353987B2 (en) 2022-06-07
EP3767617A1 (en) 2021-01-20
EP3767617A4 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
WO2019174359A1 (zh) 电压补偿方法、装置和触控显示模组
RU2678644C2 (ru) Способ установки параметра отображения и система жидкокристаллического дисплея
US8049692B2 (en) Common voltage generation circuit and liquid crystal display comprising the same
WO2005024766A1 (ja) 表示パネルの変換データ決定方法および測定装置
US20160343340A1 (en) Method and system for adjusting gamma voltage, and electronic device
KR20070029393A (ko) 표시 장치의 제조 장치 및 방법
KR20100034584A (ko) 감마 보정 시스템 및 그의 보정방법
KR101341904B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
KR101336977B1 (ko) 액정 표시 장치 및 이의 구동 방법
US10210831B2 (en) Drive method of liquid crystal display device and liquid crystal display device
KR102556467B1 (ko) 유기 발광 표시 장치 및 그의 감마 기준 전압 설정 방법
KR101992885B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
US8786305B2 (en) Test circuit and test method for detecting electrical defect in TFT-LCD
KR20160031597A (ko) 표시 장치의 검사 방법 및 이에 의해 검사되는 표시 장치
KR101953325B1 (ko) 액정표시장치의 플리커 조정방법
JP5343865B2 (ja) 温度測定装置、温度測定装置の調整方法、液晶装置、ならびに電子機器
CN114664268B (zh) 水平串扰消除方法、公共电极电压调整系统及显示装置
KR20070121076A (ko) 액정표시장치 및 그의 구동방법
JP2003255906A (ja) 液晶共通電極電圧調整装置及び方法
KR20050050883A (ko) 공통 전압 조절 장치 및 방법
CN114429758B (zh) 显示面板伽玛电压的校正补偿方法、其设备及存储介质
KR20180012117A (ko) 전압보상회로 및 이를 포함하는 표시장치
JP2003042896A (ja) ディスプレイ検査装置、ディスプレイの検査方法、寄生容量の検査方法
KR20060109664A (ko) 액정패널의 검사장치 및 검사방법
CN113948048A (zh) 串扰补偿方法、串扰补偿电路、显示面板及显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018899025

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018899025

Country of ref document: EP

Effective date: 20201015