WO2019172359A1 - Dissolved matter removal device, filtration aid used therewith, and dissolved matter removal method - Google Patents

Dissolved matter removal device, filtration aid used therewith, and dissolved matter removal method Download PDF

Info

Publication number
WO2019172359A1
WO2019172359A1 PCT/JP2019/009016 JP2019009016W WO2019172359A1 WO 2019172359 A1 WO2019172359 A1 WO 2019172359A1 JP 2019009016 W JP2019009016 W JP 2019009016W WO 2019172359 A1 WO2019172359 A1 WO 2019172359A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
spring
polymer material
graft
liquid
Prior art date
Application number
PCT/JP2019/009016
Other languages
French (fr)
Japanese (ja)
Inventor
物部 長順
長智 物部
瀬古 典明
宏行 保科
昇 笠井
Original Assignee
国立研究開発法人 量子科学技術研究開発機構
株式会社モノベエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人 量子科学技術研究開発機構, 株式会社モノベエンジニアリング filed Critical 国立研究開発法人 量子科学技術研究開発機構
Publication of WO2019172359A1 publication Critical patent/WO2019172359A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/44Edge filtering elements, i.e. using contiguous impervious surfaces
    • B01D29/48Edge filtering elements, i.e. using contiguous impervious surfaces of spirally or helically wound bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/02Precoating the filter medium; Addition of filter aids to the liquid being filtered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties

Definitions

  • the present invention relates to a lysate removal apparatus, a filter aid used therefor, and a lysate removal method.
  • Boron is used in various applications such as heat-resistant glass, glass fiber, new ceramics, amorphous alloys, glazes, fertilizers, nuclear power, personal computer TFT displays, and is widely present in the environment.
  • boron is an essential element for human beings, it has been pointed out that continuous ingestion of an excessive amount of boron of several mg or more per day may cause health problems such as a decrease in reproductive function. Therefore, as a regulation for boron drainage, the drainage standard is set to 10 mg / L by the Water Pollution Control Law, and the environmental standard value is set to 1 mg / L or less, which is 1/10 of the standard value.
  • the coagulation sedimentation method has a problem that the coagulant added after the treatment becomes industrial waste as it is.
  • Patent Document 1 discloses a functional polymer using graft polymerization to remove dissolved substances.
  • Patent Document 2 a technique for removing a substance mixed in a fluid such as water using a spring-like filter is described in Patent Document 2 below, for example.
  • Patent Document 1 discloses a functional polymer, and what kind of apparatus is used for this, and what kind of processing is to be performed on the material is also being studied. There remains room.
  • the graft ratio is as high as 150% or more, and there remains a problem to be examined in terms of performance such as durability and specific surface area reduction.
  • Patent Document 2 is physical filtration using a gap between wire rods, and is mainly intended to remove a substance (insolubilized material) that does not dissolve in a fluid and is mixed. In order to remove the dissolved matter by the technique described in Patent Document 2, there is still room for examination.
  • the cost required for this is preferably low.
  • a large amount of a liquid in which a removal target dissolved material and an insolubilized material are mixed hereinafter referred to as “processing target liquid”
  • processing target liquid a liquid in which a removal target dissolved material and an insolubilized material are mixed
  • a fine adsorbent having an auxiliary in the present invention having a high specific surface area is required.
  • the above Patent Documents 1 and 2 still have a problem in this respect.
  • the present invention has an object to provide a lysate removal apparatus that can more efficiently remove lysate that is difficult to remove, a filter aid used therefor, and a lysate removal method.
  • a melt removal apparatus that solves the above problems includes a spring-like filter and a filter aid disposed around the spring-like filter.
  • the agent includes a polymer material having a graft chain to which at least one of a chelate group and an ion exchange group is bonded, and the graft ratio of the graft chain in the polymer material is 10% or more and less than 150%.
  • a method for removing a lysate according to another aspect of the present invention includes a polymer material including a polymer material having a graft chain in which at least one of a chelate group and an ion exchange group is bonded around a spring-like filter.
  • a grafting agent with a graft chain ratio of 10% or more and less than 150% is placed in, soaked in the liquid to be treated containing the lysate to be removed, and removed from the liquid to be treated by passing the liquid to be treated through a spring-like filter. The target lysate is removed.
  • the filter aid for a spring-like filter includes a polymer material having a graft chain to which at least one of a chelate group and an ion exchange group is bonded, and the graft chain in the polymer material
  • the graft ratio is 10% or more and less than 150%.
  • a lysate removing apparatus that can more efficiently remove lysate that is difficult to remove, a filter aid used therefor, and a lysate removal method.
  • FIG. 1 is a diagram showing an outline of a melt removal apparatus (hereinafter referred to as “the present apparatus”) 1 according to the present embodiment.
  • the present apparatus includes a spring-like filter 2 and a filter aid 3 disposed around the spring-like filter 2. Further, in this apparatus 1, the spring-like filter 2 and the filtration filter are provided. The auxiliary agent 3 is disposed in the housing 4 at the time of removing the dissolved matter. Further, in the present apparatus 1, the spring-like filter 2 is connected to the processing liquid tank 61 via the path member 51. The space 41 in the housing 4 is connected to the stock solution tank 62 and the precoat tank 63 via a path member 52. Further, the space 41 of the housing 4 is also connected to a waste liquid tank 64 via a path member 53.
  • the spring-like filter 2 is literally a spring-like filter.
  • the outline is shown in FIG. 2, the partial cross-sectional view is shown in FIG. 3, and the filter aid is arranged in FIG.
  • the partial enlarged view is shown.
  • the spring-like filter 2 is a filter having a spring shape in which the wire 22 is wound in an annular shape and overlaps with a predetermined gap.
  • the wire 21 of the spring-like filter 2 in the apparatus 1 is provided with a protrusion 21 for securing the predetermined distance from the adjacent wire portion. By doing so, it is possible to stably ensure the average gap length of the spring-like filter, more specifically, the distance between the wires.
  • the average gap length of the spring-like filter (average of the interval between the wire rods) in the apparatus 1 can be adjusted as appropriate, but is preferably in the range of 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 150 ⁇ m. It is a range. By setting this range, it is possible to efficiently remove the dissolved matter (removal target dissolved matter) to be removed in the liquid while efficiently removing the insolubilized matter to be removed in the liquid.
  • the material of the spring-like filter 2 in the device 1 is not limited as long as the shape can be maintained and the device 1 can achieve a desired effect.
  • a single metal such as copper, iron, chromium, nickel, etc.
  • Metal materials such as alloys such as stainless steel, and resin materials such as polystyrene, polypropylene, and polyvinyl chloride can be exemplified as the material for the spring filter.
  • the spring-like filter 2 in the device 1 can be easily realized by winding a single wire 22 so as to draw an annular spiral.
  • a plurality of annular wires with protrusions are provided.
  • a similar structure can be realized by forming a laminated annular laminate.
  • the apparatus 1 is included in the spring-like filter. That is, in the present apparatus 1, the spring-like filter includes any structure of a wound body or a laminated body.
  • the spring-like filter 2 is preferably provided with a core rod 23 at the center of the wire rod 22 and a pair of metal fittings 24 for restraining near both ends of the core rod 23. . By doing in this way, a wire can be held more stably.
  • the filter aid 3 for the spring-like filter is disposed around the spring-like filter 2 in the apparatus 1 when removing the dissolved substance and the insolubilized substance.
  • the filter aid 3 in the present apparatus 1 contains a polymer material as described above, and is layered around the spring filter 2 by the force of the spring filter 2 sucking the liquid.
  • the polymer material can function as a filter layer for removing the dissolved matter.
  • the polymer material is a material containing a polymer compound as a base material
  • the base material is not limited, but polyolefins such as polyethylene, polypropylene, etc. and derivatives thereof, polyvinyl chloride, polyvinyl acetate.
  • halogenated polyolefins such as polyethylenetetrafluoroethylene and derivatives thereof, halogenated olefin copolymers such as ethylene vinyl alcohol and derivatives thereof, cellulose and the like, and cellulose derivatives having a cellulose skeleton, and the like.
  • the form of the polymer material here is not limited, but is preferably a powder form. More specifically, it is preferably a collection of elongated fibers (typically short fibers) or powder (powder) as shown in FIG.
  • the aspect ratio of the polymer material is preferably 1 or more and 5000 or less, more preferably 1000 or less, still more preferably 500 or less, and still more preferably. 100 or less, more preferably 50 or less, and still more preferably 20 or less.
  • the elongated fiber it is preferably 1.5 or more, more preferably 2 or more, and further preferably 3 or more.
  • the average short axis length of the polymer material is preferably in the range of 0.1 ⁇ m or more and 500 ⁇ m or less, more preferably 0.5 ⁇ m or more, and further preferably 2.5 ⁇ m or more. It is preferable that As described above, when the average gap length of the spring-like filter is 5 ⁇ m or more and 200 ⁇ m or less, it is preferable for the bridge effect to be in the range of about 1/8 or more of the average gap length. It is.
  • the upper limit is not particularly limited, but is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, from the viewpoint of sufficiently realizing the function as a filter aid for removing the insolubilized material in the spring filter.
  • the “average minor axis length” refers to the observation of arbitrary 10 objects that can be clearly measured from photographs taken with an electron microscope to determine the respective minor axis lengths, and further observe 10 photographed photographs. It represents the average value of the short axis length.
  • a graft chain containing at least one of a chelate group and an ion exchange group is bonded to the base material, and the graft ratio is 10% or more and less than 150%.
  • the chelate group refers to a functional group having a plurality of coordination sites and capable of capturing metal ions (including metalloids) by the plurality of coordination sites.
  • the chelating group is not particularly limited as long as desired ions (for example, metal ions and metalloid ions) can be captured, but for example, ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) ), Polyethyleneamines such as tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA), bipyridine, phenanthroline, ethylenediaminetetraacetic acid, porphyrin, crown ether and the like, but are not limited thereto.
  • EDA ethylenediamine
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • TEPA tetraethylenepentamine
  • PEHA pentaethylenehexamine
  • bipyridine phenanthroline
  • ethylenediaminetetraacetic acid
  • the ion exchange group means a functional group that releases ions previously held inside and takes in other ions, that is, ion exchange.
  • the ion exchange group is not limited as long as ion exchange can be performed, and examples thereof include a sulfone group, a carboxyl group, a phosphate group, and an amino group. What is necessary is just to select suitably the ion exchange group which can exchange the ion as a removal object melt
  • the lysate to be removed is not particularly limited and can be various.
  • it is an ion such as boron, fluorine, arsenic and its oxonium ion, or a cationic species such as mercury, lead, chromium, cadmium, etc., which is harmful to the human body or regulated by the environment It will be very effective.
  • valuable metals can be resources such as noble metals such as silver, gold, and platinum, and rare earth elements such as molybdenum, vanadium, and uranium, which are very effective.
  • it can be suitably applied to the removal of ions dissolved in water (typically metal ions or metalloid ions).
  • the graft ratio is 10% or more and less than 150%.
  • the graft ratio is a ratio indicating how much graft chain is introduced with respect to the cellulose of the base material, and is a value that can be calculated by a weight difference before and after the graft reaction. It can be calculated by an equation.
  • the graft ratio is 10% or more. By setting the graft ratio to 10% or more, durability against acids and alkalis can be ensured. On the other hand, it is important that the graft ratio is in a range not exceeding 150%. By setting the graft ratio to less than 150%, durability against graft chain breakage and the like can be secured, and repeated characteristics can be secured (deterioration of performance due to repeated use can be suppressed). In other words, when the graft ratio is 150% or more, the ratio of the graft chain in the graft polymer material is excessive, and the dropping of the graft chain becomes remarkable. For this reason, it tends to be difficult to obtain desired mechanical strength that can withstand use (typically repeated use).
  • the graft ratio is as high as 150% or more, the auxiliary agent (graft polymer material) diameter is large, the specific surface area is low, and good effects cannot be obtained. This effect becomes more remarkable when the graft ratio is in the range of 30% to 120%.
  • the binding of the graft chain to the polymer compound is not particularly limited as long as it can be stably performed, but it is preferably realized by so-called graft polymerization.
  • active sites are formed on the surface of the polymer compound, and at least one of the chelate group and the ion exchange group, or a monomer having a functional group convertible thereto is used as a graft chain by graft polymerization reaction. This can be realized by combining them.
  • the active sites may be formed by any of a catalytic method, a plasma method, a heating method, and a radiation method.
  • a method of production by a radiation method in which an electron beam or gamma ray is irradiated is preferred. That is, a radiation graft polymer material can be suitably used as the filter aid disclosed herein.
  • the graft chain may be further converted to a functional group having a necessary function after being bonded to the polymer compound.
  • a functional group having a necessary function after being bonded to the polymer compound.
  • the polymer material is preferably in the form of powder.
  • the polymer compound (base material) in the form of long fibers or pellets is pulverized and powdered.
  • the graft chain may be bonded after forming into a powder form, and after the graft chain is bonded to the long fiber or pellet base material, the graft polymer is pulverized into a powder form. It may be what you did.
  • the spring-like filter 2 and the filter aid 3 are disposed in the housing 4 when the dissolved matter is removed.
  • the casing 4 includes the cavity 41 therein as described above, and the spring-like filter 2 is fixedly disposed therein, and when the dissolved matter is removed, the filter is filtered around the spring-like filter 2. Auxiliary agent 3 is placed. This arrangement method will be described again in the description of the method for removing the dissolved matter.
  • the cavity 41 inside the housing 4 is connected to the stock solution tank 62 via the path member 52 as described above.
  • the stock solution tank 62 is a tank that stores a liquid (process target liquid) containing a dissolved product and an insolubilized product to be processed.
  • a liquid process target liquid
  • the path members 51 to 53 is provided with a pump, and each of the path members 51 to 53 is provided with a valve, and the liquid can be sent by opening and closing the valve and operating the pump as necessary. it can.
  • the cavity 41 inside the housing 4 is connected to the precoat tank 63 via the path member 52 as described above.
  • the precoat tank 63 is a tank that can store a liquid mixed with the filter aid, and serves as a supply source for introducing the filter aid into the housing when removing the dissolved matter.
  • the precoat tank 63 can be omitted. In this case, it is possible to add a filter aid directly to the liquid stored in the processing liquid tank 62.
  • a path member 51 is connected to the internal space of the spring-like filter 2 disposed in the housing 4, and this path member 51 is further connected to the processing liquid tank 61.
  • the processing liquid tank 61 is a tank that can store a liquid (processing liquid) filtered through the spring-like filter 2 and the filter aid 3.
  • this treatment liquid can be discharged out of the apparatus as it is, it can be used as a cleaning liquid at the time of reverse cleaning, as will be apparent from the following description.
  • the processing liquid tank 61 can be omitted. However, in this case, it is necessary to provide a liquid supply source for performing the reverse cleaning.
  • a drain tank 64 is connected by a route member 53 disposed in the housing 4.
  • the drainage tank 64 is a tank for storing the used filter aid 3 discharged from the housing 4 by backwashing.
  • the path member 53 can be shared with the path member 52 by connecting via a valve or the like.
  • a dissolved material removal method (hereinafter referred to as “the present method”) using the present apparatus will be described.
  • This method includes (1) a polymer material having a graft chain in which at least one of a chelate group and an ion exchange group is bound around a spring-like filter, and the graft ratio of the graft chain in the polymer material is 10% or more.
  • a filter aid that is less than 150% is placed, (2) the solution to be removed is removed from the solution to be removed by immersing it in the solution to be treated containing the solution to be removed and passing the solution to be treated through a spring-like filter. Is. This will be specifically described below.
  • the graft ratio of the graft chain in the polymer material is 10 including a polymer material having a graft chain in which at least one of a chelate group and an ion exchange group is bound around the spring-like filter.
  • a filter aid that is at least% and less than 150% is placed. The specific configuration of the filter aid has already been described above.
  • the spring-like filter is fixedly arranged in the housing, and the liquid to be treated is put into the stock solution tank 62. Further, the filter aid is dispersed in the liquid and stored in the precoat tank 63.
  • liquid supply means such as a pump is used to supply the liquid and filter aid in the precoat tank 63 into the housing 4 via the path member 52, and the inside of the spring-like filter 2 is sucked into the spring-like filter.
  • the liquid passed between the wires is discharged out of the casing.
  • the filter aid 3 is formed as a layer around the spring-like filter 2.
  • the liquid may be discharged to the stock solution tank or the precoat tank by providing another path member.
  • the liquid to be treated is immersed in the liquid to be treated containing the dissolved substance to be removed, and the liquid to be treated is passed through the spring-like filter. Remove the lysate to be removed.
  • the supply source is switched from the precoat tank 63 to the stock solution tank 62 to supply the liquid to be processed from the stock solution tank 62 into the housing 4, and the liquid passed through the spring-like filter 2 is supplied to the treatment solution tank 61. Let it drain. Also in this case, it is preferable to use liquid feeding means such as a pump.
  • the spring-like filter 2 is back-washed after the polymer material has sufficiently removed and adhered the dissolved material.
  • the processing liquid accommodated in the processing liquid tank connected to the inside of the spring-like filter 2 is supplied via the path member. Then, since the liquid is now supplied from the inside to the outside of the spring-like filter, the filter aid 3 disposed around the spring-like filter is peeled off from the wire of the spring-like filter 2. An image in this case is shown in FIG. And as above-mentioned, this polymeric material can be easily collect
  • the recovered polymer material can be discarded as it is, and can be recycled by performing a predetermined treatment.
  • the treatment liquid is not limited as long as it can be back-washed, but is preferably a liquid that does not contain a lysate to be removed, and more specifically water. preferable.
  • the flow rate and flow rate of the liquid used in the present method are not limited as long as the purpose and effect of the present method can be achieved, and specifically, the dissolved matter dissolved in the liquid and removed together with this.
  • the concentration can be adjusted appropriately depending on the concentration of the insolubilized material, the number of spring-like filters, the gap length, the number of spring-like filters, the amount of the filter aid, and the like, for example, in the range of 0.1 L / min to 30.0 L / min. More preferably, it is the range of 0.6 L / min or more and 20.0 L / min or less, More preferably, it is the range of 1.0 L / min or more and 10.0 L / min or less.
  • the present apparatus and method are a lysate removal apparatus that can more efficiently remove a lysate that is difficult to remove, a filter aid and a lysate removal method used therefor. More specifically, according to the present apparatus, by using the polymer material having the predetermined structure as a filter aid, it is possible to filter insoluble impurities mixed in water as a normal spring filter. In addition, since a graft chain is provided on the surface of the polymer material, the dissolved impurities themselves can be captured by the graft chain (typically, a functional group of the graft chain). In particular, durability and the like can be stably maintained by keeping the graft ratio within the above range.
  • cellulose when cellulose is used as a polymer material (typically a polymer compound as a base material), the cellulose itself is harmless and does not contaminate the fluid even if it is brought into contact with the fluid. It can even be used for water treatment.
  • a polymer material typically a polymer compound as a base material
  • the polymeric material after filtering it is good also as taking out only the ion which carried out the chemical process and was capture
  • functional groups can be arbitrarily selected and introduced into the polymer material used in the apparatus 1 according to the lysate to be removed.
  • the introduction amount of functional groups can be adjusted by controlling the graft ratio or the conversion ratio of functional groups (chelate groups, ion exchange groups, etc.). By increasing the introduction amount (mmol / g) of the functional group of the graft polymer material, the removal efficiency of the dissolved product per unit weight of the graft polymer material increases.
  • the same functional group or different functional groups of the same type are introduced into the material of the spring-like filter for the insolubilized material by the same means for introducing a functional group (chelate group, ion exchange group, etc.) into the graft polymer material.
  • a functional group chelate group, ion exchange group, etc.
  • the processing speed of a removal target object improves markedly.
  • the processing speed for handling the fluid to be processed is remarkably fast, so that the processing time can be reduced and the cost can be reduced.
  • this apparatus Although it has the structure which can also remove a melt
  • Example 1 Production of polymer material using electron beam First, an electron beam was irradiated to cellulose powder, which is a polymer compound serving as a base material for the graft polymer material, so that the total absorbed dose was 20 kGy at 2 MeV and 2 mA. Thereafter, graft chains were introduced by a graft polymerization reaction using glycidyl methacrylate (GMA). The graft ratio derived from the weight difference before and after the graft polymerization reaction was 60%.
  • GMA glycidyl methacrylate
  • N-methyl-D-glucamine is introduced by a ring-opening reaction to the epoxy group in the molecule of GMA introduced as a graft chain, and a polymer material having NMDG as a chelate-forming group (functional group) Got.
  • the density (conversion rate) of NMDG introduced into the polymer material that is, the ratio of NMDG in the polymer material was 1.9 mmol / g.
  • FIG. 8 shows a shape photograph of the base material before the graft polymerization reaction and the polymer material produced above.
  • the polymer material had an elongated shape, the average minor axis length was 6 ⁇ m, and the average major axis length was 10 ⁇ m. As a result, it was confirmed that the aspect ratio was 1.7.
  • the treatment liquid tank was replaced with 4 L of a 50 mg / L boron solution and circulated at a liquid flow rate of 1.6 L / min.
  • the boron concentration was quantified to evaluate the boron removal characteristics. The result is shown in FIG.
  • the boron concentration at the system outlet of the sample collected within 5 minutes from the start of liquid passage was 0 (zero), and it was confirmed that all the boron that passed through the polymer material could be removed. In all the collected samples, the boron concentration could be reduced to 4 mg / L or less. In particular, from this result, it was also found that the treatment speed with the polymer material is a space velocity of 10 h ⁇ 1 or more.
  • the treatment method 20 g of a polymer material based on the cellulose powder prepared above was added to a treatment liquid tank previously containing 4 L of a 50 mg / L boron solution and dispersed in the boron solution. The solution was sucked into the spring filter at a rate of 6 L / min, and the solution at the system outlet was collected at regular intervals, and then the boron concentration was quantified to confirm the boron removal characteristics.
  • the boron concentration in all the collected samples is equivalent to 1/30 of the initial concentration 1 0.6 mg / L.
  • Example 2 Production of polymer material A cellulose non-woven fiber having a basis weight of 30 g / m 2 is used as a base material of a graft polymer material. It was immersed in the phosphoric acid monomer aqueous solution, and the graft polymerization reaction was advanced. The graft ratio of the obtained grafted cellulose fiber into which phosphate groups were introduced was 120%, and the density of phosphate groups was 4.0 mmol / g.
  • the cellulose nonwoven fiber graft polymer material obtained above was immersed in an aqueous zirconium sulfate solution for 5 hours to carry a zirconium residue on the end of the phosphate group. Then, the obtained zirconium-type non-woven fiber was freeze-pulverized to several tens of microns and processed into an auxiliary shape for a spring-like filter.
  • average minor axis length is 10 micrometers and 20 micrometers, respectively, and average major axis length is 100 micrometers and 110 micrometers. confirmed.
  • Example 3 Production of polymer material A graft chain was introduced into a cellulose nonwoven fabric substrate having a fiber diameter of 30 ⁇ m by a graft reaction using GMA in the same manner as in Example 2. The graft ratio was 120%. To the epoxy group of the GMA graft chain, 2.1 mmol / g or 2.2 mmol / g of ethylenediamine or diethylenetriamine was introduced, respectively.
  • Example 1 the electron micrographs of the polymer material were confirmed, and the graft polymer material into which ethylenediamine was introduced had an average minor axis length of 20 ⁇ m and an average major axis length of 100 ⁇ m. It was confirmed that the introduced graft polymer material had an average minor axis length of 25 ⁇ m and an average major axis length of 90 ⁇ m.
  • Example 4 (Synthesis of polyethylene resin powder) Moreover, the polyethylene resin pellet was used as the base material of the graft polymer (graft polymer material), and this was irradiated with a high frequency of 10 MHz for 5 hours. Next, graft polymerization reaction was performed in a methanol solution of 20% glycidyl methacrylate (GMA) obtained by deoxygenating the irradiated pellets to introduce graft chains. The graft ratio of the obtained GMA pellets was 90%.
  • the pellet-like graft product (graft polymer material) obtained by graft polymerization of GMA was pulverized and adjusted so that the average major axis length was 10 ⁇ m. Further, 10 ⁇ m powdery GMA pellets were converted in a diethylenetriamine-isopropanol solution. The amine group density was 2.8 mmol / g.
  • the present invention has industrial applicability as a lysate removal apparatus, a filter aid used therefor, and a lysate removal method.

Abstract

Provided are a dissolved matter removal device, a filtration aid used therewith, and a dissolved matter removal method with which it is possible to more efficiently remove hard-to-remove dissolved matter. As such, this dissolved matter removal device 1 comprises a spring-shaped filter 2 and a filtration aid 3 disposed around the spring-shaped filter 2. The filtration aid 3 contains a polymeric material comprising a graft chain to which is bonded a chelate group and/or an ion exchange group. The grafting rate of the graft chain in the polymeric material is at least 10% and less than 150%.

Description

溶解物除去装置及びこれに用いられるろ過助剤並びに溶解物除去方法SOLUTION REMOVAL DEVICE, FILTER AID USED FOR SAME, AND SOLUTION REMOVAL METHOD
 本発明は、溶解物除去装置及びこれに用いられるろ過助剤並びに溶解物除去方法に関する。 The present invention relates to a lysate removal apparatus, a filter aid used therefor, and a lysate removal method.
 ホウ素は、耐熱ガラス、ガラス繊維、ニューセラミックス、アモルファス合金、うわ薬、肥料、原子力分野、パソコンTFTディスプレイなどさまざまな用途で利用されており、広く環境中に存在している。 Boron is used in various applications such as heat-resistant glass, glass fiber, new ceramics, amorphous alloys, glazes, fertilizers, nuclear power, personal computer TFT displays, and is widely present in the environment.
 またホウ素は人間にとって必須の元素であるが、一日あたり数mg以上の過剰量のホウ素を継続的に摂取することにより、生殖機能の低下などの健康障害が生じる可能性が指摘されている。そのため、ホウ素排水に対する規制として、排水基準は水質汚濁防止法により10mg/Lに、環境基準値ではその10分の1の値である1mg/L以下に制定されている。 Moreover, although boron is an essential element for human beings, it has been pointed out that continuous ingestion of an excessive amount of boron of several mg or more per day may cause health problems such as a decrease in reproductive function. Therefore, as a regulation for boron drainage, the drainage standard is set to 10 mg / L by the Water Pollution Control Law, and the environmental standard value is set to 1 mg / L or less, which is 1/10 of the standard value.
 また、ホウ素に限らず、カドミウム、鉛、六価クロム、ヒ素、水銀、セレン、フッ素等も腎臓障害等の甚大な健康障害を発生させうる有害元素(金属や半金属)である。 In addition to boron, cadmium, lead, hexavalent chromium, arsenic, mercury, selenium, fluorine, and the like are also harmful elements (metals and metalloids) that can cause serious health problems such as kidney damage.
 ところで、上記有害元素の一般的な処理としては凝集沈殿法や樹脂による吸着法が知られている。しかしながら、これらの方法は処理速度が遅く、また凝集沈殿法は処理過程でスラッジが出るなどの問題点があり、新しい排水処理技術の開発が強く求められている。 By the way, as a general treatment of the above harmful elements, a coagulation precipitation method and a resin adsorption method are known. However, these methods are slow in processing speed, and the coagulation sedimentation method has problems such as generation of sludge in the processing process, and development of new wastewater treatment technology is strongly demanded.
 しかしながら、凝集沈殿法は上記の通り、処理後に投入した凝集剤がそのまま産業廃棄物になるといった課題がある。 However, as described above, the coagulation sedimentation method has a problem that the coagulant added after the treatment becomes industrial waste as it is.
 上記の問題に対し、例えば、下記特許文献1には、溶解した物質を除去すべくグラフト重合を用いた機能性高分子が開示されている。 In response to the above problem, for example, Patent Document 1 below discloses a functional polymer using graft polymerization to remove dissolved substances.
 一方、バネ状のフィルターを用い、水等の流体に混在している物質を除去しようとする技術が、例えば下記特許文献2に記載されている。 On the other hand, a technique for removing a substance mixed in a fluid such as water using a spring-like filter is described in Patent Document 2 below, for example.
特開2012-214966号公報JP 2012-214966 A 特開2013-184151号公報JP 2013-184151 A
 しかしながら、上記特許文献1に記載の技術は、機能性高分子について開示するものであり、これをどのような装置に用いるのか、更にはその材料にどのような加工を施すのか、については検討の余地が残る。しかもグラフト率は150%以上と高く、その耐久性や比表面積低減等の性能において検討すべき課題が残る。 However, the technique described in Patent Document 1 discloses a functional polymer, and what kind of apparatus is used for this, and what kind of processing is to be performed on the material is also being studied. There remains room. In addition, the graft ratio is as high as 150% or more, and there remains a problem to be examined in terms of performance such as durability and specific surface area reduction.
 また、上記特許文献2に記載の技術は、線材の間隙による物理的なろ過であり、流体に溶解せず混在している物質(不溶化物)を除去しようとするものが主であって、上記特許文献2に記載の技術で溶解物を除去しようとするためには検討の余地が残る。 In addition, the technique described in Patent Document 2 is physical filtration using a gap between wire rods, and is mainly intended to remove a substance (insolubilized material) that does not dissolve in a fluid and is mixed. In order to remove the dissolved matter by the technique described in Patent Document 2, there is still room for examination.
 ところで、除去の対象となる溶解物(以下「除去対象溶解物」ともいう。)を除去する場合、これに要するコストは低いことが好ましい。特に、除去対象溶解物と不溶化物が混在するような液体(以下「処理対象液体」)を大量に同時に扱う場合、その装置システムの設置や運用に必要な費用が嵩むことが懸念される。これに見合うコストにするためには、処理する速度を速めること、大量に連続的に処理できること、つまりは処理施設の省スペース化が要求される。更には効率良く溶解物を取り除くためには、比表面積の高い、微細な吸着材(本発明では助剤とする)が必要である。しかしながら、上記特許文献1、2にはこの点について課題が残る。 By the way, when removing the lysate to be removed (hereinafter also referred to as “the lysate to be removed”), the cost required for this is preferably low. In particular, when a large amount of a liquid in which a removal target dissolved material and an insolubilized material are mixed (hereinafter referred to as “processing target liquid”) is simultaneously handled, there is a concern that the cost required for installation and operation of the apparatus system may increase. In order to achieve a cost commensurate with this, it is necessary to increase the processing speed, to be able to perform a large amount of continuous processing, that is, to save space in the processing facility. Furthermore, in order to remove the dissolved substance efficiently, a fine adsorbent (having an auxiliary in the present invention) having a high specific surface area is required. However, the above Patent Documents 1 and 2 still have a problem in this respect.
 そこで、本発明は上記課題に鑑み、除去の難しい除去対象溶解物をより効率的に除去することのできる溶解物除去装置及びこれに用いられるろ過助剤並びに溶解物除去方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention has an object to provide a lysate removal apparatus that can more efficiently remove lysate that is difficult to remove, a filter aid used therefor, and a lysate removal method. And
 本発明者らは、上記課題について鋭意検討を進めた結果、バネ状フィルターで扱う助剤では不溶化物を対象にすることが前提として検討されており、溶解物を対象とすることについてまで検討に至っていなかった。そこでさらに検討を進めたところ、ろ過助剤に高分子化合物を用いてこれにグラフト鎖を結合させることで、不溶化物だけでなく溶解物の除去に対しても除去性能を持たせることができることを発見し、本発明を完成させるに至った。 As a result of diligent investigations on the above problems, the present inventors have studied on the premise that the auxiliary agent handled by the spring-like filter is intended to be insolubilized, and even to investigate the subject to the dissolved matter. It was not reached. As a result of further investigations, it was found that by using a polymer compound as a filter aid and bonding a graft chain to this, it is possible to provide removal performance not only for insolubilization but also for removal of dissolved matter. It discovered and came to complete this invention.
 すなわち、上記課題を解決する本発明の一観点に係る溶解物除去装置は、バネ状フィルターと、バネ状フィルターの周囲に配置される、ろ過助剤と、を備えたものであって、ろ過助剤は、キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み、高分子材料におけるグラフト鎖のグラフト率が10%以上150%未満であるものである。 That is, a melt removal apparatus according to an aspect of the present invention that solves the above problems includes a spring-like filter and a filter aid disposed around the spring-like filter. The agent includes a polymer material having a graft chain to which at least one of a chelate group and an ion exchange group is bonded, and the graft ratio of the graft chain in the polymer material is 10% or more and less than 150%.
 また、本発明の他の一観点に係る溶解物除去方法は、バネ状フィルターの周囲に、キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み高分子材料におけるグラフト鎖のグラフト率が10%以上150%未満であるろ過助剤を配置し、除去対象溶解物を含む処理対象液体に浸し、バネ状フィルターに処理対象液体を通すことにより処理対象液体から除去対象溶解物を除去するものである。 In addition, a method for removing a lysate according to another aspect of the present invention includes a polymer material including a polymer material having a graft chain in which at least one of a chelate group and an ion exchange group is bonded around a spring-like filter. A grafting agent with a graft chain ratio of 10% or more and less than 150% is placed in, soaked in the liquid to be treated containing the lysate to be removed, and removed from the liquid to be treated by passing the liquid to be treated through a spring-like filter. The target lysate is removed.
 また、本発明の他の一観点に係るバネ状フィルター用ろ過助剤は、キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み、高分子材料におけるグラフト鎖のグラフト率が10%以上150%未満である。 The filter aid for a spring-like filter according to another aspect of the present invention includes a polymer material having a graft chain to which at least one of a chelate group and an ion exchange group is bonded, and the graft chain in the polymer material The graft ratio is 10% or more and less than 150%.
 以上、本発明によって、除去の難しい溶解物をより効率的に除去することのできる溶解物除去装置及びこれに用いられるろ過助剤並びに溶解物除去方法を提供することができる。 As described above, according to the present invention, it is possible to provide a lysate removing apparatus that can more efficiently remove lysate that is difficult to remove, a filter aid used therefor, and a lysate removal method.
実施形態に係る溶解物除去装置の概略図である。It is the schematic of the melt removal apparatus which concerns on embodiment. 実施形態に係るバネ状フィルターの概略図である。It is the schematic of the spring-like filter which concerns on embodiment. 実施形態に係るバネ状フィルターの部分断面図である。It is a fragmentary sectional view of the spring-like filter concerning an embodiment. 実施形態に係るバネ状フィルターのろ過助剤が配置された場合の部分拡大図である。It is the elements on larger scale when the filter aid of the spring-shaped filter which concerns on embodiment is arrange | positioned. 高分子材料の形態のイメージについて示す図である。It is a figure shown about the image of the form of a polymeric material. 実施形態に係るバネ状フィルターの洗浄時におけるイメージ図である。It is an image figure at the time of washing | cleaning of the spring-shaped filter which concerns on embodiment. 実施形態に係るバネ状フィルターの逆洗浄時におけるイメージ図である。It is an image figure at the time of back washing | cleaning of the spring-shaped filter which concerns on embodiment. 実施例により作製された高分子材料の形状の写真図である。It is a photograph figure of the shape of the polymeric material produced by the Example. 実施例において形成した簡易型の溶解物除去装置のイメージを示す図である。It is a figure which shows the image of the simple-type melt removal apparatus formed in the Example. 実施例におけるホウ素除去特性の結果を示す図である。It is a figure which shows the result of the boron removal characteristic in an Example. 実施例におけるヒ素のろ過助剤添加量とバネ状フィルターへの付着の状況を示す図である。It is a figure which shows the condition of the adhesion to the filter aid addition amount of arsenic and a spring-like filter in an Example. 実施例におけるヒ素の吸着性能を示す図である。It is a figure which shows the adsorption | suction performance of arsenic in an Example.
 以下、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態及び実施例の具体的な例示にのみ限定的に解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and should not be construed as limited to the specific examples of the embodiments and examples shown below.
 図1は、本実施形態に係る溶解物除去装置(以下「本装置」という。)1の概略を示す図である。本図で示すように、本装置は、バネ状フィルター2と、このバネ状フィルター2の周囲に配置されるろ過助剤3を備えており、更に、本装置1において、バネ状フィルター2及びろ過助剤3は溶解物除去時において筐体4内に配置されている。また、本装置1において、バネ状フィルター2は、経路部材51を経由して処理液タンク61に接続されている。また、筐体4内の空間41は、経路部材52を経由して原液タンク62、プリコートタンク63に接続されている。また、筐体4の空間41は、また経路部材53を介して廃液タンク64にも接続されている。 FIG. 1 is a diagram showing an outline of a melt removal apparatus (hereinafter referred to as “the present apparatus”) 1 according to the present embodiment. As shown in the figure, the present apparatus includes a spring-like filter 2 and a filter aid 3 disposed around the spring-like filter 2. Further, in this apparatus 1, the spring-like filter 2 and the filtration filter are provided. The auxiliary agent 3 is disposed in the housing 4 at the time of removing the dissolved matter. Further, in the present apparatus 1, the spring-like filter 2 is connected to the processing liquid tank 61 via the path member 51. The space 41 in the housing 4 is connected to the stock solution tank 62 and the precoat tank 63 via a path member 52. Further, the space 41 of the housing 4 is also connected to a waste liquid tank 64 via a path member 53.
 本装置1において、バネ状フィルター2は、文字通りバネ状のフィルターであり、例えば図2にその概略を、図3にその部分断面図を、更に図4にはろ過助剤が配置された場合のその部分拡大図を示す。 In the present apparatus 1, the spring-like filter 2 is literally a spring-like filter. For example, the outline is shown in FIG. 2, the partial cross-sectional view is shown in FIG. 3, and the filter aid is arranged in FIG. The partial enlarged view is shown.
 これらの図で示すように、バネ状フィルター2は、線材22が環状に巻き回されかつ所定の間隙をもって重なりあうことによりバネ形状となっているフィルターである。また、限定されるわけではないが、本装置1におけるバネ状フィルター2の線材の周囲には、隣接する線材部分と上記所定の間隔を確保するための突起21が付されていることが好ましい。このようにしておくことで、バネ状フィルターの平均間隙長、より具体的には線材間の距離を安定的に確保することができる。 As shown in these drawings, the spring-like filter 2 is a filter having a spring shape in which the wire 22 is wound in an annular shape and overlaps with a predetermined gap. Moreover, although not necessarily limited, it is preferable that the wire 21 of the spring-like filter 2 in the apparatus 1 is provided with a protrusion 21 for securing the predetermined distance from the adjacent wire portion. By doing so, it is possible to stably ensure the average gap length of the spring-like filter, more specifically, the distance between the wires.
 また、本装置1におけるバネ状フィルターの平均間隙長(線材間の間隔の平均)は、適宜調整可能であるが、5μm以上200μm以下の範囲であることが好ましく、より好ましくは10μm以上150μm以下の範囲である。この範囲とすることで液体中の除去対象となる不溶化物についても効率的に除去しつつ、液体中の除去対象となる溶解物(除去対象溶解物)も効率的に除去することができる。 In addition, the average gap length of the spring-like filter (average of the interval between the wire rods) in the apparatus 1 can be adjusted as appropriate, but is preferably in the range of 5 μm to 200 μm, more preferably 10 μm to 150 μm. It is a range. By setting this range, it is possible to efficiently remove the dissolved matter (removal target dissolved matter) to be removed in the liquid while efficiently removing the insolubilized matter to be removed in the liquid.
 また、本装置1におけるバネ状フィルター2の素材は、形状を維持し本装置1が所望の効果を達成することができる限りにおいて限定されず、例えば銅、鉄、クロム、ニッケル等の単体金属やステンレス等の合金等の金属材料、また、ポリスチレン、ポリプロピレン、ポリ塩化ビニル等の樹脂材料をバネ状フィルターの素材として例示することができる。 The material of the spring-like filter 2 in the device 1 is not limited as long as the shape can be maintained and the device 1 can achieve a desired effect. For example, a single metal such as copper, iron, chromium, nickel, etc. Metal materials such as alloys such as stainless steel, and resin materials such as polystyrene, polypropylene, and polyvinyl chloride can be exemplified as the material for the spring filter.
 なお、本装置1におけるバネ状フィルター2は、一本の線材22を環状の螺旋を描くよう巻き回すことで容易に実現することができるが、例えば、突起が付された環状の線材を、複数積層させた環状積層体とすることで同様の構造を実現することができる。この場合においても、本装置1ではバネ状フィルターに含まれるものとする。すなわち、本装置1において、バネ状フィルターは巻回体、または積層体の何れの構造も包含する。 The spring-like filter 2 in the device 1 can be easily realized by winding a single wire 22 so as to draw an annular spiral. For example, a plurality of annular wires with protrusions are provided. A similar structure can be realized by forming a laminated annular laminate. Even in this case, the apparatus 1 is included in the spring-like filter. That is, in the present apparatus 1, the spring-like filter includes any structure of a wound body or a laminated body.
 また、バネ状フィルター2は、上記の図で示すように、線材22の中心に芯棒23を備え、この芯棒23の両端近傍に一対の抑えるための金具24を設ける構成としておくことが好ましい。このようにすることで、線材をより安定的に保持することができる。 Further, as shown in the above figure, the spring-like filter 2 is preferably provided with a core rod 23 at the center of the wire rod 22 and a pair of metal fittings 24 for restraining near both ends of the core rod 23. . By doing in this way, a wire can be held more stably.
 また、本装置1におけるバネ状フィルター2の周囲には、上記の通り、溶解物及び不溶化物の除去時において、バネ状フィルター用のろ過助剤3が配置されており、このろ過助剤3は、キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み、高分子材料におけるグラフト鎖のグラフト率が10%以上150%未満となっている。 Further, as described above, the filter aid 3 for the spring-like filter is disposed around the spring-like filter 2 in the apparatus 1 when removing the dissolved substance and the insolubilized substance. And a polymer material having a graft chain to which at least one of a chelate group and an ion exchange group is bonded, and the graft ratio of the graft chain in the polymer material is 10% or more and less than 150%.
 また本装置1におけるろ過助剤3は、上記の通り高分子材料を含むものであり、バネ状フィルター2が液体を吸引する力によってバネ状フィルター2の周囲に層状に積層される。これにより、高分子材料は溶解物除去のためのフィルター層として機能することができる。 Further, the filter aid 3 in the present apparatus 1 contains a polymer material as described above, and is layered around the spring filter 2 by the force of the spring filter 2 sucking the liquid. Thereby, the polymer material can function as a filter layer for removing the dissolved matter.
 ここで高分子材料とは、高分子化合物を基材として含む材料であり、この基材は限定されるわけではないが、ポリエチレン、ポリプロピレン等及びこれらの誘導体といったポリオレフィン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレンテトラフルオロエチレン等及びこれらの誘導体といったハロゲン化ポリオレフィン、エチレン・ビニルアルコール等及びこれらの誘導体といったハロゲン化オレフィン共重合体、セルロース等及びセルロース骨格を有するセルロース誘導体等を例示することができる。 Here, the polymer material is a material containing a polymer compound as a base material, and the base material is not limited, but polyolefins such as polyethylene, polypropylene, etc. and derivatives thereof, polyvinyl chloride, polyvinyl acetate. And halogenated polyolefins such as polyethylenetetrafluoroethylene and derivatives thereof, halogenated olefin copolymers such as ethylene vinyl alcohol and derivatives thereof, cellulose and the like, and cellulose derivatives having a cellulose skeleton, and the like.
 また、ここで高分子材料の形態としては、限定されるわけではないが粉末状であることが好ましい。より具体的には、例えば図5で示すような細長い繊維状(典型的には短繊維)や粉体(パウダー状)のものの集まりであることが好ましい。 Further, the form of the polymer material here is not limited, but is preferably a powder form. More specifically, it is preferably a collection of elongated fibers (typically short fibers) or powder (powder) as shown in FIG.
 この場合において、高分子材料のアスペクト比(平均短軸長に対する平均長軸長の比)は、1以上5000以下であることが好ましく、より好ましくは1000以下、更に好ましくは500以下、更に好ましくは100以下、更に好ましくは50以下、更に好ましくは20以下である。一方、細長い繊維状のものとする場合は、1.5以上とすることが好ましく、より好ましくは2以上、更に好ましくは3以上である。この範囲とすることで、バネ状フィルターの間隙よりも小さい場合でもそれぞれが絡み合いやすくブリッジ効果を得やすくなり、しかも表面積を多く確保してろ過助剤としての機能を十分に達成することが可能となる。 In this case, the aspect ratio of the polymer material (ratio of the average major axis length to the average minor axis length) is preferably 1 or more and 5000 or less, more preferably 1000 or less, still more preferably 500 or less, and still more preferably. 100 or less, more preferably 50 or less, and still more preferably 20 or less. On the other hand, in the case of an elongated fiber, it is preferably 1.5 or more, more preferably 2 or more, and further preferably 3 or more. By setting it within this range, even when it is smaller than the gap of the spring-like filter, it becomes easy to entangle each other, and it is easy to obtain a bridge effect, and it is possible to sufficiently achieve a function as a filter aid by securing a large surface area. Become.
 また、上記繊維状のものである場合において、高分子材料の平均短軸長は0.1μm以上500μm以下の範囲にあることが好ましく、より好ましくは0.5μm以上、更に好ましくは2.5μm以上であることが好ましい。上記のように、バネ状フィルターの平均間隙長が5μm以上200μm以下となっている場合、この平均間隙長の8分の1以上程度の範囲となっていることがブリッジ効果を得るために好ましいためである。また、上限としては特に制限されるわけではないがバネ状フィルターにおける不溶化物の除去を行うろ過助剤としての機能を十分に実現する観点から500μm以下であることが好ましく、より好ましくは300μm以下、更に好ましくは200μmである。なおここで「平均短軸長」は、電子顕微鏡により撮影した写真から明確に測定できる任意の10個の対象物を観察してそれぞれの短軸長を求め、さらに撮影した写真10枚について観察してもとめた短軸長の平均値を表す。 In the case of the fibrous material, the average short axis length of the polymer material is preferably in the range of 0.1 μm or more and 500 μm or less, more preferably 0.5 μm or more, and further preferably 2.5 μm or more. It is preferable that As described above, when the average gap length of the spring-like filter is 5 μm or more and 200 μm or less, it is preferable for the bridge effect to be in the range of about 1/8 or more of the average gap length. It is. The upper limit is not particularly limited, but is preferably 500 μm or less, more preferably 300 μm or less, from the viewpoint of sufficiently realizing the function as a filter aid for removing the insolubilized material in the spring filter. More preferably, it is 200 micrometers. Here, the “average minor axis length” refers to the observation of arbitrary 10 objects that can be clearly measured from photographs taken with an electron microscope to determine the respective minor axis lengths, and further observe 10 photographed photographs. It represents the average value of the short axis length.
 また、本装置1におけるろ過助剤においては、キレート基及びイオン交換基の少なくともいずれかを含むグラフト鎖が基材に結合しており、このグラフト率が10%以上150%未満である。 Further, in the filter aid in the present apparatus 1, a graft chain containing at least one of a chelate group and an ion exchange group is bonded to the base material, and the graft ratio is 10% or more and less than 150%.
 ここでキレート基とは、複数の配位座を備え、この複数の配位座によって金属イオン(半金属を含む)を捕捉することができる官能基をいう。キレート基としては、所望のイオン(例えば金属イオン及び半金属イオン)を捕捉することができる限りにおいて特に限定されるわけではないが、例えばエチレンジアミン(EDA)、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、テトラエチレンペンタミン(TEPA)、ペンタエチレンヘキサミン(PEHA)等のポリエチレンアミン、ビピリジン、フェナントロリン、エチレンジアミン四酢酸、ポリフィリン、クラウンエーテル等を例示することができるがこれに限定されない。除去対象の溶解物(典型的に金属イオン)を捕捉可能なキレート基を適宜選択すればよい。特に、後の実施例から明らかとなるが、グルカミン基であればホウ素を、アミノ基であれば水銀、ジルコニウム基であればヒ素をより効率的に捕捉することができる。 Here, the chelate group refers to a functional group having a plurality of coordination sites and capable of capturing metal ions (including metalloids) by the plurality of coordination sites. The chelating group is not particularly limited as long as desired ions (for example, metal ions and metalloid ions) can be captured, but for example, ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) ), Polyethyleneamines such as tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA), bipyridine, phenanthroline, ethylenediaminetetraacetic acid, porphyrin, crown ether and the like, but are not limited thereto. What is necessary is just to select the chelate group which can capture | acquire the melt | dissolution (typically metal ion) of the removal object suitably. In particular, as will be apparent from later examples, boron can be captured more efficiently with a glucamine group, mercury with an amino group, and arsenic with a zirconium group.
 またイオン交換基とは、予め内部に保持したイオンを放出し、他のイオンを取り込むすなわちイオン交換を行うことのできる官能基をいう。イオン交換基としてはイオン交換を行うことができる限りにおいて限定されるわけではないが、例えばスルホン基、カルボキシル基、リン酸基、アミノ基等を例示することができる。除去対象溶解物としてのイオンを交換可能なイオン交換基を適宜選択すればよい。 Also, the ion exchange group means a functional group that releases ions previously held inside and takes in other ions, that is, ion exchange. The ion exchange group is not limited as long as ion exchange can be performed, and examples thereof include a sulfone group, a carboxyl group, a phosphate group, and an amino group. What is necessary is just to select suitably the ion exchange group which can exchange the ion as a removal object melt | dissolution.
 また、本装置1の官能基の例示からも明らかなように、除去対象となる溶解物としては、特に限定されず様々なものを対象とすることができる。例えばホウ素、フッ素、ヒ素等、及びそのオキソニウムイオン等のイオンであるか、水銀、鉛、クロム、カドミウム、などのカチオン種で人体に有害か環境で規制対象となっている金属種であれば非常に有効なものとなる。また、銀、金、白金等の貴金属、モリブデン、バナジウム、ウラン等の希土類元素等資源となりうる有価な金属についても適用可能であり、非常に有効なものとなる。特に、水に溶解したイオン(典型的には金属イオン又は半金属イオン)の除去に好適に適用可能である。 Further, as is clear from the illustration of the functional group of the apparatus 1, the lysate to be removed is not particularly limited and can be various. For example, if it is an ion such as boron, fluorine, arsenic and its oxonium ion, or a cationic species such as mercury, lead, chromium, cadmium, etc., which is harmful to the human body or regulated by the environment It will be very effective. Moreover, it can be applied to valuable metals that can be resources such as noble metals such as silver, gold, and platinum, and rare earth elements such as molybdenum, vanadium, and uranium, which are very effective. In particular, it can be suitably applied to the removal of ions dissolved in water (typically metal ions or metalloid ions).
 また、本高分子材料において、グラフト率は10%以上150%未満である。ここでグラフト率とは、基材のセルロースに対してどの程度のグラフト鎖が導入されているのかを示す率であり、グラフト反応前後の重量差により算出することが可能な値であり、以下の式により算出することができる。 Moreover, in this polymer material, the graft ratio is 10% or more and less than 150%. Here, the graft ratio is a ratio indicating how much graft chain is introduced with respect to the cellulose of the base material, and is a value that can be calculated by a weight difference before and after the graft reaction. It can be calculated by an equation.
 グラフト率[%]=(W-W)/W×100
 (上記式において、Wはグラフト重合前の基材の重量を、Wはグラフト重合後のグラフト物の重量を意味する。)
Graft ratio [%] = (W 1 −W 0 ) / W 0 × 100
(In the above formula, W 0 means the weight of the base material before graft polymerization, and W 1 means the weight of the graft product after graft polymerization.)
 本高分子材料において、グラフト率は10%以上であることが重要である。グラフト率を10%以上とすることで酸やアルカリに対する耐久性を確保することができる。一方、グラフト率は150%を超えない範囲とすることが重要である。グラフト率を150%未満とすることで、グラフト鎖が破断すること等に対する耐久性を確保し、繰り返し特性を確保することができる(繰り返し使用による性能低下を抑制しうる)。換言すると、グラフト率が150%以上の場合、グラフト高分子材料中に占めるグラフト鎖の割合が過大であり、グラフト鎖の脱落が顕著となる。このため使用(典型的には繰り返し使用)に耐えうる所望の機械強度を得ることが困難となりがちである。また、グラフト率が150%以上のように高いと、助剤(グラフト高分子材料)径が大きく、比表面積が低くなり、良好な効果が得られない。なお、この効果は、グラフト率が30%以上120%以下の範囲とするとより顕著となる。 In this polymer material, it is important that the graft ratio is 10% or more. By setting the graft ratio to 10% or more, durability against acids and alkalis can be ensured. On the other hand, it is important that the graft ratio is in a range not exceeding 150%. By setting the graft ratio to less than 150%, durability against graft chain breakage and the like can be secured, and repeated characteristics can be secured (deterioration of performance due to repeated use can be suppressed). In other words, when the graft ratio is 150% or more, the ratio of the graft chain in the graft polymer material is excessive, and the dropping of the graft chain becomes remarkable. For this reason, it tends to be difficult to obtain desired mechanical strength that can withstand use (typically repeated use). On the other hand, when the graft ratio is as high as 150% or more, the auxiliary agent (graft polymer material) diameter is large, the specific surface area is low, and good effects cannot be obtained. This effect becomes more remarkable when the graft ratio is in the range of 30% to 120%.
 ところで、本高分子化合物に対するグラフト鎖の結合は、安定的に行うことができる限りにおいて特に限定されるわけではないが、いわゆるグラフト重合によって実現することが好ましい。グラフト重合は、高分子化合物の表面に活性点を形成し、これに上記キレート基及びイオン交換基の少なくともいずれか、又は、これらに転化可能な官能基を有するモノマーをグラフト重合反応によりグラフト鎖として結合させることで実現可能である。なおこの場合において活性点の形成は触媒法、プラズマ法、加熱法、放射線法のいずれの方法で製造してもよい。製造の容易性、溶剤使用量の軽減の点で、電子線やガンマ線等を照射する放射線法(いわゆる放射線グラフト重合法)で製造する方法が好適である。すなわち、ここで開示するろ過助剤として、放射線グラフト高分子材料を好適に使用しうる。 By the way, the binding of the graft chain to the polymer compound is not particularly limited as long as it can be stably performed, but it is preferably realized by so-called graft polymerization. In the graft polymerization, active sites are formed on the surface of the polymer compound, and at least one of the chelate group and the ion exchange group, or a monomer having a functional group convertible thereto is used as a graft chain by graft polymerization reaction. This can be realized by combining them. In this case, the active sites may be formed by any of a catalytic method, a plasma method, a heating method, and a radiation method. From the viewpoint of ease of production and reduction in the amount of solvent used, a method of production by a radiation method (so-called radiation graft polymerization method) in which an electron beam or gamma ray is irradiated is preferred. That is, a radiation graft polymer material can be suitably used as the filter aid disclosed herein.
 また、グラフト鎖は、上記の通り、高分子化合物に結合させた後、更に必要な機能を有する官能基に転化する処理を行ってもよい。このようにすることで、好ましい条件によりグラフト鎖を結合させた後、更に目的に応じて最適な官能基とすることができる。例えば下記表に、吸着官能基の例について示しておく。
Figure JPOXMLDOC01-appb-T000001
Further, as described above, the graft chain may be further converted to a functional group having a necessary function after being bonded to the polymer compound. By doing in this way, after combining a graft chain on preferable conditions, it can be set as an optimal functional group further according to the objective. For example, the following table shows examples of the adsorption functional group.
Figure JPOXMLDOC01-appb-T000001
 なお、本装置1において高分子材料は、粉末状のものであることが好ましいが、この粉末状とする方法としては、長繊維状又はペレット状の高分子化合物(基材)を粉砕して粉末状にし、粉末状にした後にグラフト鎖を結合させてもよく、また、長繊維状又はペレット状の基材に対してグラフト鎖を結合させた後、このグラフト重合物を粉砕して粉末状にしたものであってもよい。 In the present apparatus 1, the polymer material is preferably in the form of powder. As a method for making this powder, the polymer compound (base material) in the form of long fibers or pellets is pulverized and powdered. The graft chain may be bonded after forming into a powder form, and after the graft chain is bonded to the long fiber or pellet base material, the graft polymer is pulverized into a powder form. It may be what you did.
 また、本装置1では、上記の通り、バネ状フィルター2及びろ過助剤3は溶解物除去時において筐体4内に配置されている。 Further, in the present apparatus 1, as described above, the spring-like filter 2 and the filter aid 3 are disposed in the housing 4 when the dissolved matter is removed.
 本装置1において、筐体4は、上記の通り、中に空洞41を備えており、その内部にバネ状フィルター2を固定配置し、溶解物除去時においては、バネ状フィルター2の周囲にろ過助剤3を配置する。この配置方法については溶解物除去方法の説明の際に改めて説明する。 In the present apparatus 1, the casing 4 includes the cavity 41 therein as described above, and the spring-like filter 2 is fixedly disposed therein, and when the dissolved matter is removed, the filter is filtered around the spring-like filter 2. Auxiliary agent 3 is placed. This arrangement method will be described again in the description of the method for removing the dissolved matter.
 また本装置1において、筐体4の内部の空洞41は、上記の通り、経路部材52を介して原液タンク62に接続されている。ここで原液タンク62とは、処理対象となる溶解物及び不溶化物を含む液体(処理対象液体)を収納するタンクである。なお、経路部材51乃至53の少なくともいずれかにはポンプが、経路部材51乃至53の各々には弁が備えられており、必要に応じ弁を開閉、ポンプを作動させることによって液体を送ることができる。 Further, in the present apparatus 1, the cavity 41 inside the housing 4 is connected to the stock solution tank 62 via the path member 52 as described above. Here, the stock solution tank 62 is a tank that stores a liquid (process target liquid) containing a dissolved product and an insolubilized product to be processed. It should be noted that at least one of the path members 51 to 53 is provided with a pump, and each of the path members 51 to 53 is provided with a valve, and the liquid can be sent by opening and closing the valve and operating the pump as necessary. it can.
 また、本装置1において、筐体4の内部の空洞41は、上記の通り、経路部材52を介してプリコートタンク63に接続されている。ここでプリコートタンク63とは、上記ろ過助剤を混合させた液体を収納することのできるタンクであり、溶解物除去時にろ過助剤を筐体内に導入する供給源となるものである。 Further, in the present apparatus 1, the cavity 41 inside the housing 4 is connected to the precoat tank 63 via the path member 52 as described above. Here, the precoat tank 63 is a tank that can store a liquid mixed with the filter aid, and serves as a supply source for introducing the filter aid into the housing when removing the dissolved matter.
 ただし、プリコートタンク63については、省略することが可能である。この場合、処理液タンク62に収納された液体に対し直接ろ過助剤を添加することで可能である。 However, the precoat tank 63 can be omitted. In this case, it is possible to add a filter aid directly to the liquid stored in the processing liquid tank 62.
 また、本装置1において、筐体4内に配置されたバネ状フィルター2の内部空間に、経路部材51が接続されており、更にこの経路部材51が処理液タンク61に接続されている。 Further, in the present apparatus 1, a path member 51 is connected to the internal space of the spring-like filter 2 disposed in the housing 4, and this path member 51 is further connected to the processing liquid tank 61.
 ここで処理液タンク61とは、バネ状フィルター2及びろ過助剤3を介してろ過処理された液体(処理液)を収容することができるタンクである。なお、この処理液は、そのまま装置外部に排出させることもできるが、後述の記載からも明らかなとおり、逆洗浄の際の洗浄液として用いることができる。なお、処理液を直接装置外部に排出させる構成とする場合において、処理液タンク61を省略することが可能である。ただしこの場合、逆洗浄を行うための液体の供給源は設けておく必要がある。 Here, the processing liquid tank 61 is a tank that can store a liquid (processing liquid) filtered through the spring-like filter 2 and the filter aid 3. Although this treatment liquid can be discharged out of the apparatus as it is, it can be used as a cleaning liquid at the time of reverse cleaning, as will be apparent from the following description. In the case where the processing liquid is discharged directly to the outside of the apparatus, the processing liquid tank 61 can be omitted. However, in this case, it is necessary to provide a liquid supply source for performing the reverse cleaning.
 また、本装置1において、排水タンク64が筐体4内に配置された経路部材53により接続されている。排水タンク64は、具体的には、逆洗浄によって筐体4から排出される使用済みのろ過助剤3を収容するためのタンクである。排水タンク64を設けることで、効率的にろ過助剤3を回収し、必要に応じて廃棄又は再利用を行うことができるようになる。なお、経路部材53については、弁等を介して接続することにより上記経路部材52と共通化することも可能である。 Further, in the present apparatus 1, a drain tank 64 is connected by a route member 53 disposed in the housing 4. Specifically, the drainage tank 64 is a tank for storing the used filter aid 3 discharged from the housing 4 by backwashing. By providing the drainage tank 64, the filter aid 3 can be efficiently recovered and discarded or reused as necessary. The path member 53 can be shared with the path member 52 by connecting via a valve or the like.
(溶解物除去方法)
 ここで、本装置を用いた溶解物除去方法(以下「本方法」という。)について説明する。本方法は、(1)バネ状フィルターの周囲に、キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み高分子材料におけるグラフト鎖のグラフト率が10%以上150%未満であるろ過助剤を配置し、(2)除去対象溶解物を含む処理対象液体に浸し、バネ状フィルターに処理対象液体を通すことにより処理対象液体から前記除去対象溶解物を除去するものである。以下具体的に説明する。
(Dissolved material removal method)
Here, a dissolved material removal method (hereinafter referred to as “the present method”) using the present apparatus will be described. This method includes (1) a polymer material having a graft chain in which at least one of a chelate group and an ion exchange group is bound around a spring-like filter, and the graft ratio of the graft chain in the polymer material is 10% or more. A filter aid that is less than 150% is placed, (2) the solution to be removed is removed from the solution to be removed by immersing it in the solution to be treated containing the solution to be removed and passing the solution to be treated through a spring-like filter. Is. This will be specifically described below.
 まず、本方法では、(1)バネ状フィルターの周囲に、キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み高分子材料におけるグラフト鎖のグラフト率が10%以上150%未満であるろ過助剤を配置する。ろ過助剤の具体的な構成については既に上記で述べたとおりである。 First, in this method, (1) the graft ratio of the graft chain in the polymer material is 10 including a polymer material having a graft chain in which at least one of a chelate group and an ion exchange group is bound around the spring-like filter. A filter aid that is at least% and less than 150% is placed. The specific configuration of the filter aid has already been described above.
 本段階においては、まず、筐体内にバネ状フィルターを固定配置する一方、処理対象液体を原液タンク62内に投入する。また、プリコートタンク63内に液体にろ過助剤を分散させて収納させる。 In this stage, first, the spring-like filter is fixedly arranged in the housing, and the liquid to be treated is put into the stock solution tank 62. Further, the filter aid is dispersed in the liquid and stored in the precoat tank 63.
 そして、ポンプなどの送液手段を用い、経路部材52を介して筐体4内に上記プリコートタンク63内の液体及びろ過助剤を供給するとともに、バネ状フィルター2内を吸引し、バネ状フィルターの線材間に液体を通してこの通った液体を筐体外に排出する。この過程により、ろ過助剤3はバネ状フィルター2の周囲に層として形成されていく。なおこの場合、液体は他の経路部材を設けて原液タンク又はプリコートタンクに排出させてもよい。 Then, liquid supply means such as a pump is used to supply the liquid and filter aid in the precoat tank 63 into the housing 4 via the path member 52, and the inside of the spring-like filter 2 is sucked into the spring-like filter. The liquid passed between the wires is discharged out of the casing. Through this process, the filter aid 3 is formed as a layer around the spring-like filter 2. In this case, the liquid may be discharged to the stock solution tank or the precoat tank by providing another path member.
 そして、十分にバネ状フィルターの周囲にろ過助剤が層として形成された後、(2)除去対象溶解物を含む処理対象液体に浸し、バネ状フィルターに処理対象液体を通すことにより処理対象液体から除去対象溶解物を除去する。具体的には、供給源を上記プリコートタンク63から原液タンク62に切り替え、原液タンク62から筐体4内に処理対象液体を供給するとともに、バネ状フィルター2を経由した液体を処理液タンク61に排出させる。この際もポンプなどの送液手段を用いることが好ましい。 After the filter aid is sufficiently formed as a layer around the spring-like filter, (2) the liquid to be treated is immersed in the liquid to be treated containing the dissolved substance to be removed, and the liquid to be treated is passed through the spring-like filter. Remove the lysate to be removed. Specifically, the supply source is switched from the precoat tank 63 to the stock solution tank 62 to supply the liquid to be processed from the stock solution tank 62 into the housing 4, and the liquid passed through the spring-like filter 2 is supplied to the treatment solution tank 61. Let it drain. Also in this case, it is preferable to use liquid feeding means such as a pump.
 この結果、原液タンクに収容された液体はバネ状フィルター及びろ過助剤を経由し、溶解物が除去された後、筐体外に排出されることになる。この場合のバネ状フィルター近傍のイメージを図6に示しておく。なお、本段階においては、不溶化物についても、ろ過助剤の物理的な間隙により除去可能であることは言うまでもない。 As a result, the liquid stored in the stock solution tank passes through the spring filter and the filter aid, and after the dissolved matter is removed, it is discharged out of the casing. An image in the vicinity of the spring-like filter in this case is shown in FIG. In this stage, it goes without saying that the insolubilized material can also be removed by the physical gap of the filter aid.
 そして、十分に高分子材料が溶解物を除去し付着させた後は、バネ状フィルター2について逆洗浄を行うことが好ましい。具体的には、バネ状フィルター2内部側に接続された処理液タンクに収容された処理液を経路部材を介して供給する。すると、今度はバネ状フィルターの内側から外側に液体が供給されることとなるため、バネ状フィルターの周囲に配置されていたろ過助剤3はバネ状フィルター2の線材から剥離することとなる。この場合のイメージを図7に示しておく。そしてこの高分子材料は上記の通り、筐体4下部に設けられた排出口から経路部材53を介して排出されることで容易に回収可能である。回収した高分子材料はそのまま廃棄することもでき、また、所定の処理を行うことで再生利用が可能である。なおここで処理液は、逆洗浄をすることができる限りにおいて限定されるわけではないが、除去対象となる溶解物を含まない液体であることが好ましく、より具体的には水であることが好ましい。 It is preferable that the spring-like filter 2 is back-washed after the polymer material has sufficiently removed and adhered the dissolved material. Specifically, the processing liquid accommodated in the processing liquid tank connected to the inside of the spring-like filter 2 is supplied via the path member. Then, since the liquid is now supplied from the inside to the outside of the spring-like filter, the filter aid 3 disposed around the spring-like filter is peeled off from the wire of the spring-like filter 2. An image in this case is shown in FIG. And as above-mentioned, this polymeric material can be easily collect | recovered by being discharged | emitted via the route member 53 from the discharge port provided in the housing | casing 4 lower part. The recovered polymer material can be discarded as it is, and can be recycled by performing a predetermined treatment. Here, the treatment liquid is not limited as long as it can be back-washed, but is preferably a liquid that does not contain a lysate to be removed, and more specifically water. preferable.
 ところで、本方法において用いる液体の流量、流速については本方法の目的及び効果を達成することができる限りにおいて限定されず、具体的には、液体に溶解している溶解物、これとともに除去される不溶化物の濃度、バネ状フィルターの本数やその間隙長やバネ状フィルターの数やろ過助剤の量等により適宜調整可能であるが、例えば0.1L/分以上30.0L/分以下の範囲であることが好ましく、より好ましくは0.6L/分以上20.0L/分以下の範囲であり、更に好ましくは1.0L/分以上10.0L/分以下の範囲である。 By the way, the flow rate and flow rate of the liquid used in the present method are not limited as long as the purpose and effect of the present method can be achieved, and specifically, the dissolved matter dissolved in the liquid and removed together with this. The concentration can be adjusted appropriately depending on the concentration of the insolubilized material, the number of spring-like filters, the gap length, the number of spring-like filters, the amount of the filter aid, and the like, for example, in the range of 0.1 L / min to 30.0 L / min. More preferably, it is the range of 0.6 L / min or more and 20.0 L / min or less, More preferably, it is the range of 1.0 L / min or more and 10.0 L / min or less.
 以上、本装置及び方法は、除去の難しい溶解物をより効率的に除去することのできる溶解物除去装置及びこれに用いられるろ過助剤並びに溶解物除去方法となる。より具体的に説明すると、本装置によると、上記所定の構造の高分子材料をろ過助剤として用いることで、通常のバネ状フィルターとして水中に混在している不溶の不純物をろ過することができるだけでなく、高分子材料の表面にグラフト鎖を備えているため、溶解した不純物自体もこのグラフト鎖(典型的には、当該グラフト鎖が有する官能基)によって捕捉することが可能となる。特に、グラフト率を上記範囲に抑えることで耐久性等を安定的に維持することができる。更に、高分子材料(典型的には基材としての高分子化合物)としてセルロースを用いた場合は、セルロース自体は無害であって、流体に接触させたとしても流体を汚染することがなく、飲料水の処理に用いることさえ可能である。また高分子材料(典型的には基材としての高分子化合物)は一般に安価である場合が多く、コストの観点からも有利である。また、ろ過処理した後の高分子材料については、化学的処理を施し捕捉したイオンのみを取り出すこととしてもよく、またそのまま燃焼させて捕捉した物質を取り出すこととしてもよい。セルロース自体は自然にも存在するものであり、燃焼させたとしても二酸化炭素及び水を排出するだけであるため、環境に対する負荷は小さい。この結果、除去対象物を少なくとも環境規制値まで、さらには対象溶解物をppt(1兆分の1の濃度)まで低減することが可能となる。 As described above, the present apparatus and method are a lysate removal apparatus that can more efficiently remove a lysate that is difficult to remove, a filter aid and a lysate removal method used therefor. More specifically, according to the present apparatus, by using the polymer material having the predetermined structure as a filter aid, it is possible to filter insoluble impurities mixed in water as a normal spring filter. In addition, since a graft chain is provided on the surface of the polymer material, the dissolved impurities themselves can be captured by the graft chain (typically, a functional group of the graft chain). In particular, durability and the like can be stably maintained by keeping the graft ratio within the above range. Further, when cellulose is used as a polymer material (typically a polymer compound as a base material), the cellulose itself is harmless and does not contaminate the fluid even if it is brought into contact with the fluid. It can even be used for water treatment. In addition, a polymer material (typically a polymer compound as a base material) is generally inexpensive and is advantageous from the viewpoint of cost. Moreover, about the polymeric material after filtering, it is good also as taking out only the ion which carried out the chemical process and was capture | acquired, and is good also as taking out the captured substance by burning as it is. Cellulose itself naturally exists, and even if it is burned, it only discharges carbon dioxide and water, so the burden on the environment is small. As a result, it is possible to reduce the object to be removed to at least the environmental regulation value and further to the object dissolved substance to ppt (concentration of 1 trillion).
 また、本装置1に用いられる高分子材料には、対象とする除去対象となる溶解物に応じて任意で官能基(キレート基、イオン交換基等)を選択、導入することができる。さらにはグラフト率または官能基(キレート基、イオン交換基など)の転化率をコントロールすることで官能基の導入量 (官能基密度)を調整することができる。グラフト高分子材料が有する官能基の導入量(mmol/g)を増大することで、グラフト高分子材料の単位重量あたりの溶解物の除去効率が増大する。さらに詳しくは、不溶化物を対象にしたバネ状フィルターの素材に、グラフト高分子材料に官能基(キレート基、イオン交換基等)を導入する同じ手段で、同じ官能基または種類の異なる官能基を導入することができる。これにより、除去対象物の処理速度が格段に向上することになる。特に、本装置では処理対象流体を扱う処理速度が格段に速いので、処理の短時間化、低コスト化を図ることができるようになる。 Moreover, functional groups (chelate groups, ion exchange groups, etc.) can be arbitrarily selected and introduced into the polymer material used in the apparatus 1 according to the lysate to be removed. Furthermore, the introduction amount of functional groups (functional group density) can be adjusted by controlling the graft ratio or the conversion ratio of functional groups (chelate groups, ion exchange groups, etc.). By increasing the introduction amount (mmol / g) of the functional group of the graft polymer material, the removal efficiency of the dissolved product per unit weight of the graft polymer material increases. More specifically, the same functional group or different functional groups of the same type are introduced into the material of the spring-like filter for the insolubilized material by the same means for introducing a functional group (chelate group, ion exchange group, etc.) into the graft polymer material. Can be introduced. Thereby, the processing speed of a removal target object improves markedly. In particular, in this apparatus, the processing speed for handling the fluid to be processed is remarkably fast, so that the processing time can be reduced and the cost can be reduced.
(応用例)
 ところで、本装置1では、バネ状フィルター2にろ過助剤3を配置することで溶解物についても除去を行うことができる構成となっているが、グラフト鎖が結合されたろ過助剤3の使用の有無にかかわらず、例えば、バネ状フィルター2に樹脂材料を用い、この樹脂材料に直接上記グラフト鎖を結合させる構成も考えられうる。このようにすることで、バネ状フィルター2の線材の間を液体が通過する際、このグラフト鎖により溶解物が除去でき、本装置の性能をより向上させることが可能となる。
(Application examples)
By the way, in this apparatus 1, although it has the structure which can also remove a melt | dissolution thing by arrange | positioning the filter aid 3 to the spring-like filter 2, use of the filter aid 3 to which the graft chain was combined is used. Regardless of the presence or absence, for example, a configuration in which a resin material is used for the spring-like filter 2 and the graft chain is directly bonded to the resin material can be considered. By doing so, when the liquid passes between the wire rods of the spring-like filter 2, the melt can be removed by this graft chain, and the performance of the apparatus can be further improved.
 ここで実際に、ろ過助剤及び溶解物除去装置について作製しその効果を確認した。以下具体的に説明する。 Here, actually, a filter aid and a lysate removing device were produced and their effects were confirmed. This will be specifically described below.
(実施例1)
(1)電子線を用いた高分子材料の作製
 まず、グラフト高分子材料の基材となる高分子化合物であるセルロースパウダーに電子線を2MeV、2mAで総吸収線量が20kGyとなるように照射した後、メタクリル酸グリシジル(GMA)を用いるグラフト重合反応によりグラフト鎖を導入した。なお、グラフト重合反応前後の重量差により導出したグラフト率は60%であった。
Example 1
(1) Production of polymer material using electron beam First, an electron beam was irradiated to cellulose powder, which is a polymer compound serving as a base material for the graft polymer material, so that the total absorbed dose was 20 kGy at 2 MeV and 2 mA. Thereafter, graft chains were introduced by a graft polymerization reaction using glycidyl methacrylate (GMA). The graft ratio derived from the weight difference before and after the graft polymerization reaction was 60%.
 次いで、グラフト鎖として導入したGMAの分子中に有するエポキシ基への開環反応により、N-メチル-D-グルカミン(NMDG)を導入し、キレート形成基(官能基)としてNMDGを有する高分子材料を得た。高分子材料に導入されたNMDGの密度(転化率)、即ち、高分子材料中のNMDGの割合は1.9mmol/gであった。
グラフト重合反応前の基材、及び、上記作製した高分子材料の形状写真を図8に示す。
Subsequently, N-methyl-D-glucamine (NMDG) is introduced by a ring-opening reaction to the epoxy group in the molecule of GMA introduced as a graft chain, and a polymer material having NMDG as a chelate-forming group (functional group) Got. The density (conversion rate) of NMDG introduced into the polymer material, that is, the ratio of NMDG in the polymer material was 1.9 mmol / g.
FIG. 8 shows a shape photograph of the base material before the graft polymerization reaction and the polymer material produced above.
 本写真によると、高分子材料の形状は細長い形状であることが確認でき、その平均短軸長は6μmであり、平均長軸長は10μmであった。この結果、アスペクト比は1.7であることが確認できた。 According to this photograph, it was confirmed that the polymer material had an elongated shape, the average minor axis length was 6 μm, and the average major axis length was 10 μm. As a result, it was confirmed that the aspect ratio was 1.7.
(2)ホウ素除去
 そして、既に作製してあるバネ状フィルターを中空の耐圧容器(筐体)内に設置し、経路部材を介して処理液タンクと循環経路を形成し、簡易型の溶解物除去装置を作製した。このイメージを図9に示しておく。
(2) Boron removal Then, the spring filter already prepared is installed in a hollow pressure-resistant container (housing), and a circulation path is formed with the treatment liquid tank via the route member, so that simple dissolution removal is possible. A device was made. This image is shown in FIG.
 まず、上記作製した高分子材料20gを処理液タンクに添加し、耐圧容器内に導入する一方、バネ状フィルター内部からは吸引を行い循環させることで、バネ状フィルターの周囲を高分子材料で覆わせた。 First, 20 g of the polymer material prepared above is added to the treatment liquid tank and introduced into the pressure vessel, while suction is circulated from the inside of the spring filter to cover the periphery of the spring filter with the polymer material. I let them.
 その後、処理液タンクを50mg/Lのホウ素溶液4Lに取り換え、1.6L/minの通液速度で循環させた。一定時間毎、システム出口の溶液及び対象流体液が貯水される容器内の対象流体液を分取した後、ホウ素濃度を定量し、ホウ素除去特性を評価した。この結果を図10に示す。 Thereafter, the treatment liquid tank was replaced with 4 L of a 50 mg / L boron solution and circulated at a liquid flow rate of 1.6 L / min. After separating the target fluid liquid in the container in which the solution at the system outlet and the target fluid liquid are stored at regular intervals, the boron concentration was quantified to evaluate the boron removal characteristics. The result is shown in FIG.
 この結果、ホウ素除去試験において、通液開始から5分までに採取した試料のシステム出口のホウ素濃度は0(ゼロ)であり、高分子材料を通過したホウ素を全て除去できたことを確認した。また、採取した全ての試料においてホウ素濃度は4mg/L以下まで低減できた。特に、この結果から、高分子材料による処理速度は、空間速度10h-1以上であることも分かった。 As a result, in the boron removal test, the boron concentration at the system outlet of the sample collected within 5 minutes from the start of liquid passage was 0 (zero), and it was confirmed that all the boron that passed through the polymer material could be removed. In all the collected samples, the boron concentration could be reduced to 4 mg / L or less. In particular, from this result, it was also found that the treatment speed with the polymer material is a space velocity of 10 h −1 or more.
 また、同処理方法として、予め50mg/Lのホウ素溶液4Lが入った処理液タンクに上記作製したセルロースパウダーを基材とする高分子材料20gを添加し、ホウ素溶液中に分散させた後、1.6L/分の速度でバネ状フィルターに吸引させ、一定時間毎にシステム出口の溶液を採取した後、ホウ素濃度を定量し、ホウ素除去特性を確認した。 Further, as the treatment method, 20 g of a polymer material based on the cellulose powder prepared above was added to a treatment liquid tank previously containing 4 L of a 50 mg / L boron solution and dispersed in the boron solution. The solution was sucked into the spring filter at a rate of 6 L / min, and the solution at the system outlet was collected at regular intervals, and then the boron concentration was quantified to confirm the boron removal characteristics.
 この結果、通液開始から、全てのホウ素溶液がシステムを通過し排出されるまでの間(2分30秒)、採取した全ての試料においてホウ素濃度は初期濃度の30分の1に相当する1.6mg/Lであった。 As a result, from the start of liquid flow until all boron solutions pass through the system and are discharged (2 minutes 30 seconds), the boron concentration in all the collected samples is equivalent to 1/30 of the initial concentration 1 0.6 mg / L.
以上実施例より効果を確認することができた。 As described above, the effect could be confirmed from the examples.
(実施例2)
(1)高分子材料の作製
 目付30g/mのセルロース不織布繊維をグラフト高分子材料の基材とし、これに500keV、10mAの条件で電子線を20kGy照射した後、脱酸素化した5%ジエステルリン酸モノマー水溶液中に浸漬させ、グラフト重合反応を進行させた。得られたリン酸基を導入したグラフトセルロース繊維のグラフト率は120%で、リン酸基の密度は4.0mmol/gであった。
(Example 2)
(1) Production of polymer material A cellulose non-woven fiber having a basis weight of 30 g / m 2 is used as a base material of a graft polymer material. It was immersed in the phosphoric acid monomer aqueous solution, and the graft polymerization reaction was advanced. The graft ratio of the obtained grafted cellulose fiber into which phosphate groups were introduced was 120%, and the density of phosphate groups was 4.0 mmol / g.
 そして、上記得たセルロース不織布繊維グラフト高分子材料を硫酸ジルコニウム水溶液で5時間浸漬させ、リン酸基の末端にジルコニウム残基を担持させた。そして、得られたジルコニウム型不織布繊維を数十ミクロンまで凍結粉砕し、バネ状フィルター用助剤形状に加工した。 Then, the cellulose nonwoven fiber graft polymer material obtained above was immersed in an aqueous zirconium sulfate solution for 5 hours to carry a zirconium residue on the end of the phosphate group. Then, the obtained zirconium-type non-woven fiber was freeze-pulverized to several tens of microns and processed into an auxiliary shape for a spring-like filter.
 また、上記実施例1と同様、セルロース不織布繊維グラフト高分子材料の電子顕微鏡写真を確認したところ、それぞれ平均短軸長は10μm、20μmであり、平均の長軸長は100μm、110μmであることを確認した。 Moreover, when the electron micrograph of the cellulose nonwoven fabric graft | grafting polymer material was confirmed similarly to the said Example 1, average minor axis length is 10 micrometers and 20 micrometers, respectively, and average major axis length is 100 micrometers and 110 micrometers. confirmed.
(2)ヒ素除去
 そして、上記実施例1と同様の装置を用い、加工したグラフト高分子材料をヒ素が溶存する対象流体液に投入し、ろ過助剤添加量とバネ状フィルターへの付着の状況を調べた。この結果を図11に示す。
(2) Arsenic removal Using the same apparatus as in Example 1 above, the processed graft polymer material is introduced into the target fluid liquid in which arsenic is dissolved, and the amount of filter aid added and the state of adhesion to the spring filter I investigated. The result is shown in FIG.
 この結果、ろ過助剤の添加量が多くなるにつれ、ろ過助剤のバネ状フィルターへの助剤の付着量が多くなり、流通速度は低下する傾向が確認された。しかしながら、ヒ素の吸着性能は、図12に示すとおり、通液速度によらず一定の吸着容量を示すことを確認した。この結果は、一般的な数百ミクロン径で構成される市販架橋樹脂(三菱ケミカル社製リン酸型樹脂に同様にジルコニウムを担持させてもの)と比較しても10倍程度高い容量を示している。 As a result, it was confirmed that as the amount of filter aid added increased, the amount of filter aid adhered to the spring-like filter increased, and the flow rate decreased. However, as shown in FIG. 12, it was confirmed that the adsorption performance of arsenic shows a constant adsorption capacity regardless of the liquid flow rate. This result shows a capacity about 10 times higher than that of a commercially available cross-linked resin having a diameter of several hundred microns (when zirconium is similarly supported on a phosphoric acid resin manufactured by Mitsubishi Chemical Corporation). Yes.
 以上本実施例により効果を確認することができた。 As described above, the effect was confirmed by this example.
(実施例3)
(1)高分子材料の作製
 繊維径30μmのセルロース不織布基材に実施例2と同様な操作によって、GMAを用いるグラフト反応によりグラフト鎖を導入した。なおこのグラフト率は120%であった。GMAグラフト鎖のエポキシ基には、エチレンジアミン又はジエチレントリアミンをそれぞれ2.1mmol/g又は2.2mmol/g導入した。
(Example 3)
(1) Production of polymer material A graft chain was introduced into a cellulose nonwoven fabric substrate having a fiber diameter of 30 μm by a graft reaction using GMA in the same manner as in Example 2. The graft ratio was 120%. To the epoxy group of the GMA graft chain, 2.1 mmol / g or 2.2 mmol / g of ethylenediamine or diethylenetriamine was introduced, respectively.
 また、上記実施例1と同様、高分子材料の電子顕微鏡写真を確認したところ、それぞれ、エチレンジアミンを導入したグラフト高分子材料は平均短軸長が20μm、平均長軸長が100μmであり、ジエチレントリアミンを導入したグラフト高分子材料は平均短軸長が25μmであり、平均長軸長が90μmであることを確認した。 In addition, as in Example 1 above, the electron micrographs of the polymer material were confirmed, and the graft polymer material into which ethylenediamine was introduced had an average minor axis length of 20 μm and an average major axis length of 100 μm. It was confirmed that the introduced graft polymer material had an average minor axis length of 25 μm and an average major axis length of 90 μm.
(2)水銀除去
 その後、上記作成した高分子材料を上記と同様の装置に用い、約30ppb(μg/L)の水銀と接触させ、一定時間後に残水銀量を定量した。この結果を表に示す。この結果によると、僅か30分で95%以上の吸着率(除去率)を示した。分配比(残水銀濃度と助剤中に捕捉された水銀濃度との比)は、3万以上であった。この値は市販樹脂能(三菱ケミカル社製、ダイヤイオン)に比較して、最大で800倍の能力向上を示していることを確認した。
Figure JPOXMLDOC01-appb-T000002
 
(2) Mercury removal Subsequently, the polymer material prepared above was used in an apparatus similar to the above, and contacted with about 30 ppb (μg / L) of mercury, and the amount of residual mercury was quantified after a certain period of time. The results are shown in the table. According to this result, an adsorption rate (removal rate) of 95% or more was shown in only 30 minutes. The distribution ratio (ratio between residual mercury concentration and mercury concentration trapped in the auxiliary agent) was 30,000 or more. It was confirmed that this value showed a capacity improvement of 800 times at maximum as compared with a commercially available resin ability (manufactured by Mitsubishi Chemical Corporation, Diaion).
Figure JPOXMLDOC01-appb-T000002
 以上本実施例により効果を確認することができた。 As described above, the effect was confirmed by this example.
(実施例4)
(ポリエチレン樹脂パウダーの合成)
 また、ポリエチレン樹脂ペレットをグラフト重合物(グラフト高分子材料)の基材とし、これに10MHzの高周波を5時間照射した。次いで、照射したペレットを脱酸素化した20%メタクリル酸グリシジル(GMA)のメタノール溶液中でグラフト重合反応を行い、グラフト鎖を導入した。得られたGMAペレットのグラフト率は90%であった。ここで、GMAをグラフト重合したペレット状のグラフト物(グラフト高分子材料)を粉砕し、平均長軸長が10μmになるように調整した。さらに、10μmのパウダー状GMAペレットをジエチレントリアミン-イソプロパノール溶液中で転化した。アミン基密度は、2.8mmol/gであった。
Example 4
(Synthesis of polyethylene resin powder)
Moreover, the polyethylene resin pellet was used as the base material of the graft polymer (graft polymer material), and this was irradiated with a high frequency of 10 MHz for 5 hours. Next, graft polymerization reaction was performed in a methanol solution of 20% glycidyl methacrylate (GMA) obtained by deoxygenating the irradiated pellets to introduce graft chains. The graft ratio of the obtained GMA pellets was 90%. Here, the pellet-like graft product (graft polymer material) obtained by graft polymerization of GMA was pulverized and adjusted so that the average major axis length was 10 μm. Further, 10 μm powdery GMA pellets were converted in a diethylenetriamine-isopropanol solution. The amine group density was 2.8 mmol / g.
 本発明は、溶解物除去装置及びこれに用いられるろ過助剤並びに溶解物除去方法として産業上の利用可能性がある。

 
INDUSTRIAL APPLICABILITY The present invention has industrial applicability as a lysate removal apparatus, a filter aid used therefor, and a lysate removal method.

Claims (9)

  1.  バネ状フィルターと、
     前記バネ状フィルターの周囲に配置される、ろ過助剤と、を備えた溶解物除去装置であって、
     前記ろ過助剤は、キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み、前記高分子材料における前記グラフト鎖のグラフト率が10%以上150%未満である溶解物除去装置。
    A spring-like filter,
    A lysate removing device provided with a filter aid disposed around the spring-like filter,
    The filter aid includes a polymer material having a graft chain bonded with at least one of a chelate group and an ion exchange group, and the graft ratio of the graft chain in the polymer material is 10% or more and less than 150%. Melt removal device.
  2.  前記高分子材料は、アスペクト比が1以上5000以下である請求項1記載の溶解物除去装置。 The melt removal apparatus according to claim 1, wherein the polymer material has an aspect ratio of 1 or more and 5000 or less.
  3.  前記バネ状フィルターの平均間隙長は5μm以上200μm以下の範囲にあり、
     前記高分子材料は、平均短軸長は0.1μm以上500μm以下である請求項1記載の溶解物除去装置。
    The average gap length of the spring-like filter is in the range of 5 μm to 200 μm,
    The melt removal apparatus according to claim 1, wherein the polymer material has an average minor axis length of 0.1 μm to 500 μm.
  4.  バネ状フィルターの周囲に、キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み前記高分子材料における前記グラフト鎖のグラフト率が10%以上150%未満であるろ過助剤を配置し、
     除去対象溶解物を含む処理対象液体に浸し、前記バネ状フィルターに前記処理対象液体を通すことにより前記処理対象液体から前記除去対象溶解物を除去する溶解物除去方法。
    A polymer material having a graft chain to which at least one of a chelate group and an ion exchange group is bonded around a spring-like filter, and the graft ratio of the graft chain in the polymer material is 10% or more and less than 150% Place a filter aid,
    A lysate removal method for removing the lysate to be removed from the liquid to be treated by immersing it in a liquid to be treated containing a lysate to be removed and passing the liquid to be treated through the spring-like filter.
  5.  前記高分子材料は、アスペクト比が1以上5000以下である請求項4記載の溶解物除去方法。 The melt removal method according to claim 4, wherein the polymer material has an aspect ratio of 1 or more and 5000 or less.
  6.  前記バネ状フィルターの平均間隙長は5μm以上200μm以下の範囲にあり、
     前記高分子材料の平均短軸長は0.1μm以上500μm以下である、請求項4記載の溶解物除去方法。
    The average gap length of the spring-like filter is in the range of 5 μm to 200 μm,
    The melt removal method according to claim 4, wherein the average short axis length of the polymer material is 0.1 μm or more and 500 μm or less.
  7.  キレート基及びイオン交換基の少なくともいずれかを結合したグラフト鎖を備えた高分子材料を含み、前記高分子材料における前記グラフト鎖のグラフト率が10%以上150%未満である、バネ状フィルター用ろ過助剤。 A filtration for a spring-like filter, comprising a polymer material having a graft chain to which at least one of a chelate group and an ion exchange group is bonded, wherein the graft ratio of the graft chain in the polymer material is 10% or more and less than 150%. Auxiliary agent.
  8.  前記高分子材料は、アスペクト比が1以上5000以下である請求項7記載のバネ状フィルター用ろ過助剤。 The filter aid for a spring filter according to claim 7, wherein the polymer material has an aspect ratio of 1 or more and 5000 or less.
  9.  前記高分子材料は、平均短軸長は0.1μm以上500μm以下である請求項7記載のバネ状フィルター用ろ過助剤。 The filter aid for a spring-like filter according to claim 7, wherein the polymer material has an average minor axis length of 0.1 µm to 500 µm.
PCT/JP2019/009016 2018-03-08 2019-03-07 Dissolved matter removal device, filtration aid used therewith, and dissolved matter removal method WO2019172359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042450A JP6695542B2 (en) 2018-03-08 2018-03-08 Dissolved matter removing device, filter aid used therefor, and dissolved matter removing method
JP2018-042450 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019172359A1 true WO2019172359A1 (en) 2019-09-12

Family

ID=67846726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009016 WO2019172359A1 (en) 2018-03-08 2019-03-07 Dissolved matter removal device, filtration aid used therewith, and dissolved matter removal method

Country Status (2)

Country Link
JP (1) JP6695542B2 (en)
WO (1) WO2019172359A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230166347A (en) * 2022-05-30 2023-12-07 한양대학교 산학협력단 Member for cation sensor and the cation sensor based on receptor functionalized polymer and carbon nanotube composite material, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884087A (en) * 1982-07-13 1983-05-20 Ebara Corp Filtering and desalting method using ion exchange fibers
JPH03185A (en) * 1989-05-24 1991-01-07 Toray Ind Inc Method for purifying water solution
JPH04293505A (en) * 1991-03-22 1992-10-19 Japan Atom Energy Res Inst Treatment of liquid
JP2013184151A (en) * 2012-03-11 2013-09-19 Monobe Engineering:Kk Filter element and filtering device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884087A (en) * 1982-07-13 1983-05-20 Ebara Corp Filtering and desalting method using ion exchange fibers
JPH03185A (en) * 1989-05-24 1991-01-07 Toray Ind Inc Method for purifying water solution
JPH04293505A (en) * 1991-03-22 1992-10-19 Japan Atom Energy Res Inst Treatment of liquid
JP2013184151A (en) * 2012-03-11 2013-09-19 Monobe Engineering:Kk Filter element and filtering device using the same

Also Published As

Publication number Publication date
JP6695542B2 (en) 2020-05-20
JP2019155235A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP2014166629A (en) Gas-liquid mixing device, gas dissolving liquid, ozone water generating system, water treating system and decontaminating method
KR101883895B1 (en) Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably
CN108779006A (en) Hyperpure water manufacturing systems
WO2019172359A1 (en) Dissolved matter removal device, filtration aid used therewith, and dissolved matter removal method
Ye et al. Preparation of a GO/PB-modified nanofiltration membrane for removal of radioactive cesium and strontium from water
EP1487748B1 (en) Electrochemical process for decontamination of radioactive materials
CN110382092A (en) It evaluates the method for the cleannes level of hollow fiber membrane device, wash the method for hollow fiber membrane device and the wash mill for hollow fiber membrane device
JP6089179B2 (en) Manufacturing method of filter cartridge for removing cesium
US7291312B2 (en) Ozone removing material and method for preparing the same
CN202465440U (en) Water treatment system
EP1090668A1 (en) Chelate-forming filter, process for producing the same, and method of purifying liquid with the filter
CN111768885B (en) Radioactive waste liquid treatment system and method
JP2009201421A (en) Method and apparatus for measuring microorganism
Wang et al. Catalytic ceramic membrane integrated with granular activated carbon for efficient removal of organic pollutants
KR102393133B1 (en) Wet cleaning apparatus and wet cleaning method
JP6014409B2 (en) Fly ash treatment method and treatment apparatus
JP2000169828A (en) Powdery chelate-catching material and its production, and ion-catching using the catching material
JP2001239138A (en) Device for treating liquid
KR102397358B1 (en) Method of Preparing KCuHCF Embedded Electrospun Membrane for Cesium Removal
JP6548942B2 (en) Filter evaluation method
JP7220894B2 (en) Metal adsorbent having dithiocarbamic acid group, method for producing the same, and method for extracting metal
JP2016186503A (en) Cleaning method, processing method, cleaning device, and processing device for fly ash
JP3001748B2 (en) Treatment of radioactive liquid waste
JP2001324593A (en) Radioactive waste treatment system for boiling water type nuclear power plant
JP2544360B2 (en) Water filtering device for nuclear reactor plant and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763424

Country of ref document: EP

Kind code of ref document: A1