WO2019172056A1 - 光通信配線の心線対照方法及び心線対照システム - Google Patents

光通信配線の心線対照方法及び心線対照システム Download PDF

Info

Publication number
WO2019172056A1
WO2019172056A1 PCT/JP2019/007693 JP2019007693W WO2019172056A1 WO 2019172056 A1 WO2019172056 A1 WO 2019172056A1 JP 2019007693 W JP2019007693 W JP 2019007693W WO 2019172056 A1 WO2019172056 A1 WO 2019172056A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical communication
light
communication wiring
optical
wiring
Prior art date
Application number
PCT/JP2019/007693
Other languages
English (en)
French (fr)
Inventor
央 高橋
千尋 鬼頭
邦弘 戸毛
真鍋 哲也
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2019172056A1 publication Critical patent/WO2019172056A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present invention relates to an optical communication wiring core wire contrast method and a core wire contrast system.
  • the core line contrast technology exists as a prior art, so that the reliability of the wiring route confirmation can be ensured.
  • the communication wiring is an optical cable
  • there is a method of contrasting the cores by bending the optical cable see, for example, Patent Documents 1 and 2).
  • Patent Document 3 there is also a method of applying a side pressure or bending that does not cause a loss and performing contrast control from waveform fluctuations in an optical pulse test due to polarization fluctuations.
  • the present invention has been made in view of the problems as described above, and a method for controlling optical communication wires and a method for controlling optical communication wires capable of performing optical fiber control of optical communication wires to be operated with a smaller number of work than before.
  • the purpose is to provide a system.
  • the optical fiber wiring core line contrast for identifying the optical communication wiring to be worked from the optical communication wiring group including a plurality of optical communication wirings.
  • An optical measuring instrument comprising an optical coupler, a light source that outputs test light, an interference light measuring instrument, a connection port connected to one end of the optical communication wiring to be worked, and a light reflector And a phase change device that performs a phase change operation for changing the phase of light propagating through one or a plurality of optical communication wires in the optical communication wire group, wherein the optical coupler is output from the light source.
  • the test light is branched, one of the branched test lights is output to one end of the optical communication wiring to be worked through the connection port, and the other of the branched test lights is output to the light reflector.
  • the connection port from the optical communication wiring of the work target A test light reflected by the light reflector and output the combined light to the interference light measuring device.
  • the interference light measuring device includes: a light receiver that measures a light intensity of the combined light; and the work on the one or more optical communication wirings of the optical communication wiring group based on the light intensity of the combined light. And a signal processing unit for determining whether or not the target optical communication wiring is included.
  • the optical fiber wiring core line contrast for specifying the optical communication wiring to be worked out of the optical communication wiring group including a plurality of optical communication wirings.
  • the optical communication wiring core-line control system includes an optical coupler, a light source that outputs test light, an interference light measuring device, and one end of the optical communication wiring to be operated.
  • a phase change operation that changes a phase of light propagating through one or a plurality of optical communication wirings of the optical communication wiring group, and an optical measuring instrument including a connection port connected to the optical reflector;
  • the optical coupler branches the test light output from the light source, and connects one of the branched test lights to one end of the optical communication wiring to be worked through the connection port.
  • Output the other of the branched test lights.
  • Output to the light reflector and combines the return light of the test light input from the optical communication wiring of the work object via the connection port and the test light reflected by the light reflector.
  • the combined light is output to the interference light measuring device, and the control method includes one or more optical communication wirings included in the optical communication wiring group.
  • a second step of measuring the light intensity of each combined light in each case, and the interference light measuring device based on the light intensity of each combined light for the plurality of subgroups, Contains A third step of determining the subgroup, and a group of optical communication wirings included in the subgroup determined to include the optical communication wiring of the work target, the second step and the 4th process which implements a 3rd process, The said 4th process is repeated until the said optical communication wiring of the said operation
  • an optical communication wiring core-wire contrast method and a core-wire contrast system capable of performing optical fiber wiring contrast of an optical communication wiring to be worked with a smaller number of work than before.
  • FIG. 1 schematically illustrates the configuration of an optical communication wiring cord control system according to a first embodiment of the present invention.
  • FIG. 1 it is possible to change the phase of light propagating in the optical communication wiring in the optical communication wiring group 170 configured by the optical measuring instrument 100 and a plurality of optical communication wirings including the optical communication wiring 171 to be worked.
  • a core contrast system with a phase change device 180 is shown.
  • the optical measuring instrument 100 can be connected to one end of the optical communication wiring 171 to be worked.
  • work is performed on a communication device to be renewed or an optical communication wiring associated with a termination port from which the optical communication wiring is removed, so that at least one end of the optical communication wiring 171 to be worked is visually checked.
  • the optical measuring instrument 100 can be connected to one end thereof.
  • the work can be assumed to be removal of the optical communication wiring, change of the wiring route, confirmation of the wiring route, or the like.
  • the optical measuring instrument 100 includes a light source 110, an interference light measuring instrument 120, an optical coupler 130, a connection port 140 to which one end of the optical communication wiring 171 to be worked is connected, and an optical reflector 150.
  • the light source 110, the interference light measuring device 120, the optical coupler 130, the connection port 140, and the light reflector 150 are connected by, for example, an optical fiber.
  • the light source 110 can emit test light.
  • a laser diode or the like can be used as the light source 110 .
  • the interference light measuring device 120 includes a light receiver 121 that measures the intensity of the interference light output from the optical coupler 130, and a target optical communication wiring group based on the light intensity measured by the light receiver 121. And a signal processing unit 122 that determines whether or not the communication wiring 171 is included.
  • the interference light measuring device 120 may be composed of a combination of a light receiver and an electric spectrum analyzer.
  • the optical coupler 130 includes a first optical port 131 connected to the light source 110, a second optical port 132 connected to the interference light measuring device 120, and a third optical port 133 connected to the connection port 140.
  • a fourth optical port 134 connected to the light reflector 150.
  • the optical coupler 130 branches the test light output from the light source 110, and outputs one of the branched test lights to the optical communication wiring 171 to be worked through the third optical port 133 and the connection port 140. The other is output to the light reflector 150 via the fourth optical port 134. Further, the optical coupler 130 combines the light input from the connection port 140 to the third optical port 133 and the light input from the optical reflector 150 to the fourth optical port 134, and the combined light. Is output to the interference light measuring device 120 via the second optical port 132.
  • connection port 140 is configured to be connectable to at least one end of the optical communication wiring 171 to be worked.
  • the light reflector 150 reflects the light output from the fourth optical port 134 of the optical coupler 130.
  • the light reflector 150 can be a mirror, for example.
  • the phase change device 180 can perform a phase change operation for changing the phase of the propagation light by changing the propagation characteristics of the light propagating through the optical communication wiring in the optical communication wiring group 170. From the viewpoint of optical loss, the phase change device 180 preferably performs a phase change operation on the optical communication wiring by a non-contact method.
  • a non-contact phase change device 180 for example, a sound wave generation source such as a speaker can be used. Since the sound wave has a characteristic of being transmitted through the optical communication wiring or air, it is possible to simultaneously change the plurality of optical communication wirings.
  • the phase change device 180 preferably performs a phase change operation by a non-contact method so as not to cause an optical loss. However, the phase change device 180 is in contact with the optical communication wiring within a range where no loss is generated. Also good.
  • connection port 150 of the optical measuring instrument 100 is connected to one end of the optical communication wiring 171 to be worked, and the phase The changing device 180 is arranged close to the optical communication wiring group 170.
  • the test light output from the light source 110 of the optical measuring instrument 100 propagates through the optical communication wiring 171 to be worked through the first optical port 131, the third optical port 133, and the connection port 140 of the optical coupler 130. Then, the light enters the optical reflector 150 through the fourth optical port 134 of the optical coupler 130.
  • the test light propagating through the work optical communication line 171 is reflected by the end face of the other end of the work optical communication line 171 and returns to the optical measuring instrument 100 or backscattered throughout the work optical communication line 171.
  • the third optical port 133 of the optical coupler 130 in the optical measuring instrument 100 is reached.
  • the test light incident on the light reflector 150 is reflected by the light reflector 150 and reaches the fourth optical port 134 of the optical coupler 130.
  • the return light incident on the third optical port 133 of the optical coupler 130 and the return light incident on the fourth optical port 134 are combined by the optical coupler 130 and measured for interference light via the second optical port 132.
  • the light intensity is output to the light receiver 121 of the instrument 120 and the light intensity is measured.
  • the signal processing unit 122 based on the intensity of the interference light measured by the light receiver 121, it is determined whether or not the optical communication wiring that has undergone the phase change operation by the phase change device 180 is the optical communication wiring 171 to be worked. .
  • a speaker can be used as the phase change device 180 (hereinafter, the speaker as the phase change device 180 is referred to as “speaker 180”).
  • the speaker as the phase change device 180 is referred to as “speaker 180”.
  • the optical communication wiring 171 to be worked is compared with the eight optical communication wirings, as an example, a case where the speaker 180 generates a sound wave 1 and performs a phase change operation on the optical communication wiring is exemplified.
  • the speaker 180 generates a sound wave 1 and performs a phase change operation on the optical communication wiring is exemplified.
  • FIGS. 2 to 4 illustrate steps in the optical fiber wiring core-line contrast method according to the first embodiment of the present invention.
  • the optical measuring instrument 100 is connected to one end of the optical communication wiring 171 to be worked, and eight optical communication wirings are connected.
  • the optical communication wiring group 170 that is included is grouped into subgroups G1 and G2 each including, for example, four of them, and a speaker 180 is disposed between the subgroups G1 and G2.
  • the sound wave 1 is output toward.
  • the sound wave 1 hits the subgroup G1, and the refractive index of the test light propagating through the optical communication wiring in the subgroup G1 changes slightly due to the sound wave 1.
  • This change in refractive index gives a phase change to the test light propagating in the optical communication wiring.
  • the frequency of the sound wave 1 is f 1
  • the intensity is m 1
  • the amplitude of the sound wave 1 is A
  • the frequency of the light is f opt
  • the phase of the sound wave 1 is ⁇ 1
  • the light E 1 (t) is expressed by the following (formula 1).
  • the test light whose phase has been changed by the sound wave 1 is reflected at the far end of the optical communication wiring 171 to be worked or backscattered by the entire optical communication wiring 171 to be worked, and returns to the optical measuring instrument 110 to return to the optical measuring instrument 110.
  • the optical coupler 130 is reached.
  • the optical coupler 130 combines the return light from the optical communication wiring 171 to be worked with the return light reflected by the light reflector 150 and outputs the combined light to the interference light measuring device 120.
  • the return light E 2 (t) reflected by the light reflector 150 is expressed by the following (formula 2).
  • the interference light measuring device 120 outputs a signal represented by the following (Equation 3).
  • the interference light measuring device 120 detects an electrical signal having a frequency of f 1 . By analyzing the frequency of this signal with an electric spectrum analyzer, the frequency of the sound wave 1 can be analyzed.
  • the electrical signal may be converted into a digital signal by A / D conversion and Fourier transformed. That is, in the light receiver 121 of the interference light measuring device 120, light of the frequency of the sound wave 1 is caused by interference between the return light whose phase is changed by the sound wave 1 and the return light which is reflected by the light reflector 150 and whose phase is not changed. Detected. At this time, in the light receiver 121, as shown in FIG. 2B, the measurement intensity of the light having the frequency of the sound wave 1 is greatly measured.
  • step 2 the speaker 180 is inverted and the sound wave 1 is output toward the subgroup G2.
  • the sound wave 1 does not hit the subgroup G1
  • the phase of the return light from the optical communication wiring 171 to be worked is not changed, and the light having the frequency of the sound wave 1 is not detected by the light receiver 121.
  • the sound wave 1 propagates in the air or goes from the subgroup G2 to the subgroup G1, and the phase of the return light from the optical communication wiring 171 to be worked is changed by the sound wave 1.
  • the optical communication wiring 171 to be worked is phase-modulated by both the sound wave 1 and the sound wave 2
  • the return light E ′ 1 (t) from the optical communication wiring 171 to be worked is expressed by the following (formula 4 ).
  • the frequency of the sound wave 2 is f 2
  • the intensity is m 2
  • the phase of the sound wave 2 is ⁇ 2 .
  • the interference light measuring device 120 outputs a signal represented by the following (Equation 5).
  • the intensity of the frequency of f 1 is m 1 and the intensity of the frequency of f 2 is m 2 .
  • m 1 > m 2 because the sound wave 1 that has applied the sound wave 1 to the subgroup G2 and circulated from the subgroup G2 to the subgroup G1 attenuates. That is, when the sound wave 1 propagates in the air or travels from the subgroup G2 to the subgroup G1, compared to the case where the sound wave 1 is directly applied to the subgroup G1 and the phase is changed directly, for example, in FIG. As shown, the measured intensity of the light receiver 121 is reduced.
  • the signal processing unit 122 stores the measurement results in step 1 and step 2 and compares the intensity. At this time, it can be seen that the optical communication wiring 171 to be worked exists in the optical communication wiring group to which the sound wave is applied in the process having the higher intensity. In this example, the signal processing unit 122 determines that the work target optical communication wiring 171 is in the subgroup G1.
  • step 3 as shown in FIG. 3A, the subgroup G1 identified in steps 1 and 2 is further divided into, for example, two subgroups G3 and G4, and the subgroup G3 and subgroup are grouped.
  • the speaker 180 is disposed between G4, and the sound wave 1 is output from the speaker 180 toward, for example, the subgroup G3.
  • step 4 as shown in FIG. 3C, the speaker 180 is inverted and the sound wave 1 is output toward the subgroup G4.
  • the signal processing unit 122 stores the measurement results in the process 3 and the process 4, and compares the intensities. In this example, as shown in FIGS. 3B and 3D, since the light intensity is larger in the case of step 3, the signal processing unit 122 indicates that the optical communication wiring 171 to be worked is in the subgroup G3. judge.
  • step 5 the subgroup G3 composed of two optical communication lines is grouped into an optical communication line G5 and an optical communication line G6, and the optical communication line G5 and the optical communication line are grouped.
  • a speaker 180 is disposed between the communication wiring G6 and the sound wave 1 is output from the speaker 180 toward the optical communication wiring G5, for example.
  • step 6 as shown in FIG. 4C, the speaker 180 is reversed and the sound wave 1 is output toward the optical communication wiring G6.
  • the signal processing unit 122 stores the measurement results in step 5 and step 6 and compares the strengths.
  • the signal processing unit 122 uses the optical communication line G5 as the work target optical communication line 171. Is determined. Thus, the optical fiber wiring core wire comparison work is completed.
  • the optical communication wirings included in the subgroup that is determined to include the optical communication wiring 171 to be worked are grouped into a plurality of groups.
  • the phase change operation for the subgroup is repeated until the optical communication wiring 171 to be worked is specified.
  • the optical communication wiring is contrasted when the optical communication wiring is removed.
  • the removal work proceeds while cutting the optical communication wiring little by little when removing the optical communication.
  • the phase of the test light passing through the optical communication line is changed by applying a sound wave in front of the cut surface of the cut optical communication line.
  • the optical fiber wiring core wire contrast method according to the present invention is applicable.
  • the signal processing unit 122 may include a transmission unit that transmits a determination result to the phase change device 180.
  • the phase change device 180 sends a signal processing unit to a worker in charge of bringing the phase change device 180 close to the optical communication wiring group 170.
  • a notification unit that notifies the determination result transmitted from the transmission unit 122 using a notification sound may be included. Thereby, the contrast work can be completed by one worker.
  • the optical communication wiring group 170 may be fixed by pressing with a plate or fixed with tape. This is not limited as long as the intensity of the sound wave propagating through the optical communication wiring group 170 can be attenuated and can be fixed to the extent that no loss occurs.
  • the phase change device 180 may include a fixing unit 181 including, for example, a plate for holding the optical communication wiring group 170.
  • the optical communication wiring group 170 can be pressed and fixed by the fixing unit 181.
  • a mechanism for moving the fixed portion 181 up and down by providing a movable portion in the phase change device 180 may be provided.
  • phase change device 180 performs a phase change operation on the optical communication wiring by sound waves.
  • the phase change operation may be performed on the optical communication wiring by applying a dynamic vibration, an electric field, a magnetic field, a heat amount, a distortion, and the like.
  • the optical communication wiring core line control system compares the optical communication wiring 171 to be worked among the optical communication wiring candidates to be worked, confirms the wiring route, and performs the work. By performing the process of cutting at a good location and removing the section of the cut optical communication wiring, a reliable removal work can be realized without changing the optical communication wiring 171 to be worked.
  • Z lights (where Z is a natural number satisfying 2 N-1 ⁇ Z ⁇ 2 N and N is a natural number of 2 or more) are used. It is possible to identify the optical communication wiring 171 to be worked by performing the core wire contrast work at least 2N times from the communication wiring group 170.
  • optical communication wiring group and the subgroup are grouped in half.
  • the present invention is not limited to this, and the optical communication wiring can be grouped by an arbitrary number. The same applies to the following embodiments.
  • FIG. 6 illustrates the configuration of the phase change device 280 used in the second embodiment of the present invention.
  • the phase change device 280 can be a directional speaker that generates first and second sound waves 1 and 2 having different intensities or frequencies in different directions.
  • the directional speaker used as the phase change device 280 is referred to as “speaker 280”).
  • the speaker 280 when comparing the optical communication wiring 171 to be worked with the eight optical communication wirings, as an example, the speaker 280 generates the first sound wave 1 in one direction and the second sound wave 2 in the other direction.
  • a case where a phase change is given to light propagating through the optical communication wiring will be described as an example.
  • the optical measuring instrument 100 is connected to one end of the optical communication wiring 171 to be worked in the optical communication wiring group 170, and includes eight optical communication wirings.
  • the optical communication wiring group 170 is grouped, for example, into four subgroups G1 and G2, and a speaker 280 is disposed between the subgroups G1 and G2, and the first group is directed from the speaker 280 toward the subgroup G1.
  • the sound wave 1 is output, and the second sound wave 2 is output toward the subgroup G2.
  • the optical coupler 130 combines the return light from the optical communication wiring 171 to be worked with the return light reflected by the light reflector 150 and outputs the combined light to the interference light measuring device 120.
  • the interference between the return light whose phase is changed by the first sound wave 1 and the return light which is reflected by the light reflector 150 and whose phase is not changed is that of the first sound wave 1. Frequency light is detected.
  • the second sound wave 2 propagates in the air or goes around from the subgroup G2 to the subgroup G1, and the phase of the return light from the optical communication wiring 171 to be worked is changed by the second sound wave 2.
  • the second sound wave 2 that circulates from the subgroup G2 to the subgroup G1 is attenuated, when the second sound wave 2 circulates from the subgroup G2 to the subgroup G1, the second sound wave 2 is Compared with the case of direct phase change applied to the group G1, for example, as shown in FIGS. 7B and 7C, the measured intensity of the light receiver 121 is reduced.
  • FIG. 8 illustrates a state in which eight optical communication wirings are congested.
  • the optical communication wiring 171A in the optical communication wiring group 170 exists in the subgroup G2 in the work section 1, but in the work section 2
  • a case of existing in the subgroup G1 is also conceivable.
  • the optical communication wiring 171 to be worked is subjected to the same level of phase modulation by the first sound wave 1 and the second sound wave 2.
  • the two subgroups are fixed by the phase change device 180 provided with the fixing unit 181 shown in FIG.
  • the desired sound wave can be strongly applied only to the subgroup of the desired work section, and the phase modulation due to the sound wave can be suppressed in the other subgroups of the work section. Therefore, even in this case, it is possible to specify in which subgroup the optical communication wiring 171 to be worked is based on the magnitude of the measurement intensity.
  • the signal processing unit 122 stores the measurement result in step 1 and compares the intensity.
  • the signal processing unit 122 since the light intensity of the light of the frequency of the first sound wave 1 is higher, the signal processing unit 122 has the optical communication wiring 171 to be operated as a sub It determines with existing in group G1.
  • step 2 as shown in FIG. 9A, the subgroup G1 identified in step 1 is further divided into, for example, two subgroups G3 and G4, and the subgroup G3 and subgroup G4 are grouped.
  • a speaker 280 is disposed between the speaker 280 and the first sound wave 1 is output from the speaker 280 toward the subgroup G3, for example, and the second sound wave 2 is output toward the subgroup G4.
  • the signal processing unit 122 stores the measurement result in step 2 and compares the intensity.
  • the signal processing unit 122 since the light intensity of the light of the frequency of the first sound wave 1 is larger, the signal processing unit 122 has the optical communication wiring 171 to be worked as a sub It determines with existing in group G3.
  • step 3 as shown in FIG. 10A, the subgroup G3 composed of two optical communication lines is grouped into an optical communication line G5 and an optical communication line G6, and the optical communication line G5 and the optical communication line are grouped.
  • a speaker 280 is disposed between the communication wiring G6, the first sound wave 1 is output from the speaker 280 toward, for example, the optical communication wiring G5, and the second sound wave 2 is output toward the optical communication wiring G6.
  • the signal processing unit 122 stores the measurement result in step 3 and compares the intensity.
  • the signal processing unit 122 uses the optical communication wiring G5 as the work target light.
  • the communication wiring 171 is determined.
  • the optical fiber wiring core wire comparison work is completed.
  • the optical communication wirings included in the subgroup that is determined to include the optical communication wiring 171 to be worked are grouped into a plurality of groups.
  • the phase change operation for the subgroup is repeated until the optical communication wiring 171 to be worked is specified.
  • X (where X is a natural number satisfying 2 N-1 ⁇ X ⁇ 2 N and N is a natural number of 2 or more). It is possible to identify the optical communication wiring 171 to be worked by performing at least N core wire comparison operations from the communication wiring group 170.
  • the phase change device 280 generates the first sound wave 1 and the second sound wave 2 having two different frequencies, that is, the change pattern in the phase change device 280 is 2.
  • An example is given.
  • the optical communication wiring group 170 and the subgroups can be grouped into three or more to perform the same operation.
  • the number of change patterns in the phase change device 280 is M
  • there are Y optical communication wiring groups 170 (where Y is a natural number satisfying M N-1 ⁇ Y ⁇ M N and N is a natural number of 2 or more). It is possible to identify the optical communication wiring 171 to be worked by performing the core wire contrast work at least N times.
  • phase change device 280 changes the phase of the light propagating through the optical communication wiring using sound waves having different frequencies.
  • the phase of the light propagating through the optical communication wiring in the optical communication wiring group 170 is changed by applying a sound wave, mechanical vibration of different vibration patterns, different electric fields, different magnetic fields, different amounts of heat, different distortions, etc. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

従来よりも少ない作業数で作業対象の光通信配線の心線対照が可能な光通信配線の心線対照方法及び心線対照システムを提供すること。本発明は、複数の光通信配線を含む光通信配線群の中から作業対象の光通信配線を特定するための光通信配線の心線対照システム及びその方法であって、光カプラは、光源から出力される試験光を分岐して一方を接続ポートを介して作業対象の光通信配線の一端に出力し、分岐した試験光の他方を光反射器に出力し、作業対象の光通信配線から接続ポートを介して入力される試験光の戻り光と、光反射器によって反射された試験光と、を合波して干渉光測定器に出力するように構成され、干渉光測定器は、合波光の光強度に基づいて光通信配線群のうちの1又は複数の光通信配線に作業対象の光通信配線が含まれるか否かを判定することを特徴とする。

Description

光通信配線の心線対照方法及び心線対照システム
 本発明は、光通信配線の心線対照方法及び心線対照システムに関する。
 近年、通信事業者の通信ビルやデータセンタなどにおいては、数多くの光サービス加入者やサーバ間の配線を行うための光ファイバ設備量は増加の一途を辿っており、通信ビルやデータセンタ内での通信トラフィックが急増している。大量の通信トラフィック需要に対応するため、日本におけるデータセンタにおいても通信媒体がメタルケーブルから光ケーブルに入れ替えられる過渡期を迎えている。今後、データセンタ内の通信配線は、光ケーブルが高い割合を占めることが予想されている。
 また、ハウジングやコロケーションと呼ばれるデータセンタの事業形態においては、伝送装置やサーバなど通信機器の陳腐化が数年で進むため、装置の更改や、装置の更改を契機とするユーザの入れ替えが頻発している。この時、構内配線を成端する成端架から通信機器を収容するラックまでの通信配線、およびラック間を接続する通信配線は、機器の入れ替えの度に新設することが現在の主流であり、新規導入した通信機器が正常に稼働した後に、旧型の通信機器の撤去とともに、通信配線を撤去することが多い。
特開平01-237509号公報 特開平02-001632号公報 特開2009-244610公報
 設備の更改に伴う撤去や移動を行う際には、特定の通信配線の位置やその経路を探索する必要がある。しかし、成端架から通信機器を収容するラックまでの通信配線、およびラック間を接続する通信配線は、通常、フリーアクセスと呼ばれる床下空間や人の手が届かないラックの架上に配線されているため、通信配線の一端から他端までの配線ルートを目視で直接確認することは困難である。
 また、ラックを収容するフロアの規模にもよるが、数百本もの単心コードが同一区間に並列して敷設されている場合もあり、配線ルートを目視で確認することがより困難な状況にある。さらに、通信配線の余長を確保するために、配線ルート中にはとぐろを巻かせてある場合が多く、配線ルート中で通信配線が輻輳していることも考えられ、配線ルートの確認は困難を極める。
 目視で配線ルートを確認することが困難な通信配線について、ラックから成端架までの通信配線を撤去する場合、更改する通信機器に接続された通信配線を抜去し、通信機器側から通信配線を弄りながら、成端架に至るまで少しずつ進み、撤去を完了しなければならない。そのため、配線ルートが容易に確認できる場合と比較して、撤去工事に何倍もの時間を要することになる。
 通信配線がメタルケーブルの場合には、心線対照技術が先行技術として存在するため、配線ルートの確認の確実性を担保することができる。一方、通信配線が光ケーブルの場合においては、光ケーブルに曲げを加えることで心線対照する方法がある(例えば、特許文献1及び2参照)。しかし、輻輳している光ケーブルに対して、1本ずつ作業を実施する必要があり、数10から100本以上の非常に多い光ケーブルについて、多くなればなるほど実施が困難である。
 さらに、曲げを加える特性上、作業をする光ケーブル以外にも損失を与えてしまうことも問題である。また、多くのユーザが乗り入れ、規格や仕様が異なる伝送装置や通信媒体が使用されているハウジングやコロケーションなどの事業形態において、撤去すべき心線以外に光損失を与えることは、人為故障などトラブルの要因となり得るからである。
 特許文献3に記載のように、損失を与えない程度の側圧または曲げを与えて、偏波変動による光パルス試験の波形揺らぎから心線対照を行う方法もある。しかし、輻輳している光ケーブルに対して、1本ずつ作業を実施する必要があり、特許文献1及び2に記載の方法と同様に、数10から100本以上の非常に多い光ケーブルについて、実施困難である。
 本発明は、上記のような課題を鑑みてなされたものであり、従来よりも少ない作業数で作業対象の光通信配線の心線対照が可能な光通信配線の心線対照方法及び心線対照システムを提供することを目的とする。
 本発明の一態様に係る光通信配線の心線対照システムによると、複数の光通信配線を含む光通信配線群の中から作業対象の光通信配線を特定するための光通信配線の心線対照システムであって、光カプラと、試験光を出力する光源と、干渉光測定器と、前記作業対象の光通信配線の一端に接続される接続ポートと、光反射器と、を含む光計測器と、前記光通信配線群のうちの1又は複数の光通信配線を伝搬する光の位相を変化させる位相変化動作を行う位相変化装置と、を備え、前記光カプラは、前記光源から出力される前記試験光を分岐して、当該分岐した試験光の一方を前記接続ポートを介して前記作業対象の光通信配線の一端に出力し、前記分岐した試験光の他方を前記光反射器に出力し、前記作業対象の光通信配線から前記接続ポートを介して入力される前記試験光の戻り光と、前記光反射器によって反射された前記試験光と、を合波して、当該合波光を前記干渉光測定器に出力するように構成され、前記干渉光測定器は、前記合波光の光強度を測定する受光器と、前記合波光の光強度に基づいて、前記光通信配線群のうちの前記1又は複数の光通信配線に前記作業対象の光通信配線が含まれるか否かを判定する信号処理部と、を含むことを特徴とする。
 本発明の一態様に係る光通信配線の心線対照方法によると、複数の光通信配線を含む光通信配線群の中から作業対象の光通信配線を特定するための光通信配線の心線対照システムを用いた光通信配線の対照方法において、前記光通信配線の心線対照システムは、光カプラと、試験光を出力する光源と、干渉光測定器と、前記作業対象の光通信配線の一端に接続される接続ポートと、光反射器と、を含む光計測器と、前記光通信配線群のうちの1又は複数の光通信配線を伝搬する光の位相を変化させる位相変化動作を行う位相変化装置と、を備え、前記光カプラは、前記光源から出力される前記試験光を分岐して、当該分岐した試験光の一方を前記接続ポートを介して前記作業対象の光通信配線の一端に出力し、前記分岐した試験光の他方を前記光反射器に出力し、前記作業対象の光通信配線から前記接続ポートを介して入力される前記試験光の戻り光と、前記光反射器によって反射された前記試験光と、を合波して、当該合波光を前記干渉光測定器に出力するように構成され、前記対照方法は、前記光通信配線群に含まれる光通信配線を複数にグループ分けすることによって構成された1又は複数の前記光通信配線を含む複数のサブグループに対して、それぞれ、前記位相変化動作を行う第1の工程と、前記干渉光測定器が、前記複数のサブグループに対して前記位相変化動作を行った場合における、各合波光の光強度をそれぞれ測定する第2の工程と、前記干渉光測定器が、前記複数のサブグループについての各合波光の光強度に基づいて、前記作業対象の光通信配線が含まれる前記サブグループを判定する第3の工程と、前記作業対象の光通信配線が含まれると判定された前記サブグループに含まれる光通信配線を複数にグループ分けして、前記第2の工程及び前記第3の工程を実施する第4の工程と、を含み、前記第4の工程は、前記作業対象の光通信配線が特定されるまで、繰り返されることを特徴とする。
 本発明によれば、従来よりも少ない作業数で作業対象の光通信配線の心線対照が可能な光通信配線の心線対照方法及び心線対照システムを提供することが可能となる。
本発明の第1の実施形態に係る光通信配線の心線対照システムの構成を概略的に例示する図である。 本発明の第1の実施形態に係る光通信配線の心線対照方法における工程を説明する図である。 本発明の第1の実施形態に係る光通信配線の心線対照方法における工程を説明する図である。 本発明の第1の実施形態に係る光通信配線の心線対照方法における工程を説明する図である。 固定部181を位相変化装置180に搭載した例を示す図である。 本発明の第2の実施形態に係る位相変化装置の構成を例示する図である。 本発明の第2の実施形態に係る光通信配線の心線対照方法における工程を説明する図である。 8本の光通信配線が輻輳している状態を例示する図である。 本発明の第2の実施形態に係る光通信配線の心線対照方法における工程を説明する図である。 本発明の第2の実施形態に係る光通信配線の心線対照方法における工程を説明する図である。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る光通信配線の心線対照システムの構成を概略的に例示する。図1には、光計測器100と、作業対象の光通信配線171を含む複数の光通信配線で構成された光通信配線群170における光通信配線を伝搬する光の位相を変化させることが可能な位相変化装置180と、を備えた心線対照システムが示されている。
 本発明では、作業対象の光通信配線171の少なくとも一端は目視で確認できること、及び作業対象の光通信配線171の一端に光計測器100を接続できることを前提とする。一般的に、更改される通信機器または光通信配線を抜去する成端架のポートに付随する光通信配線に対して作業が行われることから、作業対象の光通信配線171の少なくとも一端は目視で確認でき、その一端に光計測器100を接続することができる。ここで、作業とは、例えば、光通信配線の撤去、配線ルートの変更、配線ルートの確認等を想定することができる。
 光計測器100は、光源110と、干渉光測定器120と、光カプラ130と、作業対象の光通信配線171の一端が接続される接続ポート140と、光反射器150と、を含む。光源110と、干渉光測定器120と、光カプラ130と、接続ポート140と、光反射器150とは、例えば光ファイバによって接続されている。
 光源110は、試験光を出射することができる。光源110としては、例えば、レーザダイオード等を用いることができる。
 干渉光測定器120は、光カプラ130から出力された干渉光の強度を測定する受光器121と、受光器121で測定された光強度に基づいて候補となる光通信配線群に作業対象の光通信配線171が含まれるか否かを判定する信号処理部122と、を含む。干渉光測定器120は、受光器と電気スペクトルアナライザの組み合わせで構成してもよく、受光器と、受光器で測定した受光強度をA/D変換するA/D変換器と、A/D変換器からの出力信号に基づいて制御を行う信号処理部との組み合わせで構成してもよい。
 光カプラ130は、光源110に接続された第1の光ポート131と、干渉光測定器120に接続された第2の光ポート132と、接続ポート140に接続された第3の光ポート133と、光反射器150に接続された第4の光ポート134と、を有する。
 光カプラ130は、光源110から出力された試験光を分岐して、当該分岐した試験光の一方を第3の光ポート133及び接続ポート140を介して作業対象の光通信配線171に出力し、他方を第4の光ポート134を介して光反射器150に出力する。また、光カプラ130は、接続ポート140から第3の光ポート133に入力された光と、光反射器150から第4の光ポート134に入力された光とを合波して、当該合波光を第2の光ポート132を介して干渉光測定器120に出力する。
 接続ポート140は、作業対象の光通信配線171の少なくとも一端と接続可能に構成されている。
 光反射器150は、光カプラ130の第4の光ポート134から出力された光を反射する。光反射器150としては、例えばミラーとすることができる。
 位相変化装置180は、光通信配線群170における光通信配線を伝搬する光の伝搬特性を変化させることにより当該伝搬光の位相を変化させる位相変化動作を行うことができる。位相変化装置180は、光損失の観点から、光通信配線に非接触な手法で、光通信配線に対して位相変化動作を行うことが好ましい。このような非接触の位相変化装置180としては、例えば、スピーカなどの音波の発生源を用いることができる。音波は、光通信配線や空気を介して伝わる特性を有しているため、複数の光通信配線に同時に変化を与えることができる。
 なお、位相変化装置180は、光損失を与えないように非接触な手法により位相変化動作を行うものが好ましいが、損失を発生させない範囲で、光通信配線に接触させて位相変化動作を行ってもよい。
 本発明の第1の実施形態に係る光通信配線の心線対照システムでは、図1に示すように、作業対象の光通信配線171の一端に光計測器100の接続ポート150を接続し、位相変化装置180を光通信配線群170に近づけて配置する。光計測器100の光源110から出力された試験光は、光カプラ130の第1の光ポート131、第3の光ポート133及び接続ポート140を介して作業対象の光通信配線171を伝搬するとともに、光カプラ130の第4の光ポート134を介して光反射器150に入射する。
 作業対象の光通信配線171を伝搬する試験光は、作業対象の光通信配線171の他端の端面で反射されて光計測器100に戻るか、または作業対象の光通信配線171全体で後方散乱されて光計測器100に戻ることにより、光計測器100内の光カプラ130の第3の光ポート133に到達する。一方で、光反射器150に入射した試験光は、光反射器150によって反射されて光カプラ130の第4の光ポート134に到達する。
 光カプラ130の第3の光ポート133に入射した戻り光及び第4の光ポート134に入射した戻り光は、光カプラ130で合波されて、第2の光ポート132を介して干渉光測定器120の受光器121に出力されて、その光強度が測定される。
 信号処理部122では、受光器121によって測定された干渉光の強度に基づいて、位相変化装置180によって位相変化動作がなされた光通信配線が作業対象の光通信配線171か否かが判定される。
 図2乃至図4を用いて、本発明の第1の実施形態に係る光通信配線の心線対照方法の具体的な実施方法の例を説明する。位相変化装置180としては、例えばスピーカを用いることができる(以下、位相変化装置180としてのスピーカを「スピーカ180」とする)。以下では、8本の光通信配線から作業対象の光通信配線171を対照する場合において、例示として、スピーカ180が音波1を発生することにより光通信配線に対して位相変化動作を行う場合を例に説明する。
 図2乃至図4は、本発明の第1の実施形態に係る光通信配線の心線対照方法における工程を説明する。まず、図2(a)に示すように、工程1で、光通信配線群170のうち、作業対象の光通信配線171の一端に、光計測器100を接続し、8本の光通信配線を含む光通信配線群170を、例えばその半数である4本ずつサブグループG1とサブグループG2とにグループ分けし、サブグループG1及びG2の間にスピーカ180を配置し、スピーカ180から例えばサブグループG1に向けて音波1を出力する。
 サブグループG1には音波1があたり、サブグループG1における光通信配線を伝搬する試験光の屈折率が音波1により微弱に変化する。この屈折率の変化は、光通信配線内を伝搬する試験光に位相変化を与える。ここで、音波1の周波数をf1、強度をm1、音波1の振幅をA、光の周波数をfopt、音波1の位相をφ1とすると、作業対象の光通信配線171からの戻り光E1(t)は、以下の(式1)で表される。
Figure JPOXMLDOC01-appb-M000001
 この音波1で位相変化された試験光は、作業対象の光通信配線171の遠端で反射、または作業対象の光通信配線171全体で後方散乱され、光計測器110に戻り、光計測器110内の光カプラ130に到達する。
 光カプラ130は、作業対象の光通信配線171からの戻り光と、光反射器150によって反射された戻り光とを合波し、干渉光測定器120に出力する。ここで、光反射器150によって反射された戻り光E2(t)は、以下の(式2)で表される。
Figure JPOXMLDOC01-appb-M000002
 そのため、干渉光測定器120では、以下の(式3)で表される信号が出力される。
Figure JPOXMLDOC01-appb-M000003
ここで、φ1は時間に対して変化しない。そのため、干渉光測定器120では、f1の周波数の電気信号が検出される。この信号を電気スペクトラムアナライザで周波数解析することで、音波1の周波数を解析できる。
 また、周波数解析では、電気信号をA/D変換によりデジタル信号に変換し、フーリエ変換してもよい。つまり、干渉光測定器120の受光器121では、音波1によって位相変化された戻り光と光反射器150によって反射された位相変化されていない戻り光との干渉により、音波1の周波数の光が検出される。このとき、受光器121では、図2(b)に示すように、音波1の周波数の光の測定強度が大きく測定される。
 次に、図2(c)に示すように、工程2において、スピーカ180を反転させて、サブグループG2に向けて音波1を出力する。このとき、サブグループG1には音波1があたらないため、作業対象の光通信配線171からの戻り光は位相変化されず、受光器121では音波1の周波数の光は検出されない。
 または、音波1が空気中の伝搬若しくはサブグループG2からサブグループG1へ回り込み、音波1により作業対象の光通信配線171からの戻り光が位相変化されてしまう場合も想定される。ここで、作業対象の光通信配線171が音波1と音波2との両方で位相変調された場合、作業対象の光通信配線171からの戻り光E’1(t)は、以下の(式4)で表される。ここで、音波2の周波数をf2とし、強度をm2とし、音波2の位相をφ2とする。
Figure JPOXMLDOC01-appb-M000004
 そのため、干渉光測定器120では、以下の(式5)で表される信号が出力される。
Figure JPOXMLDOC01-appb-M000005
 ここで、周波数解析した場合、f1の周波数の強度はm1であり、f2の周波数の強度はm2である。しかし、音波1をサブグループG2にあててサブグループG2からサブグループG1に回り込んだ音波1は減衰するため、m1>m2と仮定できる。
つまり、音波1が空気中の伝搬若しくはサブグループG2からサブグループG1へ回り込んだ場合は、音波1をサブグループG1にあてて直接位相変化させる場合と比較して、例えば図2(d)に示すように受光器121の測定強度は小さくなる。
 信号処理部122は、この工程1と工程2での測定結果を保存し、強度の比較を行う。このとき、強度が大きい方の工程で音波をあてた光通信配線群に作業対象の光通信配線171があることがわかる。本例では、信号処理部122は、作業対象の光通信配線171がサブグループG1にあると判定する。
 工程3では、図3(a)に示すように、工程1及び2で特定したサブグループG1をさらに例えば2本ずつのサブグループG3とサブグループG4とにグループ分けし、サブグループG3とサブグループG4の間にスピーカ180を配置して、スピーカ180から例えばサブグループG3に向けて音波1を出力する。次に、工程4において、図3(c)に示すように、スピーカ180を反転させて、サブグループG4に向けて音波1を出力する。
 信号処理部122は、工程3と工程4での測定した結果を保存し、強度の比較を行う。本例では、図3(b)及び(d)に示すように、工程3の場合のほうが光強度が大きいため、信号処理部122は、作業対象の光通信配線171がサブグループG3にあると判定する。
 最後に、工程5において、図4(a)に示すように、2本の光通信配線からなるサブグループG3を光通信配線G5と光通信配線G6とにグループ分けし、光通信配線G5と光通信配線G6との間にスピーカ180を配置して、スピーカ180から例えば光通信配線G5に向けて音波1を出力する。次に、工程6において、図4(c)に示すように、スピーカ180を反転させて、光通信配線G6に向けて音波1を出力する。
 信号処理部122は、工程5と工程6での測定結果を保存し、強度の比較を行う。本例では、図4(b)及び(d)に示すように、工程5の場合のほうが光強度が大きいため、信号処理部122は、光通信配線G5が作業対象の光通信配線171であると判定する。以上で、光通信配線の心線対照作業が終了する。
 このように、本発明の一態様に係る心線対照方法では、作業対象の光通信配線171が含まれると判定されたサブグループに含まれる光通信配線を複数にグループ分けし、そのグループ分けしたサブグループに対して位相変化動作を行うことを、作業対象の光通信配線171が特定されるまで繰り返している。
 ここで、光通信配線の対照は、光通信配線の撤去時に行われることが想定される。同じ配線ルートに通信配線が多条に敷設され、輻輳状態になっている場合、光通信の撤去時には少しずつ光通信配線を切断しながら撤去作業を進めることになる。このように光通信配線を途中で切断して長さが変化した場合でも、切断した光通信配線の切断面の手前に音波をあてることにより光通信配線内を通る試験光は位相変化されるため、本発明に係る光通信配線の心線対照方法は適用可能である。
 信号処理部122は、判定結果を位相変化装置180に送信する送信部を含んでもよく、位相変化装置180は、位相変化装置180を光通信配線群170に接近させる担当の作業員に信号処理部122の送信部から送信された判定結果を、例えば通知音により通知する通知部を含んでもよい。それにより、一人の作業員で対照作業を完遂することができる。
 光通信配線群170は、板で押さえて固定しても、テープで固定してもよい。これは、光通信配線群170を伝搬する音波の強度を減衰させられればよく、損失を与えない程度に固定できればよい。例えば、図5(a)及び(b)に示すように、位相変化装置180は、光通信配線群170を押さえるための例えば板などを有する固定部181を有してもよい。固定部181により、例えば、図5(a)及び(b)に示すように、光通信配線群170を押さえつけて固定することが可能となる。また、位相変化装置180に可動部を設けて固定部181を上下に動かす機構を設けてもよい。
 本実施形態では、位相変化装置180が音波によって光通信配線に対して位相変化動作を行う例を示したが、これに限定されず、位相変化装置180は、例えば、ピエゾ素子などで発生する機械的振動、電場、磁場、熱量、歪等を与えることにより、光通信配線に対して位相変化動作を行ってもよい。
 本発明の第1の実施形態に係る光通信配線の心線対照システムにより、作業対象の光通信配線の候補の内から、作業対象の光通信配線171を対照し、配線ルートを確認し、作業性の良い場所で切断を行い、切断された光通信配線の区間を撤去する工程を繰り返すことで、作業対象の光通信配線171を取り違うことなく確実な撤去作業を実現することができる。
 本発明の第1の実施形態に係る光通信配線の心線対照システムによると、Z本(但し、Zは2N-1<Z<2Nを満たす自然数、Nは2以上の自然数)の光通信配線群170の中から最小で2N回の心線対照作業を実施することにより、作業対象の光通信配線171を特定することが可能である。
 上記実施形態では、光通信配線群及びサブグループを半数にグループ分けする例を示したが、これに限定されず、任意の本数によって光通信配線をグループ分けすることができる。以下の実施形態でも同様である。
(第2の実施形態)
 図6乃至図10を用いて、本発明の第2の実施形態に係る光通信配線の心線対照方法の具体的な実施方法の例を説明する。図6は、本発明の第2の実施形態において用いる位相変化装置280の構成を例示する。図6に示すように、本実施形態において、位相変化装置280は、異なる強度又は周波数を有する第1の音波1と第2の音波2をそれぞれ異なる方向に発生する指向性スピーカとすることができる(以下、位相変化装置280として使用する指向性スピーカを「スピーカ280」とする)。以下では、8本の光通信配線から作業対象の光通信配線171を対照する場合において、例示として、スピーカ280が一方向に第1の音波1、他方向に第2の音波2を発生することにより光通信配線を伝搬する光に対して位相変化を与える場合を例に説明する。
 まず、図7(a)に示すように、工程1で、光通信配線群170のうち、作業対象の光通信配線171の一端に光計測器100を接続し、8本の光通信配線を含む光通信配線群170を、例えば4本ずつサブグループG1とサブグループG2とにグループ分けし、サブグループG1及びG2の間にスピーカ280を配置し、スピーカ280からサブグループG1に向けて第1の音波1を出力し、サブグループG2に向けて第2の音波2を出力する。
 光カプラ130は、作業対象の光通信配線171からの戻り光と、光反射器150によって反射された戻り光とを合波し、干渉光測定器120に出力する。干渉光測定器120の受光器121では、第1の音波1によって位相変化された戻り光と光反射器150によって反射された位相変化されていない戻り光との干渉により、第1の音波1の周波数の光が検出される。
 また、第2の音波2が空気中の伝搬若しくはサブグループG2からサブグループG1へ回り込み、第2の音波2により作業対象の光通信配線171からの戻り光が位相変化されてしまう場合も想定される。しかし、サブグループG2からサブグループG1に回り込んだ第2の音波2は減衰するため、サブグループG2からサブグループG1に第2の音波2が回り込んだ場合は、第2の音波2をサブグループG1にあてて直接位相変化させる場合と比較して、例えば図7(b)及び(c)に示すように受光器121の測定強度は小さくなる。
 ここで、図8は、8本の光通信配線が輻輳している状態を例示する。図8に示すように、8本の光通信配線が輻輳している場合、光通信配線群170のうちの光通信配線171Aは、作業区間1ではサブグループG2に存在するが、作業区間2ではサブグループG1に存在する場合も考えられる。この場合、作業対象の光通信配線171が第1の音波1と第2の音波2で同程度の位相変調を受けてしまう場合が考えられる。このような場合には、所望の作業区間内(図8に示す例では、作業区間2)において、図5に示す固定部181を備えた位相変化装置180により2つのサブグループを固定することにより、所望の音波を所望の作業区間のサブグループのみに強く与え、それ以外の作業区間のサブグループには音波による位相変調を抑圧することができる。そのため、この場合においても測定強度の大きさにより作業対象の光通信配線171がどちらのサブグループにあるかを特定することができる。
 信号処理部122は、工程1での測定した結果を保存し、強度の比較を行う。本例では、図7(b)及び(c)に示すように、第1の音波1の周波数の光のほうが光強度が大きいため、信号処理部122は、作業対象の光通信配線171がサブグループG1にあると判定する。
 工程2では、図9(a)に示すように、工程1で特定したサブグループG1をさらに例えば2本ずつのサブグループG3とサブグループG4とにグループ分けし、サブグループG3とサブグループG4の間にスピーカ280を配置して、スピーカ280から例えばサブグループG3に向けて第1の音波1を出力し、サブグループG4に向けて第2の音波2を出力する。
 信号処理部122は、工程2での測定した結果を保存し、強度の比較を行う。本例では、図9(b)及び(c)に示すように、第1の音波1の周波数の光のほうが光強度が大きいため、信号処理部122は、作業対象の光通信配線171がサブグループG3にあると判定する。
 最後に、工程3において、図10(a)に示すように、2本の光通信配線からなるサブグループG3を光通信配線G5と光通信配線G6とにグループ分けし、光通信配線G5と光通信配線G6との間にスピーカ280を配置して、スピーカ280から例えば光通信配線G5に向けて第1の音波1を出力し、光通信配線G6に向けて第2の音波2を出力する。
 信号処理部122は、工程3での測定結果を保存し、強度の比較を行う。本例では、図10(b)及び(c)に示すように、第1の音波1の周波数の光のほうが光強度が大きいため、信号処理部122は、光通信配線G5が作業対象の光通信配線171であると判定する。以上で、光通信配線の心線対照作業が終了する。
 このように、本発明の一態様に係る心線対照方法では、作業対象の光通信配線171が含まれると判定されたサブグループに含まれる光通信配線を複数にグループ分けし、そのグループ分けしたサブグループに対して位相変化動作を行うことを、作業対象の光通信配線171が特定されるまで繰り返している。
 本発明の第2の実施形態に係る光通信配線の心線対照システムによると、X本(但し、Xは2N-1<X<2Nを満たす自然数、Nは2以上の自然数)の光通信配線群170の中から最小でN回の心線対照作業を実施することにより、作業対象の光通信配線171を特定することが可能である。
 ここで、本実施形態に係る対照作業においては、位相変化装置280が異なる2つの周波数の第1の音波1及び第2の音波2を発生する例、すなわち位相変化装置280での変化パターンが2個の場合を例として挙げた。しかし、例えば3つ以上の位相変化装置280を用いる場合や位相変化装置280が3つ以上の異なる音波等を発生する場合など、位相変化装置280での変化パターンが3個以上の場合であっても、光通信配線群170及びサブグループを3つ以上にグループ分けすることにより、同様の作業で実施可能である。位相変化装置280での変化パターンがM個の場合、Y本(ただし、YはMN-1<Y<MNを満たす自然数、Nは2以上の自然数)の光通信配線群170の中から最小でN回の心線対照作業を実施することにより、作業対象の光通信配線171を特定することが可能である。
 本実施形態では、位相変化装280が異なる周波数の音波によって光通信配線を伝搬する光の位相を変化させる例を示したが、これに限定されず、位相変化装置280は、例えば、異なる強度パターンの音波、異なる振動パターンの機械的振動、異なる強度の電場、異なる強度の磁場、異なる熱量、異なる歪等を与えることにより、光通信配線群170における光通信配線を伝搬する光の位相を変化させることができる。

Claims (6)

  1.  複数の光通信配線を含む光通信配線群の中から作業対象の光通信配線を特定するための光通信配線の心線対照システムであって、
     光カプラと、試験光を出力する光源と、干渉光測定器と、前記作業対象の光通信配線の一端に接続される接続ポートと、光反射器と、を含む光計測器と、
     前記光通信配線群のうちの1又は複数の光通信配線を伝搬する光の位相を変化させる位相変化動作を行う位相変化装置と、
     を備え、
     前記光カプラは、
      前記光源から出力される前記試験光を分岐して、当該分岐した試験光の一方を前記接続ポートを介して前記作業対象の光通信配線の一端に出力し、前記分岐した試験光の他方を前記光反射器に出力し、
      前記作業対象の光通信配線から前記接続ポートを介して入力される前記試験光の戻り光と、前記光反射器によって反射された前記試験光と、を合波して、当該合波光を前記干渉光測定器に出力する
     ように構成され、
     前記干渉光測定器は、前記合波光の光強度を測定する受光器と、前記合波光の光強度に基づいて、前記光通信配線群のうちの前記1又は複数の光通信配線に前記作業対象の光通信配線が含まれるか否かを判定する信号処理部と、を含むことを特徴とする光通信配線の心線対照システム。
  2.  前記位相変化装置は、それぞれ異なる強度又は周波数を有する複数の音波をそれぞれ異なる方向に発生する指向性スピーカであることを特徴とする請求項1に記載の光通信配線の心線対照システム。
  3.  前記位相変化装置は、前記光通信配線に、熱量、歪、機械的振動、音波の強度、音波、磁場、及び電界のいずれかを与えることにより、前記位相変化動作を行うことを特徴とする請求項1に記載の光通信配線の心線対照システム。
  4.  前記位相変化装置は、前記光通信配線群を固定するための固定部を有することを特徴とする請求項1乃至3のいずれかに記載の光通信配線の心線対照システム。
  5.  前記信号処理部は、当該判定結果を前記位相変化装置に送信する送信部を含み、
     前記位相変化装置は、前記信号処理部の前記送信部から送信された前記判定結果を通知する通知部を含むことを特徴とする請求項1乃至4のいずれかに記載の光通信配線の心線対照システム。
  6.  複数の光通信配線を含む光通信配線群の中から作業対象の光通信配線を特定するための光通信配線の心線対照システムを用いた光通信配線の対照方法において、前記光通信配線の心線対照システムは、
     光カプラと、試験光を出力する光源と、干渉光測定器と、前記作業対象の光通信配線の一端に接続される接続ポートと、光反射器と、を含む光計測器と、
     前記光通信配線群のうちの1又は複数の光通信配線を伝搬する光の位相を変化させる位相変化動作を行う位相変化装置と、
     を備え、
     前記光カプラは、
      前記光源から出力される前記試験光を分岐して、当該分岐した試験光の一方を前記接続ポートを介して前記作業対象の光通信配線の一端に出力し、前記分岐した試験光の他方を前記光反射器に出力し、
      前記作業対象の光通信配線から前記接続ポートを介して入力される前記試験光の戻り光と、前記光反射器によって反射された前記試験光と、を合波して、当該合波光を前記干渉光測定器に出力するように構成され、
     前記対照方法は、
     前記光通信配線群に含まれる光通信配線を複数にグループ分けすることによって構成された1又は複数の前記光通信配線を含む複数のサブグループに対して、それぞれ、前記位相変化動作を行う第1の工程と、
     前記干渉光測定器が、前記複数のサブグループに対して前記位相変化動作を行った場合における、各合波光の光強度をそれぞれ測定する第2の工程と、
     前記干渉光測定器が、前記複数のサブグループについての各合波光の光強度に基づいて、前記作業対象の光通信配線が含まれる前記サブグループを判定する第3の工程と、
     前記作業対象の光通信配線が含まれると判定された前記サブグループに含まれる光通信配線を複数にグループ分けして、前記第2の工程及び前記第3の工程を実施する第4の工程と、
     を含み、
     前記第4の工程は、前記作業対象の光通信配線が特定されるまで、繰り返されることを特徴とする光通信配線の心線対照方法。
PCT/JP2019/007693 2018-03-06 2019-02-27 光通信配線の心線対照方法及び心線対照システム WO2019172056A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040252A JP2019152847A (ja) 2018-03-06 2018-03-06 光通信配線の心線対照方法及び心線対照システム
JP2018-040252 2018-03-06

Publications (1)

Publication Number Publication Date
WO2019172056A1 true WO2019172056A1 (ja) 2019-09-12

Family

ID=67847225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007693 WO2019172056A1 (ja) 2018-03-06 2019-02-27 光通信配線の心線対照方法及び心線対照システム

Country Status (2)

Country Link
JP (1) JP2019152847A (ja)
WO (1) WO2019172056A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230106A (ja) * 1989-03-02 1990-09-12 Furukawa Electric Co Ltd:The 光ファイバケーブル識別方法とその識別装置
JPH0886717A (ja) * 1994-09-14 1996-04-02 Nippon Telegr & Teleph Corp <Ntt> 光線路識別用光部品並びにその遠隔測定方法及び装置
JP2001343533A (ja) * 2000-05-30 2001-12-14 Fujikura Ltd 干渉型光ケーブル対照用加振棒
US20070196058A1 (en) * 2005-08-23 2007-08-23 Yong-Gi Lee Apparatus and method for identification of optical cable
JP2010522896A (ja) * 2007-04-09 2010-07-08 ファイバープロ・インコーポレーテッド 光ケーブル識別装置およびその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230106A (ja) * 1989-03-02 1990-09-12 Furukawa Electric Co Ltd:The 光ファイバケーブル識別方法とその識別装置
JPH0886717A (ja) * 1994-09-14 1996-04-02 Nippon Telegr & Teleph Corp <Ntt> 光線路識別用光部品並びにその遠隔測定方法及び装置
JP2001343533A (ja) * 2000-05-30 2001-12-14 Fujikura Ltd 干渉型光ケーブル対照用加振棒
US20070196058A1 (en) * 2005-08-23 2007-08-23 Yong-Gi Lee Apparatus and method for identification of optical cable
JP2010522896A (ja) * 2007-04-09 2010-07-08 ファイバープロ・インコーポレーテッド 光ケーブル識別装置およびその方法

Also Published As

Publication number Publication date
JP2019152847A (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
US7948226B2 (en) Traceable fiber optic jumpers
CN104422582B (zh) 使用otdr仪器的光纤测试
US5077729A (en) Testing optical fiber links
EP2623948A1 (en) Field tester for topologies utilizing array connectors and multi-wavelength field tester for topologies utilizing array connectors
WO2016105066A1 (ko) 파장 가변 레이저를 이용한 광선로 검사기
JP7070695B2 (ja) 光ファイバ試験方法及び光ファイバ試験装置
US5452071A (en) Method of measuring optical attenuation using an optical time domain reflectometer
JP2015230263A (ja) 光ファイバの特性評価方法
Enomoto et al. Design and performance of novel optical fiber distribution and management system with testing functions in central office
WO2019172056A1 (ja) 光通信配線の心線対照方法及び心線対照システム
JPH0728266B2 (ja) 光線路試験方式
CN101567724B (zh) 一种网络状况检测系统和方法
US4840482A (en) Method of coated fiber identification in optical transmission network
US6522434B1 (en) System and method for determining optical loss characteristics of optical fibers in an optical fiber network
JP4160939B2 (ja) 光線路の障害探索方法
Downie et al. Investigation of potential MPI effects on supervisory channel transmission below cable cut-off in G. 654 fibres
EP3059883A1 (en) Method, system and device for the supervision of optical fibres
JPH10160635A (ja) 多心光ファイバのスキュー検査方法およびスキュー検査装置
JP6755823B2 (ja) 光パルス試験装置及び光パルス試験方法
CN112953628A (zh) 一种基于ofdr的oxc光纤id识别装置及方法
JP6752745B2 (ja) 光パルス試験装置及び光パルス試験方法
CN114303327A (zh) 光纤测量系统、将通信光纤适配到测量系统中的方法以及光纤测量和通信系统
WO2019235224A1 (ja) 検査システム
JP5613371B2 (ja) 光ファイバ心線対照用試験方法及び装置並びにシステム
WO2022249456A1 (ja) 光モニタデバイス及び光強度測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764139

Country of ref document: EP

Kind code of ref document: A1