WO2019171989A1 - Hard coat film, and hard coat film having scratch-resistant layer attached thereto - Google Patents

Hard coat film, and hard coat film having scratch-resistant layer attached thereto Download PDF

Info

Publication number
WO2019171989A1
WO2019171989A1 PCT/JP2019/006866 JP2019006866W WO2019171989A1 WO 2019171989 A1 WO2019171989 A1 WO 2019171989A1 JP 2019006866 W JP2019006866 W JP 2019006866W WO 2019171989 A1 WO2019171989 A1 WO 2019171989A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
film
coat layer
coat film
scratch
Prior art date
Application number
PCT/JP2019/006866
Other languages
French (fr)
Japanese (ja)
Inventor
千裕 増田
悠太 福島
彩子 松本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020504924A priority Critical patent/JP7064573B2/en
Publication of WO2019171989A1 publication Critical patent/WO2019171989A1/en
Priority to JP2022071040A priority patent/JP2022115882A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties

Definitions

  • the present invention relates to a hard coat film and a hard coat film with a scratch-resistant layer.
  • Thin and hard glass such as chemically tempered glass is often used on the surface of mobile displays such as smartphones and tablets for the necessity of withstanding touch panel operations and pen input and for protecting the display portion.
  • glass basically has a hard property, but has a problem that it is heavy and easily broken.
  • Various proposals have been made because it is considered that there is a merit that it is light and not broken if there is a plastic film that is hard and transparent like glass.
  • a film having excellent transparency, surface hardness, and scratch resistance has been proposed by applying a hard coat layer composed of an organic resin and metal oxide particles on the surface of a transparent resin film (Patent Document 1).
  • Patent Document 2 includes a first hard coat layer containing a polyfunctional (meth) acrylate cured product and silica fine particles and a polyfunctional (meth) acrylate monomer cured product on a base film.
  • a hard coat film for a touch panel which has some excellent hardness, scratch resistance, and durable folding performance, has been proposed.
  • An object of the present invention is to provide a hard coat film having high hardness and excellent repeated bending resistance, and a hard coat film with a scratch-resistant layer having excellent scratch resistance.
  • a hard coat film having a hard coat layer on at least one surface of a support includes a matrix component and inorganic fine particles having an average primary particle size of 3 to 100 nm, The content of the inorganic fine particles in the hard coat layer is 50% by volume or more and 90% by volume or less, Indentation when the hard coat layer is indented by 10% with respect to the thickness of the hard coat layer in an indentation test in which a load is applied perpendicularly from the surface opposite to the support side using a diamond knoop indenter.
  • the hard coat film according to any one of [1] to [3], wherein the inorganic fine particles are particles modified with a silane coupling agent having two or more polymerizable functional groups in one molecule.
  • the support is selected from a triacetyl cellulose film, a polymethyl methacrylate film, a polyamide film, an aramid film, a polyimide film, a polyamideimide film, a polyetherimide film, a polyesterimide film, and a polyethylene terephthalate film.
  • the hard coat film [6] A hard coat film with a scratch-resistant layer having a scratch-resistant layer on the surface of the hard coat film of [1] to [5] opposite to the support side of the hard coat layer.
  • the present invention it is possible to provide a hard coat film having high hardness and excellent repeated bending resistance, and a hard coat film with a scratch-resistant layer having excellent scratch resistance.
  • the hard coat film of the present invention is A hard coat film having a hard coat layer on at least one surface of a support,
  • the hard coat layer includes a matrix component and inorganic fine particles having an average primary particle size of 3 to 100 nm,
  • the content of the inorganic fine particles in the hard coat layer is 50% by volume or more and 90% by volume or less, Indentation when the hard coat layer is indented by 10% with respect to the thickness of the hard coat layer in an indentation test in which a load is applied perpendicularly from the surface opposite to the support side using a diamond knoop indenter.
  • the hard coat film of the present invention has an indentation elastic modulus shown below in an indentation test in which a load is applied vertically from the surface of the hard coat layer opposite to the support side using a diamond knoop indenter. A detailed method for measuring the indentation elastic modulus will be described later.
  • Indentation modulus E 2 2% pushing do it when the thickness of the hard coat layer is less 8 GPa, preferably not more than 7.5 GPa, more preferably at most 7 GPa.
  • the E 2 With this range, the hard coat film is obtained having excellent bending resistance of repetition.
  • the lower limit of E 2 is not particularly limited, but may be, for example, 1 MPa (0.001 GPa) or more.
  • the E 10 With this range, high hardness hard coat film is obtained. No particular limitation is imposed on the upper limit of the E 10, for example, it may be less 80 GPa. Further, E 10 -E 2 is 2 GPa or more, preferably 2.5 GPa or more.
  • the repeated bending resistance of the hard coat film is preferably 500,000 times or more until the hard coat film is cracked or broken when the hard coat layer is inside and the hard coat film is bent with a bending radius of 1.0 mm. , More preferably 800,000 times or more, and even more preferably 1,000,000 times or more. A detailed measurement method of the bending test will be described later.
  • the hardness of the hard coat film is preferably 5H or higher, more preferably 6H or higher, and more preferably 8H or higher, as measured in accordance with Japanese Industrial Standard (JIS) K5600-5-4 (1999). Is more preferable.
  • the support preferably has a visible light region transmittance of 70% or more, more preferably 80% or more, and still more preferably 90% or more.
  • the support preferably includes a polymer resin.
  • Polymer resin As the polymer resin, a polymer excellent in optical transparency, mechanical strength, thermal stability and the like is preferable.
  • polycarbonate polymers examples include polycarbonate polymers, polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • AS resin acrylonitrile / styrene copolymer
  • Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as norbornene resins, ethylene / propylene copolymers, (meth) acrylic polymers such as polymethyl methacrylate, vinyl chloride polymers, amides such as nylon and aromatic polyamides Polymer, imide polymer, sulfone polymer, polyether sulfone polymer, polyether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene Polymers, epoxy polymers, cellulose polymers represented by triacetyl cellulose, copolymers of the above polymers, Ma may also be mentioned as an example.
  • the support may be any one selected from a triacetyl cellulose film, a polymethyl methacrylate film, a polyamide film, an aramid film, a polyimide film, a polyamideimide film, a polyetherimide film, a polyesterimide film, and a polyethylene terephthalate film. preferable.
  • amide-based polymers and imide-based polymers such as aromatic polyamides can be preferably used as a support because they have a large number of times of bending at break measured by an MIT tester in accordance with JIS P8115 (2001) and a relatively high hardness.
  • aromatic polyamides as described in Example 1 of Japanese Patent No. 5699454, polyimides described in Japanese Patent Publication Nos. 2015-508345 and 2016-521216 can be preferably used as the support.
  • the support can also be formed as a cured layer of an ultraviolet-curing or thermosetting resin such as acrylic, urethane, acrylic urethane, epoxy, or silicone.
  • an ultraviolet-curing or thermosetting resin such as acrylic, urethane, acrylic urethane, epoxy, or silicone.
  • the support may contain a material that further softens the polymer resin.
  • the softening material refers to a compound that improves the number of breaks and folds.
  • a rubber elastic body, a brittleness improving agent, a plasticizer, a slide ring polymer, or the like can be used.
  • the softening material the softening materials described in paragraph numbers [0051] to [0114] in JP-A No. 2016-170443 can be suitably used.
  • the softening material may be mixed with the polymer resin alone, or a plurality of softening materials may be used in combination as appropriate, or only the softening material may be used alone or in combination without mixing with the resin. It may be used as a support.
  • the amount of these softening materials to be mixed is not particularly limited, and a polymer resin having a sufficient number of times of bending and bending alone may be used alone as a film support, or a softening material may be mixed. All may be made flexible enough (100%) to have a sufficient number of breaks and folds.
  • additives for example, an ultraviolet absorber, a matting agent, an antioxidant, a peeling accelerator, a retardation (optical anisotropy) adjusting agent, etc.
  • Various additives can be added to the support. They may be solid or oily. That is, the melting point or boiling point is not particularly limited.
  • the additive may be added at any time in the step of producing the support, or may be added to the material preparation step by adding the preparation step. Furthermore, the amount of each material added is not particularly limited as long as the function is manifested.
  • the additives described in paragraph numbers [0117] to [0122] in JP-A No. 2016-167043 can be suitably used.
  • the above additives may be used alone or in combination of two or more.
  • UV absorber examples of the ultraviolet absorber include benzotriazole compounds, triazine compounds, and benzoxazine compounds.
  • the benzotriazole compound is a compound having a benzotriazole ring, and specific examples include various benzotriazole ultraviolet absorbers described in paragraph 0033 of JP2013-111835A.
  • the triazine compound is a compound having a triazine ring, and specific examples thereof include various triazine-based UV absorbers described in paragraph 0033 of JP2013-111835A.
  • benzoxazine compound for example, those described in paragraph 0031 of JP 2014-209162 A can be used.
  • the content of the ultraviolet absorber in the support is, for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin contained in the support, but is not particularly limited.
  • the UV absorber reference can also be made to paragraph 0032 of JP2013-111835A.
  • an ultraviolet absorber having high heat resistance and low volatility is preferable.
  • UV absorbers include UVSORB 101 (manufactured by Fujifilm Fine Chemicals Co., Ltd.), TINUVIN 360, TINUVIN 460, TINUVIN 1577 (manufactured by BASF), LA-F70, LA-31, LA-46 (manufactured by ADEKA). Etc.
  • the support preferably has a small difference in refractive index between the flexible material and various additives used for the support and the polymer resin.
  • the thickness of the support is more preferably 100 ⁇ m or less, further preferably 80 ⁇ m or less, and most preferably 50 ⁇ m or less. If the thickness of the support is reduced, the difference in curvature between the front and back surfaces at the time of bending is reduced, cracks and the like are less likely to occur, and the support is not broken even when bent multiple times. On the other hand, from the viewpoint of ease of handling the support, the thickness of the support is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and most preferably 15 ⁇ m or more.
  • the support may be formed by thermally melting a thermoplastic polymer resin, or may be formed by solution film formation (solvent casting method) from a solution in which the polymer is uniformly dissolved.
  • solution film formation solvent casting method
  • the above-mentioned softening material and various additives can be added at the time of hot melting.
  • the support is produced by a solution casting method
  • the above-described softening material and various additives can be added to a polymer solution (hereinafter also referred to as a dope) in each preparation step. Further, the addition may be performed at any time in the dope preparation process, but may be performed by adding an additive to the final preparation process of the dope preparation process.
  • the hard coat layer of the hard coat film of the present invention will be described.
  • the hard coat layer contains a matrix component and inorganic fine particles.
  • the indentation modulus E M is 1.5GPa than 0.001 GPa, more preferably less than 0.01 GPa 1.0 GPa, 0.1 GPa More preferably, it is 0.5 GPa or less.
  • the indentation elastic modulus E M of the matrix component is 2 with respect to the thickness of the matrix layer in the indentation test in which a load is applied perpendicularly to the layer composed of the matrix component (matrix layer) using a diamond knoop indenter. % Is the indentation elastic modulus when indented.
  • the matrix component is a cured product of the matrix forming composition
  • indentation test in which a load is applied vertically to the layer formed by curing the matrix forming composition using a diamond knoop indenter.
  • the indentation elastic modulus when indented 2% with respect to the thickness of the matrix layer.
  • the matrix component is preferably a polymer (cured product) obtained by polymerizing a composition for forming a matrix containing a compound having a polymerizable functional group by irradiation with ionizing radiation or heating.
  • the polymerizable functional group equivalent in the matrix forming composition is 250 or more, and more preferably 250 to 1,000.
  • the bonding can be compensated by making the average primary particle size of the inorganic fine particles and the surface modifier appropriate.
  • the polymerizable functional group equivalent e in the composition for forming a matrix is obtained from the following formula (4).
  • the mass ratio of each component is R 1 , R 2 ,... R n , and the weight average molecular weight (low molecular weight of each component).
  • M 1 for compounds of molecular weight) respectively, M 2 , ..., M n , C 1 polymerizable functional groups in one molecule of each component, respectively, C 2, ..., expressed as C n.
  • the weight average molecular weight (Mw) can be measured as a molecular weight in terms of polystyrene by gel permeation chromatography (GPC) unless otherwise specified.
  • GPC gel permeation chromatography
  • HLC-8220 manufactured by Tosoh Corporation
  • G3000HXL + G2000HXL is used as the column
  • the flow rate is 1 mL / min at 23 ° C.
  • the refractive index (RI) is detected.
  • the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.) and can be dissolved. In this case, THF is used.
  • the composition for forming a matrix contains at least a compound having a polymerizable functional group.
  • the compound having a polymerizable functional group various monomers, oligomers and polymers can be used, and the polymerizable functional group (polymerizable group) is preferably a light, electron beam or radiation-polymerizable one. A functional group is preferred.
  • photopolymerizable functional groups include polymerizable unsaturated groups (carbon-carbon unsaturated double bond groups) such as (meth) acryloyl groups, vinyl groups, styryl groups, and allyl groups, epoxy groups, oxetanyl groups, and the like. Examples thereof include a ring polymerizable group, and among them, a (meth) acryloyl group is preferable.
  • the compound having a (meth) acryloyl group include (meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate; (Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate; (Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate; (Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis ⁇ 4- (acryloxy-diethoxy) phenyl ⁇ propane and 2-2bis ⁇ 4- (acryloxy-polypropoxy
  • the compound having a polymerizable functional group is preferably a compound having a polymerizable functional group equivalent of 250 or more and 1000 or less. Further, two or more kinds of compounds having a polymerizable functional group may be used in combination, and at this time, the combination of a compound having a polymerizable functional group equivalent of 250 or more and a compound of 250 or less in the composition for forming a matrix.
  • the polymerizable functional group equivalent may be adjusted to be 250 or more and 1000 or less.
  • the polymerizable functional group equivalent for the compound having a polymerizable functional group is the number C of the polymerizable functional groups in one molecule of the compound having a polymerizable functional group, the molecular weight or the weight average molecular weight M of the compound having a polymerizable functional group. The value divided by (M / C).
  • the compound having a polymerizable functional group is a monomer, a compound having 1 or more and 6 or less polymerizable functional groups in one molecule is preferable, a compound having 1 or more and 3 or less is more preferable, and 2 Certain compounds are particularly preferred.
  • the compound having a polymerizable functional group is an oligomer or polymer, the polymerizable functional group may be present at the end of the main chain or may be present in the side chain.
  • Specific examples of the compound having a polymerizable functional group equivalent of 250 or more include DPCA-120 (molecular weight 1947, polymerizable functional group number 6, polymerizable functional group equivalent 325) manufactured by Nippon Kayaku Co., Ltd., Nippon Synthetic Chemical Co., Ltd.
  • UV-3000B (molecular weight 18000, functional group number 2, functional group equivalent 9000), UV-3200B (molecular weight 10,000, functional group number 2, functional group equivalent 5000), UV-3210EA (molecular weight 9000, functional group number 2, functional group) Group equivalent 4500), UV-3310B (molecular weight 5000, functional group number 2, functional group equivalent 2500), UV-3700B (molecular weight 38000, functional group number 2, functional group equivalent 19000), UV-6640B (molecular weight 5000, functional group) 2 groups, functional group equivalent 2500), UV-2000B (molecular weight 13000, functional group number 2, functional group equivalent 65) 0), the same UV-2750B (molecular weight 3000, functional group number 2, functional group equivalent 1500), Shin-Nakamura Chemical Co., Ltd.
  • ATM-35E (molecular weight 1892, functional group number 4, functional group equivalent 473) A-GLY-9E (Molecular weight 811, functional group number 3, functional group equivalent 270), A-GLY-20E (molecular weight 1295, functional group number 3, functional group equivalent 432), A-400 (molecular weight 508, functional group number 2, functional group equivalent 254) ), A-600 (molecular weight 708, functional group number 2, functional group equivalent 354), A-1000 (molecular weight 1108, functional group number 2, functional group equivalent 554), UA-160TM (molecular weight 2700, functional group number 2, Functional group equivalent 1350), UA-290TM (molecular weight 2900, functional group number 2, functional group equivalent 1450), UA-4200 (molecular weight 1000, functional group number 2, Functional group equivalent 500), the UA-4400 (molecular weight 1400, functionality 2, functional group equivalent 700), and the like.
  • the content of the matrix component in the hard coat layer is preferably 10 to 50% by volume, and more preferably 25 to 45% by volume.
  • composition for forming a matrix may contain a polymerization initiator.
  • the compound having a polymerizable functional group is a photopolymerizable compound
  • it preferably contains a photopolymerization initiator.
  • photopolymerization initiators acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds
  • Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
  • the content of the polymerization initiator in the matrix forming composition is preferably 0.5 to 8% by mass, more preferably 1 to 5% by mass, based on the total solid content in the matrix forming composition.
  • composition for forming a matrix may contain components other than those described above, and may contain, for example, a dispersant, a leveling agent, an antifouling agent, an antistatic agent, an ultraviolet absorber, and the like.
  • the hard coat layer of the hard coat film of the present invention contains inorganic fine particles.
  • the hardness can be increased by adding inorganic fine particles to the hard coat layer.
  • the inorganic fine particles include silica particles, titanium dioxide particles, zirconia particles, aluminum oxide particles, diamond powder, sapphire particles, boron carbide particles, silicon carbide particles, and antimony pentoxide particles. Of these, silica particles and zirconia particles are preferable from the viewpoint of ease of modification.
  • the surface of the inorganic fine particles is preferably treated with a surface modifier containing an organic segment.
  • the surface modifier preferably has a functional group capable of forming a bond with inorganic fine particles or adsorbing to the inorganic particle and a functional group having high affinity with the organic component in the same molecule.
  • Examples of the surface modifier having a functional group capable of binding or adsorbing to inorganic fine particles include metal alkoxide surface modifiers such as silane, aluminum, titanium, and zirconium, phosphate groups, sulfate groups, sulfonate groups, carboxylic acid groups, and the like.
  • a surface modifier having an anionic group is preferred, and among these, a silane alkoxide surface modifier (silane coupling agent) is preferred from the viewpoint of ease of modification.
  • the functional group having a high affinity with the organic component may be simply a combination of the matrix component and the hydrophilicity / hydrophobicity, but a functional group that can be chemically bonded to the matrix component is preferable, particularly an ethylenically unsaturated double bond.
  • a linking group or a ring-opening polymerizable group is preferred.
  • a preferred inorganic fine particle surface modifier in the present invention is a curable resin having a metal alkoxide or an anionic group and an ethylenically unsaturated double bond group or a ring-opening polymerizable group in the same molecule.
  • the number of ethylenically unsaturated double bond groups or ring-opening polymerizable groups in the same molecule is preferably 1.0 or more and 5.0 or less, and more preferably 1.1 or more and 3.0 or less.
  • silane coupling agent examples include, for example, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyldimethylmethoxysilane, 3- (Meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 2- (meth) acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltriethoxysilane, 4- ( Silane coupling agents having an ethylenically unsaturated double bond group such as (meth) acryloxybutyltrimethoxysilane, 4- (meth) acryloxybutyltriethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, 3-glycidoxypropi Silane coupling agent having
  • the inorganic fine particles are more preferably particles modified with a silane coupling agent having two or more polymerizable functional groups in one molecule.
  • the inorganic fine particles preferably have 0.2 to 4.0 surface modifiers bonded or adsorbed per 1 nm 2 of the surface area of the inorganic fine particles, more preferably 0.5 to 3.0 particles per 1 nm 2 , and 1 nm. More preferably, 0.8 to 2.0 per two . If the number is less than 0.2 per 1 nm 2 , sufficient surface modification effects may not be obtained. On the other hand, when the number is more than 4.0 per 1 nm 2 , a modifying agent released from the surface of the inorganic fine particles tends to be generated.
  • the surface modification of these inorganic fine particles is preferably performed in a solution. After synthesizing the inorganic fine particles in the solution, the surface modifier is added and stirred, or when the inorganic fine particles are mechanically finely dispersed, the surface modifier is present together or after the fine inorganic particles are finely dispersed. Add the surface modifier to the mixture and stir, or further modify the surface before finely dispersing the inorganic fine particles (if necessary, heat, dry, or change pH), then fine A method of performing dispersion may be used. As the solution for dissolving the surface modifier, an organic solvent having a large polarity is preferable. Specific examples include known solvents such as alcohols, ketones and esters.
  • the average primary particle size of the inorganic fine particles is 3 to 100 nm, preferably 4 to 50 nm, and more preferably 5 to 20 nm. By setting the average primary particle size within the above range, the bond between the matrix component and the inorganic fine particles can be strengthened.
  • the average primary particle size of the inorganic fine particles in the hard coat film is obtained by observing the cross section of the thin sample obtained by slicing the hard coat film at an appropriate magnification (about 400,000 times) using a transmission electron microscope (TEM). Observe, measure the diameter of each of the 100 primary particles, calculate the volume, and determine the cumulative 50% particle size as the average primary particle size.
  • the average value of the major and minor diameters is regarded as the diameter of the primary particles.
  • the flake sample can be prepared by a microtome method using a cross-section cutting apparatus ultramicrotome, a flake processing method using a focused ion beam (FIB) apparatus, or the like.
  • FIB focused ion beam
  • the average primary particle size is calculated by observing the powder particles or the particle dispersion with a TEM as described above.
  • Inorganic fine particles may be used alone or in combination of two or more. When using 2 or more types together, it is preferable to use those having different particle diameters from the viewpoint of increasing the volume filling rate of the particles in the hard coat layer.
  • the volume ratio of the inorganic fine particles in the hard coat layer is 50% by volume or more and 90% by volume or less.
  • E 10 -E 2 of the hard coat film can be made 2 GPa or more.
  • membrane by setting it as 90 volume% or less.
  • the inorganic fine particles are preferably solid particles from the viewpoint of particle strength.
  • the shape of the inorganic fine particles is most preferably spherical, but may be other than spherical such as indefinite.
  • the thickness of the hard coat layer is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and still more preferably 10 to 20 ⁇ m.
  • the thickness of the hard coat layer is calculated by observing the cross section of the hard coat film with an optical microscope.
  • the cross-section sample can be created by a microtome method using a cross-section cutting apparatus ultramicrotome, a cross-section processing method using a focused ion beam (FIB) apparatus, or the like.
  • the hard coat film of the present invention may have a layer other than the hard coat layer.
  • a layer other than the hard coat layer For example, an aspect having an easy-adhesion layer for improving adhesion between the substrate and the hard coat layer, an aspect having an antistatic layer for imparting antistatic properties, An embodiment having an antifouling layer for imparting dirtiness and an abrasion resistant layer for imparting scratch resistance is preferably exemplified, and a plurality of these may be provided.
  • a hard coat film having a hard coat layer satisfying the formulas (1) to (3) in the present invention is prepared as a hard coat layer forming composition (coating liquid) containing the matrix forming composition and inorganic fine particles described above.
  • the composition for forming a hard coat layer is preferably applied to a support and cured by light or heat to form a hard coat layer.
  • the hard coat film with a scratch-resistant layer of the present invention is formed on the hard coat layer of the hard coat film of the present invention by forming a scratch-resistant layer containing a compound having 3 or more polymerizable functional groups in one molecule described later. It is preferable to manufacture by applying a composition for coating (coating liquid) and curing it by light or heat to form a scratch-resistant layer.
  • the composition for forming a hard coat layer preferably contains an organic solvent.
  • an organic solvent it is preferable from the viewpoint of improving dispersibility to select an organic solvent having a polarity close to that of inorganic fine particles.
  • the organic solvent is not particularly limited, and examples thereof include organic solvents such as alcohol solvents, ketone solvents, ester solvents, carbonate solvents, and aromatic solvents. These organic solvents may be used in a mixture of a plurality of types as long as the dispersibility is not significantly deteriorated.
  • the scratch-resistant layer is preferably a layer containing 80% by mass or more of a cured product of a compound having 3 or more polymerizable functional groups in one molecule with respect to the total mass of the scratch-resistant layer.
  • the compound having three or more polymerizable functional groups in one molecule may be a monomer, an oligomer, or a polymer.
  • the number of polymerizable functional groups in one molecule of the compound is 3 or more, a dense three-dimensional cross-linked structure is easily formed, and the polymerizable functional group equivalent (in the case of having a (meth) acryloyl group as the polymerizable functional group)
  • the indentation hardness of the scratch-resistant layer can be increased even when a small compound (called an acrylic equivalent) is used.
  • the indentation hardness of the scratch-resistant layer is preferably 300 MPa or more.
  • the content of the cured product of the compound having three or more polymerizable functional groups in one molecule is more preferably 85% by mass or more, and still more preferably 90% by mass or more with respect to the total mass of the scratch-resistant layer.
  • the polymerizable functional group is preferably a (meth) acryloyl group, an epoxy group, or an oxetanyl group, more preferably a (meth) acryloyl group or an epoxy group, and most preferably a (meth) acryloyl group.
  • Examples of the monomer having three or more polymerizable functional groups in one molecule include esters of polyhydric alcohol and (meth) acrylic acid. Specifically, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipenta Examples include erythritol tetra (meth) acrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, pentaerythritol hexa (meth) acrylate, etc., but in terms of high crosslinking, pentaerythritol triacrylate, pentaerythritol tetraacrylate, or dipentaerythrito
  • the film thickness of the scratch-resistant layer is preferably from 0.1 ⁇ m to 1.5 ⁇ m.
  • the scratch-resistant layer may contain components other than those described above, and may contain, for example, inorganic particles, a leveling agent, an antifouling agent, an antistatic agent, a surface modifier, a polymerization initiator, and the like.
  • the scratch resistance layer is preferably 100 or more reciprocations until the scratches that can be visually observed are generated. More preferably, it is more preferably 10,000 reciprocations or more.
  • Substrate S-1 100 g of polyimide powder was dissolved in 670 g of N, N-dimethylacetamide (DMAc) to obtain a 13% by mass solution. The obtained solution was cast on a stainless steel plate and dried with hot air at 130 ° C. for 30 minutes. After that, the film is peeled off from the stainless steel plate and fixed to the frame with a pin. The frame on which the film is fixed is put into a vacuum oven and heated for 2 hours while gradually increasing the heating temperature from 100 ° C to 300 ° C. Cooled to. After the cooled film was separated from the frame, as a final heat treatment step, it was further heat treated at 300 ° C. for 30 minutes to obtain a substrate S-1 made of polyimide film and having a thickness of 30 ⁇ m.
  • DMAc N, N-dimethylacetamide
  • Preparation of silica particles (Preparation of silica particles P-1) A reactor having a capacity of 200 L equipped with a stirrer, a dropping device and a thermometer was charged with 89.46 kg of pure water and 0.10 kg of 28% by mass ammonia water, and the liquid temperature was adjusted to 90 ° C. while stirring. While maintaining the liquid temperature in the reactor at 90 ° C., 10.44 kg of tetramethoxysilane was dropped from the dropping device over 102 minutes, and after completion of the dropping, the liquid temperature was further stirred for 120 minutes while maintaining the above temperature. As a result, hydrolysis and condensation of tetramethoxysilane were carried out.
  • the obtained colloid solution was concentrated to 38.8 kg under a reduced pressure of 13.3 kPa using a rotary evaporator to obtain silica particles P-1 having a SiO 2 concentration of 10.0% by mass.
  • the average primary particle size of silica particles P-1 was 5 nm.
  • silica particles P-2 were obtained in the same manner as silica particles P-1, except that tetramethoxysilane was added dropwise over 114 minutes.
  • the average primary particle size of the silica particles P-2 was 15 nm.
  • silica particles P-3 were obtained in the same manner as silica particles P-1, except that tetramethoxysilane was added dropwise over 156 minutes.
  • the average primary particle size of the silica particles P-3 was 50 nm.
  • silica particles P-4 were obtained in the same manner as silica particles P-1, except that tetramethoxysilane was added dropwise over 240 minutes.
  • the average primary particle size of silica particles P-4 was 120 nm.
  • silica particles P-13 were obtained in the same manner as silica particles P-1, except that tetramethoxysilane was added dropwise over 216 minutes.
  • the average primary particle size of silica particles P-13 was 100 nm.
  • silica particles P-5 300 g of silica particles P-1 were charged into a 1 L glass reactor equipped with a stirrer. A solution prepared by dissolving 6.75 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) in 20 g of methyl alcohol was added dropwise thereto and mixed. Thereafter, heat treatment was performed at 95 ° C. for about 2 hours with mixing and stirring. After cooling, 100 g of 1-methoxy-2-propanol was added, and by-product methanol was distilled off under reduced pressure.
  • KBM-503 3-methacryloxypropyltrimethoxysilane
  • silica particles P-6 (Preparation of silica particles P-6) Silica particle P-6 was obtained in the same manner as silica particle P-5, except that silica particle P-1 was changed to silica particle P-2 and 3-methacryloxypropyltrimethoxysilane was changed to 2.25 g.
  • silica particles P-7 were obtained in the same manner as silica particles P-5 except that silica particles P-1 were changed to silica particles P-3 and 3-methacryloxypropyltrimethoxysilane was changed to 0.68 g.
  • silica particles P-8 (Preparation of silica particles P-8) Silica particle P-8 was obtained in the same manner as silica particle P-5, except that silica particle P-1 was changed to silica particle P-4 and 3-methacryloxypropyltrimethoxysilane was changed to 0.28 g.
  • silica particles P-14 were obtained in the same manner as silica particles P-5 except that silica particles P-1 were changed to silica particles P-13 and 3-methacryloxypropyltrimethoxysilane was changed to 0.34 g.
  • silica particle P-9 was obtained in the same manner as silica particle P-5, except that 3-methacryloxypropyltrimethoxysilane (6.75 g) was changed to silane coupling agent C-1 (13.7 g). .
  • silica particles P-10 were obtained in the same manner.
  • silica particles P-11 (Preparation of silica particles P-11) The silica particles P-5 and silica particles P-5 were used except that the silica particles P-1 were changed to silica particles P-2 and 3-methacryloxypropyltrimethoxysilane (6.75 g) was changed to silane coupling agent C-2 (6.6 g). Silica particles P-11 were obtained in the same manner.
  • Coating components HC-1 to HC-20 for forming a hard coat layer were prepared by mixing each component with the composition (mass%) shown in Table 1 and Table 2 below.
  • the composition of the silica particles is a value as a dispersion having a solid content of 60% by mass.
  • A-400 Polyethylene glycol # 400 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • A-200 Polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • DPCA-120 caprolactone-modified dipentaerythritol hexaacrylate, trade name KAYARAD DPCA-120 (manufactured by Nippon Kayaku Co., Ltd.)
  • DPCA-60 caprolactone-modified dipentaerythritol hexaacrylate, trade name KAYARAD DPCA-60 (manufactured by Nippon Kayaku Co., Ltd.)
  • DPCA-20 Caprolactone-modified dipentaerythritol hexaacrylate, trade name KAYARAD DPCA
  • the coating liquid HC-1 for forming a hard coat layer was applied onto the substrate S-1 using a gravure coater so that the thickness after curing was 17 ⁇ m. After drying at 100 ° C., an ultraviolet ray with an irradiation amount of 300 mJ / cm 2 using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 100 ppm or less. was applied to cure the coating layer, a hard coat layer was formed, and a hard coat film A was produced.
  • Hard coat films BT were produced in the same manner as hard coat film A, except that coating liquids HC-2 to 20 were used instead of coating liquid HC-1.
  • HM2000 hardness tester Fischer Instruments, Knoop indenter made of diamond
  • the maximum load was adjusted so as to be 1.7 ⁇ m (10%), and an indentation test was performed under the conditions of an indentation speed of 10 seconds and a creep of 5 seconds, and the indentation elastic modulus at each indentation depth was obtained.
  • the surface of the hard coat film was scraped off with a scraper, 10 g or more of the hard coat layer was recovered, and the mass was measured.
  • the recovered hard coat layer was heated at 600 ° C. for 3 hours in an air atmosphere, the matrix components were burned to recover inorganic fine particles, and the mass was measured.
  • the specific gravity of the matrix component was 1.2
  • the specific gravity of the silica particles was 2.2
  • the inorganic fine particle volume ratio in the hard coat layer was determined.
  • Irgacure 127 Polymerization initiator (BASF)
  • RS-90 Surface modifier, trade name MegaFac RS-90 (manufactured by DIC Corporation)
  • the scratch-resistant layer forming coating solution SC-1 was applied using a gravure coater so that the thickness after curing was 0.1 ⁇ m and dried at 100 ° C. . Thereafter, using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 mW / cm 2 while purging with nitrogen so that the oxygen concentration becomes 100 ppm or less on an 80 ° C. hot plate, the irradiation amount is 1200 mJ / cm.
  • a hard coat film U with a scratch-resistant layer was prepared by irradiating and curing the ultraviolet ray 2 from the coating film side.
  • a hard coat film V with a scratch-resistant layer was prepared in the same manner as the hard coat film U with a scratch-resistant layer except that the coating solution for forming the scratch-resistant layer was changed to SC-2 and the thickness after curing was changed to 1.0 ⁇ m. did.
  • the hard coat films of the examples were excellent in both hardness and repeated bending resistance.
  • the hard coat films of Comparative Examples 1 to 6 and 9 have an E 2 greater than 8 GPa and poor repeated bending resistance
  • the hard coat films of Comparative Examples 7, 8, and 11 have an E 10 of less than 8 GPa.
  • Pencil hardness was inferior.
  • the average primary particle diameter of the hard coat film of Comparative Example 10 was larger than 100 nm, both the pencil hardness and the repeated bending resistance were inferior.
  • Examples 10 and 11 provided with the scratch-resistant layer were excellent in hardness, repeated bendability, and scratch resistance.
  • the present invention it is possible to provide a hard coat film having high hardness and excellent repeated bending resistance, and a hard coat film with a scratch-resistant layer having excellent scratch resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides: a hard coat film provided with a hard coat layer formed on at least one surface of a substrate, wherein the hard coat layer contains a matrix component and inorganic microparticles having an average primary particle diameter of 3 to 100 nm, the content of the inorganic microparticles in the hard coat layer is 50 to 90 vol% inclusive, and specific relation formulae are satisfied in such an indentation test that a load is applied in the vertical direction against a surface of the hard coat layer which is opposed to the substrate side of the hard coat layer using a diamond-made knoop indenter, wherein E10 represents the indentation elastic modulus obtained when the indenter is indented by 10% relative to the thickness of the hard coat layer and E2 represents the indentation elastic modulus obtained when the indenter is indented by 2% relative to the thickness of the hard coat layer; and a hard coat film having a scratch-resistant layer attached thereto. (1) E10 − E2 ≥ 2 GPa; (2) E10 ≥ 8 GPa; and (3) E2 ≤ 8 GPa

Description

ハードコートフィルム、および耐擦傷層付きハードコートフィルムHard coat film and hard coat film with scratch-resistant layer
 本発明は、ハードコートフィルム、および耐擦傷層付きハードコートフィルムに関する。 The present invention relates to a hard coat film and a hard coat film with a scratch-resistant layer.
 スマートフォンやタブレットのようなモバイルディスプレイの表面には、タッチパネル操作やペン入力に耐える必要性や、表示部の保護のために、化学強化ガラスなどの薄くて硬いガラスが用いられることが多い。一方で、ガラスは、基本的に硬い特性を持つが、重くて割れ易いという問題点がある。
 ガラスのように硬く、透明なプラスチックフィルムがあれば、軽くて割れないメリットがあると考えられるため、様々な提案がされている。例えば、透明樹脂フィルムの表面に有機樹脂と金属酸化物粒子からなるハードコート層を塗布することで、透明性、表面硬度、耐擦傷性に優れるフィルムが提案されている(特許文献1)。
Thin and hard glass such as chemically tempered glass is often used on the surface of mobile displays such as smartphones and tablets for the necessity of withstanding touch panel operations and pen input and for protecting the display portion. On the other hand, glass basically has a hard property, but has a problem that it is heavy and easily broken.
Various proposals have been made because it is considered that there is a merit that it is light and not broken if there is a plastic film that is hard and transparent like glass. For example, a film having excellent transparency, surface hardness, and scratch resistance has been proposed by applying a hard coat layer composed of an organic resin and metal oxide particles on the surface of a transparent resin film (Patent Document 1).
 ところが近年、フレキシブルなディスプレイに対するニーズが高まってきており、既存の技術では可撓性が低くフレキシブルなディスプレイの表面保護には適さない。
 例えば、特許文献2には、基材フィルム上に、多官能(メタ)アクリレートの硬化物とシリカ微粒子とを含有する第一ハードコート層と、多官能(メタ)アクリレートモノマーの硬化物を含有する第二ハードコート層を設けることで、硬度、耐擦傷性、耐久折り畳み性能がある程度優れたタッチパネル用ハードコートフィルムが提案されている。
However, in recent years, there has been an increasing need for flexible displays, and existing techniques are not flexible and are not suitable for surface protection of flexible displays.
For example, Patent Document 2 includes a first hard coat layer containing a polyfunctional (meth) acrylate cured product and silica fine particles and a polyfunctional (meth) acrylate monomer cured product on a base film. By providing the second hard coat layer, a hard coat film for a touch panel, which has some excellent hardness, scratch resistance, and durable folding performance, has been proposed.
日本国特開2016-01217号公報Japanese Unexamined Patent Publication No. 2016-01217 日本国特開2017-33032号公報Japanese Unexamined Patent Publication No. 2017-33032
 しかしながら、特許文献2では、耐久折り畳み試験における折り曲げ半径が大きく、繰り返しの折り曲げ耐性が充分であるとは言い難い。
 本発明の課題は、硬度が高く、繰り返し折り曲げ耐性に優れるハードコートフィルム、および耐擦傷性に優れる耐擦傷層付きハードコートフィルムを提供することにある。
However, in Patent Document 2, it is difficult to say that the bending radius in the durability folding test is large and the repeated bending resistance is sufficient.
An object of the present invention is to provide a hard coat film having high hardness and excellent repeated bending resistance, and a hard coat film with a scratch-resistant layer having excellent scratch resistance.
 本発明者らは鋭意検討し、下記手段により上記課題が解消できることを見出した。
[1]
 支持体の少なくとも一方の面にハードコート層を有するハードコートフィルムであって、
 上記ハードコート層が、マトリクス成分と、平均一次粒子径が3~100nmの無機微粒子とを含み、
 上記無機微粒子の、上記ハードコート層中の含有率が50体積%以上90体積%以下であり、
 上記ハードコート層の、上記支持体側とは反対側の面から、ダイヤモンド製knoop圧子を用いて垂直に荷重を加える押込み試験において、上記ハードコート層の厚みに対して10%押込んだときの押込み弾性率をE10、上記ハードコート層の厚みに対して2%押込んだときの押込み弾性率をEとしたとき、下記式(1)、(2)、(3)を満たすことを特徴とする、ハードコートフィルム。
 E10-E≧2GPa …(1)
 E10≧8GPa …(2)
 E≦8GPa …(3)
[2]
 上記マトリクス成分の押込み弾性率をEとしたとき、E≦1.5GPaである、[1]に記載のハードコートフィルム。
[3]
 上記マトリクス成分が、マトリクス形成用組成物の硬化物であり、
 上記マトリクス形成用組成物中の重合性官能基当量が250以上である、[1]または[2]のハードコートフィルム。
[4]
 上記無機微粒子が、1分子内に2つ以上の重合性官能基を有するシランカップリング剤で修飾された粒子である、[1]から[3]のいずれかのハードコートフィルム。
[5]
 上記支持体が、トリアセチルセルロースフィルム、ポリメチルメタクリレートフィルム、ポリアミドフィルム、アラミドフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリエーテルイミドフィルム、ポリエステルイミドフィルム、およびポリエチレンテレフタレートフィルムから選択される、[1]から[4]のハードコートフィルム。
[6]
 [1]から[5]のハードコートフィルムの、上記ハードコート層の上記支持体側とは反対側の面に耐擦傷層を有する、耐擦傷層付きハードコートフィルム。
The present inventors diligently studied and found that the above problems can be solved by the following means.
[1]
A hard coat film having a hard coat layer on at least one surface of a support,
The hard coat layer includes a matrix component and inorganic fine particles having an average primary particle size of 3 to 100 nm,
The content of the inorganic fine particles in the hard coat layer is 50% by volume or more and 90% by volume or less,
Indentation when the hard coat layer is indented by 10% with respect to the thickness of the hard coat layer in an indentation test in which a load is applied perpendicularly from the surface opposite to the support side using a diamond knoop indenter. When the elastic modulus is E 10 and the indentation elastic modulus when indented by 2% with respect to the thickness of the hard coat layer is E 2 , the following formulas (1), (2), and (3) are satisfied. A hard coat film.
E 10 −E 2 ≧ 2 GPa (1)
E 10 ≧ 8 GPa (2)
E 2 ≦ 8 GPa (3)
[2]
The hard coat film according to [1], wherein E M ≦ 1.5 GPa when the indentation elastic modulus of the matrix component is E M.
[3]
The matrix component is a cured product of the matrix forming composition,
The hard coat film of [1] or [2], wherein the polymerizable functional group equivalent in the matrix-forming composition is 250 or more.
[4]
The hard coat film according to any one of [1] to [3], wherein the inorganic fine particles are particles modified with a silane coupling agent having two or more polymerizable functional groups in one molecule.
[5]
From [1], the support is selected from a triacetyl cellulose film, a polymethyl methacrylate film, a polyamide film, an aramid film, a polyimide film, a polyamideimide film, a polyetherimide film, a polyesterimide film, and a polyethylene terephthalate film. [4] The hard coat film.
[6]
A hard coat film with a scratch-resistant layer having a scratch-resistant layer on the surface of the hard coat film of [1] to [5] opposite to the support side of the hard coat layer.
 本発明によれば、硬度が高く、繰り返し折り曲げ耐性に優れるハードコートフィルム、および耐擦傷性に優れる耐擦傷層付きハードコートフィルムを提供することができる。 According to the present invention, it is possible to provide a hard coat film having high hardness and excellent repeated bending resistance, and a hard coat film with a scratch-resistant layer having excellent scratch resistance.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)~(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」、「(メタ)アクリロイル」等も同様である。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these. In this specification, when a numerical value represents a physical property value, a characteristic value, or the like, the description “(numerical value 1) to (numerical value 2)” means “(numerical value 1) or more (numerical value 2) or less” . In the present specification, the description “(meth) acrylate” means “at least one of acrylate and methacrylate”. The same applies to “(meth) acrylic acid”, “(meth) acryloyl” and the like.
[ハードコートフィルム]
 本発明のハードコートフィルムは、
 支持体の少なくとも一方の面にハードコート層を有するハードコートフィルムであって、
 上記ハードコート層が、マトリクス成分と、平均一次粒子径が3~100nmの無機微粒子とを含み、
 上記無機微粒子の、上記ハードコート層中の含有率が50体積%以上90体積%以下であり、
 上記ハードコート層の、上記支持体側とは反対側の面から、ダイヤモンド製knoop圧子を用いて垂直に荷重を加える押込み試験において、上記ハードコート層の厚みに対して10%押込んだときの押込み弾性率をE10、上記ハードコート層の厚みに対して2%押込んだときの押込み弾性率をEとしたとき、下記式(1)、(2)、(3)を満たす、ハードコートフィルムである。
 E10-E≧2GPa …(1)
 E10≧8GPa …(2)
 E≦8GPa …(3)
[Hard coat film]
The hard coat film of the present invention is
A hard coat film having a hard coat layer on at least one surface of a support,
The hard coat layer includes a matrix component and inorganic fine particles having an average primary particle size of 3 to 100 nm,
The content of the inorganic fine particles in the hard coat layer is 50% by volume or more and 90% by volume or less,
Indentation when the hard coat layer is indented by 10% with respect to the thickness of the hard coat layer in an indentation test in which a load is applied perpendicularly from the surface opposite to the support side using a diamond knoop indenter. A hard coat that satisfies the following formulas (1), (2), and (3) when the elastic modulus is E 10 and the indentation elastic modulus when indented by 2% with respect to the thickness of the hard coat layer is E 2 It is a film.
E 10 −E 2 ≧ 2 GPa (1)
E 10 ≧ 8 GPa (2)
E 2 ≦ 8 GPa (3)
 鉛筆硬度試験時にかかる応力によって膜厚方向に変形(厚みのおよそ10%)するが、その変形時の弾性率E10が高いほどよい。E10が高いほどそれ以上変形が起きにくくなり、脆性破壊領域の変形まで到達しないため、鉛筆硬度を高めることができる。一方、繰り返しの折曲げは、2%程度の小さな歪量を繰り返し与えるため、2%押し込んだ時の弾性率Eが低いほどよい。繰り返しの折り曲げでフィルム内部に微小なクラックが発生し、それが広がり破断に至ると考えられ、折り曲げ変形領域での弾性率Eを下げることで、クラックが発生しない応力にすることができ、繰り返しの折曲げ耐性を付与することができる。一般的に硬度と繰り返しの折曲げ耐性は両立しないが、本発明者らは、これら試験での変形量の違いに着目し、E10とEを式(1)~(3)を満たす範囲にすることで、両立することを見出した。 Variations in the thickness direction by stress at the time of the pencil hardness test (approximately 10% of the thickness), but, better higher elastic modulus E 10 during its deformation. More E 10 higher more deformation hardly occur, because it does not reach the deformation of the brittle fracture region, it is possible to increase the pencil hardness. On the other hand, folding the repeated bending is to give repeated small strain amount of about 2%, the better low modulus of elasticity E 2 when pushed two percent. Repeat fine cracks in the film inside folding occurred, it is considered to lead to the spread rupture, by reducing the elastic modulus E 2 in the bending deformation area, it is possible to stress cracks do not occur, repeat Bending resistance can be imparted. Generally, the hardness and the repeated bending resistance are not compatible, but the present inventors pay attention to the difference in deformation amount in these tests and set E 10 and E 2 in the range satisfying the formulas (1) to (3). I found out that it is compatible.
 (押込み弾性率)
 本発明のハードコートフィルムは、ハードコート層の、支持体側とは反対側の面から、ダイヤモンド製knoop圧子を用いて垂直に荷重を加える押込み試験において、以下に示す押込み弾性率を有する。押込み弾性率の詳細な測定方法については後述する。
 ハードコート層の厚みに対して2%押込んだときの押込み弾性率Eは、8GPa以下であり、7.5GPa以下であることが好ましく、7GPa以下であることがより好ましい。Eをこの範囲にすることで、繰り返しの折り曲げ耐性に優れたハードコートフィルムが得られる。
 Eの下限については特に限定されないが、例えば、1MPa(0.001GPa)以上であってもよい。
 また、ハードコート層の厚みに対して10%押込んだときの押込み弾性率E10は、8GPa以上であり、9GPa以上であることが好ましい。E10をこの範囲にすることで、硬度が高いハードコートフィルムが得られる。
 E10の上限については特に限定されないが、例えば、80Gpa以下であってもよい。
 また、E10-Eは2GPa以上であり、2.5GPa以上であることが好ましい。
(Indentation modulus)
The hard coat film of the present invention has an indentation elastic modulus shown below in an indentation test in which a load is applied vertically from the surface of the hard coat layer opposite to the support side using a diamond knoop indenter. A detailed method for measuring the indentation elastic modulus will be described later.
Indentation modulus E 2 2% pushing do it when the thickness of the hard coat layer is less 8 GPa, preferably not more than 7.5 GPa, more preferably at most 7 GPa. The E 2 With this range, the hard coat film is obtained having excellent bending resistance of repetition.
The lower limit of E 2 is not particularly limited, but may be, for example, 1 MPa (0.001 GPa) or more.
Also, indentation modulus E 10 10% indentation do it when the thickness of the hard coat layer is not less than 8 GPa, is preferably not less than 9 GPa. The E 10 With this range, high hardness hard coat film is obtained.
No particular limitation is imposed on the upper limit of the E 10, for example, it may be less 80 GPa.
Further, E 10 -E 2 is 2 GPa or more, preferably 2.5 GPa or more.
 (繰り返しの折り曲げ耐性)
 ハードコートフィルムの繰り返しの折り曲げ耐性は、ハードコート層を内側とし、折り曲げ曲率半径1.0mmで折り曲げたとき、ハードコートフィルムに割れまたは破断が生じるまでの回数が50万回以上であることが好ましく、80万回以上であることがより好ましく、100万回以上であることがさらに好ましい。折り曲げ試験の詳細な測定方法については後述する。
(Repeated bending resistance)
The repeated bending resistance of the hard coat film is preferably 500,000 times or more until the hard coat film is cracked or broken when the hard coat layer is inside and the hard coat film is bent with a bending radius of 1.0 mm. , More preferably 800,000 times or more, and even more preferably 1,000,000 times or more. A detailed measurement method of the bending test will be described later.
 (鉛筆硬度)
 ハードコートフィルムの硬度は、日本工業規格(JIS) K5600-5-4(1999)に従って測定した鉛筆硬度が、5H以上であることが好ましく、6H以上であることがより好ましく、8H以上であることが更に好ましい。
(Pencil hardness)
The hardness of the hard coat film is preferably 5H or higher, more preferably 6H or higher, and more preferably 8H or higher, as measured in accordance with Japanese Industrial Standard (JIS) K5600-5-4 (1999). Is more preferable.
<支持体>
 本発明のハードコートフィルムの支持体について説明する。
<Support>
The support of the hard coat film of the present invention will be described.
 支持体は、可視光領域の透過率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。支持体はポリマー樹脂を含むことが好ましい。 The support preferably has a visible light region transmittance of 70% or more, more preferably 80% or more, and still more preferably 90% or more. The support preferably includes a polymer resin.
(ポリマー樹脂)
 ポリマー樹脂としては、光学的な透明性、機械的強度、熱安定性などに優れるポリマーが好ましい。
(Polymer resin)
As the polymer resin, a polymer excellent in optical transparency, mechanical strength, thermal stability and the like is preferable.
 例えば、ポリカーボネート系ポリマー、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系ポリマー、ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマーなどが挙げられる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、ノルボルネン系樹脂、エチレン・プロピレン共重合体などのポリオレフィン系ポリマー、ポリメチルメタクリレート等の(メタ)アクリル系ポリマー、塩化ビニル系ポリマー、ナイロン、芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、トリアセチルセルロースに代表されるセルロース系ポリマー、又は上記ポリマー同士の共重合体や上記ポリマー同士を混合したポリマーも例として挙げられる。 Examples include polycarbonate polymers, polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin). Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as norbornene resins, ethylene / propylene copolymers, (meth) acrylic polymers such as polymethyl methacrylate, vinyl chloride polymers, amides such as nylon and aromatic polyamides Polymer, imide polymer, sulfone polymer, polyether sulfone polymer, polyether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene Polymers, epoxy polymers, cellulose polymers represented by triacetyl cellulose, copolymers of the above polymers, Ma may also be mentioned as an example.
 支持体は、トリアセチルセルロースフィルム、ポリメチルメタクリレートフィルム、ポリアミドフィルム、アラミドフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリエーテルイミドフィルム、ポリエステルイミドフィルム、およびポリエチレンテレフタレートフィルムから選択されるいずれかであることが好ましい。 The support may be any one selected from a triacetyl cellulose film, a polymethyl methacrylate film, a polyamide film, an aramid film, a polyimide film, a polyamideimide film, a polyetherimide film, a polyesterimide film, and a polyethylene terephthalate film. preferable.
 特に、芳香族ポリアミド等のアミド系ポリマー及びイミド系ポリマーは、JIS P8115(2001)に従いMIT試験機によって測定した破断折り曲げ回数が大きく、硬度も比較的高いことから、支持体として好ましく用いることができる。例えば、特許第5699454号公報の実施例1にあるような芳香族ポリアミド、特表2015-508345号公報及び特表2016-521216号公報に記載のポリイミドを支持体として好ましく用いることができる。 In particular, amide-based polymers and imide-based polymers such as aromatic polyamides can be preferably used as a support because they have a large number of times of bending at break measured by an MIT tester in accordance with JIS P8115 (2001) and a relatively high hardness. . For example, aromatic polyamides as described in Example 1 of Japanese Patent No. 5699454, polyimides described in Japanese Patent Publication Nos. 2015-508345 and 2016-521216 can be preferably used as the support.
 また、支持体は、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の紫外線硬化型、熱硬化型の樹脂の硬化層として形成することもできる。 The support can also be formed as a cured layer of an ultraviolet-curing or thermosetting resin such as acrylic, urethane, acrylic urethane, epoxy, or silicone.
(柔軟化素材)
 支持体は、上記のポリマー樹脂を更に柔軟化する素材を含有しても良い。柔軟化素材とは、破断折り曲げ回数を向上させる化合物を指し、柔軟化素材としては、ゴム質弾性体、脆性改良剤、可塑剤、スライドリングポリマー等を用いることが出来る。
 柔軟化素材として具体的には、特開2016-167043号公報における段落番号[0051]~[0114]に記載の柔軟化素材を好適に用いることができる。
(Flexible material)
The support may contain a material that further softens the polymer resin. The softening material refers to a compound that improves the number of breaks and folds. As the softening material, a rubber elastic body, a brittleness improving agent, a plasticizer, a slide ring polymer, or the like can be used.
Specifically, as the softening material, the softening materials described in paragraph numbers [0051] to [0114] in JP-A No. 2016-170443 can be suitably used.
 柔軟化素材は、ポリマー樹脂に単独で混合しても良いし、複数を適宜併用して混合しても良いし、また、樹脂と混合せずに、柔軟化素材のみを単独又は複数併用で用いて支持体としても良い。 The softening material may be mixed with the polymer resin alone, or a plurality of softening materials may be used in combination as appropriate, or only the softening material may be used alone or in combination without mixing with the resin. It may be used as a support.
 これらの柔軟化素材を混合する量は、とくに制限はなく、単独で十分な破断折り曲げ回数を持つポリマー樹脂を単独でフィルムの支持体としても良いし、柔軟化素材を混合しても良いし、すべてを柔軟化素材(100%)として十分な破断折り曲げ回数を持たせても良い。 The amount of these softening materials to be mixed is not particularly limited, and a polymer resin having a sufficient number of times of bending and bending alone may be used alone as a film support, or a softening material may be mixed. All may be made flexible enough (100%) to have a sufficient number of breaks and folds.
(その他の添加剤)
 支持体には、用途に応じた種々の添加剤(例えば、紫外線吸収剤、マット剤、酸化防止剤、剥離促進剤、レターデーション(光学異方性)調節剤、など)を添加できる。それらは固体でもよく油状物でもよい。すなわち、その融点又は沸点において特に限定されるものではない。また添加剤を添加する時期は支持体を作製する工程において何れの時点で添加しても良く、素材調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。
 その他の添加剤としては、特開2016-167043号公報における段落番号[0117]~[0122]に記載の添加剤を好適に用いることができる。
(Other additives)
Various additives (for example, an ultraviolet absorber, a matting agent, an antioxidant, a peeling accelerator, a retardation (optical anisotropy) adjusting agent, etc.) can be added to the support. They may be solid or oily. That is, the melting point or boiling point is not particularly limited. The additive may be added at any time in the step of producing the support, or may be added to the material preparation step by adding the preparation step. Furthermore, the amount of each material added is not particularly limited as long as the function is manifested.
As other additives, the additives described in paragraph numbers [0117] to [0122] in JP-A No. 2016-167043 can be suitably used.
 以上の添加剤は、1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The above additives may be used alone or in combination of two or more.
(紫外線吸収剤)
 紫外線吸収剤としては、例えば、ベンゾトリアゾール化合物、トリアジン化合物、ベンゾオキサジン化合物を挙げることができる。ここでベンゾトリアゾール化合物とは、ベンゾトリアゾール環を有する化合物であり、具体例としては、例えば特開2013-111835号公報段落0033に記載されている各種ベンゾトリアゾール系紫外線吸収剤を挙げることができる。トリアジン化合物とは、トリアジン環を有する化合物であり、具体例としては、例えば特開2013-111835号公報段落0033に記載されている各種トリアジン系紫外線吸収剤を挙げることができる。ベンゾオキサジン化合物としては、例えば特開2014-209162号公報段落0031に記載されているものを用いることができる。支持体中の紫外線吸収剤の含有量は、例えば支持体に含まれる樹脂100質量部に対して0.1~10質量部程度であるが、特に限定されるものではない。また、紫外線吸収剤については、特開2013-111835号公報段落0032も参照できる。なお、本発明においては、耐熱性が高く揮散性の低い紫外線吸収剤が好ましい。かかる紫外線吸収剤としては、例えば、UVSORB 101(富士フイルムファインケミカルズ株式会社製)、TINUVIN 360、TINUVIN 460、TINUVIN 1577(BASF社製)、LA-F70、LA-31、LA-46(ADEKA社製)などが挙げられる。
(UV absorber)
Examples of the ultraviolet absorber include benzotriazole compounds, triazine compounds, and benzoxazine compounds. Here, the benzotriazole compound is a compound having a benzotriazole ring, and specific examples include various benzotriazole ultraviolet absorbers described in paragraph 0033 of JP2013-111835A. The triazine compound is a compound having a triazine ring, and specific examples thereof include various triazine-based UV absorbers described in paragraph 0033 of JP2013-111835A. As the benzoxazine compound, for example, those described in paragraph 0031 of JP 2014-209162 A can be used. The content of the ultraviolet absorber in the support is, for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin contained in the support, but is not particularly limited. Regarding the UV absorber, reference can also be made to paragraph 0032 of JP2013-111835A. In the present invention, an ultraviolet absorber having high heat resistance and low volatility is preferable. Examples of such UV absorbers include UVSORB 101 (manufactured by Fujifilm Fine Chemicals Co., Ltd.), TINUVIN 360, TINUVIN 460, TINUVIN 1577 (manufactured by BASF), LA-F70, LA-31, LA-46 (manufactured by ADEKA). Etc.
 支持体は、透明性の観点から、支持体に用いる柔軟性素材及び各種添加剤と、ポリマー樹脂との屈折率の差が小さいことが好ましい。 From the viewpoint of transparency, the support preferably has a small difference in refractive index between the flexible material and various additives used for the support and the polymer resin.
(支持体の厚み)
 支持体の厚みは、100μm以下であることがより好ましく、80μm以下であることが更に好ましく、50μm以下が最も好ましい。支持体の厚みが薄くなれば、折れ曲げ時の表面と裏面の曲率差が小さくなり、クラック等が発生し難くなり、複数回の折れ曲げでも、支持体の破断が生じなくなる。一方、支持体取り扱いの容易さの観点から支持体の厚みは3μm以上であることが好ましく、5μm以上であることがより好ましく、15μm以上が最も好ましい。
(Thickness of the support)
The thickness of the support is more preferably 100 μm or less, further preferably 80 μm or less, and most preferably 50 μm or less. If the thickness of the support is reduced, the difference in curvature between the front and back surfaces at the time of bending is reduced, cracks and the like are less likely to occur, and the support is not broken even when bent multiple times. On the other hand, from the viewpoint of ease of handling the support, the thickness of the support is preferably 3 μm or more, more preferably 5 μm or more, and most preferably 15 μm or more.
(支持体の作製方法)
 支持体は、熱可塑性のポリマー樹脂を熱溶融して製膜しても良いし、ポリマーを均一に溶解した溶液から溶液製膜(ソルベントキャスト法)によって製膜しても良い。熱溶融製膜の場合は、上述の柔軟化素材及び種々の添加剤を、熱溶融時に加えることができる。一方、支持体を溶液製膜法で作製する場合は、ポリマー溶液(以下、ドープともいう)には、各調製工程において上述の柔軟化素材及び種々の添加剤を加えることができる。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。
(Method for producing support)
The support may be formed by thermally melting a thermoplastic polymer resin, or may be formed by solution film formation (solvent casting method) from a solution in which the polymer is uniformly dissolved. In the case of hot melt film formation, the above-mentioned softening material and various additives can be added at the time of hot melting. On the other hand, when the support is produced by a solution casting method, the above-described softening material and various additives can be added to a polymer solution (hereinafter also referred to as a dope) in each preparation step. Further, the addition may be performed at any time in the dope preparation process, but may be performed by adding an additive to the final preparation process of the dope preparation process.
<ハードコート層>
 本発明のハードコートフィルムのハードコート層について説明する。ハードコート層は、マトリクス成分及び無機微粒子を含有する。
<Hard coat layer>
The hard coat layer of the hard coat film of the present invention will be described. The hard coat layer contains a matrix component and inorganic fine particles.
(マトリクス成分)
 マトリクス成分は、繰り返しの折り曲げ耐性の観点から、押込み弾性率Eが0.001GPa以上1.5GPa以下であることが好ましく、0.01GPa以上1.0GPa以下であることがより好ましく、0.1GPa以上0.5GPa以下であることが更に好ましい。ここで、マトリクス成分の押込み弾性率Eとは、マトリクス成分からなる層(マトリクス層)に対し、ダイヤモンド製knoop圧子を用いて垂直に荷重を加える押込み試験において、マトリクス層の厚みに対して2%押込んだときの押込み弾性率である。後述するように、マトリクス成分がマトリクス形成用組成物の硬化物である場合は、マトリクス形成用組成物を硬化してなる層に対し、ダイヤモンド製knoop圧子を用いて垂直に荷重を加える押込み試験において、マトリクス層の厚みに対して2%押込んだときの押込み弾性率である。
(Matrix component)
Matrix components, from the viewpoint of bending resistance of the repetition, it is preferred that the indentation modulus E M or less 1.5GPa than 0.001 GPa, more preferably less than 0.01 GPa 1.0 GPa, 0.1 GPa More preferably, it is 0.5 GPa or less. Here, the indentation elastic modulus E M of the matrix component is 2 with respect to the thickness of the matrix layer in the indentation test in which a load is applied perpendicularly to the layer composed of the matrix component (matrix layer) using a diamond knoop indenter. % Is the indentation elastic modulus when indented. As will be described later, when the matrix component is a cured product of the matrix forming composition, in the indentation test in which a load is applied vertically to the layer formed by curing the matrix forming composition using a diamond knoop indenter. The indentation elastic modulus when indented 2% with respect to the thickness of the matrix layer.
 マトリクス成分は、重合性官能基を有する化合物を含むマトリクス形成用組成物を電離放射線の照射又は加熱により重合した重合体(硬化物)であることが好ましい。さらに、押込み弾性率Eを上記の範囲とするためには、マトリクス形成用組成物中の重合性官能基当量が250以上であることが好ましく、250以上1000以下であることがより好ましい。なお、マトリクス形成用組成物中の重合性官能基当量が大きすぎる場合には、後述する無機微粒子表面に修飾された官能基との化学結合が少なくなり、硬度や繰り返しの折り曲げ耐性が悪化することがあるが、無機微粒子の平均一次粒径や表面修飾剤を適切なものにすることで結合を補うことができる。 The matrix component is preferably a polymer (cured product) obtained by polymerizing a composition for forming a matrix containing a compound having a polymerizable functional group by irradiation with ionizing radiation or heating. Furthermore, in order to range the indentation modulus E M described above, it is preferable that the polymerizable functional group equivalent in the matrix forming composition is 250 or more, and more preferably 250 to 1,000. In addition, when the polymerizable functional group equivalent in the composition for forming a matrix is too large, chemical bonds with functional groups modified on the surface of the inorganic fine particles described later are reduced, and the hardness and repeated bending resistance are deteriorated. However, the bonding can be compensated by making the average primary particle size of the inorganic fine particles and the surface modifier appropriate.
 マトリクス形成用組成物中の重合性官能基当量eは、下記式(4)から求める。
式中、マトリクス形成用組成物中に含まれる成分1、成分2、…、成分nについて、各成分の質量比率をそれぞれR、R、…R、各成分の重量平均分子量(低分子化合物の場合は分子量)をそれぞれM、M、…、M、各成分の1分子中の重合性官能基数をそれぞれC、C、…、Cと表す。
 本明細書において、重量平均分子量(Mw)は、特段の断りがない限り、ゲル浸透クロマトグラフィー(GPC)によってポリスチレン換算の分子量として計測することができる。このとき、GPC装置はHLC-8220(東ソー(株)製)を用い、カラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、屈折率(RI)で検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、m-クレゾール/クロロホルム(湘南和光純薬(株)製)から選定することができ、溶解するものであればTHFを用いることとする。
The polymerizable functional group equivalent e in the composition for forming a matrix is obtained from the following formula (4).
In the formula, for component 1, component 2,..., Component n contained in the matrix-forming composition, the mass ratio of each component is R 1 , R 2 ,... R n , and the weight average molecular weight (low molecular weight of each component). M 1 for compounds of molecular weight), respectively, M 2, ..., M n , C 1 polymerizable functional groups in one molecule of each component, respectively, C 2, ..., expressed as C n.
In the present specification, the weight average molecular weight (Mw) can be measured as a molecular weight in terms of polystyrene by gel permeation chromatography (GPC) unless otherwise specified. At this time, HLC-8220 (manufactured by Tosoh Corporation) is used as the GPC apparatus, G3000HXL + G2000HXL is used as the column, the flow rate is 1 mL / min at 23 ° C., and the refractive index (RI) is detected. The eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.) and can be dissolved. In this case, THF is used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(重合性官能基を有する化合物)
 マトリクス形成用組成物は、少なくとも重合性官能基を有する化合物を含む。重合性官能基を有する化合物としては、各種モノマー、オリゴマーやポリマーを用いる事ができ、重合性官能基(重合性基)としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
(Compound having a polymerizable functional group)
The composition for forming a matrix contains at least a compound having a polymerizable functional group. As the compound having a polymerizable functional group, various monomers, oligomers and polymers can be used, and the polymerizable functional group (polymerizable group) is preferably a light, electron beam or radiation-polymerizable one. A functional group is preferred.
 光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性不飽和基(炭素-炭素不飽和二重結合性基)、エポキシ基、オキセタニル基等の開環重合性基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。 Examples of photopolymerizable functional groups include polymerizable unsaturated groups (carbon-carbon unsaturated double bond groups) such as (meth) acryloyl groups, vinyl groups, styryl groups, and allyl groups, epoxy groups, oxetanyl groups, and the like. Examples thereof include a ring polymerizable group, and among them, a (meth) acryloyl group is preferable.
 (メタ)アクリロイル基を有する化合物の具体例としては、ネオペンチルグリコールアクリレート、1,6-ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
 トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
 ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
 2,2-ビス{4-(アクリロキシ・ジエトキシ)フェニル}プロパン、2-2-ビス{4-(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;等を挙げることができる。
 更には、エポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性モノマーとして、好ましく用いられる。
Specific examples of the compound having a (meth) acryloyl group include (meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate;
(Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis {4- (acryloxy-diethoxy) phenyl} propane and 2-2bis {4- (acryloxy-polypropoxy) phenyl} propane And the like.
Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable monomer.
 マトリクス形成用組成物中の重合性官能基当量を250以上1000以下にするため、重合性官能基を有する化合物は、重合性官能基当量が250以上1000以下の化合物であることが好ましい。また、重合性官能基を有する化合物は二種類以上を併用してもよく、このとき、重合性官能基当量が250以上の化合物と同250以下の化合物との併用により、マトリクス形成用組成物中の重合性官能基当量が250以上1000以下となるように調整してもよい。
 重合性官能基を有する化合物についての重合性官能基当量は、重合性官能基を有する化合物の分子量又は重量平均分子量Mを重合性官能基を有する化合物の1分子中の重合性官能基の数Cで除した値(M/C)である。
In order to set the polymerizable functional group equivalent in the composition for forming a matrix to 250 or more and 1000 or less, the compound having a polymerizable functional group is preferably a compound having a polymerizable functional group equivalent of 250 or more and 1000 or less. Further, two or more kinds of compounds having a polymerizable functional group may be used in combination, and at this time, the combination of a compound having a polymerizable functional group equivalent of 250 or more and a compound of 250 or less in the composition for forming a matrix. The polymerizable functional group equivalent may be adjusted to be 250 or more and 1000 or less.
The polymerizable functional group equivalent for the compound having a polymerizable functional group is the number C of the polymerizable functional groups in one molecule of the compound having a polymerizable functional group, the molecular weight or the weight average molecular weight M of the compound having a polymerizable functional group. The value divided by (M / C).
 重合性官能基を有する化合物がモノマーである場合、1分子中の重合性官能基が1個以上6個以下である化合物が好ましく、1個以上3個以下である化合物が更に好ましく、2個である化合物が特に好ましい。重合性官能基を有する化合物がオリゴマーやポリマーである場合、重合性官能基は主鎖末端に有していてもよく、側鎖に有していてもよい。 When the compound having a polymerizable functional group is a monomer, a compound having 1 or more and 6 or less polymerizable functional groups in one molecule is preferable, a compound having 1 or more and 3 or less is more preferable, and 2 Certain compounds are particularly preferred. When the compound having a polymerizable functional group is an oligomer or polymer, the polymerizable functional group may be present at the end of the main chain or may be present in the side chain.
 重合性官能基当量が250以上の化合物の具体例としては、日本化薬(株)製DPCA-120(分子量1947、重合性官能基数6、重合性官能基当量325)、日本合成化学(株)製紫光UV-3000B(分子量18000、官能基数2、官能基当量9000)、同UV-3200B(分子量10000、官能基数2、官能基当量5000)、同UV-3210EA(分子量9000、官能基数2、官能基当量4500)、同UV-3310B(分子量5000、官能基数2、官能基当量2500)、同UV-3700B(分子量38000、官能基数2、官能基当量19000)、同UV-6640B(分子量5000、官能基数2、官能基当量2500)、同UV-2000B(分子量13000、官能基数2、官能基当量6500)、同UV-2750B(分子量3000、官能基数2、官能基当量1500)、新中村化学工業(株)製ATM-35E(分子量1892、官能基数4、官能基当量473)A-GLY-9E(分子量811、官能基数3、官能基当量270)、同A-GLY-20E(分子量1295、官能基数3、官能基当量432)、同A-400(分子量508、官能基数2、官能基当量254)、同A-600(分子量708、官能基数2、官能基当量354)、同A-1000(分子量1108、官能基数2、官能基当量554)、同UA-160TM(分子量2700、官能基数2、官能基当量1350)、同UA-290TM(分子量2900、官能基数2、官能基当量1450)、同UA-4200(分子量1000、官能基数2、官能基当量500)、同UA-4400(分子量1400、官能基数2、官能基当量700)等が挙げられる。 Specific examples of the compound having a polymerizable functional group equivalent of 250 or more include DPCA-120 (molecular weight 1947, polymerizable functional group number 6, polymerizable functional group equivalent 325) manufactured by Nippon Kayaku Co., Ltd., Nippon Synthetic Chemical Co., Ltd. Violet UV-3000B (molecular weight 18000, functional group number 2, functional group equivalent 9000), UV-3200B (molecular weight 10,000, functional group number 2, functional group equivalent 5000), UV-3210EA (molecular weight 9000, functional group number 2, functional group) Group equivalent 4500), UV-3310B (molecular weight 5000, functional group number 2, functional group equivalent 2500), UV-3700B (molecular weight 38000, functional group number 2, functional group equivalent 19000), UV-6640B (molecular weight 5000, functional group) 2 groups, functional group equivalent 2500), UV-2000B (molecular weight 13000, functional group number 2, functional group equivalent 65) 0), the same UV-2750B (molecular weight 3000, functional group number 2, functional group equivalent 1500), Shin-Nakamura Chemical Co., Ltd. ATM-35E (molecular weight 1892, functional group number 4, functional group equivalent 473) A-GLY-9E (Molecular weight 811, functional group number 3, functional group equivalent 270), A-GLY-20E (molecular weight 1295, functional group number 3, functional group equivalent 432), A-400 (molecular weight 508, functional group number 2, functional group equivalent 254) ), A-600 (molecular weight 708, functional group number 2, functional group equivalent 354), A-1000 (molecular weight 1108, functional group number 2, functional group equivalent 554), UA-160TM (molecular weight 2700, functional group number 2, Functional group equivalent 1350), UA-290TM (molecular weight 2900, functional group number 2, functional group equivalent 1450), UA-4200 (molecular weight 1000, functional group number 2, Functional group equivalent 500), the UA-4400 (molecular weight 1400, functionality 2, functional group equivalent 700), and the like.
 ハードコート層中のマトリクス成分の含有量は、10~50体積%であることが好ましく、25~45体積%であることがより好ましい。 The content of the matrix component in the hard coat layer is preferably 10 to 50% by volume, and more preferably 25 to 45% by volume.
(重合開始剤)
 マトリクス形成用組成物は、重合開始剤を含んでいてもよい。
(Polymerization initiator)
The composition for forming a matrix may contain a polymerization initiator.
 重合性官能基を有する化合物が光重合性化合物である場合は、光重合開始剤を含むことが好ましい。
 光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009-098658号公報の段落[0133]~[0151]に記載されており、本発明においても同様に好適に用いることができる。
 「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65~148にも種々の例が記載されており本発明に有用である。
 マトリクス形成用組成物中の重合開始剤の含有率は、マトリクス形成用組成物中の全固形分に対して、0.5~8質量%が好ましく、1~5質量%がより好ましい。
When the compound having a polymerizable functional group is a photopolymerizable compound, it preferably contains a photopolymerization initiator.
As photopolymerization initiators, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins. Specific examples, preferred embodiments, commercially available products, and the like of the photopolymerization initiator are described in paragraphs [0133] to [0151] of JP-A-2009-098658, and can be suitably used in the present invention as well. it can.
“Latest UV Curing Technology” {Technical Information Association, Inc.} (1991), p. 159, and “UV Curing System” written by Kiyomi Kato (published by the General Technology Center in 1989), p. Various examples are also described in 65 to 148 and are useful in the present invention.
The content of the polymerization initiator in the matrix forming composition is preferably 0.5 to 8% by mass, more preferably 1 to 5% by mass, based on the total solid content in the matrix forming composition.
(その他添加剤)
 マトリクス形成用組成物は、上記以外の成分を含有していてもよく、たとえば、分散剤、レベリング剤、防汚剤、帯電防止剤、紫外線吸収剤等を含有していてもよい。
(Other additives)
The composition for forming a matrix may contain components other than those described above, and may contain, for example, a dispersant, a leveling agent, an antifouling agent, an antistatic agent, an ultraviolet absorber, and the like.
(無機微粒子)
 本発明のハードコートフィルムのハードコート層は、無機微粒子を含有する。
 ハードコート層に無機微粒子を添加することで硬度を高くすることができる。無機微粒子としては例えば、シリカ粒子、二酸化チタン粒子、ジルコニア粒子、酸化アルミニウム粒子、ダイヤモンドパウダー、サファイア粒子、炭化ホウ素粒子、炭化ケイ素粒子、五酸化アンチモン粒子などが挙げられる。中でも修飾のしやすさの観点から、シリカ粒子、ジルコニア粒子が好ましい。
(Inorganic fine particles)
The hard coat layer of the hard coat film of the present invention contains inorganic fine particles.
The hardness can be increased by adding inorganic fine particles to the hard coat layer. Examples of the inorganic fine particles include silica particles, titanium dioxide particles, zirconia particles, aluminum oxide particles, diamond powder, sapphire particles, boron carbide particles, silicon carbide particles, and antimony pentoxide particles. Of these, silica particles and zirconia particles are preferable from the viewpoint of ease of modification.
 無機微粒子の表面は有機セグメントを含む表面修飾剤で処理するのが好ましい。表面修飾剤は、無機微粒子と結合を形成するか無機粒子に吸着しうる官能基と、有機成分と高い親和性を有する官能基を同一分子内に有するものが好ましい。無機微粒子に結合もしくは吸着し得る官能基を有する表面修飾剤としては、シラン、アルミニウム、チタニウム、ジルコニウム等の金属アルコキシド表面修飾剤や、リン酸基、硫酸基、スルホン酸基、カルボン酸基等のアニオン性基を有する表面修飾剤が好ましく、中でも修飾のしやすさの観点から、シランアルコキシド表面修飾剤(シランカップリング剤)が好ましい。さらに有機成分との親和性の高い官能基としては単にマトリクス成分と親疎水性を合わせただけのものでもよいが、マトリクス成分と化学的に結合しうる官能基が好ましく、特にエチレン性不飽和二重結合基、もしくは開環重合性基が好ましい。本発明において好ましい無機微粒子表面修飾剤は金属アルコキシドもしくはアニオン性基とエチレン性不飽和二重結合基もしくは開環重合性基を同一分子内に有する硬化性樹脂である。同一分子内のエチレン性不飽和二重結合基もしくは開環重合性基の数は、1.0以上5.0以下が好ましく、1.1以上3.0以下であることが更に好ましい。同一分子内のエチレン性不飽和二重結合基もしくは開環重合性基の数を上記の範囲にすることで、マトリクス成分と無機微粒子との結合を強固にすることができる。 The surface of the inorganic fine particles is preferably treated with a surface modifier containing an organic segment. The surface modifier preferably has a functional group capable of forming a bond with inorganic fine particles or adsorbing to the inorganic particle and a functional group having high affinity with the organic component in the same molecule. Examples of the surface modifier having a functional group capable of binding or adsorbing to inorganic fine particles include metal alkoxide surface modifiers such as silane, aluminum, titanium, and zirconium, phosphate groups, sulfate groups, sulfonate groups, carboxylic acid groups, and the like. A surface modifier having an anionic group is preferred, and among these, a silane alkoxide surface modifier (silane coupling agent) is preferred from the viewpoint of ease of modification. Furthermore, the functional group having a high affinity with the organic component may be simply a combination of the matrix component and the hydrophilicity / hydrophobicity, but a functional group that can be chemically bonded to the matrix component is preferable, particularly an ethylenically unsaturated double bond. A linking group or a ring-opening polymerizable group is preferred. A preferred inorganic fine particle surface modifier in the present invention is a curable resin having a metal alkoxide or an anionic group and an ethylenically unsaturated double bond group or a ring-opening polymerizable group in the same molecule. The number of ethylenically unsaturated double bond groups or ring-opening polymerizable groups in the same molecule is preferably 1.0 or more and 5.0 or less, and more preferably 1.1 or more and 3.0 or less. By setting the number of ethylenically unsaturated double bond groups or ring-opening polymerizable groups in the same molecule within the above range, the bond between the matrix component and the inorganic fine particles can be strengthened.
 シランカップリング剤の具体例としては、例えば、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルジメチルメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、4-(メタ)アクリロキシブチルトリメトキシシラン、4-(メタ)アクリロキシブチルトリエトキシシラン等のエチレン性不飽和二重結合基を有するシランカップリング剤や、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等の開環重合性基を有するシランカップリング剤が挙げられる。より具体的には、KBM-303、KBM-403、KBM-503、KBM-5103(いずれも信越化学工業(株)製)や、下記構造式で表されるシランカップリング剤C-1、C-2等が挙げられる。 Specific examples of the silane coupling agent include, for example, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyldimethylmethoxysilane, 3- (Meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 2- (meth) acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltriethoxysilane, 4- ( Silane coupling agents having an ethylenically unsaturated double bond group such as (meth) acryloxybutyltrimethoxysilane, 4- (meth) acryloxybutyltriethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, 3-glycidoxypropi Silane coupling agent having a ring-opening polymerizable group such as trimethoxysilane. More specifically, KBM-303, KBM-403, KBM-503, KBM-5103 (all manufactured by Shin-Etsu Chemical Co., Ltd.) and silane coupling agents C-1, C represented by the following structural formula -2 etc.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 無機微粒子は、1分子内に2つ以上の重合性官能基を有するシランカップリング剤で修飾された粒子であることがより好ましい。 The inorganic fine particles are more preferably particles modified with a silane coupling agent having two or more polymerizable functional groups in one molecule.
 無機微粒子は、無機微粒子の表面積1nm当たり0.2~4.0個の表面修飾剤が結合または吸着していることが好ましく、1nm当たり0.5~3.0個がより好ましく、1nm当たり0.8~2.0個が更に好ましい。1nm当たり0.2個よりも少ないと、十分な表面修飾の効果が得られない場合がある。また、1nm当たり4.0個よりも多いと、無機微粒子表面から遊離する修飾剤が生じやすい。 The inorganic fine particles preferably have 0.2 to 4.0 surface modifiers bonded or adsorbed per 1 nm 2 of the surface area of the inorganic fine particles, more preferably 0.5 to 3.0 particles per 1 nm 2 , and 1 nm. More preferably, 0.8 to 2.0 per two . If the number is less than 0.2 per 1 nm 2 , sufficient surface modification effects may not be obtained. On the other hand, when the number is more than 4.0 per 1 nm 2 , a modifying agent released from the surface of the inorganic fine particles tends to be generated.
 これらの無機微粒子の表面修飾は、溶液中でなされることが好ましい。溶液中で無機微粒子を合成したあとに表面修飾剤を添加して攪拌するか、無機微粒子を機械的に微細分散する時に、一緒に表面修飾剤を存在させるか、または無機微粒子を微細分散したあとに表面修飾剤を添加して攪拌するか、さらには無機微粒子を微細分散する前に表面修飾を行って(必要により、加温、乾燥した後に加熱、またはpH変更を行う)、そのあとで微細分散を行う方法でも良い。表面修飾剤を溶解する溶液としては、極性の大きな有機溶剤が好ましい。具体的には、アルコール、ケトン、エステル等の公知の溶剤が挙げられる。 The surface modification of these inorganic fine particles is preferably performed in a solution. After synthesizing the inorganic fine particles in the solution, the surface modifier is added and stirred, or when the inorganic fine particles are mechanically finely dispersed, the surface modifier is present together or after the fine inorganic particles are finely dispersed. Add the surface modifier to the mixture and stir, or further modify the surface before finely dispersing the inorganic fine particles (if necessary, heat, dry, or change pH), then fine A method of performing dispersion may be used. As the solution for dissolving the surface modifier, an organic solvent having a large polarity is preferable. Specific examples include known solvents such as alcohols, ketones and esters.
 無機微粒子の平均一次粒径は、3~100nmであり、4~50nmであることが好ましく、5~20nmであることがより好ましい。平均一次粒径を上記の範囲にすることで、マトリクス成分と無機微粒子との結合を強固にすることができる。
 ハードコートフィルム中の無機微粒子の平均一次粒径は、ハードコートフィルムを薄片化して得られた薄片試料の断面を、透過型電子顕微鏡(TEM)を用いて適切な倍率(40万倍程度)で観察し、一次粒子100個のそれぞれの直径を測長してその体積を算出し、累積の50%粒径を平均一次粒径とすることで求める。粒子が球形でない場合には、長径と短径の平均値をその一次粒子の直径とみなす。薄片試料は、断面切削装置ウルトラミクロトームを用いたミクロトーム法や、集束イオンビーム(FIB)装置を用いた薄片加工法などにより作成できる。粉体粒子または粒子分散液中の粒子を測定する場合は、粉体粒子または粒子分散液を上記同様TEMで観察して、平均一次粒径を算出する。
The average primary particle size of the inorganic fine particles is 3 to 100 nm, preferably 4 to 50 nm, and more preferably 5 to 20 nm. By setting the average primary particle size within the above range, the bond between the matrix component and the inorganic fine particles can be strengthened.
The average primary particle size of the inorganic fine particles in the hard coat film is obtained by observing the cross section of the thin sample obtained by slicing the hard coat film at an appropriate magnification (about 400,000 times) using a transmission electron microscope (TEM). Observe, measure the diameter of each of the 100 primary particles, calculate the volume, and determine the cumulative 50% particle size as the average primary particle size. When the particles are not spherical, the average value of the major and minor diameters is regarded as the diameter of the primary particles. The flake sample can be prepared by a microtome method using a cross-section cutting apparatus ultramicrotome, a flake processing method using a focused ion beam (FIB) apparatus, or the like. When measuring the particles in the powder particles or the particle dispersion, the average primary particle size is calculated by observing the powder particles or the particle dispersion with a TEM as described above.
 無機微粒子は、1種のみを用いても2種以上を併用してもよい。2種以上を併用する場合は粒径が異なるものを用いるのが、ハードコート層中の粒子の体積充填率を上げる観点で好ましい。 Inorganic fine particles may be used alone or in combination of two or more. When using 2 or more types together, it is preferable to use those having different particle diameters from the viewpoint of increasing the volume filling rate of the particles in the hard coat layer.
 ハードコート層中の無機微粒子の体積比率は、50体積%以上、90体積%以下である。50体積%以上とすることで、ハードコートフィルムのE10-Eを2GPa以上にすることができる。また、90体積%以下とすることで、膜を形成しやすくなる。 The volume ratio of the inorganic fine particles in the hard coat layer is 50% by volume or more and 90% by volume or less. By setting it to 50% by volume or more, E 10 -E 2 of the hard coat film can be made 2 GPa or more. Moreover, it becomes easy to form a film | membrane by setting it as 90 volume% or less.
 無機微粒子は、粒子の強度の観点から中実粒子であることが好ましい。無機微粒子の形状は、球形が最も好ましいが、不定形等の球形以外であってもよい。 The inorganic fine particles are preferably solid particles from the viewpoint of particle strength. The shape of the inorganic fine particles is most preferably spherical, but may be other than spherical such as indefinite.
(膜厚)
 ハードコート層の膜厚は特に限定されないが、1~50μmであることが好ましく、5~30μmであることがより好ましく、10~20μmであることが更に好ましい。
 ハードコート層の厚みは、ハードコートフィルムの断面を光学顕微鏡で観察して算出する。断面試料は、断面切削装置ウルトラミクロトームを用いたミクロトーム法や、集束イオンビーム(FIB)装置を用いた断面加工法などにより作成できる。
(Film thickness)
The thickness of the hard coat layer is not particularly limited, but is preferably 1 to 50 μm, more preferably 5 to 30 μm, and still more preferably 10 to 20 μm.
The thickness of the hard coat layer is calculated by observing the cross section of the hard coat film with an optical microscope. The cross-section sample can be created by a microtome method using a cross-section cutting apparatus ultramicrotome, a cross-section processing method using a focused ion beam (FIB) apparatus, or the like.
<その他の層>
 本発明のハードコートフィルムは、ハードコート層以外の層を有してもよい。例えば、基材とハードコート層との間に密着性を向上させるための易接着層を有する態様、帯電防止性を付与するための帯電防止層を有する態様や、ハードコート層の上に、防汚性を付与するための防汚層や耐擦傷性を付与するための耐擦傷層を有する態様が好ましく挙げられ、これらを複数備えていても良い。
 例えば、ハードコートフィルムのハードコート層の支持体とは反対側の最表面に、更に耐擦傷層を設けることも好ましく、これにより耐擦傷性を向上することができる。
 本発明における式(1)~(3)を満たすハードコート層を有するハードコートフィルムは、前述したマトリクス形成用組成物と無機微粒子とを含むハードコート層形成用組成物(塗布液)を調製し、ハードコート層形成用組成物を支持体上に塗布して、光又は熱により硬化させてハードコート層を形成することにより製造することが好ましい。また、本発明の耐擦傷層付きハードコートフィルムは、本発明のハードコートフィルムのハードコート層上に、後述の1分子中の重合性官能基数が3つ以上の化合物を含有する耐擦傷層形成用組成物(塗布液)を塗布し、光又は熱により硬化させて耐擦傷層を形成することにより製造することが好ましい。
<Other layers>
The hard coat film of the present invention may have a layer other than the hard coat layer. For example, an aspect having an easy-adhesion layer for improving adhesion between the substrate and the hard coat layer, an aspect having an antistatic layer for imparting antistatic properties, An embodiment having an antifouling layer for imparting dirtiness and an abrasion resistant layer for imparting scratch resistance is preferably exemplified, and a plurality of these may be provided.
For example, it is also preferable to further provide a scratch-resistant layer on the outermost surface of the hard coat film opposite to the support of the hard coat layer, whereby the scratch resistance can be improved.
A hard coat film having a hard coat layer satisfying the formulas (1) to (3) in the present invention is prepared as a hard coat layer forming composition (coating liquid) containing the matrix forming composition and inorganic fine particles described above. The composition for forming a hard coat layer is preferably applied to a support and cured by light or heat to form a hard coat layer. The hard coat film with a scratch-resistant layer of the present invention is formed on the hard coat layer of the hard coat film of the present invention by forming a scratch-resistant layer containing a compound having 3 or more polymerizable functional groups in one molecule described later. It is preferable to manufacture by applying a composition for coating (coating liquid) and curing it by light or heat to form a scratch-resistant layer.
 ハードコート層形成用組成物は、有機溶剤を含有することが好ましい。有機溶剤としては、無機微粒子と極性が近い物を選ぶのが分散性を向上させる観点で好ましい。有機溶剤としては、特に限定されないが、例えば、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、カーボネート系溶剤、芳香族系溶剤等の有機溶剤が挙げられる。これらの有機溶剤は、分散性を著しく悪化させない範囲で複数種混ぜて用いてもよい。 The composition for forming a hard coat layer preferably contains an organic solvent. As an organic solvent, it is preferable from the viewpoint of improving dispersibility to select an organic solvent having a polarity close to that of inorganic fine particles. The organic solvent is not particularly limited, and examples thereof include organic solvents such as alcohol solvents, ketone solvents, ester solvents, carbonate solvents, and aromatic solvents. These organic solvents may be used in a mixture of a plurality of types as long as the dispersibility is not significantly deteriorated.
(耐擦傷層)
 耐擦傷層としては、1分子中の重合性官能基数が3つ以上の化合物の硬化物を耐擦傷層の全質量に対して80質量%以上含有する層であることが好ましい。
(Abrasion resistant layer)
The scratch-resistant layer is preferably a layer containing 80% by mass or more of a cured product of a compound having 3 or more polymerizable functional groups in one molecule with respect to the total mass of the scratch-resistant layer.
 1分子中の重合性官能基数が3つ以上の化合物は、モノマーであっても、オリゴマーであっても、ポリマーであってもよい。化合物の1分子中の重合性官能基数が3つ以上であると、緻密な三次元架橋構造が形成しやすく、重合性官能基当量(重合性官能基として(メタ)アクリロイル基を持つ場合は一般的にアクリル当量と呼ばれる)の小さな化合物を用いても、耐擦傷層の押し込み硬度を高くすることができる。耐擦傷層の押し込み硬度は300MPa以上であることが好ましい。
 1分子中の重合性官能基数が3つ以上の化合物の硬化物の含有率は、耐擦傷層の全質量に対して85質量%以上がより好ましく、90質量%以上が更に好ましい。
The compound having three or more polymerizable functional groups in one molecule may be a monomer, an oligomer, or a polymer. When the number of polymerizable functional groups in one molecule of the compound is 3 or more, a dense three-dimensional cross-linked structure is easily formed, and the polymerizable functional group equivalent (in the case of having a (meth) acryloyl group as the polymerizable functional group) The indentation hardness of the scratch-resistant layer can be increased even when a small compound (called an acrylic equivalent) is used. The indentation hardness of the scratch-resistant layer is preferably 300 MPa or more.
The content of the cured product of the compound having three or more polymerizable functional groups in one molecule is more preferably 85% by mass or more, and still more preferably 90% by mass or more with respect to the total mass of the scratch-resistant layer.
 重合性官能基としては、(メタ)アクリロイル基、エポキシ基、又はオキセタニル基が好ましく、(メタ)アクリロイル基又はエポキシ基がより好ましく、(メタ)アクリロイル基が最も好ましい。 The polymerizable functional group is preferably a (meth) acryloyl group, an epoxy group, or an oxetanyl group, more preferably a (meth) acryloyl group or an epoxy group, and most preferably a (meth) acryloyl group.
 1分子中の重合性官能基数が3つ以上のモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステルが挙げられる。具体的には、ペンタエリスリトールトリ(メタ)アクリレート,ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート,ペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられるが、高架橋という点ではペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、もしくはジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、又はこれらの混合物が好ましい。 Examples of the monomer having three or more polymerizable functional groups in one molecule include esters of polyhydric alcohol and (meth) acrylic acid. Specifically, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipenta Examples include erythritol tetra (meth) acrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, pentaerythritol hexa (meth) acrylate, etc., but in terms of high crosslinking, pentaerythritol triacrylate, pentaerythritol tetraacrylate, or dipentaerythritol. Pentaacrylate, dipentaerythritol hexaacrylate, or mixtures thereof are preferred. .
 耐擦傷層の膜厚は、0.1μm以上1.5μm以下であることが好ましい。 The film thickness of the scratch-resistant layer is preferably from 0.1 μm to 1.5 μm.
(その他添加剤)
 耐擦傷層は、上記以外の成分を含有していてもよく、たとえば、無機粒子、レベリング剤、防汚剤、帯電防止剤、表面改質剤、重合開始剤等を含有していてもよい。
(Other additives)
The scratch-resistant layer may contain components other than those described above, and may contain, for example, inorganic particles, a leveling agent, an antifouling agent, an antistatic agent, a surface modifier, a polymerization initiator, and the like.
(耐擦傷性)
 耐擦傷層は、1000g/cmの荷重をかけたスチールウールで表面を擦る耐擦傷試験において、目視で観察できる傷が生じるまでの擦り回数が100往復以上であることが好ましく、1000往復以上であることがより好ましく、10000往復以上であることが更に好ましい。
(Abrasion resistance)
In the scratch resistance test in which the surface is scratched with steel wool applied with a load of 1000 g / cm 2 , the scratch resistance layer is preferably 100 or more reciprocations until the scratches that can be visually observed are generated. More preferably, it is more preferably 10,000 reciprocations or more.
 以下、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれによって限定して解釈されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the scope of the present invention should not be construed as being limited thereto.
[基材の作製]
(ポリイミド粉末の製造)
 攪拌器、窒素注入装置、滴下漏斗、温度調節器及び冷却器を取り付けた1Lの反応器に、窒素気流下、N,N-ジメチルアセトアミド(DMAc)832gを加えた後、反応器の温度を25℃にした。ここに、ビストリフルオロメチルベンジジン(TFDB)64.046g(0.2mol)を加えて溶解した。得られた溶液を25℃に維持しながら、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)31.09g(0.07mol)とビフェニルテトラカルボン酸二無水物(BPDA)8.83g(0.03mol)を投入し、一定時間撹拌して反応させた。その後、塩化テレフタロイル(TPC)20.302g(0.1mol)を添加して、固形分濃度13質量%のポリアミック酸溶液を得た。次いで、このポリアミック酸溶液にピリジン25.6g、無水酢酸33.1gを投入して30分撹拌し、さらに70℃で1時間撹拌した後、常温に冷却した。ここにメタノール20Lを加え、沈澱した固形分を濾過して粉砕した。その後、100℃下、真空で6時間乾燥させて、111gのポリイミド粉末を得た。
[Production of substrate]
(Manufacture of polyimide powder)
Under a nitrogen stream, 832 g of N, N-dimethylacetamide (DMAc) was added to a 1 L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a condenser, and then the temperature of the reactor was adjusted to 25. C. To this, 64.046 g (0.2 mol) of bistrifluoromethylbenzidine (TFDB) was added and dissolved. While maintaining the resulting solution at 25 ° C., 31.09 g (0.07 mol) of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and biphenyltetracarboxylic dianhydride The product (BPDA) 8.83 g (0.03 mol) was added, and the mixture was stirred for a certain time to be reacted. Thereafter, 20.302 g (0.1 mol) of terephthaloyl chloride (TPC) was added to obtain a polyamic acid solution having a solid concentration of 13% by mass. Next, 25.6 g of pyridine and 33.1 g of acetic anhydride were added to this polyamic acid solution, stirred for 30 minutes, further stirred at 70 ° C. for 1 hour, and then cooled to room temperature. 20 L of methanol was added thereto, and the precipitated solid was filtered and pulverized. Then, it was made to dry in vacuum at 100 degreeC for 6 hours, and 111 g of polyimide powder was obtained.
[基材S-1の作製]
 100gのポリイミド粉末を670gのN,N-ジメチルアセトアミド(DMAc)に溶かして13質量%の溶液を得た。得られた溶液をステンレス板に流延し、130℃の熱風で30分乾燥させた。その後フィルムをステンレス板から剥離して、フレームにピンで固定し、フィルムが固定されたフレームを真空オーブンに入れ、100℃から300℃まで加熱温度を徐々に上げながら2時間加熱し、その後、徐々に冷却した。冷却後のフィルムをフレームから分離した後、最終熱処理工程として、さらに300℃で30分間熱処理して、ポリイミドフィルムからなる、厚み30μmの基材S-1を得た。
[Production of Substrate S-1]
100 g of polyimide powder was dissolved in 670 g of N, N-dimethylacetamide (DMAc) to obtain a 13% by mass solution. The obtained solution was cast on a stainless steel plate and dried with hot air at 130 ° C. for 30 minutes. After that, the film is peeled off from the stainless steel plate and fixed to the frame with a pin. The frame on which the film is fixed is put into a vacuum oven and heated for 2 hours while gradually increasing the heating temperature from 100 ° C to 300 ° C. Cooled to. After the cooled film was separated from the frame, as a final heat treatment step, it was further heat treated at 300 ° C. for 30 minutes to obtain a substrate S-1 made of polyimide film and having a thickness of 30 μm.
[シランカップリング剤の合成]
(シランカップリング剤C-1の合成)
 還流冷却器、温度計を付けたフラスコに信越化学工業製KBE-9007 13.6gとペンタエリスリトールトリアクリレート16.4gとジラウリン酸ジブチル錫0.1g、トルエン70.0gを添加し、室温で12時間撹拌した。撹拌後、メチルハイドロキノン500ppm(parts per million)を加え、減圧留去を行い、構造式(1)で表わされるシランカップリング剤C-1を得た。
[Synthesis of silane coupling agent]
(Synthesis of silane coupling agent C-1)
To a flask equipped with a reflux condenser and a thermometer, 13.6 g of Shin-Etsu Chemical KBE-9007, 16.4 g of pentaerythritol triacrylate, 0.1 g of dibutyltin dilaurate and 70.0 g of toluene were added, and 12 hours at room temperature. Stir. After stirring, 500 ppm of methylhydroquinone (parts per million) was added and distilled off under reduced pressure to obtain a silane coupling agent C-1 represented by the structural formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[シランカップリング剤C-2の合成]
 還流冷却器、温度計を付けたフラスコに信越化学工業製KBE-9007 9.1gとジペンタエリスリトールペンタアクリレート 20.9g ジラウリン酸ジブチル錫0.1g、トルエン70.0gを添加し、室温で12時間撹拌した。撹拌後減圧留去を行い、構造式(2)で表わされるシランカップリング剤C-2を得た。
[Synthesis of Silane Coupling Agent C-2]
To a flask equipped with a reflux condenser and a thermometer, 9.1 g of Shin-Etsu Chemical KBE-9007, 20.9 g of dipentaerythritol pentaacrylate, 0.1 g of dibutyltin dilaurate and 70.0 g of toluene were added, and 12 hours at room temperature. Stir. After stirring, the mixture was distilled off under reduced pressure to obtain a silane coupling agent C-2 represented by the structural formula (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[シリカ粒子の作製]
(シリカ粒子P-1の作製)
 撹拌機、滴下装置および温度計を備えた容量200Lの反応器に、純水89.46kgと、28質量%アンモニア水0.10kgとを仕込み、撹拌しながら液温を90℃に調節した。反応器中の液温を90℃に保持しながら、滴下装置からテトラメトキシシラン10.44kgを102分間かけて滴下し、滴下終了後、さらに120分間、液温を上記温度に保持しながら撹拌することにより、テトラメトキシシランの加水分解および縮合を行った。得られたコロイド溶液をロータリーエバポレーターにより13.3kPaの減圧下において38.8kgまで濃縮し、SiO濃度10.0質量%のシリカ粒子P-1を得た。シリカ粒子P-1の平均一次粒径は5nmであった。
[Preparation of silica particles]
(Preparation of silica particles P-1)
A reactor having a capacity of 200 L equipped with a stirrer, a dropping device and a thermometer was charged with 89.46 kg of pure water and 0.10 kg of 28% by mass ammonia water, and the liquid temperature was adjusted to 90 ° C. while stirring. While maintaining the liquid temperature in the reactor at 90 ° C., 10.44 kg of tetramethoxysilane was dropped from the dropping device over 102 minutes, and after completion of the dropping, the liquid temperature was further stirred for 120 minutes while maintaining the above temperature. As a result, hydrolysis and condensation of tetramethoxysilane were carried out. The obtained colloid solution was concentrated to 38.8 kg under a reduced pressure of 13.3 kPa using a rotary evaporator to obtain silica particles P-1 having a SiO 2 concentration of 10.0% by mass. The average primary particle size of silica particles P-1 was 5 nm.
(シリカ粒子P-2の作製)
 テトラメトキシシランを114分かけて滴下した以外はシリカ粒子P-1と同様の方法で、シリカ粒子P-2を得た。シリカ粒子P-2の平均一次粒径は15nmであった。
(Preparation of silica particles P-2)
Silica particles P-2 were obtained in the same manner as silica particles P-1, except that tetramethoxysilane was added dropwise over 114 minutes. The average primary particle size of the silica particles P-2 was 15 nm.
(シリカ粒子P-3の作製)
 テトラメトキシシランを156分かけて滴下した以外はシリカ粒子P-1と同様の方法で、シリカ粒子P-3を得た。シリカ粒子P-3の平均一次粒径は50nmであった。
(Preparation of silica particles P-3)
Silica particles P-3 were obtained in the same manner as silica particles P-1, except that tetramethoxysilane was added dropwise over 156 minutes. The average primary particle size of the silica particles P-3 was 50 nm.
(シリカ粒子P-4の作製)
 テトラメトキシシランを240分かけて滴下した以外はシリカ粒子P-1と同様の方法で、シリカ粒子P-4を得た。シリカ粒子P-4の平均一次粒径は120nmであった。
(Preparation of silica particles P-4)
Silica particles P-4 were obtained in the same manner as silica particles P-1, except that tetramethoxysilane was added dropwise over 240 minutes. The average primary particle size of silica particles P-4 was 120 nm.
(シリカ粒子P-13の作製)
 テトラメトキシシランを216分間かけて滴下した以外はシリカ粒子P-1と同様の方法で、シリカ粒子P-13を得た。シリカ粒子P-13の平均一次粒径は100nmであった。
(Preparation of silica particles P-13)
Silica particles P-13 were obtained in the same manner as silica particles P-1, except that tetramethoxysilane was added dropwise over 216 minutes. The average primary particle size of silica particles P-13 was 100 nm.
(シリカ粒子P-5の作製)
 300gのシリカ粒子P-1を、撹拌機を備えた内容積1Lのガラス製反応器に仕込んだ。これに、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-503)6.75gを、メチルアルコール20gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら95℃で約2時間加熱処理を行った。冷却後、1-メトキシ-2-プロパノール100gを加え、副生したメタノールを減圧留去した。さらに1-メトキシ-2-プロパノール300gを数回に分けて加え、固形分が60質量%となるように共沸により水を減圧留去し、シリカ粒子P-5を得た。なお、固形分は、150℃で30分間加熱を行い、前後の重量変化から算出した。
(Preparation of silica particles P-5)
300 g of silica particles P-1 were charged into a 1 L glass reactor equipped with a stirrer. A solution prepared by dissolving 6.75 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) in 20 g of methyl alcohol was added dropwise thereto and mixed. Thereafter, heat treatment was performed at 95 ° C. for about 2 hours with mixing and stirring. After cooling, 100 g of 1-methoxy-2-propanol was added, and by-product methanol was distilled off under reduced pressure. Further, 300 g of 1-methoxy-2-propanol was added in several portions, and water was distilled off under reduced pressure by azeotropic distillation so that the solid content was 60% by mass to obtain silica particles P-5. In addition, solid content heated for 30 minutes at 150 degreeC, and computed from the weight change before and behind.
(シリカ粒子P-6の作製)
 シリカ粒子P-1をシリカ粒子P-2に、3-メタクリロキシプロピルトリメトキシシランを2.25gに変更した以外はシリカ粒子P-5と同様の方法で、シリカ粒子P-6を得た。
(Preparation of silica particles P-6)
Silica particle P-6 was obtained in the same manner as silica particle P-5, except that silica particle P-1 was changed to silica particle P-2 and 3-methacryloxypropyltrimethoxysilane was changed to 2.25 g.
(シリカ粒子P-7の作製)
 シリカ粒子P-1をシリカ粒子P-3に、3-メタクリロキシプロピルトリメトキシシランを0.68gに変更した以外はシリカ粒子P-5と同様の方法で、シリカ粒子P-7を得た。
(Preparation of silica particles P-7)
Silica particles P-7 were obtained in the same manner as silica particles P-5 except that silica particles P-1 were changed to silica particles P-3 and 3-methacryloxypropyltrimethoxysilane was changed to 0.68 g.
(シリカ粒子P-8の作製)
 シリカ粒子P-1をシリカ粒子P-4に、3-メタクリロキシプロピルトリメトキシシランを0.28gに変更した以外はシリカ粒子P-5と同様の方法で、シリカ粒子P-8を得た。
(Preparation of silica particles P-8)
Silica particle P-8 was obtained in the same manner as silica particle P-5, except that silica particle P-1 was changed to silica particle P-4 and 3-methacryloxypropyltrimethoxysilane was changed to 0.28 g.
(シリカ粒子P-14の作製)
 シリカ粒子P-1をシリカ粒子P-13に、3-メタクリロキシプロピルトリメトキシシランを0.34gに変更した以外はシリカ粒子P-5と同様の方法で、シリカ粒子P-14を得た。
(Preparation of silica particles P-14)
Silica particles P-14 were obtained in the same manner as silica particles P-5 except that silica particles P-1 were changed to silica particles P-13 and 3-methacryloxypropyltrimethoxysilane was changed to 0.34 g.
(シリカ粒子P-9の作製)
 3-メタクリロキシプロピルトリメトキシシラン(6.75g)をシランカップリング剤C-1(13.7g)に変更した以外はシリカ粒子P-5と同様の方法で、シリカ粒子P-9を得た。
(Preparation of silica particles P-9)
Silica particle P-9 was obtained in the same manner as silica particle P-5, except that 3-methacryloxypropyltrimethoxysilane (6.75 g) was changed to silane coupling agent C-1 (13.7 g). .
(シリカ粒子P-10の作製)
 シリカ粒子P-1をシリカ粒子P-2に、3-メタクリロキシプロピルトリメトキシシラン(6.75g)をシランカップリング剤C-1(4.6g)に変更した以外はシリカ粒子P-5と同様の方法で、シリカ粒子P-10を得た。
(Preparation of silica particles P-10)
Silica particles P-5 were changed to silica particles P-2, and 3-methacryloxypropyltrimethoxysilane (6.75 g) was changed to silane coupling agent C-1 (4.6 g). Silica particles P-10 were obtained in the same manner.
(シリカ粒子P-11の作製)
 シリカ粒子P-1をシリカ粒子P-2に、3-メタクリロキシプロピルトリメトキシシラン(6.75g)をシランカップリング剤C-2(6.6g)に変更した以外はシリカ粒子P-5と同様の方法で、シリカ粒子P-11を得た。
(Preparation of silica particles P-11)
The silica particles P-5 and silica particles P-5 were used except that the silica particles P-1 were changed to silica particles P-2 and 3-methacryloxypropyltrimethoxysilane (6.75 g) was changed to silane coupling agent C-2 (6.6 g). Silica particles P-11 were obtained in the same manner.
(シリカ粒子P-12の作製)
 シリカ粒子P-2(300g)に対して1-メトキシ-2-プロパノール(100g)を加え、副生したメタノールを減圧留去した。さらに1-メトキシ-2-プロパノール(300g)を数回に分けて加え、固形分が60質量%となるように共沸により水を減圧留去し、シリカ粒子P-12を得た。
(Preparation of silica particles P-12)
1-Methoxy-2-propanol (100 g) was added to silica particle P-2 (300 g), and by-product methanol was distilled off under reduced pressure. Further, 1-methoxy-2-propanol (300 g) was added in several portions, and water was distilled off under reduced pressure by azeotropic distillation so that the solid content was 60% by mass to obtain silica particles P-12.
[ハードコートフィルムの作製]
(ハードコート層形成用塗布液の調製)
 下記表1及び表2に記載の組成(質量%)で各成分を混合してハードコート層形成用塗布液HC-1~HC-20を調製した。なお、シリカ粒子の組成は、固形分60質量%の分散液としての値である。
[Preparation of hard coat film]
(Preparation of hard coat layer forming coating solution)
Coating components HC-1 to HC-20 for forming a hard coat layer were prepared by mixing each component with the composition (mass%) shown in Table 1 and Table 2 below. The composition of the silica particles is a value as a dispersion having a solid content of 60% by mass.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 A-400:ポリエチレングリコール#400ジアクリレート(新中村化学工業(株)製)
 A-200:ポリエチレングリコール#200ジアクリレート(新中村化学工業(株)製)
 A-1000:ポリエチレングリコール#1000ジアクリレート(新中村化学工業(株)製)
 DPCA-120:カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、商品名KAYARAD DPCA-120(日本化薬(株)製)
 DPCA-60:カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、商品名KAYARAD DPCA-60(日本化薬(株)製)
 DPCA-20:カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、商品名KAYARAD DPCA-20(日本化薬(株)製)
 DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(日本化薬(株)製)
 DCP-A:ジメチロール-トリシクロデカンジアクリレート、商品名ライトアクリレート DCP-A(共栄化学(株)製)
 UA-33H:ウレタンアクリレート(新中村化学工業(株)製)
 A-DPH-6E:ジペンタエリスリトールヘキサアクリレートのエチレンオキサイド付加物(新中村化学工業(株)製)
 イルガキュア184:光重合開始剤(BASF製)
A-400: Polyethylene glycol # 400 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
A-200: Polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
A-1000: Polyethylene glycol # 1000 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
DPCA-120: caprolactone-modified dipentaerythritol hexaacrylate, trade name KAYARAD DPCA-120 (manufactured by Nippon Kayaku Co., Ltd.)
DPCA-60: caprolactone-modified dipentaerythritol hexaacrylate, trade name KAYARAD DPCA-60 (manufactured by Nippon Kayaku Co., Ltd.)
DPCA-20: Caprolactone-modified dipentaerythritol hexaacrylate, trade name KAYARAD DPCA-20 (manufactured by Nippon Kayaku Co., Ltd.)
DPHA: Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.)
DCP-A: dimethylol-tricyclodecane diacrylate, trade name light acrylate DCP-A (manufactured by Kyoei Chemical Co., Ltd.)
UA-33H: Urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
A-DPH-6E: ethylene oxide adduct of dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
Irgacure 184: Photopolymerization initiator (manufactured by BASF)
(ハードコートフィルムAの作製)
 基材S-1上に、ハードコート層形成用塗布液HC-1を、硬化後の厚みが17μmとなるようにグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が100ppm以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量300mJ/cmの紫外線を照射して塗布層を硬化させ、ハードコート層を形成し、ハードコートフィルムAを作製した。
(Preparation of hard coat film A)
The coating liquid HC-1 for forming a hard coat layer was applied onto the substrate S-1 using a gravure coater so that the thickness after curing was 17 μm. After drying at 100 ° C., an ultraviolet ray with an irradiation amount of 300 mJ / cm 2 using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 100 ppm or less. Was applied to cure the coating layer, a hard coat layer was formed, and a hard coat film A was produced.
(ハードコートフィルムB~Tの作製)
 塗布液HC-1の代わりに塗布液HC-2~20を使用した以外は、ハードコートフィルムAと同様にしてハードコートフィルムB~Tを作製した。
(Preparation of hard coat films BT)
Hard coat films BT were produced in the same manner as hard coat film A, except that coating liquids HC-2 to 20 were used instead of coating liquid HC-1.
[ハードコートフィルムの評価]
 作製したハードコートフィルムを、以下の方法によって評価した。
[Evaluation of hard coat film]
The produced hard coat film was evaluated by the following methods.
(押込み弾性率)
 各ハードコートフィルムのハードコート層表面に対し、HM2000型硬度計(フィッシャーインスツルメンツ社製、ダイヤモンド製Knoop圧子)を用い、最大押込み深さが0.34μm(ハードコート層の厚みに対して2%)および1.7μm(同10%)になるように最大荷重を調整し、押し込み速度10秒、クリープ5秒の条件で押込み試験を行い、各押込み深さでの押込み弾性率を求めた。
(Indentation modulus)
HM2000 hardness tester (Fischer Instruments, Knoop indenter made of diamond) is used for the hard coat layer surface of each hard coat film, and the maximum indentation depth is 0.34 μm (2% with respect to the thickness of the hard coat layer). The maximum load was adjusted so as to be 1.7 μm (10%), and an indentation test was performed under the conditions of an indentation speed of 10 seconds and a creep of 5 seconds, and the indentation elastic modulus at each indentation depth was obtained.
(ハードコート層の無機微粒子体積比率)
 ハードコートフィルム表面をスクレーパーでそぎ取り、ハードコート層を10g以上回収して質量を測定した。回収したハードコート層を大気雰囲気下において600℃で3時間加熱し、マトリクス成分を燃焼させて無機微粒子を回収し、質量を測定した。マトリクス成分の比重を1.2、シリカ粒子の比重を2.2とし、ハードコート層中の無機微粒子体積比率を求めた。
(Inorganic fine particle volume ratio of hard coat layer)
The surface of the hard coat film was scraped off with a scraper, 10 g or more of the hard coat layer was recovered, and the mass was measured. The recovered hard coat layer was heated at 600 ° C. for 3 hours in an air atmosphere, the matrix components were burned to recover inorganic fine particles, and the mass was measured. The specific gravity of the matrix component was 1.2, the specific gravity of the silica particles was 2.2, and the inorganic fine particle volume ratio in the hard coat layer was determined.
(鉛筆硬度)
 JIS K 5600-5-4(1999)に準拠して測定した。
(Pencil hardness)
It was measured according to JIS K 5600-5-4 (1999).
(耐屈曲性(繰り返しの折り曲げ耐性)評価)
 ハードコートフィルムから幅15mm、長さ150mmの試料フィルムを切り出し、温度25℃、相対湿度65%の状態に1時間以上静置させた。その後、耐折度試験機((株)井元製作所製、IMC-0755型、折り曲げ曲率半径1.0mm)を用いて、ハードコート層側が曲げ内側になるようにして繰り返しの耐屈曲性試験を行った。試料フィルムに割れまたは破断が生じるまでの回数により、以下の基準で評価した。
 A:100万回以上
 B:80万回以上、100万回未満
 C:50万回以上、80万回未満
 D:10万回以上、50万回未満
 E:10万回未満
(Bend resistance (repeated bending resistance) evaluation)
A sample film having a width of 15 mm and a length of 150 mm was cut out from the hard coat film and allowed to stand for 1 hour or longer in a state of a temperature of 25 ° C. and a relative humidity of 65%. After that, using a bending resistance tester (Imoto Seisakusho Co., Ltd., model IMC-0755, bending radius 1.0 mm), repeated bending resistance tests were performed with the hard coat layer side facing the bending inner side. It was. The number of times until the sample film was cracked or broken was evaluated according to the following criteria.
A: 1 million times or more B: 800,000 times or more, less than 1 million times C: 500,000 times or more, less than 800,000 times D: 100,000 times or more, less than 500,000 times E: Less than 100,000 times
(マトリクス成分の押込み弾性率)
 それぞれのハードコート層形成用塗布液に対して、シリカ粒子を添加せずに調製したマトリクス層形成用組成物を作製し、ハードコート層と同様の方法により基材S-1上にマトリクス層を形成した。マトリクス層の厚みは17μmになるように塗布量を調整した。マトリクス層表面に対し、最大押込み深さが0.34μm(マトリクス層の厚みに対して2%)になるように最大荷重を調整した以外はハードコートフィルムA~Tと同様の押込み試験を行い、マトリクス成分の押込み弾性率Eを測定した。評価結果を下記表3及び表4に示す。
(Indentation modulus of matrix component)
For each hard coat layer forming coating solution, a matrix layer forming composition prepared without adding silica particles was prepared, and the matrix layer was formed on the substrate S-1 by the same method as the hard coat layer. Formed. The coating amount was adjusted so that the thickness of the matrix layer was 17 μm. Except that the maximum load was adjusted so that the maximum indentation depth was 0.34 μm (2% with respect to the thickness of the matrix layer) on the surface of the matrix layer, the same indentation test as the hard coat films A to T was performed. the indentation modulus E M of matrix components was determined. The evaluation results are shown in Tables 3 and 4 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[耐擦傷層付きハードコートフィルムの作製]
(ハードコートフィルムA-2の作製)
 基材S-1上に、硬化後の厚みが17μmとなるようにハードコート層形成用塗布液HC-1をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が1.5%以下の雰囲気になるように窒素パージしながら20W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量20mJ/cmの紫外線を照射して塗布層を硬化させ、ハードコート層を形成し、ハードコートフィルムA-2を作製した。
[Preparation of scratch-resistant hard coat film]
(Preparation of hard coat film A-2)
A coating liquid HC-1 for forming a hard coat layer was applied on the substrate S-1 using a gravure coater so that the thickness after curing was 17 μm. After drying at 100 ° C., using a 20 W / cm air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.5% or less, the irradiation dose is 20 mJ / cm. The coating layer was cured by irradiating the ultraviolet ray 2 to form a hard coat layer, and a hard coat film A-2 was produced.
(耐擦傷層形成用塗布液の調製)
 下記表5に記載の組成(質量%)で各成分を混合して耐擦傷層形成用塗布液SC-1、SC-2を調製した。
(Preparation of scratch-resistant coating solution)
Each component was mixed in the composition (mass%) shown in Table 5 below to prepare scratch-resistant layer forming coating solutions SC-1 and SC-2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 イルガキュア127:重合開始剤(BASF製)
 RS-90:表面改質剤、商品名 メガファック RS-90(DIC(株)製)
Irgacure 127: Polymerization initiator (BASF)
RS-90: Surface modifier, trade name MegaFac RS-90 (manufactured by DIC Corporation)
(耐擦傷層付きハードコートフィルムUの作製)
 ハードコートフィルムA-2のハードコート層上に、耐擦傷層形成用塗布液SC-1をグラビアコーターを用いて、硬化後の厚みが0.1μmになるように塗布し、100℃で乾燥した。その後、80℃のホットプレート上において、酸素濃度が100ppm以下の雰囲気になるよう窒素パージしながら160mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量1200mJ/cmの紫外線を塗膜側から照射して硬化させて、耐擦傷層付きハードコートフィルムUを作成した。
(Preparation of hard coat film U with scratch-resistant layer)
On the hard coat layer of the hard coat film A-2, the scratch-resistant layer forming coating solution SC-1 was applied using a gravure coater so that the thickness after curing was 0.1 μm and dried at 100 ° C. . Thereafter, using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 mW / cm 2 while purging with nitrogen so that the oxygen concentration becomes 100 ppm or less on an 80 ° C. hot plate, the irradiation amount is 1200 mJ / cm. A hard coat film U with a scratch-resistant layer was prepared by irradiating and curing the ultraviolet ray 2 from the coating film side.
(耐擦傷層付きハードコートフィルムVの作製)
 耐擦傷層形成用塗布液をSC-2に変更し、硬化後の厚みを1.0μmとした以外は耐擦傷層付きハードコートフィルムUと同様にして、耐擦傷層付きハードコートフィルムVを作成した。
(Preparation of hard coat film V with scratch-resistant layer)
A hard coat film V with a scratch-resistant layer was prepared in the same manner as the hard coat film U with a scratch-resistant layer except that the coating solution for forming the scratch-resistant layer was changed to SC-2 and the thickness after curing was changed to 1.0 μm. did.
[耐擦傷層付きハードコートフィルムの評価]
 作製した耐擦傷層付きハードコートフィルムを、以下の方法によって評価した。
[Evaluation of Hard Coat Film with Scratch Resistant Layer]
The produced hard coat film with a scratch-resistant layer was evaluated by the following methods.
(耐擦傷性)
 耐擦傷層付きハードコートフィルムの耐擦傷層の表面を、ラビングテスターを用いて、以下の条件で擦りテストを行うことで、耐擦傷性の指標とした。
 評価環境条件:25℃、相対湿度60%
 こすり材:スチールウール(日本スチールウール(株)製、グレードNo.0000)
 試料と接触するテスターのこすり先端部(1cm×1cm)に巻いて、バンド固定
 移動距離(片道):13cm、
 こすり速度:13cm/秒、
 荷重:1000g/cm
 先端部接触面積:1cm×1cm、
 こすり回数:100往復、10000往復
 こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を評価した。
  A :非常に注意深く見ても、全く傷が見えない。
  B :注意深く見ると弱い傷が見えるが、問題にならない
  C :一目見ただけで分かる傷があり、非常に目立つ
(Abrasion resistance)
The surface of the scratch-resistant layer of the hard coat film with the scratch-resistant layer was subjected to a rubbing test using a rubbing tester under the following conditions, and used as an index of scratch resistance.
Evaluation environmental conditions: 25 ° C., relative humidity 60%
Rubbing material: Steel wool (manufactured by Nippon Steel Wool Co., Ltd., Grade No. 0000)
Wrap around the tip (1 cm x 1 cm) of the tester that comes into contact with the sample. Band fixing Movement distance (one way): 13 cm,
Rubbing speed: 13 cm / second,
Load: 1000 g / cm 2
Tip contact area: 1 cm × 1 cm,
The number of rubs: 100 reciprocations, 10000 reciprocations The oily black ink was applied to the back of the rubbed sample, and the scratches on the rubbed portions were evaluated by visual observation with reflected light.
A: Even if you look very carefully, no scratches are visible.
B: If you look carefully, you can see weak scratches, but it doesn't matter. C: There are scratches that can be seen at first glance, and are very conspicuous.
 評価結果を下記表6に示す。 Evaluation results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3及び表4に示したように、実施例のハードコートフィルムは、硬度と繰り返しの折り曲げ耐性の両方に優れていた。一方、比較例1~6、9のハードコートフィルムは、Eが8GPaより大きく、繰り返しの折り曲げ耐性が劣り、比較例7、8、11のハードコートフィルムは、E10が8GPaより小さいため、鉛筆硬度が劣っていた。また、比較例10のハードコートフィルムは、平均一次粒径が100nmより大きいため、鉛筆硬度、繰り返しの折り曲げ耐性ともに劣っていた。また、表6に示したように、耐擦傷層を設けた実施例10、11は、硬度、繰り返しの折り曲げ性、耐擦傷性に優れていた。 As shown in Tables 3 and 4, the hard coat films of the examples were excellent in both hardness and repeated bending resistance. On the other hand, the hard coat films of Comparative Examples 1 to 6 and 9 have an E 2 greater than 8 GPa and poor repeated bending resistance, and the hard coat films of Comparative Examples 7, 8, and 11 have an E 10 of less than 8 GPa. Pencil hardness was inferior. Moreover, since the average primary particle diameter of the hard coat film of Comparative Example 10 was larger than 100 nm, both the pencil hardness and the repeated bending resistance were inferior. Further, as shown in Table 6, Examples 10 and 11 provided with the scratch-resistant layer were excellent in hardness, repeated bendability, and scratch resistance.
 本発明によれば、硬度が高く、繰り返し折り曲げ耐性に優れるハードコートフィルム、および耐擦傷性に優れる耐擦傷層付きハードコートフィルムを提供することができる。 According to the present invention, it is possible to provide a hard coat film having high hardness and excellent repeated bending resistance, and a hard coat film with a scratch-resistant layer having excellent scratch resistance.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2018年3月9日出願の日本特許出願(特願2018-43373)、及び2018年9月28日出願の日本特許出願(特願2018-185805)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on March 9, 2018 (Japanese Patent Application No. 2018-43373) and a Japanese patent application filed on September 28, 2018 (Japanese Patent Application No. 2018-185805). Is incorporated herein by reference.

Claims (6)

  1.  支持体の少なくとも一方の面にハードコート層を有するハードコートフィルムであって、
     前記ハードコート層が、マトリクス成分と、平均一次粒子径が3~100nmの無機微粒子とを含み、
     前記無機微粒子の、前記ハードコート層中の含有率が50体積%以上90体積%以下であり、
     前記ハードコート層の、前記支持体側とは反対側の面から、ダイヤモンド製knoop圧子を用いて垂直に荷重を加える押込み試験において、前記ハードコート層の厚みに対して10%押込んだときの押込み弾性率をE10、前記ハードコート層の厚みに対して2%押込んだときの押込み弾性率をEとしたとき、下記式(1)、(2)、(3)を満たすことを特徴とする、ハードコートフィルム。
     E10-E≧2GPa …(1)
     E10≧8GPa …(2)
     E≦8GPa …(3)
    A hard coat film having a hard coat layer on at least one surface of a support,
    The hard coat layer includes a matrix component and inorganic fine particles having an average primary particle size of 3 to 100 nm;
    The content of the inorganic fine particles in the hard coat layer is 50% by volume or more and 90% by volume or less,
    Indentation when the hard coat layer is indented 10% with respect to the thickness of the hard coat layer in an indentation test in which a load is applied vertically from the surface opposite to the support side using a diamond knoop indenter. When the elastic modulus is E 10 and the indentation elastic modulus when indented by 2% with respect to the thickness of the hard coat layer is E 2 , the following formulas (1), (2), and (3) are satisfied. A hard coat film.
    E 10 −E 2 ≧ 2 GPa (1)
    E 10 ≧ 8 GPa (2)
    E 2 ≦ 8 GPa (3)
  2.  前記マトリクス成分の押込み弾性率をEとしたとき、E≦1.5GPaである、請求項1に記載のハードコートフィルム。 The hard coat film according to claim 1, wherein E M ≦ 1.5 GPa when the indentation elastic modulus of the matrix component is E M.
  3.  前記マトリクス成分が、マトリクス形成用組成物の硬化物であり、
     前記マトリクス形成用組成物中の重合性官能基当量が250以上である、請求項1または2に記載のハードコートフィルム。
    The matrix component is a cured product of the matrix-forming composition;
    The hard coat film according to claim 1 or 2, wherein the polymerizable functional group equivalent in the matrix-forming composition is 250 or more.
  4.  前記無機微粒子が、1分子内に2つ以上の重合性官能基を有するシランカップリング剤で修飾された粒子である、請求項1から3のいずれか一項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 3, wherein the inorganic fine particles are particles modified with a silane coupling agent having two or more polymerizable functional groups in one molecule.
  5.  前記支持体が、トリアセチルセルロースフィルム、ポリメチルメタクリレートフィルム、ポリアミドフィルム、アラミドフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリエーテルイミドフィルム、ポリエステルイミドフィルム、およびポリエチレンテレフタレートフィルムから選択される、請求項1から4のいずれか一項に記載のハードコートフィルム。 The support is selected from triacetylcellulose film, polymethylmethacrylate film, polyamide film, aramid film, polyimide film, polyamideimide film, polyetherimide film, polyesterimide film, and polyethylene terephthalate film. 5. The hard coat film according to any one of 4 above.
  6.  請求項1から5のいずれか一項に記載のハードコートフィルムの、前記ハードコート層の前記支持体側とは反対側の面に耐擦傷層を有する、耐擦傷層付きハードコートフィルム。 A hard coat film with a scratch-resistant layer having a scratch-resistant layer on a surface of the hard coat film according to any one of claims 1 to 5 opposite to the support side of the hard coat layer.
PCT/JP2019/006866 2018-03-09 2019-02-22 Hard coat film, and hard coat film having scratch-resistant layer attached thereto WO2019171989A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020504924A JP7064573B2 (en) 2018-03-09 2019-02-22 Hardcourt film and hardcourt film with scratch resistant layer
JP2022071040A JP2022115882A (en) 2018-03-09 2022-04-22 Hard coat film, and hard coat film with anti-scratching layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-043373 2018-03-09
JP2018043373 2018-03-09
JP2018185805 2018-09-28
JP2018-185805 2018-09-28

Publications (1)

Publication Number Publication Date
WO2019171989A1 true WO2019171989A1 (en) 2019-09-12

Family

ID=67847341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006866 WO2019171989A1 (en) 2018-03-09 2019-02-22 Hard coat film, and hard coat film having scratch-resistant layer attached thereto

Country Status (2)

Country Link
JP (2) JP7064573B2 (en)
WO (1) WO2019171989A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022115882A (en) * 2018-03-09 2022-08-09 富士フイルム株式会社 Hard coat film, and hard coat film with anti-scratching layer
WO2024062930A1 (en) * 2022-09-22 2024-03-28 株式会社クラレ Adhesive agent, cured product, and member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189745A (en) * 2013-03-28 2014-10-06 Dic Corp Active energy ray-curable resin composition, production method of the same, coating material, coating film, and film
JP2014238614A (en) * 2013-01-11 2014-12-18 大日本印刷株式会社 Hard coat film, curable resin composition for hard coat layer, and method for producing hard coat film
JP2015227437A (en) * 2014-05-09 2015-12-17 三菱レイヨン株式会社 Active energy ray-curable resin composition and laminate and molding using cured film of the same
WO2017141906A1 (en) * 2016-02-16 2017-08-24 株式会社トッパンTomoegawaオプティカルフィルム Hard coating film, polarizing plate using same, hard coating film processed product, and display member
JP2018203887A (en) * 2017-06-05 2018-12-27 日本化工塗料株式会社 Active energy ray curable composition for forming cured coated film on cyclic olefin-based resin substrate, and manufacturing method of hard coat film
JP2018202696A (en) * 2017-06-01 2018-12-27 大日本印刷株式会社 Hard coat film, ionization radiation curable resin composition, and display
WO2019066080A1 (en) * 2017-09-29 2019-04-04 大日本印刷株式会社 Optical film and image display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064573B2 (en) * 2018-03-09 2022-05-10 富士フイルム株式会社 Hardcourt film and hardcourt film with scratch resistant layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238614A (en) * 2013-01-11 2014-12-18 大日本印刷株式会社 Hard coat film, curable resin composition for hard coat layer, and method for producing hard coat film
JP2014189745A (en) * 2013-03-28 2014-10-06 Dic Corp Active energy ray-curable resin composition, production method of the same, coating material, coating film, and film
JP2015227437A (en) * 2014-05-09 2015-12-17 三菱レイヨン株式会社 Active energy ray-curable resin composition and laminate and molding using cured film of the same
WO2017141906A1 (en) * 2016-02-16 2017-08-24 株式会社トッパンTomoegawaオプティカルフィルム Hard coating film, polarizing plate using same, hard coating film processed product, and display member
JP2018202696A (en) * 2017-06-01 2018-12-27 大日本印刷株式会社 Hard coat film, ionization radiation curable resin composition, and display
JP2018203887A (en) * 2017-06-05 2018-12-27 日本化工塗料株式会社 Active energy ray curable composition for forming cured coated film on cyclic olefin-based resin substrate, and manufacturing method of hard coat film
WO2019066080A1 (en) * 2017-09-29 2019-04-04 大日本印刷株式会社 Optical film and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022115882A (en) * 2018-03-09 2022-08-09 富士フイルム株式会社 Hard coat film, and hard coat film with anti-scratching layer
WO2024062930A1 (en) * 2022-09-22 2024-03-28 株式会社クラレ Adhesive agent, cured product, and member

Also Published As

Publication number Publication date
JPWO2019171989A1 (en) 2021-02-04
JP2022115882A (en) 2022-08-09
JP7064573B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
JP6689339B2 (en) (Meth) acrylic resin composition and (meth) acrylic resin film using the same
KR101411005B1 (en) Hard coating film
JP6672579B2 (en) Anti-reflection film
KR101594282B1 (en) Microstructured film comprising nanoparticles and monomer comprising alkylene oxide repeat units
JP2015078339A (en) Organic-inorganic composite production method, curable composition, curable composition production method, curable composition cured product, hard coat material, and hard coat film
CN110100192B (en) Optical film and method for producing optical film
US20070292679A1 (en) Optical article having an antistatic fluorochemical surface layer
JP2010033693A (en) Resin composition for hard coat, cured film, laminate, optical recording medium, and method for manufacturing cured film
JP2022115882A (en) Hard coat film, and hard coat film with anti-scratching layer
JP7263356B2 (en) HARD COAT FILM, ARTICLE INCLUDED WITH HARD COAT FILM, AND IMAGE DISPLAY DEVICE
JPWO2019058759A1 (en) Laminates, polarizing plates, and image display devices
US20230311456A1 (en) Display device member, optical laminate, and display device
JP2013181039A (en) Antireflection coating composition and antireflection film
JP5979423B2 (en) Antireflection coating composition and antireflection film
WO2007146764A1 (en) Optical article having antistatic hardcoat layer
JP5979424B2 (en) Antireflection coating composition and antireflection film
JPWO2015025835A1 (en) Laminated film, optical element, polarizing plate, and image display device
CN109891271B (en) Antireflection film, polarizing plate, image display device, and antireflection article
JP2009091477A (en) Transparent crosslinked film
JP2023532500A (en) Antiglare films, polarizers and display devices
JP2013156333A (en) Antireflection paint composition and antireflection film
JP2013156331A (en) Antireflection paint composition and antireflection film
JP2023516178A (en) Antiglare film laminate, polarizing plate, and display device
KR20230147167A (en) Curable compositions, hard coat films, articles having hard coat films, image display devices, and flexible displays
JP2013156332A (en) Antireflection paint composition and antireflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764128

Country of ref document: EP

Kind code of ref document: A1