WO2019171777A1 - プラント監視システムのシミュレーション装置 - Google Patents

プラント監視システムのシミュレーション装置 Download PDF

Info

Publication number
WO2019171777A1
WO2019171777A1 PCT/JP2019/001451 JP2019001451W WO2019171777A1 WO 2019171777 A1 WO2019171777 A1 WO 2019171777A1 JP 2019001451 W JP2019001451 W JP 2019001451W WO 2019171777 A1 WO2019171777 A1 WO 2019171777A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
gas cloud
camera
unit
monitoring
Prior art date
Application number
PCT/JP2019/001451
Other languages
English (en)
French (fr)
Inventor
紗織 平田
橋野 弘義
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020504833A priority Critical patent/JP7255583B2/ja
Publication of WO2019171777A1 publication Critical patent/WO2019171777A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a simulation apparatus for a plant monitoring system.
  • Patent Document 1 discloses a three-dimensional display system capable of displaying wide-area map information and information on structures included in the map information.
  • Patent Document 2 an actual device constituting a plant facility is displayed as a three-dimensional image in accordance with the shape and arrangement of the actual device, so that an operator can easily grasp the state of the plant.
  • a display system that can be used is disclosed.
  • Patent Documents 1 and 2 have a problem that an image of a structure model that takes into account environmental information in which the structure is provided is not displayed.
  • An object of the present invention is to provide a plant monitoring system simulation apparatus capable of presenting monitoring information suitable for customer needs.
  • a simulation apparatus for a plant monitoring system includes: An environment model generation unit that generates an environment model including display data for schematically displaying an environment that changes over time; A structure model generation unit that generates a structure model including display data for schematically displaying the structure of the plant provided in the environment; A display unit configured to display the environment model generated by the environment model generation unit and the structure model generated by the structure model generation unit.
  • monitoring information suitable for customer needs can be presented.
  • the figure which shows roughly an example of the structure model imitating the structure of a plant The figure which shows schematically the structure of the simulation apparatus of the plant monitoring system in embodiment of this invention.
  • Diagram for explaining the principle of gas cloud detection Diagram showing an example of a false detection factor model Diagram showing an example of a false detection factor model
  • Flow chart showing processing of environmental model etc. in simulation device The figure which shows schematically a part of structure of the simulation apparatus of the plant monitoring system in a modification. Flow chart showing processing of environmental model etc. in simulation device
  • FIG. 1 is a diagram schematically showing an example of a structure model 120 simulating a plant structure.
  • the structure model 120 includes display data for schematically displaying a structure of a plant for purifying and liquefying natural gas, for example.
  • the structure model 120 includes, for example, a receiver tank 121, a service tank 122, a molecular sieve tower 123, an activated carbon tower 124, a regeneration gas heater 125, a regeneration gas cooling tower 126, and a plurality of pipes 127 connecting them. ing.
  • the pipes 127 are represented by different line types (solid lines and broken lines) in FIG.
  • FIG. 1 shows a camera 10 provided at a virtual position.
  • FIG. 2 is a diagram schematically showing a configuration of the simulation apparatus 100 of the plant monitoring system in the embodiment of the present invention.
  • the simulation apparatus 100 includes a structure model generation unit 101, an environment model generation unit 102, a storage unit 110, an input unit 140 (corresponding to the “camera position input unit” of the present invention), a display unit 150, A setting calculation unit 160, a structure information acquisition unit 171, and an environment information acquisition unit 172 are provided.
  • the setting calculation unit 160 includes a gas cloud generation area setting unit 161, a risk level setting unit 162, a monitoring area creation unit 163, and a calculation unit 164.
  • the simulation apparatus 100 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a touch panel, a display, and a speaker, which are connected to each other via a bus.
  • the CPU is a control circuit composed of a microprocessor or the like that executes control of each unit and various arithmetic processes according to a program.
  • the functions of the above-described units of the simulation apparatus 100 are exhibited when the CPU executes a corresponding program.
  • the ROM includes, for example, a nonvolatile semiconductor memory and a large-capacity magnetic disk device, and stores three-dimensional data, content data, and a control processing program.
  • the structure information acquisition unit 171 acquires information (for example, photographs and map information) regarding the plant structure.
  • the environmental information acquisition unit 172 acquires on-site inspections, aerial photography / satellite images, and environmental information from local people.
  • Environmental information is year-round information.
  • the environmental information includes environmental information that affects detection of a gas cloud that can be generated (leaked) from the structure.
  • the environmental information includes the surrounding environment of the structure and the natural environment.
  • the surrounding environment includes the sea, roads, railways, surrounding factories, miscellaneous forests, mountains, trees and ground in the plant site (asphalt, lawn, soil, sand (dust)).
  • the natural environment includes sunlight (luminance, temperature), climate, and weather information (fog, rain, snow, wind).
  • the structure model generation unit 101 generates a structure model 120 based on information related to plant structures.
  • the structure model generation unit 101 extracts parameters (photographing position and photographing direction) of the camera 10 (visible light camera 10A and infrared camera 10B shown in FIG. 1) used for photographing from the photograph information.
  • the structure model generation unit 101 generates a three-dimensional structure model 120 from photographs taken from different directions and parameters of the camera 10.
  • the storage unit 110 stores the structure model 120.
  • the environment model generation unit 102 generates an environment model 130 including display data for schematically displaying the environment of the structure based on the environment information.
  • the storage unit 110 stores the environment model 130.
  • the environmental model 130 in order to make the following explanation easy to understand, as an example of the environmental model 130, explanation will be given by taking sunlight, the ground, and the climate.
  • the environmental model generation unit 102 includes a false detection factor model generation unit 103.
  • the false detection factor model generation unit 103 generates a false detection factor model 131 that affects the detection of a gas cloud that can be generated (leaked) from the structure.
  • the storage unit 110 stores a false detection factor model 131.
  • the erroneous detection factor model 131 includes the luminance of the visible image of the background of the gas leakage source (gas generating unit, for example, the pipe 127).
  • the luminance of the visible image of the background of the gas leakage source is sunlight, artificial light source, sea, reflected light from buildings, phenomena similar to gas (water vapor, clouds), dust, swaying trees and lawn.
  • Each includes the luminance of the visible image that is the background of the gas leak source.
  • the gas cloud to be detected such as methane cannot be seen. Therefore, the visible image is used by being superimposed with the infrared image in order to make the gas leakage source easy to understand.
  • the visible image of the gas leakage source (gas generating unit) is a visible image of a predetermined gas leakage source model.
  • the luminance of the visible image of the gas leakage source is a predetermined luminance.
  • the infrared camera 10B for detecting the gas cloud is not provided.
  • the infrared camera 10B is provided at a virtual position.
  • the principle of gas cloud detection by the infrared camera 10B will be described with reference to FIG.
  • the gas cloud absorbs part of the emitted infrared light depending on the background temperature.
  • FIG. 3 shows an infrared ray amount V (Tb) emitted from the background, an infrared ray amount absorbed by the gas cloud as ⁇ V (Tb), and an infrared ray amount V (Tg) emitted from the gas cloud.
  • V (T) is the black body radiance at the absolute temperature T (K).
  • the gas cloud has an infrared ray amount V (Tb) emitted from the background, an infrared ray amount (1- ⁇ ) V (Tb) emitted from the background and transmitted through the gas cloud, and an infrared ray amount V (Tg) emitted from the gas cloud. ) Is detected based on the difference from the total amount. Therefore, the range of the gas cloud detection includes a background temperature image that is an image based on the infrared amount V (Tb) and a gas cloud that is an image based on the infrared amount ((1 ⁇ ) V (Tb) + V (Tg)). It is defined as an image obtained by extracting a difference from the image.
  • the false detection factor model 131 includes the brightness (thermal information) of the infrared image of the background of the gas cloud.
  • the brightness (thermal information) of the infrared image of the background of the gas cloud is the brightness (thermal information) of sunlight, the artificial light source, the infrared image with the artificial heat source as the background, and the background whose temperature changes due to the wind. Infrared image brightness (thermal information) is included. If the difference between the brightness (thermal information) of the infrared image of the background of the gas cloud and the brightness (thermal information) of the infrared image of the gas cloud is equal to or less than a predetermined threshold, the gas cloud may be erroneously detected. .
  • the infrared image of the gas cloud is an infrared image of a predetermined gas cloud model. Further, the luminance (thermal information) of the infrared image of the gas cloud is a predetermined luminance (temperature).
  • the gas cloud generation area setting unit 161 sets a gas cloud generation possibility area which is a region where there is a possibility that a gas cloud is generated. Specifically, the gas cloud generation area setting unit 161 sets the pipe 127 as a gas cloud generation possibility area.
  • the input unit 140 is used for setting the gas cloud generation possibility area.
  • the storage unit 110 stores a gas cloud generation possibility area.
  • the pipe 127 will be described as an example of the gas cloud generation possibility area.
  • the risk level setting unit 162 sets a risk level indicating the high possibility that a gas cloud is generated in the gas cloud generation possibility area (plurality of pipes 127) based on a predetermined condition.
  • the input unit 140 is used to set the risk level.
  • the predetermined conditions include, for example, the service life (life), actual service life, material (material of piping 127), purpose of use (type of gas), installation status of piping 127 (outdoor, indoor), corrosion status, And a deterioration state is included.
  • the storage unit 110 stores the degree of risk.
  • the monitoring area creation unit 163 creates a monitoring setting area for monitoring the gas cloud based on the misdetection factor model 131, the gas cloud generation possibility area (plurality of pipes 127), and the risk level.
  • the risk level setting unit 162 sets the gas cloud generation possibility area (plurality of pipes 127) to the same risk level.
  • the monitoring area creation unit 163 creates a monitoring setting area based on the pipes 127 having a high risk level.
  • FIG. 4 An example of the erroneous detection factor model 131 shown in FIG. 4 includes a building wall 128A in the background of a gas cloud.
  • FIG. 4 shows an infrared camera 10B provided at a virtual position.
  • the wall surface 128A of the building is shown as a place where sunlight does not hit.
  • the difference in luminance (thermal information) between the infrared image of the gas cloud and the infrared image of the wall 128A becomes slight. . Thereby, it becomes difficult to detect the gas cloud, and the gas cloud may be erroneously detected.
  • the monitoring area creation unit 163 When the difference in luminance (thermal information) between the infrared image of the gas cloud and the infrared image of the wall surface 128A is equal to or less than a predetermined threshold, the monitoring area creation unit 163 has a gas leakage source whose background is the wall surface 128A. As a misdetection area 128 (see FIG. 1).
  • FIG. 5 is an example in which the tree 128B is included in the background of the gas cloud.
  • FIG. 5 shows an infrared camera 10B provided at a virtual position.
  • the difference in luminance (thermal information) between the infrared image of the gas cloud and the infrared image of the tree 128B is slight, It is difficult to detect.
  • a method of extracting a gas cloud region from a background region as a moving body region is used (for example, a frame difference method). In this method, when the background tree 128B is shaken by a wind or the like, it is difficult to extract the gas cloud region, so that it becomes more difficult to detect the gas cloud.
  • the monitoring area creation unit 163 excludes the pipe 127 as a gas leakage source with the tree 128B as a background from the monitoring setting area as the erroneous detection area 128 (see FIG. 1).
  • the calculation unit 164 calculates a change in the display data of the background of the gas cloud in the effective monitoring area that is the monitoring setting area that can be seen from the camera 10 based on the false detection factor model 131.
  • the false detection factor model 131 is environmental information (sun position, ground, climate) that changes with the passage of time.
  • the change in the display data of the background of the gas leakage source is a change in the visible image that becomes the background of the gas leakage source.
  • the change in the display data of the gas cloud background is a change in the infrared image that becomes the background of the gas cloud.
  • the operator uses the input unit 140 for the installation location, the number of cameras 10 installed, the model (fixed type, pan-tilt type), the operation schedule, the monitoring direction, and the like of the camera 10 (visible light camera 10A, infrared camera 10B). Is input.
  • FIG. 6 is a diagram showing an image of the background of the gas cloud in the effective monitoring area as seen from the left camera 10 in FIG.
  • FIG. 7 is a diagram showing an image of the background of the gas cloud in the effective monitoring area as seen from the right camera 10 in FIG.
  • the display unit 150 displays changes in the background image (visible image) of the gas leakage source and the background image (infrared image) of the gas cloud in the effective monitoring area visible from the camera 10 provided at the installation position (FIG. 6). And FIG. 7). Further, the display unit 150 displays a gas leak source image (visible image of a predetermined gas leak source model) and a gas cloud image 129 (preliminary) in the gas cloud generation possibility area (pipe 127) in the effective monitoring area. An infrared image of a defined gas cloud model) is displayed. Moreover, the display part 150 displays the misdetection area 128, as shown in FIG. 6 and FIG. By displaying the erroneous detection area 128, it can be shown to the customer that it is meaningful to consider the necessity of installing a monitoring device other than the camera 10.
  • FIG. 8 is a flowchart showing processing of the environment model 130 and the like in the simulation apparatus 100.
  • This process includes the process of generating the structure model 120 and the environment model 130. If the structure model 120 and the environment model 130 are stored in the storage unit 110 in advance, the structure model 120 is stored. And the like. The generation process may not be included.
  • step S100 the structure model generation unit 101 generates a structure model 120 based on information related to the plant structure.
  • the storage unit 110 stores the structure model 120.
  • step S110 the environment model generation unit 102 generates the environment model 130 based on the environment information of the structure.
  • the storage unit 110 stores the environment model 130.
  • step S120 the erroneous detection factor model generation unit 103 generates an erroneous detection factor model 131 that affects the detection of the gas cloud.
  • the storage unit 110 stores a false detection factor model 131.
  • step S130 the gas cloud generation area setting unit 161 uses the input unit 140 to set a gas cloud generation possibility area (a plurality of pipes 127).
  • the storage unit 110 stores a gas cloud generation possibility area.
  • step S140 the operator uses the input unit 140 to set the degree of danger that a gas cloud is generated.
  • step S150 the monitoring area creation unit 163 creates a monitoring setting area based on the erroneous detection factor model 131, the gas cloud generation possibility area, and the risk level.
  • step S160 the operator uses the input unit 140 to input the installation position of the camera 10 (visible light camera 10A, infrared camera 10B).
  • the camera 10 visible light camera 10A, infrared camera 10B.
  • step S170 the display unit 150 displays an effective monitoring area that can be seen from the camera 10 provided at the installation position. At this time, the display unit 150 displays the gas cloud in the gas cloud generation possibility area.
  • the environment model 130 including display data for schematically displaying the environment that changes with the passage of time is stored, and the plant structure provided in the environment is schematically illustrated.
  • a gas cloud generation area setting unit 161 that sets a gas cloud generation possibility area (pipe 127), which is an area where gas clouds may be generated, and an error that affects detection of gas clouds that can be generated from a structure.
  • a monitoring area creation unit 163 that creates a monitoring setting area based on the detection factor model 131 and the gas cloud generation possibility area. Accordingly, it is possible to increase the effectiveness of monitoring by intentionally removing areas that are erroneously detected from the monitoring target.
  • the monitoring area creation unit 163 creates a monitoring setting area based on the risk level. This makes it possible to preferentially monitor an area with a high degree of risk, thereby further enhancing the effectiveness of monitoring.
  • an input unit 140 for inputting the installation position of the camera 10 is provided, and the display unit 150 displays an effective monitoring area visible from the camera 10 provided at the installation position.
  • the effective monitoring area includes a gas cloud generation possibility area (pipe 127), an erroneous detection area 128, and a gas cloud image 129. Thereby, it becomes possible to examine how the gas cloud looks with the camera 10. In addition, it is possible to examine the presence or absence of the influence of the surrounding environment or the like in the detection of the gas cloud.
  • the operator determines the installation position of the camera 10 (visible light camera 10A, infrared camera 10B) using the input unit 140.
  • the simulation apparatus 100A in the modified example automatically Stipulated in
  • FIG. 9 is a diagram schematically showing a part of the simulation apparatus 100A.
  • the setting calculation unit 160A in the simulation apparatus 100A includes a camera position setting unit 165, a position candidate extraction unit 166, and an effective position calculation unit 167.
  • the camera position setting unit 165 sets the installation position of the camera 10 based on a predetermined condition.
  • the predetermined condition is that the installation position of the camera 10 is provided at a predetermined interval (for example, 1 m) along the pipe 127.
  • the position candidate extraction unit 166 extracts an installation position candidate of the camera 10 from the installation position of the camera 10 based on the effective monitoring area and the blind spot area that can be seen from the camera 10 provided at the installation position.
  • the blind spot area is an area that cannot be seen from the camera 10 and is obstructed by the structure model 120 on the near side of the optical axis direction of the camera 10 (the lower side in the drawing shown in FIG. 1). This is an area where a gas cloud on the back side (upper side of the paper shown in FIG. 1) cannot be detected.
  • the position candidate extraction unit 166 extracts the installation position candidates in the order of the size of the effective monitoring area excluding the blind spot area.
  • the effective position calculation unit 167 calculates an effective position from among the installation position candidates so that the cost effectiveness is high and the coverage of the monitoring setting area is high.
  • the display unit 150 displays an effective monitoring area that is visible from the camera 10 (visible light camera 10A, infrared camera 10B) provided at the effective position.
  • cost effectiveness refers to the size of the effective monitoring area with respect to the installation cost of the camera 10.
  • coverage ratio of the monitoring setting area refers to the ratio of the effective monitoring area that can be seen from the camera 10 provided in the installation position candidate to all the planned monitoring setting areas (for example, the length of the pipe 127).
  • FIG. 10 is a flowchart showing processing of the environment model 130 and the like in the simulation apparatus 100A according to the modification.
  • processing different from the above embodiment will be mainly described, and description of the same processing will be omitted.
  • step S200 to step S250 is the same as step S100 to step S150 in the above embodiment.
  • step S260 the camera position setting unit 165 sets the installation position of the camera 10.
  • step S270 the position candidate extraction unit 166 extracts the installation position candidates of the camera 10 based on the monitoring setting area and the blind spot area.
  • step S280 the effective position calculation unit 167 calculates the effective position based on the cost effectiveness and the coverage of the monitoring setting area.
  • step S290 the display unit 150 displays an effective monitoring area that can be seen from the camera 10 provided at the effective position.
  • a camera position setting unit 165 that sets the installation position of the camera 10, an effective monitoring area that can be seen from the camera 10 provided at the installation position, and a gas cloud that is seen from the camera 10 are detected.
  • a position candidate extraction unit 166 that extracts the installation position candidate of the camera 10 from the installation position of the camera 10, and an effective position calculation that calculates a cost-effective effective position from the installation position candidates Part 167.
  • the monitoring area creation unit 163 creates the monitoring setting area based on the erroneous detection factor model 131, the gas cloud generation possibility area (pipe 127), and the risk level.
  • the monitoring area creation unit 163 replaces the error detection factor model 131 or the like, or in addition to the error detection factor model 131 or the like, a difference between the temperature of the gas cloud and the background temperature (detectability). ),
  • the monitoring setting area may be created by giving priority to the magnitude of the difference. The greater the difference between the temperature of the gas cloud and the background temperature, the lower the possibility of erroneous detection of the gas cloud, so that the detection accuracy of the gas cloud can be increased.
  • the infrared image used while being superimposed on the visible image is acquired from, for example, environment information, but the present invention is not limited to this.
  • an image corresponding to an infrared image (equivalent to an infrared image) may be acquired from a visible image.
  • a color image obtained from a visible light camera is converted into a monochrome image (luminance information).
  • temperature information from the heat source is added to the monochrome image as luminance information, such as increasing the brightness where the temperature rises when the heat source such as the sun hits, and lowering the brightness where the temperature does not rise without being hit by the heat source.
  • Reference temperature information suitable for the environmental model 130 is added to the added monochrome image as luminance information.
  • a histogram indicating the luminance distribution of the monochrome image is adjusted.
  • liquefied natural gas is vaporized.
  • the plant can be applied to any plant as long as it has a possibility of gas leakage, such as a plant that performs gas leakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Manufacturing & Machinery (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Processing Or Creating Images (AREA)

Abstract

プラント監視システムのシミュレーション装置は、顧客のニーズに適合する監視情報を提示することが可能なものであって、時間の経過に応じて変化する環境を模式的に表示するための表示データ含む環境モデルを生成する環境モデル生成と、環境に設けられるプラントの構造物を模式的に表示するための表示データを含む構造物モデルを生成する構造物モデル生成部と、環境モデル生成部により生成された環境モデルおよび構造物モデル生成部により生成された構造物モデルを表示する表示部と、を備える。

Description

プラント監視システムのシミュレーション装置
 本発明は、プラント監視システムのシミュレーション装置に関する。
 例えば、特許文献1には、広域の地図情報と、地図情報に含まれる構造物の情報とを表示することが可能な三次元の表示システムが開示されている。
 また、特許文献2には、プラント設備を構成する実際の機器を、実際の機器の形状、配置状況に即した三次元の画像として表示することにより、運転員がプラントの状態を容易に把握することができる表示システムが開示されている。
特開2017-97822号公報 特開平6-175626号公報
 ところで、プラント設備などの構造物が設けられる環境の変化は、監視対象に影響を与える場合がある。顧客のニーズに適合する監視情報を提示するためには、構造物が設けられている環境情報を加味した構造物モデルの画像を表示することが好ましい。
 しかしながら、上記特許文献1,2に係る表示システムでは、構造物が設けられている環境情報を加味した構造物モデルの画像が表示されないという問題点があった。
 本発明は、顧客のニーズに適合する監視情報を提示することが可能なプラント監視システムのシミュレーション装置を提供することを目的とする。
 上記の目的を達成するため、本発明におけるプラント監視システムのシミュレーション装置は、
 時間の経過に応じて変化する環境を模式的に表示するための表示データ含む環境モデルを生成する環境モデル生成部と、
 前記環境に設けられるプラントの構造物を模式的に表示するための表示データを含む構造物モデルを生成する構造物モデル生成部と、
 前記環境モデル生成部により生成された前記環境モデルおよび前記構造物モデル生成部により生成された前記構造物モデルを表示する表示部と、を備える。
 本発明によれば、顧客のニーズに適合する監視情報を提示することができる。
プラントの構造物を模した構造物モデルの一例を概略的に示す図 本発明の実施の形態におけるプラント監視システムのシミュレーション装置の構成を概略的に示す図 ガス雲検知の原理を説明するための図 誤検知要因モデルの一例を示す図 誤検知要因モデルの一例を示す図 図1における左側のカメラから見える有効監視エリアにおけるガス雲の背景の画像を示す図 図1における右側のカメラから見える有効監視エリアにおけるガス雲の背景の画像を示す図 シミュレーション装置における環境モデル等の処理を示すフローチャート 変形例におけるプラント監視システムのシミュレーション装置の構成の一部を概略的に示す図 シミュレーション装置における環境モデル等の処理を示すフローチャート
 以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、プラントの構造物を模した構造物モデル120の一例を概略的に示す図である。構造物モデル120は、例えば、天然ガスを精製して液化するためのプラントの構造物を模式的に表示するための表示データを有する。構造物モデル120は、例えば、レシーバータンク121、サービスタンク122、モレキュラーシーブ塔123、活性炭塔124、再生ガスヒーター125、および、再生ガス冷却塔126、および、それらを連結する複数の配管127を備えている。なお、複数の配管127を見やすくするために、図1に、配管127を異なる線種(実線、破線)で表す。また、図1に、仮想位置に設けられるカメラ10を示す。
 図2は、本発明の実施の形態におけるプラント監視システムのシミュレーション装置100の構成を概略的に示す図である。図2に示すように、シミュレーション装置100は、構造物モデル生成部101、環境モデル生成部102、記憶部110、入力部140(本発明の「カメラ位置入力部」に対応)、表示部150、設定演算部160、構造物情報取得部171、および、環境情報取得部172を備えている。設定演算部160は、ガス雲発生エリア設定部161、危険度設定部162、監視エリア作成部163、および、演算部164を備えている。
 シミュレーション装置100は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、タッチパネル、ディスプレイ、スピーカーを有し、これらは、バスを介して相互に接続されている。CPUは、プログラムに従って上記各部の制御や各種の演算処理を実行するマイクロプロセッサー等から構成される制御回路である。シミュレーション装置100の上記各部の機能は、それに対応するプログラムをCPUが実行することにより発揮される。ROMは、例えば、不揮発性の半導体メモリーや、大容量の磁気ディスク装置を有しており、3次元データ、コンテンツデータおよび制御処理プログラムが記憶されている。
 構造物情報取得部171は、プラントの構造物に関する情報(例えば、写真、地図情報)を取得する。
 環境情報取得部172は、現地視察、空撮・人工衛星画像、現場の人からの環境情報を取得する。環境情報は通年の情報である。具体的には、環境情報には、構造物から発生(漏洩)し得るガス雲の検知に影響する環境情報が含まれている。さらに、具体的には、環境情報には、構造物の周辺環境および自然環境が含まれている。周辺環境には、海、道路、線路、周辺の工場、雑木林、山、プラント敷地内の樹木や地面(アスファルト、芝生、土、砂地(砂埃))が含まれている。自然環境には、太陽光(輝度、温度)、気候、気象情報(霧、雨、雪、風)が含まれている。
 構造物モデル生成部101は、プラントの構造物に関する情報に基づいて構造物モデル120を生成する。構造物モデル生成部101は、写真の情報から撮影に用いたカメラ10(図1に示す可視光カメラ10A、赤外線カメラ10B)のパラメータ(撮影位置、撮影方向)を抽出する。構造物モデル生成部101は、異なる方向から撮影した写真とカメラ10のパラメータとから3次元の構造物モデル120を生成する。記憶部110は、構造物モデル120を記憶する。
 環境モデル生成部102は、環境情報に基づいて、構造物の環境を模式的に表示するための表示データを含む環境モデル130を生成する。記憶部110は、環境モデル130を記憶する。なお、本実施の形態においては、以下の説明をわかり易くするため、環境モデル130の一例として、太陽光、地面および気候を挙げて説明する。
 環境モデル生成部102は、誤検知要因モデル生成部103を有している。誤検知要因モデル生成部103は、構造物から発生(漏洩)し得るガス雲の検知に影響する誤検知要因モデル131を生成する。記憶部110は、誤検知要因モデル131を記憶する。
 誤検知要因モデル131には、ガス漏洩源(ガス発生部、例えば配管127)の背景の可視画像の輝度が含まれている。具体的には、ガス漏洩源の背景の可視画像の輝度は、太陽光、人工光源、海、建物での太陽反射光、ガスに類似した現象(水蒸気、雲)、砂埃、揺れる木々や芝生がそれぞれガス漏洩源の背景になる可視画像の輝度が含まれる。可視画像ではメタンなどの検知対象のガス雲は見えない。そこで、可視画像は、ガス漏洩源をわかり易くするために赤外画像と重畳して使用される。なお、ガス漏洩源(ガス発生部)の可視画像は、予め定められているガス漏洩源モデルの可視画像である。また、ガス漏洩源の可視画像の輝度は、予め定められている輝度である。
 本実施の形態では、ガス雲を検知するための赤外線カメラ10Bが設けられていない。なお、以下の説明では、赤外線カメラ10Bが仮想位置に設けられているものと仮定する。図3を参照して赤外線カメラ10Bによるガス雲検知の原理について説明する。ガス雲は背景の温度に応じて放射される赤外線の一部を吸収する。図3に、背景から放射される赤外線量V(Tb)、ガス雲で吸収される赤外線量をαV(Tb)、ガス雲から放射される赤外線量V(Tg)で示す。ここで、V(T)は、絶対温度T(K)における黒体放射輝度である。
 ガス雲は、背景から放射される赤外線量V(Tb)と、背景から放射され、ガス雲を透過する赤外線量(1-α)V(Tb)およびガス雲から放射される赤外線量V(Tg)を合算した量との差異に基づいて検知される。したがって、ガス雲検知の範囲は、赤外線量V(Tb)に基づく画像である背景温度画像と、赤外線量((1-α)V(Tb)+V(Tg))に基づく画像であるガス雲あり画像との差異を抽出した画像として定められる。
 誤検知要因モデル131には、ガス雲の背景の赤外画像の輝度(熱情報)が含まれている。具体的には、ガス雲の背景の赤外画像の輝度(熱情報)は、太陽光、人工光源、人工熱源が背景になる赤外画像の輝度(熱情報)、風により温度が変化する背景の赤外画像の輝度(熱情報)が含まれる。ガス雲の背景の赤外画像の輝度(熱情報)とガス雲の赤外画像の輝度(熱情報)との差異が予め定められた閾値以下の場合、ガス雲が誤検知される場合がある。なお、ガス雲の赤外画像は、予め定められているガス雲モデルの赤外画像である。また、ガス雲の赤外画像の輝度(熱情報)は、予め定められている輝度(温度)である。
 ガス雲発生エリア設定部161は、ガス雲が発生する可能性を有する領域であるガス雲発生可能性エリアを設定する。具体的には、ガス雲発生エリア設定部161は、配管127をガス雲発生可能性エリアとして設定する。ガス雲発生可能性エリアの設定には、入力部140が用いられる。記憶部110は、ガス雲発生可能性エリアを記憶する。以下の説明をわかり易くするため、ガス雲発生可能性エリアの一例として配管127を挙げて説明する。
 危険度設定部162は、予め定められた条件に基づいて、ガス雲発生可能性エリア(複数の配管127)におけるガス雲が発生する可能性の高さを示す危険度を設定する。危険度の設定には、入力部140が用いられる。予め定められた条件には、例えば、耐用年数(寿命)、実使用年数、材料(配管127の材料)、使用目的(ガスの種類)、配管127の設置状況(屋外、屋内)、腐食状況、および、劣化状態が含まれる。記憶部110は、危険度を記憶する。
 監視エリア作成部163は、誤検知要因モデル131、ガス雲発生可能性エリア(複数の配管127)および危険度に基づいて、ガス雲を監視する場合の監視設定エリアを作成する。なお、本実施の形態においては、以下の説明をわかり易くするため、危険度設定部162は、ガス雲発生可能性エリア(複数の配管127)を同じ危険度に設定している。なお、危険度設定部162が複数の配管127を互いに異なる危険度に設定している場合、監視エリア作成部163は、危険度が高い配管127に基づいて監視設定エリアを作成する。
 次に、誤検知要因モデル131について図4及び図5を参照して説明する。
 図4に示す誤検知要因モデル131の一例は、ガス雲の背景に建物の壁面128Aが含まれるものである。図4に、仮想位置に設けられた赤外線カメラ10Bを示す。また、建物の壁面128Aを太陽光が当たらない所として示す。太陽光が当たらない壁面128Aとガス雲との両者の温度がほぼ同じである場合、ガス雲の赤外画像と壁面128Aとの両者の赤外画像の輝度(熱情報)の差異がわずかになる。これにより、ガス雲の検知がし難くなって、ガス雲を誤検知する場合が生じる。監視エリア作成部163は、ガス雲の赤外画像と壁面128Aの赤外画像との両者の輝度(熱情報)の差異が予め定められた閾値以下の場合、壁面128Aが背景となるガス漏洩源としての配管127を誤検知エリア128(図1参照)として監視設定エリアから除外する。
 図5に示す誤検知要因モデル131の一例は、ガス雲の背景に樹木128Bが含まれるものである。図5に、仮想位置に設けられた赤外線カメラ10Bを示す。樹木128Bとガス雲との両者の温度がほぼ同じである場合、ガス雲の赤外画像と樹木128Bとの両者の赤外画像の輝度(熱情報)の差異がわずかであると、ガス雲の検知がし難い。なお、ガス雲の検知には、ガス雲の領域を移動体領域として背景領域から抽出する方法が用いられる(例えば、フレーム差分法)。当該方法においては、背景である樹木128Bが風などにより揺れる場合、ガス雲の領域を抽出し難いため、ガス雲の検知がさらに難しくなる。したがって、ガス雲の背景に樹木128Bが含まれる場合、ガス雲を誤検知する可能性が高い。これにより、監視エリア作成部163は、樹木128Bが背景となるガス漏洩源としての配管127を誤検知エリア128(図1参照)として監視設定エリアから除外する。
 演算部164は、誤検知要因モデル131に基づいて、カメラ10から見える監視設定エリアである有効監視エリアにおけるガス雲の背景の表示データの変化を計算する。ここで、誤検知要因モデル131は、時間の経過に応じて変化する環境情報(太陽の位置、地面、気候)である。また、ガス漏洩源の背景の表示データの変化は、ガス漏洩源の背景になる可視画像の変化である。また、ガス雲の背景の表示データの変化は、ガス雲の背景になる赤外画像の変化である。
 カメラ10(可視光カメラ10A、赤外線カメラ10B)の設置場所、設置台数、機種(固定型、パンチルト型)、パンチルト型カメラにおける動作スケジュール、および、監視方向等は、操作者が入力部140を用いることにより入力される。
 図6は、図1における左側のカメラ10から見える有効監視エリアにおけるガス雲の背景の画像を示す図である。図7は、図1における右側のカメラ10から見える有効監視エリアにおけるガス雲の背景の画像を示す図である。
 表示部150は、設置位置に設けられたカメラ10から見える有効監視エリアにおけるガス漏洩源の背景の画像(可視画像)、ガス雲の背景の画像(赤外画像)の変化を表示する(図6および図7参照)。また、表示部150は、有効監視エリアにおけるガス雲発生可能性エリア(配管127)に、ガス漏洩源の画像(予め定められているガス漏洩源モデルの可視画像)、ガス雲の画像129(予め定められているガス雲モデルの赤外画像)を表示する。また、表示部150は、図6および図7に示すように、誤検知エリア128を表示する。誤検知エリア128を表示することにより、カメラ10以外の監視機器を設置する必要性について検討する意義があることを顧客に提示することができる。
 次に、シミュレーション装置100における環境モデル130等の処理について図8を参照して説明する。図8は、シミュレーション装置100における環境モデル130等の処理を示すフローチャートである。なお、本処理には、構造物モデル120および環境モデル130の生成の処理が含まれているが、構造物モデル120および環境モデル130が記憶部110に予め記憶されていれば、構造物モデル120等の生成の処理は含まれなくてもよい。
 ステップS100において、構造物モデル生成部101は、プラントの構造物に関する情報に基づいて構造物モデル120を生成する。記憶部110は、構造物モデル120を記憶する。
 ステップS110において、環境モデル生成部102は、構造物の環境情報に基づいて環境モデル130を生成する。記憶部110は、環境モデル130を記憶する。
 ステップS120において、誤検知要因モデル生成部103は、ガス雲の検知に影響する誤検知要因モデル131を生成する。記憶部110は、誤検知要因モデル131を記憶する。
 ステップS130において、ガス雲発生エリア設定部161は、入力部140を用いて、ガス雲発生可能性エリア(複数の配管127)を設定する。記憶部110は、ガス雲発生可能性エリアを記憶する。
 ステップS140において、操作者は、入力部140を用いて、ガス雲が発生する危険度を設定する。
 ステップS150において、監視エリア作成部163は、誤検知要因モデル131、ガス雲発生可能性エリアおよび危険度に基づいて監視設定エリアを作成する。
 ステップS160において、操作者は、入力部140を用いて、カメラ10(可視光カメラ10A、赤外線カメラ10B)の設置位置を入力する。
 ステップS170において、表示部150は、設置位置に設けられたカメラ10から見える有効監視エリアを表示する。このとき、表示部150は、ガス雲発生可能性エリアにガス雲を表示する。
 上記実施の形態におけるシミュレーション装置100によれば、時間の経過に応じて変化する環境を模式的に表示するための表示データを含む環境モデル130を記憶し、環境に設けられるプラントの構造物を模式的に表示するための表示データを含む構造物モデル120を記憶する記憶部110と、環境モデル130および構造物モデル120を表示する表示部150とを備える。これにより、構造物が設けられている環境情報を加味した構造物モデル120が表示されるため、顧客のニーズに適合する監視情報を提示することができる。
 また、ガス雲が発生する可能性を有する領域であるガス雲発生可能性エリア(配管127)を設定するガス雲発生エリア設定部161と、構造物から発生し得るガス雲の検知に影響する誤検知要因モデル131およびガス雲発生可能性エリアに基づいて監視設定エリアを作成する監視エリア作成部163とを備える。これにより、誤検知するようなエリアをあえて監視の対象から除くことで、監視の有効性を高めることが可能となる。
 また、監視エリア作成部163は、危険度に基づいて監視設定エリアを作成する。これにより、危険度の高いエリアを優先的に監視することができるため、監視の有効性をさらに高めることが可能となる。
 また、カメラ10の設置位置を入力する入力部140を備え、表示部150は、設置位置に設けられたカメラ10から見える有効監視エリアを表示する。有効監視エリアには、ガス雲発生可能性エリア(配管127)、誤検知エリア128、ガス雲の画像129が含まれる。これにより、カメラ10でガス雲がどのように見えるかについて検討することが可能となる。また、ガス雲の検知における周辺環境等による影響の有無についても検討することが可能となる。
 次に、変形例におけるシミュレーション装置100Aについて説明する。なお、変形例の説明においては、上記実施の形態におけるシミュレーション装置100と異なる構成について主に説明し、同じ構成についてはその説明を省略する。
 上記実施の形態におけるシミュレーション装置100は、カメラ10(可視光カメラ10A、赤外線カメラ10B)の設置位置を、操作者が入力部140を用いて定めたが、変形例におけるシミュレーション装置100Aは、自動的に定める。
 図9は、シミュレーション装置100Aの一部を概略的に示す図である。図9に示すように、シミュレーション装置100Aにおける設定演算部160Aは、カメラ位置設定部165、位置候補抽出部166および有効位置算出部167を備えている。
 カメラ位置設定部165は、予め定められた条件に基づいて、カメラ10の設置位置を設定する。具体的には、予め定められた条件は、配管127に沿って相互に所定の間隔(例えば1m)をあけて、カメラ10の設置位置が設けられることである。
 位置候補抽出部166は、設置位置に設けられたカメラ10から見える有効監視エリアおよび死角エリアに基づいて、カメラ10の設置位置からカメラ10の設置位置候補を抽出する。ここで、死角エリアとは、カメラ10から見えないエリアであって、カメラ10の光軸方向手前側(図1に示す紙面下側)にある構造物モデル120が邪魔をして、光軸方向奥側(図1に示す紙面上側)のガス雲を検知できないエリアをいう。具体的には、位置候補抽出部166は、死角エリアを除いた有効監視エリアの広さの順に設置位置候補を抽出する。
 有効位置算出部167は、設置位置候補のうちから費用対効果が高くなるようなかつ、監視設定エリアのカバー率が高くなるような有効位置を算出する。表示部150は、有効位置に設けられたカメラ10(可視光カメラ10A、赤外線カメラ10B)から見える有効監視エリアを表示する。ここで、費用対効果とは、カメラ10の設置コストに対する有効監視エリアの広さをいう。また、監視設定エリアのカバー率とは、予定される全部の監視設定エリア(例えば、配管127の長さ)に対する、設置位置候補に設けられたカメラ10から見える有効監視エリアの割合をいう。
 次に、変形例におけるシミュレーション装置100Aにおける環境モデル130等の処理について図10を参照して説明する。図10は、変形例におけるシミュレーション装置100Aにおける環境モデル130等の処理を示すフローチャートである。なお、本処理の説明においては、上記実施の形態と異なる処理について主に説明し、同じ処理についてはその説明を省略する。
 ステップS200~ステップS250における各処理は、上記実施の形態におけるステップS100~ステップS150と同じである。
 ステップS260において、カメラ位置設定部165は、カメラ10の設置位置を設定する。
 ステップS270において、位置候補抽出部166は、監視設定エリアおよび死角エリアに基づいて、カメラ10の設置位置候補を抽出する。
 ステップS280において、有効位置算出部167は、費用対効果および監視設定エリアのカバー率に基づいて有効位置を算出する。
 ステップS290において、表示部150は、有効位置に設けられたカメラ10から見える有効監視エリアを表示する。
 変形例におけるシミュレーション装置100Aによれば、カメラ10の設置位置を設定するカメラ位置設定部165と、設置位置に設けられたカメラ10から見える有効監視エリア、および、カメラ10から見てガス雲が検知できない死角エリアに基づいて、カメラ10の設置位置からカメラ10の設置位置候補を抽出する位置候補抽出部166と、設置位置候補のうちから高い費用対効果を有する有効位置などを算出する有効位置算出部167とを備えている。これにより、カメラ10の最適な設置位置を自動的に選定することが可能となる。また、カメラ10の最適な台数、および、カメラ10の設置等に必要なコストを算出することが可能となる。
 上記実施の形態及び変形例においては、監視エリア作成部163は、誤検知要因モデル131、ガス雲発生可能性エリア(配管127)および危険度に基づいて監視設定エリアを作成したが、本発明はこれに限らず、例えば、監視エリア作成部163は、誤検知要因モデル131等に代えて、又は、誤検知要因モデル131等に加えて、ガス雲の温度と背景の温度との差異(検知性)に基づいて、差異の大きさを優先して監視設定エリアを作成してもよい。ガス雲の温度と背景の温度との差異が大きいほどガス雲を誤検知する可能性が低くなるため、ガス雲の検知精度を上げることができる。
 上記実施の形態においては、可視画像と重畳して使用される赤外画像は、例えば、環境情報から取得されるが、本発明はこれに限らない。例えば、可視画像から赤外画像に相当する画像(赤外画像相当)を取得してもよい。
 以下、可視画像から赤外画像相当を取得する方法の一例について説明する。先ず、可視光カメラから得られるカラー画像をモノクロ画像(輝度情報)に変換する。次に、太陽などの熱源が当たって温度が上がるところの輝度を高く、熱源が当たらずに温度が上がらないところの輝度を低くというように、熱源による温度情報を、輝度情報としてモノクロ画像に付加する。環境モデル130に適した基準温度情報を、輝度情報として、上記付加したモノクロ画像に付加する。次に、このモノクロ画像を現実的な赤外画像に近い画像にするために、モノクロ画像の輝度の分布を示すヒストグラムを調整する。
 また、上記実施の形態では、プラント監視システムのシミュレーション装置100を適用するプラントとして、天然ガスを液化するプラントを一例に挙げたが、本発明は、これに限らず、例えば、液化天然ガスを気化するプラントなどのように、ガス漏洩の可能性を有するプラントであればどのようなプラントにも適用することが可能である。
 2018年3月8日出願の特願2018-042083の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 その他、上記実施の形態は、何れも本発明の実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 10 カメラ
 10A 可視光カメラ
 10B 赤外線カメラ
 100、100A シミュレーション装置
 101 構造物モデル生成部
 102 環境モデル生成部
 103 誤検知要因モデル生成部
 110 記憶部
 120 構造物モデル
 121 レシーバータンク
 122 サービスタンク
 123 モレキュラーシーブ塔
 124 活性炭塔
 125 再生ガスヒーター
 126 再生ガス冷却塔
 127 配管
 128 誤検知エリア
 128A 壁面
 128B 樹木
 130 環境モデル
 131 誤検知要因モデル
 140 入力部
 150 表示部
 160、160A 設定演算部
 161 ガス雲発生エリア設定部
 162 危険度設定部
 163 監視エリア作成部
 164 演算部
 165 カメラ位置設定部
 166 位置候補抽出部
 167 有効位置算出部
 171 構造物情報取得部
 172 環境情報取得部

Claims (12)

  1.  時間の経過に応じて変化する環境を模式的に表示するための表示データ含む環境モデルを生成する環境モデル生成部と、
     前記環境に設けられるプラントの構造物を模式的に表示するための表示データを含む構造物モデルを生成する構造物モデル生成部と、
     前記環境モデル生成部により生成された前記環境モデルおよび前記構造物モデル生成部により生成された前記構造物モデルを表示する表示部と、を備える、
     プラント監視システムのシミュレーション装置。
  2.  前記環境モデルは、前記構造物から発生し得るガス雲の検知に影響する誤検知要因モデルを有する、
     請求項1に記載のプラント監視システムのシミュレーション装置。
  3.  前記ガス雲が発生する可能性を有する領域であるガス雲発生可能性エリアを設定するガス雲発生エリア設定部と、
     前記誤検知要因モデルおよびガス雲発生可能性エリアに基づいて、前記ガス雲を監視する場合の監視設定エリアを作成する監視エリア作成部と、をさらに備える、
     請求項2に記載のプラント監視システムのシミュレーション装置。
  4.  前記ガス雲発生可能性エリアにおける前記ガス雲が発生する可能性の高さを示す危険度を設定する危険度設定部をさらに備え、
     前記監視エリア作成部は、さらに、前記危険度に基づいて前記監視設定エリアを作成する、
     請求項3に記載のプラント監視システムのシミュレーション装置。
  5.  カメラの設置位置を入力するカメラ位置入力部を備え、
     前記表示部は、前記設置位置に設けられた前記カメラから見える前記監視設定エリアである有効監視エリアを表示する、
     請求項3または4に記載のプラント監視システムのシミュレーション装置。
  6.  予め定められた条件に基づいて、カメラの設置位置を設定するカメラ位置設定部と、
     前記設置位置に設けられた前記カメラから見える監視設定エリアである有効監視エリア、および、当該カメラから見て前記ガス雲が検知できない死角エリアに基づいて、前記カメラの設置位置から前記カメラの設置位置候補を抽出する位置候補抽出部と、をさらに備える、
     請求項3または4に記載のプラント監視システムのシミュレーション装置。
  7.  前記設置位置候補のうちからカメラの設置コストに対する前記有効監視エリアの広さを示す費用対効果が高くなるような有効位置を算出する有効位置算出部を備える、
     請求項6に記載のプラント監視システムのシミュレーション装置。
  8.  前記設置位置候補のうちから前記監視設定エリアのカバー率が高くなるような有効位置を算出する有効位置算出部を備える、
     請求項6または7に記載のプラント監視システムのシミュレーション装置。
  9.  前記表示部は、前記有効位置に設けられた前記カメラから見える前記監視設定エリアである有効監視エリアを表示する、
     請求項6から8のいずれか一項に記載のプラント監視システムのシミュレーション装置。
  10.  前記表示部は、前記有効監視エリアにおける前記ガス雲発生可能性エリアにガス雲の画像を表示する、
     請求項5から9のいずれか一項に記載のプラント監視システムのシミュレーション装置。
  11.  前記誤検知要因モデルに基づいて、前記有効監視エリアにおける前記ガス雲の背景の表示データの変化を計算する演算部を備え、
     前記表示部は、前記有効監視エリアにおける前記ガス雲の背景の表示データの変化を表示する、
     請求項5から10のいずれか一項に記載のプラント監視システムのシミュレーション装置。
  12.  前記有効監視エリアにおける画像は、赤外画像に相当する画像である赤外画像相当を有し、
     前記赤外画像相当は、可視画像から取得される、
     請求項5または9に記載のプラント監視システムのシミュレーション装置。
PCT/JP2019/001451 2018-03-08 2019-01-18 プラント監視システムのシミュレーション装置 WO2019171777A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020504833A JP7255583B2 (ja) 2018-03-08 2019-01-18 プラント監視システムのシミュレーション装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042083 2018-03-08
JP2018-042083 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019171777A1 true WO2019171777A1 (ja) 2019-09-12

Family

ID=67845976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001451 WO2019171777A1 (ja) 2018-03-08 2019-01-18 プラント監視システムのシミュレーション装置

Country Status (2)

Country Link
JP (1) JP7255583B2 (ja)
WO (1) WO2019171777A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102618412B1 (ko) * 2023-06-07 2023-12-28 주식회사 포커스에이치엔에스 공간의 디지털 안전품질 평가정보 제공 플랫폼 시스템 및 그 방법
WO2024105951A1 (ja) * 2022-11-15 2024-05-23 コニカミノルタ株式会社 監視カメラシステム、マスク補正方法、及び、プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282299A (ja) * 1994-04-13 1995-10-27 Toshiba Corp 表示方法及び表示装置
JP2003066825A (ja) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd 擬似体感装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282299A (ja) * 1994-04-13 1995-10-27 Toshiba Corp 表示方法及び表示装置
JP2003066825A (ja) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd 擬似体感装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105951A1 (ja) * 2022-11-15 2024-05-23 コニカミノルタ株式会社 監視カメラシステム、マスク補正方法、及び、プログラム
KR102618412B1 (ko) * 2023-06-07 2023-12-28 주식회사 포커스에이치엔에스 공간의 디지털 안전품질 평가정보 제공 플랫폼 시스템 및 그 방법

Also Published As

Publication number Publication date
JP7255583B2 (ja) 2023-04-11
JPWO2019171777A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
Clements et al. The FireFlux II experiment: a model-guided field experiment to improve understanding of fire–atmosphere interactions and fire spread
CN103870891B (zh) 基于网格流的输电线路火灾蔓延预测方法及系统
US20080133190A1 (en) method and a system for planning a security array of sensor units
Cova et al. Setting wildfire evacuation trigger points using fire spread modeling and GIS
CN109640032A (zh) 基于人工智能多要素全景监控检测五维预警系统
CN109448292A (zh) 一种电网山火监测预警方法
WO2019171777A1 (ja) プラント監視システムのシミュレーション装置
CN105654806A (zh) 一种管道泄漏事故的模拟训练与考核系统及方法
KR101980741B1 (ko) 태양광 발전 장치의 시뮬레이션 방법, 시스템 및 프로그램
CN107505267B (zh) 一种气体探测器布点分析方法及装置
Stipaničev et al. Forest fire protection by advanced video detection system-Croatian experiences
CN107025753A (zh) 一种基于多光谱图像分析的广域火灾报警装置
CN114419835A (zh) 一种基于数字孪生技术的历史建筑火灾监测方法及系统
CN113420601A (zh) 异常场景的监控方法、装置、计算机设备和存储介质
Ściężor et al. The impact of atmospheric aerosol particles on the brightness of the night sky
Herbel et al. Detection of atmospheric urban heat island through direct measurements in Cluj-Napoca city, Romania
CN116189371A (zh) 一种基于物联网的森林防火消防设施联动管理系统及方法
Yoshida et al. The effect of water vapor on tropical cyclone genesis: A numerical experiment of a non-developing disturbance observed in PALAU2010
CN114418932A (zh) 一种基于数字孪生技术的历史建筑修复方法及系统
KR102259272B1 (ko) 감시 카메라 제어 장치 및 방법
CN108717526A (zh) 基于avhrr数据的卫星监测林火热点识别方法
CN115400366B (zh) 一种基于遥感卫星数据处置森林火灾复燃的方法及系统
CN108108545A (zh) 基于地理信息系统的火灾事故模拟推演显示方法及装置
JP2010169699A (ja) 取得日射エネルギー量表示装置
CN114842380B (zh) 一种火灾监测方法、装置、系统、存储器和处理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763249

Country of ref document: EP

Kind code of ref document: A1