WO2019171696A1 - Imaging device, imaging method, and program - Google Patents

Imaging device, imaging method, and program Download PDF

Info

Publication number
WO2019171696A1
WO2019171696A1 PCT/JP2018/045512 JP2018045512W WO2019171696A1 WO 2019171696 A1 WO2019171696 A1 WO 2019171696A1 JP 2018045512 W JP2018045512 W JP 2018045512W WO 2019171696 A1 WO2019171696 A1 WO 2019171696A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
focus lens
unit
imaging
size
Prior art date
Application number
PCT/JP2018/045512
Other languages
French (fr)
Japanese (ja)
Inventor
田中 康一
林 健吉
内田 亮宏
誠一 伊澤
伸一郎 藤木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019171696A1 publication Critical patent/WO2019171696A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/18Signals indicating condition of a camera member or suitability of light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the technology of the present disclosure relates to an imaging device, an imaging method, and a program.
  • a focus lens is based on a contrast value peak detected from a change in contrast value of an image in a distance measurement area provided in a captured image.
  • contrast AF Auto-Focus
  • the present disclosure has been made in consideration of the above circumstances, and provides an imaging apparatus, an imaging method, and a program capable of improving the detection accuracy of a peak of a change in contrast value in a ranging area. With the goal.
  • an imaging device includes an imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, and An image generation unit that generates a captured image according to the image signal, a moving unit that moves the position of the focus lens along the optical axis direction, and a ranging area in the captured image when the moving unit moves the focus lens
  • a control unit that performs control to set the size of the zoom lens to a size according to the amount of change in the image magnification of the focus lens that changes with the movement of the position of the focus lens, and according to the movement of the position of the focus lens by the moving unit
  • a detecting unit that detects a position of a focus lens that changes a contrast value of an image within a ranging area whose size is set by the control unit, and the moving unit includes: Detector moves the focus lens position detection.
  • the imaging device is the imaging device according to the first aspect, wherein the control unit derives the amount of change in the position of the image of the subject included in the ranging area from the amount of change in the image magnification, and the derived subject The size of the distance measurement area is determined based on the amount of change in the image position.
  • the imaging device is the imaging device according to the second aspect, wherein the amount of change in the position of the image of the subject depends on the peak detection range in which the focus lens moves by the moving unit when the detecting unit detects a peak. It is derived from the amount of change in the image magnification and the position of the ranging area.
  • the imaging device is the imaging device according to any one of the first aspect to the third aspect, and the control unit increases the size of the ranging area as the amount of change in image magnification increases. .
  • the control unit increases the image magnification with the movement of the position of the focus lens by the moving unit,
  • the position of the distance measurement area is changed to a position toward the outer edge of the captured image and the image magnification is reduced, the position of the distance measurement area is changed to a position toward the center of the captured image.
  • the imaging device is the imaging device according to any one of the first to fourth aspects, wherein the control unit performs distance measurement in accordance with a change in the position of the image of the subject included in the distance measurement area. A movement process for moving the position of the region is performed.
  • the imaging device further includes an instruction unit that instructs execution of movement processing in the imaging device according to the sixth aspect, and the control unit changes when the movement processing is executed according to an instruction from the instruction unit.
  • the amount of change in the position of the image of the subject included in the distance measurement area during the expected processing time required to derive the position of the image of the subsequent subject is derived.
  • the imaging device further includes an instruction unit that instructs execution of the movement process in the imaging device according to the sixth aspect, and the control unit is set when the movement process is executed according to an instruction from the instruction unit.
  • the size of the distance measurement area to be set is kept at a predetermined size regardless of the change in image magnification.
  • the instruction unit moves according to at least one of an estimated processing time expected to be required for the movement process and a frame rate at which the imaging unit performs imaging. Instructs execution of processing.
  • the imaging device is the imaging device according to any one of the first aspect to the ninth aspect, in which the control unit uses a start position of peak detection by the detection unit as a reference position, and starts from the reference position.
  • a distance is set for each of a plurality of distance measurement areas derived corresponding to each of a plurality of ranges along the optical axis direction, and the detection unit is configured such that the moving unit is a focus lens of the plurality of ranges.
  • the position of the peak detected for the distance measurement area having a size corresponding to the range including the position where the movement of the position is stopped is output.
  • the imaging apparatus is the imaging apparatus according to any one of the first aspect to the tenth aspect, further including a display unit that displays a captured image, and the control unit is configured to capture an image displayed on the display unit. Information representing the distance measurement area is displayed on the image.
  • the control unit sets the distance measurement area size in the information representing the distance measurement area to be displayed with respect to the captured image.
  • the predetermined size is maintained regardless of the size.
  • An imaging method of a thirteenth aspect includes an imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, and an image that generates a captured image corresponding to the image signal
  • the moving unit moves the focus lens, measurement in the captured image is performed.
  • the position of the focus lens at which the contrast value of the image in the distance measurement area where the size is set reaches a peak is detected, and the moving part is moved to the detected position.
  • Moving the Surenzu imaging method including processing.
  • a program includes an imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, and an image generation that generates a captured image corresponding to the image signal. And a moving unit that moves the position of the focus lens along the optical axis direction when the moving unit moves the focus lens to a computer that controls the imaging apparatus. Is set to a size corresponding to the amount of change in the image magnification of the focus lens that changes with the movement of the focus lens position, and the size changes according to the movement of the focus lens position by the moving unit. The position of the focus lens at which the contrast value of the image within the distance measurement area for which is set to a peak is detected, and the focus position is detected by the moving unit. Moving the Surenzu, a program for executing a process.
  • FIG. 1 It is a perspective view showing an example of the appearance of the imaging device of an embodiment. It is a rear view which shows an example of the external appearance of the back side of the imaging device of embodiment. It is a block diagram which shows an example of the hardware constitutions of the imaging device of embodiment. It is a block diagram which shows an example of the hardware constitutions of the imaging lens contained in the imaging device of embodiment. It is a graph for demonstrating the autofocus of embodiment. It is a conceptual diagram which shows an example of the memory content of the secondary memory
  • FIG. 10 is a diagram for explaining an example of a relationship among a movement of a focus lens position, a change in image magnification, and a change in the position of an image of a subject in the imaging apparatus according to the embodiment. It is a figure for demonstrating an example of the change of the magnitude
  • an imaging apparatus 10 is a lens interchangeable digital camera, and includes an imaging apparatus body 12 and an imaging lens 14.
  • the imaging lens 14 is attached to the imaging apparatus main body 12 in a replaceable manner.
  • the lens barrel of the imaging lens 14 is provided with a focus ring 16 used in the manual focus mode.
  • the imaging lens 14 includes a lens unit 18.
  • the lens unit 18 is a combination lens in which a plurality of lenses including the focus lens 84 are combined.
  • the focus lens 84 moves along the optical axis L ⁇ b> 1 along with the manual rotation operation of the focus ring 16.
  • the focus lens 84 is stopped at a focus position corresponding to the subject distance.
  • Subject light which is reflected light indicating the subject, passes through the lens unit 18 including the focus lens 84 and forms an image on a light receiving surface 22A (see FIG. 3) of the image sensor 22 described later.
  • the “subject distance” is the distance from the light receiving surface 22A to the subject.
  • a dial 24 and a release button 26 are provided on the upper surface of the imaging apparatus main body 12.
  • the dial 24 is operated in various settings such as switching between the imaging mode and the reproduction mode. Therefore, in the imaging apparatus 10, when the dial 24 is operated by the user, the imaging mode and the reproduction mode are selectively set as the operation mode.
  • the imaging device 10 has a still image capturing mode and a moving image capturing mode as operation modes of the imaging system.
  • the still image imaging mode is an operation mode for recording a still image obtained by imaging a subject by the imaging device 10
  • the moving image imaging mode is for recording a moving image obtained by imaging the subject by the imaging device 10. It is an operation mode.
  • a still image and a moving image are collectively referred to without distinction, they are simply referred to as “captured images”.
  • the release button 26 is configured to be able to detect a two-stage pressing operation of an imaging preparation instruction state and an imaging instruction state.
  • the imaging preparation instruction state refers to, for example, a state where the image is pressed from the standby position to the intermediate position (half-pressed position), and the imaging instruction state refers to a state where the image is pressed to the final pressed position (full-pressed position) exceeding the intermediate position. Point to.
  • “a state where the button is pressed from the standby position to the half-pressed position” is referred to as “half-pressed state”
  • “a state where the button is pressed from the standby position to the fully-pressed position” is referred to as “full-pressed state”.
  • the imaging condition is adjusted by pressing the release button 26 halfway, and then the main exposure is performed when the release button 26 is fully pressed. That is, when the release button 26 is half-pressed, the AE (Auto-Exposure) function is activated and the exposure amount state is set, and then the AF (Auto-Focus) function is activated and the focus control is performed. When it is pushed, imaging is performed.
  • AE Auto-Exposure
  • AF Auto-Focus
  • a display 28, a cross key 30, a MENU / OK key 32, a BACK / DISP button 34, a finder 36, and a touch panel 38 are provided on the back surface of the imaging apparatus main body 12.
  • the display 28 is, for example, an LCD (Liquid Crystal Display), and displays images, characters, and the like obtained by imaging the subject by the imaging device 10.
  • the display 28 of this embodiment is an example of the display unit of the present disclosure.
  • the display 28 of the present embodiment is configured as a touch panel display 29 together with the touch panel 38.
  • the display 28 is used for displaying a live view image in the imaging mode.
  • the live view image is also referred to as a through image, and is a continuous frame image obtained by imaging a subject in a continuous frame by the imaging element 22 of the imaging device 10.
  • the “captured image” includes a live view image.
  • the display 28 is also used to display a still image obtained by capturing a single frame when an instruction to capture a still image is given. Furthermore, the display 28 is also used for displaying a reproduction image and a menu screen in the reproduction mode.
  • a transmissive touch panel 38 is overlaid on the surface of the display area of the display 28.
  • the touch panel 38 detects contact with an indicator such as a finger or a stylus pen.
  • the touch panel 38 outputs detection result information indicating a detection result such as the presence or absence of contact with an indicator on the touch panel 38 at a predetermined output destination (for example, a CPU (Central Processing Unit described later) at a predetermined cycle (for example, 100 milliseconds). ) 74, see FIG.
  • the detection result information includes two-dimensional coordinates (hereinafter referred to as “coordinates”) that can specify the contact position of the indicator on the touch panel 38 when the touch panel 38 detects the contact of the indicator. If no contact is detected, no coordinates are included.
  • the cross key 30 functions as a multi-function key that outputs an instruction content signal corresponding to various instructions such as selection of one or a plurality of menus, zooming, or frame advancement.
  • the MENU / OK key 32 is an operation key having both a function as a menu (MENU) button and a function as a permission (OK) button.
  • the function as the menu (MENU) button is a function for giving an instruction to display one or a plurality of menus on the screen of the display 28.
  • the function as the permission (OK) button is a function for instructing confirmation and execution of the selection contents.
  • the BACK / DISP button 34 is used to delete a desired item such as a selection item, cancel a specified content, or return to the previous operation state.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the imaging apparatus 10 according to the present embodiment.
  • FIG. 4 is a block diagram illustrating an example of a hardware configuration of the imaging lens 14 included in the imaging device 10 of the present embodiment.
  • the imaging apparatus main body 12 of this embodiment includes a mount 13 (see also FIG. 1), and the imaging lens 14 includes a mount 15.
  • the imaging lens 14 is replaceably attached to the imaging apparatus main body 12 by coupling the mount 15 to the mount 13.
  • the imaging lens 14 includes a diaphragm 19 and a control device 40 in addition to the lens unit 18 described above.
  • the control device 40 is electrically connected to the CPU 74 via the external I / F (Interface) 72 of the imaging device body 12, and the imaging lens 14 is in accordance with instructions from the CPU 74. Control the whole.
  • the lens unit 18 of the present embodiment includes an incident lens 80, a zoom lens 82, and the focus lens 84 described above.
  • the incident lens 80, the zoom lens 82, and the focus lens 84 are provided along the optical axis L1.
  • the focus lens 84, the zoom lens 82, and the incident lens 80 are arranged in this order from the stop 19 side along the optical axis L1. Has been.
  • the subject light is incident on the incident lens 80.
  • the incident lens 80 transmits the subject light and guides it to the zoom lens 82.
  • the zoom lens 82 of the present embodiment includes a plurality of lenses that can move along the optical axis L1.
  • the focal length of the imaging lens 14 (hereinafter simply referred to as “focal length”) is adjusted by the position of the zoom lens 82.
  • the zoom lens 82 adjusts the positional relationship between the lenses along the optical axis L1 as each lens approaches or moves away along the optical axis L1 by a zoom operation via the cross key 30 or the like. And the focal length is adjusted.
  • the zoom lens 82 transmits the subject light incident from the incident lens 80 and guides it to the focus lens 84.
  • the focus lens 84 is a lens that can move along the optical axis L1, and changes the focus state of the subject image formed on the light receiving surface 22A of the image sensor 22 by moving along the optical axis L1.
  • the focus lens 84 transmits the subject light incident from the zoom lens 82 and guides it to the diaphragm 19.
  • the diaphragm 19 adjusts the amount of subject light transmitted through the lens unit 18 and guides the subject light into the imaging apparatus main body 12.
  • the control device 40 of the imaging lens 14 includes a lens side main control unit 86, a focal length sensor 88, a focus lens driving unit 90, a lens position sensor 92, an aperture driving unit 94, and an external I / F 96.
  • the lens side main control unit 86 includes a CPU 98, a primary storage unit 100, and a secondary storage unit 102.
  • the CPU 98 controls the entire imaging lens 14.
  • the primary storage unit 100 is a volatile memory used as a work area or the like when executing various programs.
  • An example of the primary storage unit 100 is a RAM (Random Access Memory).
  • the secondary storage unit 102 is a nonvolatile memory that stores various programs, various parameters, and the like in advance.
  • the secondary storage unit 102 there is an EEPROM (Electrically Erasable Programmable Read-Only ⁇ ⁇ ⁇ ⁇ ⁇ Memory) or a flash memory.
  • the CPU 98, the primary storage unit 100, and the secondary storage unit 102 are connected to the bus line 104.
  • a focal length sensor 88, a focus lens driving unit 90, a lens position sensor 92, a diaphragm driving unit 94, and an external I / F 96 are also connected to the bus line 104.
  • the external I / F 96 is connected to the external I / F 72 of the imaging apparatus main body 12 by connecting the mount 13 to the mount 15.
  • the external I / F 96 controls transmission / reception of various information between the CPU 98 and the CPU 74 of the imaging apparatus main body 12 in cooperation with the external I / F 72.
  • the focal length sensor 88 detects the state of the zoom lens 82 from the amount of zoom operation via the cross key 30 or the like, and converts the detected state of the zoom lens 82 into a focal length. Then, the focal length sensor 88 outputs focal length information indicating the focal length obtained by conversion to the CPU 98.
  • the focus lens driving unit 90 includes a focus lens driving motor (not shown).
  • the focus lens driving unit 90 of the present embodiment is an example of a moving unit of the present disclosure.
  • the focus lens driving unit 90 operates the focus lens driving motor in accordance with the drive pulse under the control of the CPU 98 in accordance with the instruction received by the receiving device 62 (see FIG. 3). Move along the optical axis L1. That is, the focus lens driving unit 90 operates the focus lens driving motor in accordance with an instruction from the CPU 98 and transmits the power of the focus lens driving motor to the focus lens 84, thereby moving the focus lens 84 along the optical axis L1.
  • the lens position sensor 92 detects a position along the optical axis L1 of the focus lens 84 (hereinafter simply referred to as “the position of the focus lens 84”), and outputs lens position information indicating the detected position to the CPU 98.
  • the aperture drive unit 94 includes an aperture drive motor (not shown).
  • the aperture driving unit 94 adjusts the size of the aperture of the aperture 19 by operating the aperture driving motor under the control of the CPU 98 in accordance with the instruction received by the receiving device 62.
  • the imaging apparatus 10 of the present embodiment performs autofocus for controlling the in-focus state by a so-called contrast AF method.
  • the imaging apparatus 10 of the present embodiment has a focus lens within a range between an infinity (INF) side and a close (MOD: minimumminiobject) side.
  • the contrast value of the captured image is derived at a plurality of different positions while moving the position 84 along the optical axis L1.
  • the focus lens driving unit 90 of the imaging device 10 controls the in-focus state by moving the focus lens 84 to a position where the derived contrast value becomes a peak value.
  • the contrast value of the image in the distance measurement area (details will be described later) in the captured image is applied as the contrast value.
  • the size of the distance measurement area is changed to the amount of change in the image magnification of the focus lens 84 that changes with the movement of the position of the focus lens 84 by the main body side main control unit 46 (CPU 74) of the imaging apparatus main body 12. It is controlled to a corresponding size (details will be described later).
  • image magnification data 110 representing the image magnification of the focus lens 84 is stored in advance in the secondary storage unit 102 of the lens side main control unit 86 as shown in FIG. 6 as an example.
  • the image magnification of the focus lens 84 varies depending on the type of the focus lens and the like, and may vary depending on the position of the focus lens 84.
  • the image magnification data 110 is information indicating the correspondence between the position of the focus lens 84 and the image magnification.
  • the image magnification data 110 is information representing the image magnification (a constant value) of the focus lens 84.
  • the imaging apparatus main body 12 of the present embodiment includes an imaging device 22, a main body side main control unit 46, an imaging device driver 50, an image signal processing circuit 52, an image memory 54, an image processing unit 56, and A display control unit 58 is included.
  • the imaging apparatus main body 12 includes a reception I / F 60, a reception device 62, a media I / F 64, and an external I / F 72.
  • the main body side main control unit 46 is an example of a computer according to the technology of the present disclosure, and includes a CPU 74, a primary storage unit 76, and a secondary storage unit 78.
  • the CPU 74 controls the entire imaging apparatus 10.
  • the primary storage unit 76 is a volatile memory used as a work area or the like for executing various programs.
  • An example of the primary storage unit 76 is a RAM or the like.
  • the secondary storage unit 78 of the present embodiment is a non-volatile memory in which various programs including a peak search program 79, various parameters, and the like are stored in advance.
  • An example of the secondary storage unit 78 is an EEPROM or a flash memory.
  • the CPU 74 reads the peak search program 79 from the secondary storage unit 78 and develops it in the primary storage unit 76, and executes peak search processing, which will be described in detail later, in accordance with the developed peak search program 79.
  • the CPU 74 operates as the detection unit and the control unit of the present disclosure by executing the peak search program 79.
  • the peak search program 79 of the present embodiment is an example of the program of the present disclosure.
  • the CPU 74, the primary storage unit 76, and the secondary storage unit 78 are connected to the bus line 81.
  • the image sensor driver 50 and the image signal processing circuit 52 are also connected to the bus line 81.
  • the image memory 54, the image processing unit 56, the display control unit 58, the reception I / F 60, the media I / F 64, and the external I / F 72 are also connected to the bus line 81.
  • the image sensor driver 50 is connected to the image sensor 22.
  • the image sensor driver 50 controls the operation of the image sensor 22.
  • the image sensor 22 and the image sensor driver 50 of the present embodiment are an example of the image capturing unit of the present disclosure.
  • a CCD (Charge-Coupled Device) image sensor is used as the image sensor 22.
  • the technology of the present disclosure is not limited to this, and other image sensors such as a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor may be used as the image sensor 22.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the image signal processing circuit 52 reads an image signal for one frame from the image sensor 22 for each pixel in accordance with the horizontal synchronization signal.
  • the image signal processing circuit 52 performs various processes such as correlated double sampling processing, automatic gain adjustment, and A / D (Analog / Digital) conversion on the read image signal.
  • the image signal processing circuit 52 converts the image signal digitized by performing various processes on the image signal at a specific frame rate (for example, several tens of frames / second) defined by the clock signal supplied from the CPU 74. Each frame is output to the image memory 54.
  • the image memory 54 temporarily holds the image signal input from the image signal processing circuit 52.
  • the image processing unit 56 acquires an image signal for each frame from the image memory 54 at a specific frame rate, and performs various processes such as gamma correction, luminance conversion, color difference conversion, and compression processing on the acquired image signal. Do. Further, the image processing unit 56 outputs an image signal obtained by performing various processes to the display control unit 58 for each frame at a specific frame rate. Further, the image processing unit 56 outputs an image signal obtained by performing various processes to the CPU 74 in response to a request from the CPU 74.
  • the image processing unit 56 of the present embodiment is an example of an image generation unit of the present disclosure.
  • the display control unit 58 is connected to the display 28 and the finder 36 of the touch panel display 29, and controls the display 28 and the finder 36 under the control of the CPU 74.
  • the display control unit 58 outputs the image signal input from the image processing unit 56 to the display 28 and the finder 36 at a specific frame rate for each frame.
  • the display 28 displays an image indicated by an image signal input at a specific frame rate from the display control unit 58 as a live view image.
  • the display 28 also displays a still image that is a single frame image obtained by imaging in a single frame.
  • a playback image and a menu screen are displayed on the display 28.
  • the finder 36 is a so-called electronic view finder, and displays an image indicated by an image signal input at a specific frame rate from the display control unit 58 as a live view image, like the display 28.
  • the receiving device 62 includes a dial 24, a release button 26, a cross key 30, a MENU / OK key 32, a BACK / DISP button 34, and the like, and receives various instructions from the user.
  • the touch panel 38 and the reception device 62 of the touch panel display 29 are connected to the reception I / F 60 and output an instruction content signal indicating the content of the received instruction to the reception I / F 60.
  • the reception I / F 60 outputs the input instruction content signal to the CPU 74.
  • the CPU 74 executes a process according to the instruction content signal input from the reception I / F 60.
  • a memory card 66 is detachably connected to the media I / F 64.
  • the media I / F 64 records and reads an image file to and from the memory card 66 under the control of the CPU 74.
  • the image file read from the memory card 66 by the media I / F 64 is decompressed by the image processing unit 56 under the control of the CPU 74 and displayed on the display 28 as a reproduced image.
  • the operation mode is switched according to the instruction received by the receiving device 62.
  • the still image capturing mode and the moving image capturing mode are selectively set in accordance with an instruction received by the receiving device 62 in the imaging mode.
  • a still image file can be recorded on the memory card 66.
  • a moving image file can be recorded on the memory card 66.
  • the CPU 74 causes the image sensor 22 to perform main exposure for one frame by controlling the image sensor driver 50 when an instruction to capture a still image is received by the release button 26 in the still image capturing mode.
  • the image processing unit 56 acquires an image signal obtained by performing exposure for one frame under the control of the CPU 74, performs compression processing on the acquired image signal, and stores a specific still image format. Generate a still image file.
  • the specific still image format may be, for example, a JPEG (JointoPhotographic Experts Group) format.
  • the still image file is recorded on the memory card 66 by the media I / F 64 under the control of the CPU 74.
  • the image processing unit 56 When an instruction for capturing a moving image is received by the release button 26 in the moving image capturing mode, the image processing unit 56 performs a compression process on the image signal for the live view image to generate a moving image in a specific moving image format. Create an image file.
  • the specific moving image format may be, for example, an MPEG (Moving / Picture / Experts / Group) format.
  • the moving image file is recorded on the memory card 66 by the media I / F 64 under the control of the CPU 74.
  • the image magnification of the focus lens 84 may change as the position of the focus lens 84 changes.
  • the image magnification of the focus lens 84 increases, and when the focus lens 84 moves from the close side to the infinity side, the focus lens 84.
  • Image magnification may be reduced.
  • the subject image 154 (154A, 154B) included in the captured image 150 (150A, 150B, and 150C). And the position and size of 154C) may change.
  • the reference numerals (A to C) indicating the individual may be omitted.
  • the position of the subject image 154 may be simply referred to as “image position”.
  • the size of the subject image 154 is the largest in the subject image 154A of the captured image 150A corresponding to the infinity side, and corresponds to the position X between the infinity side and the closest side.
  • the subject image 154B of the captured image 150B decreases in the order of the subject image 154C of the captured image 150C corresponding to the closest side.
  • the position of the subject image 154 is such that the subject image 154A of the captured image 150A is closest to the outer edge of the captured image 150, and the subject image 154B of the captured image 150B and the center of the captured image 150 are 154C of the captured image 150C. It approaches 151.
  • the position of the subject image 154 tends to move in the direction from the center 151 of the captured image 150 toward the outer edge. Further, as the focus lens 84 approaches the infinity side, the size of the subject image 154 tends to increase. In other words, the subject image 154 moves to a position from the outer edge of the captured image 150 toward the center 151 as the focus lens 84 approaches, and the image tends to be smaller.
  • FIG. 25 shows an example in which the size of the ranging area 152 is set regardless of the change in the position of the focus lens 84, that is, the change in the image magnification, unlike the imaging apparatus 10 of the present embodiment.
  • the focus lens 84 when the focus lens 84 is on the infinity side, the subject image 154 is included in the distance measurement area 152. However, as the focus lens 84 approaches the closest side, the subject image is increased. 154 is shifted out of the distance measurement area 152. If a peak search is performed using the image in the distance measurement area 152 in a state where the subject image 154 is shifted out of the distance measurement area 152, there is a concern that an appropriate peak search for focusing on the object image 154 may not be performed. is there.
  • the CPU 74 performs distance measurement before performing the peak detection operation according to the amount of change in the image magnification of the focus lens 84. Control is performed to set one size of the region 152 in advance.
  • the peak detection operation is an operation for detecting the peak of the contrast value.
  • FIG. 9 shows a case where the position of the focus lens 84 is moved from the infinity side to the close side, and the CPU 74 sets a large distance measurement area 152 as the position of the focus lens 84 is moved closer to the close side. Represents the case.
  • the imaging apparatus 10 of this embodiment when the position of the focus lens 84 is moved from the infinity side to the position X, one size corresponding to the distance measurement area 152B is set in advance before the peak detection operation. In the imaging apparatus 10 of the present embodiment, when the position of the focus lens 84 is moved from the infinity side to the close side, one size corresponding to the distance measurement region 152C is set in advance before the peak detection operation. . In the example shown in FIG. 9, the distance measurement area 152A of the captured image 150A is the smallest, and the distance measurement area 152C of the captured image 150C is the largest.
  • FIG. 10 shows a case where the position of the focus lens 84 is moved from the closest side to the infinity side, and the CPU 74 sets a large distance measurement area 152 as the position of the focus lens 84 is moved closer to the infinity side. It represents the case.
  • the imaging apparatus 10 of this embodiment when the position of the focus lens 84 is moved from the closest side to the position X, one size corresponding to the distance measurement area 152B is set in advance before the peak detection operation.
  • one size corresponding to the ranging area 152A is set in advance before the peak detection operation. . In the example shown in FIG.
  • the distance measurement area 152C of the captured image 150C is the smallest, and the distance measurement area 152A of the captured image 150A is the largest.
  • the size of the distance measurement area 152 increases in accordance with the amount of change in image magnification, regardless of the moving direction of the focus lens 84.
  • the size of the distance measurement area 152 is set in this manner, so that the subject image 154 is sufficiently included in the distance measurement area 152.
  • the center position of the distance measurement area 152 is the same position (not changed).
  • FIG. 11 shows a flowchart of an example of the peak search process executed by the CPU 74 of the imaging apparatus 10 of the present embodiment.
  • the CPU 74 of the imaging apparatus 10 reads the peak search program 79 from the secondary storage unit 78, expands it in the primary storage unit 76, and executes it.
  • the peak search process shown as an example in FIG. 11 is executed.
  • the CPU 74 determines whether or not the imaging lens 14 is connected to the imaging apparatus main body 12 in a state where communication with the control device 40 of the imaging lens 14 is possible. Specifically, in the present embodiment, the CPU 74 determines whether or not the mount 15 is connected to the mount 13. If the imaging lens 14 is not connected to the imaging apparatus main body 12, the determination in step S100 is negative and the peak search process is terminated. On the other hand, when the imaging lens 14 is connected to the imaging apparatus main body 12, the determination in step S100 is affirmative, and the process proceeds to step S102.
  • step S102 the CPU 74 acquires the image magnification data 110.
  • the image magnification data 110 is stored in the secondary storage unit 102 included in the control device 40 of the imaging lens 14. Therefore, the CPU 74 acquires the image magnification data 110 read from the secondary storage unit 102 by the CPU 98 of the control device 40 via the external I / F 72 and the external I / F 96.
  • the CPU 74 determines whether or not the change amount of the image magnification is equal to or less than a predetermined value. Specifically, the CPU 74 of the present embodiment first, based on the image magnification data 110, an image in a range in which the focus lens 84 is moved in order to detect a contrast value peak (hereinafter referred to as “peak search range”). The amount of change in magnification is derived. In the present embodiment, the amount of change between the image magnification corresponding to the position (start position) where peak detection is started in the peak search range and the image magnification corresponding to the position (end position) where peak detection is ended is derived. .
  • the CPU 74 determines whether or not the derived change amount of the image magnification is equal to or less than a predetermined value.
  • the normal size (detailed later) is set without changing the size of.
  • the change amount of the image magnification corresponding to the case where the change amount of the position of the subject image 154 is small is obtained as a predetermined value.
  • step S104 determines whether the change amount of the image magnification is equal to or less than the predetermined value. If the change amount of the image magnification is equal to or less than the predetermined value, the determination in step S104 is affirmative, and the process proceeds to step S106.
  • step S106 as described above, the CPU 74 sets the size of the distance measurement area 152 to the normal size, and then proceeds to step S112.
  • the normal size is a predetermined size regardless of the image magnification, and the normal size (when step S110 described later is not performed) and / or even if the focus lens 84 moves. This is the size (size) of the distance measuring area 152 applied when the magnification does not change.
  • step S104 determines whether the change amount of the image magnification is less than the predetermined value, in other words, if the change amount of the image magnification exceeds the predetermined value, the determination in step S104 is negative, and the process proceeds to step S108.
  • step S108 the CPU 74 derives the amount of change in the position of the subject image 154 in the peak search range.
  • the start position is ps
  • the image magnification corresponding to the start position ps is K [ps]
  • the end position is pe
  • the image magnification corresponding to the end position pe is K [pe].
  • the focus lens 84 is not actually moved at the stage of step S108. Therefore, for example, the start position ps and the end position pe are determined according to the position of the subject image 154 with respect to the captured image 150 at the stage of step S108 (before the movement of the focus lens 84).
  • the CPU 74 sets the size of the distance measurement area 152 determined based on the change amount D derived in step S108.
  • the CPU 74 of the present embodiment sets the size of the distance measurement area 152 as the size of the change amount D as one side.
  • the present invention is not limited to this embodiment, and for example, the size of the distance measurement area 152 may be n (n> 0 and n ⁇ 1) times the amount of change D.
  • the CPU 74 performs a peak detection operation for detecting the peak of the contrast value.
  • the size of the distance measurement area 152 is set in step S106 or step S110.
  • the CPU 74 detects the contrast value of the image in the distance measuring area 152 having a set size for each position where the focus lens 84 is moved, and the contrast value reaches the peak.
  • the position of the focus lens 84 is detected. For example, when the start position ps is on the infinity side and the end position pe is on the close side, the size corresponding to the distance measurement area 152C shown in FIG. 9 is set in step S110 as described above. Therefore, in the peak detection operation in step S112, the peak of the contrast value is detected for the image in the distance measurement area 152 having a size corresponding to the distance measurement area 152C shown in FIG.
  • step S112 when the peak detection operation in step S112 is completed, the peak search process is terminated.
  • the CPU 74 controls the in-focus state based on the position of the focus lens 84 when the contrast value reaches a peak.
  • the ranging area 152 that is enlarged according to the amount of change in the image magnification that changes with the change in the position of the focus lens 84 is set in advance before the peak detection operation. Therefore, it is possible to suppress the subject image 154 from being out of the distance measurement area 152 during the peak detection operation. Therefore, according to the imaging apparatus 10 of the present embodiment, the contrast value can be stably acquired based on the subject image 154 in the distance measuring area 152, and the contrast value change peak in the distance measuring area 152 is obtained. Detection accuracy can be improved.
  • the configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
  • the operation of the imaging apparatus 10 of the present embodiment is different in part of the peak search process.
  • the size setting of the ranging area 152 when the size setting of the ranging area 152 is changed from the normal size, the position of the center of the ranging area 152 is not changed (the ranging area 152 is not moved).
  • a mode will be described in which the position of the center of the distance measurement area 152 is changed as the size setting of the distance measurement area 152 is changed.
  • the image magnification of the focus lens 84 changes in the direction in which the subject image 154 is reduced. Further, the position of the subject image 154 moves in a direction approaching the center 151 of the captured image 150. Therefore, when the focus lens 84 is moved from the infinity side to the close side, the CPU 74 of the imaging apparatus 10 according to the present embodiment moves the center 153 of the distance measurement area 152 closer to the center 151 as in the example illustrated in FIG. Move in the direction.
  • the ranging areas 152A, 152B, and 152C are schematically displayed on the captured image 150 in an overlapping manner. In the example shown in FIG.
  • the center 153A of the ranging area 152A corresponding to the case where the focus lens 84 is on the infinity side is the farthest from the center 151 of the captured image 150 and close to the outer edge. It approaches the center 151 of the captured image 150 in the order of the center 153B of the area 152B and the center 153C of the distance measurement area 152C.
  • the image magnification of the focus lens 84 changes in the direction in which the subject image 154 is enlarged.
  • the position of the subject image 154 moves away from the center 151 of the captured image 150 (closer to the outer edge). Therefore, when the focus lens 84 is moved from the closest side to the infinity side, the CPU 74 of the imaging apparatus 10 according to the present embodiment moves the center 153 of the distance measuring area 152 away from the center 151 as in the example illustrated in FIG. Move in the direction. Similar to FIG. 12, in the example shown in FIG.
  • the distance measurement areas 152 ⁇ / b> A, 152 ⁇ / b> B, and 152 ⁇ / b> C are schematically displayed on the captured image 150.
  • the center 153C of the distance measurement area 152C corresponding to the case where the focus lens 84 is on the closest side is the position closest to the center 151 of the captured image 150, and the center 153B of the distance measurement area 152B.
  • the center 153A of the distance measurement area 152A away from the center 151 of the captured image 150 and approach the outer edge.
  • FIG. 14 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 14, the peak search process of this embodiment differs from the peak search process of the first embodiment (see FIG. 11) in that the process of step S111 is executed after step S110.
  • step S111 shown in FIG. 14 the CPU 74 derives the position of the center 153 of the ranging area 152 based on the size of the ranging area 152 derived in step S110, and then proceeds to step S112.
  • the CPU 74 of the present embodiment determines the center of the distance measurement area 152 in the captured image 150 based on the moving direction of the focus lens 84 (the direction toward the infinity side or the direction toward the closest side) and the size of the distance measurement area 152.
  • the position of 153 is derived.
  • the position of the center 153C is set to a position closer to the center 151 of the captured image 150 than the center 153A.
  • a specific method for deriving the position of the center 153C by the CPU 74 is not particularly limited. For example, as shown in FIG.
  • the positions of the corners (corners) farthest from the center 151 are matched, and
  • the coordinates of the center 153C may be derived from the coordinates and the size of the distance measurement area 152C.
  • the CPU 74 causes the distance measurement area as shown in FIG.
  • the size of 152 is set to the size shown as the distance measurement area 152A instead of the normal size shown as the distance measurement area 152C.
  • the position of the center 153A is set to a position farther from the center 151 of the captured image 150 than the center 153C.
  • a specific method for deriving the position of the center 153A by the CPU 74 is not particularly limited. For example, as shown in FIG.
  • the positions of the corners (corners) closest to the center 151 are matched, and the coordinates of the matched corners are set. Then, the coordinates of the center 153A may be derived from the size of the distance measurement area 152A.
  • the size of the ranging area 152 is set to a size larger than the normal size in accordance with the amount of change in image magnification that changes with the change in the position of the focus lens 84.
  • the position of the center 153 of the distance measuring area 152 is changed according to the moving direction of the focus lens 84, that is, according to the changing direction of the position of the subject image 154.
  • the position of the center 153 of the distance measurement area 152 is also changed according to the change direction of the image position, so that the subject image 154 is out of the distance measurement area 152. It can be suppressed more. Therefore, according to the imaging apparatus 10 of the present embodiment, the contrast value can be acquired more stably based on the image 154 of the subject in the distance measuring area 152, and the peak of the contrast value in the distance measuring area 152 can be obtained. The detection accuracy can be further improved.
  • the position of the center 153 of the distance measurement area 152 is also changed according to the change direction of the image position.
  • the size can be reduced.
  • the configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
  • the operation of the imaging apparatus 10 of the present embodiment is different in part of the peak search process.
  • the peak search process when the peak of the contrast value is detected during the movement of the focus lens 84 in the peak detection operation, the movement of the focus lens 84 is stopped and the peak detection operation (peak search process) is performed.
  • peak search process There is a known method for terminating the process.
  • the peak position in the optical axis direction varies depending on the actual position of a specific subject. For this reason, in this method, the distance from the start position ps where the peak detection operation starts to the movement of the focus lens 84 to the movement of the focus lens 84, that is, the peak search range differs depending on the actual position of a specific subject. . Therefore, the amount of change in image magnification varies depending on the actual position of a specific subject.
  • the size of the distance measurement area 152 is the maximum value corresponding to the peak search range, and the size corresponding to the entire range between the infinity side and the close side where the peak search range is the widest range.
  • the subject image 154 is sufficiently within the distance measurement area 152 regardless of the stop position of the focus lens 84.
  • the distance measurement area 152 is excessively large, and the distance measurement area 152 includes an image other than the subject image 154 excessively. As a result, focusing accuracy may be reduced.
  • the position corresponding to the peak of the contrast value (the position of the focus lens 84) is unknown, so it is difficult to predict the actual peak search range in advance.
  • a plurality of peak search ranges are assumed, and a ranging area 152 having a size corresponding to each of a plurality of assumed peak search ranges is set.
  • the assumed peak search range is not particularly limited, but may be determined according to the depth of focus of the focus lens 84, for example. As a specific example in this case, there are three assumed peak search ranges p1, p2, and p3 shown in FIG.
  • the first assumed peak search range p ⁇ b> 1 is a range from the start position ps to 10 times the focal depth of the focus lens 84.
  • FIG. 16 shows an example of a distance measurement area 152p1 having a size corresponding to the first assumed peak search range p1.
  • the second assumed peak search range p2 is a range from the start position ps to 20 times the focal depth of the focus lens 84.
  • FIG. 16 shows an example of a distance measurement area 152p2 having a size corresponding to the second assumed peak search range p2.
  • the third assumed peak search range p3 is a search end (infinity: INF or closest: MOD) in the moving direction of the focus lens 84 from the start position ps.
  • FIG. 16 shows an example of a distance measurement area 152p3 having a size corresponding to the third assumed peak search range p3.
  • the size of each of the ranging areas 152p1 to 152p3 increases in the order of the first ranging area 152p1, the second ranging area 152p2, and the third ranging area 152p3.
  • the focus lens 84 when performing the peak detection operation, is temporarily moved from the current position in the direction opposite to the movement direction for peak detection, and the moved position is determined.
  • the start position ps of the peak detection operation is used as the reference position of the peak search range.
  • FIG. 17 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 17, in the peak search process of this embodiment, steps S108A, S110A, and S112A are used instead of steps S108, S110, and S112, as compared with the peak search process of the first embodiment (see FIG. 11). The point of executing the process is different.
  • step S108A shown in FIG. 17 the CPU 74 derives the amount of change in the position of the subject image 154 in each of the assumed peak search ranges p1 to p3 in the same manner as in step S108 of the peak search process of the first embodiment.
  • step S110A the CPU 74 sets the size of the ranging areas 152p1 to p3 for each of the assumed peak search ranges p1 to p3 derived in step S108A based on the amount of change in the image position. This is set in the same manner as in step S110 of the peak search processing of the form.
  • step S112A the CPU 74 performs a peak detection operation.
  • the present embodiment differs from the peak detection operation performed in step S112 of the peak search process of the first embodiment in the following points.
  • the CPU 74 of the present embodiment has a size corresponding to each of the assumed peak search ranges p1 to p3 set in step S110A for each position where the focus lens 84 is moved. Contrast values are detected for each of the ranging areas 152p1 to 152p3. When the CPU 74 detects the peak of the contrast value for all the distance measurement areas 152p1 to 152p3, the CPU 74 stops the movement of the focus lens 84.
  • the CPU 74 specifies an assumed peak search range having a minimum size in the range including the stop position (peak search end position pe) of the focus lens 84 among the assumed peak search ranges p1 to p3. For example, in the case shown in FIG. 15, there are two ranges including the actual peak search range end position pe, the second assumed peak search range p2 and the third assumed peak search range p3. The minimum range is the second assumed peak search range p2. For this reason, the CPU 74 specifies the second assumed peak search range p2.
  • the CPU 74 determines a peak detected by the peak detection operation as a peak detected by the distance measuring area 152 corresponding to the specified assumed peak search range. For example, in the case shown in FIG. 15, the CPU 74 determines a peak detected using the second assumed peak search range p2. Thus, in the example shown in FIG. 15, the CPU 74 changes the focus state based on the position of the focus lens 84 corresponding to the peak detected using the distance measuring area 152p2 corresponding to the second assumed peak search range p2. Control.
  • the imaging apparatus 10 of the present embodiment in order to obtain a focused state from the peak of the contrast value detected using the ranging area 152 having an appropriate size according to the actual peak search range.
  • the position of the focus lens 84 is determined. Therefore, according to the imaging device 10 of the present embodiment, since the peak of the contrast value is detected by the distance measurement area 152 having an appropriate size, the focusing accuracy can be improved.
  • the configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
  • the CPU 74 of this embodiment is an example of an instruction unit of the present disclosure.
  • the operation of the imaging apparatus 10 of the present embodiment is different in part of the peak search process.
  • the subject may move during the peak detection operation.
  • the position of the subject image 154 in the captured image 150 also changes.
  • a so-called subject tracking mode there is a method called a so-called subject tracking mode.
  • the CPU 74 uses the captured image 150 acquired during the peak detection operation to track the specific subject image 154 included in the captured image 150, and performs measurement according to the movement of the subject image 154.
  • a movement process for moving the position of the distance area 152 is performed.
  • the position of the distance measuring area 152 is moved in accordance with the movement of the subject image 154. Therefore, even when the image magnification is changed by moving the position of the focus lens 84, the image magnification is changed.
  • the position of the ranging area 152 is moved in accordance with the position of the subject image 154 moved in accordance with the change. Therefore, as described in the first embodiment, the subject image 154 can be sufficiently accommodated in the distance measurement area 152 without changing the size of the distance measurement area 152. Therefore, in the peak search process of the present embodiment, when the subject tracking mode is executed, control is performed so that the size setting of the distance measurement area 152 remains the normal size.
  • FIG. 18 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 18, in the peak search process of this embodiment, the process of step S101 is executed between step S100 and step S102 as compared to the peak search process of the first embodiment (see FIG. 11). Is different.
  • step S101 shown in FIG. 18 the CPU 74 determines whether or not to execute the subject tracking mode.
  • the subject tracking mode is executed by the CPU 74. Therefore, when the receiving device 62 receives an instruction to execute the subject tracking mode, the determination in step S101 is affirmative, and the process proceeds to step S106. Therefore, when the subject tracking mode is executed, a normal size is set as the size of the distance measurement area 152, and peak detection is performed by the distance measurement area 152 of the normal size.
  • step S101 determines whether the subject tracking mode has been executed. If the subject tracking mode has not received an instruction to execute the subject tracking mode, the determination in step S101 is negative, and the process proceeds to step S102. Accordingly, when the subject tracking mode is not executed, as in the first embodiment, when the change amount of the image magnification exceeds a predetermined value, the size corresponding to the change amount of the image position is set as the size of the ranging area 152. Thus, peak detection is performed by the distance measuring area 152 having a size corresponding to the amount of change in the image position.
  • the size of the ranging area 152 is set to the normal size. It remains.
  • the imaging device 10 of the present embodiment since it is possible to suppress an image other than the subject image 154 from being included in the distance measurement area 152, it is different from a specific subject corresponding to the subject image 154. Focusing on a subject can be suppressed, and focusing on a specific subject can be facilitated.
  • the configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
  • the mode in which the subject tracking mode is executed by the CPU 74 when the receiving device 62 receives an instruction to execute the subject tracking mode by the user has been described.
  • a mode in which the subject tracking mode can be automatically executed even when the receiving device 62 has not received an instruction to execute the subject tracking mode by the user will be described.
  • the CPU 74 When executing the subject tracking mode, the CPU 74 performs image analysis on the captured image 150, detects the face of the subject, etc., and performs processing for tracking the area including the detected face.
  • template matching is performed on the plurality of captured images 150 acquired while the focus lens 84 is moving, thereby detecting a region including the face of the subject and detecting the position of the subject image 154 after the movement. Therefore, the calculation processing load is high and the calculation processing takes time. Therefore, if the frame rate during the peak detection operation becomes high, the calculation process cannot catch up, and the distance measurement area 152 may not be moved in real time.
  • whether or not to execute the subject tracking mode is determined according to at least one of a frame rate and a time expected to be required for calculation processing (hereinafter referred to as “calculation expected time”).
  • FIG. 19 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 19, in the peak search process of this embodiment, each process of steps S101A, S101B, S101C, and S101D is executed instead of step S101 of the peak search process (see FIG. 18) of the fourth embodiment. Is different.
  • step S101A shown in FIG. 19 the CPU 74 determines whether or not the receiving device 62 has received an instruction to execute the subject tracking mode by the user. When the receiving device 62 receives an instruction to execute the subject tracking mode from the user, the determination in step S101A is affirmative, and the process proceeds to step S106.
  • step S101A determines whether the receiving device 62 has received an instruction to execute the subject tracking mode by the user. If the receiving device 62 has not received an instruction to execute the subject tracking mode by the user, the determination in step S101A is negative, and the process proceeds to step S101B.
  • step S101B the CPU 74 determines whether or not a value obtained by multiplying the frame rate f [Hz] by the calculation expected time t (sec) is equal to or less than a threshold value TH (f ⁇ t ⁇ TH).
  • the CPU 74 determines whether or not the arithmetic processing required to detect a change in the position of the subject cannot be caught because the frame rate is high. judge.
  • the threshold TH for use in this determination may be obtained in advance by experiments or the like and stored in the secondary storage unit 78.
  • the calculation expected time t varies depending on the size and / or resolution of the captured image 150
  • a plurality of calculation predictions corresponding to the size and / or resolution of the captured image 150 are provided.
  • the time t is stored in the secondary storage unit 78 in advance.
  • the calculation expected time t of the present embodiment is an example of the predicted processing time of the present disclosure.
  • step S101B When the value obtained by multiplying the frame rate f by the calculation expected time t is equal to or less than the threshold value TH, the determination in step S101B is affirmative, and the process proceeds to step S101C.
  • step S101C the CPU 74 permits execution of the subject tracking mode.
  • step S101B Is negative, and the process proceeds to step S101D.
  • step S101D the CPU 74 prohibits execution of the subject tracking mode.
  • step S101B determines whether the subject tracking mode is prohibited in step S101D.
  • step S101B is positively determined, and execution of the subject tracking mode is permitted in step S101C.
  • step S101B determines whether the subject tracking mode is prohibited in step S101D.
  • the CPU 74 prohibits execution of the subject tracking mode.
  • the determination as to whether the execution of the subject tracking mode is permitted or prohibited is made by comparing the value obtained by multiplying the frame rate f by the calculation expected time t with the threshold value TH.
  • the threshold value TH is not limited to this embodiment. Any form may be used as long as it is determined whether to permit or prohibit execution of the subject tracking mode in accordance with at least one of the frame rate f and the calculation expected time t.
  • the imaging apparatus 10 it is expected that the ranging area 152 cannot be moved in real time when the subject tracking mode is executed according to at least one of the frame rate f and the calculation expected time t.
  • the change amount of the image magnification exceeds a predetermined value, the size of the distance measurement area 152 is increased in accordance with the change amount of the image magnification that changes as the position of the focus lens 84 changes.
  • the imaging device 10 of the present embodiment it is possible to increase the probability that the subject image 154 is included in the distance measurement area 152.
  • the configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
  • execution of the subject tracking mode is prohibited when it is expected that the distance measurement area 152 cannot be moved in real time when the subject tracking mode is executed.
  • the size of the distance measurement area 152 is set and the subject tracking mode is executed. explain.
  • the position of the subject image 154 moves as in the example shown in FIG. 20 as the image magnification changes due to the movement of the focus lens 84.
  • the horizontal axis represents the movement time of the focus lens 84
  • the vertical axis represents the position (image position) of the subject image 154.
  • the position of the ranging area 152 in the captured image 150 is moved based on the result of the calculation process for detecting the position of the subject image 154 after the movement. Therefore, the subject cannot be tracked from the start time T0 when the peak detection operation is started until the first calculation result is obtained, and the position of the ranging area 152 is not fixed. Therefore, in the present embodiment, the image position in the time during which the computation process required for tracking the subject is performed, specifically, the time from the start time T0 until the computation process result is obtained (see the processing expected time in FIG. 20). The size of the distance measurement area 152 is set using the change amount D0.
  • FIG. 21 is a flowchart showing an example of the flow of the peak search process of the present embodiment.
  • the peak search process of this embodiment does not include the processes of steps S101C and S101D of the peak search process (see FIG. 19) of the fifth embodiment, and instead of step S108, The difference is that the process is executed.
  • step S101B when an affirmative determination is made in step S101B shown in FIG. 21, the process proceeds to step S106. On the other hand, when it becomes negative determination by step S101B, it transfers to step S102.
  • step S108B the CPU 74 derives the change amount D0 of the position of the subject image 154 in the estimated processing time.
  • the amount of change in the subject image 154 during the estimated processing time depends on the amount of movement of the focus lens 84 that has moved within the estimated processing time. Therefore, the CPU 74 of this embodiment derives the amount of movement of the focus lens 84 from a value obtained by multiplying the movement speed of the focus lens 84 and the estimated processing time. Furthermore, the CPU 74 multiplies the derived movement amount of the focus lens 84 by the variation amount of the image position per unit movement amount with respect to the movement amount of the focus lens 84, thereby deriving the variation amount D0 of the image position in the estimated processing time.
  • the estimated processing time may be stored in advance in the secondary storage unit 78 as a value obtained through experiments or the like, and the moving speed of the focus lens 84 may be stored in the secondary storage unit 78 in advance. That's fine.
  • the CPU 74 sets the size of the distance measurement area 152 based on the change amount D0 derived in step S108B.
  • the imaging apparatus 10 of the present embodiment even when the distance measurement area 152 cannot be moved in real time during execution of the subject tracking mode, the position of the subject image 154 in the estimated processing time required for the calculation processing A distance measuring area 152 having a size corresponding to the amount of change D0 is set. Therefore, according to the imaging apparatus 10 of the present embodiment, the subject image 154 can be sufficiently included in the distance measurement area 152 even during the period in which the position of the distance measurement area 152 during tracking of the subject does not move. Therefore, the focusing accuracy can be improved.
  • the seventh embodiment will be described in detail.
  • one size of the distance measurement area 152 is set in advance before the peak detection operation, and the peak detection operation is performed in the distance measurement area 152 having the set size, thereby performing measurement during the peak detection operation.
  • the embodiment in which the size of the distance area 152 is not changed has been described.
  • a mode in which the size of the ranging area 152 is changed according to the movement (position) of the focus lens 84 during the peak detection operation will be described.
  • the same configurations and operations as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
  • FIG. 22 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 22, in the peak search process of the present embodiment, steps S110B and S112B are executed instead of steps S110 and S112, respectively, as compared with the peak search process of the first embodiment (see FIG. 11). Is different.
  • step S110B shown in FIG. 22 the CPU 74 sets a plurality of sizes of the ranging area 152 based on the change amount D derived in step S108.
  • the size of the distance measurement area 152 at the start position ps is set to the normal size
  • the size of the distance measurement area 152 at the end position pe is set to a size with the change amount D as one side, and ends from the start position ps.
  • the size of the distance measurement area 152 is set for each of a plurality of predetermined positions up to the position pe (for example, every predetermined interval). If the amount of change in the size of the ranging area 152 is S, the size obtained by sequentially adding the amount of change S derived from the following equation (2) to the normal size for each of a plurality of predetermined positions. Set as the size of.
  • step S108B of the present embodiment the size of the distance measurement area 152 is set for each of a plurality of predetermined positions, and the distance measurement area 152 becomes larger as it approaches the end position pe.
  • the CPU 74 performs a peak detection operation.
  • the peak detection operation itself performed in step S112 of the peak search process of the first embodiment is the same.
  • the peak detection operation is performed while changing the size of the ranging area 152 to the size set in step S110B each time the position of the focus lens 84 reaches each of a plurality of predetermined positions. The points described below are different.
  • the size of the ranging area 152 changes during the peak detection operation.
  • the number of pixels of the image (in the distance measurement area 152) included in the distance measurement area 152 also changes. Therefore, the CPU 74 of the present embodiment is different from the peak detection operation of the first embodiment in that the detected contrast value is normalized.
  • the CPU 74 of the present embodiment has a case in which the width of the ranging area 152 is H (number of pixels), the height is V (number of pixels), and the contrast value detected from the ranging area 152 is C. Then, the contrast value per unit pixel is normalized by dividing the contrast value C by the value obtained by multiplying the width H and the height V (C / (H ⁇ V)).
  • the size of the distance measurement area 152 is changed according to the movement (position) of the focus lens 84, thereby changing the image magnification change amount. Accordingly, the size of the distance measurement area 152 is increased. For this reason, it is possible to prevent the subject image 154 from being out of the distance measurement area 152 during the peak detection operation. Therefore, according to the imaging apparatus 10 of the present embodiment, the contrast value can be stably acquired based on the subject image 154 in the distance measuring area 152, and the contrast value change peak in the distance measuring area 152 is obtained. Detection accuracy can be improved.
  • the mode of changing the size of the distance measurement area 152 according to the movement (position) of the focus lens 84 during the peak detection operation is not limited to this embodiment.
  • a plurality of change amounts D corresponding to each of a plurality of predetermined positions are derived, and in the process corresponding to step S110B, The size of the ranging area 152 based on each of the plurality of change amounts D may be set for each of a plurality of corresponding predetermined positions.
  • the imaging device 10 of each of the above embodiments includes the imaging lens 14 including the focus lens 84, the imaging element 22 that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens 14, and An imaging element driver 50, an image processing unit 56 that generates a captured image according to an image signal, a focus lens driving unit 90 that moves the position of the focus lens 84 along the optical axis direction, a CPU 74, and a peak search program 79. And a main body side main control unit 46 including a secondary storage unit 78 for storing.
  • the CPU 74 determines the size of the distance measurement area 152 in the captured image 150 according to the movement of the position of the focus lens 84.
  • the size is controlled by the control unit that performs control to set the size according to the change amount of the image magnification of the focus lens 84 that changes, and the control unit that changes according to the movement of the position of the focus lens 84 by the focus lens driving unit 90.
  • the subject image 154 can be prevented from being detached from the distance measurement area 152 and the subject image 154 can be sufficiently stored in the distance measurement area 152.
  • the detection accuracy of the peak of the change in contrast value in the region 152 can be improved. Therefore, according to the imaging device 10 of each of the embodiments described above, since the in-focus state is controlled based on the position of the focus lens 84 when the contrast value reaches a peak, the in-focus accuracy can be improved.
  • the distance measurement area 152 is excessively large, an image other than the subject image 154 is excessively included in the distance measurement area 152, and there is a possibility that the focusing accuracy is lowered. Therefore, as described above, it is preferable to provide an upper limit value for the size of the distance measurement area 152.
  • the upper limit include about 10% of the width (vertical width or horizontal width) of the captured image 150.
  • the CPU 74 performs information 158 representing the set ranging area 152 in the captured image 150 displayed on the display 28 during the peak detection operation in the peak search process. (158A) may be superimposed and displayed.
  • information 158A representing the distance measurement area 152 having a size corresponding to the setting may be displayed.
  • the user may feel uncomfortable, so as shown in FIG. 23, as shown in FIG. In other words, the information 158 representing the distance measurement area 152 with the normal size may be displayed.
  • the peak search program 79 is read from the secondary storage unit 78 is illustrated, but it is not always necessary to store the peak search program 79 in the secondary storage unit 78 from the beginning.
  • a peak search is first performed on an arbitrary portable storage medium 250 such as an SSD (Solid State Drive) memory, a USB (Universal Serial Bus) memory, or a CD-ROM (Compact Disc Read Only Memory).
  • the program 79 may be stored.
  • the peak search program 79 of the storage medium 250 is installed in the imaging apparatus main body 12, and the installed peak search program 79 is executed by the CPU 74.
  • a peak search program 79 is stored in a storage unit such as another computer or a server device connected to the imaging apparatus body 12 via a communication network (not shown), and the peak search program 79 is stored in the imaging apparatus body 12. It may be downloaded on demand. In this case, the downloaded peak search program 79 is executed by the CPU 74.
  • the peak search process is realized by a software configuration using a computer
  • the technology of the present disclosure is not limited to this.
  • the peak search process may be executed only by a hardware configuration such as FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Specific Integrated Circuit).
  • the peak search process may be executed by a configuration combining a software configuration and a hardware configuration.
  • processors can be used as hardware resources for executing the peak search process described in the above embodiment.
  • the processor include a CPU that is a general-purpose processor that functions as a hardware resource for executing peak search processing by executing software, that is, a program, as described above.
  • the processor include a dedicated electric circuit that is a processor having a circuit configuration specifically designed to execute specific processing such as FPGA, PLD (Programmable Logic Device), or ASIC.
  • the hardware resource for executing the peak search process may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs, or (Combination of CPU and FPGA). Moreover, one processor may be sufficient as the hardware resource which performs the various processes which concern on the technique of this indication.
  • one processor is configured by a combination of one or more CPUs and software, and this processor is used for peak search.
  • this processor is used for peak search.
  • SoC System-on-a-chip
  • a processor that implements the functions of the entire system including a plurality of hardware resources for executing peak search processing with a single IC chip is used.
  • the peak search process is realized by using one or more of the various processors as hardware resources.
  • An imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, an image generation unit that generates a captured image according to the image signal, and the focus
  • an imaging apparatus comprising: a moving unit that moves the position of the lens along the optical axis direction; When the moving unit moves the focus lens, the size of the distance measurement area in the captured image is a size according to the amount of change in the image magnification of the focus lens that changes with the movement of the position of the focus lens.
  • a and / or B is synonymous with “at least one of A and B”. That is, “A and / or B” means that only A, B, or a combination of A and B may be used. Further, in this specification, the same concept as “A and / or B” is applied when expressing three or more things by connecting them with “and / or”.

Abstract

An imaging device comprises: an imaging lens including a focus lens; an imaging section for outputting an image signal obtained by capturing an optical image passing through the imaging lens; an image formation unit for generating a captured image in accordance with the image signal; a movement unit for displacing the focus lens along the optical axis; a control unit that, when the movement unit displaces the focus lens, sets a measurement range for the captured image to a size in accordance with the rate of change in the image magnification of the focus lens which changes with the displacement of the focus lens; and a detection unit that detects a position of the focus lens at which the contrast value for the image in the measurement range set by the control unit reaches a peak, the contrast value changing with the displacement of the focus lens by the movement unit. The movement unit displaces the focus lens to the position detected by the detection unit.

Description

撮像装置、撮像方法、及びプログラムImaging apparatus, imaging method, and program
 本開示の技術は、撮像装置、撮像方法、及びプログラムに関する。 The technology of the present disclosure relates to an imaging device, an imaging method, and a program.
 従来、所謂コントラストAF(Auto Focus)方式でオートフォーカスを行う撮像装置において、撮像画像内に設けられた測距領域内の画像のコントラスト値の変化から検出したコントラスト値のピークに基づいて、フォーカスレンズの合焦位置を決定する技術が開示されている(例えば、特開2008-52022号公報及び特開2013-186313号公報参照)。 2. Description of the Related Art Conventionally, in an imaging apparatus that performs auto-focusing using a so-called contrast AF (Auto-Focus) method, a focus lens is based on a contrast value peak detected from a change in contrast value of an image in a distance measurement area provided in a captured image. Has been disclosed (see, for example, Japanese Patent Application Laid-Open Nos. 2008-52022 and 2013-186313).
 しかしながら、特開2008-52022号公報及び特開2013-186313号公報に記載の技術では、フォーカスレンズの光軸方向に沿った移動に伴い、フォーカスレンズの像倍率が変化すると、測距領域内から被写体の画像がずれてしまう場合がある。測距領域内の画像に対してコントラスト値のピークサーチを行った結果を用いてオートフォーカスを実施した場合、測距領域内から被写体の画像がずれてしまうと、適切な合焦状態とならず、撮像画像がぼける場合があった。 However, in the techniques described in Japanese Patent Application Laid-Open Nos. 2008-52022 and 2013-186313, if the image magnification of the focus lens changes with the movement of the focus lens along the optical axis direction, the distance from the distance measurement area is increased. There is a case where the image of the subject is shifted. When autofocus is performed using the result of a peak search of contrast values for images in the distance measurement area, if the subject image deviates from within the distance measurement area, it will not be in the proper focus state. In some cases, the captured image was blurred.
 本開示は、上記事情を考慮して成されたものであり、測距領域内におけるコントラスト値の変化のピークの検出精度を向上させることができる、撮像装置、撮像方法、及びプログラムを提供することを目的とする。 The present disclosure has been made in consideration of the above circumstances, and provides an imaging apparatus, an imaging method, and a program capable of improving the detection accuracy of a peak of a change in contrast value in a ranging area. With the goal.
 上記目的を達成するために、本開示の第1の態様の撮像装置は、フォーカスレンズを含む撮像レンズと、撮像レンズを通過した光学像を撮像して得られた画像信号を出力する撮像部と、画像信号に応じた撮像画像を生成する画像生成部と、フォーカスレンズの位置を光軸方向に沿って移動させる移動部と、移動部がフォーカスレンズを移動させる場合に、撮像画像における測距領域の大きさを、フォーカスレンズの位置の移動に伴い変化するフォーカスレンズの像倍率の変化量に応じた大きさに設定する制御を行う制御部と、移動部によるフォーカスレンズの位置の移動に応じて変化する、制御部により大きさが設定された測距領域内の画像のコントラスト値がピークとなるフォーカスレンズの位置を検出する検出部と、を備え、移動部は、検出部が検出した位置にフォーカスレンズを移動させる。 In order to achieve the above object, an imaging device according to a first aspect of the present disclosure includes an imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, and An image generation unit that generates a captured image according to the image signal, a moving unit that moves the position of the focus lens along the optical axis direction, and a ranging area in the captured image when the moving unit moves the focus lens A control unit that performs control to set the size of the zoom lens to a size according to the amount of change in the image magnification of the focus lens that changes with the movement of the position of the focus lens, and according to the movement of the position of the focus lens by the moving unit A detecting unit that detects a position of a focus lens that changes a contrast value of an image within a ranging area whose size is set by the control unit, and the moving unit includes: Detector moves the focus lens position detection.
 第2の態様の撮像装置は、第1の態様の撮像装置において、制御部は、像倍率の変化量から、測距領域に含まれる被写体の画像の位置の変化量を導出し、導出した被写体の画像の位置の変化量に基づいて測距領域の大きさを決定する。 The imaging device according to the second aspect is the imaging device according to the first aspect, wherein the control unit derives the amount of change in the position of the image of the subject included in the ranging area from the amount of change in the image magnification, and the derived subject The size of the distance measurement area is determined based on the amount of change in the image position.
 第3の態様の撮像装置は、第2の態様の撮像装置において、被写体の画像の位置の変化量は、検出部がピークを検出する場合に移動部によりフォーカスレンズが移動するピーク検出範囲に応じた像倍率の変化量と、測距領域の位置とから導出する。 The imaging device according to the third aspect is the imaging device according to the second aspect, wherein the amount of change in the position of the image of the subject depends on the peak detection range in which the focus lens moves by the moving unit when the detecting unit detects a peak. It is derived from the amount of change in the image magnification and the position of the ranging area.
 第4の態様の撮像装置は、第1の態様から第3の態様のいずれか1態様の撮像装置において、制御部は、像倍率の変化量が大きくなるほど、測距領域の大きさを大きくする。 The imaging device according to the fourth aspect is the imaging device according to any one of the first aspect to the third aspect, and the control unit increases the size of the ranging area as the amount of change in image magnification increases. .
 第5の態様の撮像装置は、第1の態様から第4の態様のいずれか1態様の撮像装置において、制御部は、移動部によるフォーカスレンズの位置の移動に伴い像倍率が拡大する場合、測距領域の位置を撮像画像の外縁に向けた位置に変更し、像倍率が縮小する場合、測距領域の位置を撮像画像の中心に向けた位置に変更する。 In the imaging device according to the fifth aspect, in the imaging device according to any one of the first to fourth aspects, when the control unit increases the image magnification with the movement of the position of the focus lens by the moving unit, When the position of the distance measurement area is changed to a position toward the outer edge of the captured image and the image magnification is reduced, the position of the distance measurement area is changed to a position toward the center of the captured image.
 第6の態様の撮像装置は、第1の態様から第4の態様のいずれか1態様の撮像装置において、制御部は、測距領域に含まれる被写体の画像の位置の変化に伴って測距領域の位置を移動させる移動処理を行う。 The imaging device according to a sixth aspect is the imaging device according to any one of the first to fourth aspects, wherein the control unit performs distance measurement in accordance with a change in the position of the image of the subject included in the distance measurement area. A movement process for moving the position of the region is performed.
 第7の態様の撮像装置は、第6の態様の撮像装置において、移動処理の実行を指示する指示部をさらに備え、制御部は、指示部の指示に応じて移動処理を実行する場合、変化後の被写体の画像の位置の導出に要すると予想される処理予想時間における、測距領域に含まれる被写体の画像の位置の変化量を導出する。 The imaging device according to a seventh aspect further includes an instruction unit that instructs execution of movement processing in the imaging device according to the sixth aspect, and the control unit changes when the movement processing is executed according to an instruction from the instruction unit. The amount of change in the position of the image of the subject included in the distance measurement area during the expected processing time required to derive the position of the image of the subsequent subject is derived.
 第8の態様の撮像装置は、第6の態様の撮像装置において、移動処理の実行を指示する指示部をさらに備え、制御部は、指示部の指示に応じて移動処理を実行する場合、設定する測距領域の大きさを、像倍率の変化によらず予め定められた大きさのままとする。 The imaging device according to the eighth aspect further includes an instruction unit that instructs execution of the movement process in the imaging device according to the sixth aspect, and the control unit is set when the movement process is executed according to an instruction from the instruction unit. The size of the distance measurement area to be set is kept at a predetermined size regardless of the change in image magnification.
 第9の態様の撮像装置は、第8の態様の撮像装置において、指示部は、移動処理に要すると予想される処理予想時間、及び撮像部が撮像を行うフレームレートの少なくとも一方に応じて移動処理の実行を指示する。 In the imaging device according to the ninth aspect, in the imaging device according to the eighth aspect, the instruction unit moves according to at least one of an estimated processing time expected to be required for the movement process and a frame rate at which the imaging unit performs imaging. Instructs execution of processing.
 第10の態様の撮像装置は、第1の態様から第9の態様のいずれか1態様の撮像装置において、制御部は、検出部によるピークの検出の開始位置を基準位置とし、基準位置からの距離が各々異なる、光軸方向に沿った複数の範囲の各々に対応して導出した複数の測距領域の大きさを設定し、検出部は、複数の範囲のうち、移動部がフォーカスレンズの位置の移動を停止した位置が含まれる範囲に対応する大きさの測距領域について検出したピークの位置を出力する。 The imaging device according to a tenth aspect is the imaging device according to any one of the first aspect to the ninth aspect, in which the control unit uses a start position of peak detection by the detection unit as a reference position, and starts from the reference position. A distance is set for each of a plurality of distance measurement areas derived corresponding to each of a plurality of ranges along the optical axis direction, and the detection unit is configured such that the moving unit is a focus lens of the plurality of ranges. The position of the peak detected for the distance measurement area having a size corresponding to the range including the position where the movement of the position is stopped is output.
 第11の態様の撮像装置は、第1の態様から第10の態様のいずれか1態様の撮像装置において、撮像画像を表示する表示部をさらに備え、制御部は、表示部に表示された撮像画像に対して測距領域を表す情報を表示させる。 The imaging apparatus according to an eleventh aspect is the imaging apparatus according to any one of the first aspect to the tenth aspect, further including a display unit that displays a captured image, and the control unit is configured to capture an image displayed on the display unit. Information representing the distance measurement area is displayed on the image.
 第12の態様の撮像装置は、第11の態様の撮像装置において、制御部は、撮像画像に対して表示させる測距領域を表す情報における測距領域の大きさを、設定した測距領域の大きさに依らず、予め定められた大きさのままとする。 In the imaging device according to a twelfth aspect, in the imaging device according to the eleventh aspect, the control unit sets the distance measurement area size in the information representing the distance measurement area to be displayed with respect to the captured image. The predetermined size is maintained regardless of the size.
 第13の態様の撮像方法は、フォーカスレンズを含む撮像レンズと、撮像レンズを通過した光学像を撮像して得られる画像信号を出力する撮像部と、画像信号に応じた撮像画像を生成する画像生成部と、フォーカスレンズの位置を光軸方向に沿って移動させる移動部と、を備えた撮像装置が実行する撮像方法であって、移動部がフォーカスレンズを移動させる場合に、撮像画像における測距領域の大きさを、フォーカスレンズの位置の移動に伴い変化するフォーカスレンズの像倍率の変化量に応じた大きさに設定する制御を行い、移動部によるフォーカスレンズの位置の移動に応じて変化する、大きさが設定された測距領域内の画像のコントラスト値がピークとなるフォーカスレンズの位置を検出し、移動部により、検出した位置にフォーカスレンズを移動させる、処理を含む撮像方法。 An imaging method of a thirteenth aspect includes an imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, and an image that generates a captured image corresponding to the image signal An imaging method executed by an imaging apparatus including a generation unit and a moving unit that moves the position of the focus lens along the optical axis direction. When the moving unit moves the focus lens, measurement in the captured image is performed. Controls the distance area to be set according to the amount of change in focus lens image magnification that changes with the movement of the focus lens, and changes according to the movement of the focus lens by the moving unit. The position of the focus lens at which the contrast value of the image in the distance measurement area where the size is set reaches a peak is detected, and the moving part is moved to the detected position. Moving the Surenzu, imaging method including processing.
 第14の態様のプログラムは、フォーカスレンズを含む撮像レンズと、撮像レンズを通過した光学像を撮像して得られる画像信号を出力する撮像部と、画像信号に応じた撮像画像を生成する画像生成部と、フォーカスレンズの位置を光軸方向に沿って移動させる移動部と、を備えた撮像装置を制御するコンピュータに、移動部がフォーカスレンズを移動させる場合に、撮像画像における測距領域の大きさを、フォーカスレンズの位置の移動に伴い変化するフォーカスレンズの像倍率の変化量に応じた大きさに設定する制御を行い、移動部によるフォーカスレンズの位置の移動に応じて変化する、大きさが設定された測距領域内の画像のコントラスト値がピークとなるフォーカスレンズの位置を検出し、移動部により、検出した位置にフォーカスレンズを移動させる、処理を実行させるためのプログラムである。 A program according to a fourteenth aspect includes an imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, and an image generation that generates a captured image corresponding to the image signal. And a moving unit that moves the position of the focus lens along the optical axis direction when the moving unit moves the focus lens to a computer that controls the imaging apparatus. Is set to a size corresponding to the amount of change in the image magnification of the focus lens that changes with the movement of the focus lens position, and the size changes according to the movement of the focus lens position by the moving unit. The position of the focus lens at which the contrast value of the image within the distance measurement area for which is set to a peak is detected, and the focus position is detected by the moving unit. Moving the Surenzu, a program for executing a process.
 本開示によれば、測距領域内のコントラスト値の変化について、変化のピークの検出精度を向上させることができる。 According to the present disclosure, it is possible to improve the detection accuracy of the change peak with respect to the change of the contrast value in the ranging area.
実施形態の撮像装置の外観の一例を示す斜視図である。It is a perspective view showing an example of the appearance of the imaging device of an embodiment. 実施形態の撮像装置の背面側の外観の一例を示す背面図である。It is a rear view which shows an example of the external appearance of the back side of the imaging device of embodiment. 実施形態の撮像装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of the imaging device of embodiment. 実施形態の撮像装置に含まれる撮像レンズのハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of the imaging lens contained in the imaging device of embodiment. 実施形態のオートフォーカスを説明するためのグラフである。It is a graph for demonstrating the autofocus of embodiment. 撮像装置の撮像レンズに含まれるレンズ主制御部の二次記憶部の記憶内容の一例を示す概念図である。It is a conceptual diagram which shows an example of the memory content of the secondary memory | storage part of the lens main control part contained in the imaging lens of an imaging device. 実施形態の撮像装置本体に含まれる本体側主制御部の二次記憶部の記憶内容の一例を示す概念図である。It is a conceptual diagram which shows an example of the memory content of the secondary memory | storage part of the main body side main-control part contained in the imaging device main body of embodiment. 実施形態の撮像装置におけるフォーカスレンズの位置の移動と、像倍率の変化と、被写体の画像の位置の変化との関係の一例を説明するための図である。FIG. 10 is a diagram for explaining an example of a relationship among a movement of a focus lens position, a change in image magnification, and a change in the position of an image of a subject in the imaging apparatus according to the embodiment. 第1実施形態の撮像装置における測距領域の大きさの変化の一例を説明するための図である。It is a figure for demonstrating an example of the change of the magnitude | size of the ranging area in the imaging device of 1st Embodiment. 第1実施形態の撮像装置における測距領域の大きさの変化の他の例を説明するための図である。It is a figure for demonstrating the other example of the change of the magnitude | size of the ranging area in the imaging device of 1st Embodiment. 第1実施形態のピークサーチ処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the peak search process of 1st Embodiment. 第2実施形態の撮像装置における測距領域の中心の位置の移動の一例を説明するための図である。It is a figure for demonstrating an example of the movement of the center position of the ranging area in the imaging device of 2nd Embodiment. 第2実施形態の撮像装置における測距領域の中心の位置の移動の他の例を説明するための図である。It is a figure for demonstrating the other example of a movement of the center position of the ranging area in the imaging device of 2nd Embodiment. 第2実施形態のピークサーチ処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the peak search process of 2nd Embodiment. 第3実施形態の想定ピークサーチ範囲の例を説明するための図である。It is a figure for demonstrating the example of the assumption peak search range of 3rd Embodiment. 第3実施形態の測距領域の例を説明するための図である。It is a figure for demonstrating the example of the ranging area of 3rd Embodiment. 第3実施形態のピークサーチ処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the peak search process of 3rd Embodiment. 第4実施形態のピークサーチ処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the peak search process of 4th Embodiment. 第5実施形態のピークサーチ処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the peak search process of 5th Embodiment. 第5実施形態の処理予想時間と被写体の画像の位置の変化量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the process estimated time of 5th Embodiment, and the variation | change_quantity of the position of the image of a to-be-photographed object. 第6実施形態のピークサーチ処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the peak search process of 6th Embodiment. 第7実施形態のピークサーチ処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the peak search process of 7th Embodiment. 実施形態の測距領域を、撮像画像に重畳させて表示する例を示す図である。It is a figure which shows the example which superimposes and displays the ranging area of embodiment on a captured image. 実施形態のピークサーチプログラムが記憶された記憶媒体からピークサーチプログラムが撮像装置本体にインストールされる態様の一例を示す概念図である。It is a conceptual diagram which shows an example of the aspect by which a peak search program is installed in the imaging device main body from the storage medium in which the peak search program of embodiment was stored. 測距領域と被写体の画像との関係を説明するための図である。It is a figure for demonstrating the relationship between a ranging area and a to-be-photographed object image.
 以下、図面を参照して本開示の技術を実施するための形態例を詳細に説明する。 Hereinafter, exemplary embodiments for carrying out the technology of the present disclosure will be described in detail with reference to the drawings.
[第1実施形態]
 まず、本実施形態の撮像装置10の構成の一例について説明する。一例として図1に示すように、本実施形態の撮像装置10は、レンズ交換式のデジタルカメラであり、撮像装置本体12及び撮像レンズ14を含む。
[First Embodiment]
First, an example of the configuration of the imaging device 10 according to the present embodiment will be described. As an example, as illustrated in FIG. 1, an imaging apparatus 10 according to the present embodiment is a lens interchangeable digital camera, and includes an imaging apparatus body 12 and an imaging lens 14.
 撮像レンズ14は、撮像装置本体12に対して交換可能に装着される。撮像レンズ14の鏡筒には、マニュアルフォーカスモード時に使用されるフォーカスリング16が設けられている。撮像レンズ14は、レンズユニット18を含む。 The imaging lens 14 is attached to the imaging apparatus main body 12 in a replaceable manner. The lens barrel of the imaging lens 14 is provided with a focus ring 16 used in the manual focus mode. The imaging lens 14 includes a lens unit 18.
 レンズユニット18は、フォーカスレンズ84を含む複数のレンズが組み合わされた組み合わせレンズである。フォーカスレンズ84は、フォーカスリング16の手動による回転操作に伴って光軸L1方向に沿って移動する。フォーカスレンズ84は、被写体距離に応じた合焦位置で停止される。被写体を示す反射光である被写体光は、フォーカスレンズ84を含むレンズユニット18を透過し、後述の撮像素子22の受光面22A(図3参照)に結像される。なお、「被写体距離」とは、受光面22Aから被写体までの距離である。 The lens unit 18 is a combination lens in which a plurality of lenses including the focus lens 84 are combined. The focus lens 84 moves along the optical axis L <b> 1 along with the manual rotation operation of the focus ring 16. The focus lens 84 is stopped at a focus position corresponding to the subject distance. Subject light, which is reflected light indicating the subject, passes through the lens unit 18 including the focus lens 84 and forms an image on a light receiving surface 22A (see FIG. 3) of the image sensor 22 described later. The “subject distance” is the distance from the light receiving surface 22A to the subject.
 撮像装置本体12の上面には、ダイヤル24及びレリーズボタン26が設けられている。ダイヤル24は、撮像モードと再生モードとの切り替え等の各種設定の際に操作される。従って、撮像装置10では、ダイヤル24がユーザによって操作されることにより、動作モードとして撮像モードと再生モードとが選択的に設定される。 A dial 24 and a release button 26 are provided on the upper surface of the imaging apparatus main body 12. The dial 24 is operated in various settings such as switching between the imaging mode and the reproduction mode. Therefore, in the imaging apparatus 10, when the dial 24 is operated by the user, the imaging mode and the reproduction mode are selectively set as the operation mode.
 撮像装置10は、撮像系の動作モードとして、静止画撮像モードと動画撮像モードとを有する。静止画撮像モードは、撮像装置10により被写体が撮像されて得られた静止画像を記録する動作モードであり、動画撮像モードは、撮像装置10により被写体が撮像されて得られた動画像を記録する動作モードである。なお、本実施形態では、静止画像及び動画像を区別せず総称する場合は、単に「撮像画像」という。 The imaging device 10 has a still image capturing mode and a moving image capturing mode as operation modes of the imaging system. The still image imaging mode is an operation mode for recording a still image obtained by imaging a subject by the imaging device 10, and the moving image imaging mode is for recording a moving image obtained by imaging the subject by the imaging device 10. It is an operation mode. In the present embodiment, when a still image and a moving image are collectively referred to without distinction, they are simply referred to as “captured images”.
 レリーズボタン26は、撮像準備指示状態と撮像指示状態との2段階の押圧操作が検出可能に構成されている。撮像準備指示状態とは、例えば待機位置から中間位置(半押し位置)まで押下される状態を指し、撮像指示状態とは、中間位置を超えた最終押下位置(全押し位置)まで押下される状態を指す。なお、以下では、「待機位置から半押し位置まで押下される状態」を「半押し状態」といい、「待機位置から全押し位置まで押下される状態」を「全押し状態」という。 The release button 26 is configured to be able to detect a two-stage pressing operation of an imaging preparation instruction state and an imaging instruction state. The imaging preparation instruction state refers to, for example, a state where the image is pressed from the standby position to the intermediate position (half-pressed position), and the imaging instruction state refers to a state where the image is pressed to the final pressed position (full-pressed position) exceeding the intermediate position. Point to. In the following description, “a state where the button is pressed from the standby position to the half-pressed position” is referred to as “half-pressed state”, and “a state where the button is pressed from the standby position to the fully-pressed position” is referred to as “full-pressed state”.
 オートフォーカスモードでは、レリーズボタン26を半押し状態にすることにより撮像条件の調整が行われ、その後、引き続き全押し状態にすると本露光が行われる。つまり、レリーズボタン26を半押し状態にすることによりAE(Auto Exposure)機能が働いて露光量状態が設定された後、AF(Auto Focus)機能が働いて合焦制御され、レリーズボタン26を全押し状態にすると撮像が行われる。 In the auto focus mode, the imaging condition is adjusted by pressing the release button 26 halfway, and then the main exposure is performed when the release button 26 is fully pressed. That is, when the release button 26 is half-pressed, the AE (Auto-Exposure) function is activated and the exposure amount state is set, and then the AF (Auto-Focus) function is activated and the focus control is performed. When it is pushed, imaging is performed.
 一例として図2に示すように、撮像装置本体12の背面には、ディスプレイ28、十字キー30、MENU/OKキー32、BACK/DISPボタン34、ファインダ36、及びタッチパネル38が設けられている。 As an example, as shown in FIG. 2, a display 28, a cross key 30, a MENU / OK key 32, a BACK / DISP button 34, a finder 36, and a touch panel 38 are provided on the back surface of the imaging apparatus main body 12.
 ディスプレイ28は、例えば、LCD(Liquid Crystal Display)であり、撮像装置10により被写体が撮像されることで得られた画像及び文字等を表示する。本実施形態のディスプレイ28が、本開示の表示部の一例である。なお、本実施形態のディスプレイ28は、タッチパネル38と共に、タッチパネルディスプレイ29として構成されている。ディスプレイ28は、撮像モードにおけるライブビュー画像の表示に用いられる。ライブビュー画像は、スルー画像とも称され、撮像装置10の撮像素子22により被写体が連続フレームで撮像されて得られた連続フレーム画像である。なお、「撮像画像」という場合は、ライブビュー画像も含む。 The display 28 is, for example, an LCD (Liquid Crystal Display), and displays images, characters, and the like obtained by imaging the subject by the imaging device 10. The display 28 of this embodiment is an example of the display unit of the present disclosure. Note that the display 28 of the present embodiment is configured as a touch panel display 29 together with the touch panel 38. The display 28 is used for displaying a live view image in the imaging mode. The live view image is also referred to as a through image, and is a continuous frame image obtained by imaging a subject in a continuous frame by the imaging element 22 of the imaging device 10. Note that the “captured image” includes a live view image.
 ディスプレイ28は、静止画撮像の指示が与えられた場合に単一フレームで撮像されて得られた静止画像の表示にも用いられる。更に、ディスプレイ28は、再生モードにおける再生画像の表示及びメニュー画面等の表示にも用いられる。 The display 28 is also used to display a still image obtained by capturing a single frame when an instruction to capture a still image is given. Furthermore, the display 28 is also used for displaying a reproduction image and a menu screen in the reproduction mode.
 ディスプレイ28の表示領域の表面には、透過型のタッチパネル38が重ねられている。タッチパネル38は、例えば、指またはスタイラスペン等の指示体による接触を検知する。タッチパネル38は、タッチパネル38に対する指示体による接触の有無等の検知結果を示す検知結果情報を、予め定められた周期(例えば100ミリ秒)で既定の出力先(例えば、後述のCPU(Central Processing Unit)74、図3参照)に出力する。検知結果情報は、タッチパネル38が指示体による接触を検知した場合、タッチパネル38上の指示体による接触位置を特定可能な二次元座標(以下、「座標」という)を含み、タッチパネル38が指示体による接触を検知していない場合、座標を含まない。 A transmissive touch panel 38 is overlaid on the surface of the display area of the display 28. The touch panel 38 detects contact with an indicator such as a finger or a stylus pen. The touch panel 38 outputs detection result information indicating a detection result such as the presence or absence of contact with an indicator on the touch panel 38 at a predetermined output destination (for example, a CPU (Central Processing Unit described later) at a predetermined cycle (for example, 100 milliseconds). ) 74, see FIG. The detection result information includes two-dimensional coordinates (hereinafter referred to as “coordinates”) that can specify the contact position of the indicator on the touch panel 38 when the touch panel 38 detects the contact of the indicator. If no contact is detected, no coordinates are included.
 十字キー30は、1つまたは複数のメニューの選択、ズーム、またはコマ送り等の各種の指示に応じた指示内容信号を出力するマルチファンクションのキーとして機能する。MENU/OKキー32は、メニュー(MENU)ボタンとしての機能と、許可(OK)ボタンとしての機能とを兼備した操作キーである。メニュー(MENU)ボタンとしての機能は、ディスプレイ28の画面上に1つまたは複数のメニューを表示させる指示を行うための機能である。許可(OK)ボタンとしての機能は、選択内容の確定及び実行等を指示する機能である。BACK/DISPボタン34は、選択項目等、所望の対象の消去、指定内容の取消し、あるいは1つ前の操作状態に戻す場合等に使用される。 The cross key 30 functions as a multi-function key that outputs an instruction content signal corresponding to various instructions such as selection of one or a plurality of menus, zooming, or frame advancement. The MENU / OK key 32 is an operation key having both a function as a menu (MENU) button and a function as a permission (OK) button. The function as the menu (MENU) button is a function for giving an instruction to display one or a plurality of menus on the screen of the display 28. The function as the permission (OK) button is a function for instructing confirmation and execution of the selection contents. The BACK / DISP button 34 is used to delete a desired item such as a selection item, cancel a specified content, or return to the previous operation state.
 図3は、本実施形態の撮像装置10のハードウェア構成の一例を示すブロック図である。また、図4は、本実施形態の撮像装置10に含まれる撮像レンズ14のハードウェア構成の一例を示すブロック図である。 FIG. 3 is a block diagram illustrating an example of a hardware configuration of the imaging apparatus 10 according to the present embodiment. FIG. 4 is a block diagram illustrating an example of a hardware configuration of the imaging lens 14 included in the imaging device 10 of the present embodiment.
 図3に示すように、本実施形態の撮像装置本体12は、マウント13を備えており(図1も参照)、撮像レンズ14は、マウント15を備えている。撮像レンズ14は、マウント13にマウント15が結合されることにより、撮像装置本体12に交換可能に装着される。 As shown in FIG. 3, the imaging apparatus main body 12 of this embodiment includes a mount 13 (see also FIG. 1), and the imaging lens 14 includes a mount 15. The imaging lens 14 is replaceably attached to the imaging apparatus main body 12 by coupling the mount 15 to the mount 13.
 撮像レンズ14は、上述したレンズユニット18に加えて、絞り19、及び制御装置40を含む。制御装置40は、マウント13にマウント15が接続されることで、撮像装置本体12の外部I/F(Interface)72を介してCPU74と電気的に接続され、CPU74の指示に従って、撮像レンズ14の全体を制御する。 The imaging lens 14 includes a diaphragm 19 and a control device 40 in addition to the lens unit 18 described above. When the mount 15 is connected to the mount 13, the control device 40 is electrically connected to the CPU 74 via the external I / F (Interface) 72 of the imaging device body 12, and the imaging lens 14 is in accordance with instructions from the CPU 74. Control the whole.
 図4に示すように、本実施形態のレンズユニット18は、入射レンズ80、ズームレンズ82、及び上述したフォーカスレンズ84を含む。入射レンズ80、ズームレンズ82、及びフォーカスレンズ84は、光軸L1に沿って設けられており、絞り19側から光軸L1に沿ってフォーカスレンズ84、ズームレンズ82、及び入射レンズ80の順に配置されている。 As shown in FIG. 4, the lens unit 18 of the present embodiment includes an incident lens 80, a zoom lens 82, and the focus lens 84 described above. The incident lens 80, the zoom lens 82, and the focus lens 84 are provided along the optical axis L1. The focus lens 84, the zoom lens 82, and the incident lens 80 are arranged in this order from the stop 19 side along the optical axis L1. Has been.
 被写体光は、入射レンズ80に入射される。入射レンズ80は、被写体光を透過させ、ズームレンズ82に導く。本実施形態のズームレンズ82は、光軸L1に沿って移動可能な複数のレンズを含む。撮像レンズ14の焦点距離(以下、単に「焦点距離」という)は、ズームレンズ82の位置によって調節される。具体的には、ズームレンズ82は、十字キー30等を介したズーム操作により各レンズが光軸L1に沿って近づいたり、遠ざかったりすることによってレンズ間の光軸L1に沿った位置関係が調節され、焦点距離が調節される。ズームレンズ82は、入射レンズ80から入射された被写体光を透過させ、フォーカスレンズ84に導く。 The subject light is incident on the incident lens 80. The incident lens 80 transmits the subject light and guides it to the zoom lens 82. The zoom lens 82 of the present embodiment includes a plurality of lenses that can move along the optical axis L1. The focal length of the imaging lens 14 (hereinafter simply referred to as “focal length”) is adjusted by the position of the zoom lens 82. Specifically, the zoom lens 82 adjusts the positional relationship between the lenses along the optical axis L1 as each lens approaches or moves away along the optical axis L1 by a zoom operation via the cross key 30 or the like. And the focal length is adjusted. The zoom lens 82 transmits the subject light incident from the incident lens 80 and guides it to the focus lens 84.
 フォーカスレンズ84は、光軸L1に沿って移動可能なレンズであり、光軸L1に沿って移動することで撮像素子22の受光面22Aに形成される被写体像の合焦状態を変化させる。フォーカスレンズ84は、ズームレンズ82から入射された被写体光を透過させ、絞り19に導く。絞り19は、レンズユニット18を透過した被写体光の光量を調節し、被写体光を撮像装置本体12内に導く。 The focus lens 84 is a lens that can move along the optical axis L1, and changes the focus state of the subject image formed on the light receiving surface 22A of the image sensor 22 by moving along the optical axis L1. The focus lens 84 transmits the subject light incident from the zoom lens 82 and guides it to the diaphragm 19. The diaphragm 19 adjusts the amount of subject light transmitted through the lens unit 18 and guides the subject light into the imaging apparatus main body 12.
 撮像レンズ14の制御装置40は、レンズ側主制御部86、焦点距離センサ88、フォーカスレンズ駆動部90、レンズ位置センサ92、絞り駆動部94、及び外部I/F96を含む。 The control device 40 of the imaging lens 14 includes a lens side main control unit 86, a focal length sensor 88, a focus lens driving unit 90, a lens position sensor 92, an aperture driving unit 94, and an external I / F 96.
 レンズ側主制御部86は、CPU98、一次記憶部100、及び二次記憶部102を備えている。CPU98は、撮像レンズ14の全体を制御する。一次記憶部100は、各種プログラムの実行時のワークエリア等として用いられる揮発性のメモリである。一次記憶部100の一例としては、RAM(Random Access Memory)が挙げられる。二次記憶部102は、各種プログラム及び各種パラメータ等を予め記憶した不揮発性のメモリである。二次記憶部102の一例としては、EEPROM(Electrically Erasable Programmable Read-Only Memory)またはフラッシュメモリ等が挙げられる。 The lens side main control unit 86 includes a CPU 98, a primary storage unit 100, and a secondary storage unit 102. The CPU 98 controls the entire imaging lens 14. The primary storage unit 100 is a volatile memory used as a work area or the like when executing various programs. An example of the primary storage unit 100 is a RAM (Random Access Memory). The secondary storage unit 102 is a nonvolatile memory that stores various programs, various parameters, and the like in advance. As an example of the secondary storage unit 102, there is an EEPROM (Electrically Erasable Programmable Read-Only フ ラ ッ シ ュ Memory) or a flash memory.
 CPU98、一次記憶部100、及び二次記憶部102は、バスライン104に接続されている。また、焦点距離センサ88、フォーカスレンズ駆動部90、レンズ位置センサ92、絞り駆動部94、及び外部I/F96も、バスライン104に接続されている。 The CPU 98, the primary storage unit 100, and the secondary storage unit 102 are connected to the bus line 104. A focal length sensor 88, a focus lens driving unit 90, a lens position sensor 92, a diaphragm driving unit 94, and an external I / F 96 are also connected to the bus line 104.
 外部I/F96は、マウント15にマウント13が接続されることで、撮像装置本体12の外部I/F72と接続される。外部I/F96は、外部I/F72と協働して、CPU98と撮像装置本体12のCPU74との間の各種情報の送受信を司る。 The external I / F 96 is connected to the external I / F 72 of the imaging apparatus main body 12 by connecting the mount 13 to the mount 15. The external I / F 96 controls transmission / reception of various information between the CPU 98 and the CPU 74 of the imaging apparatus main body 12 in cooperation with the external I / F 72.
 焦点距離センサ88は、十字キー30等を介したズーム操作の量から、ズームレンズ82の状態を検出し、検出したズームレンズ82の状態を焦点距離に換算する。そして、焦点距離センサ88は、換算して得られた焦点距離を示す焦点距離情報をCPU98に出力する。 The focal length sensor 88 detects the state of the zoom lens 82 from the amount of zoom operation via the cross key 30 or the like, and converts the detected state of the zoom lens 82 into a focal length. Then, the focal length sensor 88 outputs focal length information indicating the focal length obtained by conversion to the CPU 98.
 フォーカスレンズ駆動部90は、フォーカスレンズ駆動用モータ(図示省略)を含む。本実施形態のフォーカスレンズ駆動部90は、本開示の移動部の一例である。フォーカスレンズ駆動部90は、受付デバイス62(図3参照)によって受け付けられた指示に応じて、CPU98の制御下で、駆動パルスに応じてフォーカスレンズ駆動用モータを作動させることで、フォーカスレンズ84を光軸L1に沿って移動させる。すなわち、フォーカスレンズ駆動部90は、CPU98からの指示に従って、フォーカスレンズ駆動用モータを作動させ、フォーカスレンズ駆動用モータの動力をフォーカスレンズ84に伝達することより、フォーカスレンズ84を光軸L1に沿って移動させる。レンズ位置センサ92は、フォーカスレンズ84の光軸L1に沿った位置(以下、単に「フォーカスレンズ84の位置」という)を検出し、検出した位置を示すレンズ位置情報をCPU98に出力する。 The focus lens driving unit 90 includes a focus lens driving motor (not shown). The focus lens driving unit 90 of the present embodiment is an example of a moving unit of the present disclosure. The focus lens driving unit 90 operates the focus lens driving motor in accordance with the drive pulse under the control of the CPU 98 in accordance with the instruction received by the receiving device 62 (see FIG. 3). Move along the optical axis L1. That is, the focus lens driving unit 90 operates the focus lens driving motor in accordance with an instruction from the CPU 98 and transmits the power of the focus lens driving motor to the focus lens 84, thereby moving the focus lens 84 along the optical axis L1. To move. The lens position sensor 92 detects a position along the optical axis L1 of the focus lens 84 (hereinafter simply referred to as “the position of the focus lens 84”), and outputs lens position information indicating the detected position to the CPU 98.
 絞り駆動部94は、絞り駆動用モータ(図示省略)を含む。絞り駆動部94は、受付デバイス62によって受け付けられた指示に応じて、CPU98の制御下で、絞り駆動用モータを作動させることで、絞り19の開口の大きさを調節する。 The aperture drive unit 94 includes an aperture drive motor (not shown). The aperture driving unit 94 adjusts the size of the aperture of the aperture 19 by operating the aperture driving motor under the control of the CPU 98 in accordance with the instruction received by the receiving device 62.
 また、本実施形態の撮像装置10は、所謂コントラストAF方式で合焦状態を制御するオートフォーカスを行う。具体的には、本実施形態の撮像装置10は、一例として図5に示すように、無限遠(INF:infinity)側と至近(MOD:minimum object distance)側との間の範囲内においてフォーカスレンズ84の位置を光軸L1に沿って移動させながら、複数の異なる位置で撮像画像のコントラスト値を導出する。そして、撮像装置10のフォーカスレンズ駆動部90は、導出したコントラスト値がピーク値となる位置にフォーカスレンズ84を移動させることによって、合焦状態の制御を行う。本実施形態では、コントラスト値として、撮像画像における測距領域(詳細後述)内の画像のコントラスト値を適用している。本実施形態では、測距領域の大きさが、撮像装置本体12の本体側主制御部46(CPU74)により、フォーカスレンズ84の位置の移動に伴い変化するフォーカスレンズ84の像倍率の変化量に応じた大きさに制御される(詳細後述)。 In addition, the imaging apparatus 10 of the present embodiment performs autofocus for controlling the in-focus state by a so-called contrast AF method. Specifically, as shown in FIG. 5 as an example, the imaging apparatus 10 of the present embodiment has a focus lens within a range between an infinity (INF) side and a close (MOD: minimumminiobject) side. The contrast value of the captured image is derived at a plurality of different positions while moving the position 84 along the optical axis L1. Then, the focus lens driving unit 90 of the imaging device 10 controls the in-focus state by moving the focus lens 84 to a position where the derived contrast value becomes a peak value. In the present embodiment, the contrast value of the image in the distance measurement area (details will be described later) in the captured image is applied as the contrast value. In the present embodiment, the size of the distance measurement area is changed to the amount of change in the image magnification of the focus lens 84 that changes with the movement of the position of the focus lens 84 by the main body side main control unit 46 (CPU 74) of the imaging apparatus main body 12. It is controlled to a corresponding size (details will be described later).
 本実施形態では、フォーカスレンズ84の像倍率を表す像倍率データ110が、一例として図6に示すように、レンズ側主制御部86の二次記憶部102に、予め記憶されている。フォーカスレンズ84の像倍率は、フォーカスレンズの種類等によっても異なり、また、フォーカスレンズ84の位置に応じて異なる場合がある。このようにフォーカスレンズ84の位置に応じて像倍率が異なる場合は、像倍率データ110は、フォーカスレンズ84の位置と像倍率との対応関係を表す情報となる。なお、フォーカスレンズ84の種類によっては、フォーカスレンズ84の位置によらず、像倍率が一定で変化しないものがある。この場合、像倍率データ110は、フォーカスレンズ84の像倍率(一定値)を表す情報となる。 In this embodiment, image magnification data 110 representing the image magnification of the focus lens 84 is stored in advance in the secondary storage unit 102 of the lens side main control unit 86 as shown in FIG. 6 as an example. The image magnification of the focus lens 84 varies depending on the type of the focus lens and the like, and may vary depending on the position of the focus lens 84. As described above, when the image magnification differs depending on the position of the focus lens 84, the image magnification data 110 is information indicating the correspondence between the position of the focus lens 84 and the image magnification. Depending on the type of the focus lens 84, there is a type in which the image magnification is constant and does not change regardless of the position of the focus lens 84. In this case, the image magnification data 110 is information representing the image magnification (a constant value) of the focus lens 84.
 一方、図3に示すように本実施形態の撮像装置本体12は、撮像素子22、本体側主制御部46、撮像素子ドライバ50、画像信号処理回路52、画像メモリ54、画像処理部56、及び表示制御部58を含む。また、撮像装置本体12は、受付I/F60、受付デバイス62、メディアI/F64、及び外部I/F72を含む。 On the other hand, as shown in FIG. 3, the imaging apparatus main body 12 of the present embodiment includes an imaging device 22, a main body side main control unit 46, an imaging device driver 50, an image signal processing circuit 52, an image memory 54, an image processing unit 56, and A display control unit 58 is included. The imaging apparatus main body 12 includes a reception I / F 60, a reception device 62, a media I / F 64, and an external I / F 72.
 本体側主制御部46は、本開示の技術のコンピュータの一例であり、CPU74、一次記憶部76、及び二次記憶部78を備えている。CPU74は、撮像装置10の全体を制御する。一次記憶部76は、各種プログラムの実行におけるワークエリア等として用いられる揮発性のメモリである。一次記憶部76の一例としては、RAM等が挙げられる。本実施形態の二次記憶部78は、図7に示すように、ピークサーチプログラム79を含む各種プログラム、及び各種パラメータ等を予め記憶した不揮発性のメモリである。二次記憶部78の一例としては、EEPROMまたはフラッシュメモリ等が挙げられる。 The main body side main control unit 46 is an example of a computer according to the technology of the present disclosure, and includes a CPU 74, a primary storage unit 76, and a secondary storage unit 78. The CPU 74 controls the entire imaging apparatus 10. The primary storage unit 76 is a volatile memory used as a work area or the like for executing various programs. An example of the primary storage unit 76 is a RAM or the like. As shown in FIG. 7, the secondary storage unit 78 of the present embodiment is a non-volatile memory in which various programs including a peak search program 79, various parameters, and the like are stored in advance. An example of the secondary storage unit 78 is an EEPROM or a flash memory.
 CPU74は、二次記憶部78からピークサーチプログラム79を読み出して一次記憶部76に展開し、展開したピークサーチプログラム79に従って、詳細を後述するピークサーチ処理を実行する。換言すると、CPU74は、ピークサーチプログラム79を実行することで、本開示の検出部及び制御部として動作する。本実施形態のピークサーチプログラム79が、本開示のプログラムの一例である。 The CPU 74 reads the peak search program 79 from the secondary storage unit 78 and develops it in the primary storage unit 76, and executes peak search processing, which will be described in detail later, in accordance with the developed peak search program 79. In other words, the CPU 74 operates as the detection unit and the control unit of the present disclosure by executing the peak search program 79. The peak search program 79 of the present embodiment is an example of the program of the present disclosure.
 CPU74、一次記憶部76、及び二次記憶部78は、バスライン81に接続されている。また、撮像素子ドライバ50、及び画像信号処理回路52も、バスライン81に接続されている。また、画像メモリ54、画像処理部56、表示制御部58、受付I/F60、メディアI/F64、及び外部I/F72も、バスライン81に接続されている。 The CPU 74, the primary storage unit 76, and the secondary storage unit 78 are connected to the bus line 81. The image sensor driver 50 and the image signal processing circuit 52 are also connected to the bus line 81. Further, the image memory 54, the image processing unit 56, the display control unit 58, the reception I / F 60, the media I / F 64, and the external I / F 72 are also connected to the bus line 81.
 撮像素子ドライバ50は、撮像素子22に接続されている。撮像素子ドライバ50は、撮像素子22の動作を制御する。本実施形態の撮像素子22及び撮像素子ドライバ50が本開示の撮像部の一例である。本実施形態では、撮像素子22として、CCD(Charge Coupled Device)イメージセンサを用いている。ただし、本開示の技術はこれに限定されるものではなく、撮像素子22として、例えば、CMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサ等の他のイメージセンサを用いてもよい。 The image sensor driver 50 is connected to the image sensor 22. The image sensor driver 50 controls the operation of the image sensor 22. The image sensor 22 and the image sensor driver 50 of the present embodiment are an example of the image capturing unit of the present disclosure. In this embodiment, a CCD (Charge-Coupled Device) image sensor is used as the image sensor 22. However, the technology of the present disclosure is not limited to this, and other image sensors such as a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor may be used as the image sensor 22.
 画像信号処理回路52は、水平同期信号に応じて撮像素子22から1フレーム分の画像信号を画素毎に読み出す。画像信号処理回路52は、読み出した画像信号に対して、相関二重サンプリング処理、自動利得調整、及びA/D(Analog/Digital)変換等の各種処理を行う。画像信号処理回路52は、画像信号に対して各種処理を行うことでデジタル化した画像信号を、CPU74から供給されるクロック信号で規定される特定のフレームレート(例えば、数十フレーム/秒)で1フレーム毎に画像メモリ54に出力する。画像メモリ54は、画像信号処理回路52から入力された画像信号を一時的に保持する。 The image signal processing circuit 52 reads an image signal for one frame from the image sensor 22 for each pixel in accordance with the horizontal synchronization signal. The image signal processing circuit 52 performs various processes such as correlated double sampling processing, automatic gain adjustment, and A / D (Analog / Digital) conversion on the read image signal. The image signal processing circuit 52 converts the image signal digitized by performing various processes on the image signal at a specific frame rate (for example, several tens of frames / second) defined by the clock signal supplied from the CPU 74. Each frame is output to the image memory 54. The image memory 54 temporarily holds the image signal input from the image signal processing circuit 52.
 画像処理部56は、画像メモリ54から特定のフレームレートで1フレーム毎に画像信号を取得し、取得した画像信号に対して、ガンマ補正、輝度変換、色差変換、及び圧縮処理等の各種処理を行う。また、画像処理部56は、各種処理を行って得た画像信号を、特定のフレームレートで1フレーム毎に表示制御部58に出力する。更に、画像処理部56は、各種処理を行って得た画像信号を、CPU74の要求に応じて、CPU74に出力する。本実施形態の画像処理部56が、本開示の画像生成部の一例である。 The image processing unit 56 acquires an image signal for each frame from the image memory 54 at a specific frame rate, and performs various processes such as gamma correction, luminance conversion, color difference conversion, and compression processing on the acquired image signal. Do. Further, the image processing unit 56 outputs an image signal obtained by performing various processes to the display control unit 58 for each frame at a specific frame rate. Further, the image processing unit 56 outputs an image signal obtained by performing various processes to the CPU 74 in response to a request from the CPU 74. The image processing unit 56 of the present embodiment is an example of an image generation unit of the present disclosure.
 表示制御部58は、タッチパネルディスプレイ29のディスプレイ28、及びファインダ36に接続されており、CPU74の制御下で、ディスプレイ28、及びファインダ36を制御する。また、表示制御部58は、画像処理部56から入力された画像信号を、1フレーム毎に特定のフレームレートでディスプレイ28、及びファインダ36に出力する。 The display control unit 58 is connected to the display 28 and the finder 36 of the touch panel display 29, and controls the display 28 and the finder 36 under the control of the CPU 74. The display control unit 58 outputs the image signal input from the image processing unit 56 to the display 28 and the finder 36 at a specific frame rate for each frame.
 ディスプレイ28は、表示制御部58から特定のフレームレートで入力された画像信号により示される画像をライブビュー画像として表示する。また、ディスプレイ28は、単一フレームで撮像されて得られた単一フレーム画像である静止画像も表示する。なお、ディスプレイ28には、ライブビュー画像の他に、再生画像及びメニュー画面等が表示される。ファインダ36は、いわゆる電子ビューファインダであり、ディスプレイ28と同様に、表示制御部58から特定のフレームレートで入力された画像信号により示される画像をライブビュー画像として表示する。 The display 28 displays an image indicated by an image signal input at a specific frame rate from the display control unit 58 as a live view image. The display 28 also displays a still image that is a single frame image obtained by imaging in a single frame. In addition to the live view image, a playback image and a menu screen are displayed on the display 28. The finder 36 is a so-called electronic view finder, and displays an image indicated by an image signal input at a specific frame rate from the display control unit 58 as a live view image, like the display 28.
 受付デバイス62は、ダイヤル24、レリーズボタン26、十字キー30、MENU/OKキー32、及びBACK/DISPボタン34等を有しており、ユーザによる各種指示を受け付ける。 The receiving device 62 includes a dial 24, a release button 26, a cross key 30, a MENU / OK key 32, a BACK / DISP button 34, and the like, and receives various instructions from the user.
 タッチパネルディスプレイ29のタッチパネル38及び受付デバイス62は、受付I/F60に接続されており、受け付けた指示の内容を示す指示内容信号を受付I/F60に出力する。受付I/F60は、入力された指示内容信号をCPU74に出力する。CPU74は、受付I/F60から入力された指示内容信号に応じた処理を実行する。 The touch panel 38 and the reception device 62 of the touch panel display 29 are connected to the reception I / F 60 and output an instruction content signal indicating the content of the received instruction to the reception I / F 60. The reception I / F 60 outputs the input instruction content signal to the CPU 74. The CPU 74 executes a process according to the instruction content signal input from the reception I / F 60.
 メディアI/F64には、メモリカード66が着脱可能に接続されている。メディアI/F64は、CPU74の制御下で、メモリカード66に対する画像ファイルの記録及び読み出しを行う。 A memory card 66 is detachably connected to the media I / F 64. The media I / F 64 records and reads an image file to and from the memory card 66 under the control of the CPU 74.
 メディアI/F64によってメモリカード66から読み出された画像ファイルは、CPU74の制御下で、画像処理部56によって伸長処理が施されてディスプレイ28に再生画像として表示される。 The image file read from the memory card 66 by the media I / F 64 is decompressed by the image processing unit 56 under the control of the CPU 74 and displayed on the display 28 as a reproduced image.
 撮像装置10では、受付デバイス62で受け付けられた指示に応じて、動作モードが切り替えられる。例えば、撮像装置10では、撮像モード下において、受付デバイス62で受け付けられた指示に応じて、静止画撮像モードと動画撮像モードとが選択的に設定される。静止画撮像モード下では、静止画像ファイルがメモリカード66に記録可能になり、動画撮像モード下では、動画像ファイルがメモリカード66に記録可能になる。 In the imaging apparatus 10, the operation mode is switched according to the instruction received by the receiving device 62. For example, in the imaging apparatus 10, the still image capturing mode and the moving image capturing mode are selectively set in accordance with an instruction received by the receiving device 62 in the imaging mode. Under the still image capturing mode, a still image file can be recorded on the memory card 66. Under the moving image capturing mode, a moving image file can be recorded on the memory card 66.
 CPU74は、静止画撮像モード下でレリーズボタン26によって静止画像の撮像の指示が受け付けられた場合、撮像素子ドライバ50を制御することで、撮像素子22に1フレーム分の本露光を行わせる。画像処理部56は、CPU74の制御下で、1フレーム分の露光が行われることによって得られた画像信号を取得し、取得した画像信号に対して圧縮処理を施して特定の静止画像用フォーマットの静止画像ファイルを生成する。なお、特定の静止画像用フォーマットは、例えば、JPEG(Joint Photographic Experts Group)形式のフォーマットであってもよい。静止画像ファイルは、CPU74の制御下で、メディアI/F64によってメモリカード66に記録される。 The CPU 74 causes the image sensor 22 to perform main exposure for one frame by controlling the image sensor driver 50 when an instruction to capture a still image is received by the release button 26 in the still image capturing mode. The image processing unit 56 acquires an image signal obtained by performing exposure for one frame under the control of the CPU 74, performs compression processing on the acquired image signal, and stores a specific still image format. Generate a still image file. The specific still image format may be, for example, a JPEG (JointoPhotographic Experts Group) format. The still image file is recorded on the memory card 66 by the media I / F 64 under the control of the CPU 74.
 画像処理部56は、動画撮像モード下でレリーズボタン26によって動画像の撮像の指示が受け付けられた場合、ライブビュー画像用の画像信号に対して圧縮処理を施して特定の動画像用フォーマットの動画像ファイルを生成する。なお、特定の動画像用フォーマットとは、例えば、MPEG(Moving Picture Experts Group)形式のフォーマットであってもよい。動画像ファイルは、CPU74の制御下で、メディアI/F64によってメモリカード66に記録される。 When an instruction for capturing a moving image is received by the release button 26 in the moving image capturing mode, the image processing unit 56 performs a compression process on the image signal for the live view image to generate a moving image in a specific moving image format. Create an image file. The specific moving image format may be, for example, an MPEG (Moving / Picture / Experts / Group) format. The moving image file is recorded on the memory card 66 by the media I / F 64 under the control of the CPU 74.
 次に、本実施形態の撮像装置10の作用として、上述したオートフォーカスにおけるピークサーチ処理を実行する場合の撮像装置10の作用について説明する。 Next, as the operation of the imaging apparatus 10 of the present embodiment, the operation of the imaging apparatus 10 when executing the above-described peak search process in autofocus will be described.
 フォーカスレンズ84を無限遠側と至近側との間の範囲で移動させる場合、フォーカスレンズ84の位置の変化に伴ってフォーカスレンズ84の像倍率が変化する場合がある。一例として、フォーカスレンズ84が無限遠側から至近側に向けて移動すると、フォーカスレンズ84の像倍率が拡大し、また、フォーカスレンズ84が至近側から無限遠側に向けて移動すると、フォーカスレンズ84の像倍率が縮小する場合がある。この場合、図8に示すように、フォーカスレンズ84の像倍率がフォーカスレンズ84の位置に応じて変化すると、撮像画像150(150A、150B、及び150C)に含まれる被写体の画像154(154A、154B及び、154C)の位置及び大きさが変化する場合がある。なお、以下では、撮像画像150A、150B、及び150C、被写体の画像154A、154B及び、154C等について総称する場合は、個々を示す符号(A~C)の記載を省略する場合がある。また、以下では、被写体の画像154の位置を、単に「像位置」という場合がある。 When the focus lens 84 is moved in the range between the infinity side and the close side, the image magnification of the focus lens 84 may change as the position of the focus lens 84 changes. As an example, when the focus lens 84 moves from the infinity side to the close side, the image magnification of the focus lens 84 increases, and when the focus lens 84 moves from the close side to the infinity side, the focus lens 84. Image magnification may be reduced. In this case, as shown in FIG. 8, when the image magnification of the focus lens 84 changes according to the position of the focus lens 84, the subject image 154 (154A, 154B) included in the captured image 150 (150A, 150B, and 150C). And the position and size of 154C) may change. Hereinafter, when the captured images 150A, 150B, and 150C, the subject images 154A, 154B, and 154C are collectively referred to, the reference numerals (A to C) indicating the individual may be omitted. In the following description, the position of the subject image 154 may be simply referred to as “image position”.
 図8に示した例では、被写体の画像154の大きさは、無限遠側に対応する撮像画像150Aの被写体の画像154Aが最も大きく、無限遠側と至近側との間の位置Xに対応する撮像画像150Bの被写体の画像154B、至近側に対応する撮像画像150Cの被写体の画像154Cの順で小さくなる。また、被写体の画像154の位置は、撮像画像150Aの被写体の画像154Aが最も撮像画像150の外縁に近く、撮像画像150Bの被写体の画像154B、撮像画像150Cの154Cの順で撮像画像150の中心151に近付く。すなわち、フォーカスレンズ84が無限遠側に近付くほど、被写体の画像154の位置は、撮像画像150の中心151から外縁に向かう方向に移動する傾向がある。また、フォーカスレンズ84が無限遠側に近付くほど、被写体の画像154の画像の大きさは、大きくなる傾向がある。逆を言えば、被写体の画像154は、フォーカスレンズ84が至近側に近付くほど、撮像画像150の外縁から中心151に向けた位置に移動し、画像が小さくなる傾向がある。 In the example shown in FIG. 8, the size of the subject image 154 is the largest in the subject image 154A of the captured image 150A corresponding to the infinity side, and corresponds to the position X between the infinity side and the closest side. The subject image 154B of the captured image 150B decreases in the order of the subject image 154C of the captured image 150C corresponding to the closest side. Further, the position of the subject image 154 is such that the subject image 154A of the captured image 150A is closest to the outer edge of the captured image 150, and the subject image 154B of the captured image 150B and the center of the captured image 150 are 154C of the captured image 150C. It approaches 151. That is, as the focus lens 84 approaches the infinity side, the position of the subject image 154 tends to move in the direction from the center 151 of the captured image 150 toward the outer edge. Further, as the focus lens 84 approaches the infinity side, the size of the subject image 154 tends to increase. In other words, the subject image 154 moves to a position from the outer edge of the captured image 150 toward the center 151 as the focus lens 84 approaches, and the image tends to be smaller.
 本実施形態の撮像装置10と異なり、フォーカスレンズ84の位置の変化、すなわち像倍率の変化によらず、測距領域152の大きさを設定した場合の一例を図25に示す。図25に示した例では、フォーカスレンズ84が無限遠側の場合では、測距領域152内に、被写体の画像154が含まれているが、フォーカスレンズ84が至近側に近付くほど、被写体の画像154は測距領域152外にずれていってしまう。この被写体の画像154が測距領域152外にずれた状態で、測距領域152の画像によりピークサーチを行うと、被写体の画像154に合焦させるための適切なピークサーチが行われない懸念がある。 FIG. 25 shows an example in which the size of the ranging area 152 is set regardless of the change in the position of the focus lens 84, that is, the change in the image magnification, unlike the imaging apparatus 10 of the present embodiment. In the example shown in FIG. 25, when the focus lens 84 is on the infinity side, the subject image 154 is included in the distance measurement area 152. However, as the focus lens 84 approaches the closest side, the subject image is increased. 154 is shifted out of the distance measurement area 152. If a peak search is performed using the image in the distance measurement area 152 in a state where the subject image 154 is shifted out of the distance measurement area 152, there is a concern that an appropriate peak search for focusing on the object image 154 may not be performed. is there.
 そこで、本実施形態の撮像装置10では、一例として、図9及び図10に示すように、CPU74は、フォーカスレンズ84の像倍率の変化量に応じて、ピーク検出動作を行う前に、測距領域152の大きさを、予め一つ設定する制御を行う。ここで、ピーク検出動作は、コントラスト値のピークを検出する動作である。このピーク検出動作中にフォーカスレンズ84の位置が移動することにより、フォーカスレンズ84の像倍率が変化する。なお、図9では、フォーカスレンズ84の位置を無限遠側から至近側に近付ける場合を示しており、フォーカスレンズ84の位置を至近側に近付けるに連れて、CPU74が大きな測距領域152を設定する場合を表している。本実施形態の撮像装置10では、フォーカスレンズ84の位置を無限遠側から位置Xまで移動させる場合、ピーク検出動作の前に、予め測距領域152Bに対応する大きさを一つ設定する。また、本実施形態の撮像装置10では、フォーカスレンズ84の位置を無限遠側から至近側まで移動させる場合、ピーク検出動作の前に、予め測距領域152Cに対応する大きさを一つ設定する。図9に示した例では、撮像画像150Aの測距領域152Aの大きさが最も小さく、撮像画像150Cの測距領域152Cの大きさが最も大きい。 Therefore, in the imaging apparatus 10 of the present embodiment, as an example, as illustrated in FIGS. 9 and 10, the CPU 74 performs distance measurement before performing the peak detection operation according to the amount of change in the image magnification of the focus lens 84. Control is performed to set one size of the region 152 in advance. Here, the peak detection operation is an operation for detecting the peak of the contrast value. When the position of the focus lens 84 moves during the peak detection operation, the image magnification of the focus lens 84 changes. FIG. 9 shows a case where the position of the focus lens 84 is moved from the infinity side to the close side, and the CPU 74 sets a large distance measurement area 152 as the position of the focus lens 84 is moved closer to the close side. Represents the case. In the imaging apparatus 10 of this embodiment, when the position of the focus lens 84 is moved from the infinity side to the position X, one size corresponding to the distance measurement area 152B is set in advance before the peak detection operation. In the imaging apparatus 10 of the present embodiment, when the position of the focus lens 84 is moved from the infinity side to the close side, one size corresponding to the distance measurement region 152C is set in advance before the peak detection operation. . In the example shown in FIG. 9, the distance measurement area 152A of the captured image 150A is the smallest, and the distance measurement area 152C of the captured image 150C is the largest.
 また、図10では、フォーカスレンズ84の位置を至近側から無限遠側に近付ける場合を示しており、フォーカスレンズ84の位置を無限遠側に近付けるに連れて、CPU74が大きな測距領域152を設定する場合を表している。本実施形態の撮像装置10では、フォーカスレンズ84の位置を至近側から位置Xまで移動させる場合、ピーク検出動作の前に、予め測距領域152Bに対応する大きさを一つ設定する。また、本実施形態の撮像装置10では、フォーカスレンズ84の位置を至近側から無限遠側まで移動させる場合、ピーク検出動作の前に、予め測距領域152Aに対応する大きさを一つ設定する。図10に示した例では、撮像画像150Cの測距領域152Cの大きさが最も小さく、撮像画像150Aの測距領域152Aの大きさが最も大きい。すなわち、本実施形態では、測距領域152の大きさは、フォーカスレンズ84の移動方向に依らず、像倍率の変化量に応じて大きくなる。本実施形態の撮像装置10では、このように測距領域152の大きさを設定することで、測距領域152内に被写体の画像154が十分に含まれる状態としている。 FIG. 10 shows a case where the position of the focus lens 84 is moved from the closest side to the infinity side, and the CPU 74 sets a large distance measurement area 152 as the position of the focus lens 84 is moved closer to the infinity side. It represents the case. In the imaging apparatus 10 of this embodiment, when the position of the focus lens 84 is moved from the closest side to the position X, one size corresponding to the distance measurement area 152B is set in advance before the peak detection operation. In the imaging apparatus 10 of the present embodiment, when the position of the focus lens 84 is moved from the closest side to the infinity side, one size corresponding to the ranging area 152A is set in advance before the peak detection operation. . In the example shown in FIG. 10, the distance measurement area 152C of the captured image 150C is the smallest, and the distance measurement area 152A of the captured image 150A is the largest. In other words, in the present embodiment, the size of the distance measurement area 152 increases in accordance with the amount of change in image magnification, regardless of the moving direction of the focus lens 84. In the imaging apparatus 10 of the present embodiment, the size of the distance measurement area 152 is set in this manner, so that the subject image 154 is sufficiently included in the distance measurement area 152.
 なお、本実施形態では、測距領域152の大きさを変更しても、測距領域152の中心位置は同一の位置(変更しない)としている。 In this embodiment, even if the size of the distance measurement area 152 is changed, the center position of the distance measurement area 152 is the same position (not changed).
 次に、本実施形態のCPU74により実行される、ピークサーチ処理について説明する。図11には、本実施形態の撮像装置10のCPU74により実行されるピークサーチ処理の一例のフローチャートを示す。本実施形態では、ユーザがレリーズボタン26を半押し状態にした場合に、撮像装置10のCPU74が、二次記憶部78からピークサーチプログラム79を読み出して一次記憶部76に展開して実行することにより、図11に一例を示した、ピークサーチ処理を実行する。 Next, peak search processing executed by the CPU 74 of this embodiment will be described. FIG. 11 shows a flowchart of an example of the peak search process executed by the CPU 74 of the imaging apparatus 10 of the present embodiment. In the present embodiment, when the user presses the release button 26 halfway, the CPU 74 of the imaging apparatus 10 reads the peak search program 79 from the secondary storage unit 78, expands it in the primary storage unit 76, and executes it. Thus, the peak search process shown as an example in FIG. 11 is executed.
 図11のステップS100で、CPU74は、撮像レンズ14が撮像装置本体12に、撮像レンズ14の制御装置40と通信が可能な状態に接続されているか否かを判定する。本実施形態では具体的には、CPU74は、マウント13にマウント15が接続されているか否かを判定する。撮像レンズ14が撮像装置本体12に接続されていない場合、ステップS100の判定が否定判定となり、本ピークサーチ処理を終了する。一方、撮像レンズ14が撮像装置本体12に接続されている場合、ステップS100の判定が肯定判定となり、ステップS102へ移行する。 11, the CPU 74 determines whether or not the imaging lens 14 is connected to the imaging apparatus main body 12 in a state where communication with the control device 40 of the imaging lens 14 is possible. Specifically, in the present embodiment, the CPU 74 determines whether or not the mount 15 is connected to the mount 13. If the imaging lens 14 is not connected to the imaging apparatus main body 12, the determination in step S100 is negative and the peak search process is terminated. On the other hand, when the imaging lens 14 is connected to the imaging apparatus main body 12, the determination in step S100 is affirmative, and the process proceeds to step S102.
 ステップS102で、CPU74は、像倍率データ110を取得する、上述したように、像倍率データ110は、撮像レンズ14の制御装置40が有する二次記憶部102に記憶されている。そのため、CPU74は、制御装置40のCPU98によって二次記憶部102から読み出された像倍率データ110を、外部I/F72及び外部I/F96を介して取得する。 In step S102, the CPU 74 acquires the image magnification data 110. As described above, the image magnification data 110 is stored in the secondary storage unit 102 included in the control device 40 of the imaging lens 14. Therefore, the CPU 74 acquires the image magnification data 110 read from the secondary storage unit 102 by the CPU 98 of the control device 40 via the external I / F 72 and the external I / F 96.
 次のステップS104で、CPU74は、像倍率の変化量が、所定値以下であるか否かを判定する。具体的には、本実施形態のCPU74は、まず、像倍率データ110に基づいて、コントラスト値のピークを検出するためにフォーカスレンズ84を移動させる範囲(以下、「ピークサーチ範囲」という)における像倍率の変化量を導出する。本実施形態では、ピークサーチ範囲におけるピークの検出を開始する位置(開始位置)に対応する像倍率と、ピークの検出を終了する位置(終了位置)に対応する像倍率との変化量を導出する。さらに、CPU74は、導出した像倍率の変化量が所定値以下であるか否かを判定する。像倍率の変化量が小さいほど、フォーカスレンズ84の位置の移動に伴う被写体の画像154の位置の変化が少ない。そのため、本実施形態では、被写体の画像154の位置の変化量が小さい場合、例えば、測距領域152の大きさに比して被写体の画像154の位置の変化量が小さい場合、測距領域152の大きさを変更せず、通常のサイズ(詳細後述)を設定した状態としている。本実施形態では、このように被写体の画像154の位置の変化量が小さい場合に対応する像倍率の変化量を、所定値として得ておく。 In the next step S104, the CPU 74 determines whether or not the change amount of the image magnification is equal to or less than a predetermined value. Specifically, the CPU 74 of the present embodiment first, based on the image magnification data 110, an image in a range in which the focus lens 84 is moved in order to detect a contrast value peak (hereinafter referred to as “peak search range”). The amount of change in magnification is derived. In the present embodiment, the amount of change between the image magnification corresponding to the position (start position) where peak detection is started in the peak search range and the image magnification corresponding to the position (end position) where peak detection is ended is derived. . Further, the CPU 74 determines whether or not the derived change amount of the image magnification is equal to or less than a predetermined value. The smaller the change amount of the image magnification, the smaller the change in the position of the subject image 154 that accompanies the movement of the position of the focus lens 84. Therefore, in this embodiment, when the amount of change in the position of the subject image 154 is small, for example, when the amount of change in the position of the subject image 154 is small compared to the size of the distance measurement region 152, the distance measurement region 152. The normal size (detailed later) is set without changing the size of. In the present embodiment, the change amount of the image magnification corresponding to the case where the change amount of the position of the subject image 154 is small is obtained as a predetermined value.
 像倍率の変化量が所定値以下である場合、ステップS104の判定が肯定判定となり、ステップS106へ移行する。ステップS106で、CPU74は、上述したように、測距領域152の大きさの設定を、通常サイズのままとした後、ステップS112へ移行する。なお、通常サイズとは、像倍率によらず、予め定められた大きさであり、通常の場合(後述するステップS110が行われない場合)、及び/または、フォーカスレンズ84が移動しても像倍率が変化しない場合に適用される測距領域152の大きさ(サイズ)である。 If the change amount of the image magnification is equal to or less than the predetermined value, the determination in step S104 is affirmative, and the process proceeds to step S106. In step S106, as described above, the CPU 74 sets the size of the distance measurement area 152 to the normal size, and then proceeds to step S112. Note that the normal size is a predetermined size regardless of the image magnification, and the normal size (when step S110 described later is not performed) and / or even if the focus lens 84 moves. This is the size (size) of the distance measuring area 152 applied when the magnification does not change.
 一方、像倍率の変化量が所定値以下ではない場合、換言すると、像倍率の変化量が所定値を超える場合、ステップS104の判定が否定判定となり、ステップS108へ移行する。ステップS108で、CPU74は、ピークサーチ範囲における被写体の画像154の位置の変化量を導出する。 On the other hand, if the change amount of the image magnification is not less than the predetermined value, in other words, if the change amount of the image magnification exceeds the predetermined value, the determination in step S104 is negative, and the process proceeds to step S108. In step S108, the CPU 74 derives the amount of change in the position of the subject image 154 in the peak search range.
 上記開始位置をps、開始位置psに対応する像倍率をK[ps]とし、また、上記終了位置をpe、終了位置peに対応する像倍率をK[pe]とする。また、撮像画像150の中心151から測距領域152の中心までの距離をRとすると、ピークサーチ中の像位置の変化量Dは、開始位置psから終了位置peまでの間に、被写体の画像154が相対的にどれほど移動したかを表す、下記(1)式により導出される。
 D=|R×(K[ps]-K[pe])÷K[ps]|   ・・・(1)
The start position is ps, the image magnification corresponding to the start position ps is K [ps], the end position is pe, and the image magnification corresponding to the end position pe is K [pe]. Also, assuming that the distance from the center 151 of the captured image 150 to the center of the ranging area 152 is R, the change amount D of the image position during the peak search is the image of the subject between the start position ps and the end position pe. It is derived by the following equation (1) that represents how much 154 has moved.
D = | R × (K [ps] −K [pe]) ÷ K [ps] | (1)
 なお、このステップS108の段階では、実際には、フォーカスレンズ84は移動してない。そのため、開始位置ps及び終了位置peは、例えば、このステップS108の段階(フォーカスレンズ84の移動開始前)における撮像画像150に対する被写体の画像154の位置に応じて定められる。 It should be noted that the focus lens 84 is not actually moved at the stage of step S108. Therefore, for example, the start position ps and the end position pe are determined according to the position of the subject image 154 with respect to the captured image 150 at the stage of step S108 (before the movement of the focus lens 84).
 次のステップS110で、CPU74は、上記ステップS108で導出した変化量Dに基づいて決定した測距領域152の大きさを設定する。一例として、本実施形態のCPU74は、測距領域152の大きさとして、変化量Dを一辺とした大きさを設定する。なお、本実施形態に限定されず、例えば、測距領域152の大きさを、変化量Dのn(n>0、かつn≠1)倍の大きさとしてもよい。 In the next step S110, the CPU 74 sets the size of the distance measurement area 152 determined based on the change amount D derived in step S108. As an example, the CPU 74 of the present embodiment sets the size of the distance measurement area 152 as the size of the change amount D as one side. Note that the present invention is not limited to this embodiment, and for example, the size of the distance measurement area 152 may be n (n> 0 and n ≠ 1) times the amount of change D.
 次のステップS112で、CPU74は、コントラスト値のピークを検出するピーク検出動作を行う。本実施形態では上述したように、フォーカスレンズ84の移動を開始する前に、測距領域152の大きさが、上記ステップS106または上記ステップS110において設定されている。CPU74は、フォーカスレンズ84の移動が開始されると、フォーカスレンズ84を移動させた位置毎に、設定された大きさの測距領域152内の画像のコントラスト値を検出し、コントラスト値がピークとなるフォーカスレンズ84の位置を検出する。例えば、開始位置psが無限遠側であり、終了位置peが至近側の場合、上記ステップS110では、上述したように図9に示した測距領域152Cに対応する大きさが設定される。そのため、ステップS112のピーク検出動作では、終止、図9に示した測距領域152Cに対応する大きさの測距領域152内の画像について、コントラスト値のピークの検出が行われる。 In the next step S112, the CPU 74 performs a peak detection operation for detecting the peak of the contrast value. In the present embodiment, as described above, before the movement of the focus lens 84 is started, the size of the distance measurement area 152 is set in step S106 or step S110. When the movement of the focus lens 84 is started, the CPU 74 detects the contrast value of the image in the distance measuring area 152 having a set size for each position where the focus lens 84 is moved, and the contrast value reaches the peak. The position of the focus lens 84 is detected. For example, when the start position ps is on the infinity side and the end position pe is on the close side, the size corresponding to the distance measurement area 152C shown in FIG. 9 is set in step S110 as described above. Therefore, in the peak detection operation in step S112, the peak of the contrast value is detected for the image in the distance measurement area 152 having a size corresponding to the distance measurement area 152C shown in FIG.
 このようにしてステップS112のピーク検出動作が終了すると、本ピークサーチ処理を終了する。ピークサーチ処理が終了すると、CPU74は、コントラスト値がピークとなる場合のフォーカスレンズ84の位置に基づき、合焦状態を制御する。 In this way, when the peak detection operation in step S112 is completed, the peak search process is terminated. When the peak search process ends, the CPU 74 controls the in-focus state based on the position of the focus lens 84 when the contrast value reaches a peak.
 このように本施形態の撮像装置10では、フォーカスレンズ84の位置の変化に伴い変化する像倍率の変化量に応じて大きさを大きくした測距領域152を、ピーク検出動作前に予め設定するため、ピーク検出動作中に、被写体の画像154が測距領域152から外れた状態となってしまうのを抑制することができる。従って、本実施形態の撮像装置10によれば、測距領域152内の被写体の画像154に基づいて安定してコントラスト値を取得することができ、測距領域152内におけるコントラスト値の変化のピークの検出精度を向上させることができる。 As described above, in the imaging apparatus 10 according to the present embodiment, the ranging area 152 that is enlarged according to the amount of change in the image magnification that changes with the change in the position of the focus lens 84 is set in advance before the peak detection operation. Therefore, it is possible to suppress the subject image 154 from being out of the distance measurement area 152 during the peak detection operation. Therefore, according to the imaging apparatus 10 of the present embodiment, the contrast value can be stably acquired based on the subject image 154 in the distance measuring area 152, and the contrast value change peak in the distance measuring area 152 is obtained. Detection accuracy can be improved.
[第2実施形態]
 以下、第2実施形態について詳細に説明する。なお、本実施形態では、上記第1実施形態で説明した構成及び作用と同一の構成及び作用については同一の符号を付し、詳細な説明を省略する。
[Second Embodiment]
Hereinafter, the second embodiment will be described in detail. In the present embodiment, the same configurations and operations as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の撮像装置10の構成は、第1実施形態の撮像装置10の構成(図1~図4参照)と同様であるため、説明を省略する。 The configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
 一方、本実施形態の撮像装置10の作用は、ピークサーチ処理の一部が異なっている。第1実施形態では、測距領域152の大きさの設定を通常サイズから変更する場合、測距領域152の中心の位置は変更しない(測距領域152を移動しない)ままとしている。本実施形態では、測距領域152の大きさの設定を変更するのに伴い、測距領域152の中心の位置も変更する形態について説明する。 On the other hand, the operation of the imaging apparatus 10 of the present embodiment is different in part of the peak search process. In the first embodiment, when the size setting of the ranging area 152 is changed from the normal size, the position of the center of the ranging area 152 is not changed (the ranging area 152 is not moved). In the present embodiment, a mode will be described in which the position of the center of the distance measurement area 152 is changed as the size setting of the distance measurement area 152 is changed.
 上述したように、フォーカスレンズ84を無限遠側から至近側に向けて移動させる場合、フォーカスレンズ84の像倍率は、被写体の画像154が縮小する方向に変化する。また、被写体の画像154の位置は、撮像画像150の中心151に近付く方向に移動する。そのため、本実施形態の撮像装置10のCPU74は、フォーカスレンズ84を無限遠側から至近側に近付ける場合、図12に示した一例のように、測距領域152の中心153を、中心151に近付く方向に移動させる。図12に示した例では、模式的に測距領域152A、152B、及び152Cを撮像画像150上に重ねて表示させている。図12に示した例では、フォーカスレンズ84が無限遠側の場合に対応する測距領域152Aの中心153Aが、撮像画像150の中心151から最も離れ、外縁に近い位置となっており、測距領域152Bの中心153B、及び測距領域152Cの中心153Cの順に、撮像画像150の中心151に近付く。 As described above, when the focus lens 84 is moved from the infinity side to the close side, the image magnification of the focus lens 84 changes in the direction in which the subject image 154 is reduced. Further, the position of the subject image 154 moves in a direction approaching the center 151 of the captured image 150. Therefore, when the focus lens 84 is moved from the infinity side to the close side, the CPU 74 of the imaging apparatus 10 according to the present embodiment moves the center 153 of the distance measurement area 152 closer to the center 151 as in the example illustrated in FIG. Move in the direction. In the example illustrated in FIG. 12, the ranging areas 152A, 152B, and 152C are schematically displayed on the captured image 150 in an overlapping manner. In the example shown in FIG. 12, the center 153A of the ranging area 152A corresponding to the case where the focus lens 84 is on the infinity side is the farthest from the center 151 of the captured image 150 and close to the outer edge. It approaches the center 151 of the captured image 150 in the order of the center 153B of the area 152B and the center 153C of the distance measurement area 152C.
 一方、上述したように、フォーカスレンズ84を至近側から無限遠側に向けて移動させる場合、フォーカスレンズ84の像倍率は、被写体の画像154が拡大する方向に変化する。また、被写体の画像154の位置は、撮像画像150の中心151から離れる(外縁に近付く)方向に移動する。そのため、本実施形態の撮像装置10のCPU74は、フォーカスレンズ84を至近側から無限遠側に近付ける場合、図13に示した一例のように、測距領域152の中心153を、中心151から離れる方向に移動させる。上記図12と同様に、図13に示した例では、模式的に測距領域152A、152B、及び152Cを撮像画像150上に重ねて表示させている。図13に示した例では、フォーカスレンズ84が至近側の場合に対応する測距領域152Cの中心153Cが、撮像画像150の中心151に最も近い位置となっており、測距領域152Bの中心153B、及び測距領域152Aの中心153Aの順に、撮像画像150の中心151から離れ外縁に近付く。 On the other hand, as described above, when the focus lens 84 is moved from the closest side to the infinity side, the image magnification of the focus lens 84 changes in the direction in which the subject image 154 is enlarged. In addition, the position of the subject image 154 moves away from the center 151 of the captured image 150 (closer to the outer edge). Therefore, when the focus lens 84 is moved from the closest side to the infinity side, the CPU 74 of the imaging apparatus 10 according to the present embodiment moves the center 153 of the distance measuring area 152 away from the center 151 as in the example illustrated in FIG. Move in the direction. Similar to FIG. 12, in the example shown in FIG. 13, the distance measurement areas 152 </ b> A, 152 </ b> B, and 152 </ b> C are schematically displayed on the captured image 150. In the example shown in FIG. 13, the center 153C of the distance measurement area 152C corresponding to the case where the focus lens 84 is on the closest side is the position closest to the center 151 of the captured image 150, and the center 153B of the distance measurement area 152B. , And the center 153A of the distance measurement area 152A, away from the center 151 of the captured image 150 and approach the outer edge.
 図14には、本実施形態のピークサーチ処理の流れの一例を示すフローチャートを示す。図14に示すように、本実施形態のピークサーチ処理では、第1実施形態のピークサーチ処理(図11参照)に比べ、ステップS110の後に、ステップS111の処理を実行する点が異なっている。 FIG. 14 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 14, the peak search process of this embodiment differs from the peak search process of the first embodiment (see FIG. 11) in that the process of step S111 is executed after step S110.
 図14に示すステップS111で、CPU74は、上記ステップS110で導出した測距領域152の大きさに基づき、測距領域152の中心153の位置を導出した後、ステップS112へ移行する。本実施形態のCPU74は、フォーカスレンズ84の移動方向(無限遠側に向かう方向、または至近側に向かう方向)と、測距領域152の大きさとに基づき、撮像画像150における測距領域152の中心153の位置を導出する。 In step S111 shown in FIG. 14, the CPU 74 derives the position of the center 153 of the ranging area 152 based on the size of the ranging area 152 derived in step S110, and then proceeds to step S112. The CPU 74 of the present embodiment determines the center of the distance measurement area 152 in the captured image 150 based on the moving direction of the focus lens 84 (the direction toward the infinity side or the direction toward the closest side) and the size of the distance measurement area 152. The position of 153 is derived.
 例えば、ピークサーチ範囲が無限遠側から至近側までであり、無限遠側から至近側に向けてフォーカスレンズ84を移動させる場合、図12に示した場合のように、CPU74は、測距領域152の大きさを、測距領域152Aとして示した通常のサイズに代わり、測距領域152Cとして示した大きさに設定する。また中心153Cの位置を、中心153Aよりも撮像画像150の中心151に近い位置とする。CPU74による中心153Cの位置の具体的な導出方法は、特に限定されない。例えば、図12に示すように、矩形状の測距領域152A及び測距領域152Cの四隅のうち、中心151から最も離れた隅(角)の位置を一致させた状態とし、一致させた隅の座標と、測距領域152Cとの大きさとから、中心153Cの座標を導出してもよい。 For example, when the peak search range is from the infinity side to the close side, and the focus lens 84 is moved from the infinity side to the close side, as shown in FIG. Is set to the size shown as the distance measurement area 152C instead of the normal size shown as the distance measurement area 152A. Further, the position of the center 153C is set to a position closer to the center 151 of the captured image 150 than the center 153A. A specific method for deriving the position of the center 153C by the CPU 74 is not particularly limited. For example, as shown in FIG. 12, among the four corners of the rectangular distance measuring area 152A and distance measuring area 152C, the positions of the corners (corners) farthest from the center 151 are matched, and The coordinates of the center 153C may be derived from the coordinates and the size of the distance measurement area 152C.
 また例えば、ピークサーチ範囲が至近側から無限遠側までであり、至近側から無限遠側に向けてフォーカスレンズ84を移動させる場合、図13に示した場合のように、CPU74は、測距領域152の大きさを、測距領域152Cとして示した通常のサイズに代わり、測距領域152Aとして示した大きさに設定する。また中心153Aの位置を、中心153Cよりも撮像画像150の中心151から離れた位置とする。CPU74による中心153Aの位置の具体的な導出方法は、特に限定されない。例えば、図13に示すように、矩形状の測距領域152A及び測距領域152Cの四隅のうち、中心151に最も近い隅(角)の位置を一致させた状態とし、一致させた隅の座標と、測距領域152Aとの大きさとから、中心153Aの座標を導出してもよい。 Further, for example, when the peak search range is from the near side to the infinity side, and the focus lens 84 is moved from the close side to the infinity side, the CPU 74 causes the distance measurement area as shown in FIG. The size of 152 is set to the size shown as the distance measurement area 152A instead of the normal size shown as the distance measurement area 152C. Further, the position of the center 153A is set to a position farther from the center 151 of the captured image 150 than the center 153C. A specific method for deriving the position of the center 153A by the CPU 74 is not particularly limited. For example, as shown in FIG. 13, among the four corners of the rectangular distance measuring area 152A and distance measuring area 152C, the positions of the corners (corners) closest to the center 151 are matched, and the coordinates of the matched corners are set. Then, the coordinates of the center 153A may be derived from the size of the distance measurement area 152A.
 このように、本実施形態の撮像装置10では、フォーカスレンズ84の位置の変化に伴い変化する像倍率の変化量に応じて、測距領域152の大きさを通常サイズよりも大きなサイズに設定すると共に、測距領域152の中心153の位置を、フォーカスレンズ84の移動方向に応じて、すなわち被写体の画像154の位置の変化方向に応じて変更させる。 As described above, in the imaging apparatus 10 according to the present embodiment, the size of the ranging area 152 is set to a size larger than the normal size in accordance with the amount of change in image magnification that changes with the change in the position of the focus lens 84. At the same time, the position of the center 153 of the distance measuring area 152 is changed according to the moving direction of the focus lens 84, that is, according to the changing direction of the position of the subject image 154.
 本実施形態の撮像装置10では、像位置の変化方向に応じて測距領域152の中心153の位置も変更するため、被写体の画像154が測距領域152から外れた状態となってしまうのをより抑制することができる。従って、本実施形態の撮像装置10によれば、測距領域152内の被写体の画像154に基づいてより安定してコントラスト値を取得することができ、測距領域152内のコントラスト値のピークの検出精度をより向上させることができる。 In the imaging apparatus 10 according to the present embodiment, the position of the center 153 of the distance measurement area 152 is also changed according to the change direction of the image position, so that the subject image 154 is out of the distance measurement area 152. It can be suppressed more. Therefore, according to the imaging apparatus 10 of the present embodiment, the contrast value can be acquired more stably based on the image 154 of the subject in the distance measuring area 152, and the peak of the contrast value in the distance measuring area 152 can be obtained. The detection accuracy can be further improved.
 また、本実施形態の撮像装置10では、像位置の変化方向に応じて測距領域152の中心153の位置も変更するため、中心153の位置を変更させない場合に比べて、測距領域152の大きさを小さくすることができる。これにより、本実施形態の撮像装置10では、測距領域152内に被写体の画像154以外の画像が含まれることを抑制することができるため、特定の被写体(被写体の画像154に対応する被写体)と異なる被写体に合焦してしまうのを抑制することができる。言い換えれば、特定の被写体に合焦し易くすることができ、合焦精度が向上する。 Further, in the imaging apparatus 10 of the present embodiment, the position of the center 153 of the distance measurement area 152 is also changed according to the change direction of the image position. The size can be reduced. Thereby, in the imaging device 10 of the present embodiment, since it is possible to suppress an image other than the subject image 154 from being included in the distance measurement area 152, a specific subject (subject corresponding to the subject image 154). It is possible to suppress focusing on a different subject. In other words, focusing on a specific subject can be facilitated, and focusing accuracy is improved.
[第3実施形態]
 以下、第3実施形態について詳細に説明する。なお、本実施形態では、上記第1実施形態で説明した構成及び作用と同一の構成及び作用については同一の符号を付し、詳細な説明を省略する。
[Third Embodiment]
Hereinafter, the third embodiment will be described in detail. In the present embodiment, the same configurations and operations as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の撮像装置10の構成は、第1実施形態の撮像装置10の構成(図1~図4参照)と同様であるため、説明を省略する。 The configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
 一方、本実施形態の撮像装置10の作用は、ピークサーチ処理の一部が異なっている。ピークサーチ処理の方式として、ピーク検出動作においてフォーカスレンズ84を移動させている最中に、コントラスト値のピークが検出されると、フォーカスレンズ84の移動を停止させ、ピーク検出動作(ピークサーチ処理)を終了させる方式が知られている。特定の被写体の実際の位置に応じて、光軸方向におけるピークの位置は異なる。そのため、この方式では、特定の被写体の実際の位置によって、フォーカスレンズ84の移動について、ピーク検出動作を開始する開始位置psからフォーカスレンズ84の移動を停止するまでの距離、すなわちピークサーチ範囲が異なる。従って、特定の被写体の実際の位置によって、像倍率の変化量が異なる。 On the other hand, the operation of the imaging apparatus 10 of the present embodiment is different in part of the peak search process. As a method of the peak search process, when the peak of the contrast value is detected during the movement of the focus lens 84 in the peak detection operation, the movement of the focus lens 84 is stopped and the peak detection operation (peak search process) is performed. There is a known method for terminating the process. The peak position in the optical axis direction varies depending on the actual position of a specific subject. For this reason, in this method, the distance from the start position ps where the peak detection operation starts to the movement of the focus lens 84 to the movement of the focus lens 84, that is, the peak search range differs depending on the actual position of a specific subject. . Therefore, the amount of change in image magnification varies depending on the actual position of a specific subject.
 測距領域152の大きさを、ピークサーチ範囲に応じた最大値となる、ピークサーチ範囲が最も広い範囲となる無限遠側と至近側との間の全範囲とした場合に対応する大きさにすれば、フォーカスレンズ84の停止位置にかかわらず、被写体の画像154が測距領域152内に十分に収まる。しかしながら、フォーカスレンズ84の実際の移動量が少なく、像倍率の変化が少ない場合、測距領域152の大きさが過大となり、測距領域152に被写体の画像154以外の画像が過分に含まれてしまい、合焦精度が低下する可能性がある。 The size of the distance measurement area 152 is the maximum value corresponding to the peak search range, and the size corresponding to the entire range between the infinity side and the close side where the peak search range is the widest range. In this case, the subject image 154 is sufficiently within the distance measurement area 152 regardless of the stop position of the focus lens 84. However, when the actual movement amount of the focus lens 84 is small and the change in the image magnification is small, the distance measurement area 152 is excessively large, and the distance measurement area 152 includes an image other than the subject image 154 excessively. As a result, focusing accuracy may be reduced.
 一方、ピーク検出動作を実際に行わなければ、コントラスト値のピークに対応する位置(フォーカスレンズ84の位置)は不明であるため、実際のピークサーチ範囲を事前に予測することが困難である。 On the other hand, if the peak detection operation is not actually performed, the position corresponding to the peak of the contrast value (the position of the focus lens 84) is unknown, so it is difficult to predict the actual peak search range in advance.
 そこで、本実施形態の撮像装置10では、複数のピークサーチ範囲を想定し、想定される複数の想定ピークサーチ範囲各々に対応する大きさの測距領域152を設定する。 Therefore, in the imaging apparatus 10 of the present embodiment, a plurality of peak search ranges are assumed, and a ranging area 152 having a size corresponding to each of a plurality of assumed peak search ranges is set.
 想定ピークサーチ範囲は特に限定されないが、例えば、フォーカスレンズ84の焦点深度に応じて定めるとよい。この場合の具体例としては、図15に一例を示した、3つの想定ピークサーチ範囲p1、p2、p3が挙げられる。第1の想定ピークサーチ範囲p1は、開始位置psからフォーカスレンズ84の焦点深度の10倍までの範囲である。図16には、第1の想定ピークサーチ範囲p1に対応する大きさの測距領域152p1の一例を示す。また、第2の想定ピークサーチ範囲p2は、開始位置psからフォーカスレンズ84の焦点深度の20倍までの範囲である。図16には、第2の想定ピークサーチ範囲p2に対応する大きさの測距領域152p2の一例を示す。また、第3の想定ピークサーチ範囲p3は、開始位置psからフォーカスレンズ84の移動方向のサーチ端(無限遠:INFまたは至近:MOD)である。図16には、第3の想定ピークサーチ範囲p3に対応する大きさの測距領域152p3の一例を示す。各測距領域152p1~152p3の大きさは、第1の測距領域152p1、第2の測距領域152p2、第3の測距領域152p3の順に大きくなっている。 The assumed peak search range is not particularly limited, but may be determined according to the depth of focus of the focus lens 84, for example. As a specific example in this case, there are three assumed peak search ranges p1, p2, and p3 shown in FIG. The first assumed peak search range p <b> 1 is a range from the start position ps to 10 times the focal depth of the focus lens 84. FIG. 16 shows an example of a distance measurement area 152p1 having a size corresponding to the first assumed peak search range p1. The second assumed peak search range p2 is a range from the start position ps to 20 times the focal depth of the focus lens 84. FIG. 16 shows an example of a distance measurement area 152p2 having a size corresponding to the second assumed peak search range p2. The third assumed peak search range p3 is a search end (infinity: INF or closest: MOD) in the moving direction of the focus lens 84 from the start position ps. FIG. 16 shows an example of a distance measurement area 152p3 having a size corresponding to the third assumed peak search range p3. The size of each of the ranging areas 152p1 to 152p3 increases in the order of the first ranging area 152p1, the second ranging area 152p2, and the third ranging area 152p3.
 なお、測距領域152p1~152p3は、各々図16に示したように大きさが異なっているため、各測距領域152p1~152p3に含まれる画像から検出されるコントラスト値の変化、及びピークの位置が異なる場合があるが、図15では、図示の便宜上模式的に1つのコントラスト値の変化のみ記載している。 Since the distance measurement areas 152p1 to 152p3 are different in size as shown in FIG. 16, the change in the contrast value detected from the images included in each of the distance measurement areas 152p1 to 152p3 and the position of the peak In FIG. 15, only one contrast value change is schematically shown in FIG. 15 for convenience of illustration.
 図15に示すように、本実施形態では、ピーク検出動作を行う場合、フォーカスレンズ84を、現在位置から、ピーク検出のための移動方向とは逆方向に一旦、移動させ、移動させた位置をピーク検出動作の開始位置psとし、ピークサーチ範囲の基準位置とする。 As shown in FIG. 15, in this embodiment, when performing the peak detection operation, the focus lens 84 is temporarily moved from the current position in the direction opposite to the movement direction for peak detection, and the moved position is determined. The start position ps of the peak detection operation is used as the reference position of the peak search range.
 図17には、本実施形態のピークサーチ処理の流れの一例を示すフローチャートを示す。図17に示すように、本実施形態のピークサーチ処理では、第1実施形態のピークサーチ処理(図11参照)に比べ、ステップS108、S110、S112の各々に代わりに、ステップS108A、S110A、S112Aの処理を実行する点が異なっている。 FIG. 17 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 17, in the peak search process of this embodiment, steps S108A, S110A, and S112A are used instead of steps S108, S110, and S112, as compared with the peak search process of the first embodiment (see FIG. 11). The point of executing the process is different.
 図17に示すステップS108Aで、CPU74は、想定ピークサーチ範囲p1~p3の各々における被写体の画像154の位置の変化量を、第1実施形態のピークサーチ処理のステップS108と同様に導出する。 In step S108A shown in FIG. 17, the CPU 74 derives the amount of change in the position of the subject image 154 in each of the assumed peak search ranges p1 to p3 in the same manner as in step S108 of the peak search process of the first embodiment.
 次のステップS110Aで、CPU74は、上記ステップS108Aで導出した想定ピークサーチ範囲p1~p3の各々について、像位置の変化量に基づいて、測距領域152p1~p3の大きさを各々、第1実施形態のピークサーチ処理のステップS110と同様に設定する。 In the next step S110A, the CPU 74 sets the size of the ranging areas 152p1 to p3 for each of the assumed peak search ranges p1 to p3 derived in step S108A based on the amount of change in the image position. This is set in the same manner as in step S110 of the peak search processing of the form.
 次のステップS112Aで、CPU74は、ピーク検出動作を行う。なお、本実施形態では、第1実施形態のピークサーチ処理のステップS112で行われたピーク検出動作と、以下の点が異なる。 In the next step S112A, the CPU 74 performs a peak detection operation. The present embodiment differs from the peak detection operation performed in step S112 of the peak search process of the first embodiment in the following points.
 本実施形態のCPU74は、フォーカスレンズ84の移動が開始されると、フォーカスレンズ84を移動させた位置毎に、上記ステップS110Aで設定した、想定ピークサーチ範囲p1~p3各々に応じた大きさの測距領域152p1~152p3各々について、コントラスト値を検出する。CPU74は、全測距領域152p1~152p3について、コントラスト値のピークを検出すると、フォーカスレンズ84の移動を停止させる。 When the movement of the focus lens 84 is started, the CPU 74 of the present embodiment has a size corresponding to each of the assumed peak search ranges p1 to p3 set in step S110A for each position where the focus lens 84 is moved. Contrast values are detected for each of the ranging areas 152p1 to 152p3. When the CPU 74 detects the peak of the contrast value for all the distance measurement areas 152p1 to 152p3, the CPU 74 stops the movement of the focus lens 84.
 CPU74は、想定ピークサーチ範囲p1~p3のうち、フォーカスレンズ84の停止位置(ピークサーチ終了位置pe)が含まれる範囲であって、大きさが最小の想定ピークサーチ範囲を特定する。例えば、図15に示した場合では、実際のピークサーチ範囲の終了位置peが含まれる範囲は、第2の想定ピークサーチ範囲p2と第3の想定ピークサーチ範囲p3の2つであるが、大きさが最小の範囲は第2の想定ピークサーチ範囲p2である。このため、CPU74は、第2の想定ピークサーチ範囲p2を特定する。 The CPU 74 specifies an assumed peak search range having a minimum size in the range including the stop position (peak search end position pe) of the focus lens 84 among the assumed peak search ranges p1 to p3. For example, in the case shown in FIG. 15, there are two ranges including the actual peak search range end position pe, the second assumed peak search range p2 and the third assumed peak search range p3. The minimum range is the second assumed peak search range p2. For this reason, the CPU 74 specifies the second assumed peak search range p2.
 さらに、CPU74は、本ピーク検出動作により検出されるピークを、特定した想定ピークサーチ範囲に対応する測距領域152により検出したピークに決定する。例えば、図15に示した場合では、CPU74は、第2の想定ピークサーチ範囲p2を用いて検出されたピークに決定する。これにより、図15に示す例では、CPU74は、第2の想定ピークサーチ範囲p2に対応する測距領域152p2を用いて検出されたピークに対応するフォーカスレンズ84の位置に基づき、合焦状態を制御する。 Further, the CPU 74 determines a peak detected by the peak detection operation as a peak detected by the distance measuring area 152 corresponding to the specified assumed peak search range. For example, in the case shown in FIG. 15, the CPU 74 determines a peak detected using the second assumed peak search range p2. Thus, in the example shown in FIG. 15, the CPU 74 changes the focus state based on the position of the focus lens 84 corresponding to the peak detected using the distance measuring area 152p2 corresponding to the second assumed peak search range p2. Control.
 このように、本実施形態の撮像装置10では、実際のピークサーチ範囲に応じて、適切な大きさの測距領域152を用いて検出されたコントラスト値のピークから、合焦状態とするためのフォーカスレンズ84の位置を決定する。従って、本実施形態の撮像装置10によれば、適切な大きさの測距領域152により、コントラスト値のピークの検出が行われるため、合焦精度を向上させることができる。 As described above, in the imaging apparatus 10 of the present embodiment, in order to obtain a focused state from the peak of the contrast value detected using the ranging area 152 having an appropriate size according to the actual peak search range. The position of the focus lens 84 is determined. Therefore, according to the imaging device 10 of the present embodiment, since the peak of the contrast value is detected by the distance measurement area 152 having an appropriate size, the focusing accuracy can be improved.
[第4実施形態]
 以下、第4実施形態について詳細に説明する。なお、本実施形態では、上記第1実施形態で説明した構成及び作用と同一の構成及び作用については同一の符号を付し、詳細な説明を省略する。
[Fourth Embodiment]
Hereinafter, the fourth embodiment will be described in detail. In the present embodiment, the same configurations and operations as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の撮像装置10の構成は、第1実施形態の撮像装置10の構成(図1~図4参照)と同様であるため、説明を省略する。なお、本実施形態のCPU74が、本開示の指示部の一例である。 The configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted. Note that the CPU 74 of this embodiment is an example of an instruction unit of the present disclosure.
 一方、本実施形態の撮像装置10の作用は、ピークサーチ処理の一部が異なっている。ピークサーチ処理において、ピーク検出動作中に被写体が動いてしまう場合がある。被写体が動くと、撮像画像150における被写体の画像154の位置も変化する。このような場合に対応する方法として、いわゆる被写体追尾モード等と呼ばれる方法がある。被写体追尾モードでは、CPU74は、ピーク検出動作中に取得した撮像画像150を用いて、撮像画像150に含まれる特定の被写体の画像154を追尾して、被写体の画像154の移動に合わせて、測距領域152の位置を移動させる移動処理を行う。 On the other hand, the operation of the imaging apparatus 10 of the present embodiment is different in part of the peak search process. In the peak search process, the subject may move during the peak detection operation. When the subject moves, the position of the subject image 154 in the captured image 150 also changes. As a method corresponding to such a case, there is a method called a so-called subject tracking mode. In the subject tracking mode, the CPU 74 uses the captured image 150 acquired during the peak detection operation to track the specific subject image 154 included in the captured image 150, and performs measurement according to the movement of the subject image 154. A movement process for moving the position of the distance area 152 is performed.
 このように被写体追尾モードでは、被写体の画像154の移動に合わせて、測距領域152の位置を移動させるため、フォーカスレンズ84の位置が移動することにより像倍率が変化した場合でも、像倍率の変化に応じて移動した被写体の画像154の位置に合わせて、測距領域152の位置が移動する。そのため、第1実施形態で説明したように、測距領域152の大きさを変更させなくても、測距領域152内に、被写体の画像154が十分に収まる。そこで、本実施形態のピークサーチ処理では、被写体追尾モードを実行する場合には、測距領域152の大きさの設定を、通常サイズのままとする制御を行う。 As described above, in the subject tracking mode, the position of the distance measuring area 152 is moved in accordance with the movement of the subject image 154. Therefore, even when the image magnification is changed by moving the position of the focus lens 84, the image magnification is changed. The position of the ranging area 152 is moved in accordance with the position of the subject image 154 moved in accordance with the change. Therefore, as described in the first embodiment, the subject image 154 can be sufficiently accommodated in the distance measurement area 152 without changing the size of the distance measurement area 152. Therefore, in the peak search process of the present embodiment, when the subject tracking mode is executed, control is performed so that the size setting of the distance measurement area 152 remains the normal size.
 図18には、本実施形態のピークサーチ処理の流れの一例を示すフローチャートを示す。図18に示すように、本実施形態のピークサーチ処理では、第1実施形態のピークサーチ処理(図11参照)に比べ、ステップS100とステップS102との間に、ステップS101の処理を実行する点が異なっている。 FIG. 18 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 18, in the peak search process of this embodiment, the process of step S101 is executed between step S100 and step S102 as compared to the peak search process of the first embodiment (see FIG. 11). Is different.
 図18に示すステップS101で、CPU74は、被写体追尾モードを実行するか否かを判定する。本実施形態の撮像装置10では、一例として、ユーザによる被写体追尾モードの実行の指示を受付デバイス62が受け付けた場合に、被写体追尾モードがCPU74により実行される。そのため、受付デバイス62が被写体追尾モードの実行の指示を受け付けた場合、ステップS101の判定が肯定判定となり、ステップS106へ移行する。従って、被写体追尾モードを実行する場合、測距領域152の大きさとして、通常サイズが設定された状態となり、通常サイズの測距領域152により、ピーク検出が行われる。 In step S101 shown in FIG. 18, the CPU 74 determines whether or not to execute the subject tracking mode. In the imaging apparatus 10 according to the present embodiment, as an example, when the receiving device 62 receives an instruction to execute the subject tracking mode from the user, the subject tracking mode is executed by the CPU 74. Therefore, when the receiving device 62 receives an instruction to execute the subject tracking mode, the determination in step S101 is affirmative, and the process proceeds to step S106. Therefore, when the subject tracking mode is executed, a normal size is set as the size of the distance measurement area 152, and peak detection is performed by the distance measurement area 152 of the normal size.
 一方、受付デバイス62が被写体追尾モードの実行の指示を受け付けていない場合、ステップS101の判定が否定判定となり、ステップS102へ移行する。従って、被写体追尾モードを実行しない場合、第1実施形態と同様に、像倍率の変化量が所定値を超えると、測距領域152の大きさとして像位置の変化量に応じた大きさが設定された状態となり、像位置の変化量に応じた大きさの測距領域152により、ピーク検出が行われる。 On the other hand, if the receiving device 62 has not received an instruction to execute the subject tracking mode, the determination in step S101 is negative, and the process proceeds to step S102. Accordingly, when the subject tracking mode is not executed, as in the first embodiment, when the change amount of the image magnification exceeds a predetermined value, the size corresponding to the change amount of the image position is set as the size of the ranging area 152. Thus, peak detection is performed by the distance measuring area 152 having a size corresponding to the amount of change in the image position.
 このように、本実施形態の撮像装置10では、被写体の画像154の移動に応じて測距領域152の位置を移動させる、被写体追尾モードを実行する場合、測距領域152の大きさを通常サイズのままとしている。 As described above, in the imaging apparatus 10 of the present embodiment, when executing the subject tracking mode in which the position of the ranging area 152 is moved according to the movement of the subject image 154, the size of the ranging area 152 is set to the normal size. It remains.
 従って、本実施形態の撮像装置10によれば、測距領域152内に被写体の画像154以外の画像が含まれるのを抑制することができるため、被写体の画像154に対応する特定の被写体と異なる被写体に合焦してしまうのを抑制することができ、特定の被写体に合焦し易くすることができる。 Therefore, according to the imaging device 10 of the present embodiment, since it is possible to suppress an image other than the subject image 154 from being included in the distance measurement area 152, it is different from a specific subject corresponding to the subject image 154. Focusing on a subject can be suppressed, and focusing on a specific subject can be facilitated.
[第5実施形態]
 以下、第5実施形態について詳細に説明する。なお、本実施形態では、上記第1実施形態及び第4実施形態で説明した構成及び作用と同一の構成及び作用については同一の符号を付し、詳細な説明を省略する。
[Fifth Embodiment]
Hereinafter, the fifth embodiment will be described in detail. In the present embodiment, the same configurations and operations as those described in the first embodiment and the fourth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の撮像装置10の構成は、第1実施形態の撮像装置10の構成(図1~図4参照)と同様であるため、説明を省略する。 The configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
 第4実施形態では、ユーザによる被写体追尾モードの実行の指示を受付デバイス62が受け付けた場合に、被写体追尾モードがCPU74により実行される形態について説明した。本実施形態では、受付デバイス62がユーザによる被写体追尾モードの実行の指示を受け付けていない場合でも、自動的に被写体追尾モードの実行が可能な形態について説明する。 In the fourth embodiment, the mode in which the subject tracking mode is executed by the CPU 74 when the receiving device 62 receives an instruction to execute the subject tracking mode by the user has been described. In the present embodiment, a mode in which the subject tracking mode can be automatically executed even when the receiving device 62 has not received an instruction to execute the subject tracking mode by the user will be described.
 被写体追尾モードを実行する場合、CPU74は、撮像画像150に対して画像解析を行い、被写体の顔等を検出し、検出した顔を含む領域に対する追尾を行う処理を実行する。この処理では、フォーカスレンズ84の移動中に取得した複数の撮像画像150に対して、テンプレートマッチングを行うことで、被写体の顔を含む領域を検出し、被写体の画像154の移動後の位置を検出するため、演算処理の負荷が高く、演算処理に時間を要する。そのため、ピーク検出動作中におけるフレームレートが高速になると、演算処理が追いつかず、リアルタイムに測距領域152を移動させることができない場合が生じる。 When executing the subject tracking mode, the CPU 74 performs image analysis on the captured image 150, detects the face of the subject, etc., and performs processing for tracking the area including the detected face. In this process, template matching is performed on the plurality of captured images 150 acquired while the focus lens 84 is moving, thereby detecting a region including the face of the subject and detecting the position of the subject image 154 after the movement. Therefore, the calculation processing load is high and the calculation processing takes time. Therefore, if the frame rate during the peak detection operation becomes high, the calculation process cannot catch up, and the distance measurement area 152 may not be moved in real time.
 そこで、本実施形態の撮像装置10では、フレームレート及び演算処理に要すると見込まれる時間(以下、「演算見込時間」という)の少なくとも一方に応じて、被写体追尾モードの実行の可否の判定を行う。 Therefore, in the imaging apparatus 10 of the present embodiment, whether or not to execute the subject tracking mode is determined according to at least one of a frame rate and a time expected to be required for calculation processing (hereinafter referred to as “calculation expected time”). .
 図19には、本実施形態のピークサーチ処理の流れの一例を示すフローチャートを示す。図19に示すように、本実施形態のピークサーチ処理では、第4実施形態のピークサーチ処理(図18参照)のステップS101に代わり、ステップS101A、S101B、S101C、S101Dの各処理を実行する点が異なっている。 FIG. 19 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 19, in the peak search process of this embodiment, each process of steps S101A, S101B, S101C, and S101D is executed instead of step S101 of the peak search process (see FIG. 18) of the fourth embodiment. Is different.
 図19に示すステップS101Aで、CPU74は、ユーザによる被写体追尾モードの実行の指示を受付デバイス62が受け付けたか否か判定する。受付デバイス62がユーザによる被写体追尾モードの実行の指示を受け付けた場合、ステップS101Aの判定が肯定判定となり、ステップS106へ移行する。 In step S101A shown in FIG. 19, the CPU 74 determines whether or not the receiving device 62 has received an instruction to execute the subject tracking mode by the user. When the receiving device 62 receives an instruction to execute the subject tracking mode from the user, the determination in step S101A is affirmative, and the process proceeds to step S106.
 一方、受付デバイス62が、ユーザによる被写体追尾モードの実行の指示を受け付けていない場合、ステップS101Aの判定が否定判定となり、ステップS101Bへ移行する。 On the other hand, if the receiving device 62 has not received an instruction to execute the subject tracking mode by the user, the determination in step S101A is negative, and the process proceeds to step S101B.
 ステップS101Bで、CPU74は、フレームレートf[Hz]と演算見込時間t(sec)とを乗算した値が、閾値TH以下(f×t≦TH)であるか否かを判定する。本実施形態では、本ステップS101Bの処理を実行することにより、CPU74は、フレームレートが高速であるために被写体の位置の変化を検出するのに要する演算処理が追いつかない状態であるか否かを判定する。なお、本判定に用いるための閾値THは実験等により予め得ておき、二次記憶部78に記憶させておけばよい。また、演算見込時間tは、撮像画像150の大きさ及び/または解像度等により異なるため、本実施形態の撮像装置10では、撮像画像150の大きさ及び/または解像度等に応じた複数の演算見込時間tを、予め二次記憶部78に記憶させておく。本実施形態の演算見込時間tが、本開示の処理予想時間の一例である。 In step S101B, the CPU 74 determines whether or not a value obtained by multiplying the frame rate f [Hz] by the calculation expected time t (sec) is equal to or less than a threshold value TH (f × t ≦ TH). In the present embodiment, by executing the processing of step S101B, the CPU 74 determines whether or not the arithmetic processing required to detect a change in the position of the subject cannot be caught because the frame rate is high. judge. Note that the threshold TH for use in this determination may be obtained in advance by experiments or the like and stored in the secondary storage unit 78. In addition, since the calculation expected time t varies depending on the size and / or resolution of the captured image 150, in the imaging apparatus 10 of the present embodiment, a plurality of calculation predictions corresponding to the size and / or resolution of the captured image 150 are provided. The time t is stored in the secondary storage unit 78 in advance. The calculation expected time t of the present embodiment is an example of the predicted processing time of the present disclosure.
 フレームレートfと演算見込時間tとを乗算した値が、閾値TH以下の場合、ステップS101Bの判定が肯定判定となり、ステップS101Cへ移行する。ステップS101Cで、CPU74は、被写体追尾モードの実行を許可する。 When the value obtained by multiplying the frame rate f by the calculation expected time t is equal to or less than the threshold value TH, the determination in step S101B is affirmative, and the process proceeds to step S101C. In step S101C, the CPU 74 permits execution of the subject tracking mode.
 一方、フレームレートfと演算見込時間tとを乗算した値が、閾値TH以下ではない場合、換言すると、フレームレートfと演算見込時間tとを乗算した値が、閾値THを超える場合、ステップS101Bの判定が否定判定となり、ステップS101Dへ移行する。ステップS101Dで、CPU74は、被写体追尾モードの実行を禁止する。 On the other hand, if the value obtained by multiplying the frame rate f by the calculation expected time t is not less than the threshold value TH, in other words, if the value obtained by multiplying the frame rate f by the calculation expected time t exceeds the threshold value TH, step S101B Is negative, and the process proceeds to step S101D. In step S101D, the CPU 74 prohibits execution of the subject tracking mode.
 例えば、閾値THが5(TH=5)、かつ演算見込時間tが0.01[sec]の場合、フレームレートfに応じて、以下のようになる。 For example, when the threshold value TH is 5 (TH = 5) and the calculation expected time t is 0.01 [sec], the following is performed according to the frame rate f.
 フレームレートfが100[Hz]の場合、
 t×f=0.01×100=1≦TH
 となるため、上記ステップS101Bが肯定判定となり、ステップS101Cで被写体追尾モードの実行が許可される。
When the frame rate f is 100 [Hz],
t × f = 0.01 × 100 = 1 ≦ TH
Therefore, the determination in step S101B is affirmative, and execution of the subject tracking mode is permitted in step S101C.
 一方、フレームレートfが1000[Hz]の場合、
 t×f=0.01×1000=10>TH
 となるため、上記ステップS101Bは否定判定となり、ステップS101Dで被写体追尾モードの実行が禁止される。
On the other hand, when the frame rate f is 1000 [Hz],
t × f = 0.01 × 1000 = 10> TH
Therefore, the determination in step S101B is negative, and execution of the subject tracking mode is prohibited in step S101D.
 このように本実施形態では、フレームレートfが高速になると、CPU74により被写体追尾モードの実行が禁止される。 Thus, in this embodiment, when the frame rate f becomes high, the CPU 74 prohibits execution of the subject tracking mode.
 また例えば、閾値THが5(TH=5)、かつフレームレートfが100[Hz]の場合、演算見込時間tに応じて、以下のようになる。 Also, for example, when the threshold value TH is 5 (TH = 5) and the frame rate f is 100 [Hz], it is as follows according to the calculation expected time t.
 演算見込時間tが0.01[sec]の場合、上述したように、t×f=1≦TH、となるため、上記ステップS101Bが肯定判定となり、ステップS101Cで被写体追尾モードの実行が許可される。 When the calculation expected time t is 0.01 [sec], as described above, since t × f = 1 ≦ TH, step S101B is positively determined, and execution of the subject tracking mode is permitted in step S101C. The
 一方、演算見込時間tが0.1[sec]の場合、
 t×f=0.1×100=10>TH
 となるため、上記ステップS101Bは否定判定となり、ステップS101Dで被写体追尾モードの実行が禁止される。
On the other hand, when the calculation expected time t is 0.1 [sec],
t × f = 0.1 × 100 = 10> TH
Therefore, the determination in step S101B is negative, and execution of the subject tracking mode is prohibited in step S101D.
 このように、本実施形態では、演算見込時間tが長くなると、CPU74により被写体追尾モードの実行が禁止される。 As described above, in this embodiment, when the calculation expected time t becomes longer, the CPU 74 prohibits execution of the subject tracking mode.
 なお、本実施形態では、被写体追尾モードの実行を許可及び禁止のいずれとするかの判定を、フレームレートfと演算見込時間tとを乗算した値と、閾値THとを比較することにより行う形態としているが、本形態に限定されない。フレームレートf及び演算見込時間tの少なくとも一方に応じて、被写体追尾モードの実行を許可及び禁止のいずれとするかの判定を行う形態であればよい。 In the present embodiment, the determination as to whether the execution of the subject tracking mode is permitted or prohibited is made by comparing the value obtained by multiplying the frame rate f by the calculation expected time t with the threshold value TH. However, it is not limited to this embodiment. Any form may be used as long as it is determined whether to permit or prohibit execution of the subject tracking mode in accordance with at least one of the frame rate f and the calculation expected time t.
 このように、本実施形態の撮像装置10では、フレームレートf及び演算見込時間tの少なくとも一方に応じて、被写体追尾モードを実行した場合にリアルタイムに測距領域152を移動させることができないと見込まれ、かつ像倍率の変化量が所定値を超える場合、フォーカスレンズ84の位置の変化に伴い変化する像倍率の変化量に応じて測距領域152の大きさを大きくする。 As described above, in the imaging apparatus 10 according to the present embodiment, it is expected that the ranging area 152 cannot be moved in real time when the subject tracking mode is executed according to at least one of the frame rate f and the calculation expected time t. When the change amount of the image magnification exceeds a predetermined value, the size of the distance measurement area 152 is increased in accordance with the change amount of the image magnification that changes as the position of the focus lens 84 changes.
 従って、本実施形態の撮像装置10によれば、測距領域152内に被写体の画像154が含まれる確率を高くすることができる。 Therefore, according to the imaging device 10 of the present embodiment, it is possible to increase the probability that the subject image 154 is included in the distance measurement area 152.
[第6実施形態]
 以下、第6実施形態について詳細に説明する。なお、本実施形態では、上記第1実施形態、第4実施形態、及び第5実施形態で説明した構成及び作用と同一の構成及び作用については同一の符号を付し、詳細な説明を省略する。
[Sixth Embodiment]
Hereinafter, the sixth embodiment will be described in detail. In the present embodiment, the same configurations and operations as those described in the first embodiment, the fourth embodiment, and the fifth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. .
 本実施形態の撮像装置10の構成は、第1実施形態の撮像装置10の構成(図1~図4参照)と同様であるため、説明を省略する。 The configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
 第5実施形態では、被写体追尾モードを実行した場合にリアルタイムに測距領域152を移動させることができないと見込まれる場合、被写体追尾モードの実行を禁止していた。これに対して、本実施形態では、リアルタイムに測距領域152を移動させることができないと見込まれる場合であっても、測距領域152の大きさを設定し、被写体追尾モードを実行する形態について説明する。 In the fifth embodiment, execution of the subject tracking mode is prohibited when it is expected that the distance measurement area 152 cannot be moved in real time when the subject tracking mode is executed. On the other hand, in this embodiment, even if it is expected that the distance measurement area 152 cannot be moved in real time, the size of the distance measurement area 152 is set and the subject tracking mode is executed. explain.
 ピークサーチ処理においてピーク検出動作を開始すると、フォーカスレンズ84の移動によって生じる像倍率の変化に伴って、被写体の画像154の位置は、図20に示した一例のように移動する。図20において、横軸は、フォーカスレンズ84の移動時間を表し、縦軸は、被写体の画像154の位置(像位置)を表している。 When the peak detection operation is started in the peak search process, the position of the subject image 154 moves as in the example shown in FIG. 20 as the image magnification changes due to the movement of the focus lens 84. In FIG. 20, the horizontal axis represents the movement time of the focus lens 84, and the vertical axis represents the position (image position) of the subject image 154.
 上述したように、被写体追尾モードでは、被写体の画像154の移動後の位置を検出するための演算処理の結果に基づいて、撮像画像150における測距領域152の位置を移動させる。従って、ピーク検出動作を開始した開始時刻T0から、始めに演算処理の結果が得られるまで、被写体の追尾ができず、測距領域152の位置が確定しない。そこで、本実施形態では、被写体の追尾に要する演算処理を行っている時間、具体的には、開始時刻T0から演算処理結果が得られるまでの時間(図20、処理予想時間参照)における像位置の変化量D0を用いて、測距領域152の大きさを設定する。 As described above, in the subject tracking mode, the position of the ranging area 152 in the captured image 150 is moved based on the result of the calculation process for detecting the position of the subject image 154 after the movement. Therefore, the subject cannot be tracked from the start time T0 when the peak detection operation is started until the first calculation result is obtained, and the position of the ranging area 152 is not fixed. Therefore, in the present embodiment, the image position in the time during which the computation process required for tracking the subject is performed, specifically, the time from the start time T0 until the computation process result is obtained (see the processing expected time in FIG. 20). The size of the distance measurement area 152 is set using the change amount D0.
 図21には、本実施形態のピークサーチ処理の流れの一例を示すフローチャートを示す。図21に示すように、本実施形態のピークサーチ処理では、第5実施形態のピークサーチ処理(図19参照)のステップS101C、S101Dの処理を含まない点、及びステップS108に代わり、ステップS108Bの処理を実行する点が異なっている。 FIG. 21 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 21, the peak search process of this embodiment does not include the processes of steps S101C and S101D of the peak search process (see FIG. 19) of the fifth embodiment, and instead of step S108, The difference is that the process is executed.
 そのため、本実施形態では、図21に示すステップS101Bで肯定判定となった場合、ステップS106へ移行する。一方、ステップS101Bで否定判定となった場合、ステップS102へ移行する。 Therefore, in this embodiment, when an affirmative determination is made in step S101B shown in FIG. 21, the process proceeds to step S106. On the other hand, when it becomes negative determination by step S101B, it transfers to step S102.
 また、ステップS108Bで、CPU74は、処理予想時間における、被写体の画像154の位置の変化量D0を導出する。処理予想時間における被写体の画像154の変化量は、処理予想時間内に、移動したフォーカスレンズ84の移動量に依存する。そのため、本実施形態のCPU74は、フォーカスレンズ84の移動速度と処理予想時間とを乗算した値からフォーカスレンズ84の移動量を導出する。さらにCPU74は、導出したフォーカスレンズ84の移動量と、フォーカスレンズ84の移動量について単位移動量当たりの像位置の変化量とを乗算することで、処理予想時間における像位置の変化量D0を導出する。なお、処理予想時間は、実験等により得られた値を、予め二次記憶部78に記憶させておけばよく、また、フォーカスレンズ84の移動速度も予め二次記憶部78に記憶させておけばよい。 In step S108B, the CPU 74 derives the change amount D0 of the position of the subject image 154 in the estimated processing time. The amount of change in the subject image 154 during the estimated processing time depends on the amount of movement of the focus lens 84 that has moved within the estimated processing time. Therefore, the CPU 74 of this embodiment derives the amount of movement of the focus lens 84 from a value obtained by multiplying the movement speed of the focus lens 84 and the estimated processing time. Furthermore, the CPU 74 multiplies the derived movement amount of the focus lens 84 by the variation amount of the image position per unit movement amount with respect to the movement amount of the focus lens 84, thereby deriving the variation amount D0 of the image position in the estimated processing time. To do. The estimated processing time may be stored in advance in the secondary storage unit 78 as a value obtained through experiments or the like, and the moving speed of the focus lens 84 may be stored in the secondary storage unit 78 in advance. That's fine.
 これにより、次のステップS110で、CPU74は、上記ステップS108Bで導出した変化量D0に基づいて、測距領域152の大きさを設定する。 Thereby, in the next step S110, the CPU 74 sets the size of the distance measurement area 152 based on the change amount D0 derived in step S108B.
 このように、本実施形態の撮像装置10では、被写体追尾モードの実行において、リアルタイムに測距領域152を移動させることができない場合でも、その演算処理に要する処理予想時間における被写体の画像154の位置の変化量D0に応じた大きさの測距領域152を設定する。従って、本実施形態の撮像装置10によれば、被写体の追尾中である測距領域152の位置が移動しない期間であっても、測距領域152内に被写体の画像154を十分に含めることができるため、合焦精度を向上させることができる。 As described above, in the imaging apparatus 10 of the present embodiment, even when the distance measurement area 152 cannot be moved in real time during execution of the subject tracking mode, the position of the subject image 154 in the estimated processing time required for the calculation processing A distance measuring area 152 having a size corresponding to the amount of change D0 is set. Therefore, according to the imaging apparatus 10 of the present embodiment, the subject image 154 can be sufficiently included in the distance measurement area 152 even during the period in which the position of the distance measurement area 152 during tracking of the subject does not move. Therefore, the focusing accuracy can be improved.
[第7実施形態]
 以下、第7実施形態について詳細に説明する。上記各実施形態では、測距領域152の大きさを一つ、ピーク検出動作前に予め設定し、設定した大きさの測距領域152でピーク検出動作を行うことにより、ピーク検出動作中は測距領域152の大きさを変更しない形態について説明した。これに対して、本実施形態では、ピーク検出動作中に、フォーカスレンズ84の移動(位置)に応じて、測距領域152の大きさを変更する形態について説明する。なお、本実施形態では、上記第1実施形態で説明した構成及び作用と同一の構成及び作用については同一の符号を付し、詳細な説明を省略する。
[Seventh Embodiment]
Hereinafter, the seventh embodiment will be described in detail. In each of the above-described embodiments, one size of the distance measurement area 152 is set in advance before the peak detection operation, and the peak detection operation is performed in the distance measurement area 152 having the set size, thereby performing measurement during the peak detection operation. The embodiment in which the size of the distance area 152 is not changed has been described. On the other hand, in the present embodiment, a mode in which the size of the ranging area 152 is changed according to the movement (position) of the focus lens 84 during the peak detection operation will be described. In the present embodiment, the same configurations and operations as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の撮像装置10の構成は、第1実施形態の撮像装置10の構成(図1~図4参照)と同様であるため、説明を省略する。 The configuration of the imaging apparatus 10 of the present embodiment is the same as the configuration of the imaging apparatus 10 of the first embodiment (see FIGS. 1 to 4), and thus description thereof is omitted.
 図22には、本実施形態のピークサーチ処理の流れの一例を示すフローチャートを示す。図22に示すように、本実施形態のピークサーチ処理では、第1実施形態のピークサーチ処理(図11参照)に比べ、ステップS110及びS112の各々に代わりに、ステップS110B及びS112Bの処理を実行する点が異なっている。 FIG. 22 is a flowchart showing an example of the flow of the peak search process of the present embodiment. As shown in FIG. 22, in the peak search process of the present embodiment, steps S110B and S112B are executed instead of steps S110 and S112, respectively, as compared with the peak search process of the first embodiment (see FIG. 11). Is different.
 図22に示すステップS110Bで、CPU74は、上記ステップS108で導出した変化量Dに基づいて、測距領域152の大きさを複数設定する。本実施形態では、一例として、開始位置psにおける測距領域152の大きさを通常サイズ、終了位置peにおける測距領域152の大きさを変化量Dを一辺とした大きさとし、開始位置psから終了位置peまでの間の複数の所定の位置毎(例えば、所定間隔毎)に測距領域152の大きさを設定する。測距領域152の大きさの変化量をSとすると、複数の所定の位置毎に、通常サイズに、下記(2)式により導出される変化量Sを順次加算した大きさを測距領域152の大きさとして設定する。 In step S110B shown in FIG. 22, the CPU 74 sets a plurality of sizes of the ranging area 152 based on the change amount D derived in step S108. In the present embodiment, as an example, the size of the distance measurement area 152 at the start position ps is set to the normal size, and the size of the distance measurement area 152 at the end position pe is set to a size with the change amount D as one side, and ends from the start position ps. The size of the distance measurement area 152 is set for each of a plurality of predetermined positions up to the position pe (for example, every predetermined interval). If the amount of change in the size of the ranging area 152 is S, the size obtained by sequentially adding the amount of change S derived from the following equation (2) to the normal size for each of a plurality of predetermined positions. Set as the size of.
 S=(D-通常サイズ)÷所定の位置の数  ・・・(2) S = (D-normal size) / number of predetermined positions (2)
 すなわち、本実施形態のステップS108Bでは、複数の所定の位置毎に、測距領域152の大きさが設定され、終了位置peに近付くほど測距領域152は大きくなる。 That is, in step S108B of the present embodiment, the size of the distance measurement area 152 is set for each of a plurality of predetermined positions, and the distance measurement area 152 becomes larger as it approaches the end position pe.
 次のステップS112Bで、CPU74は、ピーク検出動作を行う。なお、本実施形態では、第1実施形態のピークサーチ処理のステップS112で行われたピーク検出動作そのものは、同様である。ただし、測距領域152の大きさを、フォーカスレンズ84の位置が複数の所定の位置の各々に達する毎に、上記ステップS110Bで設定された大きさに変更しながらピーク検出動作を行う点と、以下に説明する点とが異なっている。 In the next step S112B, the CPU 74 performs a peak detection operation. In the present embodiment, the peak detection operation itself performed in step S112 of the peak search process of the first embodiment is the same. However, the peak detection operation is performed while changing the size of the ranging area 152 to the size set in step S110B each time the position of the focus lens 84 reaches each of a plurality of predetermined positions. The points described below are different.
 本実施形態では、上述したように、ピーク検出動作中に測距領域152の大きさが変化する。測距領域152の大きさの変化に応じて、測距領域152に含まれる(測距領域152内の)画像の画素数も変化する。そのため、本実施形態のCPU74は、検出したコントラスト値の正規化を行う点で第1実施形態のピーク検出動作と異なっている。具体的には、本実施形態のCPU74は、測距領域152の幅をH(画素数)、高さをV(画素数)とし、測距領域152から検出されたコントラスト値をCとした場合、幅Hと高さVとを乗算した値で、コントラスト値Cを除算する(C/(H×V))ことにより、単位画素あたりのコントラスト値にすることで正規化する。 In the present embodiment, as described above, the size of the ranging area 152 changes during the peak detection operation. As the size of the distance measurement area 152 changes, the number of pixels of the image (in the distance measurement area 152) included in the distance measurement area 152 also changes. Therefore, the CPU 74 of the present embodiment is different from the peak detection operation of the first embodiment in that the detected contrast value is normalized. Specifically, the CPU 74 of the present embodiment has a case in which the width of the ranging area 152 is H (number of pixels), the height is V (number of pixels), and the contrast value detected from the ranging area 152 is C. Then, the contrast value per unit pixel is normalized by dividing the contrast value C by the value obtained by multiplying the width H and the height V (C / (H × V)).
 このように、本実施形態の撮像装置10では、ピーク検出動作中に、フォーカスレンズ84の移動(位置)に応じて、測距領域152の大きさを変更することにより、像倍率の変化量に応じて測距領域152の大きさを大きくする。このため、ピーク検出動作中に、被写体の画像154が測距領域152から外れた状態となってしまうことを抑制することができる。従って、本実施形態の撮像装置10によれば、測距領域152内の被写体の画像154に基づいて安定してコントラスト値を取得することができ、測距領域152内におけるコントラスト値の変化のピークの検出精度を向上させることができる。 As described above, in the imaging apparatus 10 according to the present embodiment, during the peak detection operation, the size of the distance measurement area 152 is changed according to the movement (position) of the focus lens 84, thereby changing the image magnification change amount. Accordingly, the size of the distance measurement area 152 is increased. For this reason, it is possible to prevent the subject image 154 from being out of the distance measurement area 152 during the peak detection operation. Therefore, according to the imaging apparatus 10 of the present embodiment, the contrast value can be stably acquired based on the subject image 154 in the distance measuring area 152, and the contrast value change peak in the distance measuring area 152 is obtained. Detection accuracy can be improved.
 なお、ピーク検出動作中に、フォーカスレンズ84の移動(位置)に応じて、測距領域152の大きさを変更する形態は、本実施形態に限定されないことはいうまでもない。例えば、ステップS108に対応する処理で、終了位置peに対応する変化量Dの代わりとして、複数の所定の位置の各々に対応する複数の変化量Dを導出し、ステップS110Bに対応する処理で、複数の変化量Dの各々に基づいた測距領域152の大きさを、対応する複数の所定の位置毎に設定してもよい。 Note that it is needless to say that the mode of changing the size of the distance measurement area 152 according to the movement (position) of the focus lens 84 during the peak detection operation is not limited to this embodiment. For example, in the process corresponding to step S108, instead of the change amount D corresponding to the end position pe, a plurality of change amounts D corresponding to each of a plurality of predetermined positions are derived, and in the process corresponding to step S110B, The size of the ranging area 152 based on each of the plurality of change amounts D may be set for each of a plurality of corresponding predetermined positions.
 以上説明したように、上記各実施形態の撮像装置10は、フォーカスレンズ84を含む撮像レンズ14と、撮像レンズ14を通過した光学像を撮像して得られた画像信号を出力する撮像素子22及び撮像素子ドライバ50と、画像信号に応じた撮像画像を生成する画像処理部56と、フォーカスレンズ84の位置を光軸方向に沿って移動させるフォーカスレンズ駆動部90と、CPU74及びピークサーチプログラム79を記憶する二次記憶部78を含む本体側主制御部46と、を備える。 As described above, the imaging device 10 of each of the above embodiments includes the imaging lens 14 including the focus lens 84, the imaging element 22 that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens 14, and An imaging element driver 50, an image processing unit 56 that generates a captured image according to an image signal, a focus lens driving unit 90 that moves the position of the focus lens 84 along the optical axis direction, a CPU 74, and a peak search program 79. And a main body side main control unit 46 including a secondary storage unit 78 for storing.
 CPU74は、ピークサーチプログラム79を実行することにより、フォーカスレンズ駆動部90がフォーカスレンズ84を移動させる場合に、撮像画像150における測距領域152の大きさを、フォーカスレンズ84の位置の移動に伴い変化するフォーカスレンズ84の像倍率の変化量に応じた大きさに設定する制御を行う制御部と、フォーカスレンズ駆動部90によるフォーカスレンズ84の位置の移動に応じて変化する、制御部により大きさが設定された測距領域152内の画像のコントラスト値がピークとなるフォーカスレンズ84の位置を検出する検出部と、して機能する。そしてフォーカスレンズ駆動部90は、検出部が検出した位置にフォーカスレンズ84を移動させる。 When the focus lens driving unit 90 moves the focus lens 84 by executing the peak search program 79, the CPU 74 determines the size of the distance measurement area 152 in the captured image 150 according to the movement of the position of the focus lens 84. The size is controlled by the control unit that performs control to set the size according to the change amount of the image magnification of the focus lens 84 that changes, and the control unit that changes according to the movement of the position of the focus lens 84 by the focus lens driving unit 90. Functions as a detection unit that detects the position of the focus lens 84 at which the contrast value of the image in the distance measuring area 152 reaches a peak. Then, the focus lens driving unit 90 moves the focus lens 84 to the position detected by the detection unit.
 従って、上記各実施形態の撮像装置10では、測距領域152内から被写体の画像154が外れるのを抑制し、測距領域152内に十分に被写体の画像154を収めることができるため、測距領域152内におけるコントラスト値の変化のピークの検出精度を向上させることができる。そのため、上記各実施形態の撮像装置10によれば、コントラスト値がピークとなる場合のフォーカスレンズ84の位置に基づき、合焦状態を制御するため、合焦精度を向上させることができる。 Therefore, in the imaging device 10 of each of the above embodiments, the subject image 154 can be prevented from being detached from the distance measurement area 152 and the subject image 154 can be sufficiently stored in the distance measurement area 152. The detection accuracy of the peak of the change in contrast value in the region 152 can be improved. Therefore, according to the imaging device 10 of each of the embodiments described above, since the in-focus state is controlled based on the position of the focus lens 84 when the contrast value reaches a peak, the in-focus accuracy can be improved.
 なお、上記各実施形態では、フォーカスレンズ84の像倍率の変化量について、変化量が大きい場合(ピークサーチ処理のステップS104で否定判定となった場合)、像倍率(被写体の画像154の位置の変化量)に基づいた測距領域152の大きさを設定する形態について説明した。これらの形態に対して、測距領域152の大きさの設定について、変化量が大きい場合、測距領域152の大きさに制限を設け、測距領域152の大きさが過大になるのを抑制する形態としてもよい。測距領域152の大きさが過大になると、測距領域152内に、被写体の画像154以外の画像が過分に含まれてしまい、合焦精度が低下する可能性がある。そのため、上記のように、測距領域152の大きさの上限値を設けることが好ましい。上限値としては例えば、撮像画像150の幅(縦幅または横幅)の10%程度等が挙げられる。 In each of the above embodiments, when the amount of change in the image magnification of the focus lens 84 is large (when a negative determination is made in step S104 of the peak search process), the image magnification (the position of the subject image 154 is changed). A mode of setting the size of the distance measurement area 152 based on (change amount) has been described. In contrast to these forms, when the amount of change in the size setting of the ranging area 152 is large, the size of the ranging area 152 is limited to prevent the ranging area 152 from becoming excessively large. It is good also as a form to do. If the distance measurement area 152 is excessively large, an image other than the subject image 154 is excessively included in the distance measurement area 152, and there is a possibility that the focusing accuracy is lowered. Therefore, as described above, it is preferable to provide an upper limit value for the size of the distance measurement area 152. Examples of the upper limit include about 10% of the width (vertical width or horizontal width) of the captured image 150.
 また、上記各実施形態においてCPU74は、図23に例示したように、ピークサーチ処理におけるピーク検出動作中に、ディスプレイ28に表示されている撮像画像150に、設定した測距領域152を表す情報158(158A)を重畳させて表示させてもよい。測距領域152を表す情報を表示させる場合、図23に示したように、設定に応じた大きさの測距領域152を表す情報158Aを表示させてもよい。また、ディスプレイ28に表示されている測距領域152の大きさが変化した場合、ユーザが違和感を覚える可能性があるため、図23に示したように、変更前のサイズの測距領域152、換言すると通常サイズのままの測距領域152を表す情報158を表示させてもよい。 Further, in each of the embodiments described above, as illustrated in FIG. 23, the CPU 74 performs information 158 representing the set ranging area 152 in the captured image 150 displayed on the display 28 during the peak detection operation in the peak search process. (158A) may be superimposed and displayed. When displaying information representing the distance measurement area 152, as shown in FIG. 23, information 158A representing the distance measurement area 152 having a size corresponding to the setting may be displayed. Further, when the size of the distance measurement area 152 displayed on the display 28 changes, the user may feel uncomfortable, so as shown in FIG. 23, as shown in FIG. In other words, the information 158 representing the distance measurement area 152 with the normal size may be displayed.
 上記各実施形態では、ピークサーチプログラム79を二次記憶部78から読み出す場合を例示したが、必ずしも最初から二次記憶部78に記憶させておく必要はない。例えば、図24に示すように、SSD(Solid State Drive)、USB(Universal Serial Bus)メモリ、またはCD-ROM(Compact Disc Read Only Memory)等の任意の可搬型の記憶媒体250に先ずはピークサーチプログラム79を記憶させておいてもよい。この場合、記憶媒体250のピークサーチプログラム79が撮像装置本体12にインストールされ、インストールされたピークサーチプログラム79がCPU74によって実行される。 In each of the above embodiments, the case where the peak search program 79 is read from the secondary storage unit 78 is illustrated, but it is not always necessary to store the peak search program 79 in the secondary storage unit 78 from the beginning. For example, as shown in FIG. 24, a peak search is first performed on an arbitrary portable storage medium 250 such as an SSD (Solid State Drive) memory, a USB (Universal Serial Bus) memory, or a CD-ROM (Compact Disc Read Only Memory). The program 79 may be stored. In this case, the peak search program 79 of the storage medium 250 is installed in the imaging apparatus main body 12, and the installed peak search program 79 is executed by the CPU 74.
 また、通信網(図示省略)を介して撮像装置本体12に接続される他のコンピュータまたはサーバ装置等の記憶部にピークサーチプログラム79を記憶させておき、ピークサーチプログラム79が撮像装置本体12の要求に応じてダウンロードされるようにしてもよい。この場合、ダウンロードされたピークサーチプログラム79はCPU74によって実行される。 Further, a peak search program 79 is stored in a storage unit such as another computer or a server device connected to the imaging apparatus body 12 via a communication network (not shown), and the peak search program 79 is stored in the imaging apparatus body 12. It may be downloaded on demand. In this case, the downloaded peak search program 79 is executed by the CPU 74.
 また、上記各実施形態で説明したピークサーチ処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。 In addition, the peak search process described in the above embodiments is merely an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps may be added, and the processing order may be changed within a range not departing from the spirit.
 また、上記各実施形態では、コンピュータを利用したソフトウェア構成によりピークサーチ処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、ピークサーチ処理が実行されてもよい。また、ピークサーチ処理がソフトウェア構成とハードウェア構成とを組み合わせた構成によって実行されてもよい。 In each of the above embodiments, the case where the peak search process is realized by a software configuration using a computer is illustrated, but the technology of the present disclosure is not limited to this. For example, instead of a software configuration using a computer, the peak search process may be executed only by a hardware configuration such as FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Specific Integrated Circuit). Further, the peak search process may be executed by a configuration combining a software configuration and a hardware configuration.
 より詳しくは、上記実施形態で説明したピークサーチ処理を実行するハードウェア資源としては、次に示す各種のプロセッサを用いることができる。プロセッサとしては、例えば、上述したように、ソフトウェア、すなわち、プログラムを実行することで、ピークサーチ処理を実行するハードウェア資源として機能する汎用的なプロセッサであるCPUが挙げられる。また、プロセッサとしては、例えば、FPGA、PLD(Programmable Logic Device)、又はASICなどの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路が挙げられる。 More specifically, the following various processors can be used as hardware resources for executing the peak search process described in the above embodiment. Examples of the processor include a CPU that is a general-purpose processor that functions as a hardware resource for executing peak search processing by executing software, that is, a program, as described above. Examples of the processor include a dedicated electric circuit that is a processor having a circuit configuration specifically designed to execute specific processing such as FPGA, PLD (Programmable Logic Device), or ASIC.
 ピークサーチ処理を実行するハードウェア資源は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ、又はCPUとFPGAとの組み合わせ)で構成されてもよい。また、本開示の技術に係る各種処理を実行するハードウェア資源は1つのプロセッサであってもよい。 The hardware resource for executing the peak search process may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs, or (Combination of CPU and FPGA). Moreover, one processor may be sufficient as the hardware resource which performs the various processes which concern on the technique of this indication.
 1つのプロセッサで構成する例としては、第1に、クライアント及びサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが、ピークサーチ処理を実行するハードウェア資源として機能する形態がある。第2に、SoC(System-on-a-chip)などに代表されるように、ピークサーチ処理を実行する複数のハードウェア資源を含むシステム全体の機能を1つのICチップで実現するプロセッサを使用する形態がある。このように、ピークサーチ処理は、ハードウェア資源として、上記各種のプロセッサの1つ以上を用いて実現される。 As an example of configuring with one processor, first, as represented by a computer such as a client and a server, one processor is configured by a combination of one or more CPUs and software, and this processor is used for peak search. There is a form that functions as a hardware resource for executing processing. Second, as represented by SoC (System-on-a-chip), etc., a processor that implements the functions of the entire system including a plurality of hardware resources for executing peak search processing with a single IC chip is used. There is a form to do. As described above, the peak search process is realized by using one or more of the various processors as hardware resources.
 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路を用いることができる。 Furthermore, as a hardware structure of these various processors, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined can be used.
 以上の記載から、以下の付記項1に記載の発明を把握することができる。 From the above description, the invention described in the following supplementary item 1 can be grasped.
 [付記項1]
 フォーカスレンズを含む撮像レンズと、前記撮像レンズを通過した光学像を撮像して得られた画像信号を出力する撮像部と、前記画像信号に応じた撮像画像を生成する画像生成部と、前記フォーカスレンズの位置を光軸方向に沿って移動させる移動部と、を備える撮像装置において、
 前記移動部が前記フォーカスレンズを移動させる場合に、前記撮像画像における測距領域の大きさを、前記フォーカスレンズの位置の移動に伴い変化する前記フォーカスレンズの像倍率の変化量に応じた大きさに設定する制御を行う制御プロセッサと、
 前記移動部による前記フォーカスレンズの位置の移動に応じて変化する、前記制御プロセッサにより大きさが設定された前記測距領域内の画像のコントラスト値がピークとなる前記フォーカスレンズの位置を検出する検出プロセッサと、
 を備え、
 前記移動部は、前記検出プロセッサが検出した前記位置に前記フォーカスレンズを移動させる、
 撮像装置。
[Additional Item 1]
An imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, an image generation unit that generates a captured image according to the image signal, and the focus In an imaging apparatus comprising: a moving unit that moves the position of the lens along the optical axis direction;
When the moving unit moves the focus lens, the size of the distance measurement area in the captured image is a size according to the amount of change in the image magnification of the focus lens that changes with the movement of the position of the focus lens. A control processor for performing control to be set to
Detection that detects the position of the focus lens at which the contrast value of the image in the distance measurement area whose size is set by the control processor changes according to the movement of the position of the focus lens by the moving unit. A processor;
With
The moving unit moves the focus lens to the position detected by the detection processor;
Imaging device.
 本明細書において、「A及び/またはB」は、「A及びBのうちの少なくとも1つ」と同義である。つまり、「A及び/またはB」は、Aだけであってもよいし、Bだけであってもよいし、A及びBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「及び/または」で結び付けて表現する場合も、「A及び/またはB」と同様の考え方が適用される。 In the present specification, “A and / or B” is synonymous with “at least one of A and B”. That is, “A and / or B” means that only A, B, or a combination of A and B may be used. Further, in this specification, the same concept as “A and / or B” is applied when expressing three or more things by connecting them with “and / or”.
 本出願は、2018年3月9日出願の日本出願である特願2018-043562の優先権を主張するものであり、この出願の全内容は参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 This application claims the priority of Japanese Patent Application No. 2018-043562, which is a Japanese application filed on March 9, 2018, the entire contents of which are incorporated herein by reference. In addition, all documents, patent applications, and technical standards described in this specification are the same as when individual documents, patent applications, and technical standards are specifically and individually described to be incorporated by reference. Incorporated herein by reference.

Claims (14)

  1.  フォーカスレンズを含む撮像レンズと、
     前記撮像レンズを通過した光学像を撮像して得られた画像信号を出力する撮像部と、
     前記画像信号に応じた撮像画像を生成する画像生成部と、
     前記フォーカスレンズの位置を光軸方向に沿って移動させる移動部と、
     前記移動部が前記フォーカスレンズを移動させる場合に、前記撮像画像における測距領域の大きさを、前記フォーカスレンズの位置の移動に伴い変化する前記フォーカスレンズの像倍率の変化量に応じた大きさに設定する制御を行う制御部と、
     前記移動部による前記フォーカスレンズの位置の移動に応じて変化する、前記制御部により大きさが設定された前記測距領域内の画像のコントラスト値がピークとなる前記フォーカスレンズの位置を検出する検出部と、
     を備え、
     前記移動部は、前記検出部が検出した前記位置に前記フォーカスレンズを移動させる、
     撮像装置。
    An imaging lens including a focus lens;
    An imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens;
    An image generation unit that generates a captured image according to the image signal;
    A moving unit that moves the position of the focus lens along the optical axis direction;
    When the moving unit moves the focus lens, the size of the distance measurement area in the captured image is a size according to the amount of change in the image magnification of the focus lens that changes with the movement of the position of the focus lens. A control unit that performs control to be set to
    Detection that detects the position of the focus lens at which the contrast value of the image within the distance measurement area whose size is set by the control unit changes according to the movement of the position of the focus lens by the moving unit. And
    With
    The moving unit moves the focus lens to the position detected by the detecting unit;
    Imaging device.
  2.  前記制御部は、前記像倍率の変化量から、前記測距領域に含まれる被写体の画像の位置の変化量を導出し、導出した前記被写体の画像の位置の変化量に基づいて前記測距領域の大きさを決定する、
     請求項1に記載の撮像装置。
    The control unit derives a change amount of the position of the image of the subject included in the distance measurement area from the change amount of the image magnification, and the distance measurement area based on the derived change amount of the position of the image of the subject Determine the size of
    The imaging device according to claim 1.
  3.  前記被写体の画像の位置の変化量は、前記検出部が前記ピークを検出する場合に前記移動部により前記フォーカスレンズが移動するピーク検出範囲に応じた像倍率の変化量と、前記測距領域の位置とから導出する、
     請求項2に記載の撮像装置。
    The amount of change in the position of the image of the subject includes the amount of change in image magnification according to the peak detection range in which the focus lens moves by the moving unit when the detecting unit detects the peak, and Derived from the position,
    The imaging device according to claim 2.
  4.  前記制御部は、前記像倍率の変化量が大きくなるほど、前記測距領域の大きさを大きくする、
     請求項1から請求項3のいずれか1項に記載の撮像装置。
    The control unit increases the size of the ranging area as the amount of change in the image magnification increases.
    The imaging device according to any one of claims 1 to 3.
  5.  前記制御部は、前記移動部による前記フォーカスレンズの位置の移動に伴い前記像倍率が拡大する場合、前記測距領域の位置を前記撮像画像の外縁に向けた位置に変更し、前記像倍率が縮小する場合、前記測距領域の位置を前記撮像画像の中心に向けた位置に変更する、
     請求項1から請求項4のいずれか1項に記載の撮像装置。
    The control unit changes the position of the distance measurement area to a position facing the outer edge of the captured image when the image magnification is increased in accordance with the movement of the position of the focus lens by the moving unit, and the image magnification is When reducing, change the position of the ranging area to a position toward the center of the captured image,
    The imaging device according to any one of claims 1 to 4.
  6.  前記制御部は、前記測距領域に含まれる被写体の画像の位置の変化に伴って前記測距領域の位置を移動させる移動処理を行う、
     請求項1から請求項4のいずれか1項に記載の撮像装置。
    The control unit performs a movement process of moving the position of the ranging area in accordance with a change in the position of the image of the subject included in the ranging area;
    The imaging device according to any one of claims 1 to 4.
  7.  前記移動処理の実行を指示する指示部をさらに備え、
     前記制御部は、前記指示部の指示に応じて前記移動処理を実行する場合、変化後の前記被写体の画像の位置の導出に要すると予想される処理予想時間における、前記測距領域に含まれる前記被写体の画像の位置の変化量を導出する、
     請求項6に記載の撮像装置。
    An instruction unit for instructing execution of the movement process;
    When the control unit executes the movement process in response to an instruction from the instruction unit, the control unit is included in the distance measurement area at an expected processing time required to derive the position of the image of the subject after the change. Deriving the amount of change in the position of the subject image;
    The imaging device according to claim 6.
  8.  前記移動処理の実行を指示する指示部をさらに備え、
     前記制御部は、前記指示部の指示に応じて前記移動処理を実行する場合、設定する前記測距領域の大きさを、前記像倍率の変化によらず予め定められた大きさのままとする、
     請求項6に記載の撮像装置。
    An instruction unit for instructing execution of the movement process;
    When the control unit executes the movement process in response to an instruction from the instruction unit, the size of the distance measurement area to be set remains a predetermined size regardless of a change in the image magnification. ,
    The imaging device according to claim 6.
  9.  前記指示部は、前記移動処理に要すると予想される処理予想時間、及び前記撮像部が前記撮像を行うフレームレートの少なくとも一方に応じて前記移動処理の実行を指示する、
     請求項8に記載の撮像装置。
    The instruction unit instructs execution of the movement process according to at least one of an estimated processing time expected to be required for the movement process and a frame rate at which the imaging unit performs the imaging.
    The imaging device according to claim 8.
  10.  前記制御部は、前記検出部による前記ピークの検出の開始位置を基準位置とし、前記基準位置からの距離が各々異なる、前記光軸方向に沿った複数の範囲の各々に対応して導出した複数の前記測距領域の大きさを設定し、
     前記検出部は、前記複数の範囲のうち、前記移動部が前記フォーカスレンズの位置の移動を停止した位置が含まれる範囲に対応する大きさの前記測距領域について検出したピークの位置を出力する、
     請求項1から請求項9のいずれか1項に記載の撮像装置。
    The control unit uses a start position of the peak detection by the detection unit as a reference position, and is derived in correspondence with each of a plurality of ranges along the optical axis direction, each having a different distance from the reference position. Set the size of the ranging area of
    The detection unit outputs a position of a peak detected for the ranging area having a size corresponding to a range including a position where the moving unit stops moving the position of the focus lens among the plurality of ranges. ,
    The imaging device according to any one of claims 1 to 9.
  11.  前記撮像画像を表示する表示部をさらに備え、
     前記制御部は、前記表示部に表示された撮像画像に対して前記測距領域を表す情報を表示させる、
     請求項1から請求項10のいずれか1項に記載の撮像装置。
    A display unit for displaying the captured image;
    The control unit displays information representing the ranging area for the captured image displayed on the display unit.
    The imaging device according to any one of claims 1 to 10.
  12.  前記制御部は、前記撮像画像に対して表示させる前記測距領域を表す情報における前記測距領域の大きさを、設定した前記測距領域の大きさに依らず、予め定められた大きさのままとする、
     請求項11に記載の撮像装置。
    The control unit sets the size of the distance measurement area in the information representing the distance measurement area to be displayed for the captured image to a predetermined size regardless of the set size of the distance measurement area. Leave,
    The imaging device according to claim 11.
  13.  フォーカスレンズを含む撮像レンズと、前記撮像レンズを通過した光学像を撮像して得られる画像信号を出力する撮像部と、前記画像信号に応じた撮像画像を生成する画像生成部と、前記フォーカスレンズの位置を光軸方向に沿って移動させる移動部と、を備えた撮像装置が実行する撮像方法であって、
     前記移動部が前記フォーカスレンズを移動させる場合に、前記撮像画像における測距領域の大きさを、前記フォーカスレンズの位置の移動に伴い変化する前記フォーカスレンズの像倍率の変化量に応じた大きさに設定する制御を行い、
     前記移動部による前記フォーカスレンズの位置の移動に応じて変化する、大きさが設定された前記測距領域内の画像のコントラスト値がピークとなる前記フォーカスレンズの位置を検出し、
     前記移動部により、検出した前記位置に前記フォーカスレンズを移動させる、
     処理を含む撮像方法。
    An imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, an image generation unit that generates a captured image according to the image signal, and the focus lens An image capturing method executed by an image capturing apparatus comprising: a moving unit that moves the position of
    When the moving unit moves the focus lens, the size of the distance measurement area in the captured image is a size according to the amount of change in the image magnification of the focus lens that changes with the movement of the position of the focus lens. Control to be set to
    Detecting the position of the focus lens at which the contrast value of the image in the distance measuring area having a size that changes according to the movement of the position of the focus lens by the moving unit is a peak;
    Moving the focus lens to the detected position by the moving unit;
    An imaging method including processing.
  14.  フォーカスレンズを含む撮像レンズと、前記撮像レンズを通過した光学像を撮像して得られる画像信号を出力する撮像部と、前記画像信号に応じた撮像画像を生成する画像生成部と、前記フォーカスレンズの位置を光軸方向に沿って移動させる移動部と、を備えた撮像装置を制御するコンピュータに、
     前記移動部が前記フォーカスレンズを移動させる場合に、前記撮像画像における測距領域の大きさを、前記フォーカスレンズの位置の移動に伴い変化する前記フォーカスレンズの像倍率の変化量に応じた大きさに設定する制御を行い、
     前記移動部による前記フォーカスレンズの位置の移動に応じて変化する、大きさが設定された前記測距領域内の画像のコントラスト値がピークとなる前記フォーカスレンズの位置を検出し、
     前記移動部により、検出した前記位置に前記フォーカスレンズを移動させる、
     処理を実行させるためのプログラム。
    An imaging lens including a focus lens, an imaging unit that outputs an image signal obtained by imaging an optical image that has passed through the imaging lens, an image generation unit that generates a captured image according to the image signal, and the focus lens A computer that controls the imaging device, and a moving unit that moves the position of the
    When the moving unit moves the focus lens, the size of the distance measurement area in the captured image is a size according to the amount of change in the image magnification of the focus lens that changes with the movement of the position of the focus lens. Control to be set to
    Detecting the position of the focus lens at which the contrast value of the image in the distance measuring area having a size that changes according to the movement of the position of the focus lens by the moving unit is a peak;
    Moving the focus lens to the detected position by the moving unit;
    Program for executing processing.
PCT/JP2018/045512 2018-03-09 2018-12-11 Imaging device, imaging method, and program WO2019171696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-043562 2018-03-09
JP2018043562 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019171696A1 true WO2019171696A1 (en) 2019-09-12

Family

ID=67845965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045512 WO2019171696A1 (en) 2018-03-09 2018-12-11 Imaging device, imaging method, and program

Country Status (1)

Country Link
WO (1) WO2019171696A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096962A (en) * 2008-10-16 2010-04-30 Fujinon Corp Auto focus system with af frame auto-tracking function
JP2014006477A (en) * 2012-06-27 2014-01-16 Canon Inc Imaging apparatus, lens device and method for controlling imaging apparatus
JP2014137583A (en) * 2013-01-18 2014-07-28 Olympus Imaging Corp Focus adjustment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096962A (en) * 2008-10-16 2010-04-30 Fujinon Corp Auto focus system with af frame auto-tracking function
JP2014006477A (en) * 2012-06-27 2014-01-16 Canon Inc Imaging apparatus, lens device and method for controlling imaging apparatus
JP2014137583A (en) * 2013-01-18 2014-07-28 Olympus Imaging Corp Focus adjustment device

Similar Documents

Publication Publication Date Title
US10091421B2 (en) Imaging apparatus, imaging method, and program
US8659681B2 (en) Method and apparatus for controlling zoom using touch screen
KR100914084B1 (en) Image capture device and image capture method
US8040419B2 (en) Image reproducing device capable of zooming in a region of an image, image reproducing method and recording medium for the same
US8648960B2 (en) Digital photographing apparatus and control method thereof
US11412128B2 (en) Imaging device, control method of imaging device, and control program of imaging device to change zoom tracking information based on contrast values
JP6611614B2 (en) Electronic device, control method therefor, program, and storage medium
US20180316858A1 (en) Image processing apparatus and image processing apparatus control method
JP2007081732A (en) Imaging apparatus
US20120026284A1 (en) Imaging apparatus and control method therefor
US11245846B2 (en) Image capturing control apparatus and control method therefor
JP6815503B2 (en) Imaging device, control method of imaging device, and control program of imaging device
JP5409483B2 (en) Imaging device
JP2007225897A (en) Focusing position determination device and method
WO2020003862A1 (en) Imaging device, imaging method, and program
WO2019171696A1 (en) Imaging device, imaging method, and program
WO2018225360A1 (en) Imaging device, control method for imaging device, and control program for imaging device
JP2015036845A (en) Electronic device and program
WO2019187382A1 (en) Focus control device, focus control method, and program
US10440259B2 (en) Electronic device and method of controlling the same
JP6755405B2 (en) Image pickup device, control method of image pickup device, and control program of image pickup device
JP2009088674A (en) Image display device, program, and imaging device
WO2021149689A1 (en) Imaging device and control method
EP2605504A2 (en) Method and apparatus for reproducing image, and computer-readable storage medium
JP5610738B2 (en) Display control apparatus, control method, program, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP