WO2019171674A1 - Power supply stabilization circuit - Google Patents

Power supply stabilization circuit Download PDF

Info

Publication number
WO2019171674A1
WO2019171674A1 PCT/JP2018/043829 JP2018043829W WO2019171674A1 WO 2019171674 A1 WO2019171674 A1 WO 2019171674A1 JP 2018043829 W JP2018043829 W JP 2018043829W WO 2019171674 A1 WO2019171674 A1 WO 2019171674A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
power supply
voltage
ripple
resistance value
Prior art date
Application number
PCT/JP2018/043829
Other languages
French (fr)
Japanese (ja)
Inventor
山尾 隆
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019171674A1 publication Critical patent/WO2019171674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/613Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in parallel with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements

Definitions

  • This disclosure relates to a power supply stabilization circuit that stabilizes the output of a constant voltage power supply.
  • a regulator circuit is used to stabilize the output of a constant voltage power supply (DC power supply) (specifically, to remove a ripple component contained in the output).
  • the regulator circuit inserts a transistor in series in the output path of the constant voltage power supply, and feedback-controls the transistor so that the output of the constant voltage power supply becomes a target voltage value, so that the output including the ripple component is constant.
  • It is intended to be a voltage of.
  • Patent Literature 1 discloses such a technique.
  • Patent Document 1 since a transistor inserted in series in the output path of the constant voltage power supply passes through the entire current output from the constant voltage power supply, a transistor with a large package corresponding to a large current is required. Become. In addition, since the heat generation of the transistor increases in proportion to the amount of current passing through the transistor, a large heat sink corresponding to a large current is required. As a result, the configuration for stabilizing the output of the constant voltage power supply becomes large.
  • the present disclosure provides a power supply stabilization circuit capable of downsizing a configuration for stabilizing the output of a constant voltage power supply.
  • a power supply stabilization circuit in the present disclosure is a power supply stabilization circuit that stabilizes a constant voltage signal including a ripple component output from a constant voltage power supply and outputs the stabilized voltage signal from an output terminal, the constant voltage power supply, the output terminal, A ripple extracting unit that extracts a ripple voltage indicating a ripple component included in the constant voltage signal, and a ripple extracting unit and a ground in the first route.
  • a bias voltage generator that adds a bias voltage to the ripple voltage, a transistor that connects the output path and the ground, and that is disposed in a second path different from the first path, and the second A reference voltage generator connected between the transistor and ground in the path and generating a reference voltage corresponding to the output current of the transistor;
  • a power terminal and a negative input terminal which inverts and amplifies the difference between the reference voltage input to the positive input terminal and the ripple voltage to which the bias voltage input to the negative input terminal is added, and
  • a differential amplifier that outputs the amplified differential signal to the transistor, and an output current of the transistor flows from the constant voltage signal to the reference voltage generator through the transistor in accordance with the differential signal Current.
  • the power supply stabilization circuit in the present disclosure can reduce the size of the configuration for stabilizing the output of the constant voltage power supply.
  • FIG. 1 is a circuit configuration diagram showing an example of a power supply stabilization circuit according to the first embodiment.
  • FIG. 2 is a diagram illustrating a waveform of a constant voltage signal including a ripple component output from a constant voltage power supply.
  • FIG. 3 is a diagram showing a waveform of a ripple voltage to which a reference voltage and a bias voltage are added, which are input to the differential amplifier.
  • FIG. 4 is a diagram illustrating a waveform of a differential signal output from the differential amplifier.
  • FIG. 5 is a diagram illustrating a waveform of a voltage generated in the shunt resistor portion.
  • FIG. 6 is a diagram for explaining that the ripple component is removed.
  • FIG. 7 is a circuit configuration diagram showing an example of a power supply stabilization circuit according to the second embodiment.
  • FIG. 8 is a circuit configuration diagram showing an example of a power supply stabilization circuit according to a modification of the second embodiment.
  • FIG. 1 is a circuit configuration diagram showing an example of a power supply stabilization circuit 1 according to the first embodiment.
  • processing is performed by a constant voltage power supply 100 that outputs a signal input to the power supply stabilization circuit 1 and the power supply stabilization circuit 1 (details will be described later, but ripple removal processing).
  • the load 120 connected to the output terminal 110 and the output terminal 110 which output the signal which was) is shown.
  • the constant voltage power source 100 is a power source that generates and outputs a constant voltage signal from an AC power source or a DC power source.
  • the constant voltage signal output from the constant voltage power supply 100 includes noise such as a ripple component.
  • the load 120 is connected to the output terminal 110 in order to supply power output from the constant voltage power supply 100.
  • the load 120 is, for example, a device that reproduces sound, and it is necessary to supply power from which the ripple component has been removed in order to achieve high sound quality.
  • the power supply stabilization circuit 1 is a circuit that stabilizes a constant voltage signal including a ripple component output from the constant voltage power supply 100 and outputs it from the output terminal 110.
  • a component that does not include a ripple component in the constant voltage signal is also referred to as a DC (Direct Current) component.
  • the constant voltage signal output from the constant voltage power supply 100 has a ripple component superimposed on a DC component.
  • the power supply stabilization circuit 1 includes a ripple extraction unit 10, a bias voltage generation unit 20, a transistor 30, a reference voltage generation unit 40, and a differential amplification unit 50.
  • the ripple extracting unit 10 is arranged in an output path L0 connecting the constant voltage power supply 100 and the output terminal 110 and a first path L1 connecting the ground, and extracts a ripple voltage indicating a ripple component included in the constant voltage signal.
  • the first path L1 is a path connecting the node x1 on the output path L0 and the ground.
  • a node is a point where two or more wirings are connected in an electronic circuit, and is represented by a black circle in the circuit diagram shown in FIG.
  • the ripple component is a noise component superimposed on a constant voltage (DC component) generated by the constant voltage power supply 100, and is generated, for example, corresponding to the switching frequency when generating the constant voltage.
  • the ripple extraction unit 10 is, for example, a capacitor connected in series between the output path L0 (node x1) and a negative input terminal included in the differential amplification unit 50 described later, and only a ripple voltage corresponding to the switching frequency is included. Can be taken out.
  • the constant voltage signal including the ripple component fluctuates around the DC component, and the ripple extraction unit 10 extracts this fluctuation as a ripple voltage that fluctuates on the plus side and the minus side around 0V.
  • the bias voltage generation unit 20 is connected between the ripple extraction unit 10 and the ground in the first path L1, and adds a bias voltage to the ripple voltage.
  • the ripple extracting unit 10 and the bias voltage generating unit 20 are connected in series between the node x1 and the ground. Since the ripple voltage extracted by the ripple extraction unit 10 fluctuates around 0 V as described above, the bias voltage is biased so that the ripple voltage when the differential amplification unit 50 described later is fluctuating to the negative side can also be detected.
  • the voltage generator 20 generates a bias voltage and adds it to the ripple voltage. As a result, the ripple voltage that fluctuates to the negative side also becomes a positive voltage, and the differential amplifier 50 can always detect the ripple voltage.
  • the bias voltage generation unit 20 generates a bias voltage using a reverse voltage of a diode.
  • the transistor 30 is disposed on a second path L2 that is different from the first path L1 and connects the output path L0 that connects the constant voltage power supply 100 and the output terminal 110 to the ground.
  • the second path L2 is a path connecting the node x2 on the output path L0 and the ground.
  • the node x1 and the node x2 are provided at positions separated from each other on the circuit diagram, but may be provided at the same position on an actual substrate or the like.
  • the transistor 30 is, for example, a PNP bipolar transistor, an emitter is connected to the node x2, a collector is connected to a reference voltage generation unit 40 described later, and a base is connected to a differential amplification unit 50 described later. A voltage is applied to the base of the transistor 30 so that a small amount of current always flows between the emitter and the collector. The current flowing between the emitter and collector is also referred to as the output current of the transistor 30.
  • the reference voltage generation unit 40 is connected between the transistor 30 and the ground in the second path L2, and generates a reference voltage according to the output current of the transistor 30. That is, the reference voltage generation unit 40 generates a reference voltage corresponding to the current between the emitter and collector of the transistor 30.
  • the reference voltage generator 40 includes a shunt resistor 41 that is disposed between the transistor 30 and the ground in the second path L2, a path that connects the transistor 30 and the shunt resistor 41, and a differential amplifier 50 that will be described later.
  • a low-pass filter (LPF) 42 disposed in a path connecting to the positive electrode input terminal.
  • the shunt resistor unit 41 includes only the first resistor R1 connected between the transistor 30 and the ground, and the voltage that is the product of the output current of the transistor 30 and the resistance value of the first resistor R1 is the shunt resistor unit. Occurs at 41.
  • the configuration of the shunt resistor 41 is not limited to the configuration including only the first resistor R1 connected between the transistor 30 and the ground, and other examples will be described in a second embodiment to be described later.
  • the LPF 42 is configured by, for example, an RC filter composed of a resistor and a capacitor, and uses a frequency lower than the frequency of the ripple component as a pass band.
  • the configuration of the LPF 42 is not limited to an RC filter or the like, and is not particularly limited as long as it is a configuration that can realize a low-pass filter.
  • the reference voltage generated by the reference voltage generation unit 40 is a voltage having a component corresponding to the pass band of the LPF 42 in the voltage generated in the shunt resistor unit 41 according to the output current of the transistor 30.
  • the differential amplifier 50 is a differential amplifier circuit having a positive input terminal (+) and a negative input terminal ( ⁇ ), for example, an operational amplifier.
  • a reference voltage generator 40 (specifically, LPF 42) is connected to the positive input terminal, and the reference voltage generated by the reference voltage generator 40 is input to the positive input terminal.
  • the negative input terminal is connected between the ripple extracting unit 10 and the bias voltage generating unit 20 in the first path L1, and a ripple voltage to which a bias voltage is added is input.
  • the output terminal (out) of the differential amplifier 50 is connected to the base of the transistor 30.
  • the differential amplifying unit 50 inverts and amplifies the difference between the reference voltage input to the positive input terminal and the ripple voltage to which the bias voltage input to the negative input terminal is added. Output to base.
  • the output current of the transistor 30 is a current that flows from the constant voltage signal output from the constant voltage power supply 100 to the reference voltage generation unit 40 via the transistor 30 in accordance with the difference signal.
  • the transistor 30 outputs, as an output current, a current that flows from the constant voltage signal output from the voltage power supply 100 to the reference voltage generation unit 40 via the transistor 30 according to the difference signal.
  • the difference signal is smaller, that is, the voltage applied to the base of the transistor 30 that is a PNP bipolar transistor is smaller. The current drawn is increased.
  • the ripple component is often a minute component compared to the DC component, and in the present disclosure, the power supply stabilization circuit 1 performs an operation that gives the constant voltage signal a current fluctuation enough to remove the minute component. Therefore, the current drawn from the constant voltage signal by the transistor 30 is also minute according to the ripple component.
  • the horizontal axis (time) scale is unified. That is, the same position on the time axis in each graph is the same timing. Actually, a slight deviation occurs depending on the responsiveness of each component constituting the power supply stabilization circuit 1.
  • the scale of the vertical axis (voltage) is not unified. That is, the same position on the voltage axis in each graph is not necessarily the same voltage value.
  • FIG. 2 is a diagram showing a waveform of a constant voltage signal including a ripple component output from the constant voltage power supply 100.
  • a waveform (solid line in FIG. 2) in which a ripple component is superimposed on a DC component (broken line in FIG. 2) is shown.
  • the waveform related to the ripple component is schematically shown as a sine wave.
  • FIG. 3 is a diagram showing a waveform of a ripple voltage to which a reference voltage and a bias voltage are added, which are input to the differential amplifying unit 50.
  • the waveform of the reference voltage in FIG. 3 is the voltage waveform at the positive input terminal of the differential amplifier 50, and the waveform of the ripple voltage with the bias voltage added in FIG. 3 is the negative input terminal of the differential amplifier 50. Is a voltage waveform at.
  • the ripple voltage is higher than 0 V even when the ripple voltage fluctuates on the negative side due to the addition of the bias voltage by the bias voltage generation unit 20.
  • the reference voltage generation unit 40 generates a reference voltage that is higher than the ripple voltage to which the bias voltage is added. For example, by adjusting the resistance value of the shunt resistor 41, a reference voltage that is always higher than the ripple voltage to which the bias voltage is added is generated. However, as will be described later, if the difference between the bias voltage and the reference voltage becomes too large, the output current of the transistor 30 becomes large. Therefore, the output current of the transistor 30 does not become too large for the bias voltage and the reference voltage. To be adjusted.
  • FIG. 4 is a diagram illustrating a waveform of a differential signal output from the differential amplifier unit 50.
  • the waveform in FIG. 4 is a voltage waveform at the output terminal of the differential amplifier 50.
  • the reference voltage input to the positive input terminal of the differential amplifier 50 is always higher than the ripple voltage to which the bias voltage input to the negative input terminal of the differential amplifier 50 is added. Therefore, as shown in FIG. 4, the differential amplifier 50 always outputs a differential signal having a voltage higher than 0 from the output terminal. Thereby, since a differential signal having a voltage higher than 0 is always input (applied) to the base of the transistor 30, the transistor 30 extracts current from the constant voltage signal according to the magnitude of the differential signal. Can do. At this time, if the difference signal is too large, the current is greatly extracted from the constant voltage signal, and the DC component of the constant voltage signal is greatly reduced, so that a current that can cancel out a minute ripple component is pulled out from the constant voltage signal.
  • the magnitude of the difference signal is adjusted. Specifically, by adjusting the magnitudes of the bias voltage generated by the bias voltage generation unit 20 and the reference voltage generated by the reference voltage generation unit 40, a current enough to cancel the ripple component is extracted from the constant voltage signal. .
  • FIG. 5 is a diagram illustrating a waveform of a voltage generated in the shunt resistor portion 41.
  • a voltage waveform (solid line) generated in the shunt resistor 41 in FIG. 5 is a voltage waveform between the transistor 30 and the shunt resistor 41, and a reference voltage waveform (broken line) is the LPF 42 and the differential amplifier 50. It is a voltage waveform between.
  • the reference voltage is a voltage having a component corresponding to the pass band of the LPF 42 in the voltage generated in the shunt resistor portion 41 according to the output current of the transistor 30. That is, the reference voltage is obtained by cutting the high frequency component of the voltage generated in the shunt resistor 41 by the LPF 42.
  • the amount of current drawn from the constant voltage signal is larger when the ripple component is larger than when the ripple component is small.
  • the difference signal becomes small as in the A portion in FIG. 4, so that the output current of the transistor 30 that is a PNP bipolar transistor (that is, from the constant voltage signal).
  • the current drawn) increases.
  • the fact that the current drawn from the constant voltage signal is large when the ripple component is large can also be seen from the fact that the voltage generated in the shunt resistor portion 41 is large like the portion A in FIG.
  • the differential signal becomes large as in the B portion in FIG.
  • FIG. 6 is a diagram for explaining that the ripple component is removed.
  • a solid line in FIG. 6 is a waveform of a constant voltage signal including a ripple component output from the constant voltage power supply 100, and shows a waveform in which the ripple component is superimposed on the DC component.
  • the broken line in FIG. 6 is the waveform of the signal output from the output terminal 110, and shows the waveform of the DC component after ripple component removal.
  • the transistor 30 since the amount of current drawn from the constant voltage signal by the transistor 30 is small, the voltage drop amount of the DC component before and after the ripple component removal is smaller than the magnitude of the DC component itself. Since the amount of current drawn from the constant voltage signal by the transistor 30 is small, the transistor 30 does not have to be a large package transistor corresponding to a large current, and a large radiator corresponding to the large current is not necessary.
  • the power supply stabilization circuit 1 can make the DC component after removing the ripple component constant by adjusting the amount of current drawn from the constant voltage signal according to the magnitude of the ripple component.
  • a constant voltage signal can be stabilized and output from the terminal 110.
  • the power supply stabilization circuit 1 is a circuit that stabilizes a constant voltage signal including a ripple component output from the constant voltage power supply 100 and outputs it from the output terminal 110.
  • the power supply stabilization circuit 1 is arranged in an output path L0 connecting the constant voltage power supply 100 and the output terminal 110 and a first path L1 connecting the ground, and extracts a ripple voltage indicating a ripple component included in the constant voltage signal.
  • the ripple extracting unit 10 includes a bias voltage generating unit 20 that is connected between the ripple extracting unit 10 and the ground in the first path L1 and adds a bias voltage to the ripple voltage.
  • the power supply stabilization circuit 1 includes a transistor 30 that is disposed on a second path L2 that connects the output path L0 and the ground, and is different from the first path L1, and between the transistor 30 and the ground in the second path L2. And a reference voltage generation unit 40 that generates a reference voltage corresponding to the output current of the transistor 30.
  • the power supply stabilization circuit 1 has a positive input terminal and a negative input terminal, and calculates a difference between a reference voltage input to the positive input terminal and a ripple voltage to which a bias voltage input to the negative input terminal is added.
  • a differential amplifying unit 50 that performs inverting amplification and outputs the inverted and amplified differential signal to the transistor 30 is provided.
  • the output current of the transistor 30 is a current that flows from the constant voltage signal to the reference voltage generation unit 40 via the transistor 30 according to the difference signal.
  • the ripple voltage extracted by the ripple extracting unit 10 is inverted and amplified in the differential amplifying unit 50, and the transistor 30 is driven by the inverted and amplified differential signal. That is, since the differential signal is a reverse-phase signal of the ripple component, the current can be extracted from the constant voltage signal so as to reduce the ripple component by controlling the transistor 30 using the negative-phase signal.
  • the transistor 30 is not provided in the output path L0 through which all the current output from the constant voltage power supply 100 flows, and performs current driving to reduce only a ripple component that is a small signal.
  • the transistor in the package is not required, and a large heat sink that can handle a large current is also unnecessary. Therefore, the power supply stabilization circuit 1 can reduce the size of the configuration for stabilizing the output of the constant voltage power supply 100.
  • the ripple extraction unit 10 may be a capacitor connected in series between the output path L0 and the negative input terminal.
  • the ripple extraction unit 10 can be realized with a simple configuration.
  • the reference voltage generation unit 40 includes a shunt resistor unit 41 disposed between the transistor 30 and the ground in the second path L2, a path connecting the transistor 30 and the shunt resistor unit 41 in the second path L2, and a positive electrode And an LPF 42 disposed in a path connecting the input terminals.
  • the reference voltage may be a voltage having a component corresponding to the pass band of the LPF 42 in the voltage generated in the shunt resistor portion 41 according to the output current of the transistor 30.
  • the reference voltage can be adjusted by the resistance value of the shunt resistor portion 41, and the magnitude of the differential signal for driving the transistor 30 can be determined according to the magnitude of the reference voltage. For this reason, the amount of current drawn from the constant voltage signal can be easily adjusted by the resistance value of the shunt resistor portion 41.
  • Embodiment 2 Next, Embodiment 2 will be described with reference to FIGS.
  • FIG. 7 is a circuit configuration diagram showing an example of the power supply stabilization circuit 1a according to the second embodiment.
  • a constant voltage power supply 100 that outputs a signal input to the power supply stabilization circuit 1a
  • an output terminal 110 that outputs a signal processed by the power supply stabilization circuit 1a.
  • the load 120 connected to the output terminal 110 is shown.
  • the power supply stabilization circuit 1a according to the second embodiment further includes a control unit 60, and includes a reference voltage generation unit 40a instead of the reference voltage generation unit 40, in that the power supply stabilization circuit 1 according to the first embodiment is different from the power supply stabilization circuit 1 according to the first embodiment.
  • the reference voltage generation unit 40 a is different from the reference voltage generation unit 40 in that the reference voltage generation unit 40 a includes a shunt resistance unit 41 a instead of the shunt resistance unit 41. Since the other points are the same as those in the power supply stabilization circuit 1, the description thereof is omitted.
  • the control unit 60 is a processor or the like, for example, a microcomputer.
  • the control unit 60 acquires a signal corresponding to the size (power consumption) of the load 120, and controls the shunt resistor unit 41a according to the signal.
  • the control unit 60 may have a function of detecting the size of the load 120, or may acquire a signal indicating the size of the load 120 from another detection device.
  • the power supply stabilization circuit 1a may not include the control unit 60. In this case, the power supply stabilization circuit 1a (shunt resistor unit 41a) receives a control signal based on a signal corresponding to the size of the load 120 from the control unit 60 provided outside.
  • the resistance value of the shunt resistor portion 41a is controlled to the first resistance value when the size of the load 120 connected to the output terminal 110 is larger than a predetermined value, and when the size of the load 120 is equal to or smaller than the predetermined value.
  • the second resistance value is controlled to be smaller than the first resistance value.
  • the shunt resistor 41a includes, for example, a first resistor R1 connected between the transistor 30 and the ground in the second path L2, and a second resistor R2 connected in parallel to the first resistor R1 and the switch SW. A series circuit.
  • the resistance value of the shunt resistor portion 41a is controlled to the resistance value of the first resistor R1 as the first resistance value when the load 120 is larger than the predetermined value by turning off the switch SW.
  • the switch SW is turned on and the combined resistance value of the first resistance R1 and the second resistance R2 is controlled as the second resistance value.
  • control unit 60 determines whether or not the size of the load 120 is larger than a predetermined value based on a signal indicating the size of the load 120, and on / off control of the switch SW according to the determination result.
  • the switch SW may be a switch (such as a relay) that is turned on and off mechanically or a switch (such as a transistor) that is electrically turned on and off.
  • the predetermined value is, for example, the size of the load 120 at which the constant voltage power supply 100 performs an idling operation, and is appropriately determined depending on the type of the load 120 and the like.
  • the constant voltage power supply 100 for example, a switching power supply
  • the constant voltage power supply 100 is in an idling operation (specifically, the output is off for a long time and then the output is on for a short time. To repeat the process). That is, when the load 120 is small, the output suddenly rises repeatedly, and the ripple component becomes large. Therefore, the resistance value of the shunt resistor portion 41a is smaller than the resistance value (first resistance value) of the first resistor R1, which is the resistance value when the switch SW is off, and is the resistance value when the switch SW is on.
  • the combined resistance value (second resistance value) of the first resistor R1 and the second resistor R2 is controlled.
  • the amount of current that can be passed through the transistor 30 can be increased while the reference voltage remains constant. Therefore, by increasing the amount of current drawn from the constant voltage signal by the transistor 30 according to the magnitude of the ripple component while maintaining a state where differential amplification is possible, the idling operation of the constant voltage power supply 100 increases. Ripple components can be removed. An RC circuit composed of a resistor and a capacitor may be provided instead of the second resistor R2. Since the RC circuit has a time constant, when the switch SW is turned on / off, the resistance value of the shunt resistor portion 41a is suddenly changed, so that the occurrence of noise can be suppressed. .
  • the size of the load 120 is larger than a predetermined value, that is, for example, when the constant voltage power supply 100 does not perform an idling operation.
  • the resistance value of the shunt resistor portion 41a is controlled to the resistance value (first resistance value) of the first resistor R1, which is the resistance value when the switch SW is off.
  • the ripple component can be effectively removed according to the size of the generated ripple component.
  • the method for controlling the resistance value of the shunt resistor 41a is not limited to this.
  • FIG. 8 is a circuit configuration diagram showing an example of a power supply stabilization circuit 1b according to a modification of the second embodiment.
  • a constant voltage power supply 100 that outputs a signal input to the power supply stabilization circuit 1b
  • an output terminal 110 that outputs a signal processed by the power supply stabilization circuit 1b.
  • the load 120 connected to the output terminal 110 is shown.
  • the power supply stabilization circuit 1b according to the modification of the second embodiment is different from the power supply stabilization circuit 1a according to the second embodiment in that a reference voltage generation unit 40b is provided instead of the reference voltage generation unit 40a.
  • the reference voltage generation unit 40b is different from the reference voltage generation unit 40a in that the reference voltage generation unit 40b includes a shunt resistance unit 41b instead of the shunt resistance unit 41a. Since the other points are the same as those in the power supply stabilization circuit 1a, description thereof is omitted.
  • the resistance value of the shunt resistor 41b is controlled to be smaller as the size of the load 120 connected to the output terminal 110 is smaller. A specific example of the control will be described below.
  • the shunt resistor 41b has a variable resistor R3 connected between the transistor 30 and the ground in the second path L2.
  • the control unit 60 controls the resistance value of the variable resistor R3 based on a signal indicating the size of the load 120.
  • the control unit 60 controls the resistance value of the variable resistor R3 by referring to a table or the like indicating a correspondence relationship between the size of the load 120 and the resistance value of the variable resistor R3.
  • the constant voltage power supply 100 (for example, the switching power supply) is in an idling operation (specifically, after the output is turned off for a long time, the output is turned on for a short time). It is easier to repeat the action). Therefore, the resistance value of the shunt resistor 41b is controlled to be smaller as the size of the load 120 is smaller.
  • the amount of current that can be passed through the transistor 30 can be increased while the reference voltage remains constant. Therefore, by increasing the amount of current drawn from the constant voltage signal by the transistor 30 according to the magnitude of the ripple component while maintaining a state where differential amplification is possible, the idling operation of the constant voltage power supply 100 increases. Ripple components can be removed.
  • the resistance value of the shunt resistor portion 41a is controlled to the first resistance value when the size of the load 120 connected to the output terminal 110 is larger than a predetermined value, and the size of the load 120 is determined. May be controlled to a second resistance value smaller than the first resistance value.
  • the shunt resistor 41a includes a first resistor R1 connected between the transistor 30 and the ground in the second path L2, and a second resistor R2 and a switch connected in parallel to the first resistor R1. And a series circuit with SW.
  • the resistance value of the shunt resistor 41a is controlled by turning off the switch SW and controlling the resistance value of the first resistor R1 as the first resistance value.
  • the switch SW may be turned on and controlled to a combined resistance value of the first resistance R1 and the second resistance R2 as the second resistance value.
  • the resistance value of the shunt resistor 41a is controlled to be small, and the transistor 30 flows.
  • the resistance value of the shunt resistor portion 41b may be controlled to be smaller as the load 120 connected to the output terminal 110 is smaller.
  • the shunt resistor portion 41b may have a variable resistor R3 connected between the transistor 30 and the ground in the second path L2. The smaller the load 120 is, the smaller the resistance value of the variable resistor R3 may be controlled as the resistance value of the shunt resistor portion 41b.
  • the resistance value of the shunt resistor 41b is controlled to be smaller as the size of the load 120 is smaller, and the amount of current that can be passed through the transistor 30 can be increased. Therefore, by increasing the amount of current drawn from the constant voltage signal by the transistor 30 according to the magnitude of the ripple component, the ripple component that has become large due to the idling operation of the constant voltage power supply 100 can be removed.
  • the ripple extraction unit 10 is a capacitor connected in series between the output path L0 and the negative input terminal of the differential amplification unit 50.
  • the ripple voltage can be extracted. Any configuration that can be used is not limited to such a configuration.
  • the transistor 30 is a PNP bipolar transistor, but is not limited thereto.
  • the transistor 30 is an NPN bipolar transistor or a transistor such as an N-channel or P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) as long as it has a function of controlling the current flowing through the second path L2. Also good.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the shunt resistor 41a has one series circuit of the second resistor R2 and the switch SW connected in parallel to the first resistor R1, but the present invention is not limited to this. Absent.
  • the shunt resistor portion 41a may have a configuration in which a plurality of such series circuits are connected in parallel to the first resistor R1. Thereby, the resistance value of the shunt resistor portion 41a can be controlled more flexibly.
  • constituent elements described in the accompanying drawings and the detailed description may include not only constituent elements essential for solving the problem but also constituent elements not essential for solving the problem. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
  • the present disclosure is applicable to a device that requires a stabilized constant voltage power source. Specifically, the present disclosure can be applied to a device that reproduces sound, such as an audio device, a television, a PC (Personal Computer), and a portable device.
  • a device that reproduces sound such as an audio device, a television, a PC (Personal Computer), and a portable device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

This power supply stabilization circuit (1) is provided with: a ripple extraction unit (10) which is disposed in a first path (L1) and extracts a ripple voltage indicating a ripple component included in a constant voltage signal; a bias voltage generation unit (20) which is connected between the ripple extraction unit (10) and ground and adds a bias voltage to the ripple voltage; a transistor (30) disposed in a second path (L2); a reference voltage generation unit (40) which is connected between the transistor (30) and ground and generates a reference voltage corresponding to an output current of the transistor (30); and a differential amplifier unit (50) which inversely amplifies the difference between the reference voltage and the ripple voltage to which the bias voltage has been added and outputs a difference signal obtained by means of the inverse amplification to the transistor (30). The output current of the transistor (30) is a current that flows from the constant voltage signal to the reference voltage generation unit (40) through the transistor (30) in accordance with the difference signal.

Description

電源安定化回路Power stabilization circuit
 本開示は、定電圧電源の出力を安定化する電源安定化回路に関する。 This disclosure relates to a power supply stabilization circuit that stabilizes the output of a constant voltage power supply.
 従来、定電圧電源(DC電源)の出力を安定化するために(具体的には、当該出力に含まれるリップル成分を除去するために)、レギュレータ回路を用いている。当該レギュレータ回路は、定電圧電源の出力経路にトランジスタを直列に挿入し、定電圧電源の出力が目標となる電圧値となるように当該トランジスタをフィードバック制御することで、リップル成分を含む出力を一定の電圧となるようにするものである。例えば、特許文献1には、このような技術が開示されている。定電圧電源の出力が安定化されることで、例えば、音声を再生する装置の高音質化を図ることができる。 Conventionally, a regulator circuit is used to stabilize the output of a constant voltage power supply (DC power supply) (specifically, to remove a ripple component contained in the output). The regulator circuit inserts a transistor in series in the output path of the constant voltage power supply, and feedback-controls the transistor so that the output of the constant voltage power supply becomes a target voltage value, so that the output including the ripple component is constant. It is intended to be a voltage of. For example, Patent Literature 1 discloses such a technique. By stabilizing the output of the constant voltage power supply, for example, it is possible to improve the sound quality of a device that reproduces sound.
特開2002-157030号公報JP 2002-157030 A
 しかしながら、上記特許文献1では、定電圧電源の出力経路に直列に挿入されたトランジスタには、定電圧電源から出力された全電流が通過するため、大電流に対応した大きなパッケージのトランジスタが必要となる。また、トランジスタを通過する電流量に比例して、トランジスタの発熱も大きくなるため、大電流に対応した大型の放熱器が必要となる。その結果、定電圧電源の出力を安定化するための構成が大型化してしまう。 However, in Patent Document 1 described above, since a transistor inserted in series in the output path of the constant voltage power supply passes through the entire current output from the constant voltage power supply, a transistor with a large package corresponding to a large current is required. Become. In addition, since the heat generation of the transistor increases in proportion to the amount of current passing through the transistor, a large heat sink corresponding to a large current is required. As a result, the configuration for stabilizing the output of the constant voltage power supply becomes large.
 そこで、本開示は、定電圧電源の出力を安定化するための構成を小型化できる電源安定化回路を提供する。 Therefore, the present disclosure provides a power supply stabilization circuit capable of downsizing a configuration for stabilizing the output of a constant voltage power supply.
 本開示における電源安定化回路は、定電圧電源から出力される、リップル成分を含む定電圧信号を安定化して出力端子から出力する電源安定化回路であって、前記定電圧電源と前記出力端子とを結ぶ出力経路と、グランドとを結ぶ第1経路に配置され、前記定電圧信号に含まれるリップル成分を示すリップル電圧を抽出するリップル抽出部と、前記第1経路において前記リップル抽出部とグランドとの間に接続され、前記リップル電圧にバイアス電圧を付加するバイアス電圧生成部と、前記出力経路とグランドとを結ぶ、前記第1経路とは異なる第2経路に配置されるトランジスタと、前記第2経路において前記トランジスタとグランドとの間に接続され、前記トランジスタの出力電流に応じた基準電圧を生成する基準電圧生成部と、正極入力端子と負極入力端子とを有し、前記正極入力端子に入力された前記基準電圧と前記負極入力端子に入力された前記バイアス電圧が付加されたリップル電圧との差分を反転増幅し、当該反転増幅した差分信号を前記トランジスタへ出力する差動増幅部と、を備え、前記トランジスタの出力電流は、前記差分信号に応じて、前記定電圧信号から前記トランジスタを介して前記基準電圧生成部へ流れる電流である。 A power supply stabilization circuit in the present disclosure is a power supply stabilization circuit that stabilizes a constant voltage signal including a ripple component output from a constant voltage power supply and outputs the stabilized voltage signal from an output terminal, the constant voltage power supply, the output terminal, A ripple extracting unit that extracts a ripple voltage indicating a ripple component included in the constant voltage signal, and a ripple extracting unit and a ground in the first route. A bias voltage generator that adds a bias voltage to the ripple voltage, a transistor that connects the output path and the ground, and that is disposed in a second path different from the first path, and the second A reference voltage generator connected between the transistor and ground in the path and generating a reference voltage corresponding to the output current of the transistor; A power terminal and a negative input terminal, which inverts and amplifies the difference between the reference voltage input to the positive input terminal and the ripple voltage to which the bias voltage input to the negative input terminal is added, and A differential amplifier that outputs the amplified differential signal to the transistor, and an output current of the transistor flows from the constant voltage signal to the reference voltage generator through the transistor in accordance with the differential signal Current.
 本開示における電源安定化回路は、定電圧電源の出力を安定化するための構成を小型化できる。 The power supply stabilization circuit in the present disclosure can reduce the size of the configuration for stabilizing the output of the constant voltage power supply.
図1は、実施の形態1に係る電源安定化回路の一例を示す回路構成図である。FIG. 1 is a circuit configuration diagram showing an example of a power supply stabilization circuit according to the first embodiment. 図2は、定電圧電源から出力される、リップル成分を含む定電圧信号の波形を示す図である。FIG. 2 is a diagram illustrating a waveform of a constant voltage signal including a ripple component output from a constant voltage power supply. 図3は、差動増幅部に入力される、基準電圧およびバイアス電圧が付加されたリップル電圧の波形を示す図である。FIG. 3 is a diagram showing a waveform of a ripple voltage to which a reference voltage and a bias voltage are added, which are input to the differential amplifier. 図4は、差動増幅部から出力される差分信号の波形を示す図である。FIG. 4 is a diagram illustrating a waveform of a differential signal output from the differential amplifier. 図5は、シャント抵抗部に生じる電圧の波形を示す図である。FIG. 5 is a diagram illustrating a waveform of a voltage generated in the shunt resistor portion. 図6は、リップル成分が除去されていることを説明するための図である。FIG. 6 is a diagram for explaining that the ripple component is removed. 図7は、実施の形態2に係る電源安定化回路の一例を示す回路構成図である。FIG. 7 is a circuit configuration diagram showing an example of a power supply stabilization circuit according to the second embodiment. 図8は、実施の形態2の変形例に係る電源安定化回路の一例を示す回路構成図である。FIG. 8 is a circuit configuration diagram showing an example of a power supply stabilization circuit according to a modification of the second embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventor provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is not intended to limit the claimed subject matter. .
 (実施の形態1)
 以下、図1から図6を用いて実施の形態1を説明する。
(Embodiment 1)
The first embodiment will be described below with reference to FIGS.
 図1は、実施の形態1に係る電源安定化回路1の一例を示す回路構成図である。なお、図1には、電源安定化回路1の他に、電源安定化回路1に入力される信号を出力する定電圧電源100、電源安定化回路1で処理(詳細は後述するがリップル除去処理)された信号を出力する出力端子110および出力端子110に接続された負荷120を示している。 FIG. 1 is a circuit configuration diagram showing an example of a power supply stabilization circuit 1 according to the first embodiment. In FIG. 1, in addition to the power supply stabilization circuit 1, processing is performed by a constant voltage power supply 100 that outputs a signal input to the power supply stabilization circuit 1 and the power supply stabilization circuit 1 (details will be described later, but ripple removal processing). The load 120 connected to the output terminal 110 and the output terminal 110 which output the signal which was) is shown.
 定電圧電源100は、交流電源や直流電源から定電圧信号を生成し出力する電源である。定電圧電源100から出力される定電圧信号には、リップル成分等のノイズが含まれている。 The constant voltage power source 100 is a power source that generates and outputs a constant voltage signal from an AC power source or a DC power source. The constant voltage signal output from the constant voltage power supply 100 includes noise such as a ripple component.
 負荷120は、定電圧電源100から出力された電力を供給するために出力端子110に接続される。負荷120は、例えば、音声を再生する装置等であり、高音質化を図るために、リップル成分が除去された電力が供給される必要がある。 The load 120 is connected to the output terminal 110 in order to supply power output from the constant voltage power supply 100. The load 120 is, for example, a device that reproduces sound, and it is necessary to supply power from which the ripple component has been removed in order to achieve high sound quality.
 電源安定化回路1は、定電圧電源100から出力される、リップル成分を含む定電圧信号を安定化して出力端子110から出力する回路である。以下、定電圧信号においてリップル成分が含まれていない成分をDC(Direct Current)成分とも呼ぶ。定電圧電源100から出力される定電圧信号は、DC成分にリップル成分が重畳したものとなる。電源安定化回路1は、リップル抽出部10、バイアス電圧生成部20、トランジスタ30、基準電圧生成部40および差動増幅部50を備える。 The power supply stabilization circuit 1 is a circuit that stabilizes a constant voltage signal including a ripple component output from the constant voltage power supply 100 and outputs it from the output terminal 110. Hereinafter, a component that does not include a ripple component in the constant voltage signal is also referred to as a DC (Direct Current) component. The constant voltage signal output from the constant voltage power supply 100 has a ripple component superimposed on a DC component. The power supply stabilization circuit 1 includes a ripple extraction unit 10, a bias voltage generation unit 20, a transistor 30, a reference voltage generation unit 40, and a differential amplification unit 50.
 リップル抽出部10は、定電圧電源100と出力端子110とを結ぶ出力経路L0と、グランドとを結ぶ第1経路L1に配置され、定電圧信号に含まれるリップル成分を示すリップル電圧を抽出する。第1経路L1は、図1に示されるように、出力経路L0上のノードx1とグランドとを結ぶ経路である。ノードとは、電子回路において、2本以上の配線が接続される点であり、図1に示されるような回路図では黒丸で表される。リップル成分は、定電圧電源100が生成する定電圧(DC成分)に重畳するノイズ成分であり、例えば、定電圧を生成する際のスイッチング周波数に対応して発生する。リップル抽出部10は、例えば、出力経路L0(ノードx1)と後述する差動増幅部50が有する負極入力端子との間に直列に接続されたコンデンサであり、当該スイッチング周波数に対応したリップル電圧のみを取り出すことができる。リップル成分を含む定電圧信号は、DC成分を中心として揺らいでおり、リップル抽出部10は、この揺らぎを、0Vを中心としてプラス側およびマイナス側に揺らいでいるリップル電圧として抽出する。 The ripple extracting unit 10 is arranged in an output path L0 connecting the constant voltage power supply 100 and the output terminal 110 and a first path L1 connecting the ground, and extracts a ripple voltage indicating a ripple component included in the constant voltage signal. As shown in FIG. 1, the first path L1 is a path connecting the node x1 on the output path L0 and the ground. A node is a point where two or more wirings are connected in an electronic circuit, and is represented by a black circle in the circuit diagram shown in FIG. The ripple component is a noise component superimposed on a constant voltage (DC component) generated by the constant voltage power supply 100, and is generated, for example, corresponding to the switching frequency when generating the constant voltage. The ripple extraction unit 10 is, for example, a capacitor connected in series between the output path L0 (node x1) and a negative input terminal included in the differential amplification unit 50 described later, and only a ripple voltage corresponding to the switching frequency is included. Can be taken out. The constant voltage signal including the ripple component fluctuates around the DC component, and the ripple extraction unit 10 extracts this fluctuation as a ripple voltage that fluctuates on the plus side and the minus side around 0V.
 バイアス電圧生成部20は、第1経路L1においてリップル抽出部10とグランドとの間に接続され、リップル電圧にバイアス電圧を付加する。ノードx1とグランドとの間で、リップル抽出部10とバイアス電圧生成部20とは直列に接続されている。リップル抽出部10が抽出するリップル電圧は、上述したように、0Vを中心として揺らいでいるため、後述する差動増幅部50がマイナス側に揺らいでいるときのリップル電圧も検出できるように、バイアス電圧生成部20は、バイアス電圧を生成し、リップル電圧に付加する。これにより、マイナス側に揺らいでいたリップル電圧もプラス電圧となり、差動増幅部50は、常にリップル電圧を検出することができるようになる。バイアス電圧生成部20は、例えば、ダイオードの逆方向電圧を利用してバイアス電圧を生成する。 The bias voltage generation unit 20 is connected between the ripple extraction unit 10 and the ground in the first path L1, and adds a bias voltage to the ripple voltage. The ripple extracting unit 10 and the bias voltage generating unit 20 are connected in series between the node x1 and the ground. Since the ripple voltage extracted by the ripple extraction unit 10 fluctuates around 0 V as described above, the bias voltage is biased so that the ripple voltage when the differential amplification unit 50 described later is fluctuating to the negative side can also be detected. The voltage generator 20 generates a bias voltage and adds it to the ripple voltage. As a result, the ripple voltage that fluctuates to the negative side also becomes a positive voltage, and the differential amplifier 50 can always detect the ripple voltage. For example, the bias voltage generation unit 20 generates a bias voltage using a reverse voltage of a diode.
 トランジスタ30は、定電圧電源100と出力端子110とを結ぶ出力経路L0とグランドとを結ぶ、第1経路L1とは異なる第2経路L2に配置される。第2経路L2は、図1に示されるように、出力経路L0上のノードx2とグランドとを結ぶ経路である。なお、ノードx1とノードx2とは、回路図上では、離れた位置に設けられているが、実際の基板上等では、同じ位置に設けられていてもよい。トランジスタ30は、例えば、PNPバイポーラトランジスタであり、エミッタがノードx2に接続され、コレクタが後述する基準電圧生成部40に接続され、ベースが後述する差動増幅部50に接続される。トランジスタ30のベースには、エミッタ・コレクタ間に常に少量の電流が流れるような電圧が印加される。エミッタ・コレクタ間に流れる電流を、トランジスタ30の出力電流とも呼ぶ。 The transistor 30 is disposed on a second path L2 that is different from the first path L1 and connects the output path L0 that connects the constant voltage power supply 100 and the output terminal 110 to the ground. As shown in FIG. 1, the second path L2 is a path connecting the node x2 on the output path L0 and the ground. Note that the node x1 and the node x2 are provided at positions separated from each other on the circuit diagram, but may be provided at the same position on an actual substrate or the like. The transistor 30 is, for example, a PNP bipolar transistor, an emitter is connected to the node x2, a collector is connected to a reference voltage generation unit 40 described later, and a base is connected to a differential amplification unit 50 described later. A voltage is applied to the base of the transistor 30 so that a small amount of current always flows between the emitter and the collector. The current flowing between the emitter and collector is also referred to as the output current of the transistor 30.
 基準電圧生成部40は、第2経路L2においてトランジスタ30とグランドとの間に接続され、トランジスタ30の出力電流に応じた基準電圧を生成する。つまり、基準電圧生成部40は、トランジスタ30のエミッタ・コレクタ間の電流に応じた基準電圧を生成する。基準電圧生成部40は、第2経路L2においてトランジスタ30とグランドとの間に配置されたシャント抵抗部41と、トランジスタ30とシャント抵抗部41とを結ぶ経路と、後述する差動増幅部50が有する正極入力端子とを結ぶ経路に配置されたローパスフィルタ(LPF)42と、を有する。シャント抵抗部41は、例えば、トランジスタ30とグランドとの間に接続された第1抵抗R1のみからなり、トランジスタ30の出力電流と第1抵抗R1の抵抗値との積である電圧がシャント抵抗部41に生じる。なお、シャント抵抗部41の構成は、トランジスタ30とグランドとの間に接続された第1抵抗R1のみからなる構成に限らず、他の例については後述する実施の形態2で説明する。LPF42は、例えば、抵抗およびキャパシタで構成されたRCフィルタ等により構成され、リップル成分の周波数よりも低い周波数を通過帯域とする。なお、LPF42の構成は、RCフィルタ等に限らず、ローパスフィルタを実現できる構成であれば特に限定されない。このように、基準電圧生成部40が生成する基準電圧は、トランジスタ30の出力電流に応じてシャント抵抗部41に生じる電圧における、LPF42の通過帯域に対応する成分を有する電圧である。 The reference voltage generation unit 40 is connected between the transistor 30 and the ground in the second path L2, and generates a reference voltage according to the output current of the transistor 30. That is, the reference voltage generation unit 40 generates a reference voltage corresponding to the current between the emitter and collector of the transistor 30. The reference voltage generator 40 includes a shunt resistor 41 that is disposed between the transistor 30 and the ground in the second path L2, a path that connects the transistor 30 and the shunt resistor 41, and a differential amplifier 50 that will be described later. A low-pass filter (LPF) 42 disposed in a path connecting to the positive electrode input terminal. For example, the shunt resistor unit 41 includes only the first resistor R1 connected between the transistor 30 and the ground, and the voltage that is the product of the output current of the transistor 30 and the resistance value of the first resistor R1 is the shunt resistor unit. Occurs at 41. The configuration of the shunt resistor 41 is not limited to the configuration including only the first resistor R1 connected between the transistor 30 and the ground, and other examples will be described in a second embodiment to be described later. The LPF 42 is configured by, for example, an RC filter composed of a resistor and a capacitor, and uses a frequency lower than the frequency of the ripple component as a pass band. The configuration of the LPF 42 is not limited to an RC filter or the like, and is not particularly limited as long as it is a configuration that can realize a low-pass filter. As described above, the reference voltage generated by the reference voltage generation unit 40 is a voltage having a component corresponding to the pass band of the LPF 42 in the voltage generated in the shunt resistor unit 41 according to the output current of the transistor 30.
 差動増幅部50は、正極入力端子(+)と負極入力端子(-)とを有する差動増幅回路であり、例えばオペアンプである。正極入力端子は、基準電圧生成部40(具体的にはLPF42)が接続され、基準電圧生成部40が生成した基準電圧が入力される。負極入力端子は、第1経路L1におけるリップル抽出部10とバイアス電圧生成部20との間に接続され、バイアス電圧が付加されたリップル電圧が入力される。また、差動増幅部50の出力端子(out)は、トランジスタ30のベースに接続される。差動増幅部50は、正極入力端子に入力された基準電圧と負極入力端子に入力されたバイアス電圧が付加されたリップル電圧との差分を反転増幅し、当該反転増幅した差分信号をトランジスタ30のベースへ出力する。トランジスタ30の出力電流は、当該差分信号に応じて、定電圧電源100から出力された定電圧信号からトランジスタ30を介して基準電圧生成部40へ流れる電流である。言い換えると、トランジスタ30は、差分信号に応じて、電圧電源100から出力された定電圧信号からトランジスタ30を介して基準電圧生成部40へ流れる電流を出力電流として出力する。例えば、基準電圧とバイアス電圧が付加されたリップル電圧との差が小さいほど当該差分信号が小さくなり、つまり、PNPバイポーラトランジスタであるトランジスタ30のベースに印加される電圧は小さくなり、定電圧信号から引き抜かれる電流は大きくなる。 The differential amplifier 50 is a differential amplifier circuit having a positive input terminal (+) and a negative input terminal (−), for example, an operational amplifier. A reference voltage generator 40 (specifically, LPF 42) is connected to the positive input terminal, and the reference voltage generated by the reference voltage generator 40 is input to the positive input terminal. The negative input terminal is connected between the ripple extracting unit 10 and the bias voltage generating unit 20 in the first path L1, and a ripple voltage to which a bias voltage is added is input. The output terminal (out) of the differential amplifier 50 is connected to the base of the transistor 30. The differential amplifying unit 50 inverts and amplifies the difference between the reference voltage input to the positive input terminal and the ripple voltage to which the bias voltage input to the negative input terminal is added. Output to base. The output current of the transistor 30 is a current that flows from the constant voltage signal output from the constant voltage power supply 100 to the reference voltage generation unit 40 via the transistor 30 in accordance with the difference signal. In other words, the transistor 30 outputs, as an output current, a current that flows from the constant voltage signal output from the voltage power supply 100 to the reference voltage generation unit 40 via the transistor 30 according to the difference signal. For example, as the difference between the reference voltage and the ripple voltage to which the bias voltage is added is smaller, the difference signal is smaller, that is, the voltage applied to the base of the transistor 30 that is a PNP bipolar transistor is smaller. The current drawn is increased.
 リップル成分は、DC成分に比べて微小な成分であることが多く、本開示では、当該微小な成分を除去する程度の電流の変動を定電圧信号に与えるような動作を電源安定化回路1にさせるため、トランジスタ30によって定電圧信号から引き抜かれる電流もリップル成分に合わせて微小となる。 The ripple component is often a minute component compared to the DC component, and in the present disclosure, the power supply stabilization circuit 1 performs an operation that gives the constant voltage signal a current fluctuation enough to remove the minute component. Therefore, the current drawn from the constant voltage signal by the transistor 30 is also minute according to the ripple component.
 次に、電源安定化回路1の詳細な動作について、図2から図5を用いて説明する。なお、図2から図5におけるグラフにおいて、横軸(時間)のスケールを統一している。つまり、各グラフにおいて時間軸上の同じ位置は、それぞれ同じタイミングである。なお、実際には、電源安定化回路1を構成する各構成要素の応答性によっては多少ずれが生じる。また、図2から図5におけるグラフにおいて、縦軸(電圧)のスケールを統一していない。つまり、各グラフにおいて電圧軸上の同じ位置は、それぞれ必ずしも同じ電圧値とは限らない。 Next, the detailed operation of the power supply stabilization circuit 1 will be described with reference to FIGS. In the graphs of FIGS. 2 to 5, the horizontal axis (time) scale is unified. That is, the same position on the time axis in each graph is the same timing. Actually, a slight deviation occurs depending on the responsiveness of each component constituting the power supply stabilization circuit 1. In the graphs in FIGS. 2 to 5, the scale of the vertical axis (voltage) is not unified. That is, the same position on the voltage axis in each graph is not necessarily the same voltage value.
 図2は、定電圧電源100から出力される、リップル成分を含む定電圧信号の波形を示す図である。図2では、定電圧電源100から出力される定電圧信号として、DC成分(図2中の破線)にリップル成分が重畳している波形(図2中の実線)を示している。図2から図5での説明では、リップル成分に関連する波形を模式的に正弦波で示している。 FIG. 2 is a diagram showing a waveform of a constant voltage signal including a ripple component output from the constant voltage power supply 100. In FIG. 2, as a constant voltage signal output from the constant voltage power supply 100, a waveform (solid line in FIG. 2) in which a ripple component is superimposed on a DC component (broken line in FIG. 2) is shown. In the description with reference to FIGS. 2 to 5, the waveform related to the ripple component is schematically shown as a sine wave.
 図3は、差動増幅部50に入力される、基準電圧およびバイアス電圧が付加されたリップル電圧の波形を示す図である。図3中の基準電圧の波形は、差動増幅部50の正極入力端子における電圧波形であり、図3中のバイアス電圧が付加されたリップル電圧の波形は、差動増幅部50の負極入力端子における電圧波形である。 FIG. 3 is a diagram showing a waveform of a ripple voltage to which a reference voltage and a bias voltage are added, which are input to the differential amplifying unit 50. The waveform of the reference voltage in FIG. 3 is the voltage waveform at the positive input terminal of the differential amplifier 50, and the waveform of the ripple voltage with the bias voltage added in FIG. 3 is the negative input terminal of the differential amplifier 50. Is a voltage waveform at.
 図3に示されるように、リップル電圧は、バイアス電圧生成部20によってバイアス電圧が付加されることで、リップル電圧がマイナス側に振れているときも0Vよりも高くなっている。また、基準電圧生成部40は、図3に示されるように、バイアス電圧が付加されたリップル電圧よりも高くなるような基準電圧を生成する。例えば、シャント抵抗部41の抵抗値が調整されることで、バイアス電圧が付加されたリップル電圧よりも常に高い基準電圧が生成される。ただし、後述するように、バイアス電圧と基準電圧との差が大きくなり過ぎると、トランジスタ30の出力電流が大きくなってしまうため、バイアス電圧および基準電圧は、トランジスタ30の出力電流が大きくなり過ぎないように調整される。 As shown in FIG. 3, the ripple voltage is higher than 0 V even when the ripple voltage fluctuates on the negative side due to the addition of the bias voltage by the bias voltage generation unit 20. Further, as shown in FIG. 3, the reference voltage generation unit 40 generates a reference voltage that is higher than the ripple voltage to which the bias voltage is added. For example, by adjusting the resistance value of the shunt resistor 41, a reference voltage that is always higher than the ripple voltage to which the bias voltage is added is generated. However, as will be described later, if the difference between the bias voltage and the reference voltage becomes too large, the output current of the transistor 30 becomes large. Therefore, the output current of the transistor 30 does not become too large for the bias voltage and the reference voltage. To be adjusted.
 図4は、差動増幅部50から出力される差分信号の波形を示す図である。図4中の波形は、差動増幅部50の出力端子における電圧波形である。 FIG. 4 is a diagram illustrating a waveform of a differential signal output from the differential amplifier unit 50. The waveform in FIG. 4 is a voltage waveform at the output terminal of the differential amplifier 50.
 図3に示されるように、差動増幅部50の正極入力端子に入力された基準電圧が、差動増幅部50の負極入力端子に入力されたバイアス電圧が付加されたリップル電圧よりも常に高いため、図4に示されるように、差動増幅部50は、常に0よりも高い電圧の差分信号を出力端子から出力する。これにより、トランジスタ30のベースには、常に0よりも高い電圧の差分信号が入力(印加)されるため、トランジスタ30は、当該差分信号の大きさに応じて、定電圧信号から電流を引き抜くことができる。このとき、差分信号が大き過ぎると、定電圧信号から電流が大きく引き抜かれてしまい、定電圧信号のDC成分が大きく下がってしまうため、微小なリップル成分を打ち消す程度の電流を定電圧信号から引き抜けるように、差分信号の大きさが調整される。具体的には、バイアス電圧生成部20が生成するバイアス電圧および基準電圧生成部40が生成する基準電圧の大きさが調整されることで、リップル成分を打ち消す程度の電流が定電圧信号から引き抜かれる。 As shown in FIG. 3, the reference voltage input to the positive input terminal of the differential amplifier 50 is always higher than the ripple voltage to which the bias voltage input to the negative input terminal of the differential amplifier 50 is added. Therefore, as shown in FIG. 4, the differential amplifier 50 always outputs a differential signal having a voltage higher than 0 from the output terminal. Thereby, since a differential signal having a voltage higher than 0 is always input (applied) to the base of the transistor 30, the transistor 30 extracts current from the constant voltage signal according to the magnitude of the differential signal. Can do. At this time, if the difference signal is too large, the current is greatly extracted from the constant voltage signal, and the DC component of the constant voltage signal is greatly reduced, so that a current that can cancel out a minute ripple component is pulled out from the constant voltage signal. As described above, the magnitude of the difference signal is adjusted. Specifically, by adjusting the magnitudes of the bias voltage generated by the bias voltage generation unit 20 and the reference voltage generated by the reference voltage generation unit 40, a current enough to cancel the ripple component is extracted from the constant voltage signal. .
 図5は、シャント抵抗部41に生じる電圧の波形を示す図である。図5中のシャント抵抗部41に生じる電圧の波形(実線)は、トランジスタ30とシャント抵抗部41との間における電圧波形であり、基準電圧の波形(破線)は、LPF42と差動増幅部50との間における電圧波形である。基準電圧は、トランジスタ30の出力電流に応じてシャント抵抗部41に生じる電圧における、LPF42の通過帯域に対応する成分を有する電圧である。つまり、シャント抵抗部41に生じる電圧の高周波成分がLPF42によってカットされたものが基準電圧となる。 FIG. 5 is a diagram illustrating a waveform of a voltage generated in the shunt resistor portion 41. A voltage waveform (solid line) generated in the shunt resistor 41 in FIG. 5 is a voltage waveform between the transistor 30 and the shunt resistor 41, and a reference voltage waveform (broken line) is the LPF 42 and the differential amplifier 50. It is a voltage waveform between. The reference voltage is a voltage having a component corresponding to the pass band of the LPF 42 in the voltage generated in the shunt resistor portion 41 according to the output current of the transistor 30. That is, the reference voltage is obtained by cutting the high frequency component of the voltage generated in the shunt resistor 41 by the LPF 42.
 図2、図4および図5から、リップル成分が小さいときよりも大きいときの方が、定電圧信号から引き抜かれる電流量が大きくなることがわかる。例えば、図2中のA部分のようにリップル成分が大きいときには、図4中のA部分のように差分信号が小さくなるため、PNPバイポーラトランジスタであるトランジスタ30の出力電流(つまり、定電圧信号から引き抜かれる電流)は大きくなる。リップル成分が大きいときに定電圧信号から引き抜かれる電流が大きくなっていることは、図5中のA部分のようにシャント抵抗部41に生じる電圧が大きくなっていることからもわかる。また、例えば、図2中のB部分のようにリップル成分が小さいときには、図4中のB部分のように差分信号が大きくなるため、PNPバイポーラトランジスタであるトランジスタ30の出力電流(つまり、定電圧信号から引き抜かれる電流)は小さくなる。リップル成分が小さいときに定電圧信号から引き抜かれる電流が小さくなっていることは、図5中のB部分のようにシャント抵抗部41に生じる電圧が小さくなっていることからもわかる。 2, 4, and 5, it can be seen that the amount of current drawn from the constant voltage signal is larger when the ripple component is larger than when the ripple component is small. For example, when the ripple component is large as in the A portion in FIG. 2, the difference signal becomes small as in the A portion in FIG. 4, so that the output current of the transistor 30 that is a PNP bipolar transistor (that is, from the constant voltage signal). The current drawn) increases. The fact that the current drawn from the constant voltage signal is large when the ripple component is large can also be seen from the fact that the voltage generated in the shunt resistor portion 41 is large like the portion A in FIG. Further, for example, when the ripple component is small as in the B portion in FIG. 2, the differential signal becomes large as in the B portion in FIG. 4, so that the output current (that is, constant voltage) of the transistor 30 that is a PNP bipolar transistor. The current drawn from the signal is small. The fact that the current drawn from the constant voltage signal is small when the ripple component is small can also be seen from the fact that the voltage generated in the shunt resistor portion 41 is small like the portion B in FIG.
 次に、電源安定化回路1によって、定電圧電源100から出力される定電圧信号からリップル成分が除去されていることを、図6を用いて説明する。 Next, the fact that the ripple component has been removed from the constant voltage signal output from the constant voltage power supply 100 by the power supply stabilization circuit 1 will be described with reference to FIG.
 図6は、リップル成分が除去されていることを説明するための図である。図6中の実線は、定電圧電源100から出力される、リップル成分を含む定電圧信号の波形であり、DC成分にリップル成分が重畳している波形を示している。図6中の破線は、出力端子110から出力される信号の波形であり、リップル成分除去後のDC成分の波形を示している。 FIG. 6 is a diagram for explaining that the ripple component is removed. A solid line in FIG. 6 is a waveform of a constant voltage signal including a ripple component output from the constant voltage power supply 100, and shows a waveform in which the ripple component is superimposed on the DC component. The broken line in FIG. 6 is the waveform of the signal output from the output terminal 110, and shows the waveform of the DC component after ripple component removal.
 図2から図5で説明したように、リップル成分が大きいときには定電圧信号から引き抜かれる電流量が大きく、リップル成分が小さいときには定電圧信号から引き抜かれる電流量が小さくなる。このため、図6中のA部分のようにリップル成分が大きいときには、引き抜かれる電流量が大きく電圧低下量が大きくなっており、図6中のB部分のようにリップル成分が小さいときには、引き抜かれる電流量が小さく電圧低下量が小さくなっている。結果として、リップル成分が除去されて一定のDC成分のみが出力端子110から出力される。なお、図6では、説明をわかりやすくするために、定電圧信号のリップル成分の部分を拡大して示しているが、実際には、DC成分の大きさに比べ、リップル成分の変動の大きさは小さい。つまり、トランジスタ30によって定電圧信号から引き抜かれる電流量は小さいため、リップル成分除去前後でのDC成分の電圧低下量は、DC成分自体の大きさに比べると小さくなっている。トランジスタ30によって定電圧信号から引き抜かれる電流量は小さいため、トランジスタ30は、大電流に対応した大きなパッケージのトランジスタである必要はなく、また、大電流に対応した大型の放熱器も不要となる。 2 to 5, when the ripple component is large, the amount of current drawn from the constant voltage signal is large, and when the ripple component is small, the amount of current drawn from the constant voltage signal is small. For this reason, when the ripple component is large as in the portion A in FIG. 6, the amount of current drawn is large and the voltage drop amount is large, and when the ripple component is small as in the portion B in FIG. The amount of current is small and the amount of voltage drop is small. As a result, the ripple component is removed and only a constant DC component is output from the output terminal 110. In FIG. 6, the ripple component portion of the constant voltage signal is shown in an enlarged manner for easy understanding, but in reality, the magnitude of the fluctuation of the ripple component is larger than the magnitude of the DC component. Is small. That is, since the amount of current drawn from the constant voltage signal by the transistor 30 is small, the voltage drop amount of the DC component before and after the ripple component removal is smaller than the magnitude of the DC component itself. Since the amount of current drawn from the constant voltage signal by the transistor 30 is small, the transistor 30 does not have to be a large package transistor corresponding to a large current, and a large radiator corresponding to the large current is not necessary.
 このように、電源安定化回路1は、リップル成分の大きさに応じて、定電圧信号から引き抜く電流量を調整することで、リップル成分除去後のDC成分を一定とすることができるため、出力端子110から定電圧信号を安定化して出力することができる。 As described above, the power supply stabilization circuit 1 can make the DC component after removing the ripple component constant by adjusting the amount of current drawn from the constant voltage signal according to the magnitude of the ripple component. A constant voltage signal can be stabilized and output from the terminal 110.
 以上説明したように、電源安定化回路1は、定電圧電源100から出力される、リップル成分を含む定電圧信号を安定化して出力端子110から出力する回路である。電源安定化回路1は、定電圧電源100と出力端子110とを結ぶ出力経路L0と、グランドとを結ぶ第1経路L1に配置され、定電圧信号に含まれるリップル成分を示すリップル電圧を抽出するリップル抽出部10と、第1経路L1においてリップル抽出部10とグランドとの間に接続され、リップル電圧にバイアス電圧を付加するバイアス電圧生成部20とを備える。また、電源安定化回路1は、出力経路L0とグランドとを結ぶ、第1経路L1とは異なる第2経路L2に配置されるトランジスタ30と、第2経路L2においてトランジスタ30とグランドとの間に接続され、トランジスタ30の出力電流に応じた基準電圧を生成する基準電圧生成部40とを備える。また、電源安定化回路1は、正極入力端子と負極入力端子とを有し、正極入力端子に入力された基準電圧と負極入力端子に入力されたバイアス電圧が付加されたリップル電圧との差分を反転増幅し、当該反転増幅した差分信号をトランジスタ30へ出力する差動増幅部50を備える。トランジスタ30の出力電流は、差分信号に応じて、定電圧信号からトランジスタ30を介して基準電圧生成部40へ流れる電流である。 As described above, the power supply stabilization circuit 1 is a circuit that stabilizes a constant voltage signal including a ripple component output from the constant voltage power supply 100 and outputs it from the output terminal 110. The power supply stabilization circuit 1 is arranged in an output path L0 connecting the constant voltage power supply 100 and the output terminal 110 and a first path L1 connecting the ground, and extracts a ripple voltage indicating a ripple component included in the constant voltage signal. The ripple extracting unit 10 includes a bias voltage generating unit 20 that is connected between the ripple extracting unit 10 and the ground in the first path L1 and adds a bias voltage to the ripple voltage. In addition, the power supply stabilization circuit 1 includes a transistor 30 that is disposed on a second path L2 that connects the output path L0 and the ground, and is different from the first path L1, and between the transistor 30 and the ground in the second path L2. And a reference voltage generation unit 40 that generates a reference voltage corresponding to the output current of the transistor 30. The power supply stabilization circuit 1 has a positive input terminal and a negative input terminal, and calculates a difference between a reference voltage input to the positive input terminal and a ripple voltage to which a bias voltage input to the negative input terminal is added. A differential amplifying unit 50 that performs inverting amplification and outputs the inverted and amplified differential signal to the transistor 30 is provided. The output current of the transistor 30 is a current that flows from the constant voltage signal to the reference voltage generation unit 40 via the transistor 30 according to the difference signal.
 これによれば、リップル抽出部10により抽出されたリップル電圧が差動増幅部50において反転増幅され、当該反転増幅された差分信号によってトランジスタ30が駆動される。つまり、当該差分信号は、リップル成分の逆相信号となるため、逆相信号を用いてトランジスタ30を制御することにより、定電圧信号からリップル成分を低減するように電流を引き抜くことができる。また、トランジスタ30は、定電圧電源100から出力される全電流が流れる出力経路L0に設けられず、小信号であるリップル成分だけを低減するような電流駆動を行うため、大電流に対応した大きなパッケージのトランジスタは不要となり、また、大電流に対応した大型の放熱器も不要となる。したがって、電源安定化回路1は、定電圧電源100の出力を安定化するための構成を小型化できる。 According to this, the ripple voltage extracted by the ripple extracting unit 10 is inverted and amplified in the differential amplifying unit 50, and the transistor 30 is driven by the inverted and amplified differential signal. That is, since the differential signal is a reverse-phase signal of the ripple component, the current can be extracted from the constant voltage signal so as to reduce the ripple component by controlling the transistor 30 using the negative-phase signal. In addition, the transistor 30 is not provided in the output path L0 through which all the current output from the constant voltage power supply 100 flows, and performs current driving to reduce only a ripple component that is a small signal. The transistor in the package is not required, and a large heat sink that can handle a large current is also unnecessary. Therefore, the power supply stabilization circuit 1 can reduce the size of the configuration for stabilizing the output of the constant voltage power supply 100.
 また、リップル抽出部10は、出力経路L0と負極入力端子との間に直列に接続されたコンデンサであってもよい。 Further, the ripple extraction unit 10 may be a capacitor connected in series between the output path L0 and the negative input terminal.
 これによれば、リップル抽出部10を簡易な構成で実現できる。 According to this, the ripple extraction unit 10 can be realized with a simple configuration.
 また、基準電圧生成部40は、第2経路L2においてトランジスタ30とグランドとの間に配置されたシャント抵抗部41と、第2経路L2におけるトランジスタ30とシャント抵抗部41とを結ぶ経路と、正極入力端子とを結ぶ経路に配置されたLPF42と、を有していてもよい。基準電圧は、トランジスタ30の出力電流に応じてシャント抵抗部41に生じる電圧における、LPF42の通過帯域に対応する成分を有する電圧であってもよい。 In addition, the reference voltage generation unit 40 includes a shunt resistor unit 41 disposed between the transistor 30 and the ground in the second path L2, a path connecting the transistor 30 and the shunt resistor unit 41 in the second path L2, and a positive electrode And an LPF 42 disposed in a path connecting the input terminals. The reference voltage may be a voltage having a component corresponding to the pass band of the LPF 42 in the voltage generated in the shunt resistor portion 41 according to the output current of the transistor 30.
 これによれば、シャント抵抗部41の抵抗値によって基準電圧を調整することができ、基準電圧の大きさに応じてトランジスタ30を駆動するための差分信号の大きさを決めることができる。このため、シャント抵抗部41の抵抗値によって定電圧信号から引き抜く電流量を容易に調整できる。 According to this, the reference voltage can be adjusted by the resistance value of the shunt resistor portion 41, and the magnitude of the differential signal for driving the transistor 30 can be determined according to the magnitude of the reference voltage. For this reason, the amount of current drawn from the constant voltage signal can be easily adjusted by the resistance value of the shunt resistor portion 41.
 (実施の形態2)
 次に、図7および図8を用いて実施の形態2を説明する。
(Embodiment 2)
Next, Embodiment 2 will be described with reference to FIGS.
 図7は、実施の形態2に係る電源安定化回路1aの一例を示す回路構成図である。なお、図7には、電源安定化回路1aの他に、電源安定化回路1aに入力される信号を出力する定電圧電源100、電源安定化回路1aで処理された信号を出力する出力端子110および出力端子110に接続された負荷120を示している。 FIG. 7 is a circuit configuration diagram showing an example of the power supply stabilization circuit 1a according to the second embodiment. In FIG. 7, in addition to the power supply stabilization circuit 1a, a constant voltage power supply 100 that outputs a signal input to the power supply stabilization circuit 1a, and an output terminal 110 that outputs a signal processed by the power supply stabilization circuit 1a. The load 120 connected to the output terminal 110 is shown.
 実施の形態2に係る電源安定化回路1aは、制御部60をさらに備え、基準電圧生成部40の代わりに基準電圧生成部40aを備える点が、実施の形態1に係る電源安定化回路1と異なる。また、基準電圧生成部40aは、シャント抵抗部41の代わりにシャント抵抗部41aを備える点が、基準電圧生成部40と異なる。その他の点は、電源安定化回路1におけるものと同じであるため、説明を省略する。 The power supply stabilization circuit 1a according to the second embodiment further includes a control unit 60, and includes a reference voltage generation unit 40a instead of the reference voltage generation unit 40, in that the power supply stabilization circuit 1 according to the first embodiment is different from the power supply stabilization circuit 1 according to the first embodiment. Different. The reference voltage generation unit 40 a is different from the reference voltage generation unit 40 in that the reference voltage generation unit 40 a includes a shunt resistance unit 41 a instead of the shunt resistance unit 41. Since the other points are the same as those in the power supply stabilization circuit 1, the description thereof is omitted.
 制御部60は、プロセッサ等であり、例えば、マイコン(マイクロコンピュータ)である。制御部60は、負荷120の大きさ(電力消費量)に応じた信号を取得し、当該信号に応じてシャント抵抗部41aを制御する。制御部60は、負荷120の大きさを検知する機能を有していてもよいし、他の検知装置から負荷120の大きさを示す信号を取得してもよい。なお、電源安定化回路1aは、制御部60を備えていなくてもよい。この場合、電源安定化回路1a(シャント抵抗部41a)は、外部に設けられた制御部60から負荷120の大きさに応じた信号に基づく制御信号を受け付ける。 The control unit 60 is a processor or the like, for example, a microcomputer. The control unit 60 acquires a signal corresponding to the size (power consumption) of the load 120, and controls the shunt resistor unit 41a according to the signal. The control unit 60 may have a function of detecting the size of the load 120, or may acquire a signal indicating the size of the load 120 from another detection device. The power supply stabilization circuit 1a may not include the control unit 60. In this case, the power supply stabilization circuit 1a (shunt resistor unit 41a) receives a control signal based on a signal corresponding to the size of the load 120 from the control unit 60 provided outside.
 シャント抵抗部41aの抵抗値は、出力端子110に接続される負荷120の大きさが所定値よりも大きい場合には、第1抵抗値に制御され、負荷120の大きさが所定値以下の場合には、第1抵抗値よりも小さい第2抵抗値に制御される。当該制御の具体例について、以下説明する。 The resistance value of the shunt resistor portion 41a is controlled to the first resistance value when the size of the load 120 connected to the output terminal 110 is larger than a predetermined value, and when the size of the load 120 is equal to or smaller than the predetermined value. The second resistance value is controlled to be smaller than the first resistance value. A specific example of the control will be described below.
 シャント抵抗部41aは、例えば、第2経路L2においてトランジスタ30とグランドとの間に接続された第1抵抗R1と、第1抵抗R1に並列に接続された、第2抵抗R2とスイッチSWとの直列回路と、を有する。そして、シャント抵抗部41aの抵抗値は、負荷120の大きさが所定値よりも大きい場合には、スイッチSWがオフされて、第1抵抗値として第1抵抗R1の抵抗値に制御され、負荷120の大きさが所定値以下の場合には、スイッチSWがオンされて、第2抵抗値として第1抵抗R1と第2抵抗R2との合成抵抗値に制御される。例えば、制御部60は、負荷120の大きさを示す信号に基づいて、負荷120の大きさが所定値よりも大きいか否かの判定を行い、当該判定結果に応じて、スイッチSWのオンオフ制御を行う。なお、スイッチSWは、機械的にオンオフするスイッチ(リレー等)であっても、電気的にオンオフするスイッチ(トランジスタ等)であってもよい。 The shunt resistor 41a includes, for example, a first resistor R1 connected between the transistor 30 and the ground in the second path L2, and a second resistor R2 connected in parallel to the first resistor R1 and the switch SW. A series circuit. The resistance value of the shunt resistor portion 41a is controlled to the resistance value of the first resistor R1 as the first resistance value when the load 120 is larger than the predetermined value by turning off the switch SW. When the magnitude of 120 is equal to or smaller than a predetermined value, the switch SW is turned on and the combined resistance value of the first resistance R1 and the second resistance R2 is controlled as the second resistance value. For example, the control unit 60 determines whether or not the size of the load 120 is larger than a predetermined value based on a signal indicating the size of the load 120, and on / off control of the switch SW according to the determination result. I do. The switch SW may be a switch (such as a relay) that is turned on and off mechanically or a switch (such as a transistor) that is electrically turned on and off.
 上記所定値は、例えば、定電圧電源100がアイドリング動作をする程度の負荷120の大きさであり、負荷120の種類等によって適宜決定される。 The predetermined value is, for example, the size of the load 120 at which the constant voltage power supply 100 performs an idling operation, and is appropriately determined depending on the type of the load 120 and the like.
 例えば、負荷120の大きさが所定値以下の場合、定電圧電源100(例えばスイッチング電源)は、アイドリング動作(具体的には、長期間出力オフの状態が続いた後、短期間出力オンの状態になるということを繰り返す動作)をする。つまり、負荷120の大きさが小さい場合、急に出力が立ち上がることが繰り返されるため、リップル成分が大きくなってしまう。そこで、シャント抵抗部41aの抵抗値が、スイッチSWオフ時の抵抗値である第1抵抗R1の抵抗値(第1抵抗値)よりも小さい値であって、スイッチSWオン時の抵抗値である第1抵抗R1と第2抵抗R2との合成抵抗値(第2抵抗値)に制御される。これにより、基準電圧は一定のままで、トランジスタ30の流すことができる電流量を増やすことができる。したがって、差動増幅ができる状態を維持したまま、リップル成分の大きさに応じてトランジスタ30によって定電圧信号から引き抜かれる電流量を多くすることで、定電圧電源100のアイドリング動作によって大きくなってしまったリップル成分を除去することができる。なお、第2抵抗R2の代わりに抵抗およびキャパシタで構成されたRC回路が設けられてもよい。当該RC回路は時定数を有しているため、スイッチSWのオンオフが切り替えられた際に、急激にシャント抵抗部41aの抵抗値が変化することで、かえってノイズが発生してしまうことを抑制できる。 For example, when the size of the load 120 is less than or equal to a predetermined value, the constant voltage power supply 100 (for example, a switching power supply) is in an idling operation (specifically, the output is off for a long time and then the output is on for a short time. To repeat the process). That is, when the load 120 is small, the output suddenly rises repeatedly, and the ripple component becomes large. Therefore, the resistance value of the shunt resistor portion 41a is smaller than the resistance value (first resistance value) of the first resistor R1, which is the resistance value when the switch SW is off, and is the resistance value when the switch SW is on. The combined resistance value (second resistance value) of the first resistor R1 and the second resistor R2 is controlled. Thus, the amount of current that can be passed through the transistor 30 can be increased while the reference voltage remains constant. Therefore, by increasing the amount of current drawn from the constant voltage signal by the transistor 30 according to the magnitude of the ripple component while maintaining a state where differential amplification is possible, the idling operation of the constant voltage power supply 100 increases. Ripple components can be removed. An RC circuit composed of a resistor and a capacitor may be provided instead of the second resistor R2. Since the RC circuit has a time constant, when the switch SW is turned on / off, the resistance value of the shunt resistor portion 41a is suddenly changed, so that the occurrence of noise can be suppressed. .
 一方で、定電圧信号から引き抜かれる電流量が多くなるほど、電力のロスとなってしまうため、負荷120の大きさが所定値よりも大きい場合、つまり、例えば定電圧電源100がアイドリング動作をしない場合には、シャント抵抗部41aの抵抗値は、スイッチSWオフ時の抵抗値である第1抵抗R1の抵抗値(第1抵抗値)に制御される。 On the other hand, as the amount of current drawn from the constant voltage signal increases, power loss occurs. Therefore, when the size of the load 120 is larger than a predetermined value, that is, for example, when the constant voltage power supply 100 does not perform an idling operation. The resistance value of the shunt resistor portion 41a is controlled to the resistance value (first resistance value) of the first resistor R1, which is the resistance value when the switch SW is off.
 このように、負荷120の大きさに応じて、シャント抵抗部41aの抵抗値が制御されることで、発生するリップル成分の大きさに応じて効果的にリップル成分を除去することができる。なお、シャント抵抗部41aの抵抗値の制御方法はこれに限らない。 Thus, by controlling the resistance value of the shunt resistor 41a according to the size of the load 120, the ripple component can be effectively removed according to the size of the generated ripple component. The method for controlling the resistance value of the shunt resistor 41a is not limited to this.
 図8は、実施の形態2の変形例に係る電源安定化回路1bの一例を示す回路構成図である。なお、図8には、電源安定化回路1bの他に、電源安定化回路1bに入力される信号を出力する定電圧電源100、電源安定化回路1bで処理された信号を出力する出力端子110および出力端子110に接続された負荷120を示している。 FIG. 8 is a circuit configuration diagram showing an example of a power supply stabilization circuit 1b according to a modification of the second embodiment. In FIG. 8, in addition to the power supply stabilization circuit 1b, a constant voltage power supply 100 that outputs a signal input to the power supply stabilization circuit 1b, and an output terminal 110 that outputs a signal processed by the power supply stabilization circuit 1b. The load 120 connected to the output terminal 110 is shown.
 実施の形態2の変形例に係る電源安定化回路1bは、基準電圧生成部40aの代わりに基準電圧生成部40bを備える点が、実施の形態2に係る電源安定化回路1aと異なる。また、基準電圧生成部40bは、シャント抵抗部41aの代わりにシャント抵抗部41bを備える点が、基準電圧生成部40aと異なる。その他の点は、電源安定化回路1aにおけるものと同じであるため、説明を省略する。 The power supply stabilization circuit 1b according to the modification of the second embodiment is different from the power supply stabilization circuit 1a according to the second embodiment in that a reference voltage generation unit 40b is provided instead of the reference voltage generation unit 40a. The reference voltage generation unit 40b is different from the reference voltage generation unit 40a in that the reference voltage generation unit 40b includes a shunt resistance unit 41b instead of the shunt resistance unit 41a. Since the other points are the same as those in the power supply stabilization circuit 1a, description thereof is omitted.
 シャント抵抗部41bの抵抗値は、出力端子110に接続される負荷120の大きさが小さいほど、小さくなるように制御される。当該制御の具体例について、以下説明する。 The resistance value of the shunt resistor 41b is controlled to be smaller as the size of the load 120 connected to the output terminal 110 is smaller. A specific example of the control will be described below.
 シャント抵抗部41bは、第2経路L2においてトランジスタ30とグランドとの間に接続された可変抵抗R3を有する。そして、負荷120の大きさが小さいほど、シャント抵抗部41bの抵抗値として、可変抵抗R3の抵抗値が小さくなるように制御される。例えば、制御部60は、負荷120の大きさを示す信号に基づいて、可変抵抗R3の抵抗値の制御を行う。例えば、制御部60は、負荷120の大きさと可変抵抗R3の抵抗値との対応関係を示すテーブル等を参照することで、可変抵抗R3の抵抗値の制御を行う。 The shunt resistor 41b has a variable resistor R3 connected between the transistor 30 and the ground in the second path L2. The smaller the load 120 is, the smaller the resistance value of the variable resistor R3 is controlled as the resistance value of the shunt resistor portion 41b. For example, the control unit 60 controls the resistance value of the variable resistor R3 based on a signal indicating the size of the load 120. For example, the control unit 60 controls the resistance value of the variable resistor R3 by referring to a table or the like indicating a correspondence relationship between the size of the load 120 and the resistance value of the variable resistor R3.
 例えば、負荷120の大きさが小さいほど、定電圧電源100(例えばスイッチング電源)は、アイドリング動作(具体的には、長期間出力オフの状態が続いた後、短期間出力オンの状態になるということを繰り返す動作)をしやすくなる。そこで、負荷120の大きさが小さいほど、シャント抵抗部41bの抵抗値は小さくなるように制御される。これにより、基準電圧は一定のままで、トランジスタ30の流すことができる電流量を増やすことができる。したがって、差動増幅ができる状態を維持したまま、リップル成分の大きさに応じてトランジスタ30によって定電圧信号から引き抜かれる電流量を多くすることで、定電圧電源100のアイドリング動作によって大きくなってしまったリップル成分を除去することができる。 For example, as the size of the load 120 is smaller, the constant voltage power supply 100 (for example, the switching power supply) is in an idling operation (specifically, after the output is turned off for a long time, the output is turned on for a short time). It is easier to repeat the action). Therefore, the resistance value of the shunt resistor 41b is controlled to be smaller as the size of the load 120 is smaller. Thus, the amount of current that can be passed through the transistor 30 can be increased while the reference voltage remains constant. Therefore, by increasing the amount of current drawn from the constant voltage signal by the transistor 30 according to the magnitude of the ripple component while maintaining a state where differential amplification is possible, the idling operation of the constant voltage power supply 100 increases. Ripple components can be removed.
 以上説明したように、シャント抵抗部41aの抵抗値は、出力端子110に接続される負荷120の大きさが所定値よりも大きい場合には、第1抵抗値に制御され、負荷120の大きさが所定値以下の場合には、第1抵抗値よりも小さい第2抵抗値に制御されてもよい。具体的には、シャント抵抗部41aは、第2経路L2においてトランジスタ30とグランドとの間に接続された第1抵抗R1と、第1抵抗R1に並列に接続された、第2抵抗R2とスイッチSWとの直列回路と、を有していてもよい。シャント抵抗部41aの抵抗値は、負荷120の大きさが所定値よりも大きい場合には、スイッチSWがオフされて、第1抵抗値として第1抵抗R1の抵抗値に制御され、負荷120の大きさが所定値以下の場合には、スイッチSWがオンされて、第2抵抗値として第1抵抗R1と第2抵抗R2との合成抵抗値に制御されてもよい。 As described above, the resistance value of the shunt resistor portion 41a is controlled to the first resistance value when the size of the load 120 connected to the output terminal 110 is larger than a predetermined value, and the size of the load 120 is determined. May be controlled to a second resistance value smaller than the first resistance value. Specifically, the shunt resistor 41a includes a first resistor R1 connected between the transistor 30 and the ground in the second path L2, and a second resistor R2 and a switch connected in parallel to the first resistor R1. And a series circuit with SW. When the size of the load 120 is larger than a predetermined value, the resistance value of the shunt resistor 41a is controlled by turning off the switch SW and controlling the resistance value of the first resistor R1 as the first resistance value. When the magnitude is less than or equal to a predetermined value, the switch SW may be turned on and controlled to a combined resistance value of the first resistance R1 and the second resistance R2 as the second resistance value.
 これによれば、負荷120の大きさが、定電圧電源100がアイドリング動作をするような所定値以下の場合には、シャント抵抗部41aの抵抗値が小さくなるように制御され、トランジスタ30の流すことができる電流量を増やすことができる。したがって、リップル成分の大きさに応じてトランジスタ30によって定電圧信号から引き抜かれる電流量を多くすることで、定電圧電源100のアイドリング動作によって大きくなってしまったリップル成分を除去することができる。 According to this, when the size of the load 120 is equal to or less than a predetermined value at which the constant voltage power supply 100 performs an idling operation, the resistance value of the shunt resistor 41a is controlled to be small, and the transistor 30 flows. The amount of current that can be increased. Therefore, by increasing the amount of current drawn from the constant voltage signal by the transistor 30 according to the magnitude of the ripple component, the ripple component that has become large due to the idling operation of the constant voltage power supply 100 can be removed.
 また、シャント抵抗部41bの抵抗値は、出力端子110に接続される負荷120の大きさが小さいほど、小さくなるように制御されてもよい。具体的には、シャント抵抗部41bは、第2経路L2においてトランジスタ30とグランドとの間に接続された可変抵抗R3を有していてもよい。負荷120の大きさが小さいほど、シャント抵抗部41bの抵抗値として、可変抵抗R3の抵抗値が小さくなるように制御されてもよい。 Further, the resistance value of the shunt resistor portion 41b may be controlled to be smaller as the load 120 connected to the output terminal 110 is smaller. Specifically, the shunt resistor portion 41b may have a variable resistor R3 connected between the transistor 30 and the ground in the second path L2. The smaller the load 120 is, the smaller the resistance value of the variable resistor R3 may be controlled as the resistance value of the shunt resistor portion 41b.
 これによれば、負荷120の大きさが小さいほど、定電圧電源100は、アイドリング動作をしやすくなる。そこで、シャント抵抗部41bの抵抗値は、負荷120の大きさが小さいほど、小さくなるように制御され、トランジスタ30の流すことができる電流量を増やすことができる。したがって、リップル成分の大きさに応じてトランジスタ30によって定電圧信号から引き抜かれる電流量を多くすることで、定電圧電源100のアイドリング動作によって大きくなってしまったリップル成分を除去することができる。 According to this, as the size of the load 120 is smaller, the constant voltage power supply 100 becomes easier to perform the idling operation. Therefore, the resistance value of the shunt resistor 41b is controlled to be smaller as the size of the load 120 is smaller, and the amount of current that can be passed through the transistor 30 can be increased. Therefore, by increasing the amount of current drawn from the constant voltage signal by the transistor 30 according to the magnitude of the ripple component, the ripple component that has become large due to the idling operation of the constant voltage power supply 100 can be removed.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略等を行った実施の形態にも適応可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, the embodiments have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated in the said embodiment and it can also be set as a new embodiment.
 例えば、上記実施の形態では、リップル抽出部10は、出力経路L0と差動増幅部50が有する負極入力端子との間に直列に接続されたコンデンサであったが、リップル電圧のみを取り出すことができる構成であれば、このような構成に限らない。 For example, in the above embodiment, the ripple extraction unit 10 is a capacitor connected in series between the output path L0 and the negative input terminal of the differential amplification unit 50. However, only the ripple voltage can be extracted. Any configuration that can be used is not limited to such a configuration.
 また、例えば、上記実施の形態では、トランジスタ30は、PNPバイポーラトランジスタであったが、これに限らない。例えば、トランジスタ30は、第2経路L2に流れる電流を制御できる機能を有するトランジスタであれば、NPNバイポーラトランジスタ、または、NチャネルもしくはPチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のトランジスタであってもよい。 For example, in the above embodiment, the transistor 30 is a PNP bipolar transistor, but is not limited thereto. For example, the transistor 30 is an NPN bipolar transistor or a transistor such as an N-channel or P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) as long as it has a function of controlling the current flowing through the second path L2. Also good.
 また、例えば、実施の形態2では、シャント抵抗部41aは、第1抵抗R1に並列に接続された、第2抵抗R2とスイッチSWとの直列回路を1つ有していたが、これに限らない。例えば、シャント抵抗部41aは、このような直列回路が複数個、第1抵抗R1に並列に接続された構成を有していてもよい。これにより、シャント抵抗部41aの抵抗値をより柔軟に制御できるようになる。 For example, in the second embodiment, the shunt resistor 41a has one series circuit of the second resistor R2 and the switch SW connected in parallel to the first resistor R1, but the present invention is not limited to this. Absent. For example, the shunt resistor portion 41a may have a configuration in which a plurality of such series circuits are connected in parallel to the first resistor R1. Thereby, the resistance value of the shunt resistor portion 41a can be controlled more flexibly.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Therefore, the constituent elements described in the accompanying drawings and the detailed description may include not only constituent elements essential for solving the problem but also constituent elements not essential for solving the problem. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiment is for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be performed within the scope of the claims or an equivalent scope thereof.
 本開示は、安定化された定電圧電源を必要とする装置に適用可能である。具体的には、音響機器、テレビ、PC(Personal Computer)、携帯機器等の音を再生する装置に、本開示は適用可能である。 The present disclosure is applicable to a device that requires a stabilized constant voltage power source. Specifically, the present disclosure can be applied to a device that reproduces sound, such as an audio device, a television, a PC (Personal Computer), and a portable device.
 1、1a、1b 電源安定化回路
 10 リップル抽出部
 20 バイアス電圧生成部
 30 トランジスタ
 40、40a、40b 基準電圧生成部
 41、41a、41b シャント抵抗部
 42 ローパスフィルタ(LPF)
 50 差動増幅部
 60 制御部
 100 定電圧電源
 110 出力端子
 120 負荷
 L0 出力経路
 L1 第1経路
 L2 第2経路
 R1 第1抵抗
 R2 第2抵抗
 R3 可変抵抗
 SW スイッチ
 x1、x2 ノード
DESCRIPTION OF SYMBOLS 1, 1a, 1b Power supply stabilization circuit 10 Ripple extraction part 20 Bias voltage generation part 30 Transistor 40, 40a, 40b Reference voltage generation part 41, 41a, 41b Shunt resistance part 42 Low-pass filter (LPF)
50 Differential Amplifier 60 Control Unit 100 Constant Voltage Power Supply 110 Output Terminal 120 Load L0 Output Path L1 First Path L2 Second Path R1 First Resistance R2 Second Resistance R3 Variable Resistance SW Switch x1, x2 Node

Claims (7)

  1.  定電圧電源から出力される、リップル成分を含む定電圧信号を安定化して出力端子から出力する電源安定化回路であって、
     前記定電圧電源と前記出力端子とを結ぶ出力経路と、グランドとを結ぶ第1経路に配置され、前記定電圧信号に含まれるリップル成分を示すリップル電圧を抽出するリップル抽出部と、
     前記第1経路において前記リップル抽出部とグランドとの間に接続され、前記リップル電圧にバイアス電圧を付加するバイアス電圧生成部と、
     前記出力経路とグランドとを結ぶ、前記第1経路とは異なる第2経路に配置されるトランジスタと、
     前記第2経路において前記トランジスタとグランドとの間に接続され、前記トランジスタの出力電流に応じた基準電圧を生成する基準電圧生成部と、
     正極入力端子と負極入力端子とを有し、前記正極入力端子に入力された前記基準電圧と前記負極入力端子に入力された前記バイアス電圧が付加されたリップル電圧との差分を反転増幅し、当該反転増幅した差分信号を前記トランジスタへ出力する差動増幅部と、を備え、
     前記トランジスタの出力電流は、前記差分信号に応じて、前記定電圧信号から前記トランジスタを介して前記基準電圧生成部へ流れる電流である、
     電源安定化回路。
    A power supply stabilization circuit that stabilizes a constant voltage signal including a ripple component output from a constant voltage power supply and outputs it from an output terminal.
    A ripple extracting unit that is arranged in an output path connecting the constant voltage power supply and the output terminal and a first path connecting the ground, and extracts a ripple voltage indicating a ripple component included in the constant voltage signal;
    A bias voltage generation unit connected between the ripple extraction unit and the ground in the first path and adding a bias voltage to the ripple voltage;
    A transistor arranged in a second path different from the first path connecting the output path and the ground;
    A reference voltage generation unit that is connected between the transistor and the ground in the second path and generates a reference voltage according to an output current of the transistor;
    Having a positive input terminal and a negative input terminal, inverting and amplifying a difference between the reference voltage input to the positive input terminal and the ripple voltage to which the bias voltage input to the negative input terminal is added, and A differential amplifier that outputs the inverted and amplified differential signal to the transistor, and
    The output current of the transistor is a current that flows from the constant voltage signal to the reference voltage generation unit via the transistor according to the difference signal.
    Power stabilization circuit.
  2.  前記リップル抽出部は、前記出力経路と前記負極入力端子との間に直列に接続されたコンデンサである、
     請求項1に記載の電源安定化回路。
    The ripple extraction unit is a capacitor connected in series between the output path and the negative input terminal.
    The power supply stabilization circuit according to claim 1.
  3.  前記基準電圧生成部は、
      前記第2経路において前記トランジスタとグランドとの間に配置されたシャント抵抗部と、
      前記第2経路における前記トランジスタと前記シャント抵抗部とを結ぶ経路と、前記正極入力端子とを結ぶ経路に配置されたローパスフィルタと、を有し、
     前記基準電圧は、前記トランジスタの出力電流に応じて前記シャント抵抗部に生じる電圧における、前記ローパスフィルタの通過帯域に対応する成分を有する電圧である、
     請求項1または2に記載の電源安定化回路。
    The reference voltage generator is
    A shunt resistor portion disposed between the transistor and the ground in the second path;
    A path connecting the transistor and the shunt resistor in the second path, and a low-pass filter disposed in a path connecting the positive input terminal,
    The reference voltage is a voltage having a component corresponding to a pass band of the low-pass filter in a voltage generated in the shunt resistor unit according to an output current of the transistor.
    The power supply stabilization circuit according to claim 1 or 2.
  4.  前記シャント抵抗部の抵抗値は、
      前記出力端子に接続される負荷の大きさが所定値よりも大きい場合には、第1抵抗値に制御され、
      前記負荷の大きさが所定値以下の場合には、前記第1抵抗値よりも小さい第2抵抗値に制御される、
     請求項3に記載の電源安定化回路。
    The resistance value of the shunt resistor is
    When the load connected to the output terminal is larger than a predetermined value, the first resistance value is controlled.
    When the magnitude of the load is a predetermined value or less, the second resistance value is controlled to be smaller than the first resistance value.
    The power supply stabilization circuit according to claim 3.
  5.  前記シャント抵抗部は、前記第2経路において前記トランジスタとグランドとの間に接続された第1抵抗と、前記第1抵抗に並列に接続された、第2抵抗とスイッチとの直列回路と、を有し、
     前記シャント抵抗部の抵抗値は、
      前記負荷の大きさが所定値よりも大きい場合には、前記スイッチがオフされて、前記第1抵抗値として前記第1抵抗の抵抗値に制御され、
      前記負荷の大きさが所定値以下の場合には、前記スイッチがオンされて、前記第2抵抗値として前記第1抵抗と前記第2抵抗との合成抵抗値に制御される、
     請求項4に記載の電源安定化回路。
    The shunt resistor unit includes a first resistor connected between the transistor and the ground in the second path, and a series circuit of a second resistor and a switch connected in parallel to the first resistor. Have
    The resistance value of the shunt resistor is
    When the magnitude of the load is larger than a predetermined value, the switch is turned off and the resistance value of the first resistor is controlled as the first resistance value.
    When the magnitude of the load is less than or equal to a predetermined value, the switch is turned on and controlled as a combined resistance value of the first resistor and the second resistor as the second resistance value.
    The power supply stabilization circuit according to claim 4.
  6.  前記シャント抵抗部の抵抗値は、前記出力端子に接続される負荷の大きさが小さいほど、小さくなるように制御される、
     請求項3に記載の電源安定化回路。
    The resistance value of the shunt resistor portion is controlled to be smaller as the load connected to the output terminal is smaller.
    The power supply stabilization circuit according to claim 3.
  7.  前記シャント抵抗部は、前記第2経路において前記トランジスタとグランドとの間に接続された可変抵抗を有し、
     前記負荷の大きさが小さいほど、前記シャント抵抗部の抵抗値として、前記可変抵抗の抵抗値が小さくなるように制御される、
     請求項6に記載の電源安定化回路。
    The shunt resistor unit has a variable resistor connected between the transistor and the ground in the second path,
    The smaller the load size, the smaller the resistance value of the variable resistor is controlled as the resistance value of the shunt resistor portion.
    The power supply stabilization circuit according to claim 6.
PCT/JP2018/043829 2018-03-09 2018-11-28 Power supply stabilization circuit WO2019171674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042936 2018-03-09
JP2018-042936 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019171674A1 true WO2019171674A1 (en) 2019-09-12

Family

ID=67847293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043829 WO2019171674A1 (en) 2018-03-09 2018-11-28 Power supply stabilization circuit

Country Status (1)

Country Link
WO (1) WO2019171674A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175549U (en) * 1981-04-29 1982-11-06
JPH04117170A (en) * 1990-09-04 1992-04-17 Fujitsu Ltd Multi-output power supply
JPH08328672A (en) * 1995-06-02 1996-12-13 Tokimec Inc Stabilized dc voltage circuit and switching power supply with the circuit
JPH09230951A (en) * 1996-02-22 1997-09-05 Sony Corp Switching power circuit
WO2009013834A1 (en) * 2007-07-26 2009-01-29 Fujitsu Limited Power supply system and voltage stabilizing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175549U (en) * 1981-04-29 1982-11-06
JPH04117170A (en) * 1990-09-04 1992-04-17 Fujitsu Ltd Multi-output power supply
JPH08328672A (en) * 1995-06-02 1996-12-13 Tokimec Inc Stabilized dc voltage circuit and switching power supply with the circuit
JPH09230951A (en) * 1996-02-22 1997-09-05 Sony Corp Switching power circuit
WO2009013834A1 (en) * 2007-07-26 2009-01-29 Fujitsu Limited Power supply system and voltage stabilizing method

Similar Documents

Publication Publication Date Title
US8080989B2 (en) Bandgap reference voltage generating circuit for obtaining stable output voltage in short time by performing stable start-up when switched from sleep mode to operation mode
JP5390932B2 (en) Power circuit
US8742819B2 (en) Current limiting circuitry and method for pass elements and output stages
US20070064953A1 (en) Speaker protection circuit
JPWO2004010575A1 (en) Power amplifier device
JP2010211721A (en) Regulator circuit
WO2019171674A1 (en) Power supply stabilization circuit
JP4573602B2 (en) Amplifier
JP2012134612A (en) Low noise amplifier
JP6461510B2 (en) Power supply circuit for audio amplifier, electronic device, and method for supplying power supply voltage to audio amplifier
JP2008059541A (en) Constant voltage circuit
TWI461000B (en) Controlling circuit and related circuit controlling method
WO2023002744A1 (en) Power stabilization circuit
JPH11239029A (en) Pulse width modulation amplifier circuit
JP4772719B2 (en) Power amplifier
JP2011191992A (en) Power supply device
JP5433615B2 (en) Push-pull amplifier for sound
US11469727B2 (en) Pre-driver stage with adjustable biasing
JP2010273284A (en) High frequency amplifier
JP2010056910A (en) Current source control circuit
JP6933798B2 (en) Switching amplifier
JPWO2018180111A1 (en) Noise removal circuit
JP2008220090A (en) Current source control circuit
JP2005261146A (en) Switching power supply
JP2004215078A (en) D class power amplifying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP