WO2019171554A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019171554A1
WO2019171554A1 PCT/JP2018/009071 JP2018009071W WO2019171554A1 WO 2019171554 A1 WO2019171554 A1 WO 2019171554A1 JP 2018009071 W JP2018009071 W JP 2018009071W WO 2019171554 A1 WO2019171554 A1 WO 2019171554A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
pneumatic tire
relationship
circumferential direction
Prior art date
Application number
PCT/JP2018/009071
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 芝井
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to PCT/JP2018/009071 priority Critical patent/WO2019171554A1/en
Priority to JP2019536321A priority patent/JP6729809B2/en
Publication of WO2019171554A1 publication Critical patent/WO2019171554A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns

Definitions

  • the present invention relates to a pneumatic tire, and more particularly, to a pneumatic tire that can suppress uneven shoulder wear of a tread portion and improve riding comfort.
  • a pneumatic tire is generally disposed in a tire tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and on the inner side in the tire radial direction of the sidewall portions.
  • Such a pneumatic tire is required to improve the wear characteristics as a permanent problem.
  • a technique for improving the wear characteristics for example, it has been proposed to increase the rigidity of the tread portion by increasing the hardness of the cap tread rubber (see, for example, Patent Document 1).
  • the hardness of the cap tread rubber is simply increased, there is a problem that the impact received from the road surface during traveling increases with the increase in rigidity of the tread portion, and the riding comfort (mild feeling) deteriorates. For this reason, it is necessary to achieve both wear characteristics and riding comfort that are in contradiction.
  • Japanese Unexamined Patent Publication No. 2017-203080 Japanese Unexamined Patent Publication No. 6-8710 Japanese Laid-Open Patent Publication No. 8-108710 Japanese Unexamined Patent Application Publication No. 2009-78790
  • An object of the present invention is to provide a pneumatic tire capable of suppressing uneven shoulder wear of a tread portion and improving riding comfort.
  • a pneumatic tire according to the present invention includes a tread portion that extends in the tire circumferential direction to form an annular shape, a pair of sidewall portions disposed on both sides of the tread portion, and the sidewall portions.
  • a pneumatic tire provided with a pair of bead portions arranged on the inner side in the tire radial direction of Maximum contact length in the tire circumferential direction when the pneumatic tire is filled with air pressure of 230 kPa and contacted with a load of 40%, 75%, and 100% of the maximum load capacity determined by the standard, respectively.
  • the maximum ground contact widths in the tire width direction are WA1, WB1, and WC1, respectively, at positions 40% of the maximum ground contact widths WA1, WB1, and WC1 from the tire center position toward the outside in the tire width direction.
  • the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 are 1.02 ⁇ (LB2 / LB1) / (LA2 /LA1) ⁇ 1.25, 1.00 ⁇ (LC2 / LC1) / (LB2 / LB1) ⁇ 1.20,
  • the tread portion is divided into a central region having a width corresponding to 53% of the maximum ground contact width WB1 centered on the tire equator and an outer region in the maximum ground contact width WB1 outside the center region in the tire width direction.
  • the groove area Sc of the central region and the groove area Ss of the outer region satisfy the relationship of 1.01 ⁇ Sc / Ss ⁇ 1.50.
  • the groove area Sc of the central region and the groove area Ss of the outer region satisfy the relationship of 1.01 ⁇ Sc / Ss ⁇ 1.50, and the groove area Sc in the central region is sufficiently secured.
  • the rigidity in the central region of the tread portion can be lowered to ease the input from the road surface, and the riding comfort (mild feeling) can be improved.
  • by reducing the groove area Ss in the outer region it is possible to secure rigidity in the outer region of the tread portion and suppress shoulder uneven wear of the tread portion.
  • the maximum ground contact lengths LA1, LB1, and LC1 and external ground contact lengths LA2, LB2, and LC2 are 1.02 ⁇ (LB2 / LB1) / (LA2 / LA1) ⁇ 1.25, 1.00 ⁇ (LC2 / LC1) /
  • the effect of suppressing shoulder uneven wear and the effect of improving riding comfort can be further enhanced.
  • the maximum ground contact length LB1 and the external ground contact length LB2 satisfy the relationship of 0.65 ⁇ LB2 / LB1 ⁇ 0.95. Further, the maximum ground contact lengths LA1, LB1, and LC1 and the external ground contact lengths LA2, LB2, and LC2 satisfy the relationship of (LC2 / LC1) / (LB2 / LB1) ⁇ (LB2 / LB1) / (LA2 / LA1). preferable. Thereby, riding comfort can be improved based on the ground contact shape.
  • a central main groove extending in the tire circumferential direction in the tread portion an outer main groove extending in the tire circumferential direction at a position on the outer side in the tire width direction from the central main groove, and the tire width from the outer main groove.
  • a tread pattern in which a plurality of outer lateral grooves extending in the tire width direction at positions outside in the direction can be employed.
  • the inclination angle ⁇ sl formed by the side wall of the outer lateral groove with respect to the normal line of the tread surface satisfies the relationship of 0 ° ⁇ ⁇ sl ⁇ 10 °.
  • the groove depth Dsl of the outer lateral groove preferably satisfies the relationship of 0.20 ⁇ Dsl / GDs ⁇ 0.90 with respect to the groove depth GDs of the outer main groove.
  • the outer lateral groove has a bottom raised portion in a part of the longitudinal direction, and the groove depth Db at the bottom raised portion has a relationship of 0.30 ⁇ Db / Dsl ⁇ 0.90 with respect to the groove depth Dsl of the outer lateral groove. It is preferable to satisfy. It is preferable that the groove depth GDs of the outer main groove satisfies the relationship 0.80 ⁇ GDs / GDc ⁇ 1.00 with respect to the groove depth GDc of the central main groove.
  • the groove depth Dsl of the outer lateral groove is smaller than the groove depth Dcl of the central lateral groove. It is preferable that the relationship of 0.50 ⁇ Dsl / Dcl ⁇ 1.00 is satisfied. Furthermore, it is preferable that all of the outer lateral grooves formed outside the outer main groove in the tire width direction have a groove width of 1.0 mm or less.
  • the tread portion when the tread portion includes a plurality of belt cords that are inclined with respect to the tire circumferential direction, and a plurality of belt layers in which the belt cords intersect with each other are embedded, It is preferable that the inclination angle ⁇ with respect to the tire circumferential direction satisfies the relationship of 21 ° ⁇ ⁇ ⁇ 30 °. By not extremely reducing the inclination angle ⁇ of the belt cord at the tire center position, it is possible to suppress the increase in rigidity of the belt layer and improve the riding comfort.
  • the inclination angle ⁇ of the belt cord with respect to the tire circumferential direction at the tire center position and the inclination angle ⁇ of the belt cord with respect to the tire circumferential direction at the belt end position satisfy the relationship of 18 ° ⁇ ⁇ ⁇ 30 °. Is preferred. By setting the inclination angle ⁇ at the belt end position of the belt cord to be small, shoulder uneven wear can be effectively suppressed.
  • the pneumatic tire of the present invention is preferably a passenger car tire having an aspect ratio of 0.65 or less.
  • ADVANTAGE OF THE INVENTION According to this invention, in the tire for passenger cars in which the improvement of riding comfort is requested
  • the contact shape of the tread portion is measured under the condition that a predetermined load is applied by placing the tire on a regular rim and placing the tire vertically on a plane in a state filled with a predetermined air pressure.
  • the “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set.
  • the air pressure is 230 kPa.
  • the predetermined load is a load of 40%, 75% or 100% of the maximum load capacity defined by each standard for each tire in a standard system including the standard on which the tire is based.
  • FIG. 1 is a meridian cross-sectional view showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a development view showing a tread pattern of the pneumatic tire of FIG.
  • FIG. 3 is a plan view showing a ground contact shape (40% load) of the pneumatic tire of FIG.
  • FIG. 4 is a plan view showing a ground contact shape (75% load) of the pneumatic tire of FIG.
  • FIG. 5 is a plan view showing a ground contact shape (100% load) of the pneumatic tire of FIG. 6 is a cross-sectional view showing a central main groove, an outer main groove, and an outer lateral groove (lug groove) formed in the tread portion of the pneumatic tire of FIG.
  • FIG. 7 is a cross-sectional view showing an outer lateral groove (lag groove) formed in the tread portion of the pneumatic tire of FIG.
  • FIG. 8 is a cross-sectional view showing a central lateral groove (lag groove) formed in the tread portion of the pneumatic tire of FIG.
  • FIG. 9 is a development view showing a tread pattern of a pneumatic tire according to another embodiment of the present invention.
  • 10 is a cross-sectional view showing an outer lateral groove (sipe) formed in the tread portion of the pneumatic tire of FIG.
  • FIG. 11 is a sectional view showing a modification of the outer lateral groove (sipe).
  • FIG. 12 is a development view showing a belt layer constituting the pneumatic tire of the present invention.
  • FIG. 1 and 2 show a pneumatic tire according to an embodiment of the present invention.
  • CL is a tire center position
  • Tc is a tire circumferential direction
  • Tw is a tire width direction.
  • the pneumatic tire of the present embodiment includes a tread portion 1 that extends in the tire circumferential direction and has an annular shape, and a pair of sidewall portions 2, 2 disposed on both sides of the tread portion 1. And a pair of bead portions 3 and 3 disposed inside the sidewall portion 2 in the tire radial direction.
  • the carcass layer 4 is mounted between the pair of bead portions 3 and 3.
  • the carcass layer 4 includes a plurality of carcass cords extending in the tire radial direction, and is folded back from the inside of the tire to the outside around the bead core 5 disposed in each bead portion 3.
  • a bead filler 6 made of a rubber composition having a triangular cross-section is disposed on the outer periphery of the bead core 5.
  • a plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1.
  • These belt layers 7 include a plurality of belt cords inclined with respect to the tire circumferential direction, and are arranged so that the belt cords cross each other between the layers.
  • a steel cord is preferably used as the belt cord constituting the belt layer 7.
  • an organic fiber cord such as nylon or aramid is preferably used as the band cord constituting the belt reinforcing layer 8.
  • the tread portion 1 includes a pair of central main grooves 11, 11 extending in the tire circumferential direction at positions on both sides of the tire center position CL, and the tire main body 11, 11 outside the central main grooves 11, 11.
  • a pair of outer main grooves 12 and 12 extending in the tire circumferential direction at the position are formed.
  • the central main groove 11 and the outer main groove 12 may have a straight shape or may have a zigzag shape.
  • a center land portion 20 is defined between the central main grooves 11 and 11, and a middle land portion 30 is defined between the central main groove 11 and the outer main groove 12.
  • a shoulder land portion 40 is defined in the area.
  • a plurality of central lateral grooves 31 extending in the tire width direction are formed in each of the middle land portions 30.
  • the central lateral groove 31 includes a central lug groove 31A having a groove width in the range of 1.1 mm to 9.5 mm on the tread surface and a central sipe 31B having a groove width on the tread surface of 1.0 mm or less. .
  • the central lug grooves 31A and the central sipes 31B are alternately arranged along the tire circumferential direction.
  • a circumferential narrow groove 32 extending in the tire circumferential direction and having a zigzag shape is formed on one side of the middle land portion 30.
  • Each of the shoulder land portions 40 is formed with a plurality of outer lateral grooves 41 extending in the tire width direction.
  • the outer lateral groove 41 includes at least one of an outer lug groove 41A having a groove width on the tread surface of 1.1 mm to 9.0 mm and an outer sipe 41B having a groove width of 1.0 mm or less on the tread surface. Yes.
  • the outer lug grooves 41A and the outer sipes 41B are alternately arranged along the tire circumferential direction.
  • FIGS. 3 to 5 show the ground contact shapes (40% load, 75% load, 100% load) of the pneumatic tire of FIG. 1, respectively.
  • the maximum contact length in the circumferential direction is LA1, LB1, LC1 (mm)
  • the maximum contact width in the tire width direction is WA1, WB1, WC1 (mm)
  • External contact lengths in the tire circumferential direction at positions 40% of the widths WA1, WB1, and WC1 are LA2, LB2, and LC2 (mm), respectively.
  • the maximum in the tire circumferential direction when the pneumatic tire is filled with 230 kPa of air pressure and contacted with a load of 40% of the maximum load capacity defined in the standard is applied.
  • the contact length is LA1
  • the maximum contact width in the tire width direction is WA1
  • the external contact length in the tire circumferential direction at a position 40% of the maximum contact width WA1 from the tire center position CL toward the outer side in the tire width direction is LA2.
  • the external ground contact length LA2 is an average value of measured values on both sides of the tire center position CL.
  • the contact length is LB1
  • the maximum contact width in the tire width direction is WB1
  • the external contact length in the tire circumferential direction at a position 40% of the maximum contact width WB1 from the tire center position CL toward the outer side in the tire width direction is LB2.
  • the external contact length LB2 is an average value of measured values on both sides of the tire center position CL.
  • the contact length is LC1
  • the maximum contact width in the tire width direction is WC1
  • the external contact length in the tire circumferential direction at the position of 40% of the maximum contact width WC1 from the tire center position CL toward the outer side in the tire width direction is LC2.
  • the external contact length LC2 is an average value of measured values on both sides of the tire center position CL.
  • the maximum ground contact lengths LA1, LB1, and LC1 and the external ground contact lengths LA2, LB2, and LC2 satisfy the following relationship. 1.02 ⁇ (LB2 / LB1) / (LA2 / LA1) ⁇ 1.25 1.00 ⁇ (LC2 / LC1) / (LB2 / LB1) ⁇ 1.20
  • the tread portion 1 is located within the central region Xc having a width corresponding to 53% of the maximum ground contact width WB1 centered on the tire equator (ie, the tire center position CL) and the maximum ground contact width WB1.
  • the groove area Sc (mm 2 ) of the central region Xc and the groove area Ss (mm 2 ) of the outer region Xs satisfy the following relationship. . 1.01 ⁇ Sc / Ss ⁇ 1.50
  • the groove area Sc of the central region Xc means the total area of the groove components formed in the central region Xc on the tire circumference
  • the groove area Ss of the outer region Xs is the groove component formed in the outer region Xs on the tire circumference. It means the total area.
  • the groove component has a chamfered portion
  • the area of the chamfered portion is also included in the total area of the groove component.
  • the groove area Sc of the central region Xc and the groove area Ss of the outer region Xs satisfy the relationship of 1.01 ⁇ Sc / Ss ⁇ 1.50, and the groove area Sc in the central region Xc is By ensuring sufficiently, the rigidity in the center area
  • the rigidity in the outer region Xs of the tread portion 1 can be ensured, and shoulder uneven wear of the tread portion 1 can be suppressed.
  • the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 are 1.02 ⁇ (LB2 / LB1) / (LA2 / LA1) ⁇ 1.25, 1.00.
  • (LB2 / LB1) / (LA2 / LA1) is set within a predetermined range in consideration of load fluctuations of a rear mounted tire having a relatively small load.
  • (LC2 / LC1) / (LB2 / LB1) is set within a predetermined range, so that the effect of suppressing uneven shoulder wear and the ride comfort can be reduced.
  • the improvement effect can be optimized.
  • the maximum contact length LB1 and the external contact length LB2 may satisfy the relationship of 0.65 ⁇ LB2 / LB1 ⁇ 0.95.
  • the ground contact shape under the condition where a load of 75% of the maximum load capacity is applied, it is possible to exhibit a good riding comfort during steady running.
  • the envelope characteristics of the tread portion 1 are improved and the riding comfort is effectively improved.
  • the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 have a relationship of (LC2 / LC1) / (LB2 / LB1) ⁇ (LB2 / LB1) / (LA2 / LA1). It is good to be satisfied. Thus, riding comfort can be improved by optimizing the contact shape of the rear and front tires.
  • the central main groove 11 extending in the tire circumferential direction
  • the outer main groove 12 extending in the tire circumferential direction at a position outside the central main groove 11 in the tire width direction
  • the outer main groove 12 extending in the tire circumferential direction at a position outside the central main groove 11 in the tire width direction
  • the outer main groove 12 extending in the tire circumferential direction at a position outside the central main groove 11 in the tire width direction
  • the outer main groove 12 In a pneumatic tire having a tread pattern in which a plurality of outer lateral grooves 41 extending in the tire width direction are formed at positions outside the tire width direction, the rigidity in the outer region Xs of the tread portion 1 is secured, and the tread portion
  • structures as shown in FIGS. 6 to 8 can be employed.
  • the inclination angle ⁇ sl formed by the side wall of the outer lateral groove 41 (particularly, the outer lug groove 41A) with respect to the normal line of the tread surface preferably satisfies the relationship 0 ° ⁇ ⁇ sl ⁇ 10 °.
  • the rigidity in the outer region Xs of the tread portion 1 can be ensured.
  • ⁇ sl is smaller than 0 ° and the side wall has an overhang shape, the rigidity in the outer region Xs is lowered.
  • it is larger than 10 ° the drainage is adversely affected.
  • the groove depth Dsl of the outer lateral groove 41 may satisfy the relationship of 0.20 ⁇ Dsl / GDs ⁇ 0.90 with respect to the groove depth GDs of the outer main groove 12.
  • region Xs of the tread part 1 is securable.
  • Dsl / GDs is smaller than 0.20, the drainage is adversely affected.
  • Dsl / GDs is larger than 0.90, the rigidity in the outer region Xs decreases.
  • the outer lateral groove 41 (particularly, the outer lug groove 41A) has a bottom raised portion 42 in a part of its longitudinal direction, and the groove depth Db at the bottom raised portion 42 is 0. 0 relative to the groove depth Dsl of the outer lateral groove 41.
  • the relationship of 30 ⁇ Db / Dsl ⁇ 0.90 should be satisfied.
  • the bottom raised portion 42 is disposed at a position that opens adjacent to the outer main groove 12.
  • the groove depth GDs of the outer main groove 12 may satisfy the relationship of 0.80 ⁇ GDs / GDc ⁇ 1.00 with respect to the groove depth GDc of the central main groove 11. Thereby, the rigidity in the outer side area
  • GDs / GDc is smaller than 0.80, the drainage is adversely affected.
  • GDs / GDc is larger than 1.00, it is difficult to ensure the rigidity in the outer region Xs of the tread portion 1. .
  • the groove depth Dsl of the outer lateral grooves 41 is the groove depth of the central lateral grooves 31. It is preferable that the relationship of 0.50 ⁇ Dsl / Dcl ⁇ 1.00 is satisfied with respect to Dcl (see FIGS. 7 and 8). Thereby, the rigidity in the outer side area
  • Dsl / Dcl is smaller than 0.50, the drainage is adversely affected.
  • Dsl / Dcl is larger than 1.00, it is difficult to ensure rigidity in the outer region Xs of the tread portion 1. .
  • FIG. 9 shows a tread pattern of a pneumatic tire according to another embodiment of the present invention. 9, the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • all of the outer lateral grooves 41 formed on the outer side in the tire width direction with respect to the outer main groove 12 are constituted by outer sipe 41B having a groove width of 1.0 mm or less.
  • outer sipe 41B having a groove width of 1.0 mm or less.
  • rigidity in the outer region Xs of the tread portion 1 can be ensured, and shoulder uneven wear can be suppressed.
  • all of the central lateral grooves 31 formed on the inner side in the tire width direction from the outer main groove 12 are constituted by a central sipe 31B having a groove width of 1.0 mm or less.
  • the outer sipe 41B may have a constant groove width from the tread surface to the groove bottom as shown in FIG. 10, or, as shown in FIG. 11, a chamfered portion 43 at the opening to the tread surface. You may have.
  • a similar structure can be adopted for the central sipe 31B.
  • the tread portion 1 when the tread portion 1 includes a plurality of belt cords C that are inclined with respect to the tire circumferential direction, and a plurality of belt layers 7 in which the belt cords C cross each other are embedded, As shown in FIG. 12, the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the tire center position CL preferably satisfies the relationship of 21 ° ⁇ ⁇ ⁇ 30 °. By not extremely reducing the inclination angle ⁇ of the belt cord C at the tire center position CL, the increase in rigidity of the belt layer 7 can be suppressed and the riding comfort can be improved.
  • the inclination angle ⁇ is smaller than 21 °, the effect of improving the riding comfort is lowered due to the increase in rigidity of the belt layer 7.
  • the inclination angle ⁇ is larger than 30 °, the tire characteristics such as steering stability are deteriorated. Not right.
  • the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the tire center position CL and the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the belt end position BE have a relationship of 18 ° ⁇ ⁇ ⁇ 30 °. It is good to be satisfied.
  • shoulder uneven wear can be effectively suppressed, and the inclination angle ⁇ of the belt cord C at the tire center position CL can be reduced.
  • an increase in rigidity of the belt layer 7 in the central region Xc of the tread portion 1 can be suppressed and good riding comfort can be maintained.
  • the difference between the inclination angle ⁇ and the inclination angle ⁇ is preferably 3 ° or more.
  • a structure in which the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the belt end position BE is smaller than the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the tire center position CL is preferable.
  • the belt cord C may be inclined at a constant angle with respect to the tire circumferential direction over the entire width, and the inclination angles ⁇ and ⁇ may be set to the same value, or ⁇ ⁇ .
  • the belt layer 7 has a high angle region Ac on the center side in which the inclination angle of the belt cord C is in the range of ⁇ ⁇ 1 ° and a shoulder in which the inclination angle of the belt cord C is in the range of ⁇ ⁇ 1 °.
  • the low-angle region As on the side, the width Lc of the high-angle region Ac is 1 ⁇ 2 or more of the total width L of the belt layer 7, and the width Ls of each low-angle region As is 1 of the total width L of the belt layer 7. It is good that it is / 8 or more.
  • the rigidity distribution of the tread portion 1 can be optimized.
  • the width Lc of the high angle region Ac is smaller than 1 ⁇ 2 of the entire width L of the belt layer 7, the function as the belt layer 7 is deteriorated, and the width Ls of the low angle region As is the entire width of the belt layer 7. If it is smaller than 1/8 of L, the rigidity in the tire circumferential direction in the outer region Xs of the tread portion 1 cannot be sufficiently increased.
  • the width Lc of the high angle area Ac and the width Ls of the low angle area As are set based on the total width L of each belt layer 7.
  • the pneumatic tire described above is suitable as a tire for passenger cars having a flatness ratio of 0.65 or less.
  • a tire for a passenger car that is required to improve riding comfort it is possible to achieve both uneven wear resistance and riding comfort.
  • a tread pattern including four main grooves in the tread portion has been described.
  • the present invention includes a tread pattern including three main grooves in the tread portion, and a V-shaped main groove in the tread portion. It is applicable also to the tread pattern which contains.
  • a carcass layer is mounted between a pair of bead portions, two belt layers are embedded on the outer side in the tire radial direction of the carcass layer in the tread portion, and extend in the tire circumferential direction on the tread portion.
  • the tire circumference at the tire cord center position of the belt cord The inclination angle ⁇ with respect to the direction, the inclination angle ⁇ with respect to the tire circumferential direction at the belt end position of the belt cord, the inclination angle ⁇ sl of the side wall of the outer lateral groove, the groove depth GDs of the outer main groove, outside Groove depth Dsl, ratio Dsl / GDs, groove depth Db, ratio Db / Dsl, groove depth GDc of central main groove, ratio GDs / GDc, groove depth Dcl of center lateral groove , Ratio Dsl / Dcl, groove width of outer lateral groove, ratio Sc / Ss of groove area Sc of central region and groove region Ss of outer region, (LB2 / LB1) / (
  • Uneven wear resistance shoulder area: Each test tire is mounted on a wheel with a rim size of 16 ⁇ 6.5J and mounted on a friction energy measurement tester, and the average friction energy in the shoulder region of the tread is measured under the conditions of air pressure of 230 kPa and load load of 4.5 kN. did.
  • the measured values are obtained by measuring the frictional energy at a total of four points of 2 locations in the tire width direction ⁇ 2 locations in the tire circumferential direction, which are 10 mm intervals in each region, and averaging them.
  • the evaluation results are shown as an index with the comparative example 2 being 100, using the reciprocal of the measured value. The larger the index value, the better the uneven wear resistance.

Abstract

Provided is a pneumatic tire that can suppress uneven shoulder wear in a tread and improve ride comfort. Maximum ground contact lengths LA1, LB1, and LC1 and maximum ground contact widths WA1, WB1, and WC1, which are respectively obtained when a pneumatic tire filled with 230 kPa of air is grounded under the condition that loads respectively corresponding to 40%, 75%, and 100% of the maximum load carrying capacity are applied to the pneumatic tire, and outside ground contact lengths LA2, LB2, and LC2, which are respectively positioned at 40% of the maximum ground contact widths WA1, WB1, and WC1 from the tire central position outwardly in the tire width direction, satisfy the following relationships: 1.02 ≤ (LB2/LB1)/(LA2/LA1) ≤ 1.25 and 1.00 ≤ (LC2/LC1)/(LB2/LB1) ≤ 1.20. When a tread (1) is divided into a central region Xc having a width corresponding to 53% of the maximum ground contact width WB1 and outside regions Xs that are outside the central region Xc, the groove area Sc of the central region Xc and the groove areas Ss of the outside regions Xs satisfy the following relationship: 1.01 ≤ Sc/Ss ≤ 1.50.

Description

空気入りタイヤPneumatic tire
 本発明は、空気入りタイヤに関し、更に詳しくは、トレッド部のショルダー偏摩耗を抑制すると共に、乗心地を改善することを可能にした空気入りタイヤに関する。 The present invention relates to a pneumatic tire, and more particularly, to a pneumatic tire that can suppress uneven shoulder wear of a tread portion and improve riding comfort.
 空気入りタイヤは、一般に、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えると共に、一対のビード部間に装架されたカーカス層と、トレッド部におけるカーカス層のタイヤ径方向外側に配置された複数層のベルト層とを備えた構造を有している。 A pneumatic tire is generally disposed in a tire tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and on the inner side in the tire radial direction of the sidewall portions. A pair of bead portions, a carcass layer mounted between the pair of bead portions, and a structure including a plurality of belt layers disposed on the outer side in the tire radial direction of the carcass layer in the tread portion. doing.
 このような空気入りタイヤにおいては、恒久的な課題として、摩耗特性を改善することが求められている。摩耗特性を改善するための手法として、例えば、キャップトレッドゴムの硬度を高くしてトレッド部の剛性を増大させることが提案されている(例えば、特許文献1参照)。しかしながら、キャップトレッドゴムの硬度を単に高くしたのでは、トレッド部の剛性の増大に伴って走行時に路面から受ける衝撃が増大し、乗心地(マイルド感)が悪化するという問題がある。そのため、二律背反関係にある摩耗特性と乗心地とを両立させることが必要である。 Such a pneumatic tire is required to improve the wear characteristics as a permanent problem. As a technique for improving the wear characteristics, for example, it has been proposed to increase the rigidity of the tread portion by increasing the hardness of the cap tread rubber (see, for example, Patent Document 1). However, when the hardness of the cap tread rubber is simply increased, there is a problem that the impact received from the road surface during traveling increases with the increase in rigidity of the tread portion, and the riding comfort (mild feeling) deteriorates. For this reason, it is necessary to achieve both wear characteristics and riding comfort that are in contradiction.
 ところで、空気入りタイヤの接地形状を規定することにより、空気入りタイヤの諸性能を改善する技術が提案されている(例えば、特許文献2~4参照)。しかしながら、これら技術は摩耗特性と乗心地との両立を図るものではない。 By the way, a technique for improving various performances of a pneumatic tire by defining the contact shape of the pneumatic tire has been proposed (see, for example, Patent Documents 2 to 4). However, these technologies do not achieve both wear characteristics and riding comfort.
日本国特開2017-203080号公報Japanese Unexamined Patent Publication No. 2017-203080 日本国特開平6-8710号公報Japanese Unexamined Patent Publication No. 6-8710 日本国特開平8-108710号公報Japanese Laid-Open Patent Publication No. 8-108710 日本国特開2009-78790号公報Japanese Unexamined Patent Application Publication No. 2009-78790
 本発明の目的は、トレッド部のショルダー偏摩耗を抑制すると共に、乗心地を改善することを可能にした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire capable of suppressing uneven shoulder wear of a tread portion and improving riding comfort.
 上記目的を達成するための本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えた空気入りタイヤにおいて、
 前記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力のそれぞれ40%,75%,100%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をそれぞれLA1,LB1,LC1とし、タイヤ幅方向の最大接地幅をそれぞれWA1,WB1,WC1とし、タイヤ中心位置からタイヤ幅方向外側に向かって最大接地幅WA1,WB1,WC1の40%の位置におけるタイヤ周方向の外部接地長をそれぞれLA2,LB2,LC2としたとき、前記最大接地長LA1,LB1,LC1及び前記外部接地長LA2,LB2,LC2が1.02≦(LB2/LB1)/(LA2/LA1)≦1.25、1.00≦(LC2/LC1)/(LB2/LB1)≦1.20の関係を満足し、
 前記トレッド部を、タイヤ赤道を中心として最大接地幅WB1の53%に相当する幅を持つ中央領域と最大接地幅WB1内で前記中央領域よりもタイヤ幅方向外側となる外側領域とに区分したとき、前記中央領域の溝面積Scと前記外側領域の溝面積Ssが1.01≦Sc/Ss≦1.50の関係を満足することを特徴とするものである。
In order to achieve the above object, a pneumatic tire according to the present invention includes a tread portion that extends in the tire circumferential direction to form an annular shape, a pair of sidewall portions disposed on both sides of the tread portion, and the sidewall portions. In a pneumatic tire provided with a pair of bead portions arranged on the inner side in the tire radial direction of
Maximum contact length in the tire circumferential direction when the pneumatic tire is filled with air pressure of 230 kPa and contacted with a load of 40%, 75%, and 100% of the maximum load capacity determined by the standard, respectively. Are LA1, LB1, and LC1, respectively, and the maximum ground contact widths in the tire width direction are WA1, WB1, and WC1, respectively, at positions 40% of the maximum ground contact widths WA1, WB1, and WC1 from the tire center position toward the outside in the tire width direction. When the external contact lengths in the tire circumferential direction are LA2, LB2, and LC2, respectively, the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 are 1.02 ≦ (LB2 / LB1) / (LA2 /LA1)≦1.25, 1.00 ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.20,
When the tread portion is divided into a central region having a width corresponding to 53% of the maximum ground contact width WB1 centered on the tire equator and an outer region in the maximum ground contact width WB1 outside the center region in the tire width direction. The groove area Sc of the central region and the groove area Ss of the outer region satisfy the relationship of 1.01 ≦ Sc / Ss ≦ 1.50.
 本発明では、中央領域の溝面積Scと外側領域の溝面積Ssとが1.01≦Sc/Ss≦1.50の関係を満足し、中央領域での溝面積Scを十分に確保することにより、トレッド部の中央領域での剛性を低くして路面からの入力を緩和し、乗心地(マイルド感)を改善することができる。一方、外側領域での溝面積Ssを少なくすることにより、トレッド部の外側領域での剛性を確保し、トレッド部のショルダー偏摩耗を抑制することができる。また、最大接地長LA1,LB1,LC1及び外部接地長LA2,LB2,LC2が1.02≦(LB2/LB1)/(LA2/LA1)≦1.25、1.00≦(LC2/LC1)/(LB2/LB1)≦1.20の関係を満足し、荷重変動を考慮した接地形状を規定することにより、ショルダー偏摩耗の抑制効果と乗心地の改善効果を更に高めることができる。 In the present invention, the groove area Sc of the central region and the groove area Ss of the outer region satisfy the relationship of 1.01 ≦ Sc / Ss ≦ 1.50, and the groove area Sc in the central region is sufficiently secured. The rigidity in the central region of the tread portion can be lowered to ease the input from the road surface, and the riding comfort (mild feeling) can be improved. On the other hand, by reducing the groove area Ss in the outer region, it is possible to secure rigidity in the outer region of the tread portion and suppress shoulder uneven wear of the tread portion. Further, the maximum ground contact lengths LA1, LB1, and LC1 and external ground contact lengths LA2, LB2, and LC2 are 1.02 ≦ (LB2 / LB1) / (LA2 / LA1) ≦ 1.25, 1.00 ≦ (LC2 / LC1) / By satisfying the relationship (LB2 / LB1) ≦ 1.20 and defining the ground contact shape in consideration of load fluctuations, the effect of suppressing shoulder uneven wear and the effect of improving riding comfort can be further enhanced.
 本発明において、最大接地長LB1及び外部接地長LB2は0.65≦LB2/LB1≦0.95の関係を満足することが好ましい。また、最大接地長LA1,LB1,LC1及び外部接地長LA2,LB2,LC2は(LC2/LC1)/(LB2/LB1)≦(LB2/LB1)/(LA2/LA1)の関係を満足することが好ましい。これにより、接地形状に基づいて乗心地を改善することができる。 In the present invention, it is preferable that the maximum ground contact length LB1 and the external ground contact length LB2 satisfy the relationship of 0.65 ≦ LB2 / LB1 ≦ 0.95. Further, the maximum ground contact lengths LA1, LB1, and LC1 and the external ground contact lengths LA2, LB2, and LC2 satisfy the relationship of (LC2 / LC1) / (LB2 / LB1) ≦ (LB2 / LB1) / (LA2 / LA1). preferable. Thereby, riding comfort can be improved based on the ground contact shape.
 本発明においては、トレッド部に、タイヤ周方向に延びる中央主溝と、該中央主溝よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる外側主溝と、該外側主溝よりもタイヤ幅方向外側の位置でタイヤ幅方向に延びる複数本の外側横溝とが形成されたトレッドパターンを採用することができる。 In the present invention, a central main groove extending in the tire circumferential direction in the tread portion, an outer main groove extending in the tire circumferential direction at a position on the outer side in the tire width direction from the central main groove, and the tire width from the outer main groove. A tread pattern in which a plurality of outer lateral grooves extending in the tire width direction at positions outside in the direction can be employed.
 この場合、トレッド部の外側領域での剛性を確保し、トレッド部のショルダー偏摩耗を抑制するために、以下のような構造を採用すると良い。即ち、外側横溝の側壁がトレッド面の法線に対してなす傾斜角度θslは0°≦θsl≦10°の関係を満足することが好ましい。外側横溝の溝深さDslは外側主溝の溝深さGDsに対して0.20≦Dsl/GDs≦0.90の関係を満足することが好ましい。外側横溝はその長手方向の一部に底上げ部を有し、該底上げ部での溝深さDbが外側横溝の溝深さDslに対して0.30≦Db/Dsl≦0.90の関係を満足することが好ましい。外側主溝の溝深さGDsは中央主溝の溝深さGDcに対して0.80≦GDs/GDc≦1.00の関係を満足することが好ましい。また、トレッド部に外側主溝よりもタイヤ幅方向内側の位置でタイヤ幅方向に延びる複数本の中央横溝が形成される場合、外側横溝の溝深さDslは中央横溝の溝深さDclに対して0.50≦Dsl/Dcl≦1.00の関係を満足することが好ましい。更に、外側主溝よりもタイヤ幅方向外側に形成された外側横溝の全てが1.0mm以下の溝幅を有することが好ましい。 In this case, in order to ensure rigidity in the outer region of the tread portion and to suppress uneven shoulder wear of the tread portion, it is preferable to adopt the following structure. That is, it is preferable that the inclination angle θsl formed by the side wall of the outer lateral groove with respect to the normal line of the tread surface satisfies the relationship of 0 ° ≦ θsl ≦ 10 °. The groove depth Dsl of the outer lateral groove preferably satisfies the relationship of 0.20 ≦ Dsl / GDs ≦ 0.90 with respect to the groove depth GDs of the outer main groove. The outer lateral groove has a bottom raised portion in a part of the longitudinal direction, and the groove depth Db at the bottom raised portion has a relationship of 0.30 ≦ Db / Dsl ≦ 0.90 with respect to the groove depth Dsl of the outer lateral groove. It is preferable to satisfy. It is preferable that the groove depth GDs of the outer main groove satisfies the relationship 0.80 ≦ GDs / GDc ≦ 1.00 with respect to the groove depth GDc of the central main groove. Further, when a plurality of central lateral grooves extending in the tire width direction are formed in the tread portion at positions inside the outer main groove in the tire width direction, the groove depth Dsl of the outer lateral groove is smaller than the groove depth Dcl of the central lateral groove. It is preferable that the relationship of 0.50 ≦ Dsl / Dcl ≦ 1.00 is satisfied. Furthermore, it is preferable that all of the outer lateral grooves formed outside the outer main groove in the tire width direction have a groove width of 1.0 mm or less.
 本発明において、トレッド部に、タイヤ周方向に対して傾斜する複数本のベルトコードを含み、層間でベルトコードが互いに交差する複数層のベルト層が埋設される場合、ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度αが21°≦α≦30°の関係を満足することが好ましい。ベルトコードのタイヤ中心位置での傾斜角度αを極度に低角度化しないことにより、ベルト層の剛性の増大を抑えて乗心地を改善することができる。 In the present invention, when the tread portion includes a plurality of belt cords that are inclined with respect to the tire circumferential direction, and a plurality of belt layers in which the belt cords intersect with each other are embedded, It is preferable that the inclination angle α with respect to the tire circumferential direction satisfies the relationship of 21 ° ≦ α ≦ 30 °. By not extremely reducing the inclination angle α of the belt cord at the tire center position, it is possible to suppress the increase in rigidity of the belt layer and improve the riding comfort.
 また、ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度αとベルトコードのベルト端末位置でのタイヤ周方向に対する傾斜角度βとは18°≦β<α≦30°の関係を満足することが好ましい。ベルトコードのベルト端末位置での傾斜角度βを小さく設定することにより、ショルダー偏摩耗を効果的に抑制することができる。 The inclination angle α of the belt cord with respect to the tire circumferential direction at the tire center position and the inclination angle β of the belt cord with respect to the tire circumferential direction at the belt end position satisfy the relationship of 18 ° ≦ β <α ≦ 30 °. Is preferred. By setting the inclination angle β at the belt end position of the belt cord to be small, shoulder uneven wear can be effectively suppressed.
 本発明の空気入りタイヤは偏平比0.65以下の乗用車用タイヤであることが好ましい。本発明によれば、乗心地の改善が厳しく要求される乗用車用タイヤにおいて、耐偏摩耗性と乗心地とを両立することが可能になる。 The pneumatic tire of the present invention is preferably a passenger car tire having an aspect ratio of 0.65 or less. ADVANTAGE OF THE INVENTION According to this invention, in the tire for passenger cars in which the improvement of riding comfort is requested | required strictly, it becomes possible to make both partial wear resistance and riding comfort compatible.
  本発明において、トレッド部の接地形状は、タイヤを正規リムにリム組みして所定の空気圧を充填した状態で平面上に垂直に置いて所定の荷重を負荷した条件にて測定される。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。空気圧は230kPaとする。また、所定の荷重は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている最大負荷能力の40%,75%又は100%の荷重とする。 に お い て In the present invention, the contact shape of the tread portion is measured under the condition that a predetermined load is applied by placing the tire on a regular rim and placing the tire vertically on a plane in a state filled with a predetermined air pressure. The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set. The air pressure is 230 kPa. Further, the predetermined load is a load of 40%, 75% or 100% of the maximum load capacity defined by each standard for each tire in a standard system including the standard on which the tire is based.
図1は本発明の実施形態からなる空気入りタイヤを示す子午線断面図である。FIG. 1 is a meridian cross-sectional view showing a pneumatic tire according to an embodiment of the present invention. 図2は図1の空気入りタイヤのトレッドパターンを示す展開図である。FIG. 2 is a development view showing a tread pattern of the pneumatic tire of FIG. 図3は図1の空気入りタイヤの接地形状(40%荷重)を示す平面図である。FIG. 3 is a plan view showing a ground contact shape (40% load) of the pneumatic tire of FIG. 図4は図1の空気入りタイヤの接地形状(75%荷重)を示す平面図である。FIG. 4 is a plan view showing a ground contact shape (75% load) of the pneumatic tire of FIG. 図5は図1の空気入りタイヤの接地形状(100%荷重)を示す平面図である。FIG. 5 is a plan view showing a ground contact shape (100% load) of the pneumatic tire of FIG. 図6は図1の空気入りタイヤのトレッド部に形成された中央主溝、外側主溝及び外側横溝(ラグ溝)を示す断面図である。6 is a cross-sectional view showing a central main groove, an outer main groove, and an outer lateral groove (lug groove) formed in the tread portion of the pneumatic tire of FIG. 図7は図1の空気入りタイヤのトレッド部に形成された外側横溝(ラグ溝)を示す断面図である。FIG. 7 is a cross-sectional view showing an outer lateral groove (lag groove) formed in the tread portion of the pneumatic tire of FIG. 図8は図1の空気入りタイヤのトレッド部に形成された中央横溝(ラグ溝)を示す断面図である。FIG. 8 is a cross-sectional view showing a central lateral groove (lag groove) formed in the tread portion of the pneumatic tire of FIG. 図9は本発明の他の実施形態からなる空気入りタイヤのトレッドパターンを示す展開図である。FIG. 9 is a development view showing a tread pattern of a pneumatic tire according to another embodiment of the present invention. 図10は図9の空気入りタイヤのトレッド部に形成された外側横溝(サイプ)を示す断面図である。10 is a cross-sectional view showing an outer lateral groove (sipe) formed in the tread portion of the pneumatic tire of FIG. 図11は外側横溝(サイプ)の変形例を示す断面図である。FIG. 11 is a sectional view showing a modification of the outer lateral groove (sipe). 図12は本発明の空気入りタイヤを構成するベルト層を示す展開図である。FIG. 12 is a development view showing a belt layer constituting the pneumatic tire of the present invention.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1及び図2は本発明の実施形態からなる空気入りタイヤを示すものである。図2において、CLはタイヤ中心位置であり、Tcはタイヤ周方向であり、Twはタイヤ幅方向である。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show a pneumatic tire according to an embodiment of the present invention. In FIG. 2, CL is a tire center position, Tc is a tire circumferential direction, and Tw is a tire width direction.
 図1に示すように、本実施形態の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部1と、該トレッド部1の両側に配置された一対のサイドウォール部2,2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3,3とを備えている。 As shown in FIG. 1, the pneumatic tire of the present embodiment includes a tread portion 1 that extends in the tire circumferential direction and has an annular shape, and a pair of sidewall portions 2, 2 disposed on both sides of the tread portion 1. And a pair of bead portions 3 and 3 disposed inside the sidewall portion 2 in the tire radial direction.
 一対のビード部3,3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本のカーカスコードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上には断面三角形状のゴム組成物からなるビードフィラー6が配置されている。 The carcass layer 4 is mounted between the pair of bead portions 3 and 3. The carcass layer 4 includes a plurality of carcass cords extending in the tire radial direction, and is folded back from the inside of the tire to the outside around the bead core 5 disposed in each bead portion 3. A bead filler 6 made of a rubber composition having a triangular cross-section is disposed on the outer periphery of the bead core 5.
 一方、トレッド部1におけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本のベルトコードを含み、かつ層間でベルトコードが互いに交差するように配置されている。ベルト層7を構成するベルトコードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、タイヤ周方向に配向する複数本のバンドコードを含む少なくとも1層のベルト補強層8が配置されている。ベルト補強層8は少なくとも1本のバンドコードを引き揃えてゴム被覆してなるストリップ材をタイヤ周方向に連続的に巻回したジョイントレス構造とすることが望ましい。ベルト補強層8を構成するバンドコードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。 On the other hand, a plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. These belt layers 7 include a plurality of belt cords inclined with respect to the tire circumferential direction, and are arranged so that the belt cords cross each other between the layers. A steel cord is preferably used as the belt cord constituting the belt layer 7. On the outer peripheral side of the belt layer 7, at least one belt reinforcing layer 8 including a plurality of band cords oriented in the tire circumferential direction is disposed. It is desirable that the belt reinforcing layer 8 has a jointless structure in which at least one band cord is aligned and rubber-coated strip material is continuously wound in the tire circumferential direction. As the band cord constituting the belt reinforcing layer 8, an organic fiber cord such as nylon or aramid is preferably used.
  図2に示すように、トレッド部1には、タイヤ中心位置CLの両側の位置でタイヤ周方向に延びる一対の中央主溝11,11と、該中央主溝11,11よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる一対の外側主溝12,12とが形成されている。中央主溝11及び外側主溝12は、ストレート形状を有していても良く、或いは、ジグザグ形状を有していても良い。これにより、中央主溝11,11の相互間にはセンター陸部20が区画され、中央主溝11と外側主溝12との間にはミドル陸部30が区画され、外側主溝12の外側にはショルダー陸部40が区画されている。 As shown in FIG. 2, the tread portion 1 includes a pair of central main grooves 11, 11 extending in the tire circumferential direction at positions on both sides of the tire center position CL, and the tire main body 11, 11 outside the central main grooves 11, 11. A pair of outer main grooves 12 and 12 extending in the tire circumferential direction at the position are formed. The central main groove 11 and the outer main groove 12 may have a straight shape or may have a zigzag shape. As a result, a center land portion 20 is defined between the central main grooves 11 and 11, and a middle land portion 30 is defined between the central main groove 11 and the outer main groove 12. A shoulder land portion 40 is defined in the area.
 ミドル陸部30の各々には、タイヤ幅方向に延びる複数本の中央横溝31が形成されている。中央横溝31は、トレッド面での溝幅が1.1mm~9.5mmの範囲にある中央ラグ溝31Aと、トレッド面での溝幅が1.0mm以下である中央サイプ31Bとを含んでいる。これら中央ラグ溝31A及び中央サイプ31Bはタイヤ周方向に沿って交互に配置されている。また、ミドル陸部30の一方には、タイヤ周方向に沿って延びていてジグザグ形状を有する周方向細溝32が形成されている。 A plurality of central lateral grooves 31 extending in the tire width direction are formed in each of the middle land portions 30. The central lateral groove 31 includes a central lug groove 31A having a groove width in the range of 1.1 mm to 9.5 mm on the tread surface and a central sipe 31B having a groove width on the tread surface of 1.0 mm or less. . The central lug grooves 31A and the central sipes 31B are alternately arranged along the tire circumferential direction. Further, a circumferential narrow groove 32 extending in the tire circumferential direction and having a zigzag shape is formed on one side of the middle land portion 30.
 ショルダー陸部40の各々には、タイヤ幅方向に延びる複数本の外側横溝41が形成されている。外側横溝41は、トレッド面での溝幅が1.1mm~9.0mmの範囲にある外側ラグ溝41A及びトレッド面での溝幅が1.0mm以下である外側サイプ41Bの少なくとも一方を含んでいる。両者が混在する形態においては、外側ラグ溝41A及び外側サイプ41Bがタイヤ周方向に沿って交互に配置されている。 Each of the shoulder land portions 40 is formed with a plurality of outer lateral grooves 41 extending in the tire width direction. The outer lateral groove 41 includes at least one of an outer lug groove 41A having a groove width on the tread surface of 1.1 mm to 9.0 mm and an outer sipe 41B having a groove width of 1.0 mm or less on the tread surface. Yes. In the form in which both are present, the outer lug grooves 41A and the outer sipes 41B are alternately arranged along the tire circumferential direction.
 図3~図5はそれぞれ図1の空気入りタイヤの接地形状(40%荷重、75%荷重、100%荷重)を示すものである。上記空気入りタイヤにおいて、該空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力のそれぞれ40%,75%,100%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をそれぞれLA1,LB1,LC1(mm)とし、タイヤ幅方向の最大接地幅をそれぞれWA1,WB1,WC1(mm)とし、タイヤ中心位置からタイヤ幅方向外側に向かって最大接地幅WA1,WB1,WC1の40%の位置におけるタイヤ周方向の外部接地長をそれぞれLA2,LB2,LC2(mm)とする。 FIGS. 3 to 5 show the ground contact shapes (40% load, 75% load, 100% load) of the pneumatic tire of FIG. 1, respectively. In the pneumatic tire described above, a tire when the pneumatic tire is filled with 230 kPa of air pressure and is grounded under a condition in which a load of 40%, 75%, and 100% of the maximum load capacity specified by the standard is applied, respectively. The maximum contact length in the circumferential direction is LA1, LB1, LC1 (mm), and the maximum contact width in the tire width direction is WA1, WB1, WC1 (mm), respectively. External contact lengths in the tire circumferential direction at positions 40% of the widths WA1, WB1, and WC1 are LA2, LB2, and LC2 (mm), respectively.
 つまり、図3に示すように、上記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力の40%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をLA1とし、タイヤ幅方向の最大接地幅をWA1とし、タイヤ中心位置CLからタイヤ幅方向外側に向かって最大接地幅WA1の40%の位置におけるタイヤ周方向の外部接地長をLA2とする。外部接地長LA2はタイヤ中心位置CLの両側における測定値の平均値である。 That is, as shown in FIG. 3, the maximum in the tire circumferential direction when the pneumatic tire is filled with 230 kPa of air pressure and contacted with a load of 40% of the maximum load capacity defined in the standard is applied. The contact length is LA1, the maximum contact width in the tire width direction is WA1, and the external contact length in the tire circumferential direction at a position 40% of the maximum contact width WA1 from the tire center position CL toward the outer side in the tire width direction is LA2. . The external ground contact length LA2 is an average value of measured values on both sides of the tire center position CL.
 また、図4に示すように、上記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力の75%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をLB1とし、タイヤ幅方向の最大接地幅をWB1とし、タイヤ中心位置CLからタイヤ幅方向外側に向かって最大接地幅WB1の40%の位置におけるタイヤ周方向の外部接地長をLB2とする。外部接地長LB2はタイヤ中心位置CLの両側における測定値の平均値である。 Moreover, as shown in FIG. 4, the maximum in the tire circumferential direction when the pneumatic tire is filled with 230 kPa of air pressure and grounded under a condition where a load of 75% of the maximum load capacity defined by the standard is applied. The contact length is LB1, the maximum contact width in the tire width direction is WB1, and the external contact length in the tire circumferential direction at a position 40% of the maximum contact width WB1 from the tire center position CL toward the outer side in the tire width direction is LB2. . The external contact length LB2 is an average value of measured values on both sides of the tire center position CL.
 更に、図5に示すように、上記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力の100%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をLC1とし、タイヤ幅方向の最大接地幅をWC1とし、タイヤ中心位置CLからタイヤ幅方向外側に向かって最大接地幅WC1の40%の位置におけるタイヤ周方向の外部接地長をLC2とする。外部接地長LC2はタイヤ中心位置CLの両側における測定値の平均値である。 Further, as shown in FIG. 5, the maximum in the tire circumferential direction when the pneumatic tire is filled with 230 kPa of air pressure and grounded under the condition of applying a load of 100% of the maximum load capacity defined by the standard. The contact length is LC1, the maximum contact width in the tire width direction is WC1, and the external contact length in the tire circumferential direction at the position of 40% of the maximum contact width WC1 from the tire center position CL toward the outer side in the tire width direction is LC2. . The external contact length LC2 is an average value of measured values on both sides of the tire center position CL.
 ここで、最大接地長LA1,LB1,LC1及び外部接地長LA2,LB2,LC2は以下の関係を満足する。
 1.02≦(LB2/LB1)/(LA2/LA1)≦1.25
 1.00≦(LC2/LC1)/(LB2/LB1)≦1.20
Here, the maximum ground contact lengths LA1, LB1, and LC1 and the external ground contact lengths LA2, LB2, and LC2 satisfy the following relationship.
1.02 ≦ (LB2 / LB1) / (LA2 / LA1) ≦ 1.25
1.00 ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.20
 また、図4に示すように、トレッド部1を、タイヤ赤道(即ち、タイヤ中心位置CL)を中心として最大接地幅WB1の53%に相当する幅を持つ中央領域Xcと最大接地幅WB1内で中央領域Xcよりもタイヤ幅方向外側となる外側領域Xsとに区分したとき、中央領域Xcの溝面積Sc(mm2)と外側領域Xsの溝面積Ss(mm2)は以下の関係を満足する。
 1.01≦Sc/Ss≦1.50
Further, as shown in FIG. 4, the tread portion 1 is located within the central region Xc having a width corresponding to 53% of the maximum ground contact width WB1 centered on the tire equator (ie, the tire center position CL) and the maximum ground contact width WB1. When divided into the outer region Xs that is on the outer side in the tire width direction from the central region Xc, the groove area Sc (mm 2 ) of the central region Xc and the groove area Ss (mm 2 ) of the outer region Xs satisfy the following relationship. .
1.01 ≦ Sc / Ss ≦ 1.50
 中央領域Xcの溝面積Scはタイヤ周上で中央領域Xcに形成された溝成分の総面積を意味し、外側領域Xsの溝面積Ssはタイヤ周上で外側領域Xsに形成された溝成分の総面積を意味する。なお、溝成分が面取り部を有する場合、その面取り部の面積も溝成分の総面積に含まれるものとする。 The groove area Sc of the central region Xc means the total area of the groove components formed in the central region Xc on the tire circumference, and the groove area Ss of the outer region Xs is the groove component formed in the outer region Xs on the tire circumference. It means the total area. When the groove component has a chamfered portion, the area of the chamfered portion is also included in the total area of the groove component.
 上述した空気入りタイヤでは、中央領域Xcの溝面積Scと外側領域Xsの溝面積Ssとが1.01≦Sc/Ss≦1.50の関係を満足し、中央領域Xcでの溝面積Scを十分に確保することにより、トレッド部1の中央領域Xcでの剛性を低くして路面からの入力を緩和し、乗心地(マイルド感)を改善することができる。一方、外側領域Xsでの溝面積Ssを少なくすることにより、トレッド部1の外側領域Xsでの剛性を確保し、トレッド部1のショルダー偏摩耗を抑制することができる。 In the pneumatic tire described above, the groove area Sc of the central region Xc and the groove area Ss of the outer region Xs satisfy the relationship of 1.01 ≦ Sc / Ss ≦ 1.50, and the groove area Sc in the central region Xc is By ensuring sufficiently, the rigidity in the center area | region Xc of the tread part 1 can be made low, the input from a road surface can be eased, and riding comfort (mild feeling) can be improved. On the other hand, by reducing the groove area Ss in the outer region Xs, the rigidity in the outer region Xs of the tread portion 1 can be ensured, and shoulder uneven wear of the tread portion 1 can be suppressed.
 ここで、Sc/Sが1.01よりも小さいと中央領域Xcでの溝面積Scが不足するため乗心地の改善効果が不十分になり、逆にSc/Ssが1.50よりも大きいと外側領域Xsでの溝面積Ssが過大になるためショルダー偏摩耗の抑制効果が不十分になる。特に、1.05≦Sc/Ss≦1.30、更には、1.13≦Sc/Ss≦1.30の関係を満足することが望ましい。 Here, if Sc / S is smaller than 1.01, the groove area Sc in the central region Xc is insufficient, so that the effect of improving the riding comfort becomes insufficient. Conversely, if Sc / Ss is larger than 1.50. Since the groove area Ss in the outer region Xs becomes excessive, the effect of suppressing shoulder uneven wear becomes insufficient. In particular, it is desirable to satisfy the relationship of 1.05 ≦ Sc / Ss ≦ 1.30, and further 1.13 ≦ Sc / Ss ≦ 1.30.
 また、上述した空気入りタイヤでは、最大接地長LA1,LB1,LC1及び外部接地長LA2,LB2,LC2が1.02≦(LB2/LB1)/(LA2/LA1)≦1.25、1.00≦(LC2/LC1)/(LB2/LB1)≦1.20の関係を満足し、荷重変動を考慮した接地形状を規定することにより、ショルダー偏摩耗の抑制効果と乗心地の改善効果を更に高めることができる。つまり、エンジンを前方に搭載した一般的な車両において、負荷荷重が相対的に小さいリヤ装着タイヤの荷重変動を考慮して(LB2/LB1)/(LA2/LA1)を所定の範囲に設定する一方で、負荷荷重が相対的に大きいフロント装着タイヤの荷重変動を考慮して(LC2/LC1)/(LB2/LB1)を所定の範囲に設定することにより、ショルダー偏摩耗の抑制効果と乗心地の改善効果を最適化することができる。 In the pneumatic tire described above, the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 are 1.02 ≦ (LB2 / LB1) / (LA2 / LA1) ≦ 1.25, 1.00. By satisfying the relationship of ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.20 and defining the ground contact shape in consideration of load fluctuation, the effect of suppressing shoulder uneven wear and the effect of improving riding comfort are further enhanced. be able to. In other words, in a general vehicle equipped with an engine in front, (LB2 / LB1) / (LA2 / LA1) is set within a predetermined range in consideration of load fluctuations of a rear mounted tire having a relatively small load. Thus, considering the load fluctuations of the front-mounted tire with a relatively large load, (LC2 / LC1) / (LB2 / LB1) is set within a predetermined range, so that the effect of suppressing uneven shoulder wear and the ride comfort can be reduced. The improvement effect can be optimized.
 ここで、(LB2/LB1)/(LA2/LA1)が1.02よりも小さいと乗心地の改善効果が不十分になり、逆に1.25よりも大きいとショルダー偏摩耗の抑制効果が不十分になる。同様に、(LC2/LC1)/(LB2/LB1)が1.00よりも小さいと乗心地の改善効果が不十分になり、逆に1.20よりも大きいとショルダー偏摩耗の抑制効果が不十分になる。特に、1.03≦(LB2/LB1)/(LA2/LA1)≦1.15、1.02≦(LC2/LC1)/(LB2/LB1)≦1.10の関係を満足することが望ましい。 Here, if (LB2 / LB1) / (LA2 / LA1) is less than 1.02, the effect of improving riding comfort is insufficient, and conversely if it is greater than 1.25, the effect of suppressing shoulder uneven wear is ineffective. It will be enough. Similarly, if (LC2 / LC1) / (LB2 / LB1) is smaller than 1.00, the effect of improving riding comfort is insufficient, and conversely if it is larger than 1.20, the effect of suppressing shoulder uneven wear is ineffective. It will be enough. In particular, it is desirable to satisfy the relationship of 1.03 ≦ (LB2 / LB1) / (LA2 / LA1) ≦ 1.15, 1.02 ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.10.
 上記空気入りタイヤにおいて、最大接地長LB1及び外部接地長LB2は0.65≦LB2/LB1≦0.95の関係を満足すると良い。最大負荷能力の75%の荷重を負荷した条件における接地形状をコントロールすることにより、定常走行時において良好な乗心地を発揮することができる。特に、0.70≦LB2/LB1≦0.88の範囲ではトレッド部1のエンベロープ特性が良化して乗心地が効果的に改善される。 In the pneumatic tire, the maximum contact length LB1 and the external contact length LB2 may satisfy the relationship of 0.65 ≦ LB2 / LB1 ≦ 0.95. By controlling the ground contact shape under the condition where a load of 75% of the maximum load capacity is applied, it is possible to exhibit a good riding comfort during steady running. In particular, in the range of 0.70 ≦ LB2 / LB1 ≦ 0.88, the envelope characteristics of the tread portion 1 are improved and the riding comfort is effectively improved.
 上記空気入りタイヤにおいて、最大接地長LA1,LB1,LC1及び外部接地長LA2,LB2,LC2は(LC2/LC1)/(LB2/LB1)≦(LB2/LB1)/(LA2/LA1)の関係を満足すると良い。このようにリヤ装着タイヤとフロント装着タイヤにおける接地形状を最適化することで乗心地を改善することができる。 In the pneumatic tire, the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 have a relationship of (LC2 / LC1) / (LB2 / LB1) ≦ (LB2 / LB1) / (LA2 / LA1). It is good to be satisfied. Thus, riding comfort can be improved by optimizing the contact shape of the rear and front tires.
 上述のようにトレッド部1に、タイヤ周方向に延びる中央主溝11と、該中央主溝11よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる外側主溝12と、該外側主溝12よりもタイヤ幅方向外側の位置でタイヤ幅方向に延びる複数本の外側横溝41とが形成されたトレッドパターンを有する空気入りタイヤでは、トレッド部1の外側領域Xsでの剛性を確保し、トレッド部1のショルダー偏摩耗を抑制するために、図6~図8のような構造を採用することができる。 As described above, in the tread portion 1, the central main groove 11 extending in the tire circumferential direction, the outer main groove 12 extending in the tire circumferential direction at a position outside the central main groove 11 in the tire width direction, and the outer main groove 12. In a pneumatic tire having a tread pattern in which a plurality of outer lateral grooves 41 extending in the tire width direction are formed at positions outside the tire width direction, the rigidity in the outer region Xs of the tread portion 1 is secured, and the tread portion In order to suppress the shoulder uneven wear of FIG. 1, structures as shown in FIGS. 6 to 8 can be employed.
 即ち、図7に示すように、外側横溝41(特に、外側ラグ溝41A)の側壁がトレッド面の法線に対してなす傾斜角度θslは0°≦θsl≦10°の関係を満足すると良い。外側横溝41の傾斜角度θslを上記範囲に設定することにより、トレッド部1の外側領域Xsでの剛性を確保することができる。ここで、θslが0°よりも小さく側壁がオーバーハング形状を有していると外側領域Xsでの剛性が低下し、逆に10°よりも大きいと排水性に悪影響を与えることになる。特に、1°≦θsl≦8°の関係を満足することが望ましい。 That is, as shown in FIG. 7, the inclination angle θsl formed by the side wall of the outer lateral groove 41 (particularly, the outer lug groove 41A) with respect to the normal line of the tread surface preferably satisfies the relationship 0 ° ≦ θsl ≦ 10 °. By setting the inclination angle θsl of the outer lateral groove 41 in the above range, the rigidity in the outer region Xs of the tread portion 1 can be ensured. Here, if θsl is smaller than 0 ° and the side wall has an overhang shape, the rigidity in the outer region Xs is lowered. Conversely, if it is larger than 10 °, the drainage is adversely affected. In particular, it is desirable to satisfy the relationship of 1 ° ≦ θsl ≦ 8 °.
 図6に示すように、外側横溝41の溝深さDslは外側主溝12の溝深さGDsに対して0.20≦Dsl/GDs≦0.90の関係を満足すると良い。これにより、トレッド部1の外側領域Xsでの剛性を確保することができる。ここで、Dsl/GDsが0.20よりも小さいと排水性に悪影響を与えることになり、逆に0.90よりも大きいと外側領域Xsでの剛性が低下する。 As shown in FIG. 6, the groove depth Dsl of the outer lateral groove 41 may satisfy the relationship of 0.20 ≦ Dsl / GDs ≦ 0.90 with respect to the groove depth GDs of the outer main groove 12. Thereby, the rigidity in the outer side area | region Xs of the tread part 1 is securable. Here, if Dsl / GDs is smaller than 0.20, the drainage is adversely affected. Conversely, if Dsl / GDs is larger than 0.90, the rigidity in the outer region Xs decreases.
 外側横溝41(特に、外側ラグ溝41A)はその長手方向の一部に底上げ部42を有し、該底上げ部42での溝深さDbが外側横溝41の溝深さDslに対して0.30≦Db/Dsl≦0.90の関係を満足すると良い。ここでは、底上げ部42は外側主溝12と隣接するに開口する位置に配置されている。このような底上げ部42を設けることにより、トレッド部1の外側領域Xsでの剛性を確保することができる。ここで、Db/Dslが0.90よりも大きいと剛性に与える影響が小さくなり、逆に0.30よりも小さいと排水性に悪影響を与えることになる。 The outer lateral groove 41 (particularly, the outer lug groove 41A) has a bottom raised portion 42 in a part of its longitudinal direction, and the groove depth Db at the bottom raised portion 42 is 0. 0 relative to the groove depth Dsl of the outer lateral groove 41. The relationship of 30 ≦ Db / Dsl ≦ 0.90 should be satisfied. Here, the bottom raised portion 42 is disposed at a position that opens adjacent to the outer main groove 12. By providing such a raised portion 42, the rigidity in the outer region Xs of the tread portion 1 can be ensured. Here, if Db / Dsl is larger than 0.90, the influence on the rigidity is reduced, and conversely if it is smaller than 0.30, the drainage is adversely affected.
 外側主溝12の溝深さGDsは中央主溝11の溝深さGDcに対して0.80≦GDs/GDc≦1.00の関係を満足すると良い。これにより、トレッド部1の外側領域Xsでの剛性を確保することができる。ここで、GDs/GDcが0.80よりも小さいと排水性に悪影響を与えることになり、逆に1.00よりも大きいとトレッド部1の外側領域Xsでの剛性を確保することが難しくなる。 The groove depth GDs of the outer main groove 12 may satisfy the relationship of 0.80 ≦ GDs / GDc ≦ 1.00 with respect to the groove depth GDc of the central main groove 11. Thereby, the rigidity in the outer side area | region Xs of the tread part 1 is securable. Here, if GDs / GDc is smaller than 0.80, the drainage is adversely affected. Conversely, if GDs / GDc is larger than 1.00, it is difficult to ensure the rigidity in the outer region Xs of the tread portion 1. .
 トレッド部1に外側主溝12よりもタイヤ幅方向内側の位置でタイヤ幅方向に延びる複数本の中央横溝31が形成される場合、外側横溝41の溝深さDslは中央横溝31の溝深さDclに対して0.50≦Dsl/Dcl≦1.00の関係を満足すると良い(図7及び図8参照)。これにより、トレッド部1の外側領域Xsでの剛性を確保することができる。ここで、Dsl/Dclが0.50よりも小さいと排水性に悪影響を与えることになり、逆に1.00よりも大きいとトレッド部1の外側領域Xsでの剛性を確保することが難しくなる。 When a plurality of central lateral grooves 31 extending in the tire width direction are formed in the tread portion 1 at positions inside the outer main grooves 12 in the tire width direction, the groove depth Dsl of the outer lateral grooves 41 is the groove depth of the central lateral grooves 31. It is preferable that the relationship of 0.50 ≦ Dsl / Dcl ≦ 1.00 is satisfied with respect to Dcl (see FIGS. 7 and 8). Thereby, the rigidity in the outer side area | region Xs of the tread part 1 is securable. Here, if Dsl / Dcl is smaller than 0.50, the drainage is adversely affected. Conversely, if Dsl / Dcl is larger than 1.00, it is difficult to ensure rigidity in the outer region Xs of the tread portion 1. .
 図9は本発明の他の実施形態からなる空気入りタイヤのトレッドパターンを示すものである。図9において図2と同一物には同一符号を付してその部分の詳細な説明は省略する。図9において、外側主溝12よりもタイヤ幅方向外側に形成された外側横溝41の全てが1.0mm以下の溝幅を有する外側サイプ41Bから構成されている。このように外側横溝41の全てを溝幅1.0mm以下の外側サイプ41Bとすることにより、トレッド部1の外側領域Xsでの剛性を確保し、ショルダー偏摩耗を抑制することができる。図9では、外側主溝12よりもタイヤ幅方向内側に形成された中央横溝31の全てが1.0mm以下の溝幅を有する中央サイプ31Bから構成されている。 FIG. 9 shows a tread pattern of a pneumatic tire according to another embodiment of the present invention. 9, the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 9, all of the outer lateral grooves 41 formed on the outer side in the tire width direction with respect to the outer main groove 12 are constituted by outer sipe 41B having a groove width of 1.0 mm or less. Thus, by making all of the outer lateral grooves 41 outer sipe 41B having a groove width of 1.0 mm or less, rigidity in the outer region Xs of the tread portion 1 can be ensured, and shoulder uneven wear can be suppressed. In FIG. 9, all of the central lateral grooves 31 formed on the inner side in the tire width direction from the outer main groove 12 are constituted by a central sipe 31B having a groove width of 1.0 mm or less.
 外側サイプ41Bは、図10に示すように、トレッド面から溝底まで一定の溝幅を有するものであっても良く、或いは、図11に示すように、トレッド面への開口部分に面取り部43を有していても良い。なお、中央サイプ31Bにも同様の構造を採用することができる。 The outer sipe 41B may have a constant groove width from the tread surface to the groove bottom as shown in FIG. 10, or, as shown in FIG. 11, a chamfered portion 43 at the opening to the tread surface. You may have. A similar structure can be adopted for the central sipe 31B.
 上述した空気入りタイヤにおいて、トレッド部1に、タイヤ周方向に対して傾斜する複数本のベルトコードCを含み、層間でベルトコードCが互いに交差する複数層のベルト層7が埋設される場合、図12に示すように、ベルトコードCのタイヤ中心位置CLでのタイヤ周方向に対する傾斜角度αは21°≦α≦30°の関係を満足すると良い。ベルトコードCのタイヤ中心位置CLでの傾斜角度αを極度に低角度化しないことにより、ベルト層7の剛性の増大を抑えて乗心地を改善することができる。ここで、傾斜角度αが21°よりも小さいとベルト層7の剛性の増大により乗心地の改善効果が低下し、逆に30°よりも大きいと操縦安定性等のタイヤ特性が低下するため実用的ではない。 In the pneumatic tire described above, when the tread portion 1 includes a plurality of belt cords C that are inclined with respect to the tire circumferential direction, and a plurality of belt layers 7 in which the belt cords C cross each other are embedded, As shown in FIG. 12, the inclination angle α of the belt cord C with respect to the tire circumferential direction at the tire center position CL preferably satisfies the relationship of 21 ° ≦ α ≦ 30 °. By not extremely reducing the inclination angle α of the belt cord C at the tire center position CL, the increase in rigidity of the belt layer 7 can be suppressed and the riding comfort can be improved. Here, when the inclination angle α is smaller than 21 °, the effect of improving the riding comfort is lowered due to the increase in rigidity of the belt layer 7. On the other hand, when the inclination angle α is larger than 30 °, the tire characteristics such as steering stability are deteriorated. Not right.
 また、ベルトコードCのタイヤ中心位置CLでのタイヤ周方向に対する傾斜角度αとベルトコードCのベルト端末位置BEでのタイヤ周方向に対する傾斜角度βとは18°≦β<α≦30°の関係を満足すると良い。ベルトコードCのベルト端末位置BEでの傾斜角度βを低角度化することにより、ショルダー偏摩耗を効果的に抑制することができ、しかも、ベルトコードCのタイヤ中心位置CLでの傾斜角度αを極度に低角度化しないことにより、トレッド部1の中央領域Xcにおけるベルト層7の剛性の増大を抑えて良好な乗心地を維持することができる。特に、傾斜角度αと傾斜角度βとの差は3°以上であると良い。なお、ベルトコードCのベルト端末位置BEでのタイヤ周方向に対する傾斜角度βをベルトコードCのタイヤ中心位置CLでのタイヤ周方向に対する傾斜角度αよりも小さくした構造が好ましいが、ベルト層7の全幅にわたってベルトコードCをタイヤ周方向に対して一定の角度で傾斜させ、傾斜角度α,βを同一値に設定しても良く、或いは、α<βとしても良い。 The inclination angle α of the belt cord C with respect to the tire circumferential direction at the tire center position CL and the inclination angle β of the belt cord C with respect to the tire circumferential direction at the belt end position BE have a relationship of 18 ° ≦ β <α ≦ 30 °. It is good to be satisfied. By reducing the inclination angle β of the belt cord C at the belt end position BE, shoulder uneven wear can be effectively suppressed, and the inclination angle α of the belt cord C at the tire center position CL can be reduced. By not extremely reducing the angle, an increase in rigidity of the belt layer 7 in the central region Xc of the tread portion 1 can be suppressed and good riding comfort can be maintained. In particular, the difference between the inclination angle α and the inclination angle β is preferably 3 ° or more. A structure in which the inclination angle β of the belt cord C with respect to the tire circumferential direction at the belt end position BE is smaller than the inclination angle α of the belt cord C with respect to the tire circumferential direction at the tire center position CL is preferable. The belt cord C may be inclined at a constant angle with respect to the tire circumferential direction over the entire width, and the inclination angles α and β may be set to the same value, or α <β.
 図12に示すように、ベルト層7はベルトコードCの傾斜角度がα±1°の範囲となるセンター側の高角度領域AcとベルトコードCの傾斜角度がβ±1°の範囲となるショルダー側の低角度領域Asとを有し、高角度領域Acの幅Lcがベルト層7の全幅Lの1/2以上であり、各低角度領域Asの幅Lsがベルト層7の全幅Lの1/8以上であると良い。このようにベルト層7のセンター側の高角度領域Acとショルダー側の低角度領域Asとを上記の如く設定することにより、トレッド部1の剛性配分を適正化することができる。ここで、高角度領域Acの幅Lcがベルト層7の全幅Lの1/2よりも小さいとベルト層7としての機能が低下し、また、低角度領域Asの幅Lsがベルト層7の全幅Lの1/8よりも小さいとトレッド部1の外側領域Xsでのタイヤ周方向の剛性を十分に高めることができなくなる。なお、高角度領域Acの幅Lc及び低角度領域Asの幅Lsは各ベルト層7の全幅Lに基づいて設定されるものである。 As shown in FIG. 12, the belt layer 7 has a high angle region Ac on the center side in which the inclination angle of the belt cord C is in the range of α ± 1 ° and a shoulder in which the inclination angle of the belt cord C is in the range of β ± 1 °. The low-angle region As on the side, the width Lc of the high-angle region Ac is ½ or more of the total width L of the belt layer 7, and the width Ls of each low-angle region As is 1 of the total width L of the belt layer 7. It is good that it is / 8 or more. Thus, by setting the high-angle area Ac on the center side and the low-angle area As on the shoulder side of the belt layer 7 as described above, the rigidity distribution of the tread portion 1 can be optimized. Here, when the width Lc of the high angle region Ac is smaller than ½ of the entire width L of the belt layer 7, the function as the belt layer 7 is deteriorated, and the width Ls of the low angle region As is the entire width of the belt layer 7. If it is smaller than 1/8 of L, the rigidity in the tire circumferential direction in the outer region Xs of the tread portion 1 cannot be sufficiently increased. The width Lc of the high angle area Ac and the width Ls of the low angle area As are set based on the total width L of each belt layer 7.
 上述した空気入りタイヤは偏平比0.65以下の乗用車用タイヤとして好適である。乗心地の改善が厳しく要求される乗用車用タイヤにおいて、耐偏摩耗性と乗心地とを両立することが可能になる。 The pneumatic tire described above is suitable as a tire for passenger cars having a flatness ratio of 0.65 or less. In a tire for a passenger car that is required to improve riding comfort, it is possible to achieve both uneven wear resistance and riding comfort.
 上述した実施形態では、トレッド部に4本の主溝を含むトレッドパターンについて説明したが、本発明はトレッド部に3本の主溝を含むトレッドパターンや、トレッド部にV字状の主溝を含むトレッドパターンにも適用可能である。 In the embodiment described above, a tread pattern including four main grooves in the tread portion has been described. However, the present invention includes a tread pattern including three main grooves in the tread portion, and a V-shaped main groove in the tread portion. It is applicable also to the tread pattern which contains.
 タイヤサイズ205/55R16 91Vで、一対のビード部間にカーカス層が装架され、トレッド部におけるカーカス層のタイヤ径方向外側に2層のベルト層が埋設され、トレッド部に、タイヤ周方向に延びる一対の中央主溝と、該中央主溝よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる一対の外側主溝と、該外側主溝よりもタイヤ幅方向内側の位置でタイヤ幅方向に延びる複数本の中央横溝と、該外側主溝よりもタイヤ幅方向外側の位置でタイヤ幅方向に延びる複数本の外側横溝とが形成された空気入りタイヤにおいて、ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度α、ベルトコードのベルト端末位置でのタイヤ周方向に対する傾斜角度β、外側横溝の側壁の傾斜角度θsl、外側主溝の溝深さGDs、外側横溝の溝深さDsl、比Dsl/GDs、外側横溝の底上げ部での溝深さDb、比Db/Dsl、中央主溝の溝深さGDc、比GDs/GDc、中央横溝の溝深さDcl、比Dsl/Dcl、外側横溝の溝幅、中央領域の溝面積Scと外側領域の溝面積Ssの比Sc/Ss、(LB2/LB1)/(LA2/LA1)、(LC2/LC1)/(LB2/LB1)、LB2/LB1(矩形比)を表1のように設定した比較例1~3及び実施例1~9のタイヤを製作した。 With a tire size of 205 / 55R16 91V, a carcass layer is mounted between a pair of bead portions, two belt layers are embedded on the outer side in the tire radial direction of the carcass layer in the tread portion, and extend in the tire circumferential direction on the tread portion. A pair of central main grooves, a pair of outer main grooves extending in the tire circumferential direction at a position on the outer side in the tire width direction from the central main grooves, and extending in the tire width direction at a position on the inner side in the tire width direction from the outer main grooves. In a pneumatic tire in which a plurality of central lateral grooves and a plurality of outer lateral grooves extending in the tire width direction at positions outside the outer main grooves in the tire width direction are formed, the tire circumference at the tire cord center position of the belt cord The inclination angle α with respect to the direction, the inclination angle β with respect to the tire circumferential direction at the belt end position of the belt cord, the inclination angle θsl of the side wall of the outer lateral groove, the groove depth GDs of the outer main groove, outside Groove depth Dsl, ratio Dsl / GDs, groove depth Db, ratio Db / Dsl, groove depth GDc of central main groove, ratio GDs / GDc, groove depth Dcl of center lateral groove , Ratio Dsl / Dcl, groove width of outer lateral groove, ratio Sc / Ss of groove area Sc of central region and groove region Ss of outer region, (LB2 / LB1) / (LA2 / LA1), (LC2 / LC1) / ( Tires of Comparative Examples 1 to 3 and Examples 1 to 9 having LB2 / LB1) and LB2 / LB1 (rectangular ratio) set as shown in Table 1 were manufactured.
  これら試験タイヤについて、下記試験方法により、耐偏摩耗性(ショルダー領域)、乗心地、ウエット性能を評価し、その結果を表1に併せて示した。 偏 These test tires were evaluated for uneven wear resistance (shoulder region), riding comfort, and wet performance by the following test methods, and the results are also shown in Table 1.
 耐偏摩耗性(ショルダー領域):
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて摩擦エネルギー測定試験機に装着し、空気圧230kPa、負荷荷重4.5kNの条件下にて、トレッド部のショルダー領域での平均摩擦エネルギーを測定した。測定値は、各領域で10mm間隔となるタイヤ幅方向2箇所×タイヤ周方向2箇所の計4点における摩擦エネルギーを測定し、これらを平均したものである。評価結果は、測定値の逆数を用い、比較例2を100とする指数にて示した。指数値が大きいほど耐偏摩耗性が優れていることを意味する。
Uneven wear resistance (shoulder area):
Each test tire is mounted on a wheel with a rim size of 16 × 6.5J and mounted on a friction energy measurement tester, and the average friction energy in the shoulder region of the tread is measured under the conditions of air pressure of 230 kPa and load load of 4.5 kN. did. The measured values are obtained by measuring the frictional energy at a total of four points of 2 locations in the tire width direction × 2 locations in the tire circumferential direction, which are 10 mm intervals in each region, and averaging them. The evaluation results are shown as an index with the comparative example 2 being 100, using the reciprocal of the measured value. The larger the index value, the better the uneven wear resistance.
 乗心地:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量2リットルの前輪駆動車に装着し、当該車両の指定空気圧を充填し、路面上に突起が配設されたテストコースにてパネラーによる走行試験を実施し、突起の入力等を考慮した乗心地(マイルド感)に関する官能評価を行った。評価結果は、比較例1を100とする指数にて示した。指数値が大きいほど乗心地が良好であることを意味する。
Ride comfort:
Each test tire is mounted on a wheel with a rim size of 16x6.5J and mounted on a front-wheel drive vehicle with a displacement of 2 liters, filled with the specified air pressure of the vehicle, and a panel at a test course with protrusions on the road surface. A sensory evaluation on riding comfort (mild feeling) was performed in consideration of the input of protrusions. The evaluation results are shown as an index with Comparative Example 1 as 100. A larger index value means better riding comfort.
 ウエット性能:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量2リットルの前輪駆動車に装着し、当該車両の指定空気圧を充填し、散水されたテストコースにてパネラーによる走行試験を実施し、ウエット路面での操縦安定性に関する官能評価を行った。評価結果は、比較例1を100とする指数にて示した。指数値が大きいほどウエット性能が優れていることを意味する。
Wet performance:
Each test tire is mounted on a wheel with a rim size of 16 x 6.5J and mounted on a front-wheel drive vehicle with a displacement of 2 liters. The specified air pressure of the vehicle is filled, and a running test is conducted by a panel on a watered test course. The sensory evaluation on the handling stability on the wet road surface was conducted. The evaluation results are shown as an index with Comparative Example 1 as 100. A larger index value means better wet performance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1から判るように、実施例1~9のタイヤは、比較例1との対比において、耐偏摩耗性、乗心地、ウエット性能が共に優れていた。一方、比較例2,3のタイヤは、これら性能の改善効果が必ずしも十分ではなかった。 As can be seen from Table 1, in comparison with Comparative Example 1, the tires of Examples 1 to 9 were excellent in uneven wear resistance, riding comfort, and wet performance. On the other hand, the tires of Comparative Examples 2 and 3 were not always sufficient in improving these performances.
 1 トレッド部
 2 サイドウォール部
 3 ビード部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 ベルト補強層
 11 中央主溝
 12 外側主溝
 31 中央横溝
 31A 中央ラグ溝
 31B 中央サイプ
 41 外側横溝
 41A 外側ラグ溝
 41B 外側サイプ
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 4 Carcass layer 5 Bead core 6 Bead filler 7 Belt layer 8 Belt reinforcement layer 11 Central main groove 12 Outer main groove 31 Central lateral groove 31A Central lug groove 31B Central sipe 41 Outer lateral groove 41A Outer lug groove 41B outer sipe

Claims (13)

  1.  タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えた空気入りタイヤにおいて、
     前記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力のそれぞれ40%,75%,100%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をそれぞれLA1,LB1,LC1とし、タイヤ幅方向の最大接地幅をそれぞれWA1,WB1,WC1とし、タイヤ中心位置からタイヤ幅方向外側に向かって最大接地幅WA1,WB1,WC1の40%の位置におけるタイヤ周方向の外部接地長をそれぞれLA2,LB2,LC2としたとき、前記最大接地長LA1,LB1,LC1及び前記外部接地長LA2,LB2,LC2が1.02≦(LB2/LB1)/(LA2/LA1)≦1.25、1.00≦(LC2/LC1)/(LB2/LB1)≦1.20の関係を満足し、
     前記トレッド部を、タイヤ赤道を中心として最大接地幅WB1の53%に相当する幅を持つ中央領域と最大接地幅WB1内で前記中央領域よりもタイヤ幅方向外側となる外側領域とに区分したとき、前記中央領域の溝面積Scと前記外側領域の溝面積Ssが1.01≦Sc/Ss≦1.50の関係を満足することを特徴とする空気入りタイヤ。
    An annular tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and a pair of bead portions disposed on the inner side in the tire radial direction of the sidewall portions. In the provided pneumatic tire,
    Maximum contact length in the tire circumferential direction when the pneumatic tire is filled with air pressure of 230 kPa and contacted with a load of 40%, 75%, and 100% of the maximum load capacity determined by the standard, respectively. Are LA1, LB1, and LC1, respectively, and the maximum ground contact widths in the tire width direction are WA1, WB1, and WC1, respectively, at positions 40% of the maximum ground contact widths WA1, WB1, and WC1 from the tire center position toward the outside in the tire width direction. When the external contact lengths in the tire circumferential direction are LA2, LB2, and LC2, respectively, the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 are 1.02 ≦ (LB2 / LB1) / (LA2 /LA1)≦1.25, 1.00 ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.20,
    When the tread portion is divided into a central region having a width corresponding to 53% of the maximum ground contact width WB1 centered on the tire equator and an outer region in the maximum ground contact width WB1 outside the center region in the tire width direction. The pneumatic tire is characterized in that the groove area Sc of the central region and the groove area Ss of the outer region satisfy a relationship of 1.01 ≦ Sc / Ss ≦ 1.50.
  2.  前記最大接地長LB1及び前記外部接地長LB2が0.65≦LB2/LB1≦0.95の関係を満足することを特徴とする請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the maximum contact length LB1 and the external contact length LB2 satisfy a relationship of 0.65 ≦ LB2 / LB1 ≦ 0.95.
  3.  前記最大接地長LA1,LB1,LC1及び前記外部接地長LA2,LB2,LC2が(LC2/LC1)/(LB2/LB1)≦(LB2/LB1)/(LA2/LA1)の関係を満足することを特徴とする請求項1又は2に記載の空気入りタイヤ。 The maximum ground contact lengths LA1, LB1, and LC1 and the external ground contact lengths LA2, LB2, and LC2 satisfy the relationship of (LC2 / LC1) / (LB2 / LB1) ≦ (LB2 / LB1) / (LA2 / LA1). The pneumatic tire according to claim 1 or 2, characterized by the above.
  4.  前記トレッド部に、タイヤ周方向に延びる中央主溝と、該中央主溝よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる外側主溝と、該外側主溝よりもタイヤ幅方向外側の位置でタイヤ幅方向に延びる複数本の外側横溝とが形成されていることを特徴とする請求項1~3のいずれかに記載の空気入りタイヤ。 A central main groove extending in the tire circumferential direction in the tread portion, an outer main groove extending in the tire circumferential direction at a position on the outer side in the tire width direction from the central main groove, and a position on the outer side in the tire width direction from the outer main groove. The pneumatic tire according to any one of claims 1 to 3, wherein a plurality of outer lateral grooves extending in the tire width direction are formed.
  5.  前記外側横溝の側壁がトレッド面の法線に対してなす傾斜角度θslが0°≦θsl≦10°の関係を満足することを特徴とする請求項4に記載の空気入りタイヤ。 The pneumatic tire according to claim 4, wherein an inclination angle θsl formed by a side wall of the outer lateral groove with respect to a normal line of the tread surface satisfies a relationship of 0 ° ≦ θsl ≦ 10 °.
  6.  前記外側横溝の溝深さDslが前記外側主溝の溝深さGDsに対して0.20≦Dsl/GDs≦0.90の関係を満足することを特徴とする請求項4又は5に記載の空気入りタイヤ。 The groove depth Dsl of the outer lateral groove satisfies a relationship of 0.20 ≦ Dsl / GDs ≦ 0.90 with respect to the groove depth GDs of the outer main groove. Pneumatic tire.
  7.  前記外側横溝がその長手方向の一部に底上げ部を有し、該底上げ部での溝深さDbが前記外側横溝の溝深さDslに対して0.30≦Db/Dsl≦0.90の関係を満足することを特徴とする請求項4~6のいずれかに記載の空気入りタイヤ。 The outer lateral groove has a bottom raised portion in a part of its longitudinal direction, and the groove depth Db at the bottom raised portion is 0.30 ≦ Db / Dsl ≦ 0.90 with respect to the groove depth Dsl of the outer lateral groove. The pneumatic tire according to any one of claims 4 to 6, wherein the relationship is satisfied.
  8.  前記外側主溝の溝深さGDsが前記中央主溝の溝深さGDcに対して0.80≦GDs/GDc≦1.00の関係を満足することを特徴とする請求項4~7のいずれかに記載の空気入りタイヤ。 The groove depth GDs of the outer main groove satisfies a relationship of 0.80 ≦ GDs / GDc ≦ 1.00 with respect to the groove depth GDc of the central main groove. The pneumatic tire according to Crab.
  9.  前記トレッド部に、前記外側主溝よりもタイヤ幅方向内側の位置でタイヤ幅方向に延びる複数本の中央横溝が形成され、前記外側横溝の溝深さDslが前記中央横溝の溝深さDclに対して0.50≦Dsl/Dcl≦1.00の関係を満足することを特徴とする請求項4~8のいずれかに記載の空気入りタイヤ。 A plurality of central lateral grooves extending in the tire width direction are formed in the tread portion at a position on the inner side in the tire width direction from the outer main groove, and the groove depth Dsl of the outer lateral groove is set to the groove depth Dcl of the central lateral groove. 9. The pneumatic tire according to claim 4, wherein a relationship of 0.50 ≦ Dsl / Dcl ≦ 1.00 is satisfied.
  10.  前記外側主溝よりもタイヤ幅方向外側に形成された前記外側横溝の全てが1.0mm以下の溝幅を有することを特徴とする請求項4~9のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 4 to 9, wherein all of the outer lateral grooves formed outside the outer main groove in the tire width direction have a groove width of 1.0 mm or less.
  11.  前記トレッド部に、タイヤ周方向に対して傾斜する複数本のベルトコードを含み、層間でベルトコードが互いに交差する複数層のベルト層が埋設され、前記ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度αが21°≦α≦30°の関係を満足することを特徴とする請求項1~10のいずれかに記載の空気入りタイヤ。 The tread portion includes a plurality of belt cords that are inclined with respect to the tire circumferential direction, and a plurality of belt layers in which the belt cords intersect with each other are embedded, and the tire circumferential direction at the tire center position of the belt cord The pneumatic tire according to any one of claims 1 to 10, wherein an inclination angle α with respect to the angle satisfies a relationship of 21 ° ≦ α ≦ 30 °.
  12.  前記ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度αと前記ベルトコードのベルト端末位置でのタイヤ周方向に対する傾斜角度βとが18°≦β<α≦30°の関係を満足することを特徴とする請求項11に記載の空気入りタイヤ。 The inclination angle α of the belt cord with respect to the tire circumferential direction at the tire center position and the inclination angle β of the belt cord with respect to the tire circumferential direction at the belt end position satisfy a relationship of 18 ° ≦ β <α ≦ 30 °. The pneumatic tire according to claim 11.
  13.  前記空気入りタイヤが偏平比0.65以下の乗用車用タイヤであることを特徴とする請求項1~12のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 12, wherein the pneumatic tire is a passenger tire having a flatness ratio of 0.65 or less.
PCT/JP2018/009071 2018-03-08 2018-03-08 Pneumatic tire WO2019171554A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/009071 WO2019171554A1 (en) 2018-03-08 2018-03-08 Pneumatic tire
JP2019536321A JP6729809B2 (en) 2018-03-08 2018-03-08 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009071 WO2019171554A1 (en) 2018-03-08 2018-03-08 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2019171554A1 true WO2019171554A1 (en) 2019-09-12

Family

ID=67845679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009071 WO2019171554A1 (en) 2018-03-08 2018-03-08 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP6729809B2 (en)
WO (1) WO2019171554A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162913A (en) * 2018-03-19 2019-09-26 横浜ゴム株式会社 Pneumatic tire
JP2020032889A (en) * 2018-08-30 2020-03-05 横浜ゴム株式会社 Pneumatic tire
JP2020168997A (en) * 2019-04-05 2020-10-15 横浜ゴム株式会社 Pneumatic tire
JP2021079903A (en) * 2019-11-22 2021-05-27 Toyo Tire株式会社 tire
EP4015245A1 (en) * 2020-12-17 2022-06-22 Sumitomo Rubber Industries, Ltd. Tire
CN116358760A (en) * 2023-06-01 2023-06-30 深圳亿维锐创科技股份有限公司 Method, device, equipment and storage medium for measuring load distribution of vehicle tyre

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131805A (en) * 1991-11-11 1993-05-28 Toyo Tire & Rubber Co Ltd Radial tire
JPH0971107A (en) * 1995-04-27 1997-03-18 Bridgestone Corp Pneumatic radial tire
JP2004224270A (en) * 2003-01-24 2004-08-12 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2005053268A (en) * 2003-08-06 2005-03-03 Sumitomo Rubber Ind Ltd Pneumatic radial tire
JP2007182099A (en) * 2005-12-29 2007-07-19 Sumitomo Rubber Ind Ltd Tire for heavy load
JP2010058554A (en) * 2008-09-01 2010-03-18 Bridgestone Corp Pneumatic tire
JP2010126103A (en) * 2008-11-28 2010-06-10 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2013091444A (en) * 2011-10-26 2013-05-16 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2017001474A (en) * 2015-06-08 2017-01-05 横浜ゴム株式会社 Pneumatic tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131805A (en) * 1991-11-11 1993-05-28 Toyo Tire & Rubber Co Ltd Radial tire
JPH0971107A (en) * 1995-04-27 1997-03-18 Bridgestone Corp Pneumatic radial tire
JP2004224270A (en) * 2003-01-24 2004-08-12 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2005053268A (en) * 2003-08-06 2005-03-03 Sumitomo Rubber Ind Ltd Pneumatic radial tire
JP2007182099A (en) * 2005-12-29 2007-07-19 Sumitomo Rubber Ind Ltd Tire for heavy load
JP2010058554A (en) * 2008-09-01 2010-03-18 Bridgestone Corp Pneumatic tire
JP2010126103A (en) * 2008-11-28 2010-06-10 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2013091444A (en) * 2011-10-26 2013-05-16 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2017001474A (en) * 2015-06-08 2017-01-05 横浜ゴム株式会社 Pneumatic tire

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162913A (en) * 2018-03-19 2019-09-26 横浜ゴム株式会社 Pneumatic tire
JP7031402B2 (en) 2018-03-19 2022-03-08 横浜ゴム株式会社 Pneumatic tires
JP2020032889A (en) * 2018-08-30 2020-03-05 横浜ゴム株式会社 Pneumatic tire
JP7099190B2 (en) 2018-08-30 2022-07-12 横浜ゴム株式会社 Pneumatic tires
JP2020168997A (en) * 2019-04-05 2020-10-15 横浜ゴム株式会社 Pneumatic tire
JP7234756B2 (en) 2019-04-05 2023-03-08 横浜ゴム株式会社 pneumatic tire
JP2021079903A (en) * 2019-11-22 2021-05-27 Toyo Tire株式会社 tire
JP7365870B2 (en) 2019-11-22 2023-10-20 Toyo Tire株式会社 tire
EP4015245A1 (en) * 2020-12-17 2022-06-22 Sumitomo Rubber Industries, Ltd. Tire
CN116358760A (en) * 2023-06-01 2023-06-30 深圳亿维锐创科技股份有限公司 Method, device, equipment and storage medium for measuring load distribution of vehicle tyre
CN116358760B (en) * 2023-06-01 2023-08-25 深圳亿维锐创科技股份有限公司 Method, device, equipment and storage medium for measuring load distribution of vehicle tyre

Also Published As

Publication number Publication date
JPWO2019171554A1 (en) 2020-04-16
JP6729809B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP3723764B2 (en) Pneumatic tire
JP6729809B2 (en) Pneumatic tire
US9150056B2 (en) Pneumatic tire
US8813799B2 (en) Heavy duty radial tire
JP6729808B2 (en) Pneumatic tire
US11433713B2 (en) Pneumatic tire
WO2018131229A1 (en) Pneumatic tire
WO2018131475A1 (en) Pneumatic tire
JPWO2005068225A1 (en) Pneumatic tire
US20180056728A1 (en) Pneumatic Tire
JP2007076594A (en) Pneumatic tire
JP4687342B2 (en) Pneumatic tire
WO2019159544A1 (en) Pneumatic tire
JP2019137338A (en) Pneumatic tire
US11951774B2 (en) Pneumatic tire
JP7099190B2 (en) Pneumatic tires
JP2018161998A (en) Pneumatic tire
JP7031402B2 (en) Pneumatic tires
WO2020179137A1 (en) Motorcycle tire
JP6790841B2 (en) Pneumatic tires
JP7360020B2 (en) pneumatic tires
JP5521730B2 (en) Pneumatic tire
JP7287178B2 (en) pneumatic tire
US20210362551A1 (en) Pneumatic Tire
JP7234756B2 (en) pneumatic tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536321

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908545

Country of ref document: EP

Kind code of ref document: A1